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Abstract 
Formal verification methods offer a large potential to provide automated software correct
ness checking (based on sound mathematical roots), which is of v i t a l importance. One such 
technique is abstract regular model checking, which encodes sets of reachable configurations 
and one-step transitions between them using finite automata and transducers, respectively. 
Though this method addresses problems that are undecidable i n general, it facilitates ter
minat ion i n many pract ical cases, while also significantly reducing the state space explosion 
problem. This is achieved by accelerating the computat ion of reachability sets using in
crementally refinable abstractions, while el iminat ing spurious counterexamples caused by 
overapproximation using a counterexample-guided abstraction refinement technique. The 
a im of this thesis is to create a well designed tool for abstract regular model checking, which 
has so far only been implemented i n prototypes. The new tool w i l l model systems using 
symbolic automata and transducers instead of their (less concise) classic alternatives. 

Abstrakt 
Me tody formální verifikace mohou poskytnout a u t o m a t i z o v a n é ověření korektnosti soft
waru ( s tavěné na m a t e m a t i c k ý c h zák ladech) , což je ve lmi dů lež i té . Jednou z t ě c h t o metod 
je a b s t r a k t n í r egu lá rn í model checking, j enž použ ívá konečné automaty a p ř e v o d n í k y pro 
reprezentaci m n o ž i n y dosaž i t e lných konfigurací , respektive j ednokrokového p ř e c h o d u mezi 
t ě m i t o konfiguracemi. P ř e s t o ž e tato metoda řeší obecně n e r o z h o d n u t e l n é prob lémy, u m o ž 
ňuje terminaci v mnoha p r a k t i c k ý c h p ř í p a d e c h a nav íc v ý r a z n ě zmí rňu je p r o b l é m s tavové 
exploze. Tohoto dosahuje u r y c h l e n í m v ý p o č t u dosaž i t e lných s t a v ů p o m o c í i n k r e m e n t á l 
n ího z jemňován í abs t r akc í , k o d s t r a n ě n í n e p l a t n ý c h p r o t i p ř í k l a d ů vznik lých n a d a p r o x i m a c í 
pak slouží technika z jemňování abstrakce za ložená na p ro t ip ř ík l adech . C í lem t é t o p r á c e je 
vy tvo ř i t d o b ř e nav ržený n á s t r o j pro a b s t r a k t n í r egu lá rn í model checking, j enž b y l dosud 
i m p l e m e n t o v á n pouze v prototypech. N o v ý n á s t r o j bude s y s t é m y modelovat p o m o c í sym
bol ických a u t o m a t ů a p ř e v o d n í k ů n a m í s t o jejich (méně s t ručných ) klas ických alternativ. 
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Rozšířený abstrakt 
Korektnost in formačních a k o m u n i k a č n í c h s y s t é m ů je ve lmi dů lež i t á . C h y b y v t ě c h t o sys
t é m e c h mohou vést k v y s o k ý m f inančn ím z t r á t á m nebo ohrožen í bezpečnos t i . V če rvnu roku 
f 996 došlo k explozi nosné rakety Ariane-5 p o u h ý c h 36 v t e ř in po startu, p r o t o ž e ř ídící jed
notka konvertovala 64-bi tové číslo v plovoucí ř ádové čárce na 16-bitové celé číslo. V dubnu 
roku 2014 byla zveře jněna zranitelnost v kryptograf ické k n ih o v n ě OpenSSL z n á m á jako 
Heartbleed (odha len í c i t l ivých dat kvůl i chybějící kontrole dé lky pole), k t e r á byla v kn i 
hovně zavedena o dva roky dř íve a vedla k ú t o k ů m na 60 % webových serverů. 

P ro produkci in formačních a k o m u n i k a č n í c h s y s t é m ů s m i n i m á l n í m m n o ž s t v í m chyb jsou 
zá sadn í efekt ivní techniky pro za j i š tění kvality. M e z i n ě se ř a d í peer-review (posouzení zdro
jového k ó d u vývojář i ) a testování ( spuš t ěn í softwaru s r ů z n ý m i vstupy a kontrola v ý s t u p ů ) . 
O b ě techniky jsou velmi už i t ečné a použ ívané , ale nemohou spolehl ivě zajistit korektnost. 
N ě k t e r é chyby (např . synchron izačn í , a lgor i tmické) se těžko odha lu j í p o m o c í peer-review, 
za t ímco vyčerpávaj íc í t e s tován í všech m o ž n ý c h cest v programu je prakt icky neproved i t e lné , 
a proto t e s tován í m ů ž e odhalit pouze p ř í t o m n o s t chyb (absenci nikol iv) . 

Al te rna t ivou je už i t í technik formálni verifikace. F o r m á l n í verifikace je p ř i rozeně s t a v ě n á na 
formálních m a t e m a t i c k ý c h zák ladech a na rozd í l od o s t a t n í c h technik m á po tenc i á l d o k á z a t 
korektnost s y s t é m ů vzhledem ke specifikaci p o ž a d o v a n ý c h v l a s tnos t í . N ě k t e r é z t ě c h t o 
technik jsou nav íc zcela a u t o m a t i z o v a n é , a tedy nevyžadu j í od už iva te le mnoho interakce 
ani o d b o r n ý c h zna los t í . Lze rozlišit t ř i rozdí lné p ř í s t u p y k formáln í verifikaci, j m e n o v i t ě 
model checking, statická analýza a theorem proving. S t a t i c k á a n a l ý z a získává informace 
o chování s y s t é m u z jeho zdro jového k ó d u bez nutnosti spouš t ěn í . D o k á ž e se v y p o ř á d a t 
s rozsáh lými sys témy, ale je ča s to spec ia l izovaná pro k o n k r é t n í úkol . Theorem proving 
dokazuje t e o r é m y odvozován ím z ax iomů, p o d o b n ě jako v klasické výrokové logice. Je 
velmi obecný, ale vyžadu je z n a č n o u m a n u á l n í prác i . 

M o d e l checking je verifikační technika za ložená na modelech popisuj íc í s y s t é m a jeho chování 
matematicky p ř e s n ý m a j e d n o z n a č n ý m z p ů s o b e m . P o m o c í t ě c h t o m o d e l ů , k t e r é mohou bý t 
automaticky generovány ze zdro jového kódu , se p rocház í všechny m o ž n é stavy s y s t é m u 
vyčerpáva j íc ím z p ů s o b e m a kontroluje se, zda v n ě k t e r é m z t ě c h t o s t a v ů nen í p o r u š e n a 
d a n á vlastnost. P ř i na lezen í po rušen í vlastnosti se generuje p ro t i p ř ík l ad . Jel ikož model 
checking verifikuje model s y s t é m u , platnost jeho výs ledků je závis lá na kval i tě modelu. 

Regulárni model checking ( R M C ) použ ívá jako své modely konečné automaty, k t e r é reprezen
tuj í (po tenc iá lně nekonečnou) r egu lá rn í m n o ž i n u dosaž i te lných konfigurací ve z k o u m a n é m 
sys t ému . P ř e c h o d y mezi konfiguracemi (tj. chování sy s t ému) jsou mode lovány konečnými 
převodníky . S te jně jako o s t a t n í techniky model checkingu, R M C se m u s í v y p o ř á d a t s prob
l é m e m s tavové exploze (poče t dosaž i t e lných s t a v ů roste exponenc i á lně ) . Nav íc řeší veri
fikační úlohy, k t e r é jsou obecně n e r o z h o d n u t e l n é . Typ i cky se proto užívá ně j aká metoda 
akcelerace, aby se zvýši la p r a v d ě p o d o b n o s t terminace. 

Abstraktní regulárni model checking ( A R M C ) dosahuje akcelerace p o u ž i t í m abstrakce, kterou 
čas to spojuje s technikou zjemňováni abstrakce založené na protipříkladech ( C E G A R ) . 
A R M C systematicky nadaproximuje m n o ž i n u dosaž i t e lných s t avů , č ímž zaruču je termi-
naci. P ř i n á š í t í m t o m o ž n o s t objevení s p o r n é h o p r o t i p ř í k l a d u (tj. chyba, k t e r á v s y s t é m u 
s k u t e č n ě není , ale byla nalezena kvůl i nadaproximaci) . P ř i detekci s p o r n é h o p r o t i p ř í k l a d u 
umožňu j í efekt ivní techniky zjemnit abstrakci tak, aby se v dalš í i teraci vylouči la m o ž n o s t 
na lezení s t e jného p r o t i p ř í k l a d u . 



Ačkoliv nen í g a r a n t o v á n o , že vnější cyklus ( i t e r a t ivn ího z jemňování ) n ě k d y skončí , v mnoha 
p rak t i ckých p ř í p a d e c h A R M C terminaci umožňu je . Nav íc v ý r a z n ě zmírňu je p r o b l é m s tavové 
exploze. 

A R M C užívá dvou různých zák ladn ích technik pro abstrakci konečných a u t o m a t ů . O b ě 
jsou za ložené na s loučení n ě k t e r ý c h s t a v ů v automatu na zák ladě ně jaké relace ekvivalence. 
U p r v n í techniky se dva stavy považuj í se ekviva len tn í , mají- l i jejich j azyky n e p r á z d n ý 
p r ů n i k se s t e jnými j azyky z m n o ž i n y p r e d i k á t o v ý c h j a z y k ů . U d r u h é techniky jsou stavy 
ekvivalentn í , když si jsou rovné jejich jazyky o omezené délce slova. Z jemněn í abstrakce 
se d o s á h n e v p r v n í m p ř í p a d ě p ř i d á n í m p r e d i k á t u a ve d r u h é m n a v ý š e n í m délky. P ro obě 
techniky existuje ř a d a r ů z n ý c h variant a heuristik. 

A R M C m á velký p o t e n c i á l poskytnout zcela automatizovanou verifikaci nekonečných a 
p a r a m e t r i z o v a n ý c h sy s t émů . Dosud byla však tato metoda i m p l e m e n t o v á n a ve dvou pro
totypech v jazyc ích Y A P Prolog a O C a m l . Jel ikož tyto prototypy již nejsou udržovány, 
nejsou v h o d n é pro e x p e r i m e n t o v á n í a rozš i řování n o v ý m i algoritmy. 

Cí lem t é t o p r á c e je n á v r h , implementace a t e s tován í p l n o h o d n o t n é h o n á s t r o j e pro A R M C . 
N a m í s t o konečných a u t o m a t ů a p ř e v o d n í k ů jsou pro reprezentaci s y s t é m u použ i t y sym
bolické automaty a p ř e v o d n í k y (omezené na p r e d i k á t y in a not in kvůl i p o ž a d a v k u na 
uzav řenos t inverze p ř e v o d n í k u ) , k t e r é umožňu j í s t ručně jš í vy jadřován í . Nový n á s t r o j je im
p l emen tován v jazyce C # a jako backend použ ívá open source knihovnu AutomataDotNet 
od Microsoftu. Tato knihovna implementuje algori tmy nad symbol i ckými automaty a byla 
v y b r á n a ze jména kvůl i její vyspě los t i . 

Nový n á s t r o j je n a v r ž e n ob jek tově -o r i en tovaným z p ů s o b e m a m ů ž e bý t p o u ž i t jako knihovna 
nebo jako konzolová aplikace. Podporuje r ů z n é t ex tové fo rmá ty pro n a č í t á n í a t i s k n u t í au
t o m a t ů / p ř e v o d n í k ů (Timbuk, F S A , F S M , pro tisk t a k é D O T ) , a umožňu je zvolení konfig
urace ú p r a v o u t e x t o v é h o souboru v j e d n o d u c h é m f o r m á t u ( o p a t ř e n é m k o m e n t á ř i ) . N á s t r o j 
je i m p l e m e n t o v á n tak, aby by l lépe udržovate lný . N a v h o d n ý c h mís t ech je už i to funkcionál
n ího p r o g r a m o v á n í a reflexe. R o z h r a n í je d o k u m e n t o v á n o a zdro jový kód je okomen tován . 

P ř i t e s tován í se použ i ly modely r ů z n ý c h verif ikačních ú loh . P o m o c í nového n á s t r o j e byla 
verifikována vlasnost v z á j e m n é h o vy loučení p rocesů v kr i t ické sekci u někol ika synchroniza
čních a l g o r i t m ů (pekařův, Dijkstrův, Burnsův a Szymanského algoritmus), a t a k é sp rávné 
p o ř a d í udá lo s t í u zásobníkového s y s t é m u s r eku rz ivn ími procedurami ( tvoř íc í n á h o d n ý 
s loupcový graf) a k o m u n i k a č n í h o s y s t é m u využívaj ící fronty (alternating bit protocol). Navíc 
u c h y b n é specifikace S z y m a n s k é h o algori tmu nalezl n á s t r o j p ro t i p ř ík l ad . E x p e r i m e n t á l n ě 
byla z j i š těna velká závislost na p o u ž i t é konfiguraci. 

Nový n á s t r o j pro A R M C je nav ržen u d r ž o v a t e l n ý m z p ů s o b e m a m á v h o d n é uživate lské 
rozhran í . V budoucnu je m o ž n é jej rozšíř i t o abstraktní regulární stromový model checking. 
Zdrojový kód je d o s t u p n ý pod licencí M I T . 
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Chapter 1 

Introduction 

We rely heavily on the correct functioning of I C T systems (Information and Communica t ion 
Technology). Errors i n I C T systems may lead to big financial losses as well as to safety 
problems. In June 1996, the Ariane-5 missile notoriously crashed 36 seconds after launch 
due to a conversion of a 64-bit floating point number into a 16-bit integer value i n its 
control software. In A p r i l 2014, a buffer over-read security bug (known as Heartbleed) in 
the O p e n S S L cryptography l ibrary was publ ic ly disclosed, two years after it was introduced 
into the software, w i th 6 0 % of web servers being attacked by hackers as a result. 

Effective quali ty assurance techniques are cr i t ica l for delivering low-defect I C T systems. 
Peer-review (review of source code by developers) and software testing (executing software 
wi th different inputs and checking results) are two useful and widely adopted quali ty assur
ance techniques, but both are unsound. Subtle errors such as concurrency and algori thm 
defects are hard to catch using peer review, while exhaustive testing of a l l execution paths 
is not pract ical ly feasible, meaning that testing can only uncover the presence of errors, not 
their absence. 

A n alternative is to use formal verification techniques. Formal verification is natural ly 
based on formal, mathematical roots, and, unlike other techniques, is (at least potentially) 
capable of proving correctness of systems w i t h regards to a given property specification. 
Some of these techniques also have the advantage of being fully automated, requiring very 
li t t le user interaction or expertise. In the long term, formal methods offer a large potential 
to provide verification that is integrated early in the design process, is more effective and 
reduces verification time. 

Three different approaches to formal verification and analysis may be distinguished, namely 
model checking [ ] (which w i l l be elaborated on shortly), static analysis [18] and theorem 
proving [22]. Static analysis collects information about system behaviour based on its source 
code without actually executing it , while theorem proving deductively proves theorems 
based on axioms and rules of inferrence in a s imilar way to classic proposit ional logic. The 
former can handle very large systems, but its analyses are often specialized for a specific 
task. The latter is very general, but requires a significant manual effort. 

M o d e l checking is a formal verification technique that is based on models describing the 
system behaviour in a mathematical ly precise and unambigious manner. These models, 
which may be automatical ly generated from the source code, are used to explore a l l possible 
system states i n an exhaustive manner, and detect states for which a given property is 

3 



violated, i n which case a counterexample is generated. Since model checking verifies a 
system model, any obtained result is only as good as the model [1]. 

Regular model checking ( R M C ) uses finite automata as its model, representing a (poten
t ia l ly infinite) regular set of reachable configurations of the system under consideration. 
Transitions between configurations (i.e. system behaviour) are modeled using finite trans
ducers. L ike a l l other model checking techniques, R M C has to contend w i t h the state space 
explosion problem (the number of reachable states grows exponentially). Moreover, the 
verification task is undecidable in general. Various acceleration methods are typical ly used 
to increase the chances of termination. 

Abstract regular model checking ( A R M C ) uses abstraction as its means of acceleration, often 
coupled wi th counterexample-guided abstraction refinement ( C E G A R ) . A R M C systemati
cally overapproximates the set of a l l reachable states i n order to guarantee termination. 
This introduces the possibil i ty of finding a spurious counterexample (i.e. an error which 
is not i n fact present i n the system, but has been encountered due to overapproximation). 
If a spurious counterexample is detected, effective techniques allow the abstraction to be 
refined in such a way as to exclude the possibil i ty of encountering the same counterexample 
in the next i teration. 

Al though it is not guaranteed that the outer (refining) loop w i l l terminate, A R M C facilitates 
terminat ion i n many pract ical cases, and also significantly reduces the state space explosion 
problem. 

A R M C uses two different classes of techniques for abstracting finite automata, both of which 
are based on collapsing their states according to some equivalence relation. One bases its 
state equivalence relation on predicate languages, while the other bases it on finite-length 
languages [6]. 

A R M C offers a lot of potential for fully automated verification of infinite-state and pa-
rameterised systems. However, the only known implementations of this technique are in 
prototype tools, wri t ten i n Y A P Pro log and O C a m l , respectively [6, 5]. Since these proto
types are no longer maintained, they are unsuitable for experimentation and the addi t ion 
of new algorithms. 

The a im of this thesis to design, implement and test a tool for A R M C . Instead of using 
finite automata and transducers to model a given system, a restricted version of symbolic 
automata and transducers w i l l be used, which is more concise [8]. The new tool is writ
ten i n C # and uses Microsoft 's open-source l ibrary Au tomataDotNe t as its back-end [ ]. 
Th is l ibrary implements algorithms over symbolic automata, and has been chosen for its 
maturity. 

The text of this thesis first covers the necessary theoretical background. Chapter 2 describes 
the theory behind automata and transducers (both classic and symbolic) , while Chapter 3 
provides a description of abstract regular model checking. Fol lowing chapters then focus on 
the creation of the new A R M C tool . Chapter 4 discusses its design, Chapter 5 covers the 
implementation, and Chapter 6 describes how the tool was tested on specific verification 
tasks. The thesis ends wi th a conclusion i n Chapter 7. 
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Chapter 2 

Automata and Transducers 

This chapter contains formal definitions and descriptions of relevant properties for finite 
automata and transducers (see Section 2.1), as well as their symbolic counterparts (see 
Section 2.2). 

2.1 Finite Automata and Transducers 

A n alphabet is a non-empty set, whose elements are called symbols (or letters). A word (or 
string) over an alphabet Z is defined according to the following rules: 

(i) e is a word over Z , whose length is |e| =0 , 

(ii) if w is a word over Z and a e Z , then wa is also a word over Z and has a length of 
\wa\ = \w\ + l. 

2.1.1 F i n i t e A u t o m a t a 

A finite (state) automaton is a 5-tuple M = (Q, Z,8,qo,F) where: 

• Q is a finite set of states, 

• Z is a finite alphabet, 

• 5: Q x (Z u {e}) —» 2^ is a t ransi t ion function, 

• go e Q is an in i t i a l state, 

• F s Q i s a set of final states. 

The transi t ion relation —• c Q x Z* x Q is the smallest relation satisfying: 
M 

(i) VqeQ: q ^ q , 
M 

(ii) if ^2 E8(qy,a), then q\-^ q2, 
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(iii) if q\ —• q2 and q2 —' tf3, then q\ — • #3, where w £ Z* , a £ X. 
M M M 

The (forward) state language recognized by M from a state q £ Q is defined as L{M,q) = 
{ w e l * I Bay e F: q ̂  qA, while the backward state language is defined as L ( M , q0 = {w £ 

J M 

Z* I flo —" fl}- The overall language recognized by M is then defined as L(M) = L(M,qo). A 
M 

set (or language) LQ £* is regular iff it is recognized by some finite automaton M such that 
L = L(M). 

The forward/backward state languages of words up to a certain length are defined as Lrn{M, q) = 
{weL(M,q) | \ w\<n] and *L~n(M,q) = {w&T(M,q) | |u/|</*}, respectively. 

The forward/backward trace languages of states are defined as T(M,q) = {w £ Z* | 3 i f ' £ 
Z*: w w ' £ L(M,g)} and T(M,q) = {w £ Z* | 3 M / £ Z * : i W £ T ( M , g ) } , respectively. The 
forward/backward trace languages of words up to a certain length are then defined as 
T~n(M, q) = {we T(M, q) | | w\ < n} and T~n(M, q) = {we T(M, q)\\w\< n}, respectively. 

If Vq £ Q V a £ Z: \8{q, a)\ < 1, then M is a deterministic finite automaton, otherwise M is a 
non-deterministic finite automaton. 

A state ^ £ Q is unreachable iff L(M,q) = 0 . States q\,q2^Q are nondistinguishable iff 
L{M,q\) = L(M,q2). M is a minimal deterministic finite automaton iff it is deterministic, 
contains no unreachable states and no two separate states are nondistinguishable. 

A s an example, Figure 2.1 shows a min ima l deterministic finite automaton M such that 
L{M) = {ambnc I m£ {0,1} A n > 0}, L ( M , ^ ) = {&"c | n > 0 ) , I (M,qi) = {ambn \ me {0, 1 } A H > 

1 - m } , L-3(M,q1) = {c,bc,bbc}, *L~2(M,q2) = {c,ac,bc}, T{M,qi) = {bncp \ n > 0 A p £ {0,1}}, 
T ( M , = { a r a & " I m £ {0,1} A n > 0}, r - 3 ( M , ^ ) = {e, fo, c, bb, be, bbb, bbc} and T~2(M, q2) = 
{e, a, b, c, ab, ac, bb, be}. 

Figure 2 .1: A finite automaton M . 

For the purposes of abstracting automata later on, we define a quotient automaton M / ~ = 
(Q/~ ,Z,5 /~ , [^7o]/~>f/~) for an equivalence relation ~ £ Q x Q, where: 

• Q/~ and F/„ are partit ions of Q and F , respectively, w i th regards to ~, 

• [qo]/~ is the equivalence class of Q wi th regards to ~ containing qo, 

• 5/~ is defined such that for a l l [qi]/~,[q2]/~ £ Q/~ and a £ Z , it holds that [q2\i~ £ 
5/~([gi]/~.a) iff q2ed{qi,a) for some g i £ [<7i]/~, <72 e [^2]/--

G 



Properties 

Given a finite automaton M = {Q,I.,6,qo,F), one can effectively construct a deterministic 
finite automaton M ^ e f = (Q',l.',6',q'0,F') such that L(M) = LiM^et)- Determinizat ion may 
be performed using subset construction, i.e. Q' = 2^, Z ' = Z , V g ' e Q' V a e Z ' : 8'{q',a) = 
UqEq'S(q,a), q'0 = {q0} and F ' = {(? 'eQ' | ( ? ' n F ^ 0 1 . 

Given a finite automaton M , one can effectively construct a min ima l deterministic finite 
automaton Mmi„ such that L{M) = L(Mmi„), e.g. using Hopcroft 's a lgori thm [11]. 

Given finite automata M i = (Q I ,Z I , 5 I , * 7 Q ,F I ) and M2 = (Q2.Z2.52, ̂ ^ 2 ) , one can effectively 
construct a finite automaton M i x M2 = ( Q n , Z n , 5 N , ^ Q ,Fn) such that L ( M i x M2) = I ( M i ) n 
L(M2). The intersection may be computed using product construction, i.e. Q n = Q i x Q 2 , 
Z n = Z i n Z 2 , V ( ^ i , ^ 2 ) e Q n V a £ Z n : 6n{{qi,q2),a) = diiqi,a) x 52{q2,a), q£ = (<7o><7o) a n d 

Fn = F1xF2. 

Given finite automata M i and M2, it is decidable to check i f Z-(Mi) = 0 , and if L ( M i ) = 
L(M2). Emptiness can be decided by checking i f any final state is reachable, while language 
equivalence may be decided by min imiz ing both automata and checking that this results in 
the same automaton. 

2.1.2 F i n i t e T r a n s d u c e r s 

A finite (state) transducer is a 5-tuple r = (Q,l.,d,qo,F) where: 

• Q is a finite set of states, 

• Z is a finite input /ou tput alphabet, 

• 8: Q x (Z u {e}) x (Z u {e}) - » 2 ^ is a transi t ion function, 

• qo e Q is an in i t i a l state, 

• F s Q i s a set of final states. 

The transi t ion relation —» £ Q x Z* x Z* x Q is the smallest relation satisfying: 

(i) VqeQ: q ^ q , 

(ii) if q2&8(qlta£,b£), then qi q2, 

/...\ wlu , aelbe . waelube . „ , 
(111) if (/1 • ^2 and (/2 ^3, then g i • ^3, where w,u£l. , aE, bE e (Z u {e}). 

The finite transducer T defines the relation p T = {(w, u) e Z* x Z* | 3qf e F: qo -^-^ qf}. 
Given a finite automaton M , gT(L(M)) denotes the set { u e Z * | 3 w e I ( M ) : (w, ep T } . For 
convenience, f (M) w i l l be used to denote a min ima l deterministic finite automaton M ' such 
that L(M') = gT(L(M]). 

The domain of r is then defined as dom(T) = {w e Z* | 3u e Z * : (u/, u) e pT}, and the range of 
T is defined as ran(r) = {ueZ* | 3 w e l * : (w, u) e pT}. 
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A s an example, Figure 2.2 shows a finite transducer T such that dom(r) = {HELLOln \ n > 0}, 
ran(r) = {Hello.} and gT = dom(r) x ran(r). 

Figure 2.2: A finite transducer T . 

In general, a relation g Q z* x Z* is a regular relation iff there exists a finite transducer T 

such that g = gT. A relation g Q Z* x Z* is a regularity preserving relation iff p(L) is regular 
for every regular set L s Z * . 

Properties 

Given a finite transducer T , one can effectively construct a finite transducer defining the 
inverse relation g~l = {{v, u) \ (u, v) e gT}. The construction consists of s imply swapping the 
input and output symbols of a l l labels. 

Given two finite transducers T i and T 2 , one can construct a finite transducer T 2 ( T I ) such that 
PT2(TI) = P T 2 °P T I = i(u, w) I 3v: (u, v) e gTl A(V, W) e gT2}. A product construction is used, w i th 
the transitions constructed such that {q\,q\) £ A((ql,qj),a,b) 3c: q\ e k\{q\,a,c)\q\ e 
\2{ql,c,b). 

2.2 Symbolic Automata and Transducers 

2.2.1 S y m b o l i c A u t o m a t a 

Formally, an (effective) Boolean algebra is an 8-tuple A = OD.^P, L ] , ± , T , v , A , - I ) , where: 

• T> is a (potentially infinite) set of domain elements, 

• *P is a set of predicates closed under the Boolean operators v, A and -1, while also 

• [_]: W —> 2P is a denotation function st. 

(i) I±] = 0 , 

(h) [T] = D , 

(hi) \f<p,y/e*P: [yvyr] = [^] uly],l<pAyr] = Vp\ nly],lh<p] = D \ M -

It is required that checking satisfiability of any (p £ W (i.e. whether [<p] # 0 holds) is 
decidable. 

Intuitively, a Boolean algebra is an interface for what kinds of predicates may appear in 
transi t ion labels for an automaton. T> corresponds to the alphabet, _L is a predicate that is 
unsatisfiable, T is a predicate that holds for every domain element (i.e. symbol i n alphabet), 
and [(pi contains precisely those symbols that satisfy the predicate (p. 
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A symbolic (finite) automaton is a 5-tuple M= {Q,A,A,qo,F), where: 

• Q is a finite set of states, 

• A = (D, W, L I , _ L , T , v, A , -i) is a Boolean algebra, 

• A: Q x *P —• 2^ is a transi t ion function, 

• go e Q is an in i t i a l state, 

• F s Q i s a set of final states. 

The transi t ion relation —• e Q x D * x Q is defined i n the same way as for finite automata 
M 

(see 2.1.1), w i th the exception of Z being replaced by D and (ii) being changed to: 

(ii) if q2 eA((ji,(j») and a e [<p], then q\-^ q2-
M 

L ( M ) , L(M,<7), l(M,q), L-"(M,q), l-"(M,q), T(M,q), T(M,q), T~n{M,q) and T~n{M,q) 
are then defined i n the same way as for finite automata. 

If V ^ i e A(q,cpi) Mq2 e A(q,(p2)'- q\ i1 qi => I< î A ^ l = 0 , then M is deterministic, otherwise 
M is non-deterministic. 

Figure 2.3 shows examples of symbolic automata, M\ and M2, which accept sequences of 
integers such that L{M\) = {x\,...xn \ n > O A VI < i < n: i mod 2 = xt mod 2} and L{M2) = 
{x\,...xn I n > 1 A X I < O A VI < i < n: Xj > 0}, as well a symbolic automaton M i x M 2 accepting 
their intersection. For example, it holds that (1,2,3,4,5) e I ( M i ) \ L{M2). 

x>0 

(c) Symbolic automaton M i x M 2 such that L ( M i x M 2 ) = L C M ^ n ! ( M 2 ) . 

Figure 2.3: Examples of symbolic automata. 

Properties 

Given a symbolic automaton M , one can effectively compute a deterministic symbolic au
tomaton Mdet such that L{M) = L{Mdet)- Determiniz ia t ion works s imilar ly to the subset 
construction for finite automata, but also requires combining predicates from different tran
sitions by generating minterms. 

Given a symbolic automaton M = (Q,A,A,qo,F), one can effectively construct a symbolic 
automaton M such that L{M) = T>*AL{M). One must first add a non-final state q±_ such that 
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A(g_L,T) = {q±} and e Q: &{q,-<dom{q)) = {q±} where dom(q) = \J{<p \ 3q'\ q' e A(g,(p)}. 
Swapping a l l final and non-final states w i l l then result in the complement automaton. 

Given two symbolic automata M\ and M2, one can effectively construct a symbolic au
tomaton M i x M2 such that L{M\ x M2) = L{M\) n i ( M 2 ) . The intersection may be computed 
using a version of the classic product construction i n which transitions are combined using 
conjuction. 

Given symbolic automata M\ and M2, it is decidable to check if L{M\) = 0 , and if L{M\) = 
L{M2). Emptiness can be decided by checking i f a path from the in i t i a l state to some final 
state exists when ignoring unsatisfiable transitions. Language equivalence may then be 
reduced to checking emptiness of bo th set differences (note that L{M\) \ L{M2) = L{M\) n 
L(M2). 

2.2.2 S y m b o l i c T r a n s d u c e r s 

Given a Boolean algebra A = CD.^P, f 1,-L.T, v , A , - I ) , a set of function terms is denoted by A 
and a term / e A denotes an anonymous function [/] (which transforms an input symbol) 
over T>. The following holds for function terms: 

. i f / , g £ A , then g(/) e A and V a e D: [g(/)](fl) = Ig] ([/](«)), 

. if cpe^ and fe A, then cp(f] e*P and V a e D : a £ [<?( / ) ] <^> [/] (a) e [<p]. 

A n (effective) Boolean algebra extended wi th function terms is called an (effective) label 
algebra. 

A symbolic (finite) transducer is a 5-tuple T = (Q,A,A,qo,F), where: 

• Q is a finite set of states, 

• A is a label algebra, 

• A: Q x *P x A * —»2^ is a t ransi t ion function, 

• go e Q is an in i t i a l state, 

• F s Q i s a set of final states. 

The t ransi t ion relation —• c Q x D * x ! D * x Q i s defined i n the same way as for finite transducers 
T 

(see 2.1.1), w i th the exception of Z* and Suje} being replaced w i t h T>* and T>, respectively, 
as well as (ii) being changed to: 

(11) if q2^Mqi,q),J\...Jn) and ae[<p], then ^ 2 -

Intuitively, a t ransi t ion reads an input symbol that satisfies the predicate (or guard) and 
produces a sequence of output symbols by applying each function term to the input symbol . 
Figure 2.4 gives two examples of symbolic transducers, T\ and T 2 , which operate over the 
domain of integers. T i deletes every 0 from a sequence, while copying every non-zero integer 
followed by its absolute value. T 2 doubles every odd number, while leaving even numbers 
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x > 0 / [jc, jc], 
x = 0 / [], 

jc < 0 / [jc, -jc] 

x mod 2 = 0 / [jc], 
x mod 2 * 0 / [2jc] 

(a) Symbolic transducer T\. (b) Symbolic transducer T 2 . 

Figure 2.4: Examples of symbolic tranducers. 

unchanged. G i v e n the input sequence (1,0,-2,5,0), T\ produces (1,1,-2,2,5,5), whereas T 2 

produces (2,0,-2,10,0). 

pT, dom(r) and ran(r) are defined i n the same way as for finite transducers, w i th the 
exception of Z* being replaced by T>*. 

Properties 

Given two symbolic transducers T i and T 2 , one can construct a symbolic transducer T 2 ( T I ) 

such that £T 2 (TI ) = Qr2 °QJI ( s e e Theorem 6 i n [8]). 

Given a symbolic transducer T , one can compute a symbolic automaton DOMT such that 
L{DOMT) = dom(r) . However, the range of a symbolic transducer is in general not regular 
(see Theorem 5 i n [8]). 

A consequence of this is that, i n general, it is not possible to construct a transducer for 
the inverse relation p " 1 , as its domain (equal to ran(r)) could not be regular. Since A R M C 
requires transducer inversion, we w i l l define a restricted version of symbolic transducers 
(and automata), which is closed under inversion. 

2.2.3 S i m p l e S y m b o l i c A u t o m a t a 

Let Z be an alphabet. T h e n let the Boolean algebra §>z = OD.^P, L ] , _ L , T , v , A,-<) be defined 

• D = Z , 

. ¥ = ( { e , ^ x 2 z ) u ! £ } , 

. V(e ,A)e*P: I(e,A)] = A, V(£ ,B)e*P : [{?,B)] = Z\B and [e]=e. 

For example, i f Z = {a,b,c} then cpi = (e,{a}), q)2 = {t,{b,c}), (p% = (£,{«}), (̂ 4 = (e,Z) and 
cp5 = (£ ,0 ) are a l l predicates i n W, w i th I^ i ] = [<p2] = {a}, W3I = ib,c} and [<p4l = [<p5J = Z. 

Let M = (Q,§z . A . ^ o . f ) be a symbolic (finite) automaton wi th §x being the Boolean algebra 
defined above. We cal l M a simple symbolic automaton. 

Figure 2.5 shows an example of a simple symbolic automaton over Z = {a, ...z, A, ...Z,0, . . .9 ,_ } , 
which recognizes identifiers i n C-l ike programming languages. 

as follows: 
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Figure 2.5: Example of a simple symbolic automaton. 

Properties 

Since a simple symbolic automaton is a special case of a symbolic automaton, it is clear 
that a l l problems that are decidable for symbolic automata are also decidable for simple 
symbolic automata. 

A n y finite automaton MPA = (Q,Z,5 , qo,F) may be converted to a simple symbolic automaton 
MSSA = (Q.§z . A,q0,F) such that L{MFA) = L{M$SA) in the following way: ^q\,q2

 e Q(q2 e 

Mqi,e) <=> q2e8(qlte)) /\(VaeI.: q2 £ A(gi,(e,{a})) <̂ => q2e.6(qi,a)). 

Conversely, any simple symbolic automaton MSSA = (Q,Sz.A,go.-F) may be converted to 
a finite automaton MPA = (Q,l.,d,qo,F) such that L(MSSA) = L(MPA) i n the following way: 
Vqi,q2 e Q V a e Z: q>2 E8{qi,a) q2 e A(qi,cp) Aa&lcpj for some ^ e X P . 

2.2.4 S i m p l e S y m b o l i c T r a n s d u c e r s 

A simple symbolic transducer is a 5-tuple T = (Q,Sz. A, qo,F), where: 

• Q is a finite set of states, 

• §2 is the same Boolean algebra over some alphabet Z as for simple symbolic automata, 

• A: Q x f x f ' P u {{}) —• 2^ is a transi t ion function (t ?'XP), 

• e Q is an in i t i a l state, 

• F s Q i s a set of final states. 

The transit ion relation —» e Q x Z * x Z * x Q i s defined in the same way as for finite transducers 

(see 2.1.1), w i th the exception of (ii) being changed to: 

(ii) for a l l aE, fe£e(Iu\e}) and qi,q2e Q, q\ a e l b e , q2 i f o n e Q f the following holds: 

(a) q2£\(qi,(p,y/) A I / / ^ ii\aE £ l<p} A b E £ lx(/}, or 

(b) q2£A(qi,(p,L)AaEel(plAaE = bE. 

Intuitively, a transit ion reads a symbol that satifies the input predicate, and either produces 
some symbol that satisfies the output predicate (non-deterministically), or, i n the case of i, 
copies the input symbol to the output (with e meaning that nothing is read/wri ten) . Unl ike 
symbolic automata, transitions i n simple symbolic automata only produce (at most) one 
output symbol instead of a sequence. 
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Figure 2.6 shows an example of a simple symbolic transducer over Z = {a, ...z, A...Z,0, . . .9 ,_ } , 
which transforms an identifier wri t ten i n underscore style to camel case (e.g. model_checker 
becomes modelChecker). 

Figure 2.6: Example of a simple symbolic transducer. 

Properties 

Given two simple symbolic transducers T i and r2, one can effectively construct a simple 
symbolic transducer defining the inverse relation p" 1 , as well as a simple symbolic transducer 
defining the composit ion P t 2

0 P T I - Inversion is performed by swapping the input and output 
of a l l labels not containing 1. Composi t ion is the same as for finite transducers, except that 
when composing labels (pi/tyi and ^»2/1^2 (from T i and T 2 , respectively) the resulting label 
<pi/i//2 is only created if ly/il n l<p2$ ^ 0-

A n y finite transducer TFT = (Q,£,<5, qo,F) may be converted to a simple symbolic transducer 
Tssr = (Q>§z> A, qo,F) such that QTFT = QTSST in the following way: Mq\,q2 £ Q Va£,b£ e ( Z u 
{e}): q2eA(Lqi,f(Lae),f(bE)) <^=> q2£d{qi,a£,bE) where f(e) = e and V a e Q : / ( a ) = (e,{a}). 

A n y simple symbolic transducer T$ST = (Q.§z . A, ^o.f) may be converted to a finite trans
ducer TFT = (Q,Z,8,qo,F) such that QTssT = QlFT i n the following way: \lq\,q2 £ Q V(^,i// e 
W Vfle e I(f>] V f c e e [ i p ] : (q2&8(qlta£,b£) <=> q2 e A(qi,<p,y/)) A(q2e6(qi,a£,a£) <^=> q2 e 
A ( ^ i , ^ , ( ) . 
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Chapter 3 

Abstract Regular Mode l Checking 

This chapter describes the technique of abstract regular model checking. We first cover the 
basics of model checking (see Section 3.1) and regular model checking (see Section 3.2), 
before finally describing abstract regular model checking i n detai l (see Section 3.3). 

3.1 Model Checking 

M o d e l checking is an automated technique that, given a model of a system and a formal 
property, systematically checks (by exploring the state space) whether this property holds 
for (every state in) that model [1]. 

The val idi ty of the model is crucial for the whole verification process. Correct property 
specification is also important , and usually accomplished v ia the use a property specifi
cation language, w i th temporal logics ( L T L , C T L , C T L * , etc.), which extend t radi t ional 
proposit ional logic w i th operators referring to system behaviour over time, being a classic 
example. 

The prerequisite inputs to model checking are an (accurate and unambiguous) model of 
the system being verified and a formal characterization of the property being checked. The 
model must be able to represent states or configurations of the system at any given time, 
as well as transitions between states which describe the system's behaviour. 

In practice, constructing val id models can be rather difficult, because real-life systems tend 
to be complex and have informal specifications. Therefore, some simulations may be run 
before the actual model checking as a quick sanity check, which can help eliminate some 
simpler modeling errors. It is also possible to generate system models automatical ly from 
the source code. 

The model checker must also be ini t ia l ized by setting the various configuration options it 
may provide, as these can have a large effect on the efficiency of the exhaustive verification. 
The actual model checking algori thm is usually performed without user interaction. 

There are three possible outcomes of model checking. The first is that the property is found 
to be valid, i n which case the user may move on to check the next desired property. The 
second outcome is that the property is falsified (and diagnostic information is provided). 
Th is might be due to a modeling error (necessitating a correction of the inval id model and 
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a restart of the entire process), a property error (meaning that the incorrectly specified 
property must be modified and verified again), or a design error (which should be followed 
by improving the system design and model, before restarting the verification process). The 
th i rd possible outcome of model checking is that the state space exceeds the physical l imits 
of computer memory (this outcome is typica l for infinite-state systems, which represent 
generally undecidable problems). 

The last case is known as the state space explosion problem. The number of reachable 
states grows exponentially w i th regards to the source description of a finite-state system. 
For example, assuming an integer variable takes up 32 bits of memory ( 2 3 2 possible values), 
if the system contains n such variables, the number of reachable states is 2 " ' 3 2 . Moreover, 
if the system is made up of m concurrent processes, the number of states reaches 2 ( " ' 3 2 ) . 
Given just 5 integer variables and 2 concurrent processes, the system can generate more 
states than the estimated amount of atoms in the universe. 

There are several possible approaches for dealing wi th the state space explosion problem. 
One may store the state space efficiently (using hierarchical storage of states or binary 
decision diagrams), reduce the state space (using symmetries or par t ia l order reduction), 
or use bounded model checking (exploring the state space up to some bound only, thus 
sacrificing soundness). Alternat ively, one may also use abstraction (overapproximating the 
state space) and counterexample-guided abstraction refinement. 

3.2 Regular Mode l Checking 

Regular model checking is one of several approaches to model checking. The basic idea be
hind regular model checking is to encode system configurations as words over a finite alpha
bet, and represent potential ly infinite sets of reachable configurations as regular languages, 
typical ly expressed using finite automata. Transitions between these sets of configurations 
are then encoded as one or more regularity preserving relations, typical ly expressed using 
finite transducers. Since several simple transducers may always be composed into a single 
more complex transducer, the rest of this section w i l l assume a single transducer is used to 
encode a one-step transi t ion relation of the system under consideration. 

The R M C method takes three ma in parameters as its inputs: 

• a finite transducer (or several transducers, which are combined into one) encoding 
the one-step transi t ion relation g of the system being verified, 

• a finite automaton encoding the set I of a l l possible in i t i a l configurations of the system, 

• a finite automaton encoding the set B of "bad" states, whose reachability in the given 
system is to be checked. 

The goal of R M C is then to compute the set of a l l reachable configurations Q*U), and check 
that no bad states are reachable, i.e. g*(I)nB = 0 . To obtain the reachability set g*U), one 
may repeatedly apply the t ransi t ion relation g to the set of reached states, and accumulate 
the union of a l l such sets. Formally, one may compute g* (I) = 7up(/)up(p(/))up(p(p(7)))u 
Alternatively, the reachability relation g* of the system may computed instead of g*{I). In 
this case, one may repeatedly compose g w i th the reachability relation computed thus far, 
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and take the union of a l l such relations. Or , i n other words, g* = iL)gL){g°g)L){g°g°g)L). .., 
where i is the identity relation. In this case one checks that r an(p*)nB = 0, w i th ran(p*) 
denoting the range of the reachability relation. 

The computat ion of the reachability set g*{I) may be terminated once a fixpoint has been 
reached, i.e. when the applicat ion of the transi t ion relation g results i n the same set of 
reached states. However, when applied to parameterised and infinite-state systems, such a 
straightforward computat ion usually fails to terminate. Th is w i l l be demonstrated shortly 
w i t h a simple example. 

3.2.1 E x a m p l e : A S i m p l e T o k e n Pass ing P r o t o c o l 

The R M C method w i l l now be demonstrated using a simple example. Let us consider 
a parameterised network of processes (the number of processes is unknown, but finite) 
using synchronous communicat ion to implement a token passing protocol to ensure mutual 
exclusion. A token is passed between processes arranged i n a linear topology, and only a 
process that has the token is allowed entry into a cr i t ical section. Initially, only the leftmost 
process has the token. Every process awaits a token from its left neighbour, before passing 
the token to its right neighbour. It is required that no more than one process has the token 
at any given time. 

The token passing protocol is modelled using the alphabet Z = {T, N}. A configuration of the 
system then corresponds to a word w = a\... an e Z* (n is the of number processes), where, 
for every i such that 1 < i < n, at denotes whether the j - t h process posseses a token (a,- = T), 
or not (fl; = N). The one-step transi t ion relation g is encoded by the finite transducer T 

shown i n Figure 3.1a, and represents the passing of a token possesed by some process to its 
right neighbour. The set of in i t i a l configurations / (only the leftmost process has a token) is 
represented by the finite automaton I nit shown in Figure 3.1b, while the set of bad states 
B (more than one token in the system) is encoded by the automaton Bad shown in Figure 
3.1c. 

The goal is then to compute the reachability set g*{I). Figure 3.2 illustrates an automaton 
accepting the set of reachable states. It is clear that this automaton has an empty inter
section wi th Bad, meaning the property holds. However, when using the straightforward 
fixpoint computat ion of the union of infinitely many reachable states, the computat ion w i l l 

m.N/N T/T.N/N 

(a) The transducer T such that g - gr. 

(b) The automaton Init such that / = L(Init). (c) The automaton Bad such that B - L{Bad). 

Figure 3.1: Models for the simple token passing protocol. 
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A' A' 

Figure 3.2: A n automaton encoding the set of reachable configurations for the simple token 
passing protocol. 

N 

N 

N 

Figure 3.3: Au toma ta constructed in the computat ion of the reachability set g*{I) = Iu 
p(I) up(p(I)) u . . . for the simple token passing protocol. 

not terminate. The first few sets are i l lustrated i n Figure 3.3, and show that no fixpoint 
w i l l ever be reached, since a new token posit ion is found for every offset from the leftmost 
posit ion (and there are infinitely many possible offsets). 

The terminat ion problem is typica l for parameterised and infinite-state systems, even for 
this simple token passing protocol, and necessitates the need for some method of accelerating 
the computat ion. 

3.3 Abstract Regular Mode l Checking 

Abstract regular model checking is a formal verification technique which uses abstraction as 
a means of accelerating the computat ion of reachable states in the given system. The ab
straction function overapproximates the sets of configurations i n such a way as to guarantee 
termination. Since the reachability set is overapproximated (i.e. may contain states that 
are i n fact unreachable, i n addi t ion to reachable states), encountered counterexamples may 
be spurious. Therefore, counterexample-guided abstraction refinement 1 is used to restart 
the computat ion after refining the abstraction so that the spurious counterexample w i l l not 
be encountered again (Figure 3.4 illustrates the C E G A R loop). Though terminat ion of the 
overall method is not guaranteed (abstraction refinement might go on forever), A R M C fa
cilitates terminat ion in many pract ical cases. Moreover, the state space explosion problem 

1 C E G A R may in fact be used for any model checking methods based on abstraction, e.g. predicate 
abstraction. 
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(real) system S, property P 

generate initial 
abstraction 

overapproximated 
system S' 

perform model 
checking 

P holds 
in S' 

P does not 
hold in S' 

generate 
counterexample 

counterexample E 

check whether E 
is spurious E i s not spurious 

E is spurious 

Figure 3.4: C E G A R loop. 

is reduced significantly, by sidestepping one of its sources i n R M C (calculating the exact 
reachability set, indepedently of the property being checked). 

The abstraction is based on collapsing automata states according to some equivalence re
lat ion. A R M C considers two states to be equivalent when, either they have a non-empty 
intersection wi th the same predicate languages, or their state languages of words up to a cer
ta in length are equal, depeding on which abstraction technique is being used. B o t h of these 
techniques also provide efficient methods for refining the abstraction, and w i l l described in 
detail later on. 
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3.3.1 T h e M e t h o d of A b s t r a c t R e g u l a r M o d e l C h e c k i n g 

It w i l l be assumed that T refers to a finite transducer encoding the one-step t ransi t ion in 
the system under consideration, while Init and Bad refer to finite automata representing 
the in i t i a l set of reachable states and the set of "bad" states, respectively. 

Let Z be a finite alphabet. M% w i l l be used to denote the set of a l l finite automata over Z , 
while A ^ £ M z shall denote some abstract domain of automata. The automata abstraction 
function a: -» A ^ is then defined such that V M e M ^ : L(M) £ L(a(M)). In other words, 
a maps an automaton M to an automaton whose language is an overapproximation of the 
language of M . 

The reachability relation g* w i l l be defined recursively i n the following way. Let ( £ Z * x Z * 
be the identity relation. T h e n Qj = i, g'T

+i =Qt°Q1

T and g* = U ^ 0 P T -

Next , let us define an abstract t ransi t ion function ra such that V M e M ^ : ra{M] = a{i{M)) 
(recall that f (M) denotes a min ima l deterministic automaton accepting gT{L{M))). In order 
to iteratively compute the sequence of Tl

a(M) for a l l i > 0, two assumptions must be made 
to ensure that the computat ion w i l l terminate. Let us suppose that iQ gT and that the 
range of our abstract t ransi t ion function a (i.e. A ^ ) is finite. Th is implies the existance of 
some k > 0 such that T ^ + 1 ( M ) = T^(M) . G i v e n the definition of a, this means that i n a finite 
number of steps, one may calculate a regular overapproximation of the reachability set, i.e. 
g*{L{M))<zL{rk

a{M)). Clearly, L(r^(M])r\L(Bad) = 0 => g*(L(M)) nL(Bad) = 0 . 

Checking i f an encountered counterexample is spurious is done i n the following way. Let us 
assume for this abstract regular fixpoint computat ion that L{Init) nL(Bad) = 0 , otherwise 
the property being checked is broken i n the in i t i a l configurations already. For each i > 0, 
let Mf = a{Mi) and M,-+i = f ( M ? ) , where Mo = Init. Bu i ld ing on the previous paragraph, 
there exists some / > 0 such that Mi: 0 < i < I: I (M,0 n L(Bad) = 0 and I ( M / ) n L(Bad) •£ 0 , 
i.e. it is i n the /-th i teration that the first possible property violat ion is encountered. 

Then consider X / to be an automaton such that L{Xi) = L{Mi)r\L{Bad), and for a l l i such that 
0 < i < Z, Xi is a min ima l deterministic automaton that accepts the language g~l(L(Xi+\))n 
L{M"). The encountered counterexample is then spurious i f there exists some k such that 
0 < k< I, for which it holds that V i : k<i<l: L{Xi)c\L{Mi) ± 0 and L(Xk)nL(Mk) = 0 . 2 Th is 

2At this point, either k = 0 or L{Xk_Y) = 0 (though L{Xk) ^ 0). 

Figure 3.5: Detect ion of a spurious counterexample i n a reachability computat ion. 
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ARMC(Init, Bad, T ) 
b e g i n 

i f L{Init) n L{Bad) ? 0 t h e n 
stop; property violated in initial configurations 

e n d i f 

M 0 := Init 
l o o p # infinite loop, termination not guaranteed 

f o r i : = 0 t o oo do 

i f L[Mj) n L(Bad) ? 0 t h e n 
/ := i 
let L[Xi) = L[Mi)nL[Bad) 
b r e a k 

e n d i f 

Mf := a{Mi) 
i f i > 0 and L{Mf) = L ( M ? ^ t h e n 

stop; fixpoint reached, property holds 
e n d i f 

Mi+1 := f (Mf) 
e n d f o r 

f o r i := I —I downto 0 do 

let UXt) = gr-i (L( I i + 1 ) ) n L(M?) 
i f L(X,0 n l ( M j ) = 0 t h e n 

fc := z 

g o t o L 

e n d i f 

e n d f o r 

stop; property violated, generate counterexample (M,-, M ? , X,- where 0 < i < /) 
L : 

refine a (based on or M^) 
e n d l o o p 

end A R M C 

Lis t ing 3.1: Pseudocode for the generic A R M C algori thm. 

situation is depicted in Figure 3.5. O n the other hand, if no such k exists (meaning that 
L(Xo) n i ( M o ) # 0 ) , the property has been proven to hold. 

A n i l lustrat ion of the A R M C method, at the current level of detail , is shown i n L i s t ing 3.1. 
Let us note that the algori thm may also be used i n a backward computat ion, where we 
check that (g'1)*(L(Bad)) nL(Init) = 0 instead (whereas the forward computat ion checks i f 
p* (L(Ini t)) n L(Bad) = 0 ) . 

In the case of a spurious counterexample, a refinement of a is needed. A n automata 
abstraction function a' is a refinement of a iff V M e M ^ : L(a'(M)) Q L{a{M)). The idea is 
that a' should be more precise than a. The spurious counterexample may be eliminated 
if the refinement is performed i n such a way that for any automaton M , it holds that 
L(M)nL(Xk) = 0 => L(a'(M)) nL(Xk) = 0 . This prevents Mk being abstracted to M" again, 
thus avoiding a repetit ion of the same faulty sequence of M,- and M ? i n the next abstract 
fixpoint computat ion. In fact the bad configurations w i l l no longer be reachable, unless 
there was some reason for it other than overapproximating by subsets of L{Xk). A weaker 
way of refinement may be used instead, where we allow that some subset of L(Xk) may again 
be used for some overapproximation, but we at least ensure that L{a'{Mk)) C\L{Xk) = 0 in 
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order to avoid the exact same faulty computat ion. In some cases, this may be more efficient 
than the stronger refinement. 3 

Automa ta abstraction functions are based on state equivalence schema, which define an 
equivalence relation on an automaton's states. The abstraction then consists of construct
ing a quotient automaton by collapsing equivalent states. Intuitively, two states are con
sidered equivalent when their future or history is similar enough, and the difference may 
be abstracted away. 

Formally, an automata state equivalence schema E assigns an automata state equivalence 
relation £ Q x Q to each finite automaton M = (Q,l.,d,qo,F) over Z . The automata 
abstraction function based on E is then defined such that V M e M ^ : a^{M) = Ml ~^f. 

3.3.2 A R u n n i n g E x a m p l e 

A slight modification of the simple token passing protocol described i n 3.2.1 w i l l be used 
as a running example to illustrate the different abstraction and refinement techniques in 
A R M C . In this modified version, each process passes the token to its th i rd right neighbour, 
instead of its direct right neighbour (modeled by the transducer T depicted i n Figure 3.6a — 
note that iQgT). Initially, only the second leftmost process has the token, and the number 
of processes is a mult iple of three (modeled by the automaton Init in Figure 3.6b). We 
wish to verify that it is not possible for the rightmost process to possess the token in any 
reachable configuration (modeled by Bad i n Figure 3.6c). 

77T, AtW T/T. N/N 

T/N N/N /"~"\ N/N /~"\ N/7 ff\ 

—U>—vJ^Hj— \J—*u 
(a) The transducer T . 

(b) The automaton Init. 

Figure 3.6: Models for modified simple token passing protocol. 

3.3.3 A b s t r a c t i o n B a s e d o n P r e d i c a t e Languages 

One way of abstracting automata is based on a set 7 of finite automata (called predicate 
automata). Th is approach leads to two automata state equivalence schemas - the schema 

based on forward state languages, and the schema %> based on backward state languages. 

3 T h e weaker refinement might lead to an earlier termination due to quickly jumping to the fixpoint, as 
well as less memory being used due to the sets of configurations being less structured. O n the other hand, 
the coarser refinement may lead to more refinements down the road, and thus a slower computation. 
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Figure 3.7: P roof sketch for predicate-based abstraction refinement. 

Two states are considered to be equivalent when their forward/backward state languages 
have a non-empty intersection wi th the same predicate automata i n 7. The Fj> schema w i l l 
be described i n detail first, before a short description of how the %> schema differs. 

Formally, for an automaton M = ( Q , Z , 5 , qo,F), Fj> defines the equivalence ~ ^ such that 
Vqi,q2 e Q: qi ~7

M q2 <=> (VP e IP: L(P) n L(M, q{j ± 0 L{P) n L(M, q2) ? 0) . G iven that 
[P has a finite number of subsets, the range of is finite. 

The Fj> schema may be refined by adding new predicates into the current set of predicates. 
Specifically, "? may be extended wi th automata corresponding to the languages of each 
state i n X^ from Figure 3.5. T h i s technique prevents abstractions of (or i n fact any 
automata whose languages are disjoint w i th L{X^)) from intersecting wi th X ^ . The t ru th 
of this statement is shown i n Theorem 1 i n [6], which states that, for any two automata M 

and X, if Mq e Qx: 3P e IP: L(P) = L(X, q) and L(M)C\L(X) = 0 , then L(afv(M))r\L(X) = 0 too. 
The theorem is proved by contradiction. The in i t i a l assumption is that there exists some 
w £ L(af,p(M)) n L(X), and moreover w = W\U>2 is such a word that requires the m i n i m u m 
number of "jumps" between equivalent states (with regards to ~^ f) to be accepted i n M , 

wi th the last j ump being from q\ to q2, after which w2 is accepted. Let qx be the state X 
is in after reading w\ (note that w e L(X)), then since L(X, qx) w2£ L(M, q2) nL(X, qx) 
and q\ ~^q2, there must exist some w'2 e L(M, q{) r\L(X, qx) (because both q\ and q2 must 
have a non-empty intersection wi th the predicate L{X,qx))- However, this means that an 
even smaller number of jumps is needed for w\w'2 e L{a^y{M)) nL(X) (since the last j ump 
is avoided), which is a contradiction. Figure 3.7 illustrates this proof. 

Let us apply this abstraction technique to our running example (see Figure 3.6), w i t h the 
set 7 in i t ia l ly being made up of the languages of a l l the states of Bad. W h e n I nit is 
first abstracted (illustrated in Figure 3.8a), a l l its states except the final one are consid
ered equivalent (they have empty intersections w i t h bo th states of Bad), resulting i n the 
automaton depicted i n Figure 3.8b. W h e n the transducer T is applied to a(Init), the re
sulting automaton (depicted i n Figure 3.8c) has a non-empty intersection wi th the bad 
configurations (as shown in Figure 3.8d). 

Since the counterexample turns out to be spurious, the abstraction is refined by adding a l l 
the state languages i n XQ (depicted i n Figure 3.8e). W i t h this more refined abstraction in 
place, only two states of I nit are now considered equivalent (shown in Figure 3.8f), and the 
result of the abstraction is depicted i n Figure 3.8g. This is a fixpoint, and so the property 
has been verified. 
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N 

(b) a{Init) before (left) and after (right) deter-
(a) Initial abstraction of Init. minization and minimization. 

(c) i{a{Init)). 
N 

(e) X0 such that L[X0) - Q^{Xi) n L{a{Init)). 

(f) Refined abstraction of Ini t. ( g ) R e g u l t o f r e f i n e d a b s t r a c t i o n o f I n i t . 

Figure 3.8: Example of abstraction and refinement based on predicate languages. 
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The automata state equivalence schema is much like Fj>, except that it uses backward 
state languages instead of forward ones. Formally, for an automaton M = (Q,Z.,d,qo,F), the 
equivalence i s defined such that V g i , g 2

 G Q- QI^M^2 ^ P e ^ : L(P) n L{M,qi) •£ 
0 <̂ >̂- L(P) n L{M,q2) # 0) . Clearly, the range of amv is finite for the same reason as for 
CKFy. The refinement by adding state languages of X^ has the same effect for %>, as is shown 
in Theorem 2 i n [ ]. The proof is analogous to the proof for Fp, the difference being that, 
given the use of backward languages, the first j ump and a prefix are considered instead of 
the last j ump and a suffix. 

We may sometimes speed up the computat ion by using a weaker refinement, as discussed 
i n 3.3.1. In this case, we only consider the important tail/head part of X^ w i th regards to 
Mfc, i.e. we only add automata corresponding to the state languages that have a non-empty 
intersection wi th some state language of M^. 

A further possible heuristic is to only consider one or two key states of the important t a i l / -
head part of X^, such that when the abstraction is refined by adding only their languages 
to (P, the thusly refined abstraction of w i l l no longer intersect w i th L(Xfc). This does 
not guarantee the exclusion of the same counterexample at a l l , presenting the danger of 
looping, but may lead to a faster computat ion i n some cases. 

For bo th Fy and %>, the in i t i a l set of predicates 03 may consist of a l l the state languages of 
the automata encoding the set of in i t i a l and /or bad configurations. Addi t ional ly , one may 
include automata which accept the domain and /or range of transducers in the system (of 
which the one-step transducer used in i teration is a union). 

3.3.4 A b s t r a c t i o n B a s e d o n F i n i t e - L e n g t h Languages 

A different approach to abstraction and refinement i n A R M C is based on languages of 
words up to certain length. Two states are considered equivalent if they represent the same 
language when given an upper l imi t n. Several different alternatives are possible. One may 
base the equivalence on forward state languages (the F^ automata state equivalence schema), 
backward state languages (the schema), forward trace languages (F^) , or backward trace 
languages (IBJ) 4 . O n l y F^ w i l l be defined here, as the other three alternatives are analogous. 

Formally, for an automaton M = (Q,Z.,d,qo,F), the F ĵ schema defines the state equivalence 
such that V*7i,*72

 e Q- Q\ ~n

M (J2 Lsn{M,qi) = L-n{M,q2). The range of a FL is clearly 
finite. 

The abstraction may be refined by incrementing the bound n. Th i s may lead to the weaker 
form of refinement described above, i f n is increased by to be (at least) as large as the number 
of states in minus one. This suffices because, in a min ima l deterministic automaton, 
this means a l l the states w i l l be distinguishable wi th regards to and w i l l therefore 
not be collapsed. 

Given our running example (see Figure 3.6) and an in i t i a l value of n equal to 2, Init w i l l 
not be collapsed at a l l , but i(Init) w i l l be collapsed (shown i n Figure 3.9a), resulting in 
the automaton i n Figure 3.9b, which is a fixpoint. 

4 I t should be noted that the schemas based on forward/backward trace languages (F^ and B ^ ) , while 
reportedly useful in practice [6], do not guarantee the exclusion of a spurious counterexample. 
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N 

(a) Abstraction of iUnit). 

Figure 3.9: Example of abstraction and refinement based on finite-length languages. 

W h e n increasing n, one need not choose an increment of IQMJ — 1 (which may often be too 
large i n practice, according to [( ]), but may instead choose a fraction (e.g. one half), the 
number of states in (or a fraction), or s imply increment by 1. Since n w i l l eventually 
reach the necessary value, an (eventual) exclusion of the same faulty computat ion is s t i l l 
guaranteed. Similar ly , the in i t i a l value of n might be set to the number of states i n the 
automaton encoding the in i t i a l configurations, or the bad configurations, a fraction, or 1. 
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Chapter 4 

Tool Design 

This chapter covers the design of the new abstract regular model checking tool . The tool 
may be used as a console applicat ion as well as a C # library. A l l classes are enclosed wi th in 
an ARMC namespace, and errors are handled by throwing an instance of ARMCExcept ion wi th 
a descriptive message. 

Section 4.1 justifies the use of simple symbolic automata and transducers instead of alter
natives presented i n Chapter 2. Section 4.2 then reports on the reasoning behind choosing 
the Au tomataDotNe t l ibrary as a back-end for algorithms over symbolic automata. Sub
sequently, the interface and class hierarchy of the new tool is described, w i t h Section 4.3 
focusing on automata and transducers, Section 4.4 detail ing the configuration process and 
capabilities, Section 4.5 describing the polymorphic approach taken to handling different 
abstraction techniques, and Section 4.6 put t ing it a l l together in a description of the main 
interface for running A R M C . 

4.1 The Case for (Simple) Symbolic Automata 

Al though A R M C is defined using finite automata and transducers, the new tool uses sym
bolic automata and transducers instead. Symbol ic automata have recently become very 
popular, their ma in advantage being that they are highly expresive. They also retain 
many of the good properties of finite automata — efficient algorithms exist for their deter-
minizat ion and minimiza t ion , complement and intersection computat ion, as well as deciding 
emptiness and language-equivalence [8]. O n top of that, they can also operate on infinite 
domains (e.g. the set of natural numbers). 

A s far as incorporat ing them into the A R M C method is concerned, there is one l imi ta t ion 
which prevents symbolic automata, or specifically symbolic transducers, being used i n their 
most general form. The problem is that given a transducer T representing the relation gT, 
A R M C requires that one should be able to compute the inverse relation g~l (used when 
tracking back to determine whether a counterexample is spurious). However, as shown in 
2.2.1, symbolic transducers are not closed under inversion. 

Therefore, we w i l l instead use simple symbolic automata and transducers (defined i n 2.2.1 
and 2.2.2, respectively). They use a restricted set of predicates, al lowing queries of whether 
the input symbol is in (or not in) a finite set. These predicates are inspired by the F S A 
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l ibrary [20]. Though this version of symbolic automata does not offer greater expresiveness 
than classic automata, they are more concise as they allow mult iple transitions to be merged 
into one. For example, given an alphabet Z = {a,...z}, i f one wants to accept a consonant, 
a single transi t ion w i l l suffice wi th the label &{a, e, i, o, u}, instead of the 21 transitions one 
would have to specify using finite automata. 

4.2 Choosing a Symbolic Automata Library 

Four different libraries, a l l open source, were considered for providing implementations of 
algorithms for symbolic automata and transducers. Determinizat ion, minimiza t ion , inter
section computat ion, emptiness and language equivalence checking are among the main 
automata algorithms required by A R M C , as well as composit ion of transducers, and apply
ing transducers to automata. A R M C also requires the construction of automata accepting 
forward/backward state/trace (finite-length) languages, and quotient automata. None of 
the considered libraries provide a l l of these algorithms, but as some of them are quite 
simple to implement, the focus was on the most difficult and intensive algorithms, e.g. 
minimizat ion. 

One of the considered libraries was symboliclib, which provides many algorithms operating 
over simple symbolic automata and transducers, w i th the explicit intent of being used for 
formal verification purposes [ , ]. It uses state-of-the-art algorithms for language inclusion 
checking (which can be used to check language equivalence), specifically simulations and 
antichains. It is implemented i n Py thon , and the code is wri t ten i n a very straightforward 
and understandable way, meaning that it has a very quick learning curve. In the process of 
considering the sui tabi l i ty of this library, a smal l P y t h o n prototype of the A R M C method 
was implemented using symbolic l ib . This helped reveal several bugs in the l ibrary 's imple
mentation that had to be fixed i n order to get the prototype up and running. In addi t ion 
to the presence of bugs, there was also a concern over P y t h o n being a suitable language for 
an algori thm as computat ional ly demanding as A R M C . 

The other main candidate was the AutomataDotNet l ibrary, wri t ten by Margus Veanes for 
Microsoft using C # [ ]. The l ibrary implements the most general version of symbolic au
tomata and transducers, and optionally uses a Z3 solver. It is reportedly used by Microsoft 
in production, making it the most mature of the considered libraries. The code base is very 
large, and is composed of many interacting modules, which means that it has a very steep 
learning curve. O n the other hand, it is very well designed, using generic data types to 
allow the user to provide their own Boolean algebra over which automata operate. Though 
the implementat ion of symbolic transducers is i l l suited for simple symbolic transducers, 
both symbolic automata and symbolic transducer classes inherit from a parent automaton 
class, which i n facts implements a l l the core automata algorithms. It is therefore possible to 
use this parent class i n order to define simple symbolic automata and transducers without 
much inconvenience. 

The automata l ibrary was shortly considered too [27, 26]. Wr i t t en i n the functional pro
gramming language Haskell , it claims to implement efficient algorithms over finite automata. 
Some groundwork has also been la id to accomodate finite tree automata, which could be 
useful if the A R M C tool were extended to include abstract regular tree model checking as 
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well . However, this l ibrary does not implement transducers or any symbolic versions, and 
it is also unclear whether it actually succeeded in implementing its algorithms efficiently. 

Lastly, the VAT A l ibrary was also among the candidates at one point [15]. V A T A is im
plemented in C + + , and provides highly opt imized algorithms for finite automata, as well 
as for finite tree automata. Its efficiency wi th regards to speed is its main advantage, but 
it is also very complex and hard to use. Moreover, it does not implement transducers or 
symbolic automata. 

In the end, the AutomataDotNe t l ibrary was deemed most suitable. It was chosen mainly 
for its maturity, completeness, and good design wi th regards to implementing special cases 
of symbolic automata. 

4.3 Automata and Transducers 

The core of the AutomataDotNe t l ibrary provides algorithms for symbolic automata and 
transducers, which are represented by the classes S F A and ST, respectively. B o t h of these 
classes contain an instance of an A u t o m a t o n class, which defines the basic structure for an 
automaton ( ini t ia l state, final states, transitions), as well as implementing core algorithms. 
These algorithms include determinization, minimiza t ion , equivalence checking and product 
construction among others. The S F A and ST classes provide many wrapper methods for 
these algorithms, as well associating the automaton wi th an S M T solver. 

Since the new tool need by necessity be restricted to using simple symbolic automata/trans
ducers (see 4.1), the S F A and ST classes are unsuitable. B o t h are unnecessarilly complex for 
our purposes and the definition of a general symbolic transducer is incompatible w i t h the 
simpler version (e.g. labels having several yields). O n the other hand, the core A u t o m a t o n 

class contains a l l the implementations for the algorithms p rov ided 1 , and has a simpler in
terface. It uses a generic type for the labels contained in automata transitions, requiring 
only that some Boolean algebra (i.e. a class implementing an I B o o l e a n A l g e b r a interface) 
be provided. The I B o o l e a n A l g e b r a interface declares methods for conjuction, disjunc
t ion, negation and satisfiability checking over a given predicate type, as well as universally 
true/false predicate constants. 

Therefore, the new A R M C tool contains the classes SSA and S S T for simple symbolic au
tomata and simple symbolic transducers, respectively. S imi lar ly to S F A and ST i n A u 
tomataDotNet , these are wrapper classes for the core A u t o m a t o n class, an instance of which 
is stored as a private attr ibute. M a n y methods then s imply delegate to the underlying au
tomaton. 

The S S A and S S T classes also provide a few methods necessary for A R M C which are not 
implemented i n AutomataDotNe t . For automata, these include collapsing an automaton 
based on some equivalence relation, as well as transforming an automaton to represent 
forward/backward state languages, forward/backward trace languages, bounded languages 
and combinations thereof. For transducers, addi t ional methods implement transducer in 
version, composit ion and union construction, as well as transforming an automaton by 
applying the transducer. 

1 Transducer composition is only implemented in the ST class, but it is not a difficult algorithm to 
reimplement. 
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SSA and S S T also differ on the type of label used, as well as the associated Boolean algebra. 
The S S A class represent transit ion labels using the P r e d i c a t e class, which consists of a 
type (in or not in) and a set of symbols. S S T then uses the L a b e l class, consisting of two 
P r e d i c a t e instances for the input and output, as well a Boolean indicator of an identity 
label (identity labels do not use the output predicate). Note that e is represented w i t h a 
nul l value i n place of a P r e d i c a t e object. 

The P r e d i c a t e A l g e b r a implements the I B o o l e a n A l g e b r a interface by providing meth
ods for Boolean operations over P r e d i c a t e instances. It stores a set of symbols (i.e. 
the alphabet) as a read-only public at tr ibute (important for satisfiability checking). The 
L a b e l A l g e b r a has the same function for L a b e l instances, as well providing a method for 
combining transducer labels. 

It is also very pract ical to be able to load and save automata/transducers to files. Though 
AutomataDotNe t does not provide implementations for this, methods for parsing and print
ing automata/transducers using text file formats are provided i n the A R M C tool . The 
supported formats are based on the T i m b u k [10], F S A [ 0] and F S M [17] l ibrar ies 2 . For 
print ing, the D O T format is also supported, al lowing image files to be created using the 
Graphviz tool [12]. 

Since the parsing and pr in t ing algorithms are very similar for both automata and transduc
ers, the static classes P a r s e r and P r i n t e r use an I S S A u t o m a t o n interface for accessing the 
structure of automata and transducers alike, as well as an I L a b e l interface which envelops 
both P r e d i c a t e and L a b e l types. 

For clarification, Figure 4.1 depicts the relationships between the above described classes in 
a U M L class diagram. Some of the more important attributes and methods are also listed, 
though not a l l . Note that a l l of these classes use a generic type for a symbol , meaning that 
one may choose to use integers instead of strings, for example 3 . Integers are used for states, 
though S S A and S S T add the option of attaching names to the states for more convenience 
(as well as an option of naming the automaton/transducer) . 

4.4 Configuration 

A R M C allows many different combinations of configuration settings. In order to avoid 
impract ical ly long method parameter lists and command-line invocations, the new tool 
uses a single class, C o n f i g , to take care of the different options. In addi t ion to the many 
public attributes, the class implements parsing and pr int ing configurations to / f rom a text 
file. W h e n the console appl icat ion is invoked wi th a - g or — g e n e r a t e - c o n f i g option, it 
w i l l merely create a configuration file w i th default settings. The user may then modify the 
configuration file according to their needs before running the A R M C method. A simple 
" k e y = v a l u e " format is used in the file, and every setting is accompanied wi th comments 
detail ing its syntax and semantics. 

The three main settings are the files containing the S S A representing in i t i a l (Init) and 
property-violat ing configurations (Bad), and the S S T representing the one-step transi-

2 We support a version of Timbuk that is compatible wi th the symboliclib library [4]. 
3 T h e console application uses strings, though. A different type is only possible for library usage. 
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«interface» 
IBooleanAlgebra<PREDICATE> 

«interface» 
ILabel<SYMBOL> 

PredicateAlgebra<SYMBOL> 

+ Alphabet: Set<SYMBOL> > 
Predicate<SYMBOL> 

- Type : PredicateType 
- Set: Set<SYMBOL> 

LabekSYMBOL> 

- Input: Predicate<SYMBOL> 
- Output: Predicate<SYMBOL> 
- Isldentity: bool 

LabelAlgebra<SYMBOL> 

- Alphabet: Set<SYMBOL> 

«intertace» 
ISSAutomaton<SYMBOL> 

SSA<SYMBOL> 

t- InitialState : int 
t- FinalState : IEnumerable<int> 
f Moves : IEnumerable<Move<Predicate<SYMBOL>» 
i-Alphabet: Set<SYMBOL> 

i- ParseffileNamel : SSA<SYMBOL> 
f Print(tileName, printFormat) 
f IsFinalState(state): bool 
f GetMovesFrom(state) : IEnumerable<Move<Predicate<SYMBOL»> 
f GetMovesTo(state): IEnumerable<Move<Predicate<SYMBOL>» 
i- Product(ssa1. ssa2) : SSA<SYMBOL> 
f ProductlsEmpMssal. ssa2) : bool 
f EquivalenUssal. ssa2) : bool 
f IsSubsetOt(ssa) : bool 
i- DeterminizeQ : SSA<SYMBOL> 
i- MinimizeO : SSA<SYMBOL> 
i- PrefixLanguageQ : SSA<SYMBOL> 
i-Collapse(statesAreEquivalent) : SSA<SYMBOL> 
i- ForwardStateLanguage(state) : SSA<SYMBOL> 
i- BackwardStateLanguage(state): SSA<SYMBOL> 
i- BoundedLanguage(bound) : SSA<SYMBOL> 
f BoundedForwardStateLanguagefstate, bound) : SSA<SYMBOL> 
f BoundedBackwardStateLanguagefstate, bound) : SSA<SYMBOL> 
f ForwardTraceLanguage(state): SSA<SYMBOL> 
f BackwardTraceLanguage(state) : SSA<SYMBOL> 
f BoundedForwardTraceLanguagefstate, bound): SSA<SYMBOL> 
f BoundedBackwardTraceLanguagefstate, bound) : SSA<SYMBOL> 

SST<SYMBOL> 

- InitialState : int 
- FinalState : IEnumerable<int> 
- Moves : IEnumerable<Move<LabekSYMBOL>» 
- Alphabet: Set<SYMBOL> 

- ParseffileNamel : SSA<SYMBOL> 
- Print(tileName, printFormat) 
- IsFinalState(state) : bool 
- GetMovesFrom(state): IEnumerable<Move<Label<SYMBOL»> 
- GetMovesTo(state) : IEnumerable<Move<LabekSYMBOL>» 
- Domain() : SSA<SYMBOL> 
- Ranged : SSA<SYMBOL> 
- Invert() : SST<SYMBOL> 
- Apply(ssa) : SSA<SYMBOL> 
- Compose(sst1. sst2) : SST<SYMBOL> 
- Union(sst1. ...) : SST<SYMBOL> 

Automaton<LABEL> 

Figure 4.1: U M L class diagram for simple symbolic automata/transducers. 
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t ion ( T ) 4 . These may also be specified using command-line arguments (using - i / — i n i t , 

- b / — b a d and — t / — t a u ) , which override the configuration file. 

The user may also specify a number of general settings. These include the direction of the 
computa t ion 5 and whether forward or backward languages are used. The user may also 
specify a t ime interval after which A R M C w i l l terminate wi th a "don't know" answer (given 
that terminat ion is not guaranteed), and optional ly enable verbose output, as well as i f a l l 
created automata should be printed to files i n a comprehensive directory structure, i n which 
case the file format may also be selected (direct image creation is enabled i f Graphviz is 
installed). A l l these files w i l l be placed in a chosen output directory, which is also used for 
print ing a counterexample if the property is violated. 

The user also has the choice of which abstraction technique to use. If predicate languages are 
enabled, then one may also select if state languages of Init or Bad should be used as in i t i a l 
predicates, whether to also include the domain or range of the specified transducer(s) among 
the in i t i a l predicates, and whether to enable a heuristic which considers only important 
states or one or two key states. 

O n the other hand, i f the user selects finite length languages as their abstraction technique, 
then they again have a number of addi t ional options to choose from. One may enable the 
use of trace languages, and decide on how to init ial ize and increment the bound n. The 
in i t i a l value may be equal to 1 or the number states in Init or Bad (the number of states 
may also be halved). Similarly, the bound may be incremented by 1 or the number of states 
in Mfc or Xic (which may again be halved). 

4.5 Abstraction 

Since A R M C uses one of two different abstraction and refinement techniques, the new tool 
handles this by providing two different implementations of the same interface. A n abstract 
class A b s t r a c t i o n declares the basic methods for abstraction (i.e. collapsing automata) 
and abstraction refinement. A C o l l a p s e method transforms an automaton by collapsing 
its states, while a R e f i n e method is used to update the abstraction (i.e. add predicate 
automata or increase bound) based on the automata or X^. In addit ion, a method 
called S t a t e s A r e E q u i v a l e n t is also declared. It determines whether two specified states 
are equivalent wi th in a specified automaton. This is used in a default implementat ion of 
C o l l a p s e as the equivalence relation. 

The two subclasses are named P r e d i c a t e A b s t r a c t i o n and F i n i t e L e n g t h A b s t r a c t i o n . 

W h i l e the latter uses the default implementat ion for collapsing automata, the former over
rides it i n favour of a more efficient a lgori thm and an optional use of heuristics. Figure 4.2 
illustrates the relationships between these classes w i t h a U M L class diagram. 

4 M u l t i p l e transducers may be specified, in which case their union forms the one-step transition. 
5 A forward computation checks that gT* {L{Init)) nL{Bad) = 0, whereas a backward computation checks 

that g~1*{L{Bad))nL{Init) = 0. 
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«abstract» 
Abstraction<SYMBOL> 

+ Collapse(ssa) : SSA<SYMBOL> 
+ Refine(ssaM, s s a X ) : void 
+ StatesAreEquivalent(ssa, s tate l , state2) : bool 

PredicateAbstraction<SYMBOL> 

• predicateAutomata : S e t < S S A < S Y M B O L » 
• forward : bool 
• heuristic : PredHeuristic 
• ignoredLabels : Set<int> 

+ Collapse(ssa) : SSA<SYMBOL> 
+ Refine(ssaM, s s a X ) : void 
+ StatesAreEquivalent(ssa, s tate l , state2) : bool 

FiniteLengthAbstraction<SYMBOL> 

• bound : int 
• forward : bool 
• trace : bool 
• boundlnc : Boundlnc 
• halveBoundlnc : bool 

+ Collapse(ssa) : S S A < S Y M B O L > 
+ Refine(ssaM, s s a X ) : void 
+ StatesAreEquivalent(ssa, s tate l , state2) : bool 

Figure 4.2: U M L class diagram for predicate-based and length-based abstraction techniques. 

4.6 The M a i n Method 

B u i l d i n g on the components described in previous sections, the core class wi th in the tool 
is called ARMC. The constructor takes a C o n f i g object as a parameter and uses it to set up 
the method. The constructor also throws an exception if the languages of Init and Bad 
intersect, as that would cancel the need for A R M C to be performed at a l l . 

The class contains two other public methods. V e r i f y runs the entire a lgori thm (as depicted 
in L i s t i ng 3.1), returning a Boolean value indicat ing the verification result. If a property 
viola t ion was found, then a counterexample is returned as an output parameter 6 . If a 
timeout is specified in the configuration, then the method throws an exception when the 
t ime l imi t is reached. Otherwise, the method is not guaranteed to terminate. 

For this reason an alternative V e r i f y S t e p method is also provided for performing a sin
gle i teration of the outer loop (i.e. abstraction fixpoint computat ion and counterexample 
checking). It has the same type signature as V e r i f y , except that it may return an empty 
value instead of a Boolean if the verification step was not conclusive (i.e. a spurious coun
terexample was found). The advantage of using this method is that it w i l l terminate. 

Note that the t ime l imi t is only checked in situations when there is no indicat ion that a 
result may be near. V e r i f y only checks it after each inconclusive verification step, while 
V e r i f y S t e p checks it after each round of the fixpoint computat ion. The reasoning for the 
latter is that the fixpoint computat ion is only guaranteed to be finite if r was specified 
correctly (i.e. also represents an identity relation), and even it is finite, it might s t i l l take 
a long t ime. 

A method for printing this counterexample to a given directory is also provided. 
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Chapter 5 

Implementation 

This chapter covers the implementation of the new abstract regular model checking tool , 
based on its design as described i n Chapter 4. In general, the source code is wri t ten 
in a functional programming style where suitable. A r r o w functions and function delegates 
are often ut i l ized, as are higher-order functions operating over enumerable data types (lists, 
sets, dictionaries, etc.) provided by . N E T ' s Language Integrated Query ( L I N Q ) framework. 
For handling command-line arguments, the implementat ion makes use of the open-source 
options parser NDesk. Options by Jonathan P ryor [21]. 

Fi rs t , Sections 5.1 and 5.2 describe the algorithms used to provide some necessary capa
bilities missing in AutomataDotNet , for automata and transducers, respectively. Section 
5.3 then covers the implementat ion of parsing and pr int ing of automata/transducers in the 
various supported formats, as well as the A R M C configuration (using a more maintainable 
reflection-based approach). F ina l ly , Section 5.4 describes an efficient a lgori thm used for col
lapsing automata based on predicate languages, while also providing some implementat ion 
notes on the two optional heuristics. 

5.1 Automata Algorithms 

Depending on the A R M C configuration used, it may be required to transform an automaton 
M to an automaton M' which for a given state q accepts its forward/backward (trace) 
language, possibly of a bounded word length n. For a forward state language, it suffices to 
replace the in i t i a l state wi th q, while a backward state language entails replacing the set 
of final states wi th {q}. Trace language computat ion is delegated to an AutomataDotNe t 
method for computat ing a prefix language (e-transitions are added from each state to a 
new final state). For bounded languages, one may construct a product automaton such 
that L ( M ' ) = L{M) n L{M^n), where the automaton M f " = ({0,... «},Sz ,{(i ' ,T) — {i + 1} | 0 < 
i < n},0,{0,...n}) accepts a l l w e Z * such that \ w\<n. Related constructions (e.g. bounded 
forward trace languages) are obtained by a composit ion of the algorithms above. 

A s for collapsing an automaton based on an equivalence relation, an algori thm for this is 
presented in L i s t i ng 5.1. Every state is mapped to a representative of its equivalency class 
by use of a dictionary. Each new state is tested for equivalency wi th each representative 
i n order to determine which equivalency class it belongs to. If none is found, the state 
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Collapse(M=(Q,SZ )A,<7o,P), ~ ^ Q x Q ) 
begin 

m : Q —• Q; m := 0 # mops stoto to equivalency class representative 
for Vř? e Q do 

fo r V ^ * eran(m) do 
i f q ~ q* then 

m := m u —• q*} # add to equivalency class 
break 

endif 
endfor 
i f q&dom{m) then 

m := m u {q —• ^ new equivalency class 
endif 

endfor 
Q/~ := ran(m) 
let ^ e A / . ( ( j ^ , i / ř ) <̂=> m _ 1 ( í 7 ^ ) e A{m~1{qjj,y/) 

f/~ := ím(í7 F) I í?f £ F} 
re tu rn M / _ = (Q/~,§z, A / ^ ^ . F / J 

end Collapse 

Lis t ing 5 .1: Pseudocode for collapsing a S S A M according to an equivalence relation ~. 

becomes the representative of a new equivalency class. The resulting quotient automaton 
is then obtained by translating a l l the states according to this dictionary. 

The implementat ion of the SSA class also includes a workaround for an inconvenience pre
sented by AutomataDotNe t . For any methods working wi th two automata (e.g. prod
uct construction), it is first checked that the I B o o l e a n A l g e b r a objects are identical . For 
P r e d i c a t e A l g e b r a objects this is unnecessarily strict, as they only need to operate over 
the same alphabet in order to be compatible. The solution is for the S S A class to mainta in 
a static at tr ibute which is a dict ionary mapping an alphabet (i.e. a set of symbols) to a 
P r e d i c a t e A l g e b r a instance which uses that alphabet. The constructor then checks if this 
dict ionary already contains en entry for the given alphabet, i n which case the correspoding 
algebra object is used. 

5.2 Transducer Algorithms 

A central method required for A R M C is to transform an automaton M to another automa
ton M ' using the transducer T such that L(M') = pT(L(M)). The basic idea is to use a product 
construction for the states of r and M , but replace each predicate w i th the output of the 
transducer label whose input satisfies that predicate. The si tuat ion is then also slightly 
complicated by the appearance of e and i among these labels. The algori thm is i l lustrated 
in L i s t i ng 5.2. 

The a lgori thm for composing transducers is the same as described in 2.2.4. Inverting a 
transducer consists of modifying the transitions by swapping the input and output of each 
label, w i t h the exception of identity labels, which are not changed. 
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A p p l y ( T = ( Q r , § z , A T , ^ , F T ) , M = {QM^AM^O ,FM)) 
b e g i n 

M := RemoveEps i l ons (M) 
A ' := 0 
SQQTxQM;S := {{qT

0,q(f)} 
m:QR x QM —* ^o! m '•= {(<7o> q<f) -" 0} # maps pair of states to identifier 
i := 1 
w h i l e S ^ 0 do 

select (qr,qM) eS; S := S\{{qr,qM)\ 
D := 0 # tuples with predicate and target state pair 
f o r V D T = Ar{qr,%frl,%fr2) do 

i f y/\ = e t h e n 

i f y/2 - i t h e n <// := e 
e l s e <// := y/2 

e n d i f 

D := D U {(</>', D T x{<fM})} 
e l s e 

f o r V D M = AM[qM,<p) do 
i f [1̂ 1 A <p] ^ 0 t h e n # satisfiability check 

i f y/2 - i t h e n <// := y/i/\q> 
e l s e </?' := 1̂ 2 

D := D u ( ( i ) ' , D T x D M ) ) 
e n d i f 

e n d i f 

e n d f o r 

e n d i f 

e n d f o r 

f o r Vg'eU( V ' ,D')eD-D' do 

i f q' ^dom(ř?í) t h e n # add new state pair 
S := Su{q'} 
m := m u {q' — i} 
i := í + 1 

e n d i f 

e n d f o r 

A ' := A ' u {(<?, <p') - | r y , D') e D A D ' m = {m(<y') I q' e D'} 
e n d w h i l e 

Q' := ran(m) 

<?ó : = ntiZ-Vo) 
F' := {ř?' | m ( g T , ř?M) = q' !\qTtFT AqM£ FM] 
r e t u r n M ' = ( Q ' , § z , A ' , ^ , F ' ) 

end A p p l y 

Lis t ing 5.2: Pseudocode for applying a S S T T to a S S A M . 

For creating a union of transducers, one must create a new in i t i a l state and e/e-transitions 
to each transducer's in i t i a l state. A l l states and transitions are then merged, but first it 
must be ensured that their sets of states are disjoint. Th is is done by translat ing each 
transducer's states such that the first transducer's states cover the range { l , . . . « i } , the 
second's cover {n\ + 1 , . . . n\ + «2}, and so on ( « ; is equal to the number of states of the z'-th 
transducer). 0 is reserved for the new in i t i a l state. The union method takes an arbi trary 
number of transducer parameters, i n order to allow for a single new in i t i a l state to be added 
instead of creating a new one for each pair. 
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5.3 Parsing and Print ing 

A s described i n Section 4.3, a joint interface allows the same algori thm to be used for 
parsing and pr int ing both automata and transducers. The interface declares the presence 
of a public at tr ibute used to differentiate automata from transducers. Th is is usually used to 
determine how to parse/print t ransi t ion labels, which is the ma in point where the supported 
file formats differ. The implementation makes use of the joint interface for automata and 
transducer labels. 

Parsing is performed w i t h the use of C # ' s powerful regular expression util i t ies. The main 
parsing method must first determine the type of file format being used. If the file extension 
gives no indicat ion, then the format is guessed based on the structure of the file contents. 

W h e n pr in t ing i n the F S A format (in fact val id Pro log code), the components are formatted 
and commented in order to be more readable. W h e n the D O T format is used, H T M L for
mat t ing and Unicode characters are used to make the resulting graphs more clear (symbols 
are typeset i n italics, and state names allow for the use of subscripts). Since sets appearing 
in predicates may be very large and result in labels overlapping (and thus becoming incom
prehensible), line breaks are added at regular intervals between groups of symbols wi th in a 
set. 

Note that because of the l imits imposed by the various formats on which characters may 
appear among symbols, an automaton may change when pr int ing and parsing i n different 
formats. 

A s far as the pr int ing and parsing of C o n f i g instances is concerned, the implementat ion 
makes use of C # ' s reflection toolki t in order to make the code more maintainable. A s the 
class contains a large number of public attributes, they may a l l be fetched in a loop and 
their values handled according to their type. Comments are also attached to each attribute 
by use of a C # feature called custom attributes. A l l of this means that in order to add or 
modify configuration settings, the programmer need only make the change i n the attribute 
declaration, and the methods for pr int ing and parsing w i l l adjust themselves accordingly 
without any attention needed. W h i l e this approach increases maintainabil i ty, it is also a 
l i t t le less efficient. However, since the configuration is only parsed/printed once for each 
A R M C run, this is less of a concern. 

5.4 Optimized Predicate-Based Abstraction 

The definition of the Fj> and By schemas based on predicate languages in 3.3.3 indicates that 
for every refinement, an automaton for each state language is added to the set of predicate 
automata 7. Th is implementat ion is unnecessarily ineffecient, as the automata accepting 
languages of states from the same automaton would share large parts of their structure. A 
better option is to s imply add the automaton as is, and consider the languages of a l l its 
states as separate predicates when collapsing. 

Given that the collapsing of an automaton M consists of comparing intersections of a l l its 
states wi th a l l the states from predicate automata, it is good to have an efficient a lgori thm 
for deciding this. The basic idea is to label every state of M wi th a set of predicate automata 
states wi th whose forward/backward languages they have a non-empty intersection. For the 
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Fj> schema, this may be done w i t h backward synchronous product construction. Specifically, 
for each predicate automaton P, every final state of M is first labelled w i t h the final states 
of P. T h e n if a state q^1 is labelled wi th q% and there exist predicates y/ and cp such that 
^ e A M ^ f , ^ ) , q% £ &p(.qf ,<p) and if/Acp is satisfiable, ^ is labelled wi th qf. Similarly, 
a forward synchronous product construction is used for the %> schema, w i th the difference 
being that we begin by labell ing the in i t i a l state of M wi th in i t i a l state of each predicate 
automaton, and then we follow the transitions from source state to target states. After the 
labell ing is done, the equivalence of two states i n M consists of checking that their sets of 
labels are equal. 

One detai l that the implementat ion need take care of, given that states are represented 
by integers, is ensuring that the predicate automata use disjoint sets of integers for their 
states. Therefore, whenever a new predicate automaton Xk is to be added as part of 
the abstraction refinement, its state numbers are translated in order to form a sequence 
n n + m — 1, where m is the number of states in Xk and n is to ta l number of states of a l l 
the preceding predicate au tomata 1 . 

The P r e d i c a t e A b s t r a c t i o n class also maintains a set of integers denoting labels to be 
ignored. This is used for the heuristics described i n 3.3.3 which only consider important 
or key states when collapsing automata. Once every state has been labelled (resulting i n a 
dict ionary mapping an integer to a set of integers), a l l ignored labels are removed using set 
subtraction. O n l y then is the collapsing algori thm performed. 

For the important tail/head part heuristic, the labell ing is performed after adding the new 
predicate automaton, and each of its states appearing among the labels is collected i n a set 
of important states. A l l non-important states are then added to the set of ignored labels. 

The key states heuristic also computes the set of important states. It then tries to find one 
key state among them which w i l l suffice to prevent Xk from intersecting wi th the collapsed 
version of Mk when ignoring a l l other states of Xk (they are temporari ly added to the 
ignored labels and subsequently removed if the intersection is non-empty). If one such 
state cannot be found, the a lgori thm attempts to find two key states, falling back on the 
important states heuristic if this also fails. 

Before this, the new predicate automaton has its e-transitions removed in order to simplify the labelling 
algorithm. 
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Chapter 6 

Experiments 

This chapter describes the various verification tasks which were used in testing the new ab
stract regular model checking tool . E a c h section describes an algori thm and some property 
which we verify, the models used to that effect, and the experimentation results. Mos t of 
the algorithms are concerned wi th process synchronization, where we verify a safety prop
erty, specifically whether they guarantee mutual exclusion (i.e. no more than one process 
may be i n a cr i t ica l section at any given t ime). We also include examples of a push-down 
system and a system w i t h a queue, where we verify that some actions happen i n the correct 
order. 

The presented times were obtained on a computer w i th a 2.5 G H z Intel Core i5 processor, 
and do not include the t ime needed for I / O operations. The effectiveness of the computat ion 
varied greatly based on the configuration used. For a l l of the modeled algorithms, results 
ranged from reaching a fixpoint i n less than a second without needing to perform any 
refinements to computations so t ime-consuming that they had to be terminated prematurely 
(and in some cases were clearly never going to finish, typical ly when using trace languages 
in a backward computation). 

Section 6.1 describes the bakery algorithm. Since this is one of the simpler algorithms, the 
models and experimenation results are described i n more detail than for other algorithms, 
in order to give a clear idea of the modeling techniques used and the types of effects different 
configurations may have. Other process synchronization algorithms are covered i n Sections 
6.2 (Dijkstra's algorithm), 6.3 (Burns' algorithm) and 6.4 (Szymariski's algorithm). For the 
latter, we also use an erroneous version to demonstrate the generation of a counterexample. 
Section 6.5 then describes an example of a simple push-down system that uses recursive 
procedures, before Section 6.6 covers the alternating bit protocol. F inal ly , Section 6.7 sum
marizes the results from previous sections, and also shows a rough speed comparison wi th 
one of the A R M C prototypes. 

6.1 Bakery Algor i thm 

The bakery algori thm by Leslie Lampor t is used to ensure mutual exclusion between mul t i 
ple processes t ry ing to enter a cr i t ical section [ ]. It is inspired by the analogy of a bakery 
where upon entrance, every new customer receives a ticket from a numbering machine which 
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is higher by 1 than the previously issued ticket, and is only served once his ticket number is 
the lower than that of a l l other wai t ing customers. A customer represents a process, while 
a customer being served represents a process being i n the cr i t ica l section. 

Each process is identified by the number i. A global array e of Boolean values (all in i t ia l ly 
false) determines i f a given process is entering the "bakery" (i.e. obtaining its ticket num
ber), while a global array t of non-negative integers (all in i t ia l ly 0) determines each process' 
ticket number. A n important condit ion is that there is no upper l imi t on the possible ticket 
numbers. If t[j] = 0, it means that the process j does not currently have a ticket. 

Due to the l imitat ions of computer architecture, it is possible that mult iple processes may 
receive the same ticket number. In this case, the process w i t h the lowest identifier i has 
a higher pr ior i ty w i th regards to entering the cr i t ica l section. However, as we w i l l shortly 
show that our model does not allow for duplicate ticket numbers, we shall ignore this and 
restrict ourselves to a simplified version of the Bakery algori thm, as shown i n L i s t ing 6.1 in 
the form of pseudocode for a process i. A process finds itself in the cr i t ical section when it 
is at line number 5. 

1 e[i] := t rue 
2 t[i] := 1 + t[j]: Vfc: t[j]>t[k] 
3 e[i] := f a l s e 
4 await V j V i- ~>e[j] A [t[j] - 0 v t[i] < t[j]) 
5 t[i] := 0; goto 1 

L i s t ing 6.1: Bakery algori thm. 

We model this a lgori thm by representing a process state wi th a letter, which corresponds 
to the line number from L i s t i ng 6.1 that the process is about to execute. A word is then 
made up of the states of each process, of which there may be an arbi trary amount. Since 
the range of ticket numbers is unbounded, the values of the array t cannot represented by 
a process state. Instead, the letters in a word are ordered ascendingly from left to right 
according to the process' ticket number (it is for this reason that duplicate ticket numbers 
are not possible). The value of e is easily discernable from each process' state, as it is 
always true for lines 2 and 3, and false otherwise. 

Figure 6.1 shows the models we used for verifying the mutual exclusion property of L a m 
port 's a lgori thm. A l l processes start at line 1 (see 6.1a). The property is violated when 
there are two or more processes i n the cr i t ica l section, i.e. at line 5 (see 6.1b). The trans
ducer shown i n 6.1c is the union of the identity relation (i.e. no process does anything) and 
al l possible steps between lines of a single process. Most steps are t r iv ia l , meaning only a 
given process' letter changes while a l l others are copied. One exception is the transi t ion 
from line 2 to 3, which must also move the process' letter to the end of the word. The other 
exception is the transi t ion between lines 4 and 5 (entering the cr i t ica l section). In this case, 
al l the other processes must satisfy the condit ion that they are not obtaining a ticket and 
either have no ticket or have a higher ticket number. Th is means that a l l preceding letters 
(t[j] < t[i]) must satisfy ->e[j] A t[j] = 0 (i.e. (£,{2,3}) A (£,{1}) = (£ , {1} ) ) , while successive 
letters (t[i] < t[j]) must satisfy ->e[j] (i.e. (£,{2,3})). 

W h e n verifying the bakery algori thm using our new A R M C tool , a forward computat ion 
coupled wi th the Fy schema proved to be the fastest. The fixpoint depicted i n Figure 6.2a 
was reached after 6 steps (7 i f the domain or range were among the in i t i a l predicates). W h e n 
the Bad automaton was used as the in i t i a l predicate (wi th or without Init), this resulted 
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(a) T h e i n i t i a l configurations. (b) T h e bad configurations. 

(c) T h e t ransi t ion. 

Figure 6.1: Models for the bakery algori thm. 

in the fastest t ime of 0.07 seconds and no refinements were necessary (one refinement was 
needed when Bad was omitted). Other forward computations also succeeded in verifying 
the mutual exclusion property, reaching the more precise fixpoint depicted in Figure 6.2b 
after two refinements or fewer. For the U„ schema, it was crucial to use a bound increment 
of 1. 

For length-based abstraction, a backward computat ion coupled wi th the schema was 
fastest (0.10 s). The fixpoint reached using a backward computat ion was invariably that 
depicted in Figure 6.2c. The %> schema required the inclusion of Bad or the domain or 
range of r among the in i t i a l predicates. Other backward computations failed to terminate 
entirely — the B„ schema proved too precise, while the schemas based on trace languages 
could never distiguish between any of the states of Bad. 

£{/, 2] €{1,2^3,4} £{3,4} 

O 
/ \ —y , . , . n • , iw i \ (b) Forward computa t ion fixpoint 
(a) f o r w a r d computa t ion nxpomt (F<p schema). v ' m T ^T ST . „ . 
w ' (F„, B„ , F£, Wn and Bg> schemas). 

£ ( / , 2 ) £[1,2,3,4] * U 

6 ( 5 , 4 , 5 } A 

(c) Backward computation fixpoint. 

Figure 6.2: Various fixpoints for bakery algori thm. 
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6.2 Dijkstra's Algori thm 

Lis t ing 6.2 shows an idealized version of Dijkstra 's mutua l exclusion protocol from [19]. 
Each process has an identifier i, and has access to a global array / of flags ranging over 
{0,1,2} ( ini t ia l ly a l l 0) and a global process identifier p. L ine number 7 represents the cr i t ical 
section. 

f[i] := 1 
i f p j£ i then goto 3 else goto 5 
await f[p] = 0 
p := i 
f[i] := 2 
i f 3j j£ i: f[j] — 2 then goto 1 else goto 7 
f[i] : = 0 ; goto 1 

Lis t ing 6.2: Dijkstra 's algori thm. 

We model a configuration as a word where each letter represents the state of one process. 
The state of a process i is a made up of the current line number, the value of f[i] and 
a Boolean indicat ing if p = i (this always holds for precisely one process). Init ial ly, a l l 
processes are at line 1, / contains only zeros, and for one arbi trary process the p = i flag 
holds, while not holding for any of the other processes. A property viola t ion is modeled 
as two or more processes being at line 7 (with any flag values). The transducer is again 
formed as the union of an indentity relation and the various steps one process may take to 
change lines. A branching statement is modeled by progressing according to the ^/-branch 
if the condit ion holds, while progressing according to the efee-branch i f the negation of the 
condit ion holds. W h e n the condit ion being tested uses an existential quantifier (e.g. when 
stepping from line 6 to line 1), the transducer contains two separate paths differing on 
whether this other process is found before or after the active process i n the word ordering. 

B y far the most efficient A R M C configuration for verifying Dijkstra 's a lgori thm proved 
to be a predicate-based abstraction combined wi th a forward computat ion using Bad as 
the in i t i a l predicate. The fixpoint was reached i n 8 steps without refinements, w i th the By 
schema recording the fastest t ime (0.23s). If Init was used instead of Bad, the computat ion 
took about a hundred times longer (and required the use of the key states heuristic for the 
By schema). For length-based abstraction, a forward computat ion combined wi th forward 
(trace) languages was the only successful method, w i th the F^ schema recording the faster 
of the two times (9.15 s). Backward computations proved entirely unsuccessful for this 
algori thm. 

6.3 Burns ' Algor i thm 

Lis t ing 6.3 illustrates Burn ' s mutua l exclusion algori thm [ ]. E a c h process has access to a 
global array / of Boolean values (all in i t ia l ly false). L ine number 6 represents the cr i t ical 
section. 

In our model, the state of a process i is a pair made up of the line number and the value 
of f[i]. The same modeling techniques as for previous algorithms are used here. 

Predicate-based abstraction was considerably faster i n verifying Burns ' a lgori thm. The 
fastest t ime was achieved wi th a forward computat ion using Bad as a predicate, when a 
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1 f[i] := fa l s e 
2 i f 3j < i: f[j] then goto 1 else goto 3 
3 f[i] := true 
4 i f 3j < i: f[j] then goto 1 else goto 5 
5 await Vj > i: ~<f[j] 
6 f[i] := false; goto 1 

Lis t ing 6.3: Burns ' algori thm. 

fixpoint was reached i n 8 steps without refinements (0.8s). Us ing Init proved to be almost 
as fast, and backward computations using the Fj> schema were not much slower either (one 
refinement was needed in these cases). The combination of a backward computat ion wi th 
the Uy schema was not successful. 

For finite-length languages, the fastest t ime was achieved wi th a forward computat ion 
coupled wi th the schema (0.63 s). Us ing the F^ or F j schemas instead proved to be only 
a l i t t le slower. A backward computat ion using the F^ schema was also successful, though 
much more computat ion t ime was needed. In each of these cases, the bound had to equal 
1, and a fixpoint was reached after 13 or 14 steps without the need for any refinements. 
None of the other combinations were successful. 

6.4 Szymariski's Algori thm 

A more complex mutual exclusion algori thm was devised by Boleslaw Szymahski , whose 
advantages include linear wait [23]. List ings 6.4 shows a (slightly idealized) version of this 
algori thm as described i n [25]. The algori thm uses an array pc which holds the current 
program counter (i.e. line number) of each process. It also uses the arrays 5 and w of 
Boolean values. L ine number 7 represents the cr i t ica l section. 

await \/j / i: ~>s[j] 
w[i] := true; s[i] := true 
i f 3j ^ i: pc[j] ^ 1 /\-<w[j] then s[i] := false; goto 4 else w[i] := false; goto 5 
await 3j j£ i: s[j] A ~<w[j] then w[i] := false, s[i] := true 
await V7V i'- ~>w[j] 
await Vj < i: ~>s[j] 
s[i] := false; goto 1 

Lis t ing 6.4: Szymahski 's algori thm. 

In order to model this protocol, we use p c x j x w as our alphabet, i.e. a letter representing 
the state of some process i is a tuple [pc[i],s[i],w[i]) (the first part ranges over {1....7}, 
while the latter two are either true or false). Init ial ly, the arrays 5 and w hold arbi t rary 
values. 

W h e n predicate languages were used for the verification of Szymahski 's algori thm, only 
forward computations were successful. The inclusion of the domains and/or ranges of 
the ind iv idua l transducers (whose union forms the one-step transition) among the in i t i a l 
predicates helped speed up the computat ion significantly. The Fj> schema proved fastest 
(needing no refinements) when the transducer ranges were included, w i th the fastest time 
recorded when these were added to Bad to form the in i t i a l predicates (0.13s). The %> 
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schema worked best when the transducer domains were included as in i t i a l predicates, w i th 
4 refinement steps being required. Fini te- length languages were only successful when used 
in a forward computat ion using forward (trace) languages. The F j schema yielded the 
fastest t ime after 13 steps without refinement (2.49s). 

6.4.1 A F a u l t y V e r s i o n of Szymansk i ' s A l g o r i t h m 

W h i l e testing the new tool , we discovered an error in the pseudocode for Szymanski 's 
a lgori thm presented by [19]. The incorrect version is shown i n L i s t ing 6.5. It is the same 
as the correct version above, w i th the exception of lines 3 (where the condit ion contains 
pc[j] # 2 instead of -<w[j]) and 6 (where the condit ion is weakened by adding -<w[j]). These 
changed lines are highlighted. 

await \/j j£ i: ~>s[j] 
w[i] := true; s[i] := true 
i f 3j j£ i: pc[j] ^ 1 A pc[j] ^ 2 then s[i] := false; goto 4 else w[i] := false; goto 5 
await 3j j£ i: s[j] A ~>w[j] then w[i] := false, s[i] := true 
await Vj^i: ->w[j] 
await Vj < i: -<s[j] v -iw[j] 
s[i] := false; goto 1 

Lis t ing 6.5: Incorrect version of Szymanski 's algori thm. 

The new A R M C tool was used to find a counterexample showing how two or more processes 
could reach the cr i t ica l section at the same time. A l l o w i n g for some differences i n the 
precision of the abstraction, the discovered path (made up of 11 steps) was always the 
same 1 . It is shown i n Figure 6.3, where we suppose two processes for s implic i ty (there may 
be an arbi trary number of other processes which stay at line 1) w i th the 5 and w arrays 
in i t ia l ly containing only false values. W h i l e this path has the process wi th a higher identifier 
progressing faster, it is also possible for the paths of the two processes to be swapped (in 
which case the w array may sometimes contain arbi t rary values in i t ia l ly) . Note that the 
change to line 3 is what enables the fourth step, while the change to line 6 enables the last or 
second-to-last step (depending on which process progresses first). We also t r ied correcting 
only one of the incorrect lines, which in both cases also resulted in a counterexample being 
found after 11 steps (though there were less alternative branches). 

On ly forward computations succeeded in uncovering the counterexample (backward com
putations would not terminate). W h e n using predicate languages, the inclusion of the 
domains and /or ranges of the transducers meant that no refinements where necesarry. The 
By schema proved faster, w i th the fastest t ime being recorded using Init, Bad and the 
domain and range of each transducer (1.18s). For finite length languages, the F ^ schema 
was fastest (3.76s). The schema was much slower than the others (it was the only one 
to require refinements), even when speeded up significantly by incrementing the bound by 
just 1. 

l r The best way of interpreting the counterexamples generated by A R M C is by inspecting the Xi automata. 
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Figure 6.3: Counterexample to incorrect version of Szymahski 's algori thm. 
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6.5 Push-Down System 

A s a simple example of a push-down system using recursive procedures, we consider the 
plotter example from [ ]. The plotter makes use of the commands go_up, go_down and 
g o _ r i g h t to draw a random bar chart. The a lgor i thm is i l lustrated in Figure 6.4. It is 
required that no upward movement is immediately followed by a downward movement or 
vice versa. 

We model this push-down system by having words contain the contents of the stack, which 
is made up of invoked procedures, each of which is marked by the flowchart node (see 
6.4b) the procedure currently finds itself at. In order to verify the correctness property, the 
second half of the word lists a l l sequence movements i n order of execution (the two parts 
are del imited by a special letter). O n l y the procedure at the top of the stack (leftmost 
letter) is executed. If a movement is generated, is it is appended to the end of the word. 
If a procedure is invoked, it is pushed to the top of the stack. For example, we transi t ion 
from the configuration S2m4Ssai\U to 5 4 / 7 7 4 5 5 0 1 ! U U , and then to moS^rriiSsa^UU (a refers 
to main). 

On ly predicate-based abstraction succeeded i n verifying the correct movement ordering of 
the plotter. Forward computations were faster i n general, par t icular ly when the transducer 
domain and/or range was included. The inclusion of the transducer range was crucial 
when using the By schema. The fastest t ime was obtained when using the Fj> schema wi th 
Bad, Init, and the transducer range as the in i t i a l predicates, when 26 steps were performed 
without refinements (0.81 s). The only other successful combination was that of a backward 
computat ion w i t h the Fy schema, though it took around ten times longer than the other 
configurations on average. 

void m() { 
double d = drand48() 
if (d < 0.66) { 

s(); go_right(); 
i f (d < 0.33) m( 

} else { 
go_up(); m(); go 

} 

} 

void s() { 
if (drand48() < 0.5) 
go_up() ; m() ; go_dov 

} 

main() { 
srand48(time(NULL)); 
s(); 

} 

(a) P rog ram. 

Figure 6.4: P lo t te r example. 
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6.6 Alternating B i t Protocol 

The alternating bit protocol is a simple network protocol operating at the data l ink layer, 
where messages are delivered over a lossy channel [ ]. There are two F I F O channels, one 
for messages and the other for acknowledgements, bo th of which may lose messages but 
not reorder them. A single bit is used to ensure that the messages are delivered i n the 
correct order. The sender sends a message wi th the sequence bit 0, and waits to receive 
an acknowledgement w i t h same sequence bi t . Th is is then repeated, but the sequence bit 
is inverted each t ime. Messages and acknowledgements may be resent, and those wi th 
incorrect sequence bits are ignored. 

Figure 6.5 illustrates this protocol using automata for both the sender and receiver. The 
send and receive operations indicate calls from the upper layers of the protocols. M denotes 
the channel for messages, while A denotes the channel for acknowledgements. M!m0 sym
bolizes wr i t ing a message wi th sequence bit 0 to the M channel, whereas A ?al symbolizes 
reading an acknowledgement w i th sequence bit 1 over from the A channel. 

We model configurations of the alternating bit protocol as words made up of four separate 
parts (delimited by special letters). The first contains two letters denoting the state of 
the sender and receiver, respectively. The second and th i rd parts contain the contents of 
the two lossy channels for messages and acknowledgements, respectively. The final part is 
where we log the upper layer send and receive calls, and this is where we verify one of the 
properties of this protocol — that these two operations alternate such that neither of them 
occurs consecutively. To simulate the fact that the two channels are lossy, the transducer 
contains transitions such that the second and th i rd word parts may have messages/ac
knowledgements erased arbitrari ly. In addi t ion to this and the identity relation, the other 
transitions correspond to activities of either the sender or the receiver. These actions entail 
read and write operations on a channel (which take a leftmost or add a rightmost message 
to the queue) or invoking upper layer calls (which add to the end of the word), as well as 
modifying the sender/receiver states accordingly (by rewrit ing one of the first two letters). 

A s an example, consider the configuration s i r i # M o | A i A i $ S , where the receiver has just 
read a message wi th the sequence bit 0. It may then send an acknowledgement back to 
the sender by transit ioning to Sir2#M0\A1A1$SR and then to Sir2#M0\A1A1A0$SR. The 

send 

send 

(a) Sender. (b) Receiver. 

Figure 6.5: Al te rna t ing bit protocol. 
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next configuration may then be Sir2#Mo\AiAo$SR, either because of the acknowledgements 
channel being lossy, or because the sender has read an acknowledgement w i th sequence bit 
1 and ignored it. 

On ly predicate-based abstraction techniques were successful in verifying the alternating 
bit protocol's message ordering. W h i l e a backward computat ion succeeded when coupled 
wi th the Fy schema, forward computations were faster in general, especially when the 
transducer's domain and range were included among the in i t i a l predicates. Including Bad 
as a predicate too and using the Uy schema resulted i n the fastest computat ion time, when 
a fixpoint was found in 17 steps without the need to refine (0.38 s). 

6.7 Summary 

We summarize the results of our experiments described above in Table 6 .1 . The fastest 
t ime (in seconds), and the precise configuration leading to it , are shown separately for both 
abstraction techniques. We first note whether it was a forward or backward computat ion 
and the schema used. For predicate-based abstraction, this is followed by the in i t i a l pred
icates, and an optional heuristic. For length-based abstraction, we sometimes note the 
in i t i a l bound and its increment i f necessary. 

Addi t ional ly , we used the experimental results described i n [6] to compare the speed of the 
new tool w i th the Pro log pro to type 2 . The authors list the best scenarios and times for both 
abstraction techniques, so we used the same configurations when running our new tool , as 
well as the same models [ ]. Table 6.2 shows the results for predicate-based abstraction, 
while Table 6.3 shows results for length-based abstraction. Our tool was usually slower, w i th 
a few notable exceptions when predicate languages were used. For finite length languages, 
we do not include results for the (correct) Pe t r i net model of the readers-writers problem 
(the authors had to specially select the ideal bound) and Szymahski 's a lgori thm (which 
d id not terminate for the given configuration, but finished using a different one i n a faster 
t ime). 

In general, while the referenced prototype shows a lot of variance between results for both 
abstraction techniques, our tool appears to run consistently faster when predicate-based 
abstraction is used instead of length-based abstraction. 

2 Since the prototype's results were obtained on a different machine, this is only a rough comparison. 

Exper imen t Fy/By T i m e ¥LjBLj¥TjBT

n T i m e 

Bake ry F w , Fy, [Bad] 0.07 B w , ¥ L

n 0.10 

Di jk s t r a F w , By, [Bad] 0.23 F w , ¥ L

n 9.15 

Burns F w , Fy/By, [Bad] 0.08 F w , B£ 0.63 

Szymansk i F w , By, \Bad\Act] 0.84 F w , ¥ T

n 2.49 

Szymansk i (faulty) F w , By, \Bad\Init\Grd\Act] 1.18 F w , ¥ T

n 3.76 

P D S F w , Fy, [Bad\Init\Act] 0.81 

A B P F w , By, [Bad\Init\Grd\Act] 0.38 

Table 6 .1: Summary of results. 
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Exper imen t Conf igura t ion P ro to type N e w T o o l 

B a k e r y F w , Fy, [Bad] 0.02 0.06 

B a k e r y - communa l liveness F w , Fy, \Bad\Grd\ 0.13 0.12 

B a k e r y - i n d i v i d u a l liveness F w , Fy, [Bad], key st. 19.41 71.21 

A B P F w , By, [Init\Grd] 0.68 0.39 

B u r n s F w , By, [Bad] 0.06 0.10 

D i j k s t r a F w , By, [Bad] 0.73 2.50 

P D S B w , Fy, [Bad] 0.02 0.13 

P e t r i net: readers-writers F w , By, [Bad\Grd] 5.86 2.16 

P e t r i net: readers-writers (faulty) F w , By, [Init\Grd] 0.81 0.29 

Szymahsk i F w , Fy, [Init\Grd] 0.55 5.66 

L i s t reversal F w , By, [ B a d l G r d l ^ c f ] 1.29 0.12 

Table 6.2: Speed comparison wi th prototype using predicate-based abstraction. 

Given our main a im, the slower computat ion speeds are not a great concern. O u r focus was 
on a good design and clean implementation, in order to provide a maintainable tool w i th a 
convenient interface, and we have therefore avoided premature opt imizat ion. Though the 
tool's modular i ty (e.g. using an external l ibrary) is useful for maintainabi l i ty purposes, it 
may come wi th the cost of a computat ional overhead. Moreover, the prototype may include 
optimizations that were not described i n the referenced article. 

Exper imen t Conf igura t ion P ro to type N e w T o o l 

B a k e r y F w , ¥T

n, \QBad\l2 0.02 0.08 

B a k e r y - communa l liveness F w , ¥T

n, \QBad\ 0.14 0.67 

B a k e r y - i n d i v i d u a l liveness F w , ¥T

n, 1 8.66 122.63 

A B P F w , ¥L

n, \QBad\l2 0.32 2.72 

B u r n s F w , B£, 1 0.31 0.60 

D i j k s t r a F w , ¥T

n, 1 1.75 7.19 

P D S B w , ¥L

n, \QBad\l2 0.02 0.09 

P e t r i net: readers-writers (faulty) F w , ¥L

n, \QBad\ 0.73 2.51 

L i s t reversal F w , ¥L

m \QBad\l2 0.61 1.11 

Table 6.3: Speed comparison wi th prototype using length-based abstraction. 
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Chapter 7 

Conclusion 

Abstract regular model checking is a useful technique for verifying infite-state and param
eterized systems, accelerating the computat ion of reachable states (while also significantly 
reducing the state space explosion problem) by means of abstraction. The a i m of this the
sis was to create a tool for abstract regular model checking, which had so far only been 
implemented in prototypes. 

The tool is wri t ten in C # using a Microsoft automata l ibrary as its back-end, and is suitable 
for both l ibrary and command-line use. Simple symbolic automata and transducers (whose 
definition is inspired by the F S A l ibrary [20]) are used to represent the systems being 
verified, and a number of different text formats are supported for loading and storing them 
(with the addi t ional option of image generation). A configuration file w i th an easy-to-
understand format is used for adjusting the many possible settings. The tool may also 
print out a clear description of its work (including generated automata) i f so required. In 
addi t ion to having a suitable interface, it is also wri t ten i n a maintainable way and is fully 
documented. 

The tool has been tested on a number of classic verification tasks. It has been used to 
verify the mutua l exclusion property of several process synchronization algorithms, as well 
as the correct event ordering of a push-down system and a system wi th a queue. The tool 
also found a counterexample to an incorrectly specified version of Szymahski 's a lgori thm 
published in a dissertation [19]. 

A possible future extension is to add abstract regular tree model checking (which would re
quire some automata type generalization and extending the parsing and pr int ing algorithms) 
[6]. Other future work may include speed optimizations. The source code is available under 
the M I T license at G i t H u b [7]. 
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