
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ
ÚSTAV TELEKOMUNIKACÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
DEPARTMENT OF TELECOMMUNICATIONS

HEAD POSE ESTIMATION AND TRACKING

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE Bc. ALEŠ POSPÍŠIL
AUTHOR

BRNO 2011

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH
TECHNOLOGIÍ
ÚSTAV TELEKOMUNIKACÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
DEPARTMENT OF TELECOMMUNICATIONS

HEAD POSE ESTIMATION AND TRACKING

DETEKCE A SLEDOVÁNÍ POLOHY HLAVY V OBRAZE

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE Bc. ALEŠ POSPÍŠIL
AUTHOR

VEDOUCÍ PRÁCE Ing. JIŘÍ PŘINOSIL, Ph.D.
SUPERVISOR

BRNO 2011

VYSOKÉ UČENÍ
TECHNICKÉ V BRNĚ

Fakulta elektrotechniky
a komunikačních technologií

Ústav telekomunikací

Diplomová práce
magisterský navazující studijní obor

Telekomunikační a informační technika

Student: Bc. Aleš Pospíšil ID: 72921
Ročník: 2 Akademický rok: 2010/2011

NÁZEV TÉMATU:

Detekce a sledování polohy hlavy v obraze

POKYNY PRO VYPRACOVÁNÍ:

Prostudujte moderní metody číslicového zpracování obrazových signálů orientované na detekci a
sledování pohybu lidské hlavy. Na základě získaných teoretických znalostí navrhněte metodu pro určení
aktuální pozice hlavy včetně úhlu jejího natočení vzhledem k snímacímu zařízení. Navrženou metodu
následně implementujte ve vhodném programovacím jazyku a stanovte podmínky její použitelnosti.

DOPORUČENÁ LITERATURA:

[1] Murphy-Chutorian, E.,Trivedi, M.M.: Head Pose Estimation and Augmented Reality Tracking: An
Integrated System and Evaluation for Monitoring Driver Awareness, IEEE Transactions on Intelligent
Transportation Systems, ISSN: 1524-9050, 2010.
[2] Nixon, M., Aguado, A.: Feature Extraction & Image Processing, Academic Press, ISBN:
978-0-1237-2538-7, 2008.

Termín zadání: 7.2.2011 Termín odevzdání: 26.5.2011

Vedoucí práce: Ing. Jiří Přinosil, Ph.D.

prof. Ing. Kamil Vrba, CSc.
Předseda oborové rady

UPOZORNĚNÍ:

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí
zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků
porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních
důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

Abstract

This thesis is focused on head pose estimation as a possibility to bridge a gap between human
and computers. The main contribution of the thesis is usage of a novel hardware and software
technology such as Kinect, Point Cloud Library and CImg Library. In the beginning
of the thesis overview of prior works in a field of head pose estimation is provided. Own
database was created in order to test and evaluate developed algorithm. The head pose
estimation and tracking system is based on 3D image data acquisition and Iterative Closest
Point registration algorithm. In the end of thesis performance and limitation of the system are
described and further improvement is proposed.

Keywords

Head pose estimation, head pose tracking, face detection, point cloud, Iterative Closest Point,
ICP, image registration, Kinect, Point Cloud Library, PCL, depth image, transformation
matrix, Euler angles, 3D geometry.

Anotace

Diplomová práce je zaměřena na problematiku detekce a sledování polohy hlavy v obraze
jako jednu s možností jak zlepšit možnosti interakce mezi počítačem a člověkem. Hlavním
přínosem diplomové práce je využití inovativních hardwarových a softwarových technologií
jakými jsou Microsoft Kinect, Point Cloud Library a CImg Library. Na úvod je představeno
shrnutí předchozích prací na podobné téma. Následuje charakteristika a popis databáze, která
byla vytvořena pro účely diplomové práce. Vyvinutý systém pro detekci a sledování polohy
hlavy je založený na akvizici 3D obrazových dat a registračním algoritmu Iterative Closest
Point. V závěru diplomové práce je nabídnuto hodnocení vzniklého systému a jsou navrženy
možnosti jeho budoucího zlepšení.

Klíčová slova:

Určení polohy hlavy, sledování polohy hlavy, detekce obličeje, mračno bodů, Iterative Closest
Point, PCL, registrace obrazu, Kinect, Point Cloud Library, PCL, prostorový obraz,
transformační matice, Eulerovy úhly, 3D geometrie.

POSPÍŠIL, A. Detekce a sledování polohy hlavy v obraze . Brno: Vysoké učení technické v
Brně, Fakulta elektrotechniky a komunikačních technologií, 2011. 58 s. Vedoucí diplomové
práce Ing. Jiří Přinosil, Ph.D..

Prohlášení

Prohlašuji, že jsem svoji diplomovou práci na téma Detekce a sledování polohy hlavy v
obraze vypracoval samostatně pod vedením svého školitele s použitím odborné literatury a
dalších informačních zdrojů, které jsou všechny citovány v rámci práce a uvedeny v seznamu
literatury na konci práce.

Jako autor uvedené diplomové práce dále prohlašuji, že v souvislosti s vytvořením této práce
jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nepovoleným způsobem
do cizích autorských práv osobnostních a jsem si plně vědom následků porušení ustanovení
§11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních
důsledků vyplývajících z ustanovení §152 trestního zákona č. 140/1961 Sb.

V Brně dne

 Podpis autora

Acknowledgements

I would like to express my deep and sincere gratitude to my supervisor, Professor Alberto
Albiol Ph.D., Polytechnic University of Valencia, for allowing me to work with him, his
warm welcome in Valencia and his guidance throughout my thesis-writing period.

I am deeply grateful to my supervisor, Ing. Jiří Přinosil, Ph.D., Brno University of
Technology, for his tolerant approach and wise advices I received from him.

I wish to express my warm and sincere thanks to Image Processing Lab team at Polytechnic
University of Valencia, especially Javier Oliver, Jordi Mansanet and David Monzo, for the
valuable advices, help and fun I had with them during my stay at the Lab.

I owe my loving thanks to my sister, Klára Pospíšilová, for providing a loving environment
for me.

Lastly, and most importantly, I wish to thank my parents, Marie Pospíšilová and Eduard
Pospíšil. They bore me, raised me, supported me, taught me, and loved me. To them I
dedicate this thesis.

9

Contents
Contents .. 9	

List of Figures .. 10	

List of Tables .. 11	

1	
 Introduction .. 12	

1.1	
 Goal of Thesis ... 13	

1.2	
 Organization of Thesis .. 13	

2	
 Prior Work .. 14	

2.1	
 Appearance template methods .. 15	

2.2	
 Detector array methods ... 16	

2.3	
 Nonlinear regression ... 16	

2.4	
 Manifold embedding methods ... 17	

2.5	
 Flexible models ... 18	

2.6	
 Geometric methods ... 19	

2.7	
 Tracking methods .. 20	

2.8	
 Hybrid methods ... 21	

3	
 Involved Technologies ... 22	

3.1	
 Kinect .. 22	

3.1.1	
 Depth acquisition .. 23	

3.1.2	
 Drivers .. 24	

3.2	
 Point Cloud Library (PCL) .. 25	

3.2.1	
 Architecture .. 26	

3.2.2	
 3rd Party Libraries .. 27	

3.3	
 CImg .. 27	

4	
 Database ... 28	

4.1	
 Description .. 28	

4.2	
 Dataset processing ... 30	

4.3	
 Labeling ... 32	

4.3.1	
 Transformation from correspondences ... 32	

4.3.2	
 Matching corresponding coordinates ... 34	

5	
 Developed System .. 36	

5.1	
 Face detection .. 37	

5.2	
 Conversion to Point Cloud .. 38	

5.3	
 Point Cloud processing .. 38	

5.4	
 Iterative Closest Point (ICP) ... 39	

5.5	
 Visualization .. 40	

5.6	
 System requirements and assumptions .. 42	

6	
 Measurements and Evaluation ... 44	

6.1	
 Euclidean Fitness Score .. 44	

6.2	
 Euler Angles .. 46	

6.3	
 Results and discussion ... 48	

6.4	
 Further improvement ... 49	

7	
 Conclusions .. 51	

Bibliography ... 52	

List of Abbreviations .. 56	

List of Appendix ... 57	

A	
 Content of CD .. 58	

10

List of Figures
Figure 1 The three degrees of freedom of a human head can be described by the rotation
angles pitch, roll and yaw ... 12	

Figure 4 Illustration of Nonlinear regression method .. 17	

Figure 5 Illustration of Manifold embedding method .. 18	

Figure 6 Illustration of Flexible models method .. 19	

Figure 7 Illustration of Geometric methods ... 20	

Figure 8 Illustration of Geometric methods ... 21	

Figure 9 Illustration of Hybrid methods ... 21	

Figure 10 Kinect device from Microsoft .. 22	

Figure 11 Uncovered Kinect device showing RGB and IR camera and IR projector 23	

Figure 12 Fixed pattern emited by IR projector ... 24	

Figure 13 Point Cloud Library logo ... 26	

Figure 14 Face with 9 blue markers ... 29	

Figure 15 Table with Kinect prepared for measurement .. 29	

Figure 16 Thumbnails of Sequence 1 .. 30	

Figure 17 Thumbnails of Sequence 2 .. 30	

Figure 18 Filtering process: (A) Input image (B) First step of filtering with outliers (C)
Precise filtering extract only markers areas (D) 3D coordinates extracted from markers 31	

Figure 19 State flow diagram showing all filtering criteria ... 32	

Figure 21 Matching corresponding coordinates ... 35	

Figure 22 State flow diagram of head pose estimation system .. 36	

11

List of Tables
Table 1 Parameters of built database .. 28	

Table 2 Maximal and minimal fitness score values for different voxel grid parameters 45	

12

1 Introduction

The common human ability to estimate the head pose of another person presents a unique
challenge for computer vision systems. Previous face-related vision research was mainly
focused on face detection and recognition. Therefore there are fewer head pose estimation
systems that are rigorously evaluated.

From an early age, people display the ability to quickly and effortlessly interpret the
orientation and movement of a human head, thereby allowing one to infer the intentions of
others who are nearby and to comprehend an important nonverbal form of communication.
The ease with which one accomplishes this task belies the difficulty of the problem that has
challenged computational systems for decades.

The head pose estimation problem can be understood by different ways. In the context of
computer vision, head pose estimation is most commonly interpreted as the ability to infer the
orientation of a person’s head relative to the view of a camera. More generally speaking, head
pose estimation is the ability to infer the orientation of a head relative to a global coordinate
system. The orientation of head is based on multiple degrees of freedom (DOF). A system
considering only a single DOF, usually the left to right movement is still a head pose
estimator, as is the more complex approach that estimates a full 3D orientation and position of
a head, while using additional DOF. In the complex approach human head is limited to the
three DOF in pose, which can be characterized by pitch, roll and yaw angle as shown in Fig.
1.

Figure 1 The three degrees of freedom of a human head can be described by the rotation angles pitch, roll

and yaw

What is our motivation in the field of head pose estimation? People use the orientation of their
heads to transmit rich, interpersonal information. For example, a person will point the
direction of his head to indicate who is the intended target of a conversation. Similarly, in a
dialogue, head direction is a nonverbal communication that cues a listener when to switch
roles and start speaking. There is an important meaning in the movement of the head as a
form of gesturing in a conversation. People nod to indicate that they understand what is being
said and they use additional gestures to indicate dissent, confusion, consideration, and
agreement. Exaggerated head movements are synonymous with pointing a finger, and they are
a conventional way of directing someone to observe a particular location. Like a speech
recognition, which has already became widely used in many available technologies, head pose
estimation will likely become a tool to bridge the gap between humans and computers.

13

1.1 Goal of Thesis

This thesis investigates possible implementation of a head pose estimation and tracking
system using novel hardware technologies such as Microsoft Kinect and software
technologies such as Point Cloud Library. The topic of this thesis was proposed by associate
professor Alberto Albiol, Image Processing Lab at the Polytechnic University of Valencia.
Outcomes of this thesis will serve as a building block for future applications in the field of
computer vision and image processing. The goal of the thesis is to create a general head pose
estimation block that can be further modified or implemented according to specific needs.
Good understanding of used technologies is crucial for successful work.

1.2 Organization of Thesis

In Chapter 2 the thesis begins with information about prior work in a field of head pose
estimation. Different head pose estimation approaches together with their advantages and
disadvantages are presented. Chapter 3 provides information about technologies that were
used to develop the head pose estimation system itself. Chapter 4 provides information about
database that had to be created to test and evaluate the system. Chapter 5 describes developed
head pose estimation system and provides details about all main building blocks. Chapter 6 is
focused on measurements that were done using the database and on evaluation of
measurement’s outcomes. Chapter 7 concludes the results of the thesis and summarize all the
work that was done.

14

2 Prior Work

For last 15 years many researchers have been involved in investigating suitable approach and
framework for head pose estimation. Many methods were examined and evaluated. There are
systems that require stereo depth information and also systems that require only monocular
video. Similarly, some systems require a near-field view of a person’s head while other can
adapt the low resolution of far-field view. To be able to evaluate prior work it would be
difficult to consider all mentioned system obstacles therefore this work will be based on
evolutionary taxonomy presented by Erik Murphy-Chutorian and Mohan Manubhai Triveldi
in their head pose estimation survey [1].

Systems presented in the survey are arranged by their fundamental approach that underlies its
implementation. There are eight categories that describe approaches that have been used to
estimate head pose:

1. Appearance template methods compare a new image of a head to a set of exemplars
(each labeled with a discrete pose) in order to find the most similar view.

2. Detector array methods train a series of head detectors each attuned to a specific

pose and assign a discrete pose to the detector with the greatest support.

3. Nonlinear regression methods use nonlinear regression tools to develop a functional
mapping from an image or feature data to a head pose measurement.

4. Manifold embedding methods seek low-dimensional manifolds that model the

continuous variation in head pose. New images can be embedded into these manifolds
and then used for embedded template matching or regression.

5. Flexible models fit a nonrigid model to the facial structure of each individual in the

image plane. Head pose is estimated from feature-level comparisons or from the
instantiation of the model parameters.

6. Geometric methods use the location of features such as the eyes, mouth, and nose tip

to determine pose from their relative configuration.

7. Tracking methods recover the global pose change of the head from the observed
movement between video frames.

8. Hybrid methods combine one or more of these before mentioned methods to

overcome the limitations inherent in any single approach.

15

In the following section detail information about functional requirements, advantages and
disadvantages are provided for each method.

2.1 Appearance template methods

Appearance template methods use image-based comparison metrics to be able to match an
image of person’s head to a set of exemplars with corresponding pose labels. In the simplest
implementation, the processed image is given the same pose that is assigned to the most
similar of these templates.

These methods have some advantages over more complicated methods. The templates can be
expanded to a large set at any time what allows systems to adapt changing conditions.
Appearance templates do not require negative training examples or facial feature points what
decreases the amount of requirements for data set quality.

At the same time there are many disadvantages. Without any additional technique are these
methods only capable to estimate discrete head pose locations. Methods also assume that the
head region has already been detected and localized. More computationally expensive image
comparisons make from appearance template methods less efficient choice. The most
significant problem with appearance templates is that they operate under faulty assumption
that pairwise similarity in the image space can be equated to similarity in pose. Take example
of two images of the same person in slightly different poses and two images of different
people in the same pose. In this scenario, identity aspects can cause more dissimilarity in the
image than from different people in the same pose, and template matching would make faulty
pose estimation [1][14].

Figure 2 Illustration of Appearance template method

16

2.2 Detector array methods

Detector arrays are similar to appearance templates because they operate directly on an image
patch. Instead of comparing an image to a large set of individual templates, the image is
evaluated by a detector trained on many images with supervised learning algorithm. Examples
of a successfully implemented detector array are three Support Vector Machines (SVMs) or
five FloatBoost classifiers operating in a far-field multicamera setting.

An advantage of detector array methods is that a separate head and localization steps are not
required, since each detector is also capable of making the distinction between head and
nonhead. Detector arrays also work well for both high and low-resolution images.

Disadvantage of detector array method is the difficultness of trainings many detectors for each
discrete pose. More training data is required due to the need for negative nonface images
which are necessary for proper detector training. Finally, the computational complexity
increases linearly with the number of detectors, making it difficult to implement a real-time
system with large array [1][15].

2.3 Nonlinear regression

Nonlinear regression methods estimate pose by learning a nonlinear function mapping from
the image space to one or more pose directions. The benefit of this approach is that with a set

Figure 3 Illustration of Detector array method

17

of labeled training data, a model can be built that will provide discrete or continuous pose
estimate for any new data sample. One of the requirements for this method is decrease of high
dimensionality of an image. This may be achieved using principal component analysis (PCA)
or localized gradient orientation (LGO) histogram.

These systems are very fast, only require cropped labeled faces for training, work well in
near-field and far-field imagery, and give some of the most accurate head pose estimates in
practice [1].

The main disadvantage of these methods is that they are error-prone due to poor head
localization [16].

Figure 4 Illustration of Nonlinear regression method

2.4 Manifold embedding methods

Although an image of a head is considered as data sample in high-dimensional space, there
are many fewer dimensions in which pose can vary. With a rigid model of head, this can be as
few as three dimensions for orientation and three for position. For head pose estimation, the
manifold must be modelled and the embedding technique is needed to project a new sample
into the manifold. This low-dimensional embedding can then be used for head pose estimation
with techniques such as regression in the embedded space or embedded template matching.

18

There are both linear and nonlinear approaches for manifold embedding. The linear
techniques have the advantage that embedding can be performed by matrix multiplication, but
they lack the representational ability of nonlinear techniques [1][17].

Figure 5 Illustration of Manifold embedding method

2.5 Flexible models

In contrast to previous methods that consider head pose estimation as a signal detection
problem, mapping a rectangular region of image pixels to a specific pose orientation flexible
models take a different approach. A nonrigid model is fitted the image in a way that conforms
to the facial structure of each individual. These methods require training data with annotated
facial features.

Flexible models approach offer very good invariance to head localization error, since they
adapt to the image and find the exact location of facial features. This allows for precise and
accurate head pose estimation.

The main limitation of flexible models is that all the facial features must be located in each
image frame what create obstacles during data set creating. In practice, these approaches are
limited to head pose orientation where the outer corners of both eyes are visible. There is also
not evident success for far-field head pose estimation with low-resolution facial images
[1][18].

19

Figure 6 Illustration of Flexible models method

2.6 Geometric methods

Thanks to psychological experiments we are aware how human perceive head pose. Based on
this knowledge geometric methods were developed. These methods consider the human
perception of head pose to rely on cues such as the deviation of the nose angle and the
deviation of the head from bilateral symmetry. Geometric approaches to head pose estimation
use head shape and precise configuration of local features to estimate pose. Commonly there
are five facial points used in this method (the outside corner of each eye, the outside corners
of the mouth, and the tip of the nose).
Geometric methods are fast and simple. With knowledge of only few facial features, a decent
estimate of head pose can be reached.

The obvious difficulty lies in detecting the features with high precision and accuracy. Far-
field imagery is problematic since the resolution can make it difficult or impossible to
determine the feature locations. Also situations such as when a person wears glasses can
decrease likelihood of proper facial features detection [1][19].

20

Figure 7 Illustration of Geometric methods

2.7 Tracking methods

Tracking methods are designed to follow the relative movement of the head between
consecutive frames of a video sequence. Temporal continuity and smooth motion constraints
are utilized to provide visual estimate of head pose over time. The systems usually offer a
high level of accuracy, but initialization from a known head position is requisite. Therefore
these approaches often rely on manual initialization or camera view such that the subject’s
neutral head pose is forward-looking and easily reinitialized with a frontal face detector.

The main advantage of tracking approaches is their ability to track the head with high
accuracy by discovering the small pose changes between video frames. These methods
consistently outperform other head pose estimation approaches [1].

The disadvantage of tracking methods is connected to the requisite of accurate initialization of
position and poses to generate new model or adapt an existing model. Without a separate
localization step, these approaches can only be used to discover the relative transformation
between frames [20].

21

Figure 8 Illustration of Geometric methods

2.8 Hybrid methods

Hybrid approaches combine one or more of the above mentioned methods to estimate pose.
These systems can be designed to overcome the limitations of any one specific head pose
estimation category. Common example is to extend a static head pose estimation approach by
a tracking system. The static system is in this case responsible for initialization and the
tracking system is responsible for maintaining pose estimates over time [1][21][2].

There are many possible combinations and implementations and both advantages and
disadvantages depend on specific approach that is used for hybrid method.

Figure 9 Illustration of Hybrid methods

22

 3 Involved Technologies

This chapter describes the core technologies involved in solving head pose estimation
problem within this work. One of possible ways how to deal with head pose estimation is
usage of stereo camera to acquire 3D information from observed scene. Recently, November
2010 [22], new motion sensing input device by Microsoft for the Xbox 360 video game
console called Kinect was released. Kinect in its core represents low-cost and affortable piece
of hardware that is used in this work. Software support for this work represent primarily
following libraries: Point Cloud Library, a large scale, open project for point cloud
processing, and CImg, an open source, C++ toolkit for image processing. Brief description
of mentioned technologies follows.

3.1 Kinect

Kinect is final product of Project Natal lead by Microsoft based on range camera technology
developed by PrimeSense. Kinect as an extension for Xbox 360 opens new level of human
computer interaction in this case with focus on game experience. Users are allowed to control
running game/application just by hand or body gestures. This functionality is powered by two
innovative features: depth information acquisition and body skeleton tracking. For this work
first mentioned depth information acquisition is important therefore no description of body
skeleton tracking will follow.

Figure 10 Kinect device from Microsoft

Kinect holds Guiness World Record of being the "fastest selling consumer electronics
device" with 8 millions units sold in its first 60 days [23]. 10 million units of the Kinect
sensor have been shipped as of March 9, 2011 [24]. Many units weren't bought with intention
to play games but to explore possibility of 3D image processing, gesture recognition, body

23

tracking and other specific tasks. There are many interesting examples of "Kinect hacks" from
around world available on the internet [26][27]. The main reason for such commercial success
was low price (currently about 140$ per unit [25]) for a device that provides 3D information
of scene in sufficient quality for research and development.

3.1.1 Depth acquisition

To understand how depth information acquisition works the hardware structure of Kinect has
to be described. As can be seen in Figure 11 Kinect consists of two cameras (one RGB,
second IR) and one laser-based IR projector [28]. The IR camera and the IR projector form a
stereo pair with baseline of approximate 7.5 cm. The IR projector sends out a fixed pattern of
light and dark areas shown in Figure 12. The pattern is generated from a set of diffraction
gratings, with special care to eliminate the effect of zero-order propagation of centre bright
dot. Depth is then calculated by triangulation of pattern received through IR camera against
known pattern emitted by IR projector. This technology called Light Coding was developed
by PrimeSense and is suitable for any indoor environment [29].

Figure 11 Uncovered Kinect device showing RGB and IR camera and IR projector

24

Figure 12 Fixed pattern emited by IR projector

3.1.2 Drivers

Recently (June 16, 2011) official non-commercial Kinect for Windows SDK beta was
released but people were eager to explore possibilities that Kinect offers since its first release
therefore many unofficial drivers were developed and Kinect was "hacked" many times. Short
overview of available Kinect drivers follows.

Libfreenect

Libfreenect is software developed by OpenKinect [30], "an open community of people
interested in making use of the amazing Xbox Kinect hardware wit our PCs and other
devices". OpenKinect community works for free and develop open source libraries for
Windows, Linux and OS X. Code contributed to OpenKinect is available under an Apache20
or GPL2 license. At the moment there are wrappers in Python, C Synchronous, Actionscript,
C++, C#, Java JNI, Java JNA, Javascript. Source code of Libfreenect is publicly
downloadable through repository [31].

OpenNI

OpenNI (Open Natural Interaction) [32] is a multi-language, cross-platform project that
defines APIs for writing applications utilizing Natural Interaction. The main purpose of
OpenNI is to form a standard API that allows communication with both vision and audio
sensors and vision and audio perception middleware. OpenNI's API also enables middleware
developers to write algorithm on top of raw data formats, regardless of which sensor (e.g.

25

Kinect) has produce them. OpenNI is an open source API that is publicly available [33].

Kinect for Windows SDK beta

The Kinect for Windows SDK beta [34] is programming toolkit for application developers. It
enables easy access to the capabilities offered by the Microsoft Kinect device. The only
supported operating system is Windows 7 and supported programming languages are C++, C#
and Visual Basic by using Microsoft Visual Studio 2010. Implemented features are raw
sensor streams, skeletal tracking and advanced audio capabilities with Windows speech
recognition API. The current SDK is designed for non-commercial purposes only and
commercial version is expected to be available at later date. Kinect for Windows SDK beta is
available to free download through its website [34].

There are several libraries built on top of the mentioned software. Nestk [35] is library
developed by Nicolas Burrus [36] to be easily integrated into existing cmake-based software
and provide quick access to the Kinect features. The library is build on top of OpenCV and
QT and partly depends on PCL. Both Libfreenect and OpenNI drivers are involved.
ofxKinect [37] is an OpenFrameworks add-on for the Xbox Kinect that supports Linux and
OS X. OpenFrameworks is a cross-platform open source toolkit for creative coding in C++
[38]. depthJS allows any web page to interact with the Microsoft Kinect using Javascript
[39]. depthJS is developed by a team from the MIT Media Lab and is distributed as open
source under the AGPL license [40]. Currently supported web browsers are Safari and
Chrome.

3.2 Point Cloud Library (PCL)

PCL is a comprehensive free, BSD licensed, library for n-D Point Clouds and 3D geometry
processing [41]. The PCL framework contains numerous state-of-art algorithms including
filtering, feature estimation, surface reconstruction, registration, model fitting and
segmentation. PCL is cross-platform, and has been successfully compiled and deployed on
Linux, MacOS, Windows, and Android. To simplify development, PCL is split into a series of
smaller code libraries that can be compiled separately. PCL website contains detailed
documentation and tutorials demonstrating key features of library [42]. PCL is under ongoing
development and currently PCL version 1.1 has been released (18 July, 2011). It is free for
commercial and research use.

26

Figure 13 Point Cloud Library logo

A point cloud is a data structure used to represent a group of multi-dimensional points and
is used to represent three-dimensional data. In a 3D point cloud, the points usually represent
the X, Y, and Z geometric coordinates of an underlying sampled surface. By adding color
information to each point we get 4D point cloud.

Point clouds can be acquired from various hardware sensors such as stereo cameras, 3D
scanners, or time-of-flight cameras, or generated from a computer program synthetically.
Common characteristic of mentioned hardware is high price that limited its massive spread
before Kinect like devices were released. PCL supports natively the OpenNI 3D interfaces
therefore can acquire and process data from devices such as the Microsoft Kinect or Asus
XTionPRO.

3.2.1 Architecture

To simplify development the library consists of series of smaller code libraries, that can be
compiled separately.

• libpcl_filters - implements data filters such as downsampling, outlier removal, indices
extraction, projections, etc.

• libpcl_features - implements many 3D features such as surface normals and curvatures,
boundary point estimation, PFH and FPFH descriptors, spin images, integral images,
NARF descriptors, etc.

• libpcl_io - implements I/O operations such as writing to/reading rom PCD (Point Cloud
Data) files.

• libpcl_segmentation - implements cluster extraction, model fitting via sample
consensus methods for variety of parametric models (planes, cylinders, spheres, lines,
etc.)

• libpcl_surface - implements surface reconstruction techniques, meshing, convex hlls,
Moving Least Squares, etc.

• libpcl_registration - implements point cloud registration methods such as ICP.
• libpcl_keypoints - implements different keypoint extraction methods, that can be used

as a preprocessing step to decide where to extract features descriptors
• libpcl_range_image - implements support for range images created from point cloud

27

dataset
• libpcl_visualization - implements visualization function for point clouds based on VTK

library

3.2.2 3rd Party Libraries

• Eigen 3 [43], an open-source template library for linear algebra, is used for most
mathematical operations in PCL

• FLANN (Fast Library for Approximate Nearest Neighbors) [44] is backbone for fast k-
nearest neighbor search operations.

• Boost [45] shared pointers are used in all the modules and algorithms in PCL to avoid
the need to re-copy data that is already present in the system

• VTK (Visualization Toolkit) [46] offers great multi-platform support for rendering 3D
point clouds and surface data, including visualization support for tensors, texturing
and volumetric methods.

• CMinPack [47] is open source library for solving nonlinear equations and nonlinear
least squares problems.

3.3 CImg

CImg [48] stands for Cool Image and it is easy to use, efficient library that intends to be very
pleasant toolbox to design image processing algorithms in C++. It was originally developed
by David Tschumperlé during his PhD and later was extended by many contributors. CImg is
open source product distributed under two distinct licenses (CeCILL-C and CeCILL).

The CImg library was design with several properties in mind:

• Usefulness - CImg defines classes and methods to manage images in your own C++
code. There are methods for loading/saving various file formats, accessing pixel
values, displaying/transforming/filtering images, drawing primitives, computing
statistics, etc.

• Genericity - CImg defines a single image class which can represent datasets having up
to 4-dimensions with template pixel types. It also handles image collections and
sequences.

• Portability - CImg is self-contained and this highly portable. It fully works on different
operating systems and is compatible with various C++ compilers.

• Simplicity - CImg is lightweight. It is made of a single header file "CImg.h" that must
be included in C++ source.

• Extensibility - CImg can use functionalities of external tools/libraries such as OpenCV,
liftoff, libjpeg, etc. Moreover, a simple plug-in mechanism allows any user to directly
enhance the library according to his needs.

• Freedom - CImg is free and open-source library

28

4 Database

This chapter describes database that had been created for purpose of this work. The developed
head pose estimation system works with input from the Kinect device that is relatively new
equipment. It brings big improvement in possible 3D geometry research but there is still lack
of suitable databases for various computer vision fields. This work require database that
provides 3D information of observed scene that can be transferred to PCD (Point Cloud Data)
format used in PCL. Such database was not available therefore creating one was a key task for
the thesis.

Following paragraphs describe the process of recording database, post-processing of images,
labelling and all other aspects of database building.

4.1 Description

The database consists of two sequences of images that were taken in standard lightning
condition in a room of Image Processing Lab at UPV, Valencia, Spain. Sequences records two
different people in the same conditions. Details about parameters of database are mentioned in
Table 1. The sequence scenario starts when person is directly facing camera and continues
twice turning right, left, up and down. After reaching the limit position the head is returned to
starting position.

Table 1 Parameters of built database

 Sequence 1 Sequence 2

Name of person Goons Mowde Aleš Pospíšil
Number of frame 485 462
Time of sequence (s) 26 24
Rotations pitch yaw pitch yaw
Angle range
(deg)

-30<x<40 -60<x<60 -30<x<40 -60<x<60

During post-processing and labelling the intention is to automatically receive transformation
angles of each individual frame compared to template frame. Therefore face markers are used
to make the recognition of a point in the face easier. In total otal 9 markers are place in the
face to guarantee enough visible markers in each proposed face rotation. Location of markers
is visible on Figure 14. As the markers regular blue post-it tape with a size 2.5 x 1.5 cm was
used.

29

Figure 14 Face with 9 blue markers

Measurement setting is shown in Figure 15 and exact parameters of the settings are following:

• Number of markers on the face: 9
• Distance between the Kinect device and the ground: 101 cm
• Distance between the Kinect device and observed person: 77 cm

Figure 15 Table with Kinect prepared for measurement

Final dataset was used for testing and evaluation of the developed head pose estimation
system. Thumbnails of image sequence are placed in Figure 16 and Figure 17.

30

Figure 16 Thumbnails of Sequence 1

Figure 17 Thumbnails of Sequence 2

4.2 Dataset processing

The purpose of images processing is to extract useful information that is related to marker
location and in the final step receive three-dimensional coordinates of each single visible
marker in each frame. Image processing was implemented in C++ through the CImg library
and its Segmentation Utility extension developed at UPV.

The first step was extraction of markers’ (blue) areas from images. Each RGB channel was
loaded separately and following equation was applied to emphasize markers areas.

image = -0.3*R - 0.6*G + 0.9*B;

Fine markers separation was achieved by filtering image by threshold equal to 35 (value of 35
was reached empirically).

Additional information about all segments were acquired via three methods implemented in
Segmentation Utility CImg library:

31

Segmentbin8_cimg(filtered, seg, numobj);
- is a method to segment input image CImg<unsigned char> filtered and as an

output there is CImg<int> seg that provide pixel by pixel information about assigned
segment of each specific pixel and second output int numobj that represents number
of recognized segments in the input image

Momentos_Areas_cimg(seg, centros, covarianzas, n_points, numobj);
- is a method that calculates from given image segments geometrical center of each

segment (CImg<float> centros), covariance of each segment (CImg<float>
covarianzas) and number of pixels in each segment (CImg<int> n_points)

BoundingBox2_cimg(seg, numobj, bbox);
- is a method that calculates from given image segments bounding box for each single

segment (CImg<int> bbox)

Figure 18 Filtering process: (A) Input image (B) First step of filtering with outliers (C) Precise filtering

extract only markers areas (D) 3D coordinates extracted from markers

Filtering process is illustrated in Figure 18 and Figure 19 and is run over each found segment
to decide if segment represents marker or doesn’t. In the first step segments with number of
pixels lower than threshold (used threshold equals 40) are filtered. In the second step
segments whose height extracted from bounding box parameters is lower than threshold
(used threshold equals 20) are filtered. In the third step segments whose ratio between Eigen
values extracted from covariance is lower than threshold (used threshold equals 15) are

32

filtered. All these filtering steps are required because of imperfect segmentation in original
step (from various reasons) and filters are designed to filter segments that do not fit markers’
size or space orientation. As a result the centre of segments is drawn into image and 3D
coordinates are saved for further operations.

Figure 19 State flow diagram showing all filtering criteria

4.3 Labeling

The purpose of labeling is to extract transformation matrix and Euler angles between specific
frame (image) and keyframe. Space coordinates are used to calculate all mentioned
parameters and following algorithm is used to fulfil the task. Algorithms were implemented in
MATLAB environment. Matching corresponding coordinates and calculating transformation
from correspondence of set of points are two challenges that have to be solved in this part of
work.

4.3.1 Transformation from correspondences

In previous steps coordinates of markers in each frame of dataset were obtained. The obvious
intention is to use these coordinates to calculate transformation between frames.
TransformationFromCorrespondance method from PCL library was implemented
in MATLAB to fulfil this task [41]. Output of this function is 4x4 transformation matrix that
represents both rotation and translation between considered frames.

Transformation from correspondence function is based on Singular Value Decomposition
(SVD) [49] and its code is presented in get_transformation.m. Following code snippet
represents how is the transformation calculated.

 [u, s, v] = svd(covariance);

 rotation = u*v.';
 translation = mean_out - rotation*mean_in;

33

Rotation matrix (3x3) is calculated by multiplication of unitary matrixes u and v got in from
SVD. Translation vector is calculated from mean values of all correspondence points
involved in a step. Covariance matrix (3x3) is calculated from alpha what is ratio between
weight and accumulated weight and diff_in / diff_out what represent difference
between current point value on input and output and mean values.

Term transformation matrix was used in the previous paragraphs therefore deserves more
detailed explanation. The transformation matrix consists of rotation matrix and translation
vector.

The rotation matrix is 3 by 3 matrix that represents vector rotation about x, y or z axis in three
dimensions. Basic rotation matrices are shown in Equations 1, 2 and 3.

!!(!) =
1 0 0
0 !"#$ −!"#$
0 !"#$!"#$

	
 (1)

!!(!) =
!"#$ 0 !"#$
0 1 0

−!"#$ 0 !"#$
	
 (2)

!!(!) =
!"#$ −!"#$ 0
!"#$!"#$ 0
0 0 1

	
 (3)

The global rotation matrix is given by matrix multiplication as described below.

! = !! ! !!(!)!!(!)	
 (4)

Figure 20 Transformation matrix

34

! =
!"#$!"#% −!"#$#%&' + !"#!!"#$%&!' !"#$!"#% + !"#!!"#$%&!'
!"#$#%&' !"#$!"#% + !"#!!"#$!"#% −!"#$%&!' + !"#!!"#$!"#%
−!"#$!"#$%&!' !"#$!"#%

	
 (5)

Euler angles represent other way how interpret space rotation. Euler angles can be calculated
from rotation matrix using following MATLAB code snippet where transformation
represent rotation matrix.

roll = atan2(transformation(3,2), transformation(3,3));
pitch = asin(-transformation(3,1));
yaw = atan2(transformation(2,1), transformation(1,1));

Translation vector is given by vector of three members that represents translation in three
dimensions as described bellow.

w = (wx, wy, wz);

4.3.2 Matching corresponding coordinates

There are two obstacles in applying transformation from correspondence algorithms for
retrieve coordinates:

1. Different number of markers is visible/recognized in each individual frame
2. Marker containing segments are recognized in different order in each individual

frame.

Optimization algorithms had to be developed to synchronize matrices with coordinates
between consecutive frames. First calculations were done to decide which marker in input
frame corresponds to which marker in output frame. Basic geometric distance between two
tested points together with threshold application solved first issue. If markers were only
disappearing in following frames there would be no other issue. However there are cases
when markers are appearing after sequence of frames and it is difficult to match them with
previous recognized marker. Our intention is to have coordinates of all nine markers in all
frames of sequence another method has to be developed.

Knowledge of total number of markers gives advantage that is used in following steps. Figure
21 represent possible scenario of recognized markers (green color). There are two cases in this
example, either new marker is appearing or old marker is disappearing. In the first case, if
new marker appears, coordinates are saved in new position and using inverse transformation
matrix is used to calculate coordinates of this marker in previous frame. Once all nine slots
are takes algorithm keeps coordinates updated through the whole calculation process. In the
second case, when old marker disappears, transformation matrix is applied in order to retrieve
coordinates of the lost marker in the frame.

35

Figure 21 Matching corresponding coordinates

Described operations give opportunity to calculate final transformation matrix and Euler
angles between chosen frames without any restrictions. This final step allows us to create
database with ground truth to properly evaluate developed head pose estimation system.

36

5 Developed System

The goal of this work was to develop a system that would be able to estimate head pose and
track its position in time. This problem may be approached by various ways as described in
Chapter 2. As a problem solution is in this work proposed hybrid method where depth
information from the Kinect device and tracking process is involved. The Kinect is low-cost
equipment that makes 3D information acquisition achievable without big investment therefore
is worth to investigate its possible use in this field. System was developed using C++
language under Eclipse environment. In the most cases Point Cloud Library (PCL) and CImg
library is used to implement required algorithms. One of the biggest obstacles that had to be
overcome was progress in work on PCL. In fact, the official release of 1.0 version of the
library was announced on the 12th of May 2011. Therefore the main goal of chosen approach
was not to do develop high performance system but rather explore possible way how combine
these technologies to achieve competitive results.

Figure 22 State flow diagram of head pose estimation system

37

Figure 22 represents the developed system in its high level representation. On the input there
is a Kinect device that provides system with both RGB and depth image received in frame-by-
frame order. System itself consists of several blocks that are described in detail later in this
chapter. Only brief description of each block function follows now.

Face detection is applied on RGB image in order to extract face area from image. Convert to
Point Cloud block is used to transfer face area from CImg format images to PCD, Point Cloud
format used in PCL. Point Cloud processing block include primarily functions to filter
uninteresting parts of Point Cloud or functions to reduce size of Point Cloud. Input is
processed frame-by-frame so loop over all frames is implemented and few conditions are
used. Point Cloud of face in first frame is saved as a template and is used for further
calculations. Iterative Closest Point (ICP) is registration method implemented in PCL that was
used to register chosen Point Clouds in order to get transformation matrix out of it. Point
cloud in current frame is registered against template point cloud. In the final step visualization
block and Euler angles calculation block are implemented.

5.1 Face detection

Face detection algorithm was not developed from scratch for the purpose of this work but
algorithm developed by Alberto Albiol [54] based on Viola-Jones object detection framework
[55] was used. This algorithm implements additional face features detection such as eyes,
mouth and nose but these were not used in the work.

Face detection is implemented in this work by including FaceObjectDetection class
and following code snippet represents the main operation related to face detection.

//Create object faceObjectDetector
FaceObjectDetector faceObjectDetector;
//Apply faceObjectDetector on image
faceObjectDetector.process(image);
//Save detected object into the object list - faceObjects
faceObjects=faceObjectDetector.getObjects();
//Draw detected objects into the image
faceObjects.draw(image_orig);

Each detected face is described by its bounding box. Bounding box is represented by X and Y
coordinates of top left corner and its width and height. This information is used to crop the
face area and convert to PCD later on.

Face detection block however brought into this work some obstacles and limitations. Face
detection was optimized primarily for frontal view what complicated the detection in extreme
limits. Detection of roll rotation of the head was under performance of pitch and yaw
rotations. Even though these aspects limit the current performance of developed system, Face

38

detection block can be upgraded, modified or exchanged, if needed. Most importantly the
performance of current system is still sufficient.

5.2 Conversion to Point Cloud

RGB and depth images are recorded using CImg library and later converted from CImg
format to PCD format. PCL includes handler for communication with Kinect but there are no
properties for recording and repeated loading of recorded sequences. It is most probable that
in next version of PCL there will be easy solution for this problem but there wasn’t in a time
when this work was in progress. Class CImg2PointCloud was developed to provide easy
transition between these two formats. The code snippet illustrates implemented conversion.

 for(unsigned int x= 0; x< camDepth.width(); x += _step)
 {
 float xcam = x - centerx;
 for(unsigned int y= 0; y< camDepth.height(); y += _step, ++depth_idx)
 {
 float ycam = alt_1_centery - y;
 float Zcam = camDepth(x,y)/1000.0;

 pcl::PointXYZ& pt = cloud->points[depth_idx];

 if(Zcam == 0)
 {
 pt.x = pt.y = pt.z = bad_point;
 }

 pt.x = xcam * iFD * Zcam; // from PCL
 pt.y = ycam * iFD * Zcam;
 pt.z = Zcam;

 }
 }

Zcam, xcam and ycam represent coordinates points in space. iFD represent inverse focal
distance that is for Kinect 525 mm. Centerx and Centery represent center of image in
both x and y axis. Alt-1-centery represents correction in y axis given by different
horizontal orientation in formats.

5.3 Point Cloud processing

Point Cloud processing block provides two main functions. Firstly it decreases size of
processed point cloud by downsampling and secondly it filters points that do not fulfill set
criteria (primarily distance from camera). PCL provides filters module from which classes
pcl::VoxelGrid and pcl::PassThrough are used. VoxelGrid class assembles a

39

local 3D grid over a given Point Cloud, downsamples and filters the data. The code snippet
from VoxelGrid implementation in this work is shown below.

 const float voxel_grid = 0.005;
 pcl::VoxelGrid<pcl::PointXYZ> vox_grid;
 vox_grid.setInputCloud (cloud_filtered);
 vox_grid.setLeafSize (voxel_grid, voxel_grid, voxel_grid);
 vox_grid.filter (*cloud_down);

As an input to setLeafSize() the size of filtering leaf is given. In this work regular leaf of
common size 0.005 is chosen.

PassThrough class passes through all data that satisfies the user given constraints. Intention
of this work was to get rid of points that are in background and by that extract only head
points. This task is achieved by filtering point cloud according to their Z coordinate and the
code snippet of PassThrough implementation for this work is shown below.

 pcl::PassThrough<pcl::PointXYZ> pass;
 pass.setInputCloud (cloud);
 pass.setFilterFieldName ("z");
 pass.setFilterLimits (0.0, (Z + 0.10));
 pass.filter (*cloud_filtered);

By setting setFilterFieldName() we choose according to which parameter of PCD
structure filtering is done. Min and max limits are chosen by setting setFilterLimits()
where Z represents the distance between the camera and the closest point of current Point
Cloud that is got by getClosestPoint() function.

5.4 Iterative Closest Point (ICP)

Registration is fundamental task in image processing used to match two or more pictures
taken in different time, taken from different sensors, taken from different viewpoints or under
other circumstances. PCL implements three main registration algorithms in its registration
module: Iterative Closest Point [49], PPF Registration and Sample Consensus Initial
Alignment. Various papers propose ICP as a suitable registration algorithm for head pose
estimation therefore ICP is implemented in this work [50][51][52].

Iterative Closest Point is widely used for registering the outputs of 3D scanners, which
typically only scan an object from one direction at a time. ICP starts with two meshes (point
clouds) and an initial guess for their relative rigid-body transform, and iteratively refines the
transform by repeatedly generating pairs of corresponding points on the meshes and
minimizing an error metric [49]. ICP implemented in PCL use Singular Value
Decomposition (SVD) to estimate rigid transformation [53]. The algorithm has several
termination criteria:

40

1. Number of iterations has reached the maximum imposed by user using

(setMaximumIterations)
2. The epsilon (difference) between the previous transformation and the current

estimated transformation is smaller than an user imposed value
(setTransformationEpsilon)

3. The sum of Euclidean squared errors is smaller than a user defined threshold
(setEuclideanFitnessEpsilon).

The code snippet of ICP implementation in this work is shown below.

pcl::IterativeClosestPoint<PointXYZ, PointXYZ> reg;
 int maxIter = 5;
 float epsilonTransformation = 0.001;

 // Set the maximum number of iterations
 reg.setMaximumIterations (maxIter);
 // Set the transformation epsilon
 reg.setTransformationEpsilon(epsilonTransformation);

 // Set the input source and target
 reg.setInputCloud(cloud_prev);
 reg.setInputTarget(cloud);

 // Perform the alignment
 reg.align(*output);

 // Obtain the transformation that aligned source to target
 Eigen::Matrix4f transform = reg.getFinalTransformation();

Values for max iteration parameter and epsilon transformation parameter were chosen to
balance both speed and precision of computation. Five iterations were sufficient due to
limited number of points in source and target Point Cloud. Transformation matrix that is
obtained in the final step represents transformation that aligned input Point Cloud to target
Point Cloud.

Important information that is calculated from transformation matrix is Euler angles. For
purpose of this calculation PCL function pcl::getEulerAngles was modified to
correspond input matrices. In the measurement stage Euler Angles for each frame were
recorded.

5.5 Visualization

Visualization part is important for immediate observation and evaluation of implemented
algorithms. There are two different visualization techniques used in this work. First is based

41

on visualization module of PCL where pcl::visualization::PCLVisualizer class
is implemented. Second technique projects each point of Point Cloud to CImg coordinates and
draws points into RGB image using developed method drawCloud().

PCLVisualizer class provides many functions to manipulate Point Cloud and modify the
way how is visualize. The following code snippet represents PCLVisualizer
implementation in this work.

// New PCLVisualizer object viewer is called
 pcl::visualization::PCLVisualizer viewer("Head Pose");

//Color handler which set color of point cloud to RED
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ>
color(cloud, 255, 0, 0);

 // it's safe to remove a non-existent cloud
 viewer.removePointCloud("face");

 // adding point cloud to scene using color handler
 viewer.addPointCloud(cloud_out, color, "face");
 viewer.spinOnce();

drawCloud(cloud, image, offset_x, offset_y) requires on the input 4
parameters, where cloud represents Point Cloud that is visualized, image represents RGB
image into which cloud is drawn, offset_x and offset_y represent offset between
image centre and centre of the face area obtained in the face detection block. Inverse process
to Conversion to Point Cloud block was applied to reach points in CImg format and
coordinates. CImg function draw_point(x_cam,y_cam,color) was used to draw
points into the image. X_cam and y_cam stand for X and Y coordinates of specific point and
color defines color of a drawn point.

PCLVisualizer visualization is shown in Figure 23 and drawCloud visualization is shown in
Figure 24.

42

5.6 System requirements and assumptions

There are several requirements and assumptions that have to be considered while performing
or testing the system. Some requirements are derived from hardware specifications and some
assumption has to be respected because of software implementation.

Chapter 3 describes technical aspects of Kinect device but performance limitation was not
described in detail. Kinect device is design to work properly only in indoor environment what

Figure 23 Visualization by PCLVisualizer class

Figure 24 Visualization by drawCloud function

43

is given by the usage of IR projector. When Kinect would be used on a daylight IR beam
would not reach its source and then IR camera couldn’t recognize required pattern.

Software implementation assumes several conditions that have to be fulfilled. Firstly the head
has to be the first object in the image. Function for recognition of the closest pixel from the
camera is used for filtering therefore no objects in front of head is allowed to keep
performance of the system. System depends on its face detection block that brings additional
limitations. Face detector is trained to recognize frontal face therefore system itself can
recognize rotations in limited angle range.

44

6 Measurements and Evaluation
This chapter describes measurements of head pose estimation system done using created
databases. Results of measurements are presented in graphical way and discussion over these
results is provided as well. Performance analysis together with possible further improvements
concludes this chapter.

6.1 Euclidean Fitness Score

Parameter that represents quick information about quality of matching during registration
process is Fitness Score function. PCL implements in its pcl::Registration class
getFitnessScore function that obtain the Euclidean Fitness Score. Generally speaking
Fitness Score function describes how close a given design solution is to achieving the set
aims. In our case the aim is perfect match between source and target Point Cloud so the
Fitness Score function represents sum of squared distances from the source to the target [41].

Fitness function was recorded for both databases and for two different values of voxel grid
leaf (described in Chapter 5, Point Cloud processing). Used voxel grid leaf values are 0.01
and 0.005. Results of Fitness score measurement are shown in Figure 25 and Figure 26.

0 50 100 150 200
0

1

2

3

4

5

6

7

8
x 10 4

frames
[]

fit
ne

ss
 s

co
re

[
]

Fitness score results for sequence 1

voxel grid = 0.005
voxel grid = 0.01

Figure 25 Fitness score results for sequence 1

45

Fitness score function gives following limit values that are recorded in Table 2.

Table 2 Maximal and minimal fitness score values for different voxel grid parameters

	
 voxel grid = 0.005 voxel grid = 0.01
	
 min max min max

Sequence 1 3.4114e-­‐06	
 4.2504e-­‐04	
 5.7726e-­‐06	
 6.3197e-­‐04	

Sequence 2 	
 	
 	
 6.5892e-­‐06	
 3.1030e-­‐04	
 	
 	
 	
 1.0342e-­‐05	
 	
 	
 	
 4.0650e-­‐04	

Both graphs and tables indicate that size of voxel grid leaf influence the process of Point
Cloud alignment and that higher voxel grid leaf (higher down sampling) implicate lower
quality of registration alignment and vice versa. Speed and quality of algorithm are crucial
aspects for algorithm design and development therefore proper voxel grid filter setting is
important task.

Knowledge of sequence’s scenarios gives opportunity to make additional conclusions. Peaks
in both graphs correspond to limit head rotations and troughs represent return back to frontal
position. First two peaks show fitness score for yaw rotation and second two show fitness
score for pitch rotation. When comparing results for different rotation graph analysis reveals
that Point Cloud matching during pitch rotation achieves better results. On other hand it is
clearly visible that records in database offer higher range of rotation angles for yaw than for
pitch.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10 4

frames
[]

fit
ne

ss
 s

co
re

[
]

Fitness score results for sequence 2

voxel grid = 0.005
voxel grid = 0.01

Figure 26 Fitness score results for sequence 2

46

6.2 Euler Angles

Euler angles acquisition is discussed in the Chapter 4 where database building is explained.
Important outcome of the Head Pose Estimation system is rotation represented by Euler
angles. There are 3 rotations in total, however the database is build to evaluate only yaw and
pitch rotation so roll rotation is omitted. Euler angles in radians are shown in Figure 27 and
Figure 28. Euler angles converted to degrees and displayed separately for each sequence and
each rotation are shown in Figure 29. Deviation between system output and database ground
truth is shown in Figure 30.

Euler angles converted to degrees can be observed in Figure 29. Comparison between
sequences shows nearly the same result for yaw rotation but pitch rotation shows considerable
differences. Sequence 1 results range from – 30° to 50 and Sequence 2 range from -100° to
40°. One possible reason for such diverse result is inaccurate database record in which
required angle range was not fulfilled. Second issue can be found in Figure 30 (b) where
deviation for pitch rotation of Sequence 1 shows highest values what is further described in
next paragraph.

As Figure 30 shows deviation between system output and database ground truth some
additional information may be extracted from the data. Interesting information is the
percentage of cases when deviation is higher than 5 degrees or 10 degrees.

0 50 100 150 200
0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

0.5

frames []

Eu
le

r a
ng

le
s

[ra
d]

Euler angles measurement for sequence 1

pitch rotation
yaw rotation

Figure 27 Euler angles measurement for sequence 1

47

Cases with deviation higher than 5 degrees:

• Sequence 2 – pitch: 13,4 %
• Sequence 2 – yaw: 3,6%
• Sequence 1 – pitch: 9,1%
• Sequence 1 – yaw: 11,2%

Cases with deviation higher than 10 degrees:

• Sequence 2 – pitch: 3,2 %
• Sequence 2 – yaw: 0,45%
• Sequence 1 – pitch: 0,4%
• Sequence 1 – yaw: 0 %

Pitch rotation of Sequence 2 clearly underperform the rest of cases what is obviously one of
the reason for problems described above.

0 50 100 150 200
0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

frames []

Eu
le

r a
ng

le
s

[ra
d]

Euler angles measurement for sequence 2

pitch rotation
yaw rotation

Figure 28 Euler angles measurement for sequences 2

48

6.3 Results and discussion

Two main parameters were measured by system to describe its performance. Euclidean
Fitness Score shows how well registration matching was done and Euler angles comparison
shows how well rotation angles were calculated. There were no speed characteristics
measured in testing process however subjective evaluation will be provided to describe this
issue.

Euclidean Fitness Score was measured for two values of Voxel Grid Leaf and results are
shown in Figure 25, Figure 26 and Table 2. Maximal measured value reached 6,3197e-04
and minimal measured value reached 3,4114e-06. System using Voxel Grid Leaf equals
0,005 over perform system using the second value. Average difference between these two
cases is 51%.

Euler angles were measured for both sequences and different measurement results are shown
in Figure 27, Figure 28 and Figure 29. Deviation between angles captured by developed
system and grand truth angles from database is shown in Figure 30. In average only 9,3%
frames varies from truth data more than 5 degrees and only 1,1% frames varies from truth
data by more than 10 degrees. The worst results were achieved for pitch rotation of Sequence
2.

0 50 100 150 200
100

50

0

50

100

150

frames []

eu
le

r
an

gl
es

 [d
eg

]

a

0 50 100 150 200
150

100

50

0

50

frames []

eu
le

r
an

gl
es

 [d
eg

]

b

0 50 100 150 200
100

50

0

50

frames []

eu
le

r
an

gl
es

 [d
eg

]

c

0 50 100 150 200
40

20

0

20

40

60

80

frames []

eu
le

r
an

gl
es

 [d
eg

]

d

Euler angles in degrees

Figure 29 Euler angles in degrees

49

System performance is important parameter for all systems that aspirating to be applied on
real time data. System developed in this work didn’t reached real time performance however
there are parameters that influence speed of algorithm. The value of Voxel Grid Leaf was
already discussed but it is crucial parameter that influences performance since it increases or
decreases number of processed points. Another parameter is number of iteration in ICP
algorithm. This value needs to be rather low in real time applications, for developed system
values around 5 were used. Additional improvements that can positively affect the speed
performance will be explained in next paragraphs.

6.4 Further improvement

There are several further improvements that are worth describing. System improvements are
related to speed or accuracy of algorithm and are based on current block modification or
combination with additional techniques.

Convert to Point Cloud block in the system is expensive in the matter of time and
computational power because it requires loading, recalculating and saving of every single
point. Possible improvement may be optimisation of currently used algorithm by using
parallel programming or the data from Kinect may be stored directly in Point Cloud Data
format what requires some development on the side of Point Cloud Library.

Face detection block limits the performance and accuracy of the system because its focus on
frontal face detection. Face detection algorithm may be improved by adding trained face data
with left and right face profile orientation. Other option may be including of other important
face marks detection (nose, mouth, eyes). Next improvement option may be use of face
detection block just for key frames and for the rest frames use frame-to-frame tracking.

Combination with another algorithms may lead to performance improvement. There are two
approaches that are being developed in the Image Processing Lab at UPV. First approach
focus on face corners detection and its tracking over the time. This approach limits points that
have to be calculated and creates faster tracking algorithm. Second approach detects nose tips
as highly important face mark [56][57]. This approach may improve detection and tracking
mainly in limit head positions where nose still remains recognisable.

50

0 50 100 150 200
40
20

0
20
40

frames []

d
e

vi
a

tio
n

[d

e
g

]

a

0 50 100 150 200

20

0

20

frames []

d
e

vi
a

tio
n

[d

e
g

]

b

0 50 100 150 200
20

0

20

frames []

d
e

vi
a

tio
n

[d

e
g

]

c

0 50 100 150 200
10

0

10

frames []

d
e

vi
a

tio
n

[d

e
g

]

d

Deviation of angles measurement

Figure 30 Deviation of angles measurement

51

7 Conclusions
This thesis provides view into the field of head pose estimation starting with analysis of state
of art algorithms, continuing with used technology description and 3D database building and
ending with explanation of developed head pose estimation and tracking system and its
evaluation.

Chapter 1 opens the thesis with short overview of the topic and goal and structure of this
work. Chapter 2 presents different approaches for solving head pose estimation problem.
Eight methods are presented and evaluated regarding their implementation’s advantages and
disadvantages. Chapter 3 describes technologies that were used to complete this work. Novel
technical devices and software products such as Kinect, Point Cloud Library and CImg are
explained. Chapter 4 talks about 3D database of data acquired by Kinect that was built for
purpose of this work. All steps in building of database are described and illustrated by taken
pictures. Chapter 5 presents developed head pose estimation and tracking system itself.
Complex description of developed head estimation algorithm as well as detailed explanation
of every block of algorithm is provided. Chapter 6 explain all measurements that were taken
and discuss and evaluate results and outcomes. Further improvement ideas are proposed in the
end.

Head pose estimation and tracking system that was developed in this work represents building
block on top of which upper layer can be placed. Head pose estimation system is based on 3D
data acquired by Kinect device that are processed through PCL and CImg API’s. Further
development in these technologies may improve quality of the system and increase its
performance. Currently developed system can be used for pitch rotations ranging from -30° to
40° and for yaw rotation ranging from -60° to 60°. The system doesn’t perform in the real
time but improvements that can change it are proposed. Thesis fulfilled its goal and generated
outcomes respect goals that were set in the beginning.

Information about head pose is useful for many human-machine interaction applications or
human behaviour analysis applications. Human-machine interaction goes nowadays far
beyond classical input devices such as computer mouse or keyboard. A novel device such as
Kinect brings revolution in the field of human-machine interaction. Applications can be built
to interact with its users by recognizing their gestures, face expressions or head poses.
Interactive advertisement, augmented reality, robotics are only few fields where knowledge of
head pose provides additional value. Machines will not wait for our instructions any more but
rather analyse our behaviour and act accordingly. I believe that head pose estimation and
tracking is important field to study and its better knowledge and application will improve our
daily lives.

52

Bibliography

[1] E. Murphy – Chutorian, M.M. Trivedi, „Head Pose Estimation in Computer Vision: A

Survey,“ IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 31,
No. 4. (25 April 2009), pp. 607-626.

[2] E. Murphy – Chutorian, M.M. Trivedi, „Head Pose Estimation and Augmented

Reality Tracking: An Integrated System and Evaluation for Monitoring Driver
Awareness,“ IEEE Transactions on Intelligent Transportation Systems, Vol. 11, No. 2.
(2 June 2010), pp. 607-626.

[3] J. Přinosil, „Přesné sledování pohybů tváří v reálném čase,“ Elektrorevue [online],

2009.

[4] S. Theodoridis, A. Pikrakis, K. Koutroumbas, D. Cavouras, „Introduction to Pattern
Recognition: A MATLAB Approach“, Academic Press, 2009.

[5] OpenCV Wiki [online]. 2006 [cit 2010-12-13]. Available at

<http://opencv.willowgarage.com/wiki/>.

[6] N. Gourier, D. Hall, and J. Crowley, “Estimating Face Orientation from Robust
Detection of Salient Facial Structures,” Proc. ICPR Workshop Visual Observation of
Deictic Gestures, pp. 17-25, 2004.

[7] M. Voit, CLEAR 2007 Evaluation Plan: Head Pose Estimation,

http://isl.ira.uka.de/~mvoit/clear07/CLEAR07_HEADPOSE_2007-03-26.doc, 2007.

[8] S. Ba and J.-M. Odobez, “A Probabilistic Framework for Joint Head Tracking and
Pose Estimation,” Proc. 17th Int’l Conf. Pattern Recognition, pp. 264-267, 2004.

[9] T. Sim, S. Baker, and M. Bsat, “The CMU Pose, Illumination, and Expression

Database,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 12,
pp. 1615-1618, Dec. 2003.

[10] J. Wu, M. Trivedi, “A Two-Stage Head Pose Estimation Framework and Evaluation,”

Pattern Recognition, vol. 41, no. 3, pp. 1138-1158, 2008.

[11] M.L. Cascia, S. Sclaroff, and V. Athitsos, “Fast, Reliable Head Tracking Under
Varying Illumination: An Approach Based on Registration of Texture-Mapped 3D
Models,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 4, pp.
322-336, Apr. 2000.

[12] W. Gao, B. Cao, S. Shan, X. Zhang, and D. Zhou, “The CAS-PEAL Large-Scale

Chinese Face Database and Baseline Evaluations,” Technical Report JDL-TR-04-FR-
001, Joint Research and Development Laboratory, 2004.

53

[13] D. Little, S. Krishna, J. Black, and S. Panchanathan, “A Methodology for Evaluating
Robustness of Face Recognition Algorithms with Respect to Variations in Pose Angle
and Illumination Angle,” Proc. IEEE Int’l Conf. Acoustics, Speech, and Signal
Processing, vol. 2, pp. 89-92, 2005.

[14] S. Niyogi and W. Freeman, “Example-Based Head Tracking,” Proc. IEEE Int’l Conf.
Automatic Face and Gesture Recognition, pp. 374-378, 1996.

[15] J. Huang, X. Shao, and H. Wechsler, “Face Pose Discrimination Using Support Vector
Machines (SVM),” Proc. 14th Int’l Conf. Pattern Recognition, pp. 154-156, 1998.

[16] H. Moon and M. Miller, “Estimating Facial Pose from a Sparse Representation,” Proc.
IEEE Int’l Conf. Image Processing, pp. 75-78, 2004.

[17] J. Sherrah, S. Gong, and E.-J. Ong, “Face Distributions in Similarity Space under
Varying Head Pose,” Image and Vision Computing, vol. 19, no. 12, pp. 807-819,
2001.

[18] A. Lanitis, C. Taylor, and T. Cootes, “Automatic Interpretation of Human Faces and
Hand Gestures Using Flexible Models,” Proc. IEEE Int’l Conf. Automatic Face and
Gesture Recognition, pp. 98-103, 1995.

[19] A. Gee and R. Cipolla, “Determining the Gaze of Faces in Images,” Image and Vision
Computing, vol. 12, no. 10, pp. 639-647, 1994.

[20] A. Gee and R. Cipolla, “Fast Visual Tracking by Temporal Consensus,” Image and
Vision Computing, vol. 14, no. 2, pp. 105-114, 1996.

[21] E. Murphy-Chutorian and M. Trivedi, “Hybrid Head Orientation and Position
Estimation (HyHOPE): A System and Evaluation for Driver Support,” Proc. IEEE
Intelligent Vehicles Symp., 2008.

[22] Kinect gets UK release date [online]. 2010 [2011-08-17]. Available at

<http://www.bbc.co.uk/newsbeat/10996389>.

[23] Kinect Confirmed As Fastest-Selling Consumer Electronics Device [online]. 2011
[2011-08-17]. Available at <http://community.guinnessworldrecords.com/_Kinect-
Confirmed-As-Fastest-Selling-Consumer-Electronics-
Device/blog/3376939/7691.html>.

[24] Microsoft sells 10 million Kinects, 10 million Kinect games [online]. 2011 [2011-08-
17]. Available at <http://www.engadget.com/2011/03/09/microsoft-sells-10-million-
kinects-10-million-kinect-games/>.

[25] Kinect Sensor with Kinect Adventures [online]. 2010 [cit 2011-08-17]. Available at
<http://www.amazon.com>

[26] Kinect Hacks [online]. 2010 [cit 2011-08-17]. Available at
<http://www.kinecthacks.com/>.

54

[27] Kinect Hacks [online]. 2011 [cit 2011-08-17]. Available at
<http://kinect.dashhacks.com/>.

[28] Kinect Operation [online]. 2010 [cit 2011-08-17]. Available at
<http://www.ros.org/wiki/kinect_calibration/technical>.

[29] PrimeSense [online]. 2010 [cit 2011-08-17]. Available at
<http://www.primesense.com/>.

[30] OpenKinect Wiki [online]. 2010 [cit 2011-08-17]. Available at
<http://www.openkinect.org>.

[31] OpenKinect/libfreenect at Github [online]. 2010 [cit 2011-08-17]. Available at
<https://github.com/OpenKinect/libfreenect>.

[32] OpenNI User Guide [online]. 2011 [cit 2011-08-17]. Available at
<http://www.openni.org/documentation>.

[33] Introducing OpenNI [online]. 2011 [cit 2011-08-17]. Available at
<http://www.openni.org/>.

[34] Kinect for Windows SDK from Microsoft Research [online]. 2011 [cit 2011-08-17].
Available at <http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/>.

[35] Using the nestk library [online]. 2011 [cit 2011-08-17]. Available at
<http://nicolas.burrus.name/index.php/Research/KinectUseNestk>.

[36] Nicolas Burrus homepage [online]. 2011 [cit 2011-08-17]. Available at
<http://nicolas.burrus.name/>.

[37] ofTheo/ofxKinect at Github [online]. 2011 [cit 2011-08-17]. Available at
<https://github.com/ofTheo/ofxKinect/>.

[38] openFrameworks [online]. 2010 [cit 2011-08-17]. Available at
<http://www.openframeworks.cc/>.

[39] DEPTHJS – MIT Media Lab [online]. 2010 [cit 2011-08-17]. Available at
<http://depthjs.media.mit.edu/>.

[40] Doug/depthjs at Github [online]. 2011 [cit 2011-08-17]. Available at
<https://github.com/doug/depthjs>.

[41] R.B. Rusu; S.Cousins; “3D is here: Point Cloud Library,” IEEE International
Conference on Robotics and Automation (ICRA), 2011.

[42] PCL – Point Cloud Library [online]. 2011 [cit 2011-08-17]. Available at
<http://www.pointclouds.org/>

[43] G. Guennebaud, B. Jacob, et al., “Eigen v3,” <http://eigen.tuxfamily.org>, 2010.

55

[44] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic
algorithm configuration,” in International Conference on Computer Vision Theory and
Application VISSAPP’09). INSTICC Press, 2009, pp. 331–340.

[45] Boost C++ Libraries [online]. 2005 [cit 2011-08-17]. Available at
<http://www.boost.org/>.

[46] W. Schroeder, K. Martin, and B. Lorensen, Visualization Toolkit: An Object-Oriented
Approach to 3D Graphics, 4th Edition. Kitware, December 2006.

[47] Documentation for MINPACK subroutine HYBRD1, Double precision version,
Argonne National Laboratory, Burton S. Garbow, Kenneth E. Hillstrom, Jorge J.
More, March 1980

[48] The CImg Library – C++ Template Image Processing Toolkit [online]. 2000 [cit 2011-
08-17]. Available at <http://cimg.sourceforge.net/>.

[49] Lisa Gottesfeld Brown; “A survey of image registration techniques,” ACM Comput.

Surv.,1992.

[50] Mahdi Ben Ghorbel; Malek Baklouti; and Serge Couvet; “3D head pose estimation
and tracking using particle filtering and ICP algorithm,” In Proceedings of the 6th
international conference on Articulated motion and deformable objects (AMDO'10),
2010.

[51] LP. Morency; “Stereo-based Head Pose Tracking using Iterative Closest Point and
Normal Flow Constraint,” Master Thesis, Massachusetts Institute of Technology,
2002.

[52] Breitenstein, M. D; Kuettel, D.; Weise, T.; van Gool, L.; Pfister, H , “Real-Time Face

Pose Estimation from Single Range Images,” 2008.

[53] Trefethen, Lloyd N.; Bau III, David (1997). Numerical linear algebra. Philadelphia:
Society for Industrial and Applied Mathematics. ISBN 978-0-89871-361-9.

[54] Alberto_Albiol. Video indexing using multimodal information. PhD thesis,
Universidad Politecnica de Valencia, Valencia, Spain, April 2003.

[55] P.Viola and M.Jones; “Robust Real-time Object Detection,” International Journal of
Computer Vision, 2001.

[56] Chenghua Xu; Yunhong Wang; Tieniu Tan; and Long Quan; “Robust nose detection
in 3D facial data using local characteristics,” International Conference on Image
Processing, 2004. ICIP '04. 2004.

[57] Anuar L.H.; Mashohor S.; Mokhtar M; and Wan Adnan W.A., “Nose Tip Region
Detection in 3D Facial Model across Large Pose Variation and Facial Expression,”
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 4, July
2010.

56

List of Abbreviations

API application programming interface
CImg cool image c++ library
DOF degrees of freedom
FPFH fast point feature histogram
ICP iterative closest point
IR infrared
LGO localized gradient orientation
NARF normal aligned radial feature
PCA principal component aanalysis
PCD point cloud data
PCL point cloud library
PFH point feature histogram
SDK software development kit
SVD singular value decomposition
SVM support vector machine

57

List of Appendix

A Content of CD

58

A Content of CD

Attached CD contains:

1. Thesis – final version of the thesis in PDF format and all used pictures

2. Code
a. C++: contains developed code in Eclipse (demo_4 is final product)
b. Matlab: contains developer code in Matlab

3. Database

a. Images: contains rgb and depth images
b. Coordinates: contains extracted marker coordinates for each frame
c. Angles: contains calculated Euler angles for each frame

4. Multimedia – multimedia material from demos and testing

