
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

PHD THESIS

Brno, 2017 Ing. Lukáš Mičulka

B R N O UNIVERSITY OF T E C H N O L O G Y
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

M E T H O D O L O G Y FOR FAULT T O L E R A N T SYSTEMS
DESIGN INTO LIMITED IMPLEMENTATION A R E A IN
FPGA

METODIKA NÁVRHU SYSTÉMŮ ODOLNÝCH PROTI PORUCHÁM DO OMEZENÉHO

IMPLEMENTAČNÍHO PROSTORU NA BÁZI FPGA

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR Ing. LUKÁŠ MIČULKA
AUTOR PRÁCE

SUPERVISOR Doc. Ing. ZDENĚK KOTÁSEK, CSc.
ŠKOLITEL

BRNO 2017

Abstract
The work presents a methodology of fault tolerant system design into an F P G A wi th
the abi l i ty of the transient fault and the permanent fault mi t igat ion. The transient fault
mit igat ion is done by the par t ia l dynamic reconfiguration. The mit igat ion of a certain
number of permanent faults is based on using a specific fault tolerant architecture occupying
less resources than the previosly used one and excluding the faulty part of the F P G A from
further use. This inovative technique is based on the precompiled configurations stored in
an external memory. To reduce the required space for a par t ia l bitstream the relocation
technique is used.

Abstrakt
Tato p r á c e popisuje n a v r ž e n o u metodologii pro n á v r h s y s t é m ů odo lných pro t i p o r u c h á m
v F P G A schopnou o c h r á n i t s y s t é m p ř e d projevy p ř e c h o d n ý c h a t rva lých poruch. Oprava
p ř e c h o d n é poruchy je p r o v á d ě n a čá s t ečn o u dynamickou re konfigurací . Oprava o m e z e n é h o
p o č t u t rva lých poruch je za ložena na použ i t í odo lných architektur využívaj íc ích menš í
m n o ž s t v í zd ro jů než p ředchoz í p o u ž i t á architektura. V a d n á čás t F P G A tak nen í dále
využ ívána . Tato technika je za ložena na použ i t í p ř edkompi lovaných konfigurací u ložených
v ex t e rn í p a m ě t i . P r o snížení paměťových n á r o k ů pro uložení konf iguračních b i tových
pos loupnos t í je p o u ž i t a technika relokace.

Keywords
fault tolerant system design, par t ia l reconfiguration, design methodology, F P G A .

Klíčová slova
n á v r h s y s t é m ů odo lných prot i p o r u c h á m , č á s t e č n á rekonfigurace, metodika n á v r h u , spolehlivost,
F P G A .

Reference
M I C U L K A , Lukas . Methodology for Fault Tolerant Systems Design into Limited Imple
mentation Area in FPGA. Brno , 2017. P h D thesis. B r n o Univers i ty of Technology, Facul ty
of Information Technology. Supervisor Doc . Ing. Zdenek Ko täsek , CSc .

Methodology for Fault Tolerant Systems Design
into L i m i t e d Implementation A r e a in F P G A

Declaration
Hereby I declare that this P h D thesis was prepared as an original author's work under the
supervision of associate professor Zdenek Kotasek. A l l the relevant information sources,
which were used dur ing preparation of this thesis, are properly cited and included i n the
list of references.

Lukas M i c u l k a
August 29, 2017

Acknowledgements
I would like to thank my supervisor for his professional guidance, his help and expert
advices.

Contents

1 Introduction 4
1.1 Preface 4
1.2 Structure of thesis 6

2 C o m m o n knowledge 7
2.1 Dig i t a l systems 7

2.1.1 F i x e d logic devices 8
2.1.2 Programmable logic devices 9

2.2 F P G A 10
2.2.1 F P G A structure 10
2.2.2 Storing bitstream configuration 11
2.2.3 X i l i n x V i r t e x family 12
2.2.4 F P G A reconfiguration 13
2.2.5 F P G A design synthesis and implementat ion 15
2.2.6 Design workflow w i t h par t ia l dynamic reconfiguration 17
2.2.7 Configurat ion bitstream structure 18

2.3 Faults i n d igi ta l systems 19
2.3.1 Terms 19
2.3.2 Faul t classification 20
2.3.3 Faults i n F P G A 21

2.4 Dependabi l i ty of systems 22
2.4.1 Rel iab i l i ty 24
2.4.2 Avai labi l i ty 26
2.4.3 Safety 26
2.4.4 Main ta inab i l i ty 27
2.4.5 System dependabili ty analysis 27
2.4.6 Dependable system design 29

3 Related areas of topic 31
3.1 Fault tolerant systems 31

3.1.1 Static fault tolerance 32
3.1.2 Dynamic fault tolerance 33

3.2 Fault detection and local izat ion techniques 33
3.2.1 Repl ica t ion and concurrent error detection 35
3.2.2 Off-line testing 36
3.2.3 Bi t s t ream readback 37
3.2.4 Rov ing S T A R 37
3.2.5 Summary 39

1

3.3 Transient fault mi t igat ion 40
3.3.1 Configurat ion bitstream scrubbing 40
3.3.2 Recovery by par t ia l dynamic reconfiguration 41

3.4 Techniques for system recovery after permanent fault occurence 42
3.4.1 Incremental mapping and design rout ing 43
3.4.2 Approach based on precompiled alternate configurations 44
3.4.3 Evolut ionary algorithms 46
3.4.4 Summary 46

3.5 Fault injection techniques 47

4 Mot ivat ion and goals of the research 49
4.1 Mot iva t ion 49
4.2 Goals of the research 50

5 Methodology for fault tolerant system design into l imited implementation
area in F P G A 53
5.1 Methodology basic principles 53

5.1.1 System design based on the methodology 54
5.1.2 Structure of fault tolerant system under design - basic principles . . 55
5.1.3 Generations of alternative F T architecture configurations 56
5.1.4 Reducing the number of configuration bitstreams v i a bi tstream relo

cation technique 57
5.1.5 Synchronizat ion issues 58

5.2 Generic part ia l dynamic reconfiguration controller 59
5.2.1 The design goals of G P D R C 60
5.2.2 G P D R C unit design 60
5.2.3 Implementing G P D R C unit as fault tolerant 62

5.3 Fault mit igat ion procedure 62
5.4 Summary 65

6 Design of fault tolerant architecture by means of developed methodology
principles 66
6.1 Prerequisities 66

6.1.1 P R M isolation 66
6.1.2 Bi t s t ream relocation technique 67

6.2 Fault tolerant architectures design 71
6.2.1 System design par t i t ioning 71
6.2.2 Selection of the degradation strategy for recovering from permanent

faults 72
6.2.3 The allocation of implementat ion area for F T architectures 73
6.2.4 The instantiat ion of G P D R C 74

6.3 Design tool for automatic generation of fault tolerant architectures 74
6.3.1 Inputs 75
6.3.2 Outputs 75
6.3.3 The process of F T architecture generation 75

6.4 The implementat ion of generated F T architectures 78
6.5 Summary 79

7 Implementation and experimental results 81

2

7.1 Implementation of G P D R C 81
7.1.1 Generic implementat ion of G P D R C and its scaling 81
7.1.2 The reconfiguration t ime of P R M 82

7.2 Evalua t ion of hardware overhead of F T architectures developed to secure a
given part of system 83
7.2.1 F T Architecture of Generat ion 0 84
7.2.2 F T Architecture of Generat ion 1 84
7.2.3 N o n - F T Archi tecture of Generat ion 2 85
7.2.4 Evalua t ion of resource overhead 86
7.2.5 Mode l l ing rel iabi l i ty of proposed F T architectures 86

7.3 Implementation results of different approaches to the par t i t ioning of original
system 91

7.4 S E U testing platform for the evaluation of F T system design by means of
methodology principles 93
7.4.1 The implemented test and evaluation equipment 93
7.4.2 Process of S E U faults injection 95
7.4.3 Exper imenta l results of G P D R C transient fault mi t igat ion process . 96
7.4.4 Testing and evaluating recovery from permanent fault occurence . . 97

7.5 Summary 98

8 Conclusions 99
8.1 Benefits of this research 99
8.2 Possible enhancements of methodology 100

8.2.1 Bi t s t ream compression 100
8.2.2 Adop t ion of isolation design flow 101

8.2.3 Other possible enhancements 102

A Author's publications 117

B Publications cited by other authors 119

3

Chapter 1

Introduction

This chapter brings a brief int roduct ion to the topic of this thesis. It is focused on fault
tolerant aspects of electronic devices and it is describing the methodology for fault tolerant
system design developed specially for F i e l d Programmable Gate Arrays (F P G A) . Before the
methodology is proposed i n the following chapters, contemporary state of the knowledge in
this topic and known approaches for solving issues connected wi th it are discussed.

1.1 Preface

The progress in manufacturing electronic devices mainly stands on shrinking its parts such
as chips and transistors. The Moore 's law says that every two years the power of new
computer chips w i l l be doubled. A l t h o u g h this idea was formed in 1965 it withstanded as
the t ru th for 50 years. In these days when the shrinking of integrated circuits achieves the
14-nm resolution (half-node shrink) [42], it is clear that the law w i l l be void very early.

The scaling of transistors to such smal l sizes provides high performance, low power and
also lower costs per unit but has also very strong drawbacks. F r o m the system dependabili ty
viewpoint, the rapid downsizing of c i rcui t ry brings increased defect rates because the wires
and devices made of few atoms and bonds are more susceptible to the occurrence of defective
parts. These smal l devices are also very fragile on overstress and other environmental
influences during operational lifetime. Addi t ional ly , smal l changes inside fabric caused
by these factors can lead to large impact on device performance. It also brings bigger
susceptibility to transient upsets. Smal l nodes use less charge to hold state or data and can
be easily altered and upset by noise from outside environment such as radiation.

This implies the mot ivat ion to make electronic devices dependable even i n very harsh
environmental conditions. Th is is very recent topic. Besides others, it is deeply connected
wi th space exploration. In 2016, the spacecraft from N A S A New Frontiers mission came to
the orbit of one of Jupiter 's months, Juno. This mission is specific also because of its high
demands to electronic devices of spacecraft. The radiat ion i n radiat ion belts of this planet
is much stronger then on the Ear th ' s orbit [8]. The electronic devices i n spacecraft has to
be hardened against such a dose of radiat ion but it has to be also made fault tolerant to be
able to survive the t ime of mission even if some fault occurs. A s an example of its increased
dependability, Juno spacecraft's data handling system is based on R A D 7 5 0 processor from
B A E Systems company which is designed to accommodate as much single event effects as
possible to survive them for at least 15 years without intervention from E a r t h [51]. The

4

loose of money in case of unsuccessful mission w i l l be very big and repeating of mission w i l l
be t ime-demanding because the flight to Juno's orbit takes almost 5 years.

It is clear now, that one of the key system indicators is its dependability. It is an
integrated measure consisting of several attributes such as the availabil i ty and rel ibi l i ty of
system, its maintainabi l i ty and durabi l i ty and also its safety and security. A l l together
it expresses the abi l i ty of system to produce outputs that can justif iably be trusted. To
increase the dependabili ty of system, several mechanism can be adopted. One of the most
popular approaches is Faul t Tolerant (F T) system design which enables a system to continue
its intended operation when some part of the system fails. The operation after the fault
occurrence can be at a reduced level, but it should not fail completely. M a n y F T techniques
use hardware redundancy i n order to reduce the probabil i ty of failure. B y replicating the
desired c i rcui t ry and comparing the results, fault i n one or more replicated system units
can be detected and reported or the fault mi t igat ion process of faulty unit can be triggered.

Nowadays, developers implementing a part icular system can select from various elec
tronic devices. There are many fabrics start ing from simple integrated circuits, universal
purpose microprocessors, custom chips or programmable microcontrollers and more com
plex logic devices available on the market. For rapid prototyping and implementing sys
tems consisting of smal l number of units, the F P G A technology became very popular and
frequently used. They provide high logic density and possibil i ty to easily upgrade the im
plemented designs in order to comply wi th the latest standards or to modify the function
or the structure of implemented system. Another benefit of F P G A design i n comparison
wi th custom chips is their relatively short design cycle supported by the possibil i ty of using
existing low cost design tools. These benefits together result i n low non-recurring engineer
ing costs (N R E) for F P G A design. O n the other side, their drawback is their vulnerabi l i ty
to radiat ion effects [61]. This mainly concerns S R A M - b a s e d F P G A s which are becoming
increasingly popular for many applications due to their high-throughput capabilities and
relatively low cost. The use of fault tolerant system design can be the solution to overcome
their higher rate of fault occurrence.

The abi l i ty of F P G A to be configured many times also brings new possibilities from
the perspective of system fault tolerance. W h e n the system in F P G A is affected by fault,
the reconfiguration can be used to overcome its effects. Pa r t i a l dynamic reconfiguration
capable to reconfigure only some parts of implemented system while the others can run
without interruption and also to change their layout and connections in F P G A can be used
to implement the new advanced fault localizat ion and mit igat ion methods. Th is flexibility
allows the use of same F P G A for mult iple missions without the need of replacement. W h e n
some resources of F P G A are permanently damaged, the custom circuit designs can be
created to avoid these resources and the implemented applicat ion can continue to run further
in the same piece of F P G A . W i t h this approach, we can achieve very good dependabili ty
and extend the operational t ime of the system i n harsh environmental conditions.

The a im of this work is to propose alternative methodology for fault tolerant design
into F P G A . This methodology can be used i n systems wi th l imi ted redundant area where
no spare resources can be activated during the system lifetime, only the resources dedi
cated at the system design t ime can be ut i l ized. To mitigate the faults which w i l l appear
during the system operation the par t ia l dynamic reconfiguration of F P G A w i l l be used.
The methodology w i l l focus on recovering from errors caused by transient and also several
independently appearing permanent faults. The S E U faults w i l l be simulated by injecting
faults into configuration memory of F P G A . In the end of this work the hardware overhead
of this solution is evaluated and the quali ty of the design of secured system is tested.

5

1.2 Structure of thesis

The introduct ion to the topic of fault tolerant system design in F P G A s and brief motiva
t ion is described i n the first chapter. The second chapter w i l l focus on the presention of
current technologies which can be used for electronic device implementat ion together w i th
their benefits and known drawbacks. Th is chapter also presents the problem of system
depedendability and its impact on system operational lifetime and introduces the concept
of fault tolerance of system. The introduct ion to typica l problems i n the field of fault tol
erant system design and known approaches for coping wi th them are described i n the th i rd
chapter. Th is chapter includes many known techniques, starting wi th the fault tolerant
techniques which can be used universally for a l l typica l fabrics of which electronic devices
can be made through to special techniques for S R A M - b a s e d F P G A s . The motivat ion for
the research i n this topic together w i t h the goals of research are described in the fourth
chapter. The fifth chapter is focused on the description of the proposed methodology. A t
the beginning, the key parts of methodology are presented. The way, how the original
system has to be modified to extend its operational lifetime is described. The following
sections include the description of u t i l iz ing the F P G A features such as par t ia l dynamic
reconfiguration to achieve this. The methodology involves specific F T architecture design.
The design of these architectures based on the user requirements on dependabili ty indica
tors and occupied resources on chip can be automated. The F T architecture design together
wi th developed tool for its automated design and implementat ion is the content of chapter
six. In the seventh chapter, the experimental results and their evaulation are presented. In
the last chapter of thesis, the obtained results are summarized and the benefits of research
are stated. It includes also the possible ways for the subsequent research orientation in this

G

Chapter 2

Common knowledge

In this chapter, the digi ta l systems technologies and concept of fault tolerance w i l l be
presented.

2.1 Digital systems

The circuit implementing certain function can be designed using two basic approaches - as
an analog or a d igi ta l system. W h i l e the analog systems use continuous set of input and
output values, the digi ta l system is based on the use of finite number of discrete values.
Usually, two values are used - logical one and logical zero. These two approaches are often
mixed i n real systems. W h i l e the analog part of the system can be used for processing the
signal on system input the digi ta l part is performing the computat ion. A l though the first
mass-produced electronic devices were analog, dur ing the last decades the digi ta l system
became more popular. The main drawback of analog design is its susceptibili ty to noise
where smal l change i n the signal can cause a significant change i n the information present
in the signal and can cause the information to be lost. Since digi ta l signals take on one
of only two different values, a disturbance would have to be about one-half the magnitude
of the digi ta l signal to cause an error. Th is property of digi ta l circuits can be exploited
to make signal processing noise-resistant. W i t h proper techniques such as securing and
detection codes the corrupted digi ta l signal can be easily reconstructed [].

D ig i t a l systems mostly use signals w i th 2-level logic. It means that voltage value on
signal should be assignable one of two logical values according to their tolerance intervals
stated by the manufacturer of d ig i ta l circuit . Two possible implementations of logical values
then exist:

• In positive logic the logical one is represented by higher voltage and logical zero by
lower voltage.

• In negative logic the logical one is represented by lower voltage and logical zero by
higher voltage.

In 2-level logic the voltage values between lower voltage tolerance interval and higher voltage
tolerance interval represent undefined or forbidden values. Th i s undefined values can cause
problems i n digi ta l circuit since the implemented functions are defined only for two possible
logical values (zero and one) on input signals. For other values on inputs the output
w i l l be undefined. Signals w i th two levels can be used i n Boolean logic for digi ta l circuit
design or analysis. The basic bui ld ing blocks for digi ta l systems are gates implementing

7

basic Boolean functions such as negation (N O T) , conjunction (A N D) , disjunction (O R) and
exclusive disjunction (X O R) . These blocks transform the input vector of binary values to
output vector of binary values. The complex digi ta l systems can be buil t by connecting
these simple gates.

Other types of digi ta l circuits using 3-level logic gates w i th the th i rd logical value of
high impedance [] or more levelled logic exist (e.g. [1]). New gates can be buil t also
wi th polymorphic electronics where the gates can implement different functions according
to the state of environment (temperature, power supply voltage, light) [54].

The digi ta l circuit can be split into two classes:

• Combinational logic refers to the circuits the output of which is a function of the
present values of the inputs only. Combina t iona l logic circuits do not contain any
memory elements and thus when the inputs are changed, the information about the
previous inputs is lost. The behaviour of combinational circuits is described by the
set of output functions.

• Sequential logic refers to the circuits the outputs of which are also dependent upon
past inputs and outputs to them. Thus they implement some form of memory. They
consist of two parts. The function is implemented by combinational logic and its
outputs are stored in registers. The values in these memory elements are called state
variables and can be used i n the subsequent cycles of computat ion. The behaviour of
sequential circuit is described by the set of next-state functions and the set of output
functions.

Sequential circuits can be divided according to the way in which the circuit changes
its output.

— Asynchronous sequential circuits change their state (and outputs) immediately
when input vector changes. The state t ime of this circuit depends only on the
internal logic circuit delays. A s an example, asynchronous counter can serve.

— Synchronous sequential circuits use the synchronisation signal usually called
clock signal. The input vector is sampled just w i th the change of clock sig
nal. The concept of the global clock signal for a l l units i n the system can be
used or several independent clock signals can exist.

In complex digi ta l systems, both combinational and sequential subsystems can be identi
fied. Last decades brought s t i l l the growing effort of creating an integrated circuit (IC) by
combining mill ions of gates and bill ions of transistors into a single chip. Th is process is
known as Very Large Scale Integration (V L S I) . It is a structured design flow that enables
a great number of transistors to sit together and work on a single microchip by saving
microchip

According to requirements on system reconfiguration we can distinguish between two
approaches: fixed logic devices for specific applications and programmable logic devices.

2.1.1 F i x e d logic devices

For a specific usage in some applications, the App l i ca t i on Specific Integrated Ci rcu i t (A S I C)
can be developed. These types of circuits stand on the opposite side to the usage of circuit
for general purpose such as microcontrollers or other programmable logic devices. The
A S I C s have fixed configuration of gates and interconnections and they perform one function

8

(a) P A L scheme (b) P L A scheme

Figure 2.1: Simple programmable logic devices

or a set of functions forever. Once they are manufactured, they cannot be changed. The
t ime required to go from design to prototypes and to a final manufacturing run can be
several months depending on the complexity of the device. Every error i n design phase or
change of requirements can cause the necessity of developing a new design. Specific design
is often not reusable i n other circuit designs. O n the other hand, A S I C can be very well
opt imized to satisfy requirements of specific appl icat ion (for t iming, space, cost, etc.).

2.1.2 P r o g r a m m a b l e logic devices

A Programmable Logic Device (P L D) is an integrated circuit w i th internal logic gates and
interconnects. These gates can be connected to obtain the required logic configuration.
The circuit can be configured by the end user to realize various designs. P rogramming of
such a device often involves placing the chip into a special programming unit , but modern
chips can be often configured in-system which means that its configuration can be modified
directly in applicat ion where this chip is used. Another (more modern) term for P L D used
in literature is Fie ld-Programmable Device (F P D) .

The term P L D includes several specific concepts of reconfigurable devices:

• Simple PLD (SPLD) is the simplest, smallest and least-expensive form of programmable
logic devices.

— Programmable Logic Array (PLA) is a smal l P L D which can realize a sum-of-
product functions by implementing them using a set of input inverters, A N D -
gates and OR-gates. B o t h planes, A N D - p l a n e and OR-plane can be programmed
to realize a function (see Figure 2.1b).

— Programmable Array Logic (PAL) is a smal l P L D that has the same components
as P L A w i t h the difference i n fixed OR-plane (see Figure 2.1a).

• Complex PLD (CPLD) consists of an arrangement of mult iple S P L D - l i k e blocks on a
single chip (see Figure 2.2).

• Field-Programmable Gate Array (FPGA) is a P L D featuring a general structure that
allows very high logic capacity. W h i l e C P L D s offer logic resources w i t h a wide number
of inputs (A N D planes), F P G A s have more narrow logic resources w i th higher ratio
of flip-flops to logic resources.

9

bl
oc

k

bl
oc

k

bl
oc

k

• PAL PAL bl
oc

k

o o
' . . . t

1 nterconnection wires I
I'" t \\---\

bl
oc

k
<_>

bl
oc

k
• PAL PAL o

_Q
o O

Figure 2.2: C P L D scheme

2.2 F P G A

The semiconductor industry makes a huge progress i n last decades. F r o m the first expansion
when the transistor was introduced over the spread of integrated circuits to the era of A S I C s
the evolution of electronics was driven forward i n order to get the fastest, smallest and
cheapest system implementations. In parallel w i th fixed logic devices, the programmable
logic devices have been developed w i t h the beginning of 1970's. Th is approach started to
play bigger role w i th the introduct ion of field-programmable gate arrays i n late 1980's. The
first F P G A (XC2064) was constructed by Ross Freeman i n 1985. The F P G A chip spread
across a l l industries is now driven by the fact that F P G A s combine the best parts of A S I C s
and processor-based systems. F P G A s can reach up to hardware-timed speed and reliability,
but they do not require so big effort and expenses to create custom A S I C design.

The applicat ion i n F P G A is defined by the configuration memory which determines the
function of its blocks and also how these blocks are connected together. This configuration
can be programmed after manufacturing, there are some one-time programmable F P G A s
available, but the dominant types are S R A M - b a s e d which can be reprogrammed as the
design evolves. The most of F P G A market is d ivided between X i l i n x and A l t e r a company.
In 2015, they together occupied more than 85% of it [44].

2.2.1 F P G A s tructure

F P G A s are programmable logic devices that are based around a mat r ix of configurable logic
blocks (C L B s) connected v ia programmable interconnects (see Figure 2.3). The applicat ion
can be implemented by designing configuration for the matr ix of C L B s (configure their
implemented functions) and interconnection between them.

The configurable logic block is the core of the logic structure of F P G A s . The logic blocks
wi th in a C L B reside slices that consist of look-up tables (L U T s) , carry chains, and registers.
These slices can be configured to perform logical functions, ari thmetic functions, memory
functions, and shift register functions. The i r stucture differs in construction between diffent
families of F P G A s . The structure of C L B from X i l i n x V i r t e x 7 F P G A family is shown in
Figure 2.4. The function of C L B is determined by its configuration which is a smal l part
of overall configuration bitstream. The first F P G A X C 2 0 6 4 contained only 64 configurable
logic blocks, each of them consisting of two three-input lookup tables. Nowadays, i n high

10

nnnnnnnnnnnnnnnn
L o g i c
b l o c k

L o g i c
b l o c k

L o g i c
b l o c k

L o g i c
b l o c k

Log ic
b l o c k

L o g i c
b l o c k

L o g i c
b l o c k

L o g i c
b l o c k

L o g i c
b l o c k

L o g i c
b l o c k

L o g i c L o g i c
b l o c k b l o c k

O

UUUI
P r o g r a m m a b l e IO

l u u u u u u u u l

L o g i c
b l o c k

L o g i c
b l o c k

L o g i c
b l o c k

L o g i c
b l o c k

u u u u

I n t e r c o n n e c t S w i t c h m a t r i x

Figure 2.3: F P G A architecture

end F P G A s there are hundreds of thousands of C L B s on single chip wi th four six-input
L U T s .

F P G A s are reffered to as the coarse-grained architectures because besides the config
urable matr ix of C L B s they also include different types of resources implementing frequently
used system functions. These resources are reffered to as hard blocks and they are added
to F P G A to avoid the need to implement these units i n C L B s and also due to fact that
they can be opt imized to give better performance and spare some logic on the chip. T y p i
cal examples of these hard blocks i n F P G A s are Block R A M memories (B R A M s) , D ig i t a l
Signall ing Processor (DSPs) units, high speed I / O blocks (IOBs) , clocking manager mod
ules such as D i g i t a l Clock Managers (D C M s) i n X i l i n x F P G A s , communicat ion modules
(Ethernet, RS232) , etc.

The mat r ix of C L B s is connected wi th outer environment by programmable I / O blocks.
They provide the interface between package pins and the internal configurable logic. They
can be used for enhanced source-synchronous interfacing. W i t h this, the optimizations such
as clock dividers, data serializers/deserializers, per-bit deskew for input and output signals,
dedicated I / O and local clocking resources become available [67]. Signals from the input of
F P G A travel through the global routing network and are processed in the C L B s or other
hard blocks. Processed signals are then routed back to the I O B as an output or routed to
another destination for further processing. The Programmable Interconnect Points (PIPs)
provide the routing paths used to connect the inputs and outputs of I O B s and C L B s into
logic networks. A P I P is a C M O S transistor switch that can be configured to be turned on
or off.

2.2.2 S t o r i n g b i t s t r e a m conf igurat ion

Configuration bitstream can be stored in F P G A using various technologies:

• SRAM-based FPGAs use the S R A M memory cells based on array of latches to store
configuration data for C L B s and other resources settings. They are popular due to
their high throughput and abi l i ty to be reconfigured many times. They are also usu
ally cheaper option to other types of memory. Thei r drawback is the fact that this
memory is volatile and thus the configuration has to be loaded again to F P G A when
it is powered on. M o d e r n S R A M - b a s e d F P G A s have highest densities, but consume
a lot of power and need an external non-volatile memory to store configuration bit-

11

Figure 2.4: L U T and flip-flops connections inside C L B (X i l i n x V i r t e x 7)

stream. This can be done by two different approaches. W h e n master mode is used,
the F P G A itself reads configuration data from an external source (ie. flash memory).
In the slave mode some external controller is used to load the configuration from
external bitstream memory to S R A M memory i n F P G A . Frequently some dedicated
configuration interface or boundary-scan (J T A G) interface is used to load the config
uration into F P G A ' s configuration memory. S R A M - b a s e d F P G A s include most chips
of V i r t e x and Spartan families from X i l i n x and Stra t ix and Cyclone families from
Al te ra .

Some S R A M - b a s e d F P G A s can be equipped wi th an internal flash memory. This non
volatile memory can be used to store the configuration when the F P G A is not powered
and thus this F P G A does not need any external configuration memory. In addit ion,
there can be more stored configurations from which the current one is chosen during
the F P G A startup. Th is approach can be used to prevent unauthorized bitstream
copying. Th is can be found for example in Spa r t an -3AN F P G A s from X i l i n x [].

• Flash-based FPGAs use flash memory as a pr imary resource for configuration storage.
There is no S R A M memory to hold configuration data i n F P G A . This technology has
an advantage of being less power consumptive. Flash-based F P G A s are also more
tolerant to radiat ion effects and due to their volat i l i ty they also can be a solution
to prevent unauthorized bitstream copying. To flash-based F P G A s belongs families
such as Igloo and P r o A S I C 3 manufactured by A c t e l [4] [5].

• Antifuse-based FPGAs are different from the previous types since they can be pro
grammed only once. After manufacturing the antifuse F P G A is not set by any con
figuration. The function of C L B s and other blocks and the interconnection is set
permamently when the configuration is loaded to F P G A and the antifuse is burned.
After this moment, the antifuse-based F P G A cannot be reconfigured. A s an example
of these F P G A s the Axcelerator family manufactured by A c t e l can be mentioned [62].

2.2.3 X i l i n x V i r t e x fami ly

V i r t e x is high-performance family of F P G A from X i l i n x company. They are S R A M - b a s e d
F P G A s and they can offer a great number of logic blocks together w i t h the variety of
bui l t - in hard macros and can be used for high-performance applications. D u r i n g the last
two decades this family evolved wi th the shrinking node size enabling to add more logic to
single chip. The comparison of number of resources available in different V i r t e x families

12

can be seen i n able 2.1. V i r t e x families are further d ivided into subfamilies according to
their desired applicat ion. Accord ing to i t , they have different row and column count in
their mat r ix of C L B s and different variety of hard macro resources. The L X T subfamily
is designed for advanced logic applications, S X T for signal processing, T X T systems wi th
double density for advanced serial connectivity and F X T for embedded systems.

F P G A family Technology Slices Distibuted R A M Block R A M DSPs
[nm] [#] [Kb] [Kb] [#]

Virtex 4 90 5472 - 63168 86 - 1392 648 - 9936 32 - 512
Virtex 5 64 3120 - 51840 210 - 3420 936 - 18576 24 - 1056
Virtex 6 40 11640 - 118560 1045 - 8280 5616 - 38304 288 - 2016
Virtex 7 28 51000 - 178000 4388 - 17700 28620 - 50760 1260 - 2520

Table 2.1: The comparison of V i r t e x F P G A families

In this research, F P G A X C 5 V S X 5 0 T from V i r t e x 5 S X T subfamily was mainly used for
design implementation. Th is subfamily contains C L B s based on 6-input L U T , 36 K b i t du-
alport B R A M modules which can be also configured as two independent 18 K b i t dual-port
R A M blocks and i n addi t ion these B R A M s can be connected i n cascade to form a larger
memory block. There is also a possibil i ty to uti l ize cascadable embedded D S P 4 8 E slices
wi th two's complement multipliers and 48-bit adder/subtracter /accumulator for parallel
computing or to use each of D S P slices to bitwise logical functions. The C L B is divided
into two different slices, the first type is referred to as S L I C E L and has only capabil i ty to
implement logic function and the second type S L I C E M can be used as a memory and imple
ment 32-bit shift register or 64-bit distr ibuted R A M . The max ima l operational frequency
of F P G A s from this family is 550 M H z .

2.2.4 F P G A reconf igurat ion

A considerable part of the F P G A (in terms of its area) is used for configuration mem
ory which defines the implemented hardware c i rcui t ry (application) i n F P G A . It contains
the configuration of C L B s , I O B s , D S P s , B R A M s and other resources and also the routing
between these blocks. The process of loading the configuration bitstream through reconfig
urat ion interface to the configuration memory is called reconfiguration of the F P G A .

Depending on the structure of reconfigurable device, we can divide reconfiguration ac
cording to its granularity. The granularity of reconfiguration is defined as the size of the
smallest block of reconfigurable device which can be addresed by mapping tools. Fine
grained architecture offers greater flexibili ty for the implementat ion of design. The draw
back of using these architectures can be the increase of power, area and delay because of
greater quantity of routing. Corse-gained architecture uses bigger configurable blocks which
can be optimised for its intended use and are typical ly oriented on word-width datapaths.
This can reduce the area, t ime and rout ing requirements and the reconfiguration time. The
drawback can be seen i n possible inefficient ut i l isat ion of resources such as i n case when
the operands wid th of implemented function unit does not meet w i t h the bui ld ing block
of reconfigurable architecture. A l so the implementat ion of design into coarse-grained ar
chitecture is usually more difficult due to the need of sufficient number of specific bui lding
blocks. T y p i c a l F P G A combines these approaches together by using the array of C L B s
w i th interconnection mat r ix and specific hard blocks (DSPs , B R A M s , etc.).

The important measure of reconfiguration is the deployment t ime. This means the time
needed to finish this process and br ing the F P G A applicat ion back into running mode. The

13

deployment t ime depends at most on the size of configuration bitstream and the wid th of
datapath between the bitstream storage and reconfiguration interface. T y p i c a l t ime for
reconfiguration of entire medium sized F P G A s such as V i r t e x 5 S X T 50 F P G A is several
milliseconds. Several ways how to burst the process of reconfiguration exists. These include
the par t ia l reconfiguration of just a smal l por t ion of F P G A which has to be changed or the
use of compressed configuration bitstream.

In modern F P G A s , several different types of reconfiguration can be identified:

• Full reconfiguration is the process of changing configuration of a l l resources i n device.
W h i l e the full reconfiguration process takes place, the device is running only i n idle
mode. The implemented applicat ion begins to run immediately after this process is
finished. Typica l ly , the full reconfiguration is done after power-up of device.

• Partial reconfiguration is the process of changing a por t ion of reconfigurable hard
ware c i rcui t ry while the rest of design is not changed. Just the par t ia l configuration
bitstream is wr i t ten to configuration memory. P a r t i a l reconfiguration can be divided
according to its influence on the run of applicat ion in F P G A :

— Partial static reconfiguration process stops the running applicat ion (circuitry)
even i f only a part of it is changed. The applicat ion i n device is brought up after
this process is completed.

— Partial dynamic reconfiguration (P D R) process changes a por t ion of implemented
circui t ry without any intervention to the rest of i t . Th is requires a special F P G A
design flow where each part of F P G A al lowing P D R has to be encapsulated by
adding special macros on buses going inside or outside from this part to isolate
it from the unchanged (static) part.

F P G A can be configured v i a different configuration interfaces. X i l i n x F P G A s from
V i r t e x family offer the following interfaces:

• Serial Peripheral Interface (SPI) is an external configuration interface of F P G A con
taining only two single bit signals (clock and data). T h e F P G A is configured by
loading single bit of data per clock cycle. Th is interface is typical ly used for devices
in a serial daisy chain or in case when single device is configured by an external micro
processor or C P L D . The connection of configuration controller and F P G A is shown
in Figure 2.5a.

• Byte-wide Peripheral Interface (BPI) is s imilar to S P I w i th one difference, data signal
is 8-bit or its multiplies wide.

• JTAG (Joint Test A c t i o n Group) is external interface based on serial data transfer.
It is p r imar i ly used for testing and debugging purposes defined by I E E E standard
1149.1. It contains a Test Access Por t (T A P) and boundary-scan architecture. In
programmable devices such as F P G A , it can be used for in-system programming
(configuration). Several devices can be connected in daisy chain and then they can
be configured at once. Th is interface has bigger pr ior i ty than others. W h e n the
J T A G controller is loading data serially on Test C l o c K (T C L K) signal edge the run
of other interfaces is stopped. The connection between J T A G controller (or other
device implementing its function) and F P G A is shown i n Figure 2.5b.

14

processor,
microcontroller FPGA

(a) Serial

F P G A

processor,
microcontro l ler

DATA OUT

WRITE

C H I P S E L E C T

CLOCK

ICAP BUSY

DATA IN

JTAG controller,
processor,
microcontroller FPGA

processor,
microcontroller FPGA

SERIAL_DATA

CLOCK

DATAJN
CLOCK

SERIAL_DATA_OUT
MODE_SELECT

CLOCK
SERIAL_DATA_IN

TDI
TMS
TCK
TDO

SERIAL_DATA_OUT
MODE_SELECT

CLOCK
SERIAL_DATA_IN

TDI
TMS
TCK
TDO

SERIAL_DATA_OUT
MODE_SELECT

CLOCK
SERIAL_DATA_IN

TDI
TMS
TCK
TDO

SERIAL_DATA_OUT
MODE_SELECT

CLOCK
SERIAL_DATA_IN

TDI
TMS
TCK
TDO

SERIAL_DATA_OUT
MODE_SELECT

CLOCK
SERIAL_DATA_IN

TDI
TMS
TCK
TDO

DATA
CHIP_SELECT

MODE_SELECT (R/W)
CLOCK

D[7|15|31:0]
CSI
RDWR
CLK

DATA
CHIP_SELECT

MODE_SELECT (R/W)
CLOCK

D[7|15|31:0]
CSI
RDWR
CLK

DATA
CHIP_SELECT

MODE_SELECT (R/W)
CLOCK

D[7|15|31:0]
CSI
RDWR
CLK

DATA
CHIP_SELECT

MODE_SELECT (R/W)
CLOCK

D[7|15|31:0]
CSI
RDWR
CLK

(b) J T A G
FPGA

(c) SelectMAP

ICAP

l[7:0]

WRITE

CE

CLK

BUSY

O[7:0]

CONFIGURATION
CONTROLLER

ICAP

RATA CM IT l[7:0]
UA 1A \J U 1

l[7:0]

WRITE WRITE WRITE WRITE

CHIPSELECT CE CHIPSELECT CE

CLOCK CLK CLOCK CLK

I C A P B U S Y BUSY I C A P B U S Y BUSY

DATAJN O[7:0] DATAJN O[7:0]

(d) I C A P with external controller (e) I C A P with internal controller

Figure 2.5: The configuration interfaces of F P G A

• SelectMap is external configuration interface which supports bidirect ional communi
cation w i t h F P G A device by an 8-bit, 16-bit, or 32-bit data bus. It can be used either
for configuration of device or for bitstream readback from device. D a t a bus wid th
is automatical ly detected. There are three possible modes of configuration: single-
device, mult iple devices connected as daisy-chain where each device can be configured
by different bi tstream and mult iple devices connected i n parallel where every devices
are configured by the same bitstream. F P G A and configuration controller connected
v ia S e l e c t M A P is shown in Figure 2.5c.

• ICAP (Internal Configurat ion Access Port) is a fast internal parallel interface. The
I C A P interface is a subset of the S e l e c t M A P interface and thus they cannot be used
simultaneously. The process of configuration of device and its bitstream readback is
essentially the same as wi th the use of S e l e c t M A P . Since I C A P provides abi l i ty of
part ial self-reconfiguration of F P G A the care must be taken dur ing reconfiguration
to avoid the change of reconfiguration controller and a l l c i rcui t ry performing the
reconfiguration process. These parts of F P G A should be made static (not dynamical ly
reconfigurable). Thus, the I C A P cannot be used for full reconfiguration of F P G A and
it is designated to perform par t ia l dynamic reconfigurations.

W h e n implementing the F P G A design wi th P D R ability, the I C A P pr imit ive can be
instantiated in F P G A and it can be driven by reconfiguration controller which w i l l
read the par t ia l bi tstream from non-volatile memory and transfer it to I C A P interface
during P D R process. Th is controller can be located i n different fabric as shown in
Figure 2.5d or it can be instantiated i n the same F P G A as shown i n Figure 2.5e.

2.2.5 F P G A design synthesis a n d i m p l e m e n t a t i o n

To implement the digi ta l system into F P G A the series of steps are needed. These steps can
be grouped to design entry and its synthesis and implementation. These steps can be done

15

separately but modern advanced design tools such as X i l i n x I S E offer the possibil i ty to do
al l these steps in one development environment.

A t the beginning, the system description has to be specified i n some programming lan
guage or some visual editor. To simplify this process, special Hardware Definiton Languages
(H D L) were introduced. They accent the parallel ism i n digi ta l circuits and they offer the
possibili ty to specify the system by its behaviour and structure. V H D L and Veri log belong
to most known H D L s and they are used as an open standards of Institute of Elec t r ica l
and Electronics Engineers (I E E E) to describe the digi ta l circuits on different levels and for
simulation purposes. They can be used for digi ta l system design not only for F P G A s but
also for C P L D s . The common level of abstraction i n H D L is Register Transfer Level (R T L) .
It is based on the premise that synchronous systems can be described as a set of registers
which are connected between themselves and w i t h inputs and outputs by combinational
logic.

A s the opt ional step after the design entry in H D L , the s imulat ion of design can be run
in some simulat ion tool such as M o d e l S i m or IS im and it can uncover the design faults or
t iming l imitat ions. A set of testbenches is needed to perform the simulation.

After succesful simulation, the design synthesis is performed. This process converts the
H D L input to netlist files which describe the system as a set of logical gates and their
connections. The synthesis is consisted of several steps. After parsing of H D L file, the
synthesis tool tries to infer specific design bui lding blocks (ie. M U X e s , R A M s , adders,
etc.) for which it is able to create efficient technology implementations. The next step is
F in i te State Machine (F S M) recognition. W h e n some F S M is identified in the design, the
most efficient encoding a lgor i thm for its implementat ion can be chosen according to the
specified opt imizat ion goal (i.e. area, speed). The synthesis tool also tries to reduce the
amount of inferred macros and share some resources which can lead to a reduction of the
area as well as the increase i n the clock frequency. F ina l ly , the low level opt imizat ion is
made including implementat ion of macros, t iming opt imizat ion, technology mapping and
register replication. The output of synthesis are files w i th netlists described most often
by Electronic Design Interchange Format (E D I F) or some vendor specific file format such
as N G C from X i l i n x . Th is file can also contain the contraints specified by designer which
w i l l be used in further steps of design implementation. In constraints file, the designer can
specify t iming, placement, and other design requirements.

Some design tools such as X i l i n x I S E also offer the possibil i ty to add to system design
pre-synthetised macros which are opt imized for its purpose (memories, bus controllers, etc.)
and can be also customized (bus widths, memory sizes, etc.). These macros can be added
as an addi t ional input to the synthesis tool and synthetised together w i t h the H D L sources.

W h e n the design is synthetised it has to be implemented to specific F P G A . This means
that the logical design is converted into a physical file format that can be downloaded to
the selected target F P G A . The implementation can be customized by setting custom goals
and strategies i n constraints file which are taken into account by implementat ion tool .
A d d i n g constraints can cause the si tuation that the implementat ion tool w i l l not be able
to implement design due to insufficient number of resources i n specified F P G A and t iming
or routing issues.

The implementat ion of design consists of several consecutive steps. These steps are
often done batch by the design tool .

• The translate process merges a l l netlist files from synthesis together w i th design con
straints and create Nat ive Generic Database (N G D) file. Th is file contains the logical
design reduced to F P G A primitives.

16

• The map process is mapping the logic primitives from previous step into available
resources on the target F P G A such as C L B s and I O B s . The output design is a
Native C i rcu i t Descr ipt ion (N C D) file that physically represents the design mapped
to the components of F P G A .

• The Place And Route (P A R) process takes as an input a mapped N C D file and it places
and routes the design. A n N C D file w i th routing prepared for bi tstream generation
is created as an output of this step.

• The bitstream generation process encodes the N C D file w i th routing into configuration
bitstream for the target F P G A . The output bi tstream can be directly used for target
F P G A reconfiguration.

The F P G A design workflow used by X i l i n x I S E tool is show i n Figure 2.6.

Des ign en t ry o
Source codes

(VHDL, Verilog)

'
IP cores

Design
constraints

O
Testbenches

EDIF
NGC

NCD routec NCD NCD BIT

Des ign syn thes i s

HDL parsing
HDL synthesis

Low level optimization

Des ign

imp lemen ta t i on

Behavioral
simulation

Functional
simulation

Translate Technology
mapping

Placement &
Routing

Bitstream
generation

Translate Technology
mapping

Placement &
Routing

Bitstream
generation

Device
programming

Static timing
analysis

Des ign ver i f i ca t ion

Figure 2.6: Design workflow by X i l i n x I S E tool

2.2.6 D e s i g n workflow w i t h p a r t i a l d y n a m i c reconf igurat ion

This paragraph describes the changes to standard design workflow when P D R is used. It
is shown in Figure 2.7.

In X i l i n x design workflow, the hierarchical design must be str ict ly used. Th is means the
design has to be part i t ioned into modules which create hierarchical structure where on the
top of hierarchy is one top-level module. In this module, the static and dynamic components
can be identified. W h i l e design floorplanning, the Pa r t i a l Reconfiguration Regions (P R R s)
for each Pa r t i a l Reconfiguration Module (P R M) have to be determined. There can be
more P R M s assigned to one P R R enabling the dynamic change of implemented ci rcui t ry in
F P G A . The size of P R R and its shape is l imi ted according to F P G A architecture structure.
Typical ly , the F P G A is divided into several tiles containing the same number and type of
resources and the same relative posit ion of resources in tile. P R R can consist of one or
more of these tiles.

17

The implementat ion of design using P D R begins w i th top-level module which consists of
static modules and P R M s . W h i l e implementing top-level design, the P R M s are instantiated
as black-boxes. O n the boundary between P R M s and static part of design, the logic for
isolating these modules during P D R is added. Previously, X i l i n x F P G A s were using the
bus macros for this purpose. Bus macro is interface consisting of two L U T s applied to each
single signal. The first L U T is placed in P R M next to its boundary and the second is place
next to it but outside (in the area neigbouring wi th this P R M) . Nowadays, the proxy logic
is used [66]. P r o x y logic is using single L U T for each signal and it is placed automatical ly
by implementat ion tool . W h e n top-level module is implemented wi th P R M s instantiated
as black-boxes, constraints for static part and P R M s are determined and full design wi th
chosen startup P R M s is implemented. In the next phase, each P R M is implemented in
turn . The M A P and P A R process is constrained by one or several constraint files.The last
phase is merging of each P R M created wi th static design. The i r interfacing correctness is
verified and par t ia l reconfiguration bitstreams are created. F ina l ly , the full configuration
bitstream which w i l l be used after power-up of F P G A is created.

i Design source codes
i (top-level and
i static modules)

Design constraints
(including PRMs

placement)

Design
partitioning

Design
floorplanning

Top-level module
mplementation

• PRMs source codes

routed
NCD

Implemented
static design

Static design
implementation

PRM imple-
mentation

Full bitstream
(static design+
starting PRMs)

Placement and *
'context constraints,

I T

Merged bitstream
generation

i Implemented
' PRMs

iPartial bitstreams
i for PRMs

BIT

Figure 2.7: Design workflow wi th P D R by X i l i n x

2.2.7 C o n f i g u r a t i o n b i t s t r e a m s tructure

The configuration bitstream contains the necessary data for configuration of F P G A re
sources, i.e. definition of routing between components v i a setting the programmable inter
connect points, enabling of flip/flops or L U T s inside C L B s , definition of L U T functions,
etc. The configuration data of X i l i n x F P G A s is arranged into configuration frames. One
frame is the smallest unit of the configuration which can be addressed and handled by the
reconfiguration interface of F P G A and its internal reconfiguration logic. The size of one
configuration frame varies according to F P G A family, in V i r t e x 5 F P G A s family the size is
1312 bits and it is formed by 41 32-bit words [07].

A s the single frame configures (partially) 20 C L B s located i n one F P G A column at
once, the smallest possible P R M which can be created must contains multiples of these 20
C L B columns. To configure these 20 C L B completely, the set of 36 frames is needed (see
Figure 2.8).

18

-n -n -n -n
> > . . . > >
2 2 2 2
ni ni m tt\

I—1 N) W W
Ul 01

I CLBi
~ ~ CLB 2

• i
• i
i i

| C L B 1 9

CLB2o

Figure 2.8: The configuration of the smallest possible P R M by configuration frames

The complete configuration bitstream can be divided into three parts.

• The header is composed of the mixture of synchronizing words, dummy words and
32-bit commands used to ini t ial ize the reconfiguration process by setting internal reg
isters. The ma in goal is to prepare the F P G A to receive the subsequent configuration
data organized i n frames. These commands include the ini t ia l izat ion of Cyc l i c Re
dundancy Check (C R C) , setting the configuration and control options, setting the
Frame Address Register (F A R) w i t h the address of the first configuration frame. A t
the end of header there is the write configuration command start ing the process of
loading configuration frames.

• The configuration data is consisted of the bulk of configuration frames. Due to the fact
that the frames are typical ly organized to configure consecutive blocks of resources,
the frame address is automatical ly incremented when the next frame is recognized.

• The footer is used to issue the commands to finish the reconfiguration (i.e. C R C) and
prepare the F P G A for the start (i.e. the reset of flip-flops).

The mapping between the bits in the configuration bitstream and the specific F P G A
resource is typical ly not documented by the manufacturer. Th is relation is not needed for
the standard system design flow i n F P G A but it makes some task difficult such as precise
fault injection v i a bi tstream manipulat ion [50].

2.3 Faults in digital systems

Very fast scaling of technology i n last decades has an adverse impact on the rel iabil i ty of
components for d ig i ta l systems. A n increasing error susceptibili ty for disturbances from the
operational environment can be identified but the components also become more vulnerable
to permanent faults. Faults occur i n a digi ta l system in a l l phases of its existence - from
the design and fabrication phase through the whole lifetime.

2.3.1 T e r m s

In this paragraph the difference between the terms fault, failure and error is presented.

• A fault is a difference i n hardware configuration between correctly configured system
and its current state. If there is no difference, fault is not present.

19

• A n error i n a system is a deviation from the required operation of system or subsystem
which causes the difference between actual processed data and expected correct data.
The reason of error occurrence is fault presence i n the system.

• A failure of the system means that it is not producing correct outputs and thus the
system is working wi th the behaviour which differs from the required one. A failure
is caused by an error.

Not every fault has to manifest itself necessarily by an error which can be detected.
Errors that are present in a system but not detected are latent errors.

2.3.2 F a u l t classif ication

Faults i n d igi ta l systems can be classified according to their t ime of occurence:

• Design faults are present i n the system from the beginning of its lifetime. They can be
inherited from the existing system on which the new one is bui l t , created by human
designer or by design tool . These faults are present i n every piece of final system.

• Fabrication faults can be present i n the final solution due to an imperfect manu
facturing process (i.e. short-circuits, opens, incorrect transistor threshold voltage,
improper doping profiles, mask alignment errors, poor encapsulation i n V L S I circuits
etc.). Accurate identification of fabrication defects is important in improving the
manufacturing yield.

• Operational faults are caused by external disturbance during the digi ta l system life
t ime. The sources of these faults can be operator mistakes, environmental extremes,
electromagnetic interference and wear-out failures when the product exceeds its design
lifetime.

Faults in digi ta l systems are usually classified according to their duration:

• Transient faults appear in the system for a short time, they are mostly caused by
random environmental disturbance such as radiation, pol lut ion, humidity, temper
ature, pressure, v ibrat ion, power supply fluctuations, electromagnetic interference,
static electrical discharges, ground loops etc. The physical resource is not damaged.
These faults are not correlated wi th each other and it is nearly not possible to detect
them due to their hardly predictable influence on the system behavior.

• Permanent faults affect the functional behavior of a system permanently. They refer
to a physical damage of system resource. This resource cannot be used any more
without physical repair or replacement. The error caused by permanent fault is also
called hard error.

The permanent faults can arise as a result of various physical phenomenons, such as:

— Time Dependent Dielectric Breakdown (TDDB) is the result of long-time appli
cation of relatively low electric field. It is an opposite to immediate breakdown
which is caused by strong electric field. T D D B comes wi th reduction i n gate
oxide thickness. The charges are trapped i n oxide that creates electric field. The
charge flow through the oxide results i n a breakdown after some time.

20

— Electro-mitigation is causing permanent failure of interconnect. It develops voids
in metal line due to heavy current densities over t ime period.

— Hot Carrier Effects are parasitic effects at the drain side of channel and they are
caused by hot carriers traveling w i t h saturation velocity. It is a t t r ibuted by slow
creation of traps at the oxide surface. The i r impact is the change of the transis
tors threshold voltages which consequently affects the power and performance of
the device.

The permanent fault can manifest as permanent logical value 1 or 0 on signal which is
called stuck-at fault. Another manifestation can be short-circuit between two or more
signals, delayed propagation of signal through the circuit compared to specification
or delayed level t ransi t ion from logical 0 to 1 or inversely.

• Intermittent faults appear, disappear, and reappear repeatedly. They are difficult to
predict, but their effects are highly correlated. Most intermittent faults are caused
by the optimist ic design or manufacturing not counting wi th a l l circumstances which
can affect its run. The system works well most of the time, but fails under atypical
environmental conditions.

2.3.3 Faul t s i n F P G A

A l l common faults of d ig i ta l systems can also occur i n F P G A s . There are also other specific
faults which can appear i n specific F P G A resources such as configuration memory. Mos t of
the modern F P G A s are based on S R A M which is vulnerable to radiat ion. Alpha-part icles
as the part of the radiat ion is the main reason of transient faults presence i n F P G A . Errors
caused by transient faults are frequently called soft errors.

Very often we are faced wi th two types of faults:

• Single-Event Upset (SEU) causes a random change i n the state of a d ig i ta l memory
element (or other sequential element) by an ionizing particle that coll ided wi th this
element. S E U can be very cr i t ica l in case of S R A M - b a s e d F P G A s and can lead to
undesirable change of function implementation. The system can be turned to correct
operation by correcting the attacked element to its proper state. The probabil i ty of
the S E U for one memory cell is extremely smal l for typica l conditions on earth. B u t
w i t h increasing memory size or exposure in harsh environment the probabil i ty can
considerably increase. T h i s can become a real problem for example i n the space or
aircraft designs.

• Single-Event Transition (SET) causes one or more voltage pulses (i.e. glitches) on
signals which can be then propagated through the circuit . There is no need to correct
this erroneous state due to its short and temporary existence.

In A S I C s , S E U faults are considered as transient. If they hit combinatorial logic, the
error on the output lasts only unt i l the next value is processed by the logic. In case they
hit sequential logic, the errors exists in storage cell un t i l next value is wri t ten into it.

The variety of effects i n F P G A s after S E U occurence is bigger as shown i n Figure 2.9. In
F P G A s , the combinational and sequential logic of implemented circuit is set by the values
of configuration memory cells. The combinational logic of final circuit is implemented by
L U T s and rout ing settings. The S E U occurence i n L U T changes its implemented function.
In rout ing settings, the impact of S E U can be the change i n the connection of logic gate

21

output or input to interconnection matr ix . B o t h faults can be restored by reconfiguration
of F P G A by the original configuration bitstream. The sequential logic of final circuit can
be implemented by flip-flops i n C L B s or by hard blocks such as Block R A M s . The effect of
S E U on flip-flops is transient. W i t h the next write operation to memory cell implemented
by flip-flop the error disappears. W h e n the S E U fault occurs i n Block R A M cell, the
reconfiguration of F P G A is needed to restore its state [28].

CLB HARD BLOCKS

Lookup table

M

[m\ Conf igurat ion memory cell
SEU

Figure 2.9: Bi t s i n configuration memory and resources of F P G A sensitive to S E U s (X i l i n x
V i r t e x F P G A family) [28]

In this work, the fault i n configuration memory is considered as transient i n case it can
be corrected by reconfiguration of F P G A wi th using the original configuration bitstream
and restoring its state by synchronization process. If the reconfiguration of F P G A does not
correct the fault, it is considered as permanent fault.

2.4 Dependability of systems

The dependabili ty is the abi l i ty of a system to deliver its intended level of service to its
users [G]. In other words, the dependabili ty of system (service) can be expressed as the
system abi l i ty to work without failures at least for the given period and without more
severe failures than it is acceptable. W i t h the fact that the computing becomes common
in a l l parts of human life, its dependabili ty plays an important role in a l l its applications.

The system dependabili ty is an integrated measure consisting of several attributes and
it cannot be counted as a single number. It can be evaluated from the availabil i ty and reli
abi l i ty parameters of the system, its maintainabil i ty, safety and security and other adjacent
attributes such as repairabil i ty or durabil i ty. To summarise, the dependabili ty expresses
the abi l i ty of system to produce outputs that can justifiably be trusted.

To be able to evaluate dependabili ty attributes, some system fault model has to be
adopted. The most frequently used model is using only two states. A t the given time
the system (component) is either working properly or it is faulty and producing incorrect
outputs. The system state can change as the t ime evolves and this change is done instantly.
The change from a functioning to a failed state is referred to as failure and the change from
failed state to the functioning state is referred to as repair [25].

The systems can be divided according to their survivabil i ty of occured faults to re
pairable and non-repairable ones. Survivabi l i ty i n this context means that the system can

22

be used again to produce the correct outputs after fault occurence (not necessarily immedi
ately, t ime for fault mi t igat ion may be needed). The non-repairable system w i l l stay after
the first fault occurence i n failed state forever. The repairable system can be brought from
failed state to functioning state when repair process is completed (if it is possible). It is
assumed that the repair process w i l l br ing the failed system back to the state where it w i l l
produce correct outputs and it w i l l be able to recover from the same variety of possible
faults as i n the beginning of its lifetime.

The changing of system states according to fault occurences and their repairs is shown
in Figure 2.10. The lifetime of system (Tufe) describes the time from the first run of system
to the moment when unrepairable fault (or faults) occurs. System operational t ime (Top)
is reffered to as the time for which the system is working properly. For the non-repairable
system we can state that the operational t ime before the first and only one fault occurence
Topi is equal to system lifetime Tnfe. W h e n the system is affected by fault the t ime needed
to its detection and localizat ion by system test equipment should be assumed before fault
mit igat ion is started. If Figure 2.10, the t ime needed to detect fault is denoted as T ^ e i , t ime
needed for fault localizat ion as 7) o c and fault mit igat ion t ime as as Tma. The t ime needed
for system repair consists of these 3 parts.

To simplify the evaluation of system dependability, several dependabili ty statistic indi
cators have been introduced.

Mean Time To Failure (M T T F) is the expected (mean) t ime for a system to fail . It is
a statist ical value and the length of the observation interval for the calculation of M T T F
must be infinite. This parameter can be evaluated as the average of a l l operational time
periods (2.1).

1 "
MTTF = - V] Topi (2.1) n . i=i

Failure intensity (A) shows the mean frequency of system failures. It can be derived
from M T T F indicator (2.2).

1
X=MTTF (2 - 2)

Mean Time To Repair (MTTR) is the expected (mean) t ime for a system to be repaired.
Th i s can be evaluated as the average of a l l repair t ime periods (2.3).

1 "
MTTR = — y T^eti + Tioci + Tmm (2.3)

n '
i=l

Repair intensity (//) shows the mean frequency of system repairs. It can be derived from
M T T R indicator (2.4).

A = (2.4)
MTTR v '

Mean Time Between Failures (MTBF) is the mean elapsed t ime between inherent
failures of a system (2.5).

MTBF = MTTF + MTTR (2.5)

23

1

S y s t e m s t a t e

fiinrtinninn

r i

ffunctioninm—»«

f i

^ • i l c ^ >

* f

f unctionino i frailcch 5

S y s t e m r e c o v e r y p r o c e s s

r i

ffunctioninm—»«
v K . n c t . o n . n g ^ .

detect
fault

localize
fault

mitigate
fault

detect
fault

localize
fault

mitigate
fault

detect
fault

localize
fault

report un
repairable fault

T o p i Tdet l T l o c l Tmi t l Top2 Tdet2 T l oc2 Tmit2 Top3 Tdet3 T l o c 3

Tlife

< MTTF ^ MTTR MTTF MTTR < MTTF

MTB F MTB F
3 *

t i m e

Figure 2.10: The chain of system states during its lifetime

2.4.1 R e l i a b i l i t y

The rel iabil i ty R(t) of a system at t ime t is the probabil i ty that the system operates without
a failure in the interval [0, t] under given operational conditions. The correct operation
of system at t ime 0 is a premise. In other words, the rel iabi l i ty can be understood as
an abi l i ty to continuously deliver correct service and meet requirements of implemented
function dur ing the given t ime period. This correct service ends i n the moment of failure
occurence. H i g h rel iabi l i ty means that long time interval elapses before the first system
failure occurs.

Since the rel iabil i ty can be expressed as the probabil i ty of system run without failures
before or at t ime t, we can define a random variable T as the t ime to failure and then
express it by formula 2.6.

R(t) = P(T > t) (2.6)

A s the opposite to the rel iabil i ty which expresses the probabi l i ty of success, the unre
l iabi l i ty Q(t) of a system at t ime t can be defined. It expresses the probabil i ty that the
system w i l l fail i n the interval [0, t]. A g a i n , the correct operation of system at t ime 0 is a
premise. The rel iabi l i ty and the unrel iabi l i ty are related as shown i n 2.7.

Q(t) = 1 - R(t) = P(T < t) (2.7)

Rel iab i l i ty is a function of t ime but the specification of t ime period can vary according
to the system under consideration. The t ime of correct operation can be specified i n time
units such as hours, days or years or it can be stated for example as the number of correctly
processed outputs unt i l a fault can appear.

To model the rel iabi l i ty of (non-repairable) system, an exponential d is t r ibut ion is fre
quently used (2.8). There is also the possibil i ty of using other distributions to model system
rel iabil i ty but this typical ly requires more detailed information on the system and a more
detailed analysis. For most situations the exponential d is t r ibut ion is adequate.

R(t) = e'"* (2.8)

W h e n the rel iabil i ty function of system R(t) is known, the failure probabil i ty Q(t) (the
unreliabil i ty of system) can be evaluated (2.7) and used to derive the failure density function
/ (£) (2.9). The failure density function / (£) is defined as the probabil i ty per unit of time

24

that the first failure of system w i l l occur at t ime t. The correct operation of system at
t ime 0 is a premise. Besides others, this density function can be used to determine the
probabil i ty of failure occurence wi th in t ime interval bounded by t ime to and t\ as shown at
2.10.

/(*)
dQ
dt

fie (2.9)

Q(to -)• h) = / f(t)dt = n \ e'^dt = e~^° - e"" ' 1 (2.10)
J t0 ho

In practice, the failure rate function is used to describe the rel iabil i ty of system. The
failure rate X(t) is defined as the probabi l i ty per unit t ime that the failure of system w i l l
occur at t ime t, given that the system was correctly operating at t ime 0 and has survived
to t ime t. To define failure rate for the repairable system, this premise can be extended as
the systems that do not need to survive i n original state, but then they have to be repaired
to fully operating state at t ime t.

A(t) /(*) /(*) (2.11)
R{t) 1 - Q{t)

To evaluate the failure rate function X(t), the failure density function / (£) can be used
(2.11). In practice, the failure rate is often measured by observing the correct operation of
a system. Due to fact, that the failures do not occur frequently, it is often measured using
many identical copies of a component or system. A s the failure rate of a system depends
on t ime, it can vary a lot over the life cycle of the system. It is often reported, that the
failure rate has the shape of bathtub curve as shown i n Figure 2.11.

A (t)
I n f a n t

m o r t a l i t y
i N o r m a l w o r k i n g l i f e , W e a r - o u t

t

Figure 2.11: The failure rate of a system during its lifetime

A t the beginning of system lifetime, there is a high failure rate which is decreasing in
time. This period is often called infant mortal i ty or wear-in mode. Failures occuring during
this period are typical ly caused by a variety of factors such as the occurence of defective
parts, defects i n materials, damages i n handling, out of manufacturing tolerance, etc. To
avoid this situation, manufacturers frequently perform burn-in process of the product in
their factory to avoid such situations when failures from wear-in mode w i l l happen in

25

customer premises. The mit igat ion of these failures includes design improvement, care in
materials selection and tightened product ion quali ty control.

W h e n early failures pass away the failure rate typical ly becomes nearly constant and
its ampli tude is the lowest dur ing this t ime. This part of system lifetime is considered as
normal life period. The failures occuring i n this period are typical ly considered as random
and externally induced. It is difficult to predict which failure mode w i l l manifest, but the
failure rate is predictable. Th is part of system lifetime should be the longest one.

W h e n system is coming to the end of its lifetime, failures typical ly occur at increasing
rates. Th is per iod is reffered to as wear-out mode. Wear-out mode failures are mostly
caused by mater ial fatigue or by strength deterioration due to cyclic loading. W h e n these
failures begin to predominate it is considered that the system has aged beyond its useful
life.

For the rel iabil i ty considerations, the random failure rate (the middle part of bathtub
curve) is widely used. The wear-in mode failures are often considered as an issue of quali ty
control, the wear-out mode failures are assumed as the result of poor maintenance.

W i t h the knowledge of system rel iabi l i ty function, M T T F for the first system failure
can be derived (2.12).

MTTF = / R(t)dt (2.12)

2.4.2 Ava i lab i l i t y

The availabil i ty A(t) of a system at t ime t is the probabil i ty that a system is in operational
state (not i n failure) at a given time. Its unavailabil i ty can be caused by the fault occurence
in the system, its mit igat ion or system maintanance of any k ind . Thus, it does not just
incorporate the frequency of fault occurence but also the t ime needed for its repair and for
the system maintanance.

The availabilty function A(t) for repairable (and non-repairable) system for given time
t, last repair t ime u w i t h renewal density function m{u) can be derived as shown i n 2.13.

A(t) = R(t) + I R(t- u)m(u)du (2.13)
Jo

In practice, operational availabil i ty Ao as the measure of system availabil i ty that in
cludes a l l possible sources of downtime (failure repair, maintenance, etc.) is frequently used
(2.14).

_ MTTF _ MTTF fi
° ~ MTBF ~ MTTF + MTTR ~ Jl + A ^ ' U '

Avai labi l i ty is frequently used as a measure of dependabili ty for systems where short
out-of-order states can be tolerated.

2.4.3 Safety

To define safety, we need to split possible failure states in system to fail-safe and fail-unsafe
ones according to fact if they create safety hazards to the system or its environment. Then ,
the safety S(t) of a system at t ime t can be described as the probabil i ty that the system
is not in failure state or it is in its fail-safe state in the interval [0,i]. The non-fail state of
system at t ime 0 is a premise.

26

Safety is required i n safety-critical applications such as medical, t ransportat ion or m i l
i tary systems where a failure can result i n human injury, loss of life, or environmental
disaster [11].

2.4.4 M a i n t a i n a b i l i t y

The maintainabi l i ty is dependabili ty attr ibute concerned wi th the ease of repairing the
system after a failure occurence or changing the system to include new features. It is
distinct from other dimensions of dependabili ty because it is a static and not a dynamic
system attribute. H i g h maintainabi l i ty means a short downtime for the system repair or
its upgrade to new version.

Es t imat ion of maintainabi l i ty can highlight if the predicted maintanance factors such
as downtime, the quali ty and quanti ty of maintanance staff or tools are adequate and
consistent w i th the needs of the system operational requirements.

2.4.5 S y s t e m dependab i l i t y analysis

To analyse the system dependabili ty parameters, many methods were introduced. F r o m the
most popular ones, fault tree analysis, rel iabil i ty block diagram, rel iabi l i ty graph, Markov
chain and Monte Car lo s imulat ion can be mentioned.

• Fault tree analysis (FTA) is widely used method for the analysis of system reliability,
safety and maintainabil i ty. It can be used to determine the cause of undesired event
at system level such as hardware failure, human errors, etc. A n undesired state
of a system is further analyzed using Boolean logic to combine series of lower-level
events. Failure states are depicted by square signs in diagram and states where
system is operating properly are depicted by circles. O n l y one fault event is analyzed
by single fault tree. F T A has expression power but its construction is not an intuit ive
process and it requires skil led designer. Enhanced techniques based on F T A such as
dynamic F T A were introduced to enable dependabili ty attributes analysis of complex
and dynamic systems [15].

JAND|

© ©

S u b s y s t e m

I
2

© ©
Figure 2.12: Faul t tree analysis method

• Reliability block diagram (RBD) enables the system rel iabil i ty and availabil i ty analysis
for large and complex systems using block diagrams which show the relationship
between the components of system. System components can be displayed as series of

27

Block 1

Start End
Block 2

Start

Start End
-»- Block 2 -»- Block 3 —-Q * Block 3 — 1

Block 1

Block 3

Block 2
End

—o

(a) Series systems (b) Parallel systems (c) Combinational systems

Figure 2.13: Rel iab i l i ty block diagrams

blocks which can be connected i n series, i n parallel connection or as the combination
of series and parallel . Each block can be assigned by rates of desired dependabili ty
attributes such as rel iabil i ty or availabil i ty value, failure or repair rates, etc.

R D B is frequently used to evaluate how much the rel iabil i ty (availability) of each
component contributes to the overall value for entire system. O n the basis of R B D ,
enhanced method such as dynamic R B D were introduced enabling the analysis of such
complex systems as multiprocessors [15].

In R B D , system can be modelled as series of connections (2.13a) i f it consists of
components where a failure of each component w i l l cause the failure of entire sys
tem and their M T T F rates are mutual ly independent. In the series connection, the
most important component to the overall system rel iabi l i ty is that one w i t h the least
rel iabil i ty because the overall rel iabil i ty is always less than the rel iabi l i ty of this com
ponent. Overa l l rel iabil i ty can be evaluated as a product of a l l component rel iabil i ty
values (Ri).

To be able to model a system as a set of components connected i n parallel , the
condit ion that the system has correct output is met i n case when at least one of the
component in parallel connection has correct output (2.13b). A parallel connection
is used to show redundancy of components and the fact that several paths from start
node to end node exist. Overa l l rel iabi l i ty can be evaluated as the uni ty complement
to the product of a l l component unrel iabi l i ty values (Qi).

More complex system can be represented by components connected by combination
of series and parallel (2.13c). To create this model, the appropriate decomposition
of entire system to subsystems which can be represented either in a series connection
or i n a parallel connection is needed. Overa l l rel iabil i ty can be gained by evaluating
part ia l reliabilities of these subsystems.

• Reliability graph model is composed of nonempty sets of nodes and arcs. A node can
be used to model a component i n a system and an arc can be used to model the
transi t ion between two components. A system rel iabi l i ty graph fails when there is
no path from the start node to the end node. It is considered as intui t ive method
for analyzing system rel iabil i ty because the bijection between the actual structure of
the system and the system model can be stated. The drawback of this method is
its l imi ted expression power. In Figure 2.14, the sample system delivering data from
node 1 to node 4 w i t h 5 transmission lines modelled by 5 arcs is shown [29].

• Markov chain models are used to model random processes wi th the Markov property.
This property refers to the memory less property of the stochastic process. The mod
elled random process can be described by a set of states and transitions wi th their

28

Figure 2.14: The rel iabil i ty graph of system delivering data from node 1 to node 4

probabilities where the next state only depends on the current state but not on the
past state. Markov chain models can be graphically shown as the state transi t ion
diagrams comprised of various possible states of the system where the transitions
between various states are described i n terms of the rates of t ransi t ion probabilities.
For a state, the t ransi t ion probabilit ies must be positive and they must sum to unity.
The state model can be solved by state space approach predict ing the probabil i ty of
system ending i n various states after specified t ime interval. The availabil i ty of such
system can be evaluated as the sum of the probabilities of system ending i n non-failure
states. Several techniques for creating Markov models for the rel iabi l i ty analysis of
system exist [30].

The states i n Markov chain model reflects the operabil i ty of the modelled system in
the same way as rel iabi l i ty graphs. The circle sign is used to model non-failing states
of system, the square sign depicts the failure of system.

In Figure 2.15, the Markov chain model for system wi th three replicated modules and
w i t h repair done by bitstream scrubbing technique is presented [32]. The directed
edges between the states are marked either w i t h failure rate (A) or repair rate (//).

Figure 2.15: Markov chain for T M R system wi th bitstream scrubbing repair [32]

• Monte Carlo is a s imulat ion method useful for modeling phenomena where uncertainty
in inputs is significant. The properties of desired phenomena are determined by
repeated sampling. Instead of s tudying few discrete scenarios, Monte Car lo method
uses random sampling by chosen probabil i ty dis t r ibut ion function to create inputs
and acquire many possible outputs which can be further analyzed. The rel iabil i ty
analysis of complex system based on Monte Car lo method was studied i n [39].

2.4.6 D e p e n d a b l e sys tem design

Several strategies can be adopted while designing the digi ta l system to make it (more)
dependable:

• Fault prevention is a set of techniques a iming at careful design based on approved
development methodologies i n order to prevent incorporation of faults into system.
These methodologies typical ly contain processes such as design reviews, component
screening and testing [60].

1 - 3 X F 1 - (2 A F + l i F) 1

29

• Fault forecasting is a set of techniques focused on the estimation and prediction of
system rel iabi l i ty to determine whether the effort to increase dependabili ty of system
w i l l be needed. This includes the estimation of fault presence and the occurence of
failures and their consequences i n a system. To be able to do the estimation, the
relation between the faults and failures has to be known, the rel iabil i ty models have
to be designed and applied to gathered failure data and analysed. It can lead to
decision about making the system fault tolerant to meet the system dependabili ty
requirements.

• Fault tolerance is the abi l i ty of a system to continue to perform its specified tasks even
if the fault is present. The main goal is the masking of fault what means that the
error caused by the occured fault is not propagated though the system to its outputs.
These techniques work in real t ime. A s an example, the system wi th replicated unit
and voting can serve. This strategy is studied more deeper i n the next chapter.

• Fault removal is a set of techniques a iming at reducing the number of faults which are
present i n the system. T h i s can be done in development phase by verification. The
verification of design checks if the system meets the given conditions. If it does not,
the fault causing the incorrectness has to be diagnosed and corrected. The fault can
be removed also during the operation phase by maintanance i n two ways. Preventive
maintanance is based on removing possible damaged parts of system before the fault
appears. W h e n this approach is not used or it fails to avoid the fault occurence, the
corrective maintanance is applied removing the fault at as short t ime as possible.

In this work, the fault tolerant design w i l l be the main topic.

30

Chapter 3

Related areas of topic

In this chapter other approaches i n the field of fault tolerant system design are presented.

3.1 Fault tolerant systems

A fault tolerant system is that one which can perform its function and produce correct
outputs even when it is affected by a hardware or software fault. Various conditions can
exist that tel l us whether the system is working correctly. In [25], three condit ion to state
that system is fault tolerant are considered:

• The system computat ion for given dataset was not interrupted when a fault occured
and complete batch of input data was processed.

• The outputs produced by the system are correct.

• The length of computat ional process d id not exceed the predefined t ime l imi t .

In fault tolerant systems, the key goal is to prevent the errors from propagating to observable
outputs of computat ion process. To achieve this behaviour, some k ind of redundancy is a
mandatory prerequisite. Accord ing to [7], the redundancy used for tolerating faults can
be classified into four categories.

• Space (hardware) redundancy is probably the most frequently used one because of
its easy use. Components of original systems are duplicated and special logic imple
menting some k ind of voting strategy is added. This approach can be used for both
fault detection and localizat ion. Th is category w i l l be discribed later i n this text.

• T ime redundancy is based on several repetitions of unit computat ion wi th the same
input data. The interval between two repetitions can vary. Th i s type of redundancy
can be used to dist inguish between the transient fault which can disappear after the
execution of recovery process and permanent fault which persists over t ime. The input
data used for several computat ional repetitions can be encoded i n different ways to
enhance the error detection capability.

• Information redundancy is based on the addi t ion of information to the basic data
structure. These addi t ional data (referred to as control bits) can be used to check the
val idi ty of received data and can be used to restore the original data i f max ima l num
ber of tolerable faults is not exceeded. F r o m among the most popular approaches, the

31

VOTER OUTPUTS

(a) T M R scheme with one voter (b) T M R scheme with tripled voter

Figure 3.1: T M R scheme wi th single and t r ipl icated voter

single pari ty check, M-ou t -o f -N coding, computing checksum and codes w i t h residue
and inverse-residue can be mentioned [71].

• Software redundancy is combined wi th the expansion of the use of microprocessors.
It is based on the implementation of some addi t ional software to provide F T features
such as val idi ty check of operational unit outputs or periodical self-test which exercises
the hardware units repeatedly after a certain period.

Very often the fault tolerance techniques based on space redundancy are classified into
two categories - static and dynamic.

3.1.1 Stat ic fault to lerance

Because the size, energy consumption and price of hardware components is being decreased
during the time, it is acceptable i n most cases to increase the level of hardware redundancy
to provide the possibil i ty to detect and overcome one or more occurred faults. The majority
voting mechanism is provided by n identical modules (n is always odd) and one or more
voting units (voters).

The simplest example w i th 3 identical modules is called Triple M o d u l a r Redundancy
(T M R) (see Figure 3.1). T M R is able to detect one affected module and tolerate its error
output. M a x i m a l number of tolerated faults for n-modular redundancy is The weak
point of using this F T scheme is the voter which is not usually secured against the presence
of fault. Several strategies exist how to make the probabil i ty of system failure smaller.
The voter unit can be also replicated and thus have better chance to survive the fault
occurence. Th is si tuation is shown i n Figure 3.1b where a l l voters examine a l l results. A l l
data paths remain tr ipl icated i n as many system units as possible. A t the end of the chain
of T M R architecture single result has to be reached. Another method for improving the
voter resistance against faults is to implement it into more resistable fabric or by more
reliable technology. Also the granularity of system plays an important role. W h e n the
coarse-grained strategy is used, the voter size is relatively much smaller and therefore the
chance that fault w i l l affect it is also much smaller. These T M R schemes wi th different
granularity are shown in Figure 3.2a, Figure 3.2b and Figure 3.2c. It is clear that the
relative probabil i ty of fault occurence i n voter is biggest i n case of single unit replication
because of its size ratio.

32

3.1.2 D y n a m i c fault to lerance

Act ive replication methods are not based only on masking faults but they also provide fault
detection, its local izat ion and recovery from fault abili ty. The switching faulty components
w i th spare ones or some k ind of system reconfiguration can be used by this approach. The
full operational capabil i ty of system can be brought back but a disruption i n processing
may be necessary during the reconfiguration process. Hot sparing techniques can be used
to eliminate the disruption. In this case the spare unit is operating in parallel to original
unit and it is ready everytime to substitute the unit affected by fault. The configuration
wi th spare units operating in parallel together w i th n-to-1 switch is shown i n Figure 3.3.

INPUT

Figure 3.3: Ac t ive redundancy based on hot sparing

3.2 Fault detection and localization techniques

For fault detection, the capabil i ty of systems to mitigate faults which appear during their
operation is an important feature. It should be signaled in some way to the supervising
process running the applicat ion that a problem exists which needs to be solved. In most
cases, the next step i n mit igat ion process, the fault localizat ion, is done together w i th fault
detection. A l though several fault mi t igat ion techniques exist which do not need these two

33

steps to be performed, as e.g. bitstream scrubbing (see section 3.3.1), the fault localizat ion
is a very important prerequisity for starting the fault recovery process.

The fault detection always requires some k ind of redundancy. In last decades, many
techniques were introduced and many of them are used t i l l nowadays. M a n y of these
techniques were based on increasing information redundancy. The main principle is to
encode the given data vector to the form which w i l l allow error detection, its local izat ion or
even its mit igat ion by some control logic. These techniques are s t i l l frequently used mainly
during data transfers between two logic devices in non-reliable environment.

F rom among the most widely used techniques based on information redundancy, the
pari ty code, cyclic redundancy check and checksum methods can be mentioned.

• The parity code is based on adding extra information, mostly a single bit , to each
input data vector. The value of this bit is determined to respect the required pari ty
for the resulting code. W h e n even pari ty is used the number of logical ones i n code
has to be even. For the odd pari ty the code has to contain the odd number of logical
ones. Th is technique is able to detect the odd number of errors i n code. W h e n the
even number of errors appear the error detection is impossible and the received code
is considered as non-faulty.

• The checksum can be counted by some aggregation function both on side of trans
mitter and the receiver and then these two values are compared. If they disagree the
error is present. The bit size of the checksum when compared wi th data vector has
to be bigger because of the carry bit which can appear when the sum is counted.

• CRC is the method which uses the generator polynomia l to count the check code for
the input data vector. It is the enhancement of the checksum counting based on cyclic
codes. C R C can be easily implemented by blocks wi th X O R logic function. The code
word consists of original data vector and the counted code. C R C is based on d iv id ing
the original data vector by the generator polynomia l in a polynomia l long division.
The remainder of the computat ion becomes the result. The polynomia l coefficients
are calculated by a finite field arithmetics and thus the addi t ion operation can be
performed bitwise-parallel. The abi l i ty to detect errors depends on the proper choice
of the generator polynomial . [40]

W h e n the information redundancy is increased the H a m m i n g distance between the data
word and encoded word can be counted and can be used to find the detection parameters
of used method such as m a x i m u m number of errors which can be detected or repaired. The
codes wi th the abi l i ty to detect errors are reffered to as E r ro r Detect ion Codes (E D C s) . If
they can also repair the error, they are reffered to as E r ro r Correct ion Codes (E C C s) . Fault
detection and local izat ion methods can be also based on space redundancy. These are also
very popular widely used when dealing wi th F P G A s . The main techniques from this group
can be roughly divided into three categories:

• Methods based on replication and concurrent error detection

• Methods for off-line testing

• Methods based on roving areas in F P G A

34

Computed
property of FU

Functional
unit
(FU)

OUTPUT

(a) Checking function property

Functional
unit

Parity
calculation

Functional
unit OUTPUT

(b) Checking computed parity

— O U T P U T

(c) Comparing output of replicated FUs

Figure 3.4: C E D based on different techniques

3.2.1 R e p l i c a t i o n a n d concurrent error detect ion

These methods are based on the fact that for fault detection some k ind of space redundancy
is needed.

The simplest form is n-modular redundancy wi th n replicated modules connected in
parallel . The i r outputs are compared and any difference indicates the presence of fault.
A s an example, T M R system can be mentioned (see Figure 3.4c). The redundancy of this
system is always more then (n — 1) * 100%. A s its benefit, the abi l i ty to detect every distinct
error can be seen. The problem can arise only when the same error w i l l be produced by a l l
replicated units.

In many solutions, the technique of Concurrent E r ro r Detect ion (C E D) is adopted be
cause of the min imiza t ion of performance impact . Para l le l to operational unit , there is a
unit computing some function as can be seen i n Figure 3.4a. Its output can be continuously
used to check the correctness of the output. W h e n the outputs of the units are not equal,
it means there is a fault i n the system which caused an error to occur. The drawback of
this approach is that we cannot dist inguish whether the error is produced by operational
unit or its concurrent unit . One of the most popular C E D techniques is the computat ion
of pari ty code (see Figure 3.4b).

If the functional unit implements bijective function, the unit implementing inversion
function can be added to compute back the input vector value and compare it w i t h the
original one. Th is approach can be seen in Figure 3.5. Th is is a more reliable technique
than replication of functional units because there is no risk that the same fault w i l l appear
in more replicated units at the same time. Another drawback besides the l imi ta t ion that
the inversion function cannot be created for non-bijective function is the delay extension of
resulting system when compared wi th the original system. This is caused by the fact that
the new system is consisting of two units, the first is implementing the desired function and
the second its inversion, and they are connected i n series.

In common, the methods based on redundancy and C E D provide a very fast solution of
fault detection, as the fault can be detected immediately or very early after the functional
unit finishes the computat ion. There is just the latency of voting, pari ty or similar logic.
Besides the extension of space overhead, their drawback is also the resolution of detecting

35

Inverted
functional

unit
ERROR

INPUT -
Functional

unit - • OUTPUT

Figure 3.5: Faul t detection based on the use of function inversion

and local izing the fault in system. O n l y entire replicated unit can be localized, not part icular
affected resource inside this unit.

3.2.2 Off- l ine tes t ing

Off-line fault detection is a widely used technique which is checking the fault occurrence
while the applicat ion i n the F P G A is not running. This method can be based on external
testing equipment outside F P G A or the test equipment can be configured into F P G A .
The second approach is known as B u i l t - i n Self-Test (B I S T) . For configuring internal test
equipment the complete reconfiguration of F P G A is frequently used.

The offline testing methods for F P G A can be divided into two categories according to
their relation to currently configured application:

• The objective of application-independent testing is to check as great number of pos
sible configurations of programmable logic components and their connections as pos
sible. N o information about applicat ion which w i l l be run i n F P G A is available. Th is
type of testing is very often employed by chip manufacturers. The ma in drawback
of this approach is low efficiency of detection of t iming-related faults because during
this testing it is not possible to examine a l l possible interconnection patterns which
can be designed by user.

• The objective of application-dependent testing is only to test the resources used by a
specific applicat ion implemented i n the F P G A . This is done by decomposing the user
designed system into blocks and exercise each block by using the another ones. These
blocks have to provide the data path between tested block and the external interface
of F P G A in case of using external test equipment or they have to implement the test
equipment by themselves. A s the configuration memory has low dependence on the
structure of the F P G A , this testing scheme can be often used for the same design in
different F P G A s . To implement reliable B I S T is more difficult than the use of the
external testing equipment because the test equipment such as test vector generators
and response analyzers are not implemented in fault-free fabric.

Firs t ly , B I S T technique for F P G A s was introduced for testing P L B s [], and then it
was extended for testing programmable interconnect [57]. It uses several test configurations
which consist of three main blocks - Test Pat tern Generator (T P G) , B lock Under Test
(B U T) and Output Response Ana lyzer (O R A) . The ma in principle of B I S T methods is
that one part of the F P G A is configured to be under test (B U T) and the other parts are
configured to generate testing vectors for it (T P G) and to analyze the results (O R A) . W h e n

36

the testing is finished, the resources of the F P G A change roles and the other part of F P G A
is tested. Thus, in several steps the entire F P G A can be fully tested. This technique can be
seen i n Figure 3.6. The start of B I S T can be triggered either dur ing the system start-up,
as part of a maintenance schedule or i n response to detected error.

The main advantage of B I S T i n comparison wi th other fault detection techniques is
that there is no impact on F P G A dur ing the normal operation. Just the storage for test
configurations which are not typical ly very big must be provided. After the manufacturing
phase, testabili ty can be achieved without any cost, because the B I S T can be configured
into the F P G A at the beginning and then reconfigured by the desired design. W h e n B I S T is
complete, an F P G A needs to be reconfigured for its normal operation. For B I S T i n F P G A ,
the only cost is the addi t ional memory required for the B I S T configurations which are not
typical ly very big. Another benefit of B I S T is the fact that it allows the complete coverage
of the F P G A fabric [16].

There are also several drawbacks of B I S T technique. One of them is its l imi ta t ion that
it can only detect faults dur ing the test mode when the F P G A is not operating. Thus,
some timing-dependent faults or s imilar may not be detected.

F P G A F P G A F P G A F P G A

FU1 FU2 FU3 FU1
(BUT) [BUT)

Normal operat ion Test (mode 1) Test (mode 2) Test (mode 3)

Figure 3.6: Testing of entire F P G A using B I S T and P D R

3.2.3 B i t s t r e a m readback

Present F P G A s offer the possibil i ty of reading the actual contents of their configuration
memories as well as the contents of flip-flops i n C L B s in form of configuration bitstream.
This process can be considered as the inversion of F P G A configuration. To perform bit-
stream readback, external controller outside F P G A under test is needed which uses some
F P G A configuration interface. Bi ts t ream readback is available i n two modes - readback
verify and readback capture [69].

In readback verify mode, the controller reads the configuration of memory cells. This
mode is mainly used to verify the success of previously done configuration. It is performed
by comparing the original bi tstream used for configuration and the bitstream read back
from F P G A .

Readback capture mode also reads configuration memory cells data but i n addi t ion to
that it also acquires the current states of a l l internal flip-flops inside C L B s and the state of
I O B s . W i t h these gained data from F P G A and the knowledge of data which are expected
to be i n the configuration memory of F P G A and other resources in the moment of readback,
the diagnosis algorithms can be used to detect and localize faults i n F P G A [52] [53]. Possible
test system based on bitstream readback is shown i n Figure 3.7.

3.2.4 R o v i n g S T A R

This technique capable to detect and localize faults i n F P G A is based on the d iv id ing the
array into tiles w i th the same number of resources and their structure. Some techniques for
off-line testing are then used on tiles which are not used by the current design for performing

37

SW / HW

Simulation
controller

Bitstream
parser

I
Fault test

and
diagnosis

module

Boundary
scan

controller

Configuration
controller

FPGA
under
test

Figure 3.7: Test system of F P G A based on bitstream readback [53]

the function. W h e n the testing is finished the par t ia l reconfiguration of F P G A is used to
change the layout of design and another tiles previously used to implement the function are
configured as B I S T and tested. This technique and its extensions have been described in
many publications [3] []). The tiles of F P G A which are currently implemented by B I S T
and which are performing the fault detection and localizat ion are referred to as Self-Testing
AReas (S T A R) . W h i l e one S T A R is tested off-line the remaining blocks of system which
are not u t i l iz ing resources from actual S T A R continue in run and the aplicat ion in F P G A is
not interrupted. Testing is focused on logic blocks and connecting wires. If fault is present
in the implemented circuit , the greatest possible latency of its detection w i l l be equal to
t ime needed to test a number of blocks S T A R throughout the F P G A .

Figure 3.8 shows how the circuit is part i t ioned between the S T A R areas and areas where
the desired function of the design is performed. In the first version of this technique, only
1-dimensional S T A R areas were implemented. Nowadays, typical ly 2-dimensional ctrests sire
used - vert ical S T A R (V - S T A R) and horizontal (H - S T A R) . Thus, the working area may
be contiguous or it may be divided into two or four disjoint regions. A l l horizontal wire
segments in H - S T A R and a l l vert ical segments i n V - S T A R are reserved for testing. The
interconnection signals connecting separated parts of working areas can pass S T A R s . B u t
only horizontal wires can go through H - S T A R and only vert ical wires through V - S T A R . A
S T A R tests both the P L B s and the programmable interconnect wi th in its area. The size of
the S T A R depends on the number of resources needed to implement B I S T circuit which w i l l
be used for testing. The testing of P L B s is performed i n cells of F P G A in the intersection of
H - S T A R and V - S T A R . They are tested using off-line B I S T which was configured to this tile
by par t ia l dynamic reconfiguration. W h e n testing interconnection wires, the whole length
of H - S T A R is used to test horizontal wires and length of V - S T A R to test vert ical wires. A t
the same time when S T A R s are testing logic blocks and interconnection wires the working
area of F P G A continues i n work without interruption. After the testing of a S T A R has
been completed, the S T A R s are reconfigured back to the original function and testing areas
are moved to the following area which was previously used as a part of working area.

The fault coverage of this approach can be 100% because every tile of F P G A is tested.
The max ima l latency of fault detection for the worst case can be counted by mul t ip ly ing
the number of possible S T A R locations and the t ime needed to complete the tests in S T A R s
(plus t ime for the reconfiguration of S T A R s to new location). Hardware overhead of this
approach is formed by tiles needed for S T A R s and the reconfiguration controller logic which
is used for roving the S T A R through the F P G A . The fault localizat ion of this method is
scalable depending on the size of the F P G A . The space overhead for F P G A divided into

38

tiles w i th n columns and n rows can be counted by formula — ^ — — [], which is usually
less than for techniques based on unit replication.

F P G A

working
areas

Figure 3.8: Configurations applied by roving star technique

3.2.5 S u m m a r y

A l l presented fault detection methods have both positive and negative features. Table 3.1
is showing the results of detection methods when they are evaluated by several criteria.
Granular i ty criterion means how specific the method can be when detecting an error. Space
overhead shows how much addi t ional resources w i l l be needed when the method w i l l be
applied. The addi t ional latency of computing caused just by the fault detection is evaluated
by cri terion named performance overhead. Detect ion speed is evaluating the t ime needed
from fault occurence to its detection. F ina l ly , cri terion fault coverage shows how many
faults from a l l possible faults can be detected by the method.

Detection method Granularity Detection speed Fault coverage

Unit replication
coarse

only module
can be detected

fast
with error occurence

good
all error occurences

C E D
coarse

only module
can be detected

fast
with error occurence

medium
can be impractical

for some functional units

Off-line methods
fine

exact error
can be detected

slow
during periodical test

very good
can detect also faults

not manifested by error

Bitstream readback
fine

exact error
can be detected

slow
after bitstream is read,

parsed and analysed

very good
can detect also faults

not manifested by error

Roving star
fine

exact error
can be detected

medium
after STAR moves to

faulty tile

very good
can detect also faults

not manifested by error

39

Detection method Space overhead Performance overhead

Unit replication large
resources for n-1 modules + voter needed

small
voting logic latency

C E D medium
trade-off with coverage

small
additional latency of checker unit

Off-line methods small
testing controller

small
just start-up delay

Bitstream readback small
readback and testing controller

small
just start-up delay

Roving star medium
resources for STARs + testing controller

large
latency of switching tiles,

can cause long critical paths

Table 3.1: The comparison of fault detection methods

3.3 Transient fault mitigation

The use of F P G A s in harsh conditions has significantly risen the number of transient faults
mainly caused by ionizat ion radiat ion. These faults can be mit igated but this requires
addi t ional logic.

The susceptibili ty to these kinds of faults can be lowerred by the special fabrication
design to produce radiation-hardened F P G A s . Th is radiat ion hardened design is based
on protecting the configuration cells at transistor or silicon level. A s F P G A s become more
and more complex wi th large number of resources and processing capabilities, the radiation-
hardenning becomes excessively expensive i n comparison wi th non-protected ones. R a d i
ation hardened F P G A has slower operating frequency and increased power consumption
when compared wi th its commercial off-the-shelf F P G A counterpart [11].

W h e n a transient fault occurs i n F P G A it can be repaired by reconfiguration of af
fected part of configuration memory. This can be done by complete (static) reconfiguration
of F P G A or by P D R of affected reconfigurable region. Static reconfiguration causes the
stopping of running design i n F P G A and possible loss of current status information of im
plemented modules. Due to complete reconfiguration of F P G A , this technique does not
require the local izat ion of the affected part of F P G A . Nowadays i n most cases, the ap
plicat ion running in F P G A cannot be stopped during the recovery process and therefore
techniques based on P D R are preffered.

3.3.1 C o n f i g u r a t i o n b i t s t r e a m s c r u b b i n g

Configuration bitstream scrubbing was introduced to correct configuration memory after
S E U occurences. T h i s method is based on periodical reconfiguration of P R M by correct
par t ia l bi tstream while the F P G A is in operation. The scrubbing approach is typical ly com
bined wi th some fault tolerant technique which ensures that the implemented applicat ion
can stay operating properly even during and after scrubbing process.

There are two common configuration scrubbing strategies:

• Blind scrubbing stategy is based on periodical reconfiguration of P R M by golden
copy of designated par t ia l configuration bitstream. The reconfigurated region is not
searched for the S E U occurences and reconfiguration is done also i n case when P R M
is working correctly. Th is method is easy and fast to implement due to its simplicity.
The drawback of it is its waste of processing t ime because it performs scrubbing also
in times when it is not needed.

40

• Scrubbing with configuration readback stategy is based on the use of read bitstream to
detect S E U s and on reconfiguring the P R M only in case when it is affected by S E U s .
According to the type of error, the detection and the source of configuration data
for reconfiguration, three variations of configuration scrubbing wi th readback can be
identified.

— Readback and reconfiguration with golden copy of configuration bitstream - this
method uses the comparison between the read bitstream data and the golden
copy from external memory to detect and optionally localize the errors.

— Readback with ECC check and reconfiguration with golden copy configuration
bitstream - this method is based on error detection by parsed E C C from read
bitstream and reconfiguration by golden copy of bitstream.

— Readback with ECC check and reconfiguration with corrected configuration bit-
stream - this method uses the read bitstream where the error is corrected by the
E C C technique. Th is option can be used only when no more than max imum
number of faults is present. O n the other hand, this approach eliminates the
need of external memory w i t h golden copies of par t ia l bitstreams.

Configuration scrubbers can be also divided into two groups according to their implemen
tation:

• Internal scrubbers are implemented inside the F P G A where the scrubbing is per
formed. They are also reffered to as self-scrubbers. They have to use the internal
configuration interface as the access to configuration memory. This solution does not
require any external device to host the scrubber but the recovery process is l imi ted.
The internal scrubber cannot reconfigure the reconfiguration region where it is imple
mented or where the storage for golden copies of par t ia l configuration bitstreams or
its memory driver is placed.

• External scrubbers are implemented i n different devices and they access the con
figuration memory of F P G A by external configuration interface such as J T A G or
S e l e c t M A P . W i t h this approach, each part of configuration can be scrubbed. The
drawbacks are: 1) increased power consumption, and 2) lower possible frequency due
to fact that external scrubbers are connected by longer wire connections than internal
scrubbers.

The main drawback of configuration scrubbing method is the need of continual use of
the configuration port . Th is prevents other forms of configuration port using such as its
u t i l iza t ion for dynamic design change by par t ia l reconfiguration. In [20], the technique
to overcome this issue v i a integrating par t ia l dynamic reconfiguration into configuration
scrubbing is presented.

The configuration scrubbing works only wi th S E U s causing a bi tstream corruption, it is
unable to determine if a S E U has occurred i n the memory used by implemented design for
computat ion. The scrubbing period should be stated according to failure rate of system.
This period implies a fault detection latency.

3.3.2 R e c o v e r y by p a r t i a l d y n a m i c reconf igurat ion

Methods based on par t ia l dynamic reconfiguration are dependent on some k ind of detection
and localizat ion technique implemented i n design which in case of fault detection triggers the

41

process of recovery. Unl ike i n the configuration scrubbing, this process is started only in case
of fault detection event. The process of recovery is shown i n Figure 3.9. The detection and
localizat ion of faulty module is typical ly done by the design itself implementing techniques
such as C E D or unit replication wi th checker units. The error signals are supplied by some
k ind of P D R controller which w i l l trigger the reconfiguration process using appropriate
configuration bitstream downloaded from configuration bitstream storage.

P D R controller can be implemented i n the same F P G A where it performs the mit iga
t ion process or it can be implemented i n external reliable fabric. Th is controller is often
implemented i n F P G A as an I P core processor such as Mic roBlaze or L E O N . It can be also
implemented as dedicated module and opt imized to achieve better performance and lower
space overhead.

In [9], mi t igat ion technique able to cope wi th the S E U effects is presented. Errors in
P R M s are detected by C E D technique and they are mit igated by P D R . The effects of S E U
in configuration memory and also i n user S R A M memory can be mitigated.

In [10], the design wi th enhanced T M R implementat ion providing error local izat ion is
used and the faulty module is reconfigured by golden copy of configuration bistream. The
implemented T M R scheme ensures the fault tolerance of the system.

The scheme wi th T M R and ut i l iza t ion of P D R to mitigate the effects of S E U s can be
also applied to entire softcore processor [23].

No fault present Fault occured in module

PRM1

PRM2

PRM3

•
1

PDR control ler

•
•

£ 0 -
reconfiguration

£ 0 - detection
& localization

Figure 3.9: Using P D R to recover system after S E U occurence

3.4 Techniques for system recovery after permanent fault
occurence

In this work, as the permanent fault is considered, each fault causes a damage of F P G A
resource i n that way that it cannot be used i n F P G A design anymore. Th is happens
mostly by outside damaging or dur ing the wear-out phase of F P G A or by the impact of
harsh environment on F P G A . The recovery of this fault can be done on various levels:

42

• Hardware level recovery - the F P G A fabric can be designed and manufactured wi th
spare resources which can be ut i l ized in case of fatal fault occurence i n currently used
set of resources. Th is approach for array based resources (i.e. C L B s) is based on
using multiplexers or other switching logic at the ends of lines of cells. Th is allows
the remapping of a row or a column wi th damaged component into some spare row
or column [19]. For hardenning the interconnection of C L B s and other hard blocks in
F P G A , the fine-grain redundancy i n the interconnect blocks can be introduced [72].

A l l hardware level recovery approaches based on hardware switching of connected
blocks or connection rout ing guarantees that the recovery is transparent to the con
figuration. This means that the current design loaded i n configuration memory can be
used further. A l so the t iming performance of the design before the permanent fault
occurence w i l l be not changed as the physical layout and connections of resources are
replaced wi th the new ones u t i l iz ing the spare resources w i th predefined timings.

The drawback of the approach is i n the l imi ted number of faults which can occur
in distinct rows or columns i n the F P G A . These spare rows or columns create the
necessary area overhead. W h e n a l l these spare lines of resources are ut i l ized another
approach has to be used.

• Configuration level recovery - the damaged resource causing permanent fault is s t i l l
accesible for reconfiguration controller but it is excluded from the further ut i l izat ion.
This approach needs the existence of reconfiguration controller which w i l l control the
mit igat ion process. F r o m the most known techniques, the use of precompiled alter
native configurations, evolutionary algorithms and incremental mapping and routing
of design can be mentioned.

• App l i ca t ion level recovery - this category incorporates a l l higher level aproaches where
the fault is mit igated without using different physical resources or other design con
figuration. These approaches can be commonly used and they are not l imi ted only to
F P G A s . The fault can be overcome by the system design which can be able to use
spare functional block instead of the faulty one without the need to modify design
configuration or continue i n computat ion wi th some performance degradation [70].

Since hardware level recovery is dependent on the manufacturer design of each single
type of F P G A and the applicat ion level recovery is a wide problem not focused only to
F P G A , this thesis is a iming at implementing the approaches manipula t ing wi th F P G A
configuration to mitigate the occured fault. F r o m these approaches, three categories can
be identified - incremental rerouting, the use of alternative configurations and evolutionary
algorithms.

3.4.1 Incrementa l m a p p i n g a n d des ign r o u t i n g

One possible approach to deal w i t h permanent fault occurence is the modification of current
design configuration to exclude the affected resources when a fault occurs. The incremental
change of configuration may consist of several steps: re-mapping, re-rerouting and bitstream
generation. Some methods using this approach do not require to perform a l l these steps.
This approach can i n theory uti l ize a l l spare resources which are currently not used by
implemented applicat ion for logic or routing affected by faults. It can also handle occured
faults i n various patterns in F P G A where other approaches not using online change of
configuration w i l l fail. The drawback of this method is the need of adaption of F P G A

43

mapping, placement and routing tools to operate autonomously wi th considering existing
faults in implementat ion area. The incremental change of design requires not negligible
t ime for processing, it can increase power consumption and area overhead.

The incremental change of design can be computed remotely and then downloaded to
F P G A or it can be performed by tools implemented i n the device which is under repair.

One of possible fault recovery methods mentioned i n [] focus on swapping faulty
resource to non-uti l ized one wi th in single logical block. This repair has typical ly only small
impact on the global routing or other resources outside the block. It is not always possible
to use this approach.

W h e n the logic block is faulty and it needs to be replaced by a spare one, the pebble
shifting technique can be used [15]. The allocated blocks are shifted according to cost of
shifting move. The basic principle is shown in Figure 3.10.

C^B—O
Design with faults Recovered design

Figure 3.10: Pebble shifting approach

In [47], the approach consisting of the instantiat ion of logic and rout ing resources at run
time according to applicat ion data-flow graph and constraints, such as fault regions that
cannot be allocated, is presented. It uses implementat ion tools run on the host system.
The basic principles of this approach are shown in Figure 3.11 and Figure 3.12.

FPGA

Data-flow graph Routing and Utilization of
logic module library reconfigurable regions

Figure 3.11: Resource instantiat ion in F P G A without faults []

3.4.2 A p p r o a c h based o n p r e c o m p i l e d a l ternate configurat ions

W h i l e the previous approach is designed to be able to solve the fault presence i n system
after it really occurs, some other approaches are t ry ing to prepare the possible solutions
before the fault appears, i n the design phase. The basic requirement is to exclude the
damaged resource from the further use. There is a possibil i ty to divide the complete

44

f - I R * R -

R - R OR R *

R f R

f

F P G A

f R + R * R

- R + R OR R

* f R AND R

f

F P G A

Design with faults Recovered design

Figure 3.12: Resource instantiat ion considering faults[]

implementation space in some reconfigurable region into several tiles, split the desired
design into modules which w i l l be configured into different tiles leaving one or more tiles
unused. The configurations w i th these alternative implementations are precompiled and
created par t ia l configuration bitstreams are stored in some type of memory. The basic
principle of generating alternative configurations implementing different module layouts is
shown i n Figure 3.13. W h e n a fault is detected and localized i n some tile, the reconfiguration
of the entire design is performed wi th this precompiled configuration which does not util ize
the resources from this tile. Since each configuration contains the implementat ion of the
same function and the interface between the entire reconfigurable module and the rest of
design is fixed and the same i n a l l cases, a l l par t ia l bitstreams are interchangeable and can
be configured to this par t ia l reconfigurable region. W i t h this approach, a fault in logic
block and i n local interconnections can be handled. Recovering from faults to global and
overlapped segmented interconnect is discussed i n [36].

B

C

—IB
1 2 3 4

Figure 3.13: The alternative layouts of sample system wi th 4 tiles

This technique minimizes the recovery t ime since the process consists of alternative
configuration selection and P D R wi th its precompiled bitstream.

One of the first implementations of this approach is presented i n [36]. The F P G A
implementation area is segmented into static tiles at design phase.

In [73], the method using alternative configuration and degradable design to recover
from mult iple permanent faults is presented. W h e n there are no fault-free tiles available in
the design, the design is degraded i n terms of its fault tolerance to achieve lower number
of ut i l ized tiles.

The drawbacks of this approach can be seen in its poor area efficiency and complicated
mit igat ion of mutl iple faults but the ma in one is the requirement of external storage for
precompiled par t ia l configuration bitstreams. This can be reduced by some techniques such

45

as bitstream compression but there is always a trade-off w i th increased t ime and complexity
of recovery process.

3.4.3 E v o l u t i o n a r y a lgor i thms

The abi l i ty of modern F P G A s to be reconfigurated dynamical ly can be used by evolutionary
methods. They can recover the system correct operation through evolution when faults
occur. These methods offer a large degree of flexibil i ty i n the number and dis t r ibut ion of
faults which can be mitigated. There is no need to preciselly localize the fault. Evolu t ionary
methods attempt to facilitate repair through the reuse of damaged resources. The fitness
function of implemented Genetic A l g o r i t h m (G A) is able to internally evaluate the residual
functionality of the design i n F P G A and assess the fitness value. This value is used for the
upcoming selection phase.

In [11], the fault recovery method referred to as competit ive runtime reconfiguration
wi th competing two half-configurations (left and right) gradually modified by G A is used.

The drawback of this method is complexity and flexibility what can result in very time-
demanding search of satisfactory design wi th unpredictable durat ion and its result. The
logic for evolutionary algorithms can cause unnegligble area overhead.

3.4.4 S u m m a r y

Al though many different approaches to system recovery after permanent fault occurence
exist, none of them is considered as universally applicable. Frequently used method based on
spare resources or predefined alternatives are demanding device resources, other methods
wi th lower requirements can have problem wi th speed of recovery process or can cause
performance overhead.

Table 3.2 is showing the comparison of recovery methods from different aspects. Trans-
parentness to configuration means the fact that recovery is done i n device by itself and
user does not have to change the configuration in F P G A . Recovery speed determines the
required t ime for permanent fault recovery. Resource overhead shows how much addi t ional
resources (physical or logical/configurable) w i l l be needed when the method is applied. Per
formance overhead describes the addi t ional latency of recovered system. Fina l ly , cri terion
flexibility of recovery highlights how flexible and effective these methods are.

Recovery
method

Transparent
to user design Recovery speed Resource overhead

Hardware
level yes

very fast
just switching lines

in hardware

low
spare physical resources
needed, no requirements
for implementation space

Alternative
configurations no

medium
configuration selection

and reconfiguration delay

very high
reconfiguration controller

and configuration selector needed
& storage for configurations

Incremental
remapping

&j rerouting
no

poor
time demanding remapping

and rerouting

high
design implementation

and reconfiguration controller

Evolut ionary
algorithms no

poor
may take long time

to evolve

high
after bitstream is read,

parsed and analysed

46

Recovery
method Performance overhead Flexibility of recovery

Hardware
level

low
no design change

low
big loss of usefull physical resources while

switching from affected row/column to spare one

Alternative
configurations

low
alternative configuration

can be optimized

medium
the loss of usefull configurable resources

when excluding the affected part,
trade-off with the number of configurations
(depends on the granularity of partitioning)

Incremental
remapping

&j rerouting

medium
trade-off with implementation

controller complexity

high
non-faulty resources can be

effectively utilized

Evolut ionary
algorithms

low
can be optimized

by setting fitness function

high
non-faulty resources can be

effectively utilized

Table 3.2: The comparison of permanent fault recovery methods

3.5 Fault injection techniques

W i t h the in t roduct ion of new fault detection, local izat ion and mit igat ion techniques, ef
fective techniques and methods for debugging and verification of the correctness of their
fault tolerant design and their performance is needed. This is done by purposely injection
of faults into implemented design or emulation of its impact . Faul t injection can be done
on different levels i n F P G A . The fault occurence can be emulated by implemented software
(e.g. by simulat ing the altering of inputs of system components) or it can be injected as a
bit flip of configuration memory cell on hardware level.

In F P G A , the fault emulation in appl icat ion is not sufficient since it is only able to test
the faults that occur on the design level rather than the hardware level such as faults in
routing. The faults also cannot be emulated i n locations of F P G A not ut i l ized by design.

The fault injection on the lowest hardware level can be done by the exposure of F P G A
wi th implemented system design to radiat ion wi th heavy ion beams. This is the most
realistic way of injecting faults since it simulates the physical phenomemon occuring i n real
applicat ion. The drawback of this approach is its price and t ime demands when compared
wi th other approaches. Another important disadvantage is the fact that it is not possible to
precisely inject a fault into desired destination such as to flip only single bit i n configuration
memory [22].

Another approach aims at manipulat ion of configuration bitstream loaded in F P G A .
The scheme of this approach is shown i n Figure 3.14. The correct configuration bitstream
is altered wi th a single or mult iple bit flips driven by some injection controller (injector).
Typical ly , the injector reads a correct configuration bitstream of the F P G A and creates a
bit flip i n the stream at the desired bit in the bitstream. Due to fact, that the injection
of every possible bit flip can be very t ime demanding (up to several tens of minutes [18])
and it can cause cause peformance bottleneck i n F P G A , the F P G A configuration bistream
can be divided to the important bits of design and don't care bits. The list of important
bits to be flipped can be generated by some software tool incorporat ing the knowledge of
relation between the ut i l ized resources and their real posi t ion inside configuration bitstream.
The manipulated configuration bitstreams are one by one loaded v ia P D R into F P G A and
the simulation is done by providing input s t imul i . The outputs of the system to each

47

configuration wi th specified placement of fault can be gathered and compared wi th the
outputs of the correctly operating system (the golden copy of system configuration). The
sensitive bits can be coupled wi th the parts of system design which they implement and
rel iabil i ty parameters of these parts and entire system can be evaluated. The fault injector
can be implemented as external tool and u t i l iz ing external configuration interface of F P G A
such as J T A G or S e l e c t M A P [18] or it can be instantiated in F P G A which is beeing injected
using the I C A P interface [12].

FPGA
system >
design

Place & Route Tool
(FPGA manufacturer^

Fault
~ T \
Input

list stimuli

1
1

f

i

i

Y

Fault list Fault injection Fault
generation tool & simulation run

results

FPGA
config

bistream

Golden
run

results

- 6 -
Sensiti
ve bit

list

Figure 3.14: The scheme of fault injection approach based on configuration modification

In [7 -], the fault injection combined wi th fault emulation to reduce the performance
bottleneck caused by injecting faults by frequent reconfiguration of F P G A is presented.

18

Chapter 4

Motivation and goals of the
research

Previous chapters presented the topics of fault tolerant system design in F P G A and some
open issues were mentioned. This information can be seen as the key inputs of this thesis.

4.1 Motivat ion

The scaling of electronic devices and s t i l l less robustness of components br ing the strong
need for more complex securing against the occurence of faults. The use of electronic devices
in new rough and noisy environment is also another source of problems. For example, i n the
aerospace industry there are requirements on electronic devices for their resilience against
radiat ion and on hardenning them against negative effects of mater ial aging during long
term missions.

In recent decades, new possibilities and new challenges i n the area of system design
appeared. Programmable electronic devices such as C P L D s and F P G A s allowed rapid
prototyping and started the era of reconfigurable computing. Faul ty design can be easily
fixed after the first deployment and the same hardware can be also used to perform various
tasks during the lifetime where some of these can be unforeseen. The F P G A s came up wi th
new possibilities i n the field of fault tolerant hardware design. The dynamic reconfiguration
can be now used for changing the mapping and rout ing inside F P G A in order to mitigate
the faults which have occurred. The new challenges wi th fault tolerance i n F P G A s are
connected wi th their configuration saving. Very often the F P G A s which have configuration
stored i n S R A M memory are used [8]. They are popular because of their lower price and
easy use they offer. Higher susceptibity to S E U faults i n comparison wi th other F P G A
types can be seen as their drawback.

M a n y approaches for making digi ta l systems more dependable were presented. Fault
tolerant system design offers the possibil i ty to overcome the impact of fault occurence while
the use of detection and local izat ion methods together w i th fault mi t igat ion based on P D R
can offer to restore the fully operational state of system. T h i s can be done autonomously
without the need of user intervention and without stopping system operation. Nowadays,
the ut i l iza t ion of F P G A s is not only in rapid prototyping but they are used frequently
also i n long term missions. Thus, the study of system dependabili ty has to focus also on
permanent faults which occur more l ikely w i th the increasing age of F P G A . M a n y techniques
for mit igat ion of S E U effects in F P G A and also several mit igat ion techniques for permanent

49

damage of resources i n F P G A are available. None of them is universally applicable due
to their high demands on memory (e.g. precompiled alternative configurations), time-
demanding fault recovery (e.g. evolutionary algorithms), area overhead (e.g. incremental
change of design), etc. Thus, it makes sense to focus on opt imizat ion of these techniques
and creating such methodology which w i l l describe how to create design w i t h effective fault
recovery ability.

4.2 Goals of the research

In various applications of fault tolerant systems, different levels of dependabili ty are required
to be achieved by the implementat ion. It can be stated that the range of hardware to which
the failing design can be implemented plays an important and maybe even decisive role.
Th is holds especially for longtime missions i n which it is important the hardware to operate
correctly for long periods (in terms of years).

The effort to develop a methodology for fault tolerant systems design was driven by the
goal to satisfy the following aspects.

• The local izat ion of the F P G A part (P R M) affected by fault.

• The determination of the fault type and its classification according to considered fault
model.

• The dr iv ing of repair proccess to return the system

— to the exactly same state as there was before - i n case of transient fault,

— to the state when the functions of system are producing correct outputs - in case
of permanent fault.

• Keeping the design running during the reconfiguration process if it is possible.

• Enab l ing the support for synchronization process after reconfiguration is completed.

• The effort to shrink the number of the F P G A resources needed as hardware overhead
because of the system design according to proposed methology.

The goal of this thesis is to combine the existing well known techniques together w i th
new approaches. A s an example, the C E D technique together w i th online checkers can be
used not only to ensure the fault tolerance i n system but also to localize the module affected
by a fault i n F P G A i f it is possible. Th is local izat ion information w i l l point at specific
reconfigurable module of F P G A which is faulty. Then some reconfiguration controller w i l l
use this information to process fault mi t igat ion i n it.

The key goal of the research is to develop this specific controller which w i l l control the
reconfiguration of F T architecture when the fault w i l l be localized i n i t . The process of
fault mi t igat ion w i l l vary for different types of faults specified i n the fault model . The
determination of the type w i l l be also the task for reconfiguration controller and it w i l l be
based on the knowledge of the history of the reconfigurable module errors.

The fault mi t igat ion process w i l l be l imi ted in such way that it can use only the re
sources of F P G A which were reserved for the implementation at the beginning of system
lifetime. Before the first configuration of system into F P G A the implementat ion area w i l l
be defined by the user. D u r i n g the system lifetime the permanent fault can be detected

50

and localized and then the need of resource mapping change can arise. Since the l imi ta t ion
of F T system implementat ion to the allocated area is needed, the new resource mapping
can only uti l ize the resources from this constrained area. These resources w i l l be called a
l imi ted implementat ion

So the two requirements for new system which w i l l be configured in F P G A after fault
mit igat ion procedure £1X6 ctS follows:

• System is u t i l iz ing the resources i n given implemementation area only.

• System is producing correct outputs - the implemented function of original system
was not changed.

In case of transient fault mi t igat ion the th i rd requirement can be to preserve the capabil i ty
of fault tolerance on the same level as in the original system. This means when for example
the original system is capable to cope w i t h two indepedent faults inside i t , then the new
system has to be able to overcome the same two faults too. Permanent fault mi t igat ion
can cause the reduction of fault tolerance capabil i ty to the si tuation when the system w i l l
cease to be fault tolerant.

Another goal of the research w i l l be to enable the synchronization of reconfigurable mod
ules i n which the F T system designed by methodology is implemented. Since immediatel ly
after the par t ia l reconfiguration of reconfigurable module in F P G A its state is undefined,
its synchronization wi th other untouched modules can be required. Thus i n such cases, the
synchronization has to be the last phase of fault mi t igat ion process. The synchronization
procedure itself is not defined by the methodology since many approaches for it exist [18],
[59], [35]. The designed F T architecture wi th reconfiguration controller w i l l be able to
cooperate w i th external synchronization controller.

The chosen strategy of fault mi t igat ion in the methodology requires to store the con
figuration bitstreams needed for dynamic reconfiguration i n external storage outside the
F P G A . Since the size of bitstreams for modern F P G A s wi th many resources can be very
large, it is crucial to br ing some strategy to reduce their aggregated size. Not only the
requirement on sparing the space must be taken into account but also on reduction of re
configuration time, since the reconfiguration controller is loading the bitstream through the
reconfiguration interface of F P G A serially. Thus, the to ta l count of bitstreams and also the
size of each bitstream has to be reduced to min imum.

The goals of the research can be summarized in the following way:

1. To propose the methodology for the F T design of digi ta l system into F P G A wi th the
abil i ty to recover after transient and permanent fault occurence which satisfies these
conditions:

• The designed architecture of system is operating i n l imi ted implementat ion area
which means that it can only uti l ize the resources from the area of F P G A which
was designated for the system at the begining of its lifetime.

• The occured transient fault in one system module is mit igated while the rest of
modules in F P G A are not affected by it.

• If the architecture of implemented system has to be modified to recover after
permanent fault occurence, the new one has to keep producing correct outputs
and it should remain fault tolerant if it is possible.

51

2. To design the reconfiguration controller which w i l l control the mi t igat ion process in
F P G A after fault occurence done by P D R . It supplies the information about the
detection and localizat ion of fault, it determines its type and controls the reconfigu
ration process. Alternat ively, it can also trigger the sychronization process when it is
needed.

3. To create test platform which w i l l enable the evaluation of methods and procedures
described by the proposed methodology. For the F T architectures designed by means
of methodology principles, the abi l i ty to survive w i l l be tested by fault injection.

The proposed methodology covering these points is described in the following chapter.

52

Chapter 5

Methodology for fault tolerant
system design into limited
implementation area in F P G A

In this chapter the principles of the proposed methodology which aims at securing system
by implementing its parts as fault tolerant systems into the l imi ted implementat ion area in
F P G A are described. The methodology incorporates fault mi t ig ia t ion technique based on
the use of several sets of precompiled configurations which are developed for this purpose.

The l imi ted implementat ion area from the perspective of this research means the set
of F P G A resources assigned for implementat ion of some system parts which are important
from the dependabili ty point of view. This implementat ion area is specified during the de
sign phase of system implementat ion and it cannot be modified dur ing system lifetime. This
assessment l imits the fault mi t igat ion technique during permanent fault recovery process.
The statement of l imi ted implementat ion area simplifies the fault mi t igat ion procedure
for bo th transient and permanent faults based on precompiled configurations due to the
possibili ty of bui ld ing a deterministic fault mi t igat ion scenarios. Thus, it can decrease hard
ware and performance overhead of fault mi t igat ion techniques applicat ion due to enabling
opt imizat ion efforts dur ing the offline implementation.

5.1 Methodology basic principles

The proposed methodology defines the process of securing digi ta l system designed and
implemented i n F P G A . In other words, it can be understood as the recipe how to redesign
the given architecture of a system i n F P G A and how to prepare the system for recovery after
fault attack and thus make its lifetime longer. Such methodologies have their justification
e.g. i n long term missions where the implementat ion area becomes smaller after every
permanent fault which occurs i n the design. In this methodology, the desired goal is achieved
by combining the approaches for detection, local izat ion and mit igat ion of the occured faults.

The original system design is spli t ted into several parts from which the chosen ones are
redesigned as F T architectures. The detection and local izat ion process is then based on the
comparison of replicated functional units i n F T architectures and on other C E D techniques.
N o specific methods are intended. The mit igat ion technique requires the local izat ion on
the P R M level. W h e n the faulty P R M is localized, it must be determined to which type
of fault defined by fault model this part icular fault belongs. Mi t iga t ion process is different

53

for bo th types of fault - transient and permanent. B o t h of them are driven by developed
controller unit - Generic Pa r t i a l D y n a m i c Reconfiguration Controller (G P D R C) . Th is unit
has a crucial role i n the system because it is responsible for the task of fault mi t igat ion
and is able to control the reconfiguration performed through I C A P interface. It w i l l be
described i n details i n Section 5.2.

The developed methodology allows to detect and repair transient faults caused by S E U
occurrence i n F P G A configuration memory which can cause an incorrect operation of the
system implemented into F P G A . The transient fault mi t igat ion is based on the existence
of relocatable golden copy of bitstream for affected P R M wi th the given unit type. W h e n
the fault is localized in one of the F T architecture units, G P D R C w i l l execute the recon
figuration of P R M corresponding to this unit . After this process and unit synchronization
process (when it is needed), the system is back to fully operational state as it was before
the fault occurence.

The methodology also describes the process of detection and repair of permanent faults
occurring i n the configuration memory or i n the physical resources (C L B s , interconnection
resources, etc.) of F P G A . The main idea of permanent fault mi t igat ion is based on the
existence of alternative F T architecture sequences, a l l of them covering the same function.
The functional units and the components support ing fault tolerant features of the design are
implemented as single P R M s which are interconnected by means of a predefined interface.
The repair mechanism i n case of permanent fault occurence is based on downloading the
configuration of another F T architecture covering the same function but w i th reduced
range of support diagnostic c i rcui t ry into the same location of F P G A . W i t h this new F T
architecture the part of F P G A affected by fault is excluded from further use. The selection
of F T architectures which implements one system unit i n different number of P R M s and
thus enabling the exclusions of the remaining P R M is called a degradation strategy of this
unit i n the following text.

5.1.1 S y s t e m design based o n the m e t h o d o l o g y

To be able to apply the methodology to system design, it has to be described in a hardware
description language (V H D L) and its source codes have to be available. The output of
this process is a new system which is secured by means of F T architecture to guarantee
the resilience against bo th independently occurring transient faults and given number of
permanent faults which affect the F T system correct operation.

Inputs

O n the input of securing process the designer has to specify the following informations:

1. The design of system described by hardware language.

2. The definition of desired F P G A .

3. The user constraints for the implementation.

4. The assignment of implementat ion area in F P G A for given system.

Outputs

The outputs of the securing process are these:

54

1. The F T system design of the secured system described by hardware language wi th a l l
neccessary equipment.

2. The complete configuration bitstream for in i t i a l configuration of F P G A .

3. The set of par t ia l configuration bitstreams used by fault mi t igat ion process.

The process of F T system design by means of the proposed methology is a complex
process starting wi th the selection of parts intended to be secured against transient or
permanent faults, the al location of implementat ion area for secured parts, the decision
about the strategy for permanent fault recovery and ending wi th the set of generated P R B s
to be stored in external memory and to be used by G P D R C during the fault mi t igat ion
process. Th is process is described i n details i n Chapter 6.

5.1.2 S t r u c t u r e of fault to lerant sys tem u n d e r des ign - basic pr inc ip les

In the developed methodology, the design is protected by means of F T architecture to
guarantee the resilience against both independently occurring transient faults and given
number of permanent faults which affect the F T system correct operation. The methodology
suggests to divide the implementat ion into certain number of P R M s . Th is set of P R M s
put together is called a configuration i n the following text. Each unit of F T system is
placed i n one P R M i n a uniform way which means that relative posit ion of a l l sources,
connections and proxy logic inside P R M was identical for the part icular type of the unit .
Th is is required for relocation process, which w i l l be described later i n Section 6.1.2.

FPGA
Dynamic reconfigurable area

IN
PRR;

IN
PRR;

IN
PRRx

OUT
PRR 2

OUT
PRR 2

OUT

• • • "
PRR 2

PRR 3 PRR 3 PRR 3

PRRo PRR 4 PRRo PRR 4 PRRo PRR 4

FT architecture 1 FT archi tecture 2 FT archi tecture n

Static reconfigurable area

PRM error 5*nr

GPDRC
(ICAP)

MEMORY CONTROLLER

BITSTREAM
ADDRESS

BITSTREAM
DATA

c BITSTREAM STORAGE

Figure 5.1: The main structure of the proposed methodology

In Figure 5.1, an example of the complete F T system design i n F P G A based on the pr in
ciples of methodology is shown. It consists of dynamic part i n which F T architectures are
placed and static part which contains G P D R C . The G P D R C utilizes the information about
detection and local izat ion of faults from the C E D logic units of F T architectures. The set
of error signals from P R M s (assigned in P R R 1 - P R R 4) are the inputs to G P D R C . Spl i t t ing
F T architecture into several P R M s gives the possibil i ty to exclude from the implementa
t ion one or several P R M s when they are affected by permanent fault. The interconnection
signals between modules and the connections between the part icular module and the rest
of F P G A pass through single P R M assigned to P R R O which is neighbouring wi th a l l other

55

P R R s . The other 4 P R R s can be assigned by P R M s of different units of the selected F T ar
chitecture. The number of these uniformly sized and structured P R R s can vary. The small
count of P R R (3,4) can be used to implement only simple F T architectures (e.g. T M R
wi th simple voter, duplex w i t h checker) and can be used to recover system after permanent
faults only very few times. O n the other hand, the number of alternative configuration is
smaller. The higher number of available P R R s allows to overcome more faults but brings
much more alternative configurations.

To illustrate the applicat ion of methodology for securing a real system, several F T
architectures were proposed which can be used i n degradation strategy of some system
unit . The first, most robust F T architecture, is T M R architecture wi th doubled voter
which enables the detection of errors also in the voter. The next T M R architecture uses
just simple non-protected voter unit . The last architecture is based on Duplex system w i t h a
comparator. Th is architecture is not fault tolerant since there is no possibil i ty to distinguish
which output of two replicated units is incorrect. B u t this system can run correctly unt i l
the first fault occurs and then it is detected by compare unit . The exact implementat ion of
these architectures w i l l be presented i n Section 7.2. The ut i l iza t ion of them and assignment
of their P R M s into allocated P R R s i n system design by means of proposed methodology
is shown in Figure 5.2. Each replicated functional unit is implemented in single P R M
referred to as P R M F U , complex voter unit is implemented i n its own P R M referred to as
P R M V O T E R and the rout ing between replicated units and the F T architecture external
interface is constrained into P R M referred to as P R M R O U T E .

FT architecture 1 FT architecture 2 Non-FT architecture 3
(TMR with doubled voter) (Simple TMR) (Duplex with compare)

Legend " r — — — . ; " r — — — • ' " " i — — - i

PRM_VOTER

PRM_FU

NO PRM ASSIGNED

Figure 5.2: The assignment of P R R s by different P R M s

5.1.3 G e n e r a t i o n s of a l ternat ive F T arch i tec ture conf igurat ions

The methodology is based on the existence of precompiled configurations of an F T design
which are applied when a permanent fault occurs. These configurations are divided into
several generations. Configurations from one generation contain the same F T architecture
but w i th different P R M placement. The enumeration of a l l possible generations for such
F T architectures is shown i n Figure 5.3.

The number of unused P R M s (P R M s excluded from use) i n configurations of each
generation reflects the generation number. The code of configuration is assembled from
flags indicat ing if the corresponding P R R is assigned by P R M (see legend in Figure 5.3).
The configuration w i t h code 1111 from generation 0 represents the starting configuration
for this system part. After the first permanent fault is detected and affected P R M is
localized, the new configuration excluding the faulty P R M from the next generation is

56

Genera t ion 0

ROUTING
PRM

VOTERPRM

ROUTING
PRM

FUiPRM

ROUTING
PRM

FU2 PRM

ROUTING
PRM FU3 PRM

[1111]

Legend

PRRi

PRR 2

PRR 3

PRRo PRR 4

C o n f i g u r a t i o n c o d e : [bi b 2 b 3 b 4]

/ • • • \
Is PRRi Is PRR 4

assigned? assigned?

(1/0) (1/0)

Genera t ion 1 Genera t ion 2

FUlPRM

FU2 PRM

FU3PRM

& VOTER
PRM

1110]

FUlPRM

FU2 PRM

ROUTING
& VOTER

PRM
FU3 PRM

ROUTING
& VOTER

PRM

1101]

FUlPRM

ROUTING
& VOTER

PRM

FU2 PRM

FU3 PRM

[1011]

FUiPRM

FU2 PRM

& VOTER
PRM

FU3 PRM

ROUTING
& COMP.

PRM

FUiPRM

ROUTING
& COMP.

PRM

FU2 PRM

ROUTING
& COMP.

PRM

ROUTING
& COMP.

PRM

[1100]

FUiPRM

FU2 PRM

& COMP.
_ PRM

1010]

ROUTING
& COMP.

PRM

FUiPRM

ROUTING
& COMP.

PRM

ROUTING
& COMP.

PRM

ROUTING
& COMP.

PRM
FU2 PRM

[1001]

FUiPRM

& COMP.
PRM

FU2 PRM

[0011]

FUiPRM

& COMP.
PRM

FU2 PRM

0101]

FUi PRM

FU2 PRM

& COMP.
PRM

Figure 5.3: The generations of F T architectures and their alternative configurations

chosen to be used for system implementation. This principle is applied again when a
new fault affects another P R M . The number of possible variants of configurations is rising
wi th the number of P R M s affected by fault. To reduce the memory requirements for the
configuration, bi tstream relocation method is used to avoid the existence of several copies
of P R M containing the same type of unit . O n l y one copy of P R M bitstream for each type of
P R M except P R M R O U T E is needed. O n l y the bitstream designated as P R M R O U T E
is stored for each configuration i n the memory.

5.1.4 R e d u c i n g the n u m b e r of conf igurat ion b i t s treams v i a b i t s t r e a m re
locat ion technique

Due to the specifics of design and implementat ion flow adopted by X i l i n x tools, the gen
erated par t ia l configuration bistream of P R M cannot be assigned to different P R R than it
was originally designated to. One P R B has to be generated for each P R R where the P R M
w i l l be configured. Thus, if there is a need to apply N P R M s of different types to any of
M P R R s , N * M P R B s have to be produced and stored in external memory for run-time
par t ia l reconfiguration.

W i t h the adoption of bitstream relocation technique, the number of generated P R B s is
reduced to N. These P R B s can be used then for reconfiguration of a l l P R R s satisfying the
conditions for the applicat ion of relocation technique. These conditions are applied i n the
design phase and the implementat ion phase. One of the main l imitat ions of this technique
is the need to have a l l P R R s wi th identical F P G A resources.

57

In common, this technique always starts by generating the P R B s for a l l types of P R M s
in one chosen locat ion of P R R . Before the run-time reconfiguration, the bitstream manipu
lat ion modifying the information related to its locat ion to apply it into other different P R R
is needed.

The implementat ion of this technique i n proposed F T system design process is described
in details further i n the text of the Section 6.1.2.

5.1.5 S y n c h r o n i z a t i o n issues

W h e n the reconfiguration of a faulty P R M i n an F T architecture w i t h replicated units is
done, the problem w i t h synchronization between these units can arise. W h i l e the state
of reconfigured unit is ini t ia l ized after reconfiguration, the other units operate and their
states are different from the reconfigured ones. T h i s issue is typica l for P D R of P R M
implementing sequential circuits which is done during the transient fault mi t igat ion process.
Another problem wi th the synchronization can arise when the change of F T architecture
configuration is done and a l l its P R M s are reconfigured to overcome the permanent fault
occurence. The state of its functional units is reset while the other system parts connected
to input or output of this architecture are stopped i n some accumulated state. Solving of
the synchronization issues was not the goal of the research but it was also studied as a
consequence of using P D R i n fault mi t igat ion process.

Several synchronization techniques were presented i n order to restore the reconfigurated
unit i n T M R scheme. They differ in the type of target system. W h e n a sequential circuit
is implemented as a F in i te State Machine (F S M) , checkpoint stategy presented in [19] can
be used. It is based on setting the state of the reconfigured unit to often reached one and
holding it un t i l other units reach this state again. Another method for complex sequential
circuits (i. e. softcore processors) was presented in [24]. The state of a l l internal registers
of the chosen correctly working unit can be saved to memory after reconfiguration, a l l units
stopped then and the content of registers from memory wri ten back to a l l units. Other
techniques of synchronization are designated for the packet processing circuit . In this case
it is sufficient to mask the output of reconfigured unit un t i l the next packet comes to process.
In [13], a method is presented where for the stated min ima l t ime (longest period between 2
arrivals of consecutive packets) the function of fault detection unit of the system is disabled,
so the incorrect outputs of the reconfigured unit do not cause the new reconfiguration of
the unit . Dur ing this min ima l t ime, the local reset w i l l be generated which w i l l result in
the synchronization of units.

In this methodology, a specific synchronization method for complex sequential circuits
based on copying the state of other replicated unit was tested. The architecture wi th
synchronization capabil i ty incorporates voter unit w i th fault detection and localizat ion
abil i ty and implements simple control mechanism of unit synchronization. The proposed
architecture for T M R scheme is shown i n Figure 5.4.

Because the used synchronization technique is based on copying the state from correctly
working unit to the reconfigured one, a l l units are connected by oriented point-to-point
(source-destination) connections to the r ing. Funct ional units are modified i n such a way,
that they expose synchronously the values of state registers one by one start ing when enable
signal is disabled. O n the other side, the unit w i th enabled receive signal is saving at the
same time the values from antecedent unit into its state registers. W h e n a l l register values
are saved, the unit w i th enabled receive signal triggers the sync end signal to inform the
voter unit about the end of synchronization process. To prevent the new reconfiguration of

58

•PRM1

Figure 5.4: F T architecture w i th the unit synchronization

unit which is not yet synchronized and can be considered as faulty due to its undefined state,
the error signals of this unit connected to G P D R C are masked by voter un t i l the impulse
on sync end signal appears. D u r i n g the synchronization process a l l units are stopped.

W h e n needed, this synchronization method can be applied to F T architectures which
we propose later i n the text. The implementation for F T systems based on duplex scheme
which was not mentioned in previous paragraph can be designed in a similar way as for the
T M R scheme. Con t ro l mechanism for state copying can be implemented i n detection logic
i n P R M _ R O U T E instead of voter unit .

The overhead which this technique brings, depends on the number and the w id th of
F U s state registers. This technique was presented in [33].

5.2 Generic partial dynamic reconfiguration controller

M a n y works dealing wi th par t ia l dynamic reconfiguration are using microprocessor to con
t ro l this process. There could be a significant waste of computat ional power when such
universal processor is used to drive the reconfiguration. Moreover, the wasted performance
causes higher power consumption and higher complexity of the solution which increases the
probabil i ty of failures. The microprocessor can perform another computation, however, an
error in any software module may delay or even stop the reconfiguration process. There
fore, the decision to implement generic reconfiguration controller of P D R as a hardware
unit to reduce resource u t i l iza t ion and thus reduce the failure probabil i ty in the controller
was made.

The concept of the first G P D R C for transient fault mi t igat ion was presented i n [56]. The
first implementat ion wi th in system wi th counter and S E U injection was presented i n [26].
Previous G P D R C design has been extended to be able to perform reconfiguration of entire
F T system (several P R M s) when the permanent fault occurs i n its P R M . New issues such
as choosing the proper configuration from the next generation of configurations, performing
the relocation process on loaded P R B s and the synchronization of the complete F T system
were solved and implemented into controller. The G P D R C for transient and permanent
fault mi t igat ion was presented in [31].

59

5.2.1 T h e design goals of G P D R C

Before the development of G P D R C , several design goals to be achieved were defined:

• The resource ut i l iza t ion of new controller has to be lower than the standard controller
units implemented by universal softcore processors.

• The controller must be buil t in generic way to be able to perform P D R i n the systems
wi th the different number of P R M s . The size of controller should be related to the size
of the system - i f the system is smal l and it consists of few P R M s only, the controller
should be much smaller than for complex systems wi th plenty of P R M s .

• The controller should be autonomously able to determine the type of fault which
occured in a P R M , whether it is a transient or a permanent one - for this purpose the
information on whether the fault occurred during n successive reconfiguration cycles
(the reconfiguration cycle consists of faulty P R M detection, P R M reconfiguration,
P R M synchronization) can be used. If the fault occurrence is equal or lower than
n, the fault is seen as a transient one, otherwise it is concluded that the fault is a
permanent one.

• The P D R w i l l be done v i a internal reconfiguration interface (I C A P i n X i l i n x F P G A s)
and uti l ize its full speed (up to 100MHz) .

• To reduce the number of needed precompiled P R B s the controller has to implement
the technique to use the same P R B for the P D R of several P R M s where it is possible
(e.g. the same type of P R M but different physical assignment to P R R) .

• The controller should allow the synchronization of reconfigured P R M s by ignoring
the error output of reconfigured P R M unt i l it is synchronized. The synchronization
can be done autonomously in the concerned F T architecture or it can be driven by
external sychronization controller.

• The controller should be able to cooperate w i th different types of external memories
serving as a bitstream storage. The bitstream data transfer interface must be so
general as to allow the connection to different external memory controllers.

5.2.2 G P D R C uni t design

The detailed architecture of G P D R C can be seen i n Figure 5.5. Its interface contains
an error vector of F T architectures as input . Its wid th depends on the number of F T
architectures and the available number of P R M s for each of them. The next interface
signals such as bitstream address, bi tstream data and their val idi ty indicators are designated
to communicat ion wi th external bi tstream storage v ia connected memory controller when
bitstream is transported through I C A P interface of F P G A . The sync done and rec done
signals are intended mainly for controll ing the synchronization of reconfigured P R M s i n F T
architectures. W h i l e the arch, index vector contains the index of current F T architecture
where the fault mutigat ion process is done, PRM error index vector expose the specific
P R M which is currently handled by G P D R C . The hard signal indicates, if current P R M is
affected by permanent. The fatal signal announces the si tuation when the F T architecture
cannot be repaired by G P D R C because the number of available P R M s has fallen below the
required min imum.

60

I FT Architectures PRM Error Vectors

Memory controller
a d d r e s s i ̂ A data

f \ < T
Bitstream storage memory

Figure 5.5: Fault tolerant system structure for S R A M based F P G A

The G P D R C contains nine ma in units, one F I F O unit and several Look U p Tables
(L U T) and multiplexers (M U X) . The information about errors on input vector is captured
during one reconfiguration cycle i n input register and then loaded into error register. The
G P D R C works sequentionally, thus one reconfiguration cycle is composed of looping over
F T architectures error signals. To be able to determinate the type of fault, the value of
error vector from previous reconfiguration cycle is also kept available. H a r d error detection
unit can designate the fault as permanent on the basis that the same error was detected
during two consequent cycles.

W h e n there is no permanent fault detected, the roundrobin unit looks for any transient
error i n register and together w i th encoder unit returns its index when some is found. This
index is used to choose the type of unit in the selected faulty P R M . The relationship between
P R M index and its type for each configuration and F T architecture is known because it
is stored i n P R M type L U T . After resolving the P R M type, the address of its bitstream
i n memory is looked up and used i n address counter. W h e n the index is equal to 0, the
address of bi tstream of appropriate P R M wi th rout ing is used.

If a permanent fault was detected, each P R M of actual F T architecture w i l l be recon
figured. Thus, the value of P R M index signal loops from 0 to PRM number - 1. The
configuration code supplied by L U T s is formed from error signals of actual F T architecture

61

in this way: error n-1 error n-2 ... error2 error 1. The error 0 signal is generated by P R M
which contains routing and does not affect the choice of F T architecture configuration. The
resolving of indexed P R M bitstream address follows the same steps as it was described in
the previous paragraph.

The address counter unit is used to address data words i n bi tstream storage from the
starting to the ending address. Due to the use of one copy of the bitstream for a l l units
of the same type, the relocation process of bi tstream must be performed. This is done by
relocation unit , which uses the address of actual reconfigured P R M from Frame Address
L U T to modify the value of frame address in bitstream.

W h e n the P D R of a l l faulty P R M s i n one F T architecture is finished, the value of corre
sponding rec done signal in F T Archi tecture Status unit is set. Th is means, that G P D R C
w i l l ignore the errors coming from this architecture, un t i l its P R M s are synchronized by
some external unit or mechanism. After act ivating the appropriate sync done signal, the
error signals from F T architecture w i l l be no more ignored by G P D R C . This approach based
on excluding the synchronization from G P D R C allows to use different and more suitable
techniques of synchronization for each F T architecture.

5.2.3 I m p l e m e n t i n g G P D R C unit as fault to lerant

The G P D R C as the important part of this reconfigurable architecture which should be
protected from the impact of S E U s . One solution is to move it outside F P G A to radiat ion
hardened fabric. Other possibil i ty is to implement it as F T system. In this case, the
G P D R C must be moved into dynamic part of F P G A and its units w i l l be designed as F T
architectures and divided into P R M s and their error signals connected to the error input
of the G P D R C . Then, the fault mi t igat ion of G P D R C itself is possible because of its F T
design. This process w i l l have higher pr ior i ty than the fault mi t igat ion in other P R M s .
Th is approach requires excluding the instance of I C A P outside of the G P D R C instances
because only one I C A P instance is available.

5.3 Fault mitigation procedure

In Figure 5.6 the behavior of the system after a fault is detected i n P R M is shown in flow
diagram. The fault is detected by the F T architecture. The F T architecture generates a
set of error signals which identify the faulty P R M (step 0). This is possible due to the fact
that the functional units and voters are implemented into separate P R M s and the relation
between the units and P R M s where they are placed is known.

W h e n the faulty P R M is localized, the G P D R C determines, i f the occured fault w i l l be
considered as transient or permanent one. The solution used i n the case of transient fault
occurence is denoted as the option A further i n this text. If the fault is seen as a permanent
one, then the subsequent steps depend on whether the current configuration comes from
the final generation (Generation 2 in this case). The G P D R C stores the configuration code
of actual configuration so it is able to identify that it is from final generation. If it is
from final generation, there is no addi t ional option to continue i n mi t igat ion of this new
permanent fault and the F T architecture w i l l indicate this to G P D R C unit . Then , the
intervention from outside is needed (e.g. physical placement of configuration is moved to
another locali ty of F P G A or the F P G A is replaced w i t h a new one). In the si tuat ion when
actual configuration is not from final generation, it is possible to mitigate the occured fault
and the solution is denoted as the opt ion B .

62

NORMAL OPERATION MODE
&

GPDRC CHECKS FOR FAULT

LOCALIZE FAULTY PRM

(A1)

DOWNLOAD AND RELOCATE
BITSTREAM OF PRM

WITH THE SAME TYPE
AS THE AFFECTED PRM

(A2)

RECONFIGURE PRM
WITH FAULT BY

RELOCATED BITSTREAM

(A3) > f

SYNCH
RECONFK

RONIZE
SURE PRM

J

REPORT
UNREPAIRABLE STATE

CHOOSE THE NEXT GENERATION
CONFIGURATION NOT USING

AFFECTED PRM LOCALITY

(B2)

DOWNLOAD BITSTREAM OF
PRM_ROUTE FROM CHOSEN

CONFIGURATION AND PERFORM
RECONFIGURATION

(B3)

DOWNLOAD AND RELOCATE
BITSTREAM OF ALL PRMs USED

BY CONFIGURATION
EXCEPT OF PRM ROUTE

(B4)

RECONFIGURE ALL PRMs
(EXCEPT PRM_ROUTE)

BY RELOCATED BITSTREAMS

Figure 5.6: Reconfiguration flow diagram

Opt ion A - recovery from a transient fault: After a transient fault is detected,
G P D R C reads from external memory the P R B which responds to the type (P R M _ F U ,
P R M V O T E R , P R M C H E C K E R , etc.) of the identified faulty P R M . The type of the
unit is known because the G P R D C knows which configuration is configured actually and
the dis t r ibut ion of P R M s i n i t . The downloaded P R B is originally designated to the first
suitable P R R (typically to P R R 1 , see Figure 5.7). Therefore, the next step of mit igat ion
process (step A l) w i l l be the relocation of this bi tstream in such way that it can be used
for reconfiguration of the affected P R M . The reconfiguration process of this P R M wi th the
relocated P R B is driven by G P D R C (step A 2) .

63

Figure 5.7: The dislocation of par t ia l reconfiguration regions belonging to one configuration
of F T architecture in the F P G A

After the reconfiguration is finished, in some cases the P R M must be synchronized
wi th other components of F T architecture. The synchronization can be also controlled by
G P D R C (step A 3) .

Opt ion B - recovery from a permanent fault: After a permanent fault is detected
in P R M and the actual configuration does not belong to the final generation, new configu
rat ion from the following generation is selected. This configuration w i l l not use the faulty
P R M . The G P D R C w i l l choose configuration according to configuration code which w i l l
respond to bitwise negation of the vector of error signals from F T architecture (B l step).

An example: let us say that the currently used configuration has the 1111 code (genera
tion 0) and permanent fault affecting the operation of the voter unit occurs. The vector of
error signals from FT architecture appearing on the PRM error signal vector on GPDRC
will be 1000. The bitwise negative of this value will be the code 0111 of the new selected
configuration from generation 1.

The P R B for P R M R O U T E (P R M wi th the interconnections) of selected configuration
is stored i n the external bitstream storage. Th i s bi tstream is designated to reconfigure
resources of P R R O (the only P R R of F P G A where this bi tstream of P R M R O U T E can be
assigned). Th is implies that there is no need to relocate this P R B (step B2) .

The downloading of P R B copies implementing a l l remaining P R M s w i l l be the next
action. The number of needed bitstream copies and their type (if it is implementing
P R M _ F U , P R M C H E C K E R or P R M V O T E R) is determined by the selected config
uration. The P R B s of a l l P R M types are downloaded from the same destination, as in
the case of reconfiguration after transient fault. E a c h of these downloaded P R B s w i l l go
through relocation process which w i l l make them suitable for appropriate P R R s (step B3) .

An example: if the configuration with 0111 code is selected as the new one, as the
first step the PRB of PRMCHECKER will be downloaded and because all of these PRB
types are designated to PRR1, it has to be relocated to PRR2 and then used for PDR.

64

Subsequently, PRB of PRM_FU is downloaded, relocated to PRR3 and used for PDR. The
final step will be similar as the previous one with the only difference that the new destination
will be PRR4-

The downloaded and relocated P R B s are used for the reconfiguration of P R M s , which
are used in the configuration (step B4) . After completion of the reconfiguration, local reset
of units i n newly configured P R M s is performed. Also some k ind of synchronization (state
recovery of a l l units i n affected P R M s) can be performed i n this step.

5.4 Summary

In this chapter, the basic principles of methodology were presented. It describes the process
of securing a given system design to become less vulnerable to fault occurences and the steps
of fault mi t igat ion when some fault is detected and localized.

The system is divided according to designer decision to several parts which are imple
mented as F T architectures. Faul t detection is mainly based on C E D and requires addi t ional
logic to localize faulty P R M . The fault mi t igat ion is driven by dedicated reconfiguration
controller (G P D R C) which determines the scenario of fault mi t igat ion process according to
the fault type and taking into account the previously occurred faults.

The transient fault is mit igated by P D R and dur ing its performance the F T architecture
ensures the product ion of correct outputs. To reduce the number of stored precompiled
P R B s , the relocation of the golden copy of the P R B for the needed P R M type is performed.
W h e n a permanent fault is identified and some alternative configuration which does not
util ize the resources from faulty region of F P G A exists, then the reconfiguration of entire
F T architecture is performed. W i t h this approach many alternative configurations can
arise. Therefore they are grouped into the generations of configurations according to the
number of faulty P R M they can handle. W i t h their setup, G P D R C can determine which
configuration w i l l be used to recover the system after permanent fault occurence.

65

Chapter 6

Design of fault tolerant
architecture by means of developed
methodology principles

The process of F T architecture system design to meet requirements defined by the proposed
methodology is described in this chapter. The tool developed for automatic F T architecture
generation is presented in this chapter as well.

6.1 Prerequisities

This section describes the methods which are used or can be alternatively used during
design phase.

6.1.1 P R M isolat ion

The modules of F T architecture have to be implemented into separate P R M s according
to the proposed design principles. Th is means that F P G A resources from given P R M can
be used only to implement the function of designated F T architecture module. A t the
same time, a l l pieces of module logic and connections (except of connections between the
module and the rest of design) have to be implemented by these resources only. Th is is
not ensured by current design tools which are processing optimizations such as redundacy
removal what can lead to unwanted ut i l iza t ion of F P G A resources in non-designated areas
of F P G A (some part of module is implemented outside the restricted area for its designated
P R M) or leading crossing wires through the area restricted for some P R M which is not using
them.

W h e n the modules are implemented into separate P R M s as isolated partit ions of F P G A ,
it enables later par t ia l reconfiguration i n single P R M where the implemented module can be
changed while the remaining modules remain unchanged and correctly working. To ensure
this, several design strategies can be adopted:

• Post-implementation adjustment of implemented design created by automated tool
can be done by designer. The output of synthesis and implementat ion tool can be
modified in such way that the P R M partit ions are isolated by remapping conflicting
resources and rerouting conflicting connections. This method can be very costly and
t ime demanding.

66

• Custom built PAR tool can be created to replace the entities of static design from
P R M and reroute the connections between static logic going through P R M . This
tool can be a part of standard design flow or it can be used to preprocessing design
implemented by some other design implementat ion tool . T h i s tool w i l l need a set of
constraints specifying the P R M partit ions location.

• Blocking macros can be added to design to prevent the ut i l iza t ion of P R M resources
while implementing the static design. This hard macro inserted to design utilizes
al l resources and connections wi th in the stated area in F P G A which is reserved for
P R M . The G o Ahead tool which is implementing this strategy can be taken as an
example []. The steps of synthesis and implementat ion are as follows. Fi rs t , the
hard macros generated by G o A h e a d tool for desired P R M partit ions are added to the
implementat ion and the static design configuration is generated. T h i s ensures the
logic and connections of static design w i l l not use the resources from P R M partit ions
because they are ut i l ized by dummy logic and connections of generated hard macros.
The next step consists of generating configuration of the design wi th proper P R M s
included. The main drawback of this method is its b inding to specific F P G A type. For
each F P G A family, the complete description of F P G A resources has to be delivered.

• Isolation Design Flow (IDF) is a strategy available for F P G A s from X i l i n x to ensure
the isolation of logic, rout ing and ut i l iza t ion of I O B s of the specified module design.
The designer has to consider floorplanning earlier than in standard design flow. The
design has to be par t i t ion based. This involves several goals which have to be achieved
[68]:

— each module which should be isolated must be i n its own par t i t ion,

— each par t i t ion must consist of a single module instantiation,

— a special restricted area (fence) must be used to separate isolated parti t ions
wi th in a single chip. The fence is a set of unused tiles i n which no routing or
logic is present,

— I O B s used by isolated par t i t ion must instantiated inside this par t i t ion (not in
top-level entity of design),

— communicat ion between isolated functions in F P G A is achieved through the use
of trusted routing (user defined route between isolated partitions) or through
off-chip communicat ion.

To ensure that unwanted opt imizat ion w i l l not appear, I D F consists of two steps.
Firs t , each isolated module is synthesized and implemented independently of the
other parti t ions. After this step is done for a l l partit ions, the design is merged into a
flattened F P G A design for device configuration.

6.1.2 B i t s t r e a m re locat ion technique

The P D R design flow adopted by X i l i n x design tools determines that each P R M has to be
designed before P A R phase is performed and also dynamic reconfigurable modules have to
be dedicated to specified P R R s i n this phase. Th is flow implies that the par t ia l configuration
bitstream of P R M is designed specifically for a certain locat ion i n the F P G A which is
defined by the P R R . This complicates the use of one par t ia l bi tstream of one P R M for the
configuration of different P R R s . Th is is caused due to the fact that the bitstream contains

67

information about the start ing posit ion of the block of resource which it configures. This
posit ion is wri t ten i n frame address part of bi tstream (see Section 2.2.7). The modification
of this value requires the change of Cyc l i c Redundancy Check (C R C) code in the footer of
bitstream. C R C can be recalculated again when the frame address is changed or it can be
invalidated.

To be able to perform the relocation, the design of P R M s has to satisfy the following
conditions for a l l P R R s where the given bitstream w i l l be used for their reconfiguration:

1. The amount and the relative layout of reconfigurable resources is identical . The
restriction to amount of resources means that the number of each resource type (e.g.
C L B s , B l o c k R A M s , D S P s , etd.) as well as the number of allocated rows and columns
of F P G A resources has to be same in a l l P R R s . The layout of a l l different types of
F P G A resources i n these allocated regions has to be the same, too.

2. The relative placement of proxy logic has to be the same. The proxy logic is automat
ically added to each signal of the design which is crossing the P R M and its placement
is typical ly not the same in a l l P R R s where the relocatable P R M can be placed.

3. The routing path between proxy logic of each P R M and the static region have to
cross the boundary between P R R and the static part of design i n the same relative
position to current P R R layout. Even i n the case when the proxy logic is placed in
al l P R R s in the same relative location the wires connecting them wi th the static area
can be led along wi th different routing i n each P R R .

4. The wires of static part crossing the P R R (without any junct ion inside) have to be
excluded.

To satisfy condit ion 1, the P R R s are contrained to areas which consist of the same
resources. This is done by setting A R E A G R O U P constraint to the set of resources (each
resource type are constrained separately) for top-level entity of each P R M . The setting of
this constraint to region bounded by rectangle defined by the posit ion of two oposite corner
points ([a,c] and [b,d]) is shown by i n the following code.

AREA_GROUP "entity_name" RANGE=<logic_resourcel>_XaYc:<logic_resourcel>_XbYd

AREA_GROUP "entity_name" RANGE=<logic_resource2>_XaYc:<logic_resource2>_XbYd

This constraint can be applied to a l l types of F P G A logic such as S L I C E s , R A M B 1 6 s ,
IOBs , P L L s , D C M s , B U F G s , D S P 4 8 E s , etc. Accord ing to X i l i n x applicat ion note [63], it
is recommended to include (constrain w i t h A R E A G R O U P) also a l l unused resources of
any type i f they are physically located wi th in the same area as the ut i l ized resources to the
region constrained wi th A R E A G R O U P .

The assignment of P R M top-level entity to the set of resources by A R E A G R O U P
constraint which w i l l create the P R R suitable for relocation is shown in Figure 6.1.

For the correct placement of proxy logic on the boundary of P R M (condition 2), the
several placement constraints can be used. They can be specified i n User Constraints F i le
(U C F) which is supplied by X i l i n x I S E implementat ion tool . The useful constraints for this
task £1X6 ctS follows:

• P I N - the constraint is applied to nets connecting the proxy logic of P R M and the
rest of design. A s the P R M s are placed in the successive columns of F P G A , only

68

Figure 6.1: The example of regions suitable to host the same relocatable P R M

the locat ion of proxy logic i n first P R M is selected by designer (or design tool).
The posit ion of proxy logic and its connecting nets for the remaining P R M s can
be determined by adding the constant value. This increment is evaluated from the
difference of the posit ion of two successive columns.

• L O C - the constraint is needed to specify locat ion of entity i n some F P G A resource
component (e.g. S L I C E s , B R A M s , I O B s , etc.).

• B E L - the constraint is used to specify the u t i l iz i ta t ion of a part icular slice or part of
components (S L I C E s , B R A M s , I O B s , etc.). A s an example, it is possible to specify
the specific L U T inside C L B in specific S L I C E .

• L O C K P I N S constraint is used to force the ut i l iza t ion of the same inputs i n a l l
proxy by implementat ion tool .

The use of these constraints to b ind single signal to specific L U T i n specific S L I C E is
shown by the following code.

PIN "PRM_entity_name.signal" L0C=SLICE_X1Y2;

PIN "PRM_entity_name.signal" BEL=A6LUT;

INST "PRM_entity_name" LOCK_PINS=ALL;

The example of constrained proxy logic i n several P R R s which is possible to be config
ured by one relocatable P R M is shown in Figure 6.2.

The same (relatively to P R R layout) routing between proxy logic and static area (con
di t ion 3) can be enforced by adding single L U T to static area for each proxy logic block
implemented in a l l P R R s . Th is technique simulat ing the use of bus macros i n older F P G A s
was presented i n [17]. The added L U T is placed on the opposite side of P R R boundary
very close to proxy logic I / O to compell the router to route the connection in a l l P R R s in
the same way (see Figure 6.3).

69

Figure 6.2: The constraining of proxy logic inside P R R s

CLB with proxy logic

CLB with added LUT

Figure 6.3: The addi t ion of L U T to each proxy logic block

The probably most complicated is the satisfaction of condit ion 4. The wires of static
area crossing the reconfigurable region can be solved by P R M isolation techniques described
in previous section. F i rs t , the blocking macros created by G o Ahead tool [7] were used in
this work to implement the static logic without interfering the stated P R M s . Th is technique
requires the specific implementat ion of blocking macros for each type of F P G A and therefore
this cannot be transferred between F P G A s . Another drawback is the need to convert
files i n N C D format (generated from X i l i n x I S E implementat ion tool) to X D L format (its
alternative in human readable format) and back repeatedly. This conversion can be very
t ime demanding when implementing design for large devices. The I D F strategy is a new
concept for newer F P G A s and therefore it was not addressed by this work. The adoption
of this strategy i n older F P G A s and older design tools is possible but there are some bugs
which complicate its use. W i t h the careful placement of the entities from the static part
of the design, the probabil i ty of the occurence of these unwanted wire crossings can be
dramatical ly reduced. The remaining crossings can be mit igi ted by designer intervention
i n tools like F P G A Ed i to r from X i l i n x I S E toolki t or R a p i d S m i t h [38]. R a p i d S m i t h is an
open-source design C A D tool , but it also requires the conversion to X D L format to perform

70

changes on the design. After the change of static design is done, the bitstream can be
generated from the modified design implementation.

W h e n the design of P R M s is following these four defined restrictions, the relocation of
final par t ia l configuration bitstreams is possible. There is no need to be familiar w i t h the
device bitstream compositions. The bitstream relocation can be impossible in some cases.
This can happen for example i n si tuation when the P R M s are too large and there is a lack
of similar regions wi th the same set of resources and their relative posit ion inside the region.

6.2 Fault tolerant architectures design

The applicat ion of the methodology requires the specific process of system design. W h e n
this design is adopted, it is ensured that faults appearing subsequently i n functional modules
or other F T modules (containing voters, checkers, etc.) of design can be mitigated.

The system design according to the methodology contains several required steps. F i rs t ,
the user system design on the input is spli t ted into the set of important parts designated
for securing and the set of remaining parts to be left as they are (i.e. unsecured). For each
important part, the degradation strategy to overcome permanent fault occurence is chosen
and some part of the implementat ion area of F P G A is allocated. F ina l ly , the G P D R C unit
is added into modified system design to provide the control of fault mi t igat ion process.
These steps are described in more details i n the following sections.

6.2.1 S y s t e m design p a r t i t i o n i n g

The original system design delivered from a designer for securing has to be divided into
important parts i n terms of required dependabili ty and the remaining parts which may
remain unsecured (from the methodology point of view) or they are secured i n some other
way. F r o m the chosen important system parts every single part w i l l be secured as single
F T architecture wi th fault mi t igat ion capabil i ty according to the methodology.

The process of par t i t ioning has to be driven by designer knowledge of importance of
each system part. Th is can be gained as the result of modell ing rel iabi l i ty of system parts
and the impacts of faults occured in specific system part to entire system. In F P G A , fault
injection is frequently used to examine the system endurance to impacts of possible faults.

The par t i t ioning can be done wi th different granularity as shown i n Figure 6.4. These
approaches can be categorised into 3 groups.

• Coarse-grained par t i t ioning - One possibil i ty of system part i t ioning is to take the
system as one single part. It is the easiest option of securing the system when just
one set of F T architectures w i l l be created. Therefore, the resulting replicated modules
and the other F T modules of F T architectures w i l l be very big as well as the par t ia l
configuration bitstreams of these modules. For these reasons, this option should be
preffered only i n some cases, such as the si tuation when the original system is small
sized or when the system has to be taken only as a black box (e.g. hard macro).

• Fine-grained par t i t ioning - Other option i n par t i t ioning is d iv id ing the system into
more smaller parts. W i t h this approach for each single part custom set of F T archi
tecture can be chosen and the resulting modules of F T architectures w i l l be smaller
(see Section 7.3). The t ime needed to fully recover after fault occurence (whether
transient or permanent) w i l l be lower since it is mostly affected by par t ia l configura-

71

FUn Fib

PARTj

FU3 | -j

, — FU S *

FUn FU 2

P A R T 3

FU 3 FU 3

P A R T i PART 2

FU„ FU S * :

(a) Coarse-grained partitioning

PART4 PART 5 PART 6

(b) Fine-grained partitioning
PART 2

FUn Fib

F U 3 F U 3

PARTi

FU„ FU^
FU

P A R T 3 P A R T 4

(c) Mixed partitioning

Figure 6.4: Design par t i t ioning wi th different granularity

t ion bitstream size. The drawback of this approach is the slightly increased size of
G P D R C due to increased number of P R M s which it controls (see Section 7.1.1).

• M i x e d par t i t ioning - The possibil i ty to combine two previous approaches and divide
the system into some smal l parts smal l and some bigger parts also exists. These bigger
parts can consist of several (or many) smal l units. The applicat ion of methodology
demands the wrapping of these smaller units by top-level entity (in V H D L) to create
the mentioned bigger part.

6.2.2 Se lect ion of the d e g r a d a t i o n strategy for recover ing f r o m p e r m a
nent faults

From the dependabili ty point of view, not a l l of the chosen important parts must be cate
gorized to the same level of importance. Permanent fault occurence i n system is mit igated
by downgrading the F T architecture from the robust one to less robust one. Th is step is
required every t ime the permament fault occurs i n currently occupied P R R containing the
P R M of F T architecture. The less robust F T architecture w i l l exclude this P R R from the
further use. The number of P R R s which can be excluded at the same time then specifies
the number of permanent faults which can be handled by this secured part of the system.

W i t h the increasing number of permanent faults which can be handled, the number of
posibble variations of P R M s dislocation into available P R R s is increasing almost twice (see
generations of configurations i n 5.1.3). Th is results in higher demand on external bistream
memory capacity. Thus, it makes sense to research the probabil i ty of permament fault
occurence i n current secured system part and its impacts and based on this consideration
choose the sequence of F T architectures for the degradation strategy.

A s an example, the key part of system can be secured by implementating it as T M R wi th
t r ipl icated voter unit . W h e n a permanent fault appears, the T M R wi th single voter which
excludes one P R R from ut i l iza t ion w i l l be used. The next step w i l l be the degradation to the
duplex architecture wi th checker units and finally it w i l l end as simple duplex architecture
without the possibil i ty of recovering from the next permanent fault occurence. Another part
of the system which is not so crucial for securing from any reason (i.e. the low probabil i ty
of fault occurence due to its smal l size), can start w i t h the T M R architecture wi th simple

72

voter. The rest of degradation strategy w i l l be the same as i n previous case. The ommit ing
of one step in degradation strategy for non key part of system w i l l reduce the number of
par t ia l bitstreams to be stored and reduce the size of G P D R C (because its size is dependent
on the number of error inputs).

C H E C K E R j C H E C K E R j

F U , F U ,

/ C H E C K E R 2 /

F U 2

/
• > / v O T E F T F U 2
• > / v O T E F T

C H E C K E R j

F U 3 F U 3

C H E C K E R ! C H E C K E R !
/ *

F U , /
 k F U ,

/ \
A -

C H E C K E R 2

F U 2 F U 2

C H E C K E R ! C H E C K E R !

Figure 6.5: The set of F T architectures as a sample of degradation strategy

6.2.3 T h e a l locat ion of i m p l e m e n t a t i o n area for F T archi tectures

From the previous steps the set of important parts together w i th their chosen possible
degradation strategies for permanent fault recovery was adopted for securing. F r o m the
reconfigurability point of view, the implementat ion area in F P G A can be divided into a
dynamic reconfigurable area and a static area without possibil i ty to be modified by P D R .
The set of important parts of original system (chosen i n previous steps) w i l l be implemented
in dynamic area to be able to be modified by P D R and the remaining parts w i l l be placed
i n static area. For each chosen important part of system, several P R R s w i l l be created.
To these P R R s , the P R M s of currently used F T architecture w i l l be assigned according to
stated procedure.

The location and the size of P R R s for implementing one system part has to be chosen
w i t h respect to this conditions.

• The number of P R R s is the same or bigger than the number of P R M s of the starting
(the most robust) F T architecture for given system part. W h e n the number of P R R s
is bigger than the number of P R M s , the remaining P R R s can serve as spares and it
w i l l increase the number of tolerable permanent faults. In this case, the degradation
strategy has to be modified in that way, that i n the case of permanent fault occurence,
these spare P R R s to substitute the excluded P R R w i l l be ut i l ized first.

• The set of created P R R s w i l l contain one specific P R R for P R M w i t h routing
(P R M R O U T E) . This P R R has to be located i n the neighbourhood of a l l other
P R R s . Th is means that there is a direct interconnection between this P R R and the
other P R R s not u t i l iz ing resources from the remaining part of F P G A outside these
two P R R s .

• Every P R R from the set of created P R R s (except of the P R R designated to be con
figured by P R M wi th routing) has to have the same size, the same structure and the
same local placement of the F P G A resources. Th is requirement must be satisfied to
be able to apply the bitstream relocation technique.

• The placement of P R R and also the size of the smallest possible P R R (PRRmin)
is l imi ted by the fact that the reconfiguration is done per configuration frames (see

73

Section 2.2.7). A s the configuration frame is modifying the configuration of speci
fied number of resources at once, the location and the size of P R R has to respect
these principles and can only allocate resources corresponding to one PRRmin or its
multiples.

The variants w i th different number of P R R s allocated for simple T M R architecture is
shown i n Figure 6.6.

The implementat ion area
corresponding to one PRR m i l , . J II

i II PRRl

1

1 PRR J

j ||

- H P R R O PRR3

! II 1
1 PRRl
i

) 1

!
PRRO PRR4

I I PRRl
1 I
i i

— i i PRR3

II !
II I PRR4
i (

PRRO ! PRR5

PRM with routing

PRM with FU

No PRM as igned

4 PRR 5 PRR 6 PRR

Figure 6.6: Several possibilities w i t h area allocation for simple T M R architecture

6.2.4 T h e ins tant ia t ion of G P D R C

The process of transient fault mi t igat ion and recovery from permanent fault relies on
G P D R C unit . This controller supplies the error signals from a l l P R M s of implemented
F T architectures, it reads the configuration data from the external bi tstream storage and
controls the P D R process v i a instantiated I C A P interface. The G P D R C has to be placed
into static part of the design because it cannot be reconfigurated by P D R (P D R is driven
by G P D R C and it cannot reconfigure itself).

W i t h the instantiantion of G P D R C , some external memory controller has to be instan
t iated too. The G P D R C is independent on the type of configuration bitstream storage and
its controller. It only provides interface for configuration bistream read operation.

Alternatively, when the synchronization of replicated modules in some implemented
F T architecture is needed, the separate synchronization controller can be instantiated and
connected v ia the synchronization interface of G P D R C which provides information about
the end of reconfiguration process and the index of reconfigured module (the one which has
to be synchronized).

6.3 Design tool for automatic generation of fault tolerant
architectures

The process of creating F T architectures based on the described methodology can be auto
mated. Th is tool can faciliate the work of system designer who can focus on tasks such as
design part i t ioning, chosing the degradation strategies or the opt imizat ion of implementa
t ion area allocations. The design tool is able to process the given V H D L entity and create
another entity described in V H D L which w i l l contain the definition of F T architecture
where the input entity w i l l be replicated to several functional modules. Th is output F T
architecture w i l l have the same interface as the original system wi th addi t ion to output
signals needed for G P D R C to be able to detect faults i n its modules and perform their
reconfiguration.

74

6.3.1 Inputs

In this paragraph, the required inputs for the developed design tool securing the given
system entity are summarized.

1. The design of system described as an entity wr i t ten i n V H D L . This w i l l allow to
describe any system design from the simple entity w i th behavioral description to the
top-level entity of complex processor.

2. The type of F T architecture to be created. It can be chosen from existing template
or the new template.

3. The locat ion of desired P R R s (placement constraints).

4. The implementat ion script for the given design wri t ten in Too l C o m m a n d Language
(T C L) for P l a n A h e a d tool from X i l i n x I S E Design Suite.

6.3.2 O u t p u t s

In this paragraph, the outputs of developed design tool are summarized. These files are
further used for implementing the secured system and for creating the par t ia l configuration
bitstreams.

1. The set of V H D L files w i th a l l entities of F T architecture.

2. The set of V H D L files w i th entity wrappers which have the required interface and can
be used as P R M s .

3. The modified implementat ion script i n the T C L format. T h i s script contains the
commands for the creation of P R R according to stated locations (in constraints file),
their assignment by implemented entities and commands for starting runs which w i l l
create par t ia l configuration bitstreams for a l l P R M s .

6.3.3 T h e process of F T arch i tec ture generat ion

In this section, the process performed by the developed design tool w i l l be described.
The main principle of creating F T architecture from the input entity and a set of tem

plate files is shown i n Figure 6.7. In this case, the bui ld ing modules for T M R architecture
wi th duplicated voter w i l l be created. The use of generated P R M s to create the desired F T
architecture is shown i n Figure 6.8.

The input entity provided by designer is wrapped into new entity from which the P R M
w i l l be created. This P R M is referred to as Funct ion Un i t (F U) P R M as only this unit
performs the original function of system. This P R M entity has input defined as a single
input vector which was gathered by joining the inputs of original F U . The same gathering
to single vector is done also wi th its outputs. Th is allows to define the templates of F T
architecture modules i n generic way as it can be seen in Figure 6.7 i n case of P R M wi th
voter.

Due to the fact that the interface of original F U should be retained i n the final F T
architecture entity, the template of rout ing for current architecture has to be wrapped. It
is done i n the opposite way, the joined input and output vectors for replicated F U s i n F T
architecture are scattered to form the same set of inputs and outputs as the original F U .
Except these vectors, the interface of F T architecture also contains the error vector where

75

USER INPUT

i FUlNO

F U I N I

FU|,

FUNC,
UNIT

F U C

• F U Q U T

FT ARCHITECTURE MODULES

F U O U T — "

• F U I N

FUr

STORED TEMPLATES

F U O U T * J

E R R O R O U T " * -

F U I O U T —

FU2oUT-»-J

F U 3 0 U T —

E R R O R Q U

FUou

FUi,

F U Q U T

- _ V O T E R E R R Q U

COPY

F U Q U T ,
V O T E R F U Q U T

F U Q U T .

F U Q U T .
F U l V O T E R m
FU2 VOTERm

4 ^ V F U 3 _ V 0 T E R I N

FUr FUQUT; -

E R R O R O U T —

^ F U 1 0 U T —

F U 2 O U T —

F U 3 0 U T —

3 + 1

FUQUTI

WRAP

JHJoy j
FU

F U 3 O U T

* F U 3 I N

FUlN
F U 2 0 U T

• F U 2 I N

i T — F U I O U T

- * - F U l | N

ROUTING

FUQUT!

F U I N \/Z FUNC.

l\L
UNIT

FU.PRM

FUOUT! 7 2 x

— K v o T t VOTER

VOTER PRM

1 ? \
FUIMQ:

^ F U I N I ! \ I F U O U T

FLJiNn! /
IFUOUT T

! F U O U T ,

FUINO; 1 F U Q U T T

F U I N I ! \

F U m n j / ! F U O U T
IF'UIN *

1 FUOUT
1 FUIN

1 FUOUT

ROUTING

ROUTINGo PRI» i

— V O T E R E R R O U T

• V O T E R F U Q U T

- - * - F U l _ V O T E R | N

F U 2 _ V O T E R | M

I » F U 3 V O T E R I N

i * F U 3 0 u T
- F U 3 I N

• F U 2 O U T

2|N

Figure 6.7: Generat ing F T architecture of Generat ion 0 from the unit designated for secur
ing

. . . i F U N C . i ^ m

FUlN — 1 U N | j I ^ F U Q U T

SECURE
(U S E ALL PRRs) , F T O U T * —

I VOTERJ

^ ~^JV\

Figure 6.8: The scheme of final F T architecture wi th generated modules in Generation 0

each logic signal carries the information about error status of specific P R M to input error
vector of G P D R C (see Section 5.2).

In Figure 6.9, the process of creating different F T architecture is shown. This architec
ture is less robust then the previous one and uses different routing scheme w i t h the addi t ion
of simple voter. In this case, the voter is not secured against the impact of fault occuring in
it. Therefore there is no designated P R M wi th voter, one P R R of the P R R s designated for

76

the given F T architecture can remain unused. A l l variations of the F T architecture P R R s
assignment are shown in Figure 6.10.

USER INPUT

Figure 6.9: Generat ing F T architecture of Generat ion 1 from unit designated for securing

F U I N -*- fuNlT I " F U O U T

SECURE
(L E A V E O N E P R R

E M P P O 1

E R R O R O U T -

F T O U T * —

F T I N •

a)

V̂OTER̂ I

ROUTING
ROUTING]. PRM

E R R O R o u T "

b)
ROUTING

ROUTINGi PRM;

E R R O R o u T "

F T O U T '

F T I N * —

O
ROUTING

ROUTINGi PRM I

E R R O R O U T ^ -

FTOUT ~*—

F T I N * "

d) ROUTING
ROUTINGi PRMI

Figure 6.10: The scheme of final F T architecture wi th generated modules i n Generat ion 1

77

6.4 The implementation of generated F T architectures

The complete process starting wi th the entry of unsecured system design to the final step of
configuration of F P G A wi th the equipment to tolerate the fault impacts and their mit igat ion
consists of several steps. These steps are shown i n Figure 6.11.

Design entry •
Top level entity
of secured unit

E

Source codes of
FT architecture

VHpj_

PRM netlist files
of FT architecture

NGCl

Set of partial bitstreams
for each PRM

Set of unique
partial bitstreams
for each PRM type

FT design tool
processing

BIT

Design
synthesis

Design
implementat ion

FT PRM entity
templates - voter,
routing, etc. (VHDL)

Partial bitstreams
selection

"BTT̂ J- -

PRM placement
constraints (UCF)

Modified
implementation

script with all PRM
placements

Bitstream of
static design

Implementation
script (TCL)

Device
programming

J
n n n n n n
• •• • • • • • • • • •
n n n n n n
l__ILJI_-ILJI__ll__l
n n n n n n
L J L J L J L J L J L J
n n n n n n
L J L J L J L J L J L J
n n n n n n
L J L J L J L J L J L J
n n n n n n
L J L J L J L J L J L J

Figure 6.11: The process of generating F T architecture and its implementat ion for given
system unit

The steps of this process have the following meaning:

1. Design entry - the designer describes the desired system i n V H D L and sets his con
straints for the design.

2. The specification of the system parts to be secured - the designer chooses the parts of
the system which is implemented i n entered V H D L files to be secured and chooses the
degradation stategy for each of these parts. Each selected part has to be described
as a single entity i n V H D L and none of these parts can be included inside another of
these parts.

3. The generation of F T architectures for the use i n degradation strategies - The devel
oped tool for designing system part as F T architecture is executed for each system
part and each F T architecture from its degradation strategy.

4. The creation of secured F T system - the original system design is modified by re
placement of selected parts by their implementations as F T architectures. T h i s can
be done without much effort because the interface of original part (unit) is a subset
of the interface of the generated F T architecture. Further, the G P D R C instance has
to be added and the error signals from a l l F T architectures have to be gathered and
connected to its error input . The controller for some external memory device (e.g.
the developed S D card controller) has to be added, too. This unit is needed to pro
vide the configuration bitstream data for G P D R C . Alternat ively, the synchronization

78

controller and logic to perform synchronization of the modules of F T architectures
can be added as well i n this step.

5. The implementat ion of static design w i t h the starting configuration - for the complete
(static) reconfiguration of F P G A , the system design where a l l chosen important parts
are secured w i t h most robust F T archictures from generation 0 is used. T h i s im
plementation run is also used for generating par t ia l bitstreams for a l l P R M s ut i l ized
by F T architectures in generation 0 (X i l i n x implementat ion tool implements both
static design and P R M s in one batch). F r o m these par t ia l bitstreams, one from each
P R M type is chosen as golden copy to be stored i n external memory storage. These
bitstreams can be later relocated and used dur ing fault mi t igat ion process.

6. The implementat ion of a l l par t ia l configuration bitstreams - to create par t ia l bit-
streams which can be used by G P D R C for recovery from permanent fault, P R B s for
each P R M wi th routing for a l l possible alternative configurations in each F T archi
tecture must be created. The number of needed implementat ion runs to create a l l
neccessary P R B s does not depend on the number of implemented F T architectures
but on the max ima l number of alternative configurations existing for some F T archi
tecture implemented in the system. This is caused by the fact that one alternative
configuration is generated in each F T architecture per single implementat ion run.

Table 6.1 shows the number of design runs for the F T architectures consisting of
different number of P R M s (excluding P R M R O U T E) and available P R R s to be as
signed by these P R M s . Note that this table can be only used for the degradation
strategies which ends wi th only one correctly operating P R M .

6.5 Summary

In this chapter, the process of the design of secured system by means of proposed methodol
ogy was described i n a series of neccessary steps. A l t o u g h some steps such as the generating
of F T architectures or the implementat ion of final design and par t ia l bitstreams is auto
mated, the most important tasks i n the process must be done by a designer.

The original system design which is intended to be more secured against transient and
permanent fault occurences must be divided into the set of entities (parts) which affect
the overall system dependabili ty at most and therefore they w i l l be implemented as F T
architectures. For these parts, the strategies based on degradation of F T architecture
robustness are stated and the chosen F T architectures are generated by developed design
tool . For each part, the area of F P G A for its implementat ion is allocated. The final
secured system where the chosen parts are substituted wi th F T architectures implementing
same function and which are stated i n a degradation strategy is implemented i n a series of
implementation runs to acquire P R B s of a l l alternative configurations. The resulting set of
P R B s contains only one implementat ion of each P R M type (except P R M wi th routing) and
one P R B of P R M wi th rout ing for each alternative configuration in each F T architecture.

The output of this process is the bitstream for static configuration of F P G A which is
done at the beginning and the set P R B s which are stored i n external memory and used
during fault mi t igat ion process.

79

Design run 3-PRM achitecture 4-PRM achitecture 5-PRM achitecture Design run (3 PRRs) (4 PRRs) (5 PRRs)
[#] [config. code] [confij 5. code] [config code]

1 (static design) [1 1 1] (Gen. 0) [1 1 1 1] (Gen. 0) [1 1 1 1 1] (Gen. 0)

2 [1 1 0] (Gen. 1) [1 1 1 0] (Gen. 1) [1 1 1 1 0] (Gen. 1)

3 [1 0 1] (Gen. 1) [1 1 0 1] (Gen. 1) [1 1 1 0 1] (Gen. 1)

4 [Oil] (Gen. 1) [1 0 1 1] (Gen. 1) [1 1 0 1 1] (Gen. 1)

5 [1 0 0] (Gen. 2) [0 1 1 1] (Gen. 1) [1 0 1 1 1] (Gen. 1)

6 [0 1 0] (Gen. 2) [1 1 0 0] (Gen. 2) [0 1 1 1 1] (Gen. 1)

7 [0 0 1] (Gen. 2) [1 0 0 1] (Gen. 2) [1 1 1 0 0] (Gen. 2)

8 - (don't care) [0 0 1 1] (Gen. 2) [1 1 0 1 0] (Gen. 2)

9 - [0 1 1 0] (Gen. 2) [1 1 0 0 1] (Gen. 2)

1 0 - [1 0 1 0] (Gen. 2) [1 0 1 1 0] (Gen. 2)

1 1 - [0 1 0 1] (Gen. 2) [1 0 1 0 1] (Gen. 2)

1 2 - [1 0 0 0] (Gen. 3) [1 0 0 1 1] (Gen. 2)

13 - [0 1 0 0] (Gen. 3) [0 1 1 1 0] (Gen. 2)

14 - [0 0 1 0] (Gen. 3) [0 1 1 0 1] (Gen. 2)

15 - [0 0 0 1] (Gen. 3) [0 1 0 1 1] (Gen. 2)

16 - - [0 0 1 1 1] (Gen. 2)

17 - - [0 0 0 1 1] (Gen. 3)
18 - - [0 0 1 1 0] (Gen. 3)
19 - - [0 0 1 0 1] (Gen. 3)
2 0 - - [0 1 1 0 0] (Gen. 3)
2 1 - - [0 1 0 1 0] (Gen. 3)
2 2 - - [0 1 0 0 1] (Gen. 3)
23 - - [1 1 0 0 0] (Gen. 3)
24 - - [1 0 1 0 0] (Gen. 3)
25 - - [1 0 0 1 0] (Gen. 3)
26 - - [1 0 0 0 1] (Gen. 3)
27 - - [0 0 0 0 1] (Gen. 4)
28 - - [0 0 0 1 0] (Gen. 4)
29 - - [0 0 1 0 0] (Gen. 4)
30 - - [0 1 0 0 0] (Gen. 4)
31 - - [1 0 0 0 0] (Gen. 4)

Table 6.1: P lann ing design runs to create a l l neccessary P R B s for F T architectures wi th
different number of allocated P R R s

80

Chapter 7

Implementation and experimental
results

This chapter describes the implementat ion results of systems where the methodology was
applied to their design and implementat ion phase. It reveals the implementat ion specifics
and the hardware overhead added to unsecured design or design secured by known ap
proaches such as T M R implementation. Separately, the implementat ion results of G P D R C
for different secured systems are examined.

For implemented F T architectures and the possibil i ty of the secured system to recon
figure its implementation to a different one (using the stated degradation strategy), the
dependabili ty of the system is modelled by Markov models.

The abi l i ty to detect, localize and mitigate transient faults is examined i n developed test
platform where the S E U faults are simulated by configuration manipulat ion performed by
external S E U injector. F ina l ly , the permanent fault occurences in implemented system are
simulated and the abi l i ty to avoid the use of faulty modules by reconfiguration to different
F T architecture is tested.

A l l experimental systems were implemented in V H D L and synthetised and implemented
by tools from X i l i n x I S E Design Suite 14.7. The targeted F P G A was X C 5 V S X 5 0 T from
X i l i n x V i r t e x 5 family which is a component on M L 5 0 6 development board.

7.1 Implementation of G P D R C

In the secured system design, a very important role is designated to G P D R C unit . The
reason for its development as the alternative to controllers implemented into softcore pro
cessor is its smaller size and lower reconfiguration latency due to its specialization. Its size
(the number of ut i l ized F P G A resources) is mainly affected by the number of P R M s into
which the system is implemented.

7.1.1 G e n e r i c i m p l e m e n t a t i o n of G P D R C a n d its scal ing

The G P D R C can be used in systems wi th different types of part i t ioning. To be able to
instantiate it i n different designs, it was developed as a generic unit w i t h the possibil i ty to
define several of its attributes.

The number of system parts which are implemented as single F T architecture is de
noted as ARCHCOUNT. Th is is the most important generic parameter which affects the
number of P R B s to be stored. The number of available P R M s in each F T architecture for

81

implementing its units is denoted as PRMCOUNT. The number of a l l P R M s i n system de
sign and also the w id th of error signal vector entering the G P D R C is the product of these
generic values. The G P D R C can handle different types of F T architecture wi th various
P R M types. The number of specific P R M types is important to fault mi t igat ion process as
only one copy wi th each P R M type must be stored. To be able to choose the proper type
of P R M , the wid th of the vector w i th type index must be stated. It can be counted as the
square root of the number of P R M types and it is denoted as PRM_ T YPE_ WW TH. The
last generic parameter is the w id th of bi tstream address vector (ADDRESS_WIDTH).

For the evaluation of G P D R C resource ut i l iza t ion results for different system part i t ion
ing approaches, a design wi th counters, registers, decoders and other logic was created.
The complexity of this implemented system does not play any role in the evaluation of
G P D R C size. It is mainly influenced by the overall number of P R M s and other attributes
mentioned in above paragraph. Thus, the entire design i n F P G A was divided into several
F T architectures and they were divided into the same number of P R M s . The experiments
were done for 3 to 6 P R M s . W h e n the number of 5 or 6 P R M s per architecture was used,
then the start ing configuration of F T architecture was the one w i t h T M R scheme wi th
duplex voter. For 4 P R M s , the T M R scheme wi th simple voter was used and for 3 P R M s
the duplex alternative wi th checker was chosen as the starting configuration. The size of
G P D R C for various numbers of F T architectures and the number of P R M s is presented in
Figure 7.1.

400 I 1 1 1 1 1 1 1

3 PRM per FT architecture
350 - 4 PRM per FT architecture ----- :

g 5 PRM per FT architecture
•a 300 - 6 PRM per FT architecture

50 1 1 1 1 1 1 1 1

1 5 10 15 20 25 30
Number of FT architectures

Figure 7.1: G P D R C size vs. the number of F T architectures for various numbers of P R M s
per F T architecture

The size of G P D R C and its units together w i th the comparison wi th the size of M i -
croBlaze I P core used as P D R controller is shown i n Table 7.1. These results are val id for
32 F T architectures wi th 6 P R M s per each controlled by the G P D R C . The meaning of the
columns is as follows: the name of unit (column 1), the size of unit i n slices (2), the number
of occupied L U T s (3) and F l i p F l o p s (4) and the size of T M R alternative (5).

7.1.2 T h e reconf igurat ion t i m e of P R M

The t ime needed for the reconfiguration of one P R M is an important metric of the controller.
In Table 7.2, the measured values for the G P D R C according to the P R M bitstream size are
presented. The reconfiguration t ime is related to the size of P R B which reconfigures the
P R M and the ut izat ion of the resources inside P R M does not influence this t ime. Thus, the

82

ML506 - Virtexö
192 PRMs

Size
[slices]

LUTs
[#]

F/Fs
[#]

T M R
[slices]

Input Capture Register 49 (0,6%) 97 192 127 (2,6x)
Actual Error Register 48 (0,6%) 101 101 124 (2,6x)

Previous Error Register 48 (0,6%) 192 192 124 (2,6x)
Hard Error Unit 3 (0,1%) 4 0 9 (3,0x)

Round Robin Unit 5 (0,1%) 6 6 14 (2,9x)
Error Encoder 3 (0,1%) 3 0 6 (2,0x)

Relocation Unit 7 (0,1%) 16 1 20 (2,9x)
Architecture Status Unit 2 (0,1%) 49 32 6 (3,0x)

Address Counter 22 (0,3%) 52 21 56 (2,5x)
F S M 22 (0,3%) 48 17 59 (2,7x)

Others (LUTs, MUXs...) 135 (1,7%) 317 186 414 (3,lx)
G P D R C total 344 (4,2%) 885 748 959 (2,8x)

MicroBlaze 628 (7,7%) 1414 1491 1664 (2,8x)

Table 7.1: The numbers of F P G A resources for G P D R C (32 F T architectures, 6 P R M per
F T architecture)

table contains the multiples of the smallest possible P R M (the set of C L B s i n one F P G A
column and i n the same F P G A row) which can be created i n V i r t e x 5 F P G A and contains
20 C L B s . The meaning of the table columns is as follows: the mult iple of smallest P R M
(column 1), the size of P R M i n C L B s (2), the size of P R M par t ia l bi tstream i n k B s (3) and
reconfiguration t ime in miliseconds (4).

ML506 - Virtex5
multiples of the size of

smallest P R M with CLBs

CLBs

[#]

Bitstream size

[kB]

Reconfiguration
time
[ms]

l x 20 6,6 0,35
2x 40 12,7 0,67
3x 60 18,8 0,99
4x 80 25,0 1,33
5x 100 30,5 1,67
6x 120 36,5 2,02
7x 140 43,1 2,35
8x 160 49,5 2,74

Table 7.2: The reconfiguration t ime of one P R M according to its bi tstream size

7.2 Evaluation of hardware overhead of F T architectures de
veloped to secure a given part of system

This section presents the basic features of F T architectures which were developed for each
generation (0, 1 and 2) together w i th the specification of their properties and constraints.
Please note that these architectures serve as models for the description of the methodology
application to some system. Different F T architectures which have the abi l i ty to detect
and localize faults on P R M level can be used.

In this case, the proposed F T architectures uti l ize 5 P R M s and thus 5 error signals can
be identified on the output of P R M R O U T E block. These signals are connected to the
inputs of G P D R C where they indicate the occurrence of a fault.

83

7.2.1 F T A r c h i t e c t u r e of G e n e r a t i o n 0

The in i t i a l F T architecture of Generat ion 0 is based on T M R scheme i n which the out
puts of a l l F U s are checked by the majori ty element (voter). Th is architecture consists
of 5 P R M s (3 P R M _ F U s , P R M V O T E R and P R M R O U T E) . Figure 7.2 presents the
proposed structure of this architecture.

Figure 7.2: The F T Archi tecture of Generat ion 0 based on T M R

Each F U of the architecture is implemented as a standalone P R M without any addi t ional
diagnostic logic. The outputs of a l l P R M F U s are connected into P R M V O T E R block
which is implemented as a P R M as well . P R M V O T E R block contains voter and addi t ional
diagnostic logic (e.g. comparators and logic gates) for the fault detection i n F U s . The voter
is implemented as a duplex architecture because of the need to detect fault occurrence
in its structure, this information is used for the reconfiguration of P R M V O T E R block.
Note that the voter architecture can be implemented also i n two-rail logic instead of duplex
architecture. The error outputs from P R M V O T E R block are processed by G P D R C which
selects the appropriate bi tstream from bistream storage and performs the reconfiguration
of specific P R M . The P R M R O U T E block provides the interface between P R M s i n F T
architecture and other parts of F P G A . In this architecture, the P R M R O U T E block does
not contain any addi t ional diagnostic logic or F P G A logic elements, therefore this block is
not protected against fault occurrence and the error signal err_route is set to logic zero
value permanently.

Therefore, if a fault occurs i n the detection logic of duplex architecture in majority
element then the architecture may become inoperable. Th is threat is lowered to m i n i m u m
due to the size of the logic which is much smaller than the size of other units.

Dur ing P R M V O T E R and P R M R O U T E reconfiguration, incorrect values can appear
on the outputs of F T system. They must be ignored.

7.2.2 F T A r c h i t e c t u r e of G e n e r a t i o n 1

The F T architecture of Generat ion 1 is based on a duplex scheme wi th the addi t ion of
one P R M wi th C H E C K E R unit (P R M C H E C K E R) . A s can be seen in Figure 7.3, this
architecture consists of four P R M s (2 P R M _ F U , P R M C H E C K E R and P R M R O U T E) .
Each F U of the architecture is implemented as a single P R M and their outputs are switched
by output mult iplexor which is controlled by error signal from diagnostic logic. The checker
unit is implemented standalone P R M as well.

In this architecture, the P R M V O T E R block is missing so that the addi t ional diagnos
tic logic and the output mult iplexor are relocated into P R M R O U T E block. Diagnostic

81

Figure 7.3: The F T Archi tecture of Generation 1 based on Duplex wi th checker

logic consists of two comparators and three A N D logic gates, the area overhead is smaller
than the area overhead in P R M V O T E R block of Generation 0. The outputs from units
implemented i n both P R M F U s and P R M C H E C K E R are compared by comparators and
the output logic gates uniquelly identify the faulty P R M . If a failure is recognized i n P R M
implementing the first F U then the output multiplexer is switched on the output of the
second F U . In this architecture, the P R M V O T E R block is missing, therefore the error
signal err_voter is set to logical zero value permanently. The error signal err_route is
set to logical zero value permanently as well because in this architecture the possibil i ty to
detect any fault i n the P R M R O U T E block is not available.

Figure 7.4: The alternative F T Archi tecture of Generat ion 1

In order to detect any fault i n P R M R O U T E block, this block is supposed to be
implemented as duplex architecture wi th comparator. The alternative of F T architecture
of Generat ion 1 can be seen i n Figure 7.4. The comparator output is connected to error
signal err_route, the occurrence of logical one value on error signal w i l l cause the start of
P D R process.

7.2.3 N o n - F T A r c h i t e c t u r e of G e n e r a t i o n 2

The final architecture of Generat ion 2 is based on classical duplex scheme. This architecture
is not F T and it has only 3 P R M s (2 P R M _ F U and P R M R O U T E) . Each F U of this
architecture is implemented as a standalone P R M without addi t ional diagnostic logic. The
structure of this architecture can be seen i n Figure 7.5.

A s can be seen, P R M R O U T E block wi th addi t ional diagnostic logic for fault detection
is included i n the architecture. Because it is not known i f the fault occured i n one of
the two P R M implementing F U s or i n P R M wi th routing, the reconfiguration process is

85

PRM
ROUTE'

FU1
PRM

FU2
PRM

I cmp 1_h i

out

err2
err3

'0'-
err voter

errroute

PRM ROUTE

Figure 7.5: The architecture of Generat ion 2 based on Duplex

applied to both of F U P R M s or to P R M wi th routing. Therefore, the output from the
comparator is connected to error signals errl, err2 and err_route. In this architecture,
the P R M V O T E R block and F U 3 P R M block are missing, the error signals err_voter and
err3 are set to logical zero values permanently.

7.2.4 E v a l u a t i o n of resource overhead

The sizes of F T architecture components which cause hardware overhead i n F P G A are
shown i n Table 7.3. In this table, the overhead of only those units which were ut i l ized and
extended by our methodology when compared to the standard use of these units are taken
into account. For the generation 0, the overhead includes the size of P R M R O U T E and
P R M V O T E R units. The sizes of any of three F U s were not considered into overhead as
they are present also i n the standard T M R scheme. The size of P R M V O T E R unit was
decremented by the size of standard majority voter unit without the abi l i ty of faulty unit
localizat ion to get only the overhead caused by the use of our methodology. For both types
of the generation 1 and for the generation 2, the overhead includes only P R M R O U T E
unit for the same reasons as for the generation 0. The meaning of the columns is as
follows: column 1 - the w id th of each F U output in bits; column 2 - the overhead in slices
in the generation 0 configurations; column 3 - the overhead in slices in the generation 1
configurations; column 4 - the overhead in slices i n the generation 1 (variant w i th duplex
logic) configurations; column 5 - the overhead in slices i n the generation 2 configurations.

XC5VSX50T
data width

[bits]

Generation
0

[slices]

Generation
1

[slices]

Generation
1-variant

[slices]

Generation
2

[slices]
2 12 5 12 1
4 22 11 24 2
8 36 17 39 3
16 68 31 68 7
32 126 57 122 12
64 206 111 210 23

Table 7.3: The overheads of Generations i n slices

7.2.5 M o d e l l i n g re l iabi l i ty of p r o p o s e d F T archi tectures

This section contains the description of Markov models which can be further used i n the
evaluation of rel iabil i ty for F T architectures which were described in previous sections
(Section 7.2.1, 7.2.2 and 7.2.3). Due to their complexity and big number of states, they

86

have been simplified to be able to draw them. The si tuation is explained and discused by
each figure of Markov model.

In a l l graphs showing Markov models, the name of state is usually prefixed by S and
followed by the number of correctly operating functional units. This number is followed by
a set of characters, each character is indicat ing that the unit encoded under this character
works correctly. The codes of units are as follows: voter unit (V) , checker unit (C) , G P D R C
unit (G) or routing logic (R) . For example, the start ing state of the model from Figure 7.6
is S _ 3 V G . It means that the F T architecture consists of 3 functional units, a voter and a
G P D R C . E a c h unit which has error signal connected to error input vector of G P D R C can
be dist inguish as faulty and its state can be shown in Markov model . In addi t ion to these
units, the fault occurence i n G P D R C can be modelled as the loss of repair abi l i ty of the
secured system.

The oriented edges corresponding to failures caused by transient fault are labelled by A
and these caused by permanent faults by A . B o t h of these labels are followed by the symbol
of the failing unit . A s an example, i n the model i n Figure 7.6 the edge going from state
S_3VG to state S_2VG w i th label 3 A F is showing the transi t ion between these states in
case that one of three functional units has been affected by transient fault. The oriented
edges describing the transient fault repair are labeled by fx and edges designated to the
process of the recovery from permanent fault occurence are labeled by M. Since the time
needed for P D R depends on the size of configured P B R there are two different values of
repair rate i n graphs. The first rate \jl is dedicated to the reconfiguration of one P R R from
the set of relocatable P R R s where replicated F U s , checker or voter unit are implemented.
These P R R s have the same sized P B R and thus the repair rate is the same for a l l of
them. The second repair rate fj,R is dedicated to P R R where the routing is implemented
(P R M R O U T E) .

The states in which the system is producing correct outputs are shown as circles and
these ones which not are shown as rectangles. There are 3 special states connected wi th
permanent fault recovery process. The permanent fault (correct operation) state is describ
ing the si tuation when permanent fault appears i n one unit but at the same time it is
s t i l l able to produce correct outputs and a possibil i ty to recover from this fault s t i l l exists.
W h e n the system is in the permanent fault (failure) state, it can s t i l l recover from the fault
but it is not producing correct output i n that moment. The special double circle shape
is dedicated to the start ing state of the F T architecture from the next generation. The
entire state graph describing Markov model of this F T architecture can be imagined in this
place instead of the next generation state. Th is simplification was not only used to simplify
the state graph drawing but also to show that the final rel iabil i ty of secured system by
means of proposed methodology is influenced by the selection of each F T architecture in
its degradation strategy.

To be able to model the rel iabi l i ty by the Markov model, several conditions have to be
defined:

• The prior i ty of reconfiguration (repair) by the G P D R C is as follows from the biggest
priori ty: P R M wi th routing, P R M wi th voter, P R M wi th checker and P R M wi th
functional unit .

• The fault type (transient or permanent) is determined by the G P D R C according to
the success of the first repair of affected P R M . If it fails, the occured fault is considered
as permanent.

87

so

Figure 7.6: The simplified Markov model of the F T architecture of the Generation 0 wi th
T M R scheme

• The G P D R C w i l l not trigger the repair process i f it is meaningless. Th is means
that the repair would not br ing the system to the state where it w i l l produce correct
outputs or to the state where further repair to br ing the system to this correct state
w i l l be possible.

• A n y repair is possible when the G P D R C is affected by a fault.

88

S 0

Figure 7.7: The simplified Markov model of the F T architecture of the Generation 1 wi th
duplex scheme wi th simple voter unit

The simplified Markov model for F T architecture from generation 0 based on T M R
architecture wi th doubled voter unit (see Section 7.2.1) is shown in Figure 7.6. A s the
correct states are considered these ones which certainly produce correct outputs. To ensure
this, at least two functional units and the voter have to be working without errors. Th is
state graph was simplified by not considering the faults occuring in P R R implementing
routing between modules. If these states are shown, the overall number of states w i l l

89

be approximately doubled. Due to the fact that the faults i n routing are considered as
undetectable, the recovery from this state is not possible. O n the other hand, the failure
intensity of this module (Ai?) is negligible smal l since the routing is defined by very few
configuration bits setting just several P I P s .

The simplified Markov model for F T architecture from generation 1 based on duplex
architecture w i th checker unit and voter unit implemented i n the same P R R as the routing
(see Section 7.2.2, the alternative version) is shown i n Figure 7.6. In Figure 7.4 there are 3
types of P R M s : P R M s w i t h F U , P R M wi th checker unit and P R M wi th routing and voter
(compare) logic. A s there is no difference (for the model l ing of dependability) between
checker unit and function unit (it does not matter i f error apears in F U or checker uni t) ,
these units are counted together i n state label (e.g. state S_3 describes si tuation when
both F U s and checker unit are working correctly). This simplification was used to avoid
unnecessary increase of the number of system states. F i n a l model is quite similar to the
previous one wi th T M R but it differs in the toleration of permanent fault occurence. In
this architecture, the voter logic is implemented i n P R R wi th rout ing and it is not possible
to recover the system when a permanent fault appears here. The increase of the ut i l ized
resources i n this P R R is also the reason to expl ic i t ly model the fault occurences in it.

R + A R

Figure 7.8: The Markov model of the F T architecture of the Generation 2 w i th simple
duplex scheme

The Markov model for F T architecture from generation 2 based on simple duplex archi
tecture wi th simple compare logic (see Section 7.2.3) is shown i n Figure 7.8. Since there is
no way to dist inguish in which P R R the fault appears, each fault triggers the reconfiguration
of a l l P R M s . N o permanent fault repairs are considered in this model.

90

7.3 Implementation results of different approaches to the
partitioning of original system

The key step i n design process of securing a given system is its par t i t ioning into parts
which w i l l be implemented as standalone F T architectures. To examine the properties of a
secured system such as hardware overhead or the size of P R B s used for the reconfiguration
after fault occurence for different types of its part i t ioning, the test design of system wi th
M B - L I T E softcore processor (see [31]) was developed.

The M B - L I T E processor is the light-weight implementat ion of Mic roBlaze processor [65].
The Mic roBlaze processor is a R I S C architecture wi th 32-bit wide instruct ion and data
words. It is also based on M I P S architecture and implements a pipeline w i t h 5 stages:
Instruction Fetch (IF), Instruction Decode (ID), Execute (E X) , Memory (M E M) and Wri te
back (W B) . Due to this pipel ining in the processor, the most instructions have a latency of
one cycle. Thanks to addi t ional prefetch buffer, the M B - L I T E processor has reduced the
rate of instructions which can be fed into i t . Therefore, the execution t ime was dropped by
10% when compared w i t h Mic roBlaze [31]. The design wi th M B - L I T E was chosen for the
reason that thanks to its structured and straightforward design it can be easily part i t ioned
in different ways.

The test design consists of M B - L I T E processor connected to Wishbone bus by Wishbone
adapter as shown i n Figure 7.9. A l t o u g h the top-level design contains only two main units
- the instance of M B - L I T E and Wishbone adapter, the processor can be further divided
into 4 functional units - I F , I D , E X and M E M .

INSTRUCTION :

DATA •

FPGA

MB-LITE

Wishbone adap te r

Figure 7.9: The original system design

This design was able to achieve the operating frequency of 229 M H z in V i r t e x 5 (X C 5 V S X 5 0 T)
F P G A . The implementat ion results for the same F P G A used for the decision about the par
t i t ioning of design is shown i n Table 7.4. The meaning of the table columns is as follows:

XC5VSX50T
Design F U

Slices
(% of design)

LUTs
(% of design)

F/Fs
(% of design)

M B - L I T E - IF
M B - L I T E - ID
M B - L I T E - E X
M B - L I T E - M E M
Wishbone adapter

20 (3%)
94 (13%)

532 (71%)
55 (8%)
21 (3%)

45 (3%)
185 (12%)

1203 (76%)
110 (7%)
35 (2%)

16 (4%)
191 (50%)
93 (25%)
44 (12%)
33 (9%)

E 723
(9% of all in F P G A)

1579
(4% of all in F P G A)

377
(1% of all in F P G A)

Table 7.4: The resource ut i l iza t ion of original system wi th M B - L I T E processor and W i s h
bone adapter

91

the unit of design (column 1), the size of unit in slices (2), L U T s (3) and flip-flops (4).
The implementat ion results show that the unit performing the execute stage of pipeline

(M B - L I T E - E X) utilizes much more slices than other units which is caused by a big number
of used L U T s . Therefore, the following possibilities for par t i t ioning based on different
granularity were proposed:

• 1 F T architecture - a l l functional units are grouped together and replicated (coarse
grained part i t ioning), see Figure 7.10a.

• 2 F T architectures - E X unit of M B - L I T E processor is implemented as one F T archi
tecture, the remaining units are grouped together and implemented as the second F T
architecture, see Figure 7.10b.

• 5 F T architectures - each unit mentioned in the above provided table is implemented
in a single F T architecture (fine-grained part i t ioning), see Figure 7.10c.

Table 7.5 shows the implementations of a l l variants of the secured system. They were
compared by their resource ut i l iza t ion (column 1), hardware overhead i n comparison to
original design (column 2) and the sizes of their P R B s (column 3).

INSTRUCTION

INSTRUCTION .

DATA

I IF J J ID J J EX J |MEM|

Wishbone adapter

H H H B-bCfr
I Wishbone adapter | f * ^ ^ ^ /

• H E MEM|

| Wishbone adapter | MEMORY
CTRL

(a) A l l units in one F T architecture

J IF J J ID J MEM|

Wishbone adapter |

0 0 B
— 1 f VOTERS

1 Wishbone adapter| r*^^_^/
J IF j J ID J |MEM|

Wishbone adapter

• BITSTREAM DATA

- BITSTREAM ADDRESS

BITSTREAM DATA

BITSTREAM ADDRESS

(b) The ID unit of M B - L I T E in standalone F T architecture

92

I N S T R U C T I O N .

D A T A

H H-
FT a r c h . 2

L i
rSn

" j~ i rT |—^VQTER)-

Wishbone ada

J Wishbone adapter—w V O T E R

Wishbone adapter
M E M O R Y

C T R L

(c) Each unit in single F T architecture

Figure 7.10: The variants of differently part i t ioned secured systems

• B I T S T R E A M D A T A

. B I T S T R E A M A D D R E S S

XC5VSX50T
The variant of secured system

PRMs

Slices

H W overhead
%

Bitstream sizes
[kB]

Original design
T M R design (without PDR)

0
0

723
2287

0
216

-

1 F T architecture 5 2421 235 PRM_ROUTE: 6,6
PRM_FU: 408

2 F T architectures 10 2484 244 PRM_ROUTEs: 6,6
PRM_FUs: 92,4

6,6
39,6

5 F T architectures 25 2572 256 PRM_ROUTEs: 6,6; 6,6; 6,6; 6,6
PRM_FUs: 6,6; 19,8; 92,4; 13,2

6,6
6,6

Table 7.5: The comparison of resource ut i l iza t ion and hardware overhead for different
implementations of the given system

The results summarized in the table show that the H W overhead is slightly lower for
the variant w i th 1 F T architecture. This is caused by the smaller G P D R C unit due to lower
number of P R M s . O n the other side, this is degraded by bigger P R B size which causes
longer reconfiguration t ime. The table shows that there could be a tradeoff between H W
overhead and the overall size of a l l P R B s (and the t ime of reconfiguration).

7.4 S E U testing platform for the evaluation of F T system
design by means of methodology principles

To evaluate the quali ty of secured F P G A to cope wi th transient and permanent fault
occurence, the special test platform was developed. The testing was based on fault injection
into configuration bitstream to simulate an S E U fault occurence. The platform allows to
observe the behaviour of entire secured system implemented i n F P G A when a fault occurs.
A l l components of the test platform are shown in Figure 7.11.

7.4.1 T h e i m p l e m e n t e d test a n d eva luat ion equ ipment

The test platform contains several parts which are creating together the necessary test and
evaluation equipment. The F P G A is configured by the implementat ion of system secured by

93

FPGA

Test vector
generator

PRM error index

MEMORY CTRL

Evaluation
unit

BITSTREAM MEMORY

Figure 7.11: Dependabi l i ty evaluation platform wi th S E U injection test platform

the means of the methodology. The remaining parts of the test platform are implemented
and run on P C .

The F P G A device under test (D U T) contains these units:

• The functional unit (F U) - The unit which is implementing the given function (the
same function as original unsecured system).

94

• The F T architecture - The fault tolerant implementat ion of original system. It is
implemented according to methodology principles w i th error output for each of its
P R M .

• The test vector generator - This unit generates inputs for tested F T architecture as
well as for the standalone F U .

• The G P D R C unit - The controller unit d r iv ing the fault mi t igat ion process and the
P D R .

• The memory controller - The S D card controller which is creating an interface between
the G P D R C and S D memory card w i t h stored par t ia l bitstreams.

• The evaluation unit - In this component the outputs from F U and F T architecture
are gathered and together w i th G P D R C status information they are sent to P C for
further analysis.

• The U A R T controller - The unit interfacing the evaluation unit and serial interface
of F P G A .

The test and evaluation equipment i n P C consits of several tools:

• The F P G A reconfiguration tool - The script using Impact tool from X i l i n x I S E toolkit .

• The X D L conversion tool - The tool for the conversion of the fully implemented design
from N C D to X D L format.

• The P R M bit-list generator - The applicat ion based on R a p i d S m i t h framework for
generation of the list of bits to be injected (reversed) by S E U injector.

• The S E U injector - The tool for manipula t ing the configuration. The S E U is simulated
by making bit-fl ip. The process of injection is described i n following section.

• The evaluation tool - The script collecting the results from D U T for further processing.

7.4.2 Process of S E U faults inject ion

For the S E U injection into configuration memory, the external S E U injector presented
i n [; :] was used. It uses P D R to simulate the radiation-induced upsets by artificially
changing the contents of the configuration memory. This injector is wri t ten as T C L script
and is run on P C . It accesses the J T A G external reconfiguration interface of F P G A . It uses
the ChipScope l ibrary function of X i l i n x I S E toolki t to perform the upset i n configuration
memory by toggling some bit value in the configuration bitstream.

Due to the fact that the relation between the F P G A resource and the configuration bits
which configure its settings is not known in general, a l l bits i n P R M should be tested by
injecting the S E U into i t . In the Department of Computer System at Brno Univers i ty of
Technology, the relation between ut i l ized L U T resources and configuration bits for V i r t e x 5
was uncovered. Accord ing to this fact, the applicat ion for bit-l ist generation was extended
to be able to generate the list of configuration bits which is used to set the function of
ut i l ized L U T s . A l though the S E U injection to only these bits is not sufficient for complete
test of unit dependability, it can be used to reduce the t ime of S E U injection campaign to
test the detection, local izat ion or fault mi t igat ion abi l i ty of the secured system.

95

One simulation step for testing a secured design consists of one S E U injection into one
of F T architecture P R M s and checking its output for error. W h e n the fault is detected by
the compare logic i n the evaluation unit or by detection and local izat ion logic implemented
i n F T architecture, the status message is sent v i a RS-232 to the evaluation tool i n P C . If
the reconfiguration is performed, the G P D R C status is observed and after rec. done signal
is set, the next status message is sent to the evaluation tool .

7.4.3 E x p e r i m e n t a l results of G P D R C transient fault m i t i g a t i o n process

The test platform described in the above section was implemented and tested wi th V i r t e x 5
F P G A (X C 5 V S X 5 0 T) on an M L 5 0 6 development board. To implement the system design
for F P G A and for bitstream generation, the X i l i n x I S E 14.7 toolkit was used. The F U
contains several 8-bit counters, decoders and multiplexers, the data w id th of input was 6
bits and the data w id th of output was 16 bits. The design contains one F T architecture
wi th 5 P R M s and the F T architectures described i n Section 7.2 was used i n the degradation
strategy. The size of a P R B for P R M s wi th F U , P R M w i t h doubled voter and P R M wi th
checker unit was 6632 bytes, the sizes of P R B s for each P R M wi th routing were 26582
bytes.

The meaning of the columns i n Table 7.6 is as follows: column 1 - the type of P R M :
column 2 - the ut i l iza t ion of P R M ; column 3 - the number of the detected S E U s i n F U :
4 - the number of S E U s detected by checkers i n F U s ; column 5 - the number of incorrect
data on the outputs of F T architecture; column 6 - the number of missed S E U faults by
the detection logic of F T architecture, column 7 - the number of successfully performed
reconfigurations of P R M performed by the G P D R C .

XC5VSX50T P R M SEU injected SEU detected F T arch, output SEU missed G P D R C
utiliz. in P R M by F T arch. data errors by F T . arch reconf.

P R M type % # # # # #
P R M with F U
(all generations) 45% 47232 7806 552 25 7826

P R M with 2xVOTER
(generation 0) 30% 47232 3345 1571 105 3345

P R M with C H E C K E R
(generation 1) 45% 47232 6901 552 11 6900

P R M with routing
(generation 0) 1% 188928 0 21 21 0

P R M with routing
(generation 1) 12% 188928 3542 1243 234 3541

P R M with routing
(generation 2) 6% 188928 2432 1056 351 2430

Table 7.6: The number of detected S E U s i n F U s of the architecture

F rom the results, it can be seen that the F T architecture of generation 0 and 1 can
detect and repair more than 97% S E U s i n P R M wi th F U , voter or checker unit . Except the
F T architecture from generation 0 which do not have abi l i ty to detect faults i n P R M wi th
routing, this P R M type in the F T architectures from other generations was able to detect
faults i n more than 85% cases. Almos t a l l detected faults have triggered the mit igat ion
process done by G P D R C . In a l l cases, the P R M wi th routing was able to survive most of
the S E U faults injected inside it due to very low ut i l iza t ion of F P G A resources.

96

7.4.4 T e s t i n g a n d eva luat ing recovery f r o m p e r m a n e n t fault occurence

The developed evaluation platform was also used to test and evaluate the process of recovery
from permanent fault occurence. For its simulation, the above described fault injector
was used again. Accord ing to the results of S E U injection campaign during transient
fault s imulation process only some configuration bits of F T architecture P R M s were used
for permanent fault s imulat ion. A specific bit was chosen for permanent fault injection
campaign, if the fault that it creates i n the unit implemented i n P R M was detected by the
detection logic of F T architecture or it has been manifested as an error on F T architecture
output during the transient fault s imulat ion campaign.

The process of the s imulat ion consists of these steps:

1. The first (next) bit from the set of S E U sensitive bits of F T architecture P R M s is
taken and inverted.

2. W h e n the G P D R C finishes the reconfiguration and indicates the end of reconfiguration
by setting rec_done signal, the same bit is inverted again.

3. The G P D R C should localize the fault again and determine it as permanent fault
and start the permanent fault recovery process. Th is action can be identified by
setting hard_error sig while the index of P R M wi th the fault can be observed on the
PRM_index signal. The operation of a l l units i n P R M s are stopped during this step.

4. The end of a permanent fault recovery is indicated by the combinat ion of active
rec_done and hard signals and the set values of arch, index and PRM error index
vectors.

5. The impulse on rst_sig is done to reset and synchronize the reconfigured F T archi
tecture.

6. The output of F T architecture is compared wi th the stored correct value and the
result is sent v ia U A R T to the evaluation tool .

7. W h e n the simulated permanent fault is not repaired the start ing F T architecture
design is configured back to the appropriate P R M s .

The experimental results for a permanent fault injection campaign to the same F T
architectures as in previous experiment are shown in Table 7.7. The meaning of the columns
in the table is as follows: column 1 - the type of F T architecture and which generation it
belongs to; column 2 - the number of injected S E U faults; column 3 - the number of incorrect
data on the outputs of F T architecture; column 4 - the number of permanent faults detected;
column 5 - the number of performed permanent fault recoveries by the reconfiguration to
a different F T architecture; column 6 - the mean time to repair the system to the correctly
operating state.

The results summarized i n Table 7.7 show that the number of detected faults is decreas
ing w i th the number of P R M s which are used by F T architecture. This is caused mainly by
masking the faults which are injected into excluded P R M s . The repair process is shorter
for less robust F T architectures due to the fact that the reconfiguration of fewer P R M is
performed.

97

XC5VSX50T Injected F T arch, output Permanent fault Recovery M T T R
faults data errors detected done

Generation # # # # [ms]
Generation 0 (TMR-2xVOTER) 12768 2144 12515 12480 512
Generation 1 (TMR-simple) 12575 1796 12287 9802 351
Generation 2 (Duplex) 7987 708 156 0 -

Table 7.7: The number of successfully detected permanent faults and the M T T R for per
manent fault recovery

7.5 Summary

This chapter summarized the implementat ion results of the securing system according to the
methodology. The possible implementat ion of F T architecture was presented i n details and
the hardware overhead was compared wi th the T M R solution. For these F T architectures
used i n the proposed fault recovery mechanism, the Markov models for the evaluation of
the system dependabili ty were derived. The experiment w i th the par t i t ioning the system
wi th pipelined microprocessor was done to compare three different approaches i n terms of
hardware overhead and the size of a l l necessary P R B s which have to be stored. The last
experiments were focused on testing the given system by injecting S E U faults by external
S E U injector and evaluating the fault mi t igat ion abi l i ty of the proposed method i n the
developed test and evaluation platform.

98

Chapter 8

Conclusions

In this work, the methodology of F T system design wi th the abi l i ty to mitigate transient
faults caused by S E U s and to recover from several permanent fault occurences was pro
posed as the alternative to existing methods or methodologies. Th is methodology benefits
from the abi l i ty to P D R i n modern F P G A s which can be used for the run-time repair or
the change of current F P G A configuration. The product ion of correct outputs from the
system implemented in F P G A even during its P D R is ensured by its designing as an F T
architecture.

A t the beginning of this thesis, the basic principles, technologies and methods important
for the methodology proposal are described. A s the F P G A s themselves, their manufacturing
process and technologies around them are s t i l l evolving very fast, some principles and tech
niques can become early outdated and overcomed. In this work, this part served to describe
the state-of-the-art and the motivat ion at the beginning of the work on the methodology.

The main part of this paper presents the basic principles of the proposed methodology.
The methodology was developed to satisfy the conditions stated i n the goals of the research
part. It is based on the designing of F T system into S R A M - b a s e d F P G A wi th the use of
P D R and l imi ted into specified implementat ion area. The next chapter then describes the
entire procedure of designing this F T system step by step from the entering the original
system design and finishing wi th the generation of the configuration bitstream of imple
mented F T system design which is ready to configure the F P G A device. Together w i th
this bitstream, the set of P R B s which are designated to be stored i n external memory is
generated. Th is final system implementat ion is then ready to survive many transient and
several permanent fault occurences.

A t the end of the thesis, the implementat ion and experimental results are presented.

8.1 Benefits of this research

A s the ma in benefit of this research, the proposal of alternative methodology for the F T
system design w i t h the abi l i ty of fault mi t igat ion can be mentioned. This methodology
brings some new features such as the use of dedicated reconfiguration controller or the
application of the relocation technique i n transient fault mi t igat ion and also in the recovery
process from permanent fault occurence. Th is greatly suppresses the ma in disadvantage of
the use of precompiled configurations to mitigate faults which is space demanding storing
of many configuration bitstreams.

99

The benefits of the use of the proposed methodology for F T system design can be
summarized into several points.

• In the proposed methodology, the exact procedure of transformation the system de
sign entered by designer to secured system where selected important parts are im
plemented as F T architectures w i th the mechanism of transient fault mi t igat ion and
recovery from permanent fault was described. The standard P R design flow defined
by X i l i n x as well as its standard design and implementat ion tools were used and thus
the methodology is applicable to system design for a l l its F P G A families adopting the
same design flow.

• The key component for this methodology, the dedicated reconfiguration controller
(G P D R C) wi th the abi l i ty to determine the type of fault and perform the correct
mit igat ion procedure, was developed. It was designed wi th the effort to reduce the
necessary area and performance overhead. The overhead of final G P D R C design was
compared wi th other alternative controller.

• W h e n the system is designed by the means of the proposed methodology, it is possi
ble to define the level of importance for every system part (which is designated to be
secured) by specifying the degradation strategy. This strategy is used when the recov
ery after permanent fault occurence is performed. Several types of F T architecture
possible to be used i n some degradation strategy was presented. The methodology is
not bounded just to these part icular ones but many other architectures satisfying the
stated conditions can be used.

• The final system design can be extended wi th synchronization mechanism for re
configured units. The G P D R C is designed to cooperate w i th the synchronization
controller.

• To examine the proposed methodology, complex F T system was designed according
to its principles and included into the test platform to prove its abi l i ty to repair
the modules after transient fault occurence and the recovery from permanent fault
occurence by degrading the affected F T architecture to less robust one. The fault in
jector inserting the S E U faults into configuration was used to test the fault detection,
localization and mit igat ion process. The experiments proved that the final system
design is able to work correctly after transient fault occurence thanks to the F T ar
chitecture design and that the recovery after permanent fault is possible by excluding
the affected P R M from further use.

8.2 Possible enhancements of methodology

This complex methodology is based on many principles and incorporates many methods
which can be further enhanced to achieve better performance of final secured system, to
lower the neccessary area overhead i n F P G A or to lower the necessary capacity of external
bitstream storage. In next sections, some of them are discussed.

8.2.1 B i t s t r e a m compress ion

D a t a compression is known approach to reduce the space for storing the data. O n the
other hand, it can add area overhead due to the need of compressor and decompressor

100

implementation. Moreover, the performance overhead can be caused by the compression
and decompression process. Some methods for data compression can be also applied to
configuration bitstream data. W h e n the bistream compression is applied to P R B s and
used together w i t h the P D R the requirements for compression and decompression w i l l be
different. W h i l e the bitstream compression is typical ly done offline immediately after its
generation by some software tool in computer the decompression has to be done online
directly i n the F P G A (in the case when I C A P is used for P D R) or i n the external device
where the reconfiguration controller is located (when some external configuration interface
is used). Thus, the main focus when chosing the compression method should be put among
the compression ratio also on the s implic i ty of the decompressor. A l t h o u g h the throughput
of the decompressor is also important , frequently the overal throughput between memory
and reconfiguration controller is more l imi ted due the low speed of reading the external
memory.

The applicat ion of well known compression techniques such as ari thmetic or Huffman en
coding, L Z 7 8 , L Z W , R L E and other for configuration bitstream data was presented in [55].
Accord ing to this paper, the compression ratio for bi tstream data typical ly vary from 40%
to 60%. The througput of decompressor (implemented i n V i r t e x 4 device) can from several
hundreds be up to several thousands M b p s . In [46], the method designed specially for
bitstream data which is taking into account its composit ion of frames and the correlation
between them is presented. Often, there are only smal l difference between the neighbouring
frames configuring the same C L B column. The next frame can by typical ly derived from
the previous one by applying relatively smal l number of bit-flips. Therefore, this approach
is based on the applicat ion of distance vector technique.

The bitstream compression can be incorporated into final F T system designed by means
of proposed methodology to achieve lower capacity demands for the external bitstream
storage. Due to the fact that the G P D R C unit does not implement the direct read from the
memory but it uses external memory controller unit, the decompressor unit for processing
the compressed bitstream can be inserted to the data path between these units as it is shown
in Figure 8.1. For some compression methods which do not work wi th the same-sized words
of data as the memory and reconfiguration controller addi t ional buffers may be required.

8.2.2 A d o p t i o n of i so lat ion design flow

I D F would require for each top-level entity of P R M to have its own level of hierarchy
(this is already achieved in current state) and to be implemented independently from the
other entities. The final implemented design for entire F P G A w i l l be created by merging
this par t ia l implementations. I D F also requires to create regions for a l l static units of the
system. Assigning the units to defined regions w i l l allow to create the fences between the
isolated parts of the system design. The fences w i l l be created i n places which do not belong
to any of defined regions. The connections between the regions in I D F are possible only v ia
trusted routing or by the ut i l iza t ion of I O B s and going off-chip i n one region and back in
the second one. The creation of trusted routing is quite complicated process (see [63]) but
for the replicated units of F T architecture the creation of required constraints can be (at
least part ial ly) automated because the relative routing is the same i n a l l these units w i th
the exception of the absolute address of their starting point which is different.

101

c COMPRESSED BITSTREAM STORAGE

Compressed
bitstream

address

Compressed
bitstream data

MEMORY
CONTROLLER

I
GPDRC (ICAP)

Error vector
from FT architectures

Compressed
bitstream data

Bitstream data

FPGA

DECOMPRESSOR

Figure 8.1: Incorporating bitstream compression into F T system design based on the pro
posed methodology

8.2.3 O t h e r possible enhancements

Several enhancements would be also possible i n the G P D R C unit . One of the current
issues i n this unit is its permanent occupation of I C A P . If the system entered by designer
would like to use the P D R abi l i ty of F P G A for its reconfiguration it w i l l not be possible
because only one instance of this unit can be used. This can be solved by excluding the
I C A P instance from the G P D R C unit and using it externally. Then some mult iplexing
logic can be added and this one I C A P instance can be shared by the original system and by
the G P D R C . Because the final secured system (designed by means of the methodology) is
based on the set of F T architectures and thus the fault can be masked by them the instant
fault mi t igat ion is not necessary. The G P D R C unit can wait un t i l the I C A P instance is
not used and then finally perform the mit igat ion process.

To make the procedure for the transformation from entered system design to secured
system design wi th a l l needed F T architectures easier, the transformation tool can be
implemented. A s the steps in this procedure contain many similar tasks (e.g. generating
the set of F T architectures for each important system part, constraining each P R M top-level
entity, etc.), it would be possible to automate i t . The final solution can be the execution
of the single script for processing where among the original system design and its original
constraints also its important parts w i th degradation strategies are specified as its input.
Th is script would create a l l necessary F T architectures, connect them wi th the static part
of design, create the P R M s , constrain their top-level entities, etc. In addi t ion to this, it
can also create the implementat ion script (T C L) for the implementat ion too l w i th the plan
of a l l necessary runs to gain a l l P R B s needed by fault mi t igat ion procedure performed by
G P D R C .

102

103

Bibliography

[1] Ieee standard multivalue logic system for vhd l model interoperabili ty
(s td_logic_1164) . IEEE Std 1164-1993, pages 1-24, 1993.

[2] M . Abramov ic i , J . M . Emmer t , and C . E . Stroud. Rov ing stars: an integrated
approach to on-line testing, diagnosis, and fault tolerance for fpgas i n adaptive
computing systems. In Evolvable Hardware, 2001. Proceedings. The Third
NASA/DoD Workshop on, pages 73-92, 2001.

[3] M . Abramovic i , C . Strond, C . Hami l ton , S. Wijesur iya, and V . Verma. Us ing roving
stars for on-line testing and diagnosis of fpgas in fault-tolerant applications. In Test
Conference, 1999. Proceedings. International, pages 973-982, 1999.

[4] A c t e l . Ds0095: Igloo low power flash fpgas datasheet. U R L :
<https://www.microsemi.com/document-portal/doc_download/130694-ds0095-

igloo-low-power-flash-fpgas-datasheet> . Accessed: 2016-09-30.

[5] A c t e l . Ds0097: Proasic3 family flash fpgas datasheet. U R L :
<https://www.microsemi.com/document-portal/doc_download/130704-ds0097-

proasic3-flash-family-fpgas-datasheet> . Accessed: 2016-09-30.

[6] A . Avizienis , J . C . Laprie , B . Randel l , and C . Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing, 1(1):11—33, 2004.

[7] C . Beckhoff, D . K o c h , and J . Torresen. G o ahead: A par t ia l reconfiguration
framework. In Field-Programmable Custom Computing Machines (FCCM), 2012
IEEE 20th Annual International Symposium on, pages 37-44, 29 2012-May 1.

[8] Pa t r ick B l a u . Juno: Spacecraft information. U R L :
<http: //spaceflightl01.com/juno/spacecraft-information/>. Accessed:
2016-07-06.

[9] Cr i s t i ana Bolch in i , Anton io Miele , and Marco D . Santambrogio. T m r and par t ia l
dynamic reconfiguration to mitigate seu faults i n fpgas. In 22nd International
Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT '07), pages 87-95,
Washington, D C , U S A , 2007. I E E E C S .

[10] Cr i s t i ana Bolch in i , Anton io Miele , and Marco D . Santambrogio. T m r and par t ia l
dynamic reconfiguration to mitigate seu faults i n fpgas. In 22nd International
Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT '07), pages 87-95,
Washington, D C , U S A , 2007. I E E E C S .

104

https://www.microsemi.com/document-portal/doc_download/130694-ds0095-?igloo-low-power-flash-fpgas-datasheet
https://www.microsemi.com/document-portal/doc_download/130694-ds0095-?igloo-low-power-flash-fpgas-datasheet
https://www.microsemi.com/document-portal/doc_download/130704-ds0097-?proasic3-flash-family-fpgas-datasheet
https://www.microsemi.com/document-portal/doc_download/130704-ds0097-?proasic3-flash-family-fpgas-datasheet
http://spaceflightl01.com/juno/

[11] J . Bowen and V . Stavridou. Safety-critical systems, formal methods and standards.
Software Engineering Journal, 8(4): 189-209, 1993.

[12] Mustafa A l i Bradley D u t t o n and John Sunwoo Charles Stroud. Embedded processor
based fault injection and seu emulation for fpgas. In ESA '09: Proceedings of the
2009 International Conference on Embedded Systems & Applications, pages 183-189,
Las Vegas, Nevada, U S A , 2009. C S R E A Press.

[13] Jason A . Cheatham, John M . Emmer t , and Stan Baumgart . A survey of fault
tolerant methodologies for fpgas. ACM Trans. Des. Autom. Electron. Syst.,
l l (2) :501-533 , 2006.

[14] R . F . D e M a r a and K e n i n g Zhang. Autonomous fpga fault handling through
competitive runtime reconfiguration. In 2005 NASA/DoD Conference on Evolvable
Hardware (EH'05), pages 109-116, 2005.

[15] S. Distefano and A . Pul iaf i to . Dependabi l i ty evaluation wi th dynamic rel iabi l i ty
block diagrams and dynamic fault trees. IEEE Transactions on Dependable and
Secure Computing, 6(1):4-17, 2009.

[16] A . Doumar and H . Ito. Testing approach wi th in fpga-based fault tolerant systems. In
Test Symposium, 2000. (ATS 2000). Proceedings of the Ninth Asian, pages 411-416,
2000.

[17] T . Drahonovsky, M . Rozkovec, and O . Novak. Relocat ion of reconfigurable modules
on x i l i n x fpga. In 2013 IEEE 16th International Symposium on Design and
Diagnostics of Electronic Circuits Systems (DDECS), pages 175-180, 2013.

[18] Na than A . Harward , Michae l R . Gardiner , Luke W . Hsiao, and Michae l J . W i r t h l i n .
A Fault Injection System for Measuring Soft Processor Design Sensitivity on Virtex-5
FPGAs, pages 61-74. Springer International Publ ish ing, C h a m , 2016.

[19] F . Hator i , T . Sakurai , K . Nogami , K . Sawada, M . Takahashi, M . Ichida, M . Uchida ,
I. Yosh i i , Y . Kawahara , T . H i b i , Y . Saeki, H . Muroga , A . Tanaka, and K . K a n z a k i .
Introducing redundancy i n field programmable gate arrays. In Custom Integrated
Circuits Conference, 1993., Proceedings of the IEEE 1993, pages 7.1.1-7.1.4, 1993.

[20] J . Heiner, B . Sellers, M . W i r t h l i n , and J . K a l b . Fpga par t ia l reconfiguration v i a
configuration scrubbing. In Field Programmable Logic and Applications (FPL '09),
pages 99-104, Washington, U S A , 2009. I E E E C S .

[21] P . Horowitz and W . H i l l . The Art of Electronics. Cambridge Univers i ty Press, New
York , N Y , U S A , 1989.

[22] M e i - C h e n Hsueh, T . K . Tsai, and R . K . Iyer. Faul t injection techniques and tools.
Computer, 30(4):75-82, 1997.

[23] Yoshihiro Ichinomiya, Shiro Tanoue, M o t o k i Amagasaki , Masahiro Iida, Mor ih i ro
K u g a , and Toshinori Sueyoshi. Improving the robustness of a softcore processor
against seus by using t m r and par t ia l reconfiguration. In Proceedings of the 2010 18th
IEEE Annual International Symposium on Field-Programmable Custom Computing
Machines, F C C M '10, pages 47-54, Washington, D C , U S A , 2010. I E E E Computer
Society.

105

[24] Yoshihiro Ichinomiya, Shiro Tanoue, M o t o k i Amagasaki , Masahiro l i da , Mor ih i ro
K u g a , and Toshinori Sueyoshi. Improving the robustness of a softcore processor
against seus by using t m r and par t ia l reconfiguration. In Proceedings of the 2010 18th
IEEE Annual International Symposium on Field-Programmable Custom Computing
Machines, F C C M '10, pages 47-54, Washington, D C , U S A , 2010. I E E E Computer
Society.

[25] Hlav ička J . Cislicove systémy odolné proti poruchám. Č V U T , 1992.

[26] St raka M . , M i c u l k a L . , K a s t i l J . and Kotasek Z. Test platform for fault tolerant
systems design qualities verification. In 15th IEEE International Symposium on
Design and Diagnostics of Electronic Circuits and Systems, pages 336-341. I E E E
Computer Society, 2012.

[27] B W . Johnson. Fault-tolerant microprocessor-based systems. Micro, IEEE, 4(6):6-21,
1984.

[28] F . Kastensmidt , L . Carro , and R . Reis. Designing fault tolerant systems into
sram-based fpgas. In Design Automation Conference, 2003. Proceedings, pages
650-655, 2003.

[29] M a n Cheol K i m and Poong H y u n Seong. Rel iab i l i ty graph wi th general gates: an
intuit ive and pract ical method for system rel iabil i ty analysis. Reliability Engineering
and System Safety, 78(3):239-246, 2002.

[30] J . F . K i t c h i n . P rac t i ca l markov modeling for rel iabil i ty analysis. In 1988.
Proceedings., Annual Reliability and Maintainability Symposium,, pages 290-296,
1988.

[31] T . Kranenburg and R . van Leuken. Mb- l i t e : A robust, light-weight soft-core
implementation of the microblaze architecture. In 2010 Design, Automation Test in
Europe Conference Exhibition (DATE 2010), pages 997-1000, 2010.

[32] K a s t i l J . , S t raka M . , M i c u l k a L . and Kotasek Z. Dependabi l i ty analysis of fault
tolerant systems based on par t ia l dynamic reconfiguration implemented into fpga. In
15th Euromicro Conference on Digital System Design: Architectures, Methods and
Tools, pages 250-257. I E E E Computer Society, 2012.

[33] M i c u l k a L . and Kotasek Z. Synchronizat ion technique for t m r system after dynamic
reconfiguration on fpga. In The Second Workshop on Manufacturable and Dependable
Multicore Architectures at Nanoscale (MEDIAN 2013), pages 53-56. Poli tecnico d i
Mi l ano , 2013.

[34] M i c u l k a L . and Kotasek Z. Generic par t ia l dynamic reconfiguration controller for
transient and permanent fault mi t igat ion i n fault tolerant systems implemented into
fpga. In 17th IEEE Symposium on Design and Diagnostics of Electronic Circuits and
Systems, pages 171-174. I E E E Computer Society, 2014.

[35] Szurman K . , M i c u l k a L . and Kotasek Z. Towards a state synchronization
methodology for recovery process after par t ia l reconfiguration of fault tolerant
systems. In 9th IEEE International Conference on Computer Engineering and
Systems, pages 231-236. I E E E Computer Society, 2014.

106

[36] J . Lach , W . H . Mangione-Smith , and M . Potkonjak. Enhanced fpga rel iabi l i ty
through efficient run-time fault reconfiguration. IEEE Transactions on Reliability,
49(3):296-304, 2000.

[37] V i j ay Lakamra ju and Russell Tessier. Tolerating operational faults i n cluster-based
fpgas. In Proceedings of the 2000 ACM/SIGDA Eighth International Symposium on
Field Programmable Gate Arrays, F P G A '00, pages 187-194, New York , N Y , U S A ,
2000. A C M .

[38] C . L a v i n , M . Pad i l l a , J . Lamprecht , P . Lundr igan , B . Nelson, and B . Hutchings.
Rap idsmi th : Do-it-yourself cad tools for x i l i nx fpgas. In 2011 21st International
Conference on Field Programmable Logic and Applications, pages 349-355, 2011.

[39] E . E . Lewis, F . Boehm, C . K i r s c h , and B . P . Kelkhoff. Monte carlo s imulat ion of
complex system mission reliabili ty. In 1989 Winter Simulation Conference
Proceedings, pages 497-504, 1989.

[40] S. L i n and D . J . Costello. E r ro r control coding-fundamentals and applications.
International Journal of Satellite Communications, 2(2):139-139, 1984.

[41] Ty le r M . Lovel ly and A l a n D . George. Comparat ive analysis of present and future
space processors w i th device metrics. Journal of Aerospace Information Systems,
14(3):184-197, 2017.

[42] Fayneh E . , Yuffe M . and K n o l l E . 4.1 14nm 6th-generation core processor soc w i t h
low power consumption and improved performance. In 2016 IEEE International
Solid-State Circuits Conference, ISSCC 2016, San Francisco, CA, USA, January 31 -
February 4, 2016, pages 72-73, 2016.

[43] K . T . M o o n . Error Correction Coding: Mathematical Methods and Algorithms.
Wiley , Logan, U T , U S A , 2005.

[44] K e v i n Morr i s . X i l i n x vs. altera: Ca l l ing the action in the greatest semiconductor
rivalry. U R L :
<http: //www.eejournal.com/archives/articles/20140225-rivalry/>, 2014.
Accessed: 2015-08-27.

[45] J . Naras imham, K . Nakaj ima, C . S. R i m , and A . T . Dahbura . Y i e l d enhancement of
programmable asic arrays by reconfiguration of circuit placements. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
13(8):976-986, 1994.

[46] J u H w a Pan , T . M i t r a , and Weng-Fai Wong. Configurat ion bitstream compression
for dynamical ly reconfigurable fpgas. In IEEE/ACM International Conference on
Computer Aided Design, 2004. ICCAD-2004-, pages 766-773, 2004.

[47] M . M . Pereira, L . Braun , M . H ü b n e r , J . Becker, and L . Carro . Run- t ime resource
instantiat ion for fault tolerance i n fpgas. In 2011 NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), pages 88-95, 2011.

[48] Conrado P i lo t to , Jose Rodr igo Azambuja , and Fernanda L i m a Kastensmidt .
Synchronizing triple modular redundant designs in dynamic par t ia l reconfiguration

107

http://www.eejournal.com/archives/articles/20140225-rivalry/

applications. In SBCCI '08: Proceedings of the 21st annual symposium on Integrated
circuits and system design, pages 199-204, New York , N Y , U S A , 2008. A C M .

[49] Conrado P i lo t to , Jose Rodr igo Azambuja , and Fernanda L i m a Kastensmidt .
Synchronizing triple modular redundant designs in dynamic par t ia l reconfiguration
applications. In SBCCI '08: Proceedings of the 21st annual symposium on Integrated
circuits and system design, pages 199-204, New York , N Y , U S A , 2008. A C M .

[50] Jakub Podivinsky, Ondrej Cekan, Marce la Simkova, and Zdenek Kotasek. The
evaluation platform for testing fault-tolerance methodologies in electro-mechanical
applications. Microprocess. Microsyst., 39(8):1215-1230, 2015.

[51] John Rhea . Bae systems moves into th i rd generation rad-hard processors. Military &
Aerospace Electronics, 13(5), 2002.

[52] A i w u Ruan , B a i r u i Jie, L i W a n , Junhao Yang , Chuany in X i a n g , Zujian Zhu, and
Y u Wang . A bitstream readback-based automatic functional test and diagnosis
method for x i l i nx fpgas. Microelectronics Reliability, 54(8):1627-1635, 2014.

[53] T . D . A . W . R u a n and P. L . B . R . Jie. A bitstream readback based fpga test and
diagnosis system. In 2014 International Symposium on Integrated Circuits (ISIC),
pages 592-595, 2014.

[54] L . Sekanina, L . Starecek, and Z. Kotasek. Po lymorphic gates i n design and test of
digi ta l circuits. International Journal of Unconventional Computing, 4(2):125-142,
2008.

[55] R . Stefan and S. D . Cotofana. Bi t s t ream compression techniques for vir tex 4 fpgas.
In 2008 International Conference on Field Programmable Logic and Applications,
pages 323-328, 2008.

[56] M . Straka, J . K a s t i l , and Z . Kotasek. Generic par t ia l dynamic reconfiguration
controller for fault tolerant designs based on fpga. In NORCHIP '10, pages 1-4,
Washington, D C , U S A , 2010. I E E E C S .

[57] C . Stroud, S. Wijesuriya, C . Hami l ton , and M . Abramov ic i . B u i l t - i n self-test of fpga
interconnect. In Test Conference, 1998. Proceedings., International, pages 404-411,
1998.

[58] Charles Stroud, P i n g Chen , Srinivasa Kona la , and M i r o n Abramov ic i . Evalua t ion of
fpga resources for bui l t - in self-test of programmable logic blocks. In Proceedings of
the 1996 ACM Fourth International Symposium on Field-programmable Gate Arrays,
F P G A '96, pages 107-113, New York , N Y , U S A , 1996. A C M .

[59] S. Tanoue, T . Ishida, Y . Ichinomiya, M . Amagasaki , M . K u g a , and T . Sueyoshi. A
novel states recovery technique for the t m r softcore processor. In Field Programmable
Logic and Applications, 2009. FPL 2009. International Conference on, pages 543
-546, 2009.

[60] Irem Y . Turner. Design methods and practices for fault prevention and management
in spacecraft, 1999.

108

[61] M . W i r t h l i n , E . Johnson, N . Rol l ins , M . Caffrey, and P . Graham. The rel iabi l i ty of
fpga circuit designs in the presence of radiat ion induced configuration upsets. In
Field-Programmable Custom Computing Machines, 2003. FCCM 2003. 11th Annual
IEEE Symposium on, pages 133-142, 2003.

[62] X i l i n x . Axcelerator family fpgas. U R L : <https://www.microsemi.com/document-
portal/doc_view/130669-axcelerator-family-fpgas-datasheet> . Accessed:
2016-09-30.

[63] X i l i n x . Developing secure designs using the virtex-5 family (x a p p l l 3 4) . U R L :
<https://www.xilinx.com/support/documentation/application_notes/

xappll34-developing-secure-designs.pdf>. Accessed: 2016-09-30.

[64] X i l i n x . Spartan-3an fpga family data sheet. U R L :
<https: //www.xilinx.com/support/document at ion/data_sheets/ds557.pdf >.

Accessed: 2016-09-30.

[65] X i l i n x . Ug081: Microblaze processor reference guide. U R L :
<https://www.xilinx.com/support/documentation/sw_manuals/xilinxl1/

mb_ref_guide.pdf > . Accessed: 2016-09-30.

[66] X I L I N X . Ug702: P a r t i a l reconfiguration user guide. U R L : <https:
//www.xilinx. com/support/document at ion/sw_mamials/xilinxl4_l/ug702.pdf >.

Accessed: 2015-10-12.

[67] X i l i n x . Vi r tex-5 family overview. U R L :
<https: //www. x i l i n x . com/support/document at ion/data_sheets/ds 100.pdf >.

Accessed: 2016-09-30.

[68] X I L I N X . X a p p l 0 8 6 : Isolation design flow for x i l i nx 7 series fpgas or zynq-7000 ap
socs (ise tools). U R L : <https://www.xilinx.com/support/documentation/
application_notes/xapp1086-secure-single-fpga-using-7s-idf .pdf >.

Accessed: 2015-10-12.

[69] X i l i n x . X a p p l 3 8 : V i r t e x fpga series configuration and readback. U R L : <https:
//www. x i l i n x . com/support/document at ion/application_notes/xapp 138.pdf >.

Accessed: 2016-09-30.

[70] Gu lay Ya lc in , Osman Sabri Unsal , and A d r i a n Cr i s t a l . Faul t tolerance for
multi-threaded applications by leveraging hardware transactional memory. In
Proceedings of the ACM International Conference on Computing Frontiers, C F '13,
pages 4:1-4:9, New York , N Y , U S A , 2013. A C M .

[71] L i e - L i a n g Yang and L . Hanzo. Redundant residue number system based error
correction codes. In IEEE 54th Vehicular Technology Conference. VTC Fall 2001.
Proceedings (Cat. No.01CH37211), volume 3, pages 1472-1476 vol.3, 2001.

[72] A . J . Y u and G . G . F . Lemieux. Defect-tolerant fpga switch block and connection
block wi th fine-grain redundancy for yield enhancement. In International Conference
on Field Programmable Logic and Applications, 2005., pages 255-262, 2005.

109

http://www.microsemi.com/document-portal/doc_view/130669-axcelerator-family-fpgas-datasheet
http://www.microsemi.com/document-portal/doc_view/130669-axcelerator-family-fpgas-datasheet
https://www.xilinx.com/support/documentation/application_notes/?xappll34-developing-secure-designs.pdf
https://www.xilinx.com/support/documentation/application_notes/?xappll34-developing-secure-designs.pdf
http://www.xilinx.com/support/document
https://www.xilinx.com/support/documentation/sw_manuals/xilinxl1/?mb_ref_guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinxl1/?mb_ref_guide.pdf
http://www.xilinx
http://www.xilinx.com/support/documentation/application_notes/xapp1086-secure-single-fpga-using-7s-idf%20.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1086-secure-single-fpga-using-7s-idf%20.pdf

[73] S h u - Y i Y u and E d w a r d J . McCluskey . Permanent fault repair for fpgas wi th l imited
redundant area. In DFT '01: Proceedings of the 16th IEEE International Symposium
on Defect and Fault-Tolerance in VLSI Systems, pages 125-133, Washington, D C ,
U S A , 2001. I E E E Computer Society.

[74] Velazco R . Ziade H . , Ayoub i R . and Idriss T . A new fault injection approach to study
the impact of bitflips i n the configuration of sram-based fpgas. the International Arab
Journal of Information Technology, 8(2):155-162, 2011.

110

List of Abbreviations

A S I C App l i ca t ion Specific Integrated Ci rcu i t

B I S T B u i l t - i n Self-Test

B P I Byte-wide Peripheral Interface

B R A M Block R a n d o m Access Memory

B U T Block Under Test

C E D Concurrent Er ro r Detect ion

C L B Configurable Logic Block

C P L D Complex Programmable Logic Device

C R C Cyc l i c Redundancy Check

D C M Dig i t a l Clock Manager

D S P D i g i t a l Signall ing Processor

E C C Er ror Correct ion Code

E D C Er ror Detect ion Code

E D I F Electronic Design Interchange Format

F A R Frame Address Register

F P G A F ie ld Programmable Gate A r r a y

F S M F in i t e State Machine

F T Fault Tolerant

F T A Fault Tree Analys is

G A Genetic A l g o r i t h m

H D L Hardware Defini t ion Language

IC Integrated Ci rcu i t

I C A P Internal Configuration Access Port

111

I E E E Institute of Elec t r ica l and Electronics

I O B Inpu t /Ou tpu t Block

J T A G Joint Test A c t i o n Group

L U T L o o k - U p table

M A P M a p

M T B F Mean T ime Between Failures

M T T F M e a n T i m e To Failure

M T T R Mean T ime To Repair

M U X M U l t i p l e X o r

N C D Nat ive Ci rcu i t Descr ipt ion

N G D Nat ive Generic Database

N R E Non-Recurr ing Engineering

O R A Output Response Analyzer

P A L Programmable A r r a y Logic

P A R Place A n d Route

P D R Pa r t i a l Dynamic Reconfiguration

P I P Programmable Interconnect Point

P L A Programmable Logic A r r a y

P L D Programmable Logic Device

P R M Par t i a l Reconfiguration Module

P R R Pa r t i a l Reconfiguration Region

P R R m i n The smallest possible P R R

R B D Rel iab i l i ty B lock Diagram

R T L Register Transfer Level

S E T Single Event Transient

S E U Single Event Upset

SPI Serial Peripheral Interface

S P L D Simple Programmable Logic Device

S R A M Static R a n d o m Access Memory

112

S T A R Self-Testing AReas

T M R Triple Modu la r Redundancy

T P G Test Pa t te rn Generator

V L S I Very Large Scale Integration

113

List of Figures

2.1 Simple programmable logic devices 9
2.2 C P L D scheme 10
2.3 F P G A architecture 11
2.4 L U T and flip-flops connections inside C L B (X i l i n x V i r t e x 7) 12
2.5 The configuration interfaces of F P G A 15
2.6 Design workflow by X i l i n x I S E tool 17
2.7 Design workflow wi th P D R by X i l i n x 18
2.8 The configuration of the smallest possible P R M by configuration frames . . 19
2.9 Bi t s in configuration memory and resources of F P G A sensitive to S E U s (X i l

inx V i r t e x F P G A family) [28] 22
2.10 The chain of system states during its lifetime 24
2.11 The failure rate of a system during its lifetime 25
2.12 Fault tree analysis method 27
2.13 Rel iab i l i ty block diagrams 28
2.14 The rel iabi l i ty graph of system delivering data from node 1 to node 4 . . . 29
2.15 Markov chain for T M R system wi th bi tstream scrubbing repair [32] 29

3.1 T M R scheme wi th single and tr ipl icated voter 32
3.2 T M R scheme w i t h different level of granularity 33
3.3 Act ive redundancy based on hot sparing 33
3.4 C E D based on different techniques 35
3.5 Fault detection based on the use of function inversion 36
3.6 Testing of entire F P G A using B I S T and P D R 37
3.7 Test system of F P G A based on bitstream readback [53] 38
3.8 Configurations applied by roving star technique 39
3.9 Us ing P D R to recover system after S E U occurence 42
3.10 Pebble shifting approach 44
3.11 Resource instantiat ion i n F P G A without faults [17] 44
3.12 Resource instantiat ion considering faults[17] 45
3.13 The alternative layouts of sample system wi th 4 tiles 45
3.14 The scheme of fault injection approach based on configuration modification 48

5.1 The main structure of the proposed methodology 55
5.2 The assignment of P R R s by different P R M s 56
5.3 The generations of F T architectures and their alternative configurations . . 57
5.4 F T architecture wi th the unit synchronization 59
5.5 Fault tolerant system structure for S R A M based F P G A 61
5.6 Reconfiguration flow diagram 63

114

5.7 The dislocation of par t ia l reconfiguration regions belonging to one configu
rat ion of F T architecture i n the F P G A 64

6.1 The example of regions suitable to host the same relocatable P R M 69
6.2 The constraining of proxy logic inside P R R s 70
6.3 The addi t ion of L U T to each proxy logic block 70
6.4 Design par t i t ioning wi th different granularity 72
6.5 The set of F T architectures as a sample of degradation strategy 73
6.6 Several possibilities w i t h area allocation for simple T M R architecture 74
6.7 Generating F T architecture of Generat ion 0 from the unit designated for

securing 76
6.8 The scheme of final F T architecture w i t h generated modules i n Generat ion 0 76
6.9 Generat ing F T architecture of Generation 1 from unit designated for securing 77
6.10 The scheme of final F T architecture wi th generated modules i n Generat ion 1 77
6.11 The process of generating F T architecture and its implementat ion for given

system unit 78

7.1 G P D R C size vs. the number of F T architectures for various numbers of
P R M s per F T architecture 82

7.2 The F T Architecture of Generat ion 0 based on T M R 84
7.3 The F T Archi tecture of Generat ion 1 based on Duplex w i t h checker 85
7.4 The alternative F T Archi tecture of Generat ion 1 85
7.5 The architecture of Generat ion 2 based on Duplex 86
7.6 The simplified Markov model of the F T architecture of the Generat ion 0 wi th

T M R scheme 88
7.7 The simplified Markov model of the F T architecture of the Generat ion 1 wi th

duplex scheme wi th simple voter unit 89
7.8 The Markov model of the F T architecture of the Generat ion 2 wi th simple

duplex scheme 90
7.9 The original system design 91
7.10 The variants of differently part i t ioned secured systems 93
7.11 Dependabi l i ty evaluation platform w i t h S E U injection test platform 94

8.1 Incorporating bitstream compression into F T system design based on the
proposed methodology 102

8.2 The applicat ion of I D F in the design phase of F T system design by means
of developed methodology 103

115

List of Tables

2.1 The comparison of V i r t e x F P G A families 13

3.1 The comparison of fault detection methods 40
3.2 The comparison of permanent fault recovery methods 47

6.1 P lann ing design runs to create a l l neccessary P R B s for F T architectures wi th
different number of allocated P R R s 80

7.1 The numbers of F P G A resources for G P D R C (32 F T architectures, 6 P R M
per F T architecture) 83

7.2 The reconfiguration t ime of one P R M according to its bi tstream size 83
7.3 The overheads of Generations in slices 86
7.4 The resource ut i l iza t ion of original system wi th M B - L I T E processor and

Wishbone adapter 91
7.5 The comparison of resource ut i l iza t ion and hardware overhead for different

implementations of the given system 93
7.6 The number of detected S E U s i n F U s of the architecture 96
7.7 The number of successfully detected permanent faults and the M T T R for

permanent fault recovery 98

116

Appendix A

Author's publications

1. Towards a State Synchronizat ion Methodology for Recovery Process after Pa r t i a l Re
configuration of Fault Tolerant Systems. In 4th Prague Embedded Systems Workshop.
Proceedings of 4th P E S W , 2016 (20%)

2. M i c u l k a L . and Kotasek Z. Generic par t ia l dynamic reconfiguration controller for
transient and permanent fault mi t igat ion i n fault tolerant systems implemented into
fpga. In 17th IEEE Symposium on Design and Diagnostics of Electronic Circuits and
Systems, pages 171-174. I E E E Computer Society, 2014 (70%)

3. Szurman K . , M i c u l k a L . and Kotasek Z . State synchronization after par t ia l reconfig
uration of fault tolerant can bus control system. In 17th Euromicro Conference on
Digital Systems Design, pages 704-707. I E E E Computer Society, 2014 (30%)

4. Szurman K . , M i c u l k a L . and Kotasek Z . Towards a state synchronization method
ology for recovery process after par t ia l reconfiguration of fault tolerant systems. In
9th IEEE International Conference on Computer Engineering and Systems, pages
231-236. I E E E Computer Society, 2014 (20%)

5. M i c u l k a L . and Kotasek Z. Synchronizat ion technique for tmr system after dynamic
reconfiguration on fpga. In The Second Workshop on Manufacturable and Dependable
Multicore Architectures at Nanoscale (MEDIAN 2013), pages 53-56. Poli tecnico d i
Mi lano , 2013 (80%)

6. M i c u l k a L . M e t o d a n á v r h u s y s t é m ů odo lných prot i p o r u c h á m do omezeného imple
m e n t a č n í h o prostoru na báz i F P G A . In Počítačové architektury & diagnostika 2013,
pages 63-68. Univers i ty of West Bohemia i n Pi lsen, 2013 (100%)

7. M i c u l k a L . , S t raka M . and Kotasek Z. Methodology for fault tolerant system design
based on fpga into l imi ted redundant area. In 16th Euromicro Conference on Digital
System Design: Architectures, Methods and Tools, pages 227-234. I E E E Computer
Society, 2013 (50%)

8. Straka M . , K a s t i l J . , Kotasek Z . and M i c u l k a L . Faul t tolerant system design and seu
injection based testing. Microprocessors and Microsystems, 2013(37) :155-173, 2013
(10%)

9. K a s t i l J . , S t raka M . , M i c u l k a L . and Kotasek Z . Dependabi l i ty analysis of fault toler
ant systems based on par t ia l dynamic reconfiguration implemented into fpga. In 15th

117

Euromicro Conference on Digital System Design: Architectures, Methods and Tools,
pages 250-257. I E E E Computer Society, 2012 (15%)

10. M i c u l k a L . and Kotasek Z . Design sychronization after par t ia l dynamic reconfigura
t ion of fault tolerant system. In 15th Euromicro Conference on Digital System Design:
Architectures, Methods and Tools, pages 20-21. I E E E Computer Society, 2012 (70%)

11. M i c u l k a L . M e t o d a n á v r h u s y s t é m ů odo lných prot i p o r u c h á m do omezeného imple
m e n t a č n í h o prostoru na báz i F P G A . In Počítačové architektury & diagnostika 2012,
pages 109-115. Facul ty of Information Technology, Czech Technical Univers i ty in
Prague, 2012 (100%)

12. Straka M . , M i c u l k a L . , K a s t i l J . and Kotasek Z . Test platform for fault tolerant sys
tems design qualities verification. In 15th IEEE International Symposium on Design
and Diagnostics of Electronic Circuits and Systems, pages 336-341. I E E E Computer
Society, 2012 (30%)

13. M i c u l k a L . M e t o d a n á v r h u s y s t é m ů odo lných prot i p o r u c h á m do omezeného imple
m e n t a č n í h o prostoru na báz i F P G A . In Počítačové architektury & diagnostika 2011,
pages 61-66. Facul ty of Informatics and Information Technologies, Slovak Universi ty
of Technology i n Brat is lava, 2011 (100%)

118

Appendix B

Publications cited by other authors

• M i c u l k a L . and Kotasek Z. Generic par t ia l dynamic reconfiguration controller for
transient and permanent fault mi t igat ion i n fault tolerant systems implemented into
fpga. In 17th IEEE Symposium on Design and Diagnostics of Electronic Circuits and
Systems, pages 171-174. I E E E Computer Society, 2014

— B . H . K r i s h n a and C . A . K u m a r . A novel method of reconfigurable image pro
cessing using fpga. In 2016 International Conference on Electrical, Electronics,
and Optimization Techniques (ICEEOT), pages 3784-3789, 2016

— S. D i Car lo , P . Pr inet to , P . Trot ta , and J . Andersson. A portable open-source
controller for safe dynamic par t ia l reconfiguration on x i l i nx fpgas. In Field Pro
grammable Logic and Applications (FPL), 2015 25th International Conference
on, pages 1-4, 2015

• M i c u l k a L . and Kotasek Z. Synchronizat ion technique for tmr system after dynamic
reconfiguration on fpga. In The Second Workshop on Manufacturable and Dependable
Multicore Architectures at Nanoscale (MEDIAN 2013), pages 53-56. Poli tecnico d i
Mi lano , 2013

— J . Jimenez, U . Bidarte , C . Cuadrado, E . Garc ia , and J . Lazaro. Safesoc: A fault-
tolerant-by-redundancy evaluation card for high speed serial communications.
In 2016 Conference on Design of Circuits and Integrated Systems (DCIS), pages
1-4, 2016

• M i c u l k a L . , S t raka M . and Kotasek Z. Methodology for fault tolerant system design
based on fpga into l imi ted redundant area. In 16th Euromicro Conference on Digital
System Design: Architectures, Methods and Tools, pages 227-234. I E E E Computer
Society, 2013

— A . S. B . Lopes, E . Santos, M . Kreu tz , and M . Pereira. A runtime mapping algo
r i thm to tolerate permanent faults i n a cgra. In 2016 VI Brazilian Symposium
on Computing Systems Engineering (SBESC), pages 63-70, 2016

— R . Backasch, G . Hempel , S. Werner, S. Groppe, and T . Pionteck. Identifying ho
mogenous reconfigurable regions i n heterogeneous fpgas for module relocation. In
ReConFigurable Computing and FPGAs (ReConFig), 2014 International Con
ference on, pages 1-6, 2014

119

• Straka M . , K a s t i l J . , Kotasek Z . and M i c u l k a L . Faul t tolerant system design and seu
injection based testing. Microprocessors and Microsystems, 2013(37): 155-173, 2013

— P. H . W . Leong, H . A m a n o , J . Anderson, K . Bertels, J . M . P . Cardoso, O .
Diessel, G . Gogniat , M . Hut ton , J . Lee, W . L u k , P . Lysaght , M . Platzner , V . K .
Prasanna, T . Rissa, C . Silvano, H . So, and Y u Wang. Significant papers from
the first 25 years of the fpl conference. In 2015 25th International Conference
on Field Programmable Logic and Applications (FPL), pages 1-3, 2015

— Thomas E . Carney, R icha rd P . M c W i l l i a m , and A l a n Purv i s . Mode l l ing elec
tronic circuit failures using a x i l i nx fpga system. Procedia CIRP, 38:277 - 282,
2015

— Deepa Jose, P . N i r m a l K u m a r , Ar fa th Hussain, and P rabhu Shanker. V l s i circuit
part i t ioning using ant colony opt imisat ion to yield fault tolerant testable systems.
Arabian Journal for Science and Engineering, 39(12):8709-8729, 2014

— Anton io da Silva, Pablo Par ra , Oscar R . Polo , and Sebastian Sanchez. R u n
time instrumentation of systemc/t lm2 interfaces for fault tolerance requirements
verification in software cosimulation. Model. Simul. Eng., 2014:42:42-42:42,
2014

— Reza O m i d i Gosheblagh and K a r i m Mohammad i . Ar t i c l e : Dynamic par t ia l
based single event upset (seu) injection platform on fpga. International Journal
of Computer Applications, 76(3): 19-24, 2013

— D . Jose, P . N . K u m a r , and A . D a v i d Naveen Dhas. Implementation of power
optimized vls i designs for reliable processing using majority circuit . In 2013
Annual IEEE India Conference (INDICON), pages 1-6, 2013

— Reza O m i d i Gosheblagh and K a r i m M o h a m m a d i . New approach to emulate seu
faults on sram based fpgas. Journal of Electronics (China), 31(l) :68-77, 2014

— Reza O m i d i Gosheblagh and K a r i m M o h a m m a d i . Seu-secure pari ty prediction
mult ipl ier on sram-based fpgas. Journal of Circuits, Systems and Computers,
23(06) :1450081, 2014

— X i u h a i C u i , Haigang Yang , Y u Peng, and X i y u a n Peng. Research on the pack
ing algori thm for anti-seu of fpga based on triple modular redundancy and the
numbers of fan-outs of the net. Journal of Electronics (China), 31(4):284-289,
2014

— M . Psarakis, A . Vavousis, C . Bolch in i , and A . Miele . Design and implementat ion
of a self-healing processor on sram-based fpgas. In 2014 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), pages 165-170, 2014

— Shobana. M and Senthil Murugan . S. Reconfigurable data processing using
duplex fault tolerance system. In 2015 International Conference on Innovations
in Information, Embedded and Communication Systems (ICIIECS), pages 1-5,
2015

— R . Santos, S. Venkataraman, and A . K u m a r . Generic scrubbingbased architec
ture for custom error correction algorithms. In 2015 International Symposium
on Rapid System Prototyping (RSP), pages 112-118, 2015

— I. V i l l a l t a , U . Bidarte , J . Gomez-Cornejo, J . Lazaro, and C . Cuadrado. De
pendabil i ty in fpgas, a review. In 2015 Conference on Design of Circuits and
Integrated Systems (DCIS), pages 1-6, 2015

120

— D . Agiakats ikas, N . T . H . Nguyen, Z . Zhao, T . W u , E . Ce t in , O . Diessel,
and L . Gong . Reconfiguration control networks for tmr systems wi th module-
based recovery. In 2016 IEEE 24th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 88-91, 2016

— M . Vavouras and C . S. Bouganis. Area-driven par t ia l reconfiguration for seu
mit igat ion on sram-based fpgas. In 2016 International Conference on ReCon-
Figurable Computing and FPGAs (ReConFig), pages 1-6, 2016

• K a s t i l J . , S t raka M . , M i c u l k a L . and Kotasek Z . Dependabi l i ty analysis of fault toler
ant systems based on par t ia l dynamic reconfiguration implemented into fpga. In 15th
Euromicro Conference on Digital System Design: Architectures, Methods and Tools,
pages 250-257. I E E E Computer Society, 2012

— K h a z a A n u a r u l Hoque, Otmane A i t Mohamed, and Y v o n Savaria. Formal anal
ysis of S E U mit igat ion for early dependabili ty and performabili ty analysis of
fpga-based space applications. Journal of Applied Logic, 21:- , 2017

— V . Simek and R . Ruzicka . Reconfigurable platform wi th polymorphic digi ta l
gates and par t ia l reconfiguration feature. In 2014 European Modelling Sympo
sium, pages 501-506, 2014

— K . A . Hoque, O . A . Mohamed, Y . Savaria, and C . Thibeaul t . Probabi l i s t ic model
checking based da l analysis to optimize a combined tmr-bl ind-scrubbing mi t i
gation technique for fpga-based aerospace applications. In Formal Methods and
Models for Codesign (MEMOCODE), 2014 Twelfth ACM/IEEE International
Conference on, pages 175-184, 2014

— B . Navas, J . Oberg, and I. Sander. The upset-fault-observer: A concept for
self-healing adaptive fault tolerance. In Adaptive Hardware and Systems (AHS),
2014 NASA/ESA Conference on, pages 89-96, 2014

— Fel ix Siegle, Tanya Vlad imí rova , Jorgen Ilstad, and O m a r E m a m . Mi t iga t ion
of radiat ion effects in sram-based fpgas for space applications. ACM Comput.
Surv., 47(2):37:l-37:34, 2015

— F . Siegle, T . Vlad imí rova , C . Poivey, and O . E m a m . Val ida t ion of fdir strategy
for spaceborne sram-based fpgas using proton radiat ion testing. In 2015 15th
European Conference on Radiation and Its Effects on Components and Systems
(RADECS), pages 1-8, 2015

— F . Siegle, T . Vlad imí rova , J . Ilstad, and O . E m a m . Avai labi l i ty analysis for
satellite data processing systems based on sram fpgas. IEEE Transactions on
Aerospace and Electronic Systems, 52(3):977-989, 2016

— L . Sterpone, L . Boragno, and D . M . Codinachs. Analys is of radiation-induced
seus on dynamic reconfigurable systems. In 2016 11th International Symposium
on Reconfigurable Communicationcentric Systems-on-Chip (ReCoSoC), pages
1-6, 2016

• Straka M . , M i c u l k a L . , K a s t i l J . and Kotasek Z . Test platform for fault tolerant sys
tems design qualities verification. In 15th IEEE International Symposium on Design
and Diagnostics of Electronic Circuits and Systems, pages 336-341. I E E E Computer
Society, 2012

121

— Felix Siegle, Tanya Vlad imi rova , Jorgen Ilstad, and O m a r E m a m . Mi t iga t ion
of radiat ion effects in sram-based fpgas for space applications. ACM Comput.
Surv., 47(2):37:l-37:34, 2015

122

