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Abstract 
The thesis starts with a review of design calculations of sandwich beams, plates, and 
complicated structures, where F E M plays an important role. Next, optimization methods are 
reviewed to shed light on the wide area of mathematical programming and basic topology 
optimization principles up to its implementation by other authors in composite design, 
including representative examples of analytical and numerical optimization of sandwiches. 
The thesis objective is defined as an implementation of mass minimization with failure 
constraints aiming to make the sandwich design process easier. This is done by own 
implementation of gradient optimization based on topology optimization principles, known as 
Discrete Material Optimization ( D M O ) , which helps to find optimal layup. Approach to 
material interpolation and failure constraints interpolation is developed and programmed in 
Python, using First Order Shear Deformation Theory (FSDT) to evaluate stresses on elements, 
based on element loads given by the Nastran F E solver. Gradient optimizer searches for 
optimal materials for each layer of the sandwich face-sheet and core from the user-defined 
candidates. The program is tested on examples of sequential complexity from one-element 
beams where the true optimum is known up to a practical task of the sandwich galley from an 
airliner. Results have shown that the algorithm can reach a discrete solution without 
(significant) violation of constraints and thus can be practically used to make conceptual 
sandwich design more efficient. 

Key words 
Sandwich, Gradient optimization, Mass minimization, Sandwich failures, Stacking sequence, 
Constraint aggregation, Discrete Material Optimization. 
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Abstrakt 
Tato doktorská disertační práce je zaměřena na koncepční návrh sendvičových konstrukcí 
pomocí metody konečných prvků za použití diskrétní optimalizace materiálu (Discrete 
Material Optimization - D M O ) , což je gradientní metoda využívající principů 
multimateriálové topologické optimalizace. 

V první části práce jsou popsány analytické přístupy výpočtu sendvičových nosníku a panelů, 
které jsou již dlouho známé a používané. Široce rozšířená je též aplikace metody konečných 
prvků při návrhu sendvičových konstrukcí, neboť umožňuje analyzovat i složitou geometrii a 
vrstvení. V rámci přehledu současného stavu poznání jsou nastíněny vybrané optimalizační 
metody. I když se vlastní práce zaměřuje na gradientní metody, genetické algoritmy jsou 
zmíněné, díky svému rozšíření v optimalizaci kompozitu a tím pádem i sendvičů. 
Matematické programování je dále rozvinuto v podobě nejčastěji užívané metody topologické 
optimalizace - S IMP (Solid Isotropic Materiál with Penalization), která v zahraničí posloužila 
jako výchozí bod pro vývoj metody D M O a jejích variant, které se z užití na optimalizaci 
kompozitu rozšiřují i v oblasti návrhu sendvičů. Jako příklad obecného přístupu ke 
konstrukční optimalizaci je shrnuta optimalizace za použití metody konečných prvku 
v Nastranu a tří fázová optimalizace kompozitu v OptiStructu. Přímo v oblasti sendvičů je 
možné v omezené míře použít analytické metody, ale těžiště praktického užití je v aplikaci 
numerických metod. 

Cíl disertační práce byl stanoven jako programová implementace optimalizační metody, která 
by usnadnila proces návrhu sendvičové konstrukce za použití M K P , tedy s geometrií, kterou 
není snadné navrhnout pomocí analytických metod tak, aby se snížil počet návrhových cyklů, 
které musí inženýr ručně provádět (měnit vrstvení a kontrolovat splnění požadavků). 

Optimalizační úloha je formulována jako minimalizace hmotnosti konstrukce při dodržení 
omezujících podmínek sendvičových poruch (maximální napětí v potahu, smyk jádra, 
crimping - zvlnění, wrinkling - zvrásnení), kde návrhovými proměnnými jsou materiály 
(včetně tloušťky a orientace vrstvy) kompozitního potahu a jádra. Metoda je založená na 
interpolaci hustoty dílčích materiálů pomocí R A M P (Rational Approximation of Materiál 
Properties) schématu v každé vrstvě, kdy jedna vrstva obsahuje podíly více složek materiálu. 
Díky vhodné penalizaci matice tuhosti vrstvy a poruch se optimalizér konverguje 
k diskrétnímu výsledku (ve vrstvě zůstává právě jeden materiál) na rozdíl od počáteční 
rovnoměrné distribuce materiálových proměnných. Logistická funkce je použita pro 
interpolaci hustoty jednotlivých vrstev potahu tak, aby se vrstvy odebíraly z vnější strany a 
návrhové veličiny se plynule měnily. Pro dosažení diskrétních výsledků, které splňují 
předepsaná poruchová kritéria, byly stanoveny výchozí parametry optimalizace. 

Vlastní softwarová implementace je naprogramována v Pythonu, kdy uživatel nejprve 
definuje potenciální materiály a síť M K P modelu s okrajovými podmínkami a zatížením. 
Program následně provede interpolaci vlastností, tak aby mohla být použita v externím M K P 
řešiči, kterým je Nastran. Ten spočítá lineární statickou analýzu a vypíše vnitřní silové účinky 
na jednodivých elementech, které jsou už pak vlastním programem použity k výpočtu 
napjatosti ve vrstvách a opakovanému vyhodnocení poruchových kritérií tak, jak je požaduje 
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optimalizér (IPOPT) v rámci vyčíslení omezujících podmínek, cílové funkce a jejich derivací. 
Po konvergenci k diskrétním výsledkům vrstvení dojde k zaokrouhlení případných 
nepřesností a ověření splnění poruchových kritérií na finálním modelu. Za účelem snížení 
výpočtové náročnosti byly implementovány agregace omezující podmínek pomocí K S funkce 
a „patch design", tedy sdružení elementů, které mají sdílené návrhové proměnné (vrstvení). 
Uživatel nakonec zkontroluje splnění ostatních podmínek, které nejsou v optimalizaci 
podchycení, např. deformace, ztrátu stability a konstrukční detaily. 

Funkce metody byly testovány na příkladech různé složitosti, počínaje jedno-elementovým 
modelem sendviče zatíženého tlakem v jeho rovině, smykem a ohybem, dále série simultánně 
optimalizovaných nosníků sestávající z jednoho elementu. U těchto příkladů bylo řešení 
srovnáno se známým optimem. Příklad s vyšším počtem proměnných byly panely s trojím 
typem okrajových podmínek, kde je porovnána náročnost při optimalizaci každého elementu 
zvlášť, všech elementů se společným vrstvením, použití agregace omezujících podmínek a 
provázání vrstev pomocí tzv. blendingu. Složitějším příkladem je box sestávající z 25 
návrhových oblastí zatížený pod tlakem na horní straně a kroutícím momentem obdobně jako 
křídlo. Příklady z praxe jsou skříň používaná v interiéru dopravního letadla a velká kuchyňka. 
Na příkladech bylo demonstrováno, že optimalizace je schopna nalézt řešení, které má 
vysokou míru diskrétnosti a vyhovuje poruchovým kritériím nebo je jen mírně narušuje. Pro 
některá nastavení nebylo nalezeno skutečné minimum hmotnosti, jak lze vidět 
u jednoduchých příkladů. Výpočtová náročnost silně závisí na počtu proměnných a 
omezujících podmínek (zejména počtu elementů), takže např. vrstvení kuchyňky s hrubou sítí 
čítající cca 5000 elementů se optimalizovalo přibližně 14 hodin. 

Přínosy disertační práce jsou v tom, že byl odzkoušen upravené postup výpočtu derivací, které 
umožňují snadné použití běžně používaných skořepinových M K P modelů. V rámci D M O 
byly zcela nově použily interpolace wrinklingu a crimpingu. Testovací příklady ukázaly, že 
optimalizér nekonverguje při narušení poruchových kritérií z důvodu koncentrace napětí nebo 
nedostatečné pevností využitelných materiálů, ale dobré konvergence bylo dosaženo použitím 
parametru, který předepisuje ignoraci malého množství poruchových kritérií. Program tedy 
může posloužit v inženýrské praxi pro usnadnění koncepčního návrhu sendvičových 
konstrukcí tím, že sníží počet ručních úprav vrstvení a přepočítávání a vyhodnocování poruch. 

Klíčová slova 
Sendvič, Gradientní optimalizace, Minimalizace hmotností , Sendvičové poruchy, Vrstvení, 
Agregace omezujících podmínek, Diskrétní optimalizace materiálu. 
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1 In t roduc t ion 
Sandwich structure combines a thick soft core in the middle of thin stiff face-sheets, which 
effectively transfers bending moments and satisfies high bending stiffness, which 
predetermines it to wide use in secondary structures required to be light and stiff under low or 
intermediate load levels. Sandwich structures are used and designed widely in the aerospace 
industry at least since Second World War. Since that, wide knowledge about them were 
collected and various design approaches were developed and described in engineering and 
scientific literature. 

What is new in the recent years and decades is the use of calculations (mostly through the 
finite element method), not only in the validation of human-made designs, but also direcdy 
helping with design in the form of optimization used as a tool to find the best design 
parameters fulfilling design criteria given by an engineer. Such a growing tool is the topology 
optimization already established in the conceptual design of parts with isotropic materials. It 
uses gradient methods to solve tasks with a large number of design variables. Discrete 
Material Optimization ( D M O ) is a method based on similar principles as multimaterial 
topology optimization applied to design composite layups. Sandwiches, as a subgroup of 
fiber-reinforced composites, have a potential for ongoing research and the improvements of 
D M O . 

The thesis implements D M O with a modified application of derivative evaluation combined 
with evolution within a given number of design cycles. The implementation is in the form of 
Python program intended as a tool which could be used by engineers and help them in finding 
a low mass design satisfying failure constraints on the level of global layup where an engineer 
defines geometry, loads and boundary conditions, and available material candidates so that the 
algorithm can search for the best suited combination of them. 
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2 S t a t e of the art 
Extensive review of current trends in research and applications of sandwich structures were 
recently made by Birman and Kardomateas [1] which covers topics of nontraditional core 
concepts, nanoinclusions, smart materials, functionally graded structures, damages and 
various environmental effects in aerospace, c ivi l , and marine engineering. The topic of 
sandwich structures is clearly very wide and so the following review focuses specifically on 
structural design calculations, on optimization, and application of topology optimization 
principles to sandwich structures. 

2.1 Design calculations 
From the broader view, a typical development methodology of a composite structure can be, 
according to the CMH-17-6 Composite Material Handbook [2], summarized to: 

1. Requirements definition - usage, environment, geometry, loads. . . . 

2. Available material assessment - preliminary selection for face-sheets, core and glue. 

3. Evaluation of available manufacturing technologies. 

4. Preliminary design - structural type (sandwich or laminate), number of layers and 
their orientation, core thickness and density, manufacturing tooling. 

5. Verification tests of material properties. 

6. Detailed design - design of joints, sealing. . . . 

7. Structural details and subassembly tests, optimization of mass, cost, lifespan, . . . 

8. Prototype test. 

9. Finishing documentation. 

From the broader view, sandwich is a special case of composite structure and it is often 
difficult to answer the question where to place a sandwich and where to use only a laminate 
on the product, since it depends not only on the mechanical properties and mass but also on 
other special requirements, reliability, and maintainability. These considerations need to be 
addressed in relation to the specific part and manufacturer. The review in the following 
paragraphs is focused to stress and deformation analysis, since it is a wider background of the 
theses. 

2.1.1 Sandwich beams 
Difference between analytical calculation of the sandwich beams and homogeneous beams is 
that sandwiches have, due to soft core and thin face-sheets, small shear stiffness so that shear 
deformation cannot be neglected. Instead of Bernoulli equation for bending, it is necessary to 
use more general Timoshenko formulation which includes shear effects 
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(1) 

which can be rewritten in more demonstrative form of partial differential equations for 
bending and shear displacements w = w b + w s , 

d4wh d2w, , s 

D—-j- = q , S — = - q , (2) 
a x a x 

where q is distributed load; bending and shear stiffness are defined as 

E i ti E?t?d2 Grd2 , s 

D = , S = ^ — , (3) 
F t +F t t 

where E i . E 2 are elastic modules of the top and bottom face-sheet, G c is shear module of the 

f l + t 2 

core, t i , t2, tc denotes face-sheet and core thickness, d = tc+—-— is a distance of face-sheet 

centers. 

The governing equation (1), which deduction is explained, e.g., by Zenkert [3], is valid with 
typical sandwich assumptions that face-sheets transfer in-plane loads and bending moments, 
but do not transfer shear force, whereas the core does not transfer in-plane loads and bending 
moments, but transfer whole shear force. Error is small if the core has low modulus in the in-
plane direction and face-sheets are thin in compare to the core. Conditions for the error less 
than 1 percent are if 

^->5,77 , ^ ^ > 1 0 0 . (4) 
lf Ectc 

Simplification is drawn in Figure 1. In practical applications, it is possible for simplicity to 
use beam equations to calculate real panels with neglected side boundary conditions. 

In-plane normal stress 

Transverse shear stress 

Without E « E, E « E, 
c f c f 

approximations t « t 
f c 

Figure 1: Simplification of the stresses across a sandwich[32]. 

Theories of higher orders can be used to work with more precise deformation across the 
sandwich, e.g., polynomial distribution instead of linear or involving nonzero out-of-plane 
stress. These theories have application, e.g., in detailed calculations in the area where the 
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sandwich changes its thickness since tapered face-sheets carry also the shear force [5, 7, 9]. 
Accurateness of the results might be comparable with F E M , but setting the equations requires 
considerable insight and they finally need to be solved numerically. 

2.1.2 Classical panels 
Wide attention was paid to the simple panels with constant layup and analytical methods for 
their design were developed. Their applicability fits rather to the panels on large aircraft 
where the structure can be divided into idealized panels (flat or with one curvature or 
cylindrical) with analytical boundary conditions on the edges (simply supported, clamped, or 
free) and clear loads (tension/compression, shear, bending moments acting on the whole edge, 
and pressure acting on the surface). These loads can be calculated analytically or from the 
global F E model. Several sources are described in the subsequent paragraphs. 

As for the beam, panel behavior can be described by a set of differential governing equations 
containing chosen independent variables, e.g., displacement w and shear forces T x , T y . 
According to over the thickness stress variation, first-order shear deformation theory (FSDT), 
which application is described in detail in appendix Layer stress calculation 9.1, or higher-
order shear deformation theories (HSDT) can be used. Solution of the governing equations for 
specific boundary conditions gives deformation distribution which can be finally used to 
calculate stresses. Buckling and natural frequencies can be calculated as well . Equations can 
be solved by numerical methods or approximately with help of energetic methods, e.g., Ritz 
method which supposes the solution in the form 

M1 N1 

m = l n = l 

r x = I l B m j m n ( x j ) ' 1 > 
m = l n = l 

M2 N2 

Ty—2^ 2^ CmnTymn(x,y) 
m = l n = l 

where A m n , B m n , C m n are unknown coefficients - amplitudes of the chosen functions 
Tymn which are usually in the form of function multiplication Xm Yn . 

Solutions for various boundary conditions were collected into diagrams which can be used for 
practical calculations and design. Many of them can be found in the handbook CMH-17-6 [2], 
which is a revision of canceled M I L - H D B K - 2 3 from 1974. Regarding the time of original 
publishing, both handbooks are oriented rather to the metal materials and mostly analytical 
approaches since composite materials were not so common and computers did not allow wide 
use of F E A . B y sequential use of proper diagrams, it is possible to determine needed core 
thickness, face-sheet thickness, core shear module for flat panels with isotropic or orthotopic 
face-sheets and core. For combined loads, it is recommended to use additive equation, e.g., 
for compression and shear loads 

Rc+R2=l , (6) 
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where R= is ratio of real load to the critical load. Similar methodology is described for 
N 

cr 
sandwich cylinders. Sandwich failures are checked afterwards. 
Another significant source is Bruhn [11], who dedicated a detailed chapter to sandwich 
strength calculations (again flat and curved panels, and cylinders for various load 
combinations) and also focused on metal structures with hexagonal and square cell cores, and 
corrugated cores, where core properties are approximated by empirical relations based on the 
core density. Face-sheet plasticity is considered. Design of the flat panel with given load and 
allowable stress follows the points: 

1. Determination of the face-sheet thickness according to compression load. 

2. Determining the core thickness and its shear modulus to prevent global buckling. 

3. Define core parameters for sufficient strength in the out-of-plane direction loads and 
selecting elastic module and shear module to prevent wrinkling. 

4. Define the core size to prevent dimpling. 

5. In the case of sandwich cylinders, the extra point is to check the bending stiffness of 
the cylinder preventing buckling. 

Kollar [13] describes the deduction of formulas for long plates (based on the analogy with 
sandwich beams), plates with orthotropic layup loaded with pressure, buckling of long plates 
simply supported and clamped, and orthotropic simply supported plates. Kollar mentions also 
analytical formulas for natural frequencies of sandwich plates. 

A S M Handobook [15] contains the methodology for sandwich panel design loaded with 
uniform pressure by the help of superposition of two perpendicular beams which gives 
conservative results of stress in the face-sheet and core. The handbook also recommends how 
to reinforce the tapered endings of the sandwich with composite face-sheets. 

Much simpler approach is summarized in the document [17] from the composite material 
producer Hexcel. General approach to design a sandwich panel is: 

1. Panel definition (geometry and boundary conditions) and load definition. 

2. Constraints definition - displacements, thickness, mass, and safety factor. 

3. Preliminary calculation - choosing panel thickness and core thickness and material, 
stiffness calculation without shear deformation, next calculating displacement and 
core shear stress. 

4. Design optimization - core and face-sheet thickness modification, core material 
modification. 

5. Detailed calculation - with shear deformation included, calculating stress in the core 
and face-sheets. 

6. Checks - global buckling, displacement, crimping, wrinkling, intracell buckling, and 
core crush. 
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This approach is usable for manual calculation. B i g simplification is the neglection of the 
shear deformation during the optimization phase. Several typical loads of sandwich beams 
and an example of the simply supported panel loaded with uniform pressure are described in 
the cited source. 

2.1.3 Finite element analysis 
Finite element method ( F E M ) enables several different approaches to sandwich calculations. 
When whole structures are calculated, the sandwiches are modeled by shell elements with 
composite layup where the special layer acts as a core. It is necessary to use a proper element 
type which does not neglect the shear deformation. Specialized programs might contain even 
element types programmed directly with formulations valid for sandwiches, but general 
software packages usually do not contain these element types. During postprocessing, 
sandwich failures are evaluated from the stresses in the core and face-sheet on each element 
according to analytical failure criteria. Buckling need to be checked separately by linear 
buckling analysis or by nonlinear static analysis. Regarding sandwich assumptions, Hexcel 
document [17] recommends for the honeycomb core to use the following material data: shear 
modulus in L (ribbon) direction G x z = G L and W (transverse) direction G y z = G w , and 
compression modulus E z = E c . Other characteristics can be defined as close to zero 

E x ~ E y ~ G x y ~ 0 , v x y ~ v x z ~ v y z ~ 0 . 

Faccshcets Core Monolithic skin 
(2D) (3D) (2H>) 

Figure 2: Example of the model combining 2D and 3D elements on helicopter panel [27] 
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Sandwich needs to be modeled more in detail if stress distribution is required inside detailed 
structural parts such as joints, core inserts, geometrical changes, and so on. It is usually 
enough to model the core as a continuum by 3D elements and modeling face-sheets by shell 
elements with offset from the core or without the offset on the slightly thicker core. 
Depending on the task, in case of plane strain, the core can be modeled by 2D elements and 
face-sheets only as I D beam elements. Continuous 3D elements can be used even for 
honeycomb core with homogenized material properties found experimentally or from the F E 
model of the representative sandwich section, where shell elements represent face-sheet and 
core walls if they are not represented by very fine 3D elements to catch precisely local stress 
[19, 21], but using 2D elements for honeycomb and corrugated walls is more common for 
quite detailed models of the specimens [23, 25]. Example combining 2D for faces and 3D 
elements for the core is in Figure 2, which is after the optimization for buckling on helicopter 
fuselage panels [27]. 

2.1.3.1 Complicated structures 
When solving a practical task, it is often not possible to split the structure to simple 
geometrical parts (flat panels or panels with one curvature or cylindrical geometry) having 
constant layup and loaded uniformly along its edges and by uniform pressure. In these cases, 
analytical methods are hard to use so that F E M is necessary during design if it is not to be 
tested only experimentally. Thanks to easiness and precision, F E M is also often used during 
panel design where analytical methods could be used well . For example, designing the layup 
of the light aircraft wing, analytical methods can be used with enough precision in the global 
scale, but when designing a fuselage of a light aircraft [4, 6], using F E M is much more precise 
than approximate analytical methods because these fuselages used to be geometrically more 
complicated. 

Design and strength checks of sandwich (laminated) structures, which are done in [4, 6] at the 
Institute of Aerospace Engineering, have rather global modeling character since structural 
details (such as hinge reinforcement, web-skin connection, sandwich-laminate transition) are 
rather made according to the technological possibilities and experience of the manufacturer. 
The workflow is shown in Figure 3. Geometry is used to create a relatively rough mesh with 
loads and boundary conditions. Here are two options of modeling critical load cases: one way 
is to model real cases, second way is to model experimental tests which should proof them. 
Modeling of the experimental test is more idealized, but the test should be proposed to verify 
critical sections of the structure and moreover, it is possible to validate F E model directly with 
the experiment, which would be less representative in case of modeling the real case (e.g., due 
to loading through test tools instead of aerodynamic loads acting on the whole skin). The first 
layup is placed intuitively in Patran (Laminate modeler) with respect to manufacturing. Than 
F E A is made. Postprocessing is done in the in-house program C O M P O S T [31], which 
calculates sandwich and laminate failures for all elements. According to the results (over-
stressed and low used areas in the model), layup is manually modified, again regarding 
manufacturing, and the analysis is repeated. Since the postprocessing is laborious (e.g., for 7 
load cases), this optimization is repeated usually 10-15 times. In Figure 4 depicts a tail area 
during postprocessing. 
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Figure 3: Schema of the workflow for 
designing a light aircraft layup. 

When a light composite airplane fuselage is designed, thin wall structure principles can be 
assumed, e.g., that the bending moment on the wing is transferred by the axial forces in the 
beam flanges and the skin transfers only its small portion. If a sandwich is used in this case, 
the core function is primarily to increase the buckling resistance of large areas of the skin 
rather than increasing the bending moment transfer by sandwich face-sheets. In this regard 
and due to technological reasons, several load carrying layers are placed on one side (usually 
the smooth side of the skin). They are usually supplemented by the foam core and covered 
with only one closing layer, although in the areas of local bending both face-sheets need to be 
reinforced by additional layers. 
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Figure 4: Example of the critical sandwich elements during side load of the tail of 4 seat 
aircraft. In the area 11 and 12 core shear is critical, resp. core crush in the area 13 [6]. 
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2.2 Optimization 

2.2.1 Optimization methods 
A lot of methods were developed for the optimization of various tasks. In this chapter, 
methods related to composite optimization or direcdy to the thesis are briefly introduced. 

2.2.1.1 Genetic algorithms 
Genetic algorithms (GA) are widely used in composite optimization as can be found in 
extensive review papers [8, 10, 12, 14]. G A work on probability bases and fall into the 
heuristic category. A series of individuals carries genes where design variables are coded. 
Goal function is evaluated in each iteration for each individual and individuals get fitting 
parameters, which defines the probability with which the individual w i l l continue to the next 
iteration. Another tool is crossover, which means that two individuals swap part of the genes. 
Mutation means that some variables in the gene are changed with a given probability. G A do 
not require to derive gradients and can be easily parallelized. Thanks to the probability base, 
they are less prone to end in the local optimum. B y their nature, G A work with discrete 
variables, which makes them convenient for composite layup optimization. Disadvantage is in 
a high number of goal function evaluations (e.g., in case of wing composite panels layup [33] 
it was needed 300 iterations with initial population of 400 individuals), so that models for 
optimization by G A need to be easy to evaluate in each iteration and they should contain 
rather small number of design variables. 

2.2.1.2 Mathematical programming 
To minimize goal function f(x) with constraint functions g(x). Lagrange function is typically 
minimized 

where Lagrange multiplicators A are minimized together with variables x. Typical approach to 
find minimum is to solve equation system where partial derivatives of the Lagrange function 
are set to zero vector. The minimum can be proved by calculating Hessian matrix (matrix of 
the second derivatives) which should be positive definite. Since this approach could be quite 
difficult in general, for specific types of goal and constraint functions, efficient methods were 
developed. Example of structural optimization with mathematical programming of the 
stiffened panel can be found in the paper by Píštěk and Pěšák [34] and a wider description 
was given by Píštěk [35] including a heuristic approach based on the criteria of fully loaded 
structure. 

Important task in gradient optimization methods is derivative calculation which often takes 
significant portion of the optimization time. If we assume that functions are continuously 
differentiable, there are basically three options how to evaluate derivatives: 

1. Symbolic differentiation - formula for the function derivative is made by hand or with 
the help of mathematical software, which might give quite complicated result, but it 

(7) 
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can be used for substitution without user interaction. If the function is clearly defined 
for analytical differentiation, it is usually more efficient than next approaches. 

2. Numerical differentiation - the derivative is computed by the forward, backward, or 
central difference which require to evaluate one (two for more precise central 
difference) extra functional value(s) in the chosen step from the point where the 
derivative is required. It is easy to implement, but it could be prohibitive for a high 
number of variables or if the function takes long to evaluate, e.g., in the case of 
calculating a large F E model. 

3. Automatic differentiation (AD) - A D works on the principle of chain rule applied to 
the function implemented in the given programming language. First, the original 
function code is decomposed into intrinsic functions which are effectively 
symbolically differentiated. Second, intrinsic functions and their derivatives are 
multiplied together according to the chain rule and combined towards more 
complicated parts up to the original function. This procedure can be done as a 
transformation of the original function code or by modification during the code 
compilation. Brief explanation can be found in the presentation by Berland [36]. A D is 
reported to be computationally efficient even in calculation higher order derivatives, 
when a user defines still only nonderived original function. 

Since Python programming language was selected to work with in this thesis, the initial focus 
was on the methods which are available through Python libraries. Large library for scientific 
computing SciPy [37] contains two algorithms for constrained nonlinear problems: Trust-
constrained algorithms and S L S Q P (Sequential Least SQuares Programming) [38]. For 
constrained problems, "Trust constrained algorithms" use the interior point algorithm with 
changing barrier parameters (preventing constraints violation) for the solution of sequential 
subproblems. 

Another available optimizer is IPOPT (Interior Point Optimizer) [39] which can be also called 
from Python, but originally works in C++. IPOPT is open-source package which is also 
available in MSC.Nastran for large scale optimization (topology optimization). 

2.2.1.3 Topology optimization with SIMP method 
In 1989, Bendsoe [16] introduced Solid Isotropic Materials with Penalization (SIMP) method 
to seek the distribution of material in the design space. S IMP method is established as the 
most common method of topology optimization. Design variables are element pseudo 
densities x e e ( 0 , l ) , which are continuous so that gradient optimization can be efficiently 
used for large scale problems. To converge results back to the discrete solution (solid or void 
material), the penalization coefficient p is defined with recommended values from 2 to 5 (or 
increasing during iterations) as shown in Figure 5. Element stiffness matrix is interpolated as 

Ke = xp

eK0 , (8) 

where Ko is the element stiffness matrix with original solid material. Optimization is typically 
formulated to minimize compliance given by force vector F and displacement vector u 
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min F u , (9) 

with equality constraint of static equilibrium typical for finite element method 

| > e

p K 0 u = F , (10) 

where the term in the parentheses is global stiffness matrix assembled from penalized element 
matrices. 

0.4 

0,2 0,4 0,6 

SIMP interpol atlon 

p=2/ 
p=5 

0.8 

0,4 

RAI AP interpolation 

, — q = 2 / 

q = 10 

X 0 0,2 0,4 0,6 0,8 

Figure 5: SIMP and RAMP interpolation. 

Since minimal compliance (i.e. maximal stiffness) would be achieved when all elements are 
solid, another constraint is prescribed to l imit volume summed over elements v e 

Í > X < V (11) 
e = l 

Derivative of the goal function (sensitivity) can be found analytically for the element e as 

d f p - i T r . (12) 

Sensitivity is usually filtered to suppress so called checkerboard effect where neighboring 
elements are alternately solid and void in the pattern. Than some of the optimization method 
is used, e.g., optimal criterion method, S L P (Sequential Linear Programming), or often M M A 
(Method of Moving Asymptotes) [40]. Schema of the implementation is in Figure 6. 
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Figure 6: Schema of the SIMP method [71]. 

Multi-material interpolation 

When multi-material topology optimization is carried out, interpolation contains weighted 
sum of stiffness matrices 

(13) 

where the weight coefficient can be defined in more ways, e.g., 

w,=xf 11 (1-*M 
i = i 

(14) 

and the term in parentheses binds i-th material variable X i with other material variables X j . 

R A M P interpolation 

Rational Approximation of Material Properties ( R A M P ) interpolation is another scheme 
which was suggested by Stolpe and Svanberg [41] to replace SIMP interpolation from 
equation (8) in the form 
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l + C ? ( l - x e ) 
K, 0 ' (15) 

where q is penalization parameter causing similar effect as p in SIMP scheme (Figure 5). 
Numerical advantage of R A M P scheme is nonzero value and nonzero gradient at point x e=0, 
which prevents instability in frequency analysis. 

Stress constraints and constraint aggregation 

Two difficulties were reported when applying stress constraints in topology optimization. 
First, when the element variable vanishes, the stress constraint is singular since the compliant 
element has large strain. Cheng and Guo [42] applied so-called £-relaxation in the solution of 
truss structures, which prevents the stress singularity in void elements. Similar approach was 
later used by Duysinx and Sigmund [43] on continuous structures. Alternative to the £-
relaxation was investigated by Bruggi [44] who achieved a similar effect by use of different 
SIMP penalization of the stress and stiffness. 

Second, difficulty with stress constraints is due to the large number of elements in topology 
optimization. Prescribing stress constraints on each element would be prohibitive, so most of 
the studies use aggregation by one of the following functions, where only one or several 
constraints are passed to the optimizer. P-norm used by Duysinx and Sigmund [43] is 

where n is number of constraints (elements), the higher power p is, the closer (Jpn is to the 
maximum stress value, but too high p can decrease numerical stability. 

Other option is K S function [45] 

where g is constraint function, the higher coefficient pKs the closer K S function is to the 
maximum constraint, but too high pKs can decrease numerical stability. Maximum terms in the 
formula should prevent data type overflow due to exponential function. 

A n overview of various approaches to mass minimization with stress constraints was given by 
Le et al. [46]. Other aggregation functions are possible as were suggested by Kennedy and 
Hicken [47]. When many local constraints are aggregated to one constraint, it leads inevitably 
to decrease in the precision of original ones. Logically, there were attempts [48, 49] to 
aggregate not to one but to a set of constraints by clustering constraints according to stress 
level, element proximity, or physical meaning to find a good compromise between calculation 
demands and precision. 

There was also a study by Kennedy [50] which avoided the need of constraint aggregation by 
using full-space barrier method which was able to solve the task efficiendy with a large 
number of stress constraints. 

(16) 

(17) 
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2.2.1A Composite optimization with DMO method 
Stegmann and Lund [18] applied topology optimization approach to the layer composite to 
minimize compliance and in the second paper [20] to maximize the lowest eigenfrequency. 
Material interpolation from equation (14) was used in the form for the constitutive matrix of 
the layer so that layer stiffness matrix would be 

Q = I l - x Q, (18) 

where n M is number of potential materials on the layer and x s is the i-th material pseudo 
density (design variable), Q s is the i-th material constitutive matrix. This interpolation scheme 
converges to one material with x s = 1 and others close to 0, but during iteration sum of x s on 
the layer is not 1, which means that this scheme needs to be modified in case of frequency 
minimization where the element mass matrix is to be interpolated as well . Scheme used by 
Lund and Stegmann [20] for this purpose is extended by the normalizing term 

Q = I 
i= l 

1 

I 
k = l 

W,, 

- * r n ( i -
i = i 

•xp (19) 

but it was reported to converge slower. This approach is called D M O (Discrete Material 
Optimization) and can be used also for the variable material orientation if we consider each 
orientation as a new material variable. In the original form, D M O was used to minimize the 
compliance with variable materials and orientations, so that sensitivity analysis can be done in 
the same way as in the topology optimization, i.e. by the use of eq. (12). Later, Lund [22] 
modified the method also for buckling optimization. 

Sohouli et al. [51] developed a Maüab composite optimization framework involving Abaqus 
solver. The main idea was to split D M O to two levels, where the first optimization was with 
material variables and constant orientations, the second level was with orientation variables 
and constant materials. Variables were then updated in the common model and the 
optimization ran again until convergence. Each of the optimizations has a lower number of 
variables and can run in parallel. The approach was called Decoupled Discrete Material 
Optimization ( D D M O ) and was described and tested on plate and beam examples minimizing 
compliance with mass (cost) and manufacturing constraints, preventing large orientation 
changes between adjacent patches. D D M O was reported to converge to better results than the 
original D M O . 

Thickness variation 

Original D M O has a fixed number of layers. S0ren et al. [24] described D M O including 
thickness optimization by defining new density variable p e ,e [0, l ] on each element e and its 
layer 1. Using R A M P scheme on the layer, the interpolation equation (18) takes the form 
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Q=Qo + 

l + r ( l - p 
Pel 

A Q , , (20) 

where Q 0 holds properties for void layer and AQ = Q - Q0, r and q are penalization 
coefficients. Optimization was done to minimize compliance with constraints on total mass 
and density being lower in outer layers p e / <p e ( / + l ) , and constraints limiting number of 
dropped layers in the same location and layer continuity. Authors tested several optimization 
schemes with Sequential Linear Programming. The approach was used for composite 
optimization without sandwich core. Subsequent paper S0ren et al. [52] called the method 
Discrete Material and Thickness Optimization ( D M T O ) . The method is modified for practical 
tasks to minimize mass constrained with buckling load factors, eigenfrequencies, 
displacements, and basic manufacturing constraints. Patches were applied to group elements 
and design domains for thickness variables and for material candidates were made 
independendy. In the example (main spar of the wind turbine blade), the foam material 
candidate was included but its thickness was the same as of G F R P candidate and none 
sandwich constraints were applied. Dealing with face-sheet thickness was improved by 
S0rensen and Lund [53] where the thickness was controlled by one independent variable 
which drives the layer variables through the filtering function. Recent study by Sjolund et al. 
[26] improved D M T O for sandwiches with variable thickness core and face-sheets. They used 
the method to minimize the mass with displacement and buckling constraints. 

2.2.2 Finite element analysis and optimization 
Possibilities of optimization within large F E A programs are described on the example of 
MSC.Nastran according to its manual [54]. 

In Nastran, the concept of design variables, the goal function, and constraint functions are 
handled with an added layer of design properties (e.g., material property, element thickness, 
node coordinate) which can be direcdy (or through an equation) linked to design variables 
passed to the gradient optimizer. IPOPT [39] and M S C A D S optimizers are implemented in 
MSC.Nastran. M S C A D S is M S C derivative of the code developed originally for N A S A by 
Vanderplaats [55] as A D S (Automated Design Synthesis). If not selected by the user, a 
specific gradient method is automatically chosen according to character of the task (number of 
variables, linear or nonlinear constraints, etc.). Another specific term is the design response 
which can be output from F E analysis (e.g., nodal displacement, stress, buckling factor as load 
case dependent or model mass as global response) or design responses calculated by user-
defined equations from primary ones. Goal function is given by the value of one design 
response. Design constraints are imposed on the design responses. Nastran contains a large 
number of in-build formulas to calculate analytical sensitivities for various design responses, 
otherwise sensitivities are calculated by the finite difference method. Scheme of optimization 
is in Figure 7. 

To decrease the number of full F E analysis, the optimizer iterates over the approximate model 
before updating the design properties in the original model used in the full F E analysis. To 
decrease size of the optimization task, design variables can be linked (which is in fact the 
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same as a patch design where several elements in the patch are driven by the same design 
variable), and constraints which are far from being violated are temporarily deleted. In this 
way, the optimizer works with an approximate model which is easier to evaluate, but precise 
enough in the given iteration. 

(One t ime around this loop is referred to as a design cycle 

or design iteration.) 

Constraint 

Screening 

Structural 

Analysis 

Sensitivity 

Analysis 

Finite Element 

Analysis 

Approximate 

M o d e l 
O p t i 

M a n y Times 

Figure 7: Scheme of the optimization in Nastran [54]. 

Zhou et al. [56] described three-phase process of composite optimization in OptiStruct, which 
is used in designing wing layup of airliners with high number of layers. Phases are shown in 
Figure 8: 

1) Free-size optimization is used to find the concept design of material orientation and 
placement. Design variables are on thickness of so-called superplies (plies with a 
given orientation). Global responses are used in the goal function - compliance or key 
displacements. Manufacturing constraints at this stage involve the minimal and 
maximal percentage of the orientation and total laminate thickness. 

2) Ply-bundle sizing optimization is used to split superplies to plies of a given 
orientation, real thickness, and a covering specific area. Additional constraints are 
applied on failures, buckling, and laminate behavior. 
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3) Detailed optimization of the plies contains other constraints on consecutive number of 
plies of the same orientation, pairing +/- angles, predefined covering layups, etc. 

Phase 1 

Ply Tailoring? 

Automation 

Patch Interpretation 

Phase 2 

Number of Plies? 

Ply Bundle Sizing! 

Automation 

Discrete Ply Thickness 

Phase 3 

Laminate Stacking? 

Rule based , . 

^ ply shuffling 

Optimized Stacking 
Sequence! 

Figure 8: Phases of composite optimization in OptiStruct [56]. 

2.2.3 Analytical approaches to sandwich optimization 
Due to the high number of variables and constraints, only relatively simple methods for 
sandwich beam optimization are described here. 

Prescribed bending stiffness or beam strength 

Kuenzi [57] and Theulen [58] describe the deduction of the formula for minimal mass with 
one prescribed parameter. When mass of glue is neglected, optimum for the fixed bending 
stiffness is for the core mass W c being double times mass of both face-sheets together Wf 

Wc = 2Wf . (21) 

If maximum bending stress in the face-sheets is taken as a fixed parameter, than minimal 
sandwich mass is at 

W=Wf . (22) 

Provided that core elastic properties are proportional to the face-sheet properties in ratio of 
their densities, minimum mass limited by wrinkling w i l l be in the same case as with fixed 
bending strength, i.e. Wc = Wf . In case of dimpling instead of wrinkling limit, similar 
method leads to Wf = 3Wc . 

Prescribed beam deformation or strength 

For practical purposes, total stiffness (bending and shear, not only the shear stiffness as in the 
previous paragraph) is more interesting and load capacity is not limited only by bending 
stress. Zenkert [3] summarized a method to find optimal sandwich beam with given boundary 
conditions and prescribed materials. 
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Let's have a prescribed beam deflection and variable thickness of the core and of face-sheet 
(same for top and bottom). Face-sheet thickness can be expressed from the equation of the 
beam deflection and inserted to the goal function (sandwich mass) 

W~pcd + 2pftf , (23) 

where p c, pf are core and face-sheet densities, tf is face-sheet thickness, d is distance between 
face-sheet centers which is roughly thickness of the core. Optimal thicknesses can be found 

dW 
by a graphical solution of the equation — - = 0 and back substitution. If the variable is core 

da 
density and if it is possible to describe core shear module G c with a relation of the constant C g 
and exponent n 

Gc = CGpn

c , (24) 

then thicknesses d, tf, and core density p c can be found by partial derivation of the mass 
equation with deflection equation. 

When n = 1, optimum directs to increasing core thickness, decreasing core density, and 
thinning face-sheets, so that real choice would be limited by maximal allowable sandwich 
thickness and corresponding tf and p c. For n = 2 (foams) solution gives specific values of the 
design variables. 

Repeating same approach with substitution of some failure condition instead of deflection 
equation into the goal function, it is possible to calculate optimum for each failure separately 
and pick the lowest possible design variable values. Optimality criterion is often assumed to 
be at a design point where all failure combinations occur together. With this condition, it is 
possible to express each design variable from different failure criteria and substitute them to 
the goal function, for example, the combination of the core shear failure with face-sheet 
yielding or wrinkling is possible to use. 

2.2.4 Numerical sandwich optimization 
Since analytical methods are limited to examples which can be explicitly expressed and 
differentiated, numerical optimization is often easier for more complex geometries or 
parametrization. Various design parameters can be optimized, e.g., core material (density), 
orientation and thickness, wall thickness and cell size of hexagonal core or angle of 
corrugated core; number of layers and stacking sequence when laminated face-sheets are 
used. The following examples are related to optimization on the global level (selecting 
materials, thicknesses, and stacking sequence). 

Wind turbine blades 

Sj0lund and Lund [59] used D M O in wind turbine blade design. Regarding the task scale 
(~28000 solid-shell elements) and a set of constrains on buckling, displacement, failure 
indices, and manufacturing, the authors decided to optimize only the thicknesses (laminate or 
laminated face-sheets and core thickness) of predefined ply groups with constant properties. 
Initial state was defined as conventional layup. High number of stress constraints (~1000000) 
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was reduced (to 353) by P-norm functions used on patches. Authors used the internal design 
optimization tool M U S T (MUltidisciplinary Synthesis Tool) with Sequential linear 
programming and semianalytical gradients. Recently, Sj0lund et al. [26] applied D M T O to 
sandwich optimization with variable core thickness and face-sheets with displacement and 
buckling constraints. 

Blending design 

Soremekun [60] used composite optimization denoted as blending design, where neighboring 
panels are pressed to share bottom composite layers so that layers do not need to be disrupted 
on the common boundaries during manufacturing. A s an example, G A were used to optimize 
3x3 sandwich panels with evaluation of panel buckling, face-sheet strength, wrinkling, and 
dimpling failures. In the first step, layup of each panel was designed separately. In the second 
step, layer linking between panels were optimized with change of the layer number and 
orientation (0°, 45°, 90°). The goal function f(x) was modified by additional term penalizing 
unsuitable solutions by (3 coefficient or advantaging solutions which fulfilled technological 
constraints by coefficient £ 

where g'mm is a constraint of the i-th panel of total panel number n p . The final variant was only 
by 2.5% heavier than optimum without technological constraints. 

Composite car body 

By the use of current software packages, it is possible to use optimization problems 
complexly. Velea et al. [28] described multicriteria optimization of the small car body. Mul t i -
criteria optimization enables to reach convenient parameters not only from the mass point of 
view but also safety and driving properties which were quantified by torsional stiffness in the 
longitudinal direction, stiffness during front impact, and a few other cases. 

First, the free size optimization was solved as one criterion optimization (mass minimization) 
with defined minimal and maximal layer thicknesses (glass fabric, P U R core, glass fabric) to 
find load paths as can be seen in Figure 9 where the foam core thickness is displayed. 
Thicknesses of other layers were found in the same way. 

(25) 
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Figure 9: Foam core thickness distribution after the free size 
optimization [28]. 

Second, size optimization was carried out. Based on the technological possibilities, surfaces to 
contain different cores were defined manually (well-shaped P U R , stronger P V C , honeycomb 
to prevent buckling). In this step, 7 criteria were evaluated by weighting coefficients, 42 
sections were defined manually (each with constant layer thicknesses), and thicknesses were 
sought on them. In total, more than 5000 design points were evaluated. Final variant was 
selected according to minimum of the cost function made of weighted contributions of 
prescribed criteria. 
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.3 Summary of review 
ie review focused on sandwich design and optimization. State of the art in this broad field 
n be summarized to: 

1) Traditional approach to sandwich design covered in (hand)books describes the analytic 
design of sandwich beams and plates, so it is limited to basic geometry and boundary 
conditions. 

2) Practical tasks are typically solved with F E models of various detail. Structures are 
often optimized by repeated manual modifications of layup and evaluation of design 
requirements. 

3) Non-gradient methods (especially genetic algorithms) are used in sandwich 
optimization as a subtopic of optimization of fiber-reinforced composites. Such 
methods can reach a robust solution (close to the global optimum), but their 
computational demands quickly arise with the number of variables when F E model 
needs to be involved. 

4) Optimization of some simple tasks is possible through basic optimization methods, but 
tasks of real complexity are designed in several phases, which can combine several 
types of optimization tools and manual modifications to cover all requirements from 
conceptual design to manufacturing. 

5) In 2014, Discrete Material Optimization ( D M O ) was introduced. D M O is gradient 
method and it has been used for fixed and later variable thickness composite 
optimization. Goal function and constraints consist of responses on compliance, mass, 
natural frequency, composite failures, manufacturing rules, but not specific sandwich 
failures such as wrinkling and crimping. 
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3 T h e s i s o b j e c t i v e 
The goal of the thesis is to implement an automated optimization algorithm to improve the 
design process of sandwich structures regarding stress and load capacity. Attention should be 
paid to the structures with relatively low number of plies with the ability to solve tasks with 
geometry and loads more complicated than classical panels, which can be designed by the 
existing analytical approaches. Examples of the structures of interest are light aircraft 
fuselages or airliner interior components. The implementation should contribute to the quality 
of the designed structure and shorten the time needed for designing a new product. Used 
methods should be programmed and the workflow should be validated by comparison of 
theoretical and practical examples. Focus of the work is illustrated in Table 3.1. 

Table 3.1: Thesis objective reasoning. 

Sandwich design characteristics Potential improvements 

Simple sandwich panels with uniform loads 
and structures, which can be split to them, 
can be sequentially designed by the existing 
approaches working with separated panels. 

Sandwich design of the whole structure 
considering nonuniform load, potentially with 
complicated geometry where F E M is needed. 

Details (like inserts, sandwich endings), 
especially in the case of sandwiches with few 
layers, are designed according to the 
technological possibilities and standard 
processes of the manufacturer. 

Put attention rather to global characteristics 
(number and orientation of the layers, core 
material, and thickness) than details. 

Trend in design methodologies is to use 
automated optimization from the beginning 
according to loads, boundary conditions, and 
design constraints (including manufacturing) 
rather than cyclical intuitive design with 
sequential stress analysis. In the case of 
topology optimization with isotropic material, 
terms like "Design by load" or "Design for 
manufacturing" are used in the simulation 
software marketing. 

Focus on the initial design phase of the layup 
where optimization has the biggest impact. 

Trend in design methodologies is to use 
automated optimization from the beginning 
according to loads, boundary conditions, and 
design constraints (including manufacturing) 
rather than cyclical intuitive design with 
sequential stress analysis. In the case of 
topology optimization with isotropic material, 
terms like "Design by load" or "Design for 
manufacturing" are used in the simulation 
software marketing. 

Minimize design cycles where repetitive 
human work is needed. 

Optimal results might be hard to implement 
in the industry. 

Consider manufacturing constraints. 

Need for validation. Comparison with "optimal" results of simple 
examples or studies from the literature. 
If possible, cooperate with the industry to 
design a product which w i l l be 
experimentally tested. 

Although gradient methods contain an inherent risk of trapping in the local minimum or 
infeasible design, this can be partially diminished by convenient penalization. Gradient 

32 



optimization also requires continuous variables to determine derivatives. Contrary, the 
sandwich design contains rather discrete variables (number of laminated face-sheet layers, 
available core materials, etc.), which requires to be transformed to continuous ones and forced 
to converge to discrete values or to be rounded, as performed in a classical topology 
optimization on solid-void material. Provided that gradients can be efficientiy evaluated, this 
approach can efficientiy reach the local optimum even with a large number of design 
variables. 

The thesis focuses on the core functionality of the sandwich optimization regarding sandwich 
failure constrains. The scope of the scientific work is specified in these aims: 

1) Implement gradient optimization of the sandwich structures based on D M O connected 
to F E model with general geometry. 

a) Minimize mass of the structure 

b) Include constrains on sandwich failures 

c) Consider manufacturing constraints 

2) Demonstrate convergence to the optimum by simple examples 

3) Demonstrate the application to the practical design task. 
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4 M e t h o d s 
The basic idea is to apply the principles of topology optimization to sandwich structures. 
Topology optimization uses typically gradient methods, which can be efficiently used when 
discrete variables are represented by penalized continuous variables. This means that the key 
question is to transform the original discrete problem (composite layup) to the continuous 
problem, which converges to the discrete solution due to convenient penalization. Such 
approach is described in chapter 4.1 Optimization approach. Section 4.1.6 Failure constraints 
develops composite and specific sandwich failure constraints in the form which fits to the 
model with interpolated materials. Chapter 4.2 Software implementation describes application 
of the mathematical model in the Python program, connection with F E A solver, connection of 
the robust mathematical optimizer, and several heuristic features, which diminishes the 
difficulties which appeared during algorithm testing and which increases the scope of the 
tasks on which the program can be used. Finally, chapter 4.3 User workflow introduces how 
the program can be used. 

4.1 O p t i m i z a t i o n a p p r o a c h 

4.1.1 Problem formulation 
The first step is to define the goal function, constraints and design variables. General goal is 
the overall costs of the component, including manufacturing, operation, service, and disposal. 
This is, however, a vague term, because overall costs can be only estimated in relation to a 
specific product, based on the situation on the market and experience with similar products, 
which means that cost estimation is an important but also a difficult step in product 
development and that it needs to be done by an informed engineer or a development team. In 
the aircraft industry, a crucial cost factor is the mass which needs to be carried on by an 
aircraft, so that mass minimization is typical goal of the optimization and it can be used in a 
wide range of applications. From the implementation point of view, the advantage is that it 
can be clearly defined and analytically differentiated. 

The structure wi l l be represented by the F E model, where each element can obtain an 
independent design layup. Unknown orientations and materials of the face-sheet and the core 
are parameterized by one variable for each material, which includes specific orientation and 
thickness by the concept of D M O . Such an approach is reasonable when there is a short list of 
predefined materials, orientations and core thicknesses, which is the common case for 
manufacturers who keep a limited number of stock items. Use of multiple material variables 
per each element requires a constraint on their sum to satisfy the physical meaning of having 
one mixed material in the layer. The number of composite layers in the face-sheet is 
controlled by the face-sheet thickness variable, so that the layers from outside have 
diminished stiffness as void elements in classical topology optimization independently on 
their material variable. 
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Failure constraints follow common sandwich failures. Features improving manufacturability 
are discussed in the program implementation. Optimization problem can be mathematically 
formulated as 

m i n M ( x ) 
0 < x!iv < 1 material variables 

< xTb< 1 face-sheet thickness variables 

^ xjjk = 1 at each element layer (26) 

FJÖ<1 
FJT<1 

face-sheet stress 
core shear 
crimping 

wrinkling 

where the material variables x i j k can be between 0 (not used) and 1 (used) as in topology 
optimization. Indices denote i-th material candidate, j-th layer, k-th element (or patch). In the 
meaning of this work, term "material" includes also orientation and thickness so that 
orientation and layer thickness are dependent parameters, not direcdy design variables. Face 
sheet thickness variables x T have lower bound on relative thickness of one layer l / n L 

(considering nL as number of layers and for numerical reasons used as 0.99/nL), which denotes 
that face-sheet contains at least one layer. Sum of nMc core material candidates (nMF face 
material candidates) on the layer must be 1 to fulfill physical meaning. Failure constraints are 
nonlinear and are prescribed on face-sheet stresses, core shear, element crimping, and 
wrinkling of each face-sheet. Vector notation means that they are calculated on each layer as 
wi l l be explained later. 

where n E is the total number of finite elements, A k is element area, t M jk is j-th layer thickness 
interpolated linearly 

4.1.2 Goal function 
The goal function is a mass of the structure penalized in material density 

(27) 
k 

t Mjk 2 j Xijk^i • (28) 
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R A M P interpolation 

PMjk is a density interpolated with penalization as 

PMjkz 

X 

pLjk(xTk)Z tz^tt v ^p> f o r f a c e - s h e e t 

"MC V 

V CJJ! 
r l + q ( l " 

(29) 

Pi for core 

where pLjk is the layer density and w i l l be explained later, pi is the density of i-th material (in 
physical meaning, so that it determines a cost of the material per volume). A fraction in the 
sum is R A M P interpolation. In topology optimization, interpolation is used with q > 0 to 
decrease intermediate element stiffness as shown in Figure 5. In this thesis, mass is penalized 
with coefficient selected as -1 < q < 0, so the intermediate material has higher mass. Figure 10 
shows the case for two candidate materials with variables X i and x 2 . Blue and red curves 
denote the mass contribution of each material component related to x axis, which is drawn as 
a portion of the first material (red) Xi = x, and for the second material (blue) x 2 = 1 - x. After 
the summation, the intermediate values are larger value so that gradient directs the 
minimization towards the clear first material or clear second material. The graph also 
demonstrates why the starting point for design variables (xi , x 2 ) is chosen to be in the middle, 
i.e., uniform distribution of the candidate materials (xi = x 2 = 0.5), otherwise the optimization 
would be biased and it might be difficult to overcome the gradient which is steep when the 
actual design point is close to discrete values. Interpolation in the figure is drawn for q = -0.7, 
which proved to be a robust value in the test examples. 
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Figure 10: Penalization term for two material candidates with same 
densities and for q = -0.7 [68]. 

If we consider the same (physical) densities of both materials, Figure 36 represents the shape 
of the layer density defined in eq. (29). In practical cases, materials can differ in density: 
Glass/epoxy composite density is 1.19 times higher than the carbon/epoxy composite 
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(considering V f = 0.35); the candidate core materials can differ much more in density and so 
this case is demonstrated in Figure 11, where the second material has density 2 times larger 
than the first. The starting point w i l l be still in the middle (xi = x 2 = 0.5), so that the goal 
function gradient w i l l direct towards the lighter material, unless it is pressed by failure 
constraints over the top of the curve to finally fall on the side of the heavier material. 

2,5 

Figure 11: Density penalization for two material candidates where one 
has density pi = 1, second material p2 = 2; for q = -0.7. 

The situation with more material candidates is analogous and more difficult to display, but 
three materials can be still drawn on a paper, as shown in Figure 12. The base of the drawing 
is a triangle. Material variables are distributed in the way that each corner is occupied by one 
material variable. There is a proportional combination of the materials inside of the triangle 
with equations for X i , x 2 , and x 3 dependent in x and y position on the paper. Colored triangle 
shows R A M P interpolation of these three materials. We can see high values in the middle of 
the triangle where the materials mix. Middles of the triangle edges mix only two materials 
(the third is zero) and so corresponds to the previously explained case of two materials. 
Corners have the lowest interpolation value so that the goal function optimization w i l l direct 
towards the corners with just one material. Starting point of the optimization wi l l be set to the 
triangle center (xi = x 2 = x 2 = 0.333). The drawing is for the case where all materials have the 
same density. One can note that in this specific case the goal function gradient is 0 and so the 
optimization might stay with mixed variables. It can theoretically happen but is unlikely, since 
in a practical case, the number of face-sheet layers w i l l decrease due to the thickness variable 
gradient and so some constraint (which is also penalized) w i l l become violated and causes the 
variables to move towards one of the materials. 

If the materials w i l l have different densities. Figure 12 w i l l slightly change so that the highest 
point of the interpolation value (including material density) w i l l move towards the heaviest 
material, so that the starting point in the middle of the triangle w i l l slightly help moving 
towards the lighter material(s). 
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x 

Figure 12: Interpolation value for 3 candidate materials with same density. 

Layer density p L jk 

Layer density pLjkE.(0, l ) in eq. (29) serves as a coefficient determining how much the j-th 
layer on k-th element is active. Pijk is defined by the S shape function (also called logistic 
function) dependent on the thickness variable xTk- Its shape is drawn in Figure 13, where c = 
0.5 marks center of the curve on x axis, k controls the steepness. This function w i l l determine 
the density of the given layer. 
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X 
Figure 13: Example ofS shape function with center atc = 0.5. 

The S shape function for each j-th layer is in the form 

p « ' = i + e x p [ t u w - , „ ) ] • x « = ^ r - ! 1 J " ' ( 3 0 ) 

where x L jk is the position of the beginning of the j-th layer measured from the core to the outer 
face-sheet surface; it is constant during the optimization and does not depend on the thickness 
of the material but only on the relative position from the core. Face-sheet thickness variable 
X x k is measured in the same way. Value of the steepness coefficient 

fc=2nLln(l9) (31) 

1 
was derived from equation (30) substituting pijk = 0.05, and (xLjk-xTk)= , which means 

2nL 

that layer density changes from 0.05 to 0.95 within the length of relative layer thickness. 
Densities are shown in Figure 14 for face-sheet with three layers. Curves for x L ] = 0. 0.333, 
0.666 are for densities of first, second, and third layer, their sum corresponds to the shape of 
the goal function as it dependents on xt. 

If k is high, graph resembles stairs, so that x t being within the span of the layer counts almost 
all its density, which is useful when the optimization is close to finish (reaching discrete 
results). Waves are supposed to favor positions with lower gradient, i.e. in the middle of the 
physical layer instead of in the region with large gradient where physical layers touches, so 
that rounding x T to obtain discrete number of layers in the face-sheet w i l l be clearer. However, 

DM 

sliding over more layers would cause large changes of the gradient (specifically —— ) 
0 Xj 

which is proportional to waviness of the red sum curve in Figure 14. Contrary, if k is lower, 
the curves (and the gradient) are smoother, which help the optimizer to change x T easily, but it 
causes overlaps of the layer densities, which is not convenient for the final rounding since it 
would change the results significantiy. The practical approach is to start with lower k and 
increase it during the optimization. If it is not written otherwise, k is set to linearly change 
from nLln(19) to 2.2nLln(19) in the thesis since it proved as a robust setting for various 
examples. 
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4.1.3 Goal function derivatives 
The goal function in equation (27) and its members were defined to be smooth. Their partial 
derivatives can be analytically derived and efficiently evaluated during the optimization. 

The derivative by the face-sheet thickness variable is: 

5 M _ f dp^ 
Pj Y ~AkZ^ tMjk fl > W 
UATk j UATk 

where on the j-th layer 

dxTk dx-n i /v i ; / k 

and 

d j y = ft exp[k{xLjk-xTk)] 

dxTk { l+exp [/c (x i j k -x r J]} 2 

The derivative by the material variable is 

DM f dt M j 7 [ ^p M j 7 [ 

where 

5t Mfk . 

dxi]k 

(34) 

a x , " A k U x . l P M ^ + t ^ a x , J 1 ' ( 3 5 ) 

(36) 

thanks to linear interpolation and for the face-sheet 

^Pm = 0 311 D (37) 
axijk [qxm-q-l) 
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or without p L j k for the core 

dpm_ q + 1  
dxijk {qxijk-q-lf 

After rearrangement, derivatives can be written as the following formulas: derivative by the 
face-sheet thickness variable is 

oM y ft exp[ /c(x L j 7 ( -x r k ) ] ^ F x f f f c 

5x r f c ^ ^ { l - e x p [ / c ( x L j , - x r J ] } 2 ^ l + q ( l - x i 7 J P i ' f ( 3 g ) 

_ j-1 •_1 ~ 

derivative by the face sheet material variable is 

dM _ I q + 1 \ 

ox«/k \ (qxijk-q-l) ) 

derivative by the core material is the same formula with dropped pLjk-

In the practical design, symmetry of the face-sheets is often used (top and bottom face-sheets 
have same layup), so that optimization can work only with variables on the bottom face-sheet 
and top face-sheet is mirrored. In this case, equation (40) should be multiplied by 2 for the 
face-sheet. 

Second practical feature is patch design, when more elements share the layups and driven by 
same design variables. In this case, A k in equations (39) and (40) is area of the patch instead 
of separate element area. 

4.1.4 Stiffness and thickness interpolation 
Layers stiffness matrix 

The layer stiffness matrix is linearly interpolated as: 

NMC>NMF 

Qjk= I xijkQi , (41) 
i 

where Q, is the stiffness matrix of i-th material candidate in the finite element coordinate 
system according to F S D T described in appendix 9.1, so the interpolation is done in common 
coordinate system. Note that Qjk does not depend on the layer thickness nor face-sheet 
thickness variable x-rk. 

Layer thickness 

The layer thickness is linearly interpolated as in the goal function, but it includes the layer 
density pLjk which is modified from the one in densities inside the goal function. The layer 
thickness is defined as: 
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tjk={ 

P i j k X V i for face-sheet 
i 

"uc 

X xijkti for core 

(42) 

The layer density pLjk(xT) includes dependency on the face-sheet thickness, i.e., if the layer 
is active or not, which needs to be controlled by the thickness rather than stiffness matrix 

Qjk . Figure 15 shows the initial thickness of the face-sheet when x T = 1. When x T 

decreases during the optimization, the outer layers are "squeezed" in thickness, so that the 
outermost layers are very thin, but not having thickness 0, so that their derivatives can still be 
evaluated during the optimization. A t the end of the optimization, the thickness x T is rounded 
upwards and rounded thicknesses correspond to discrete values of the candidate materials. 
The "squeezing" of thicknesses and keeping original stiffness matrix Qjk is important in a 
wrinkling evaluation, where a quadratic moment of the face-sheet to its own neutral plane is 
needed. Note that the use of fixed layer thickness and penalized stiffness matrix is an intuitive 
application of the topology optimization principle, which would be equivalent for the in-plane 
stiffness, but would not work properly for bending stiffness due to the quadratic dependency 
on the cross-sectional thickness. 

initial during optimization rounded 
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Figure 15: Thickness of the face-sheet layers controlled by the thickness variable xt. 
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0,333 0,666 

Figure 16: Shifted layer density used for properties out of the goal 
function [68]. 

The layer densities are defined by S shape function as 

1 _ , / -0 .5 
JLjk~ l+exp[k{xLjk-xTk)] >XLi, Ljk~ , j = l , 2 , . . . , n L ' (43) 

which are shifted from the densities defined for the goal function in equation (30). The shift is 
given by xLjk which is smaller by half of the relative layer thickness 0.5/nL and corresponds 
to the layer middle (compare Figure 16 and 14, where x L j k corresponds with the layer 
beginning). The logic of using one layer density for the goal function and one shifted for 
physical thickness is that the goal function aims towards a step of the mass on boundary 
between layers, so that the goal function gradient close to the boundary is larger than in the 
middle of the layer, and so the optimizer would tend to finish just below the boundary (not to 
strongly increase cost), which w i l l use fully properties of the layer after rounding layer up to 
the discrete. Contrary, physical thickness (using p L instead of P l ) changes within the scope 
of the layer respecting their physical position, e.g., for k = 2nLln(19) layer density pL 

changes from 5% to 95% within the range of the layer thickness. It can be seen also in Figure 
16 that, e.g., at point x T = 2/3, purple (outermost) layer w i l l have the thickness 5% of the 
material thickness ( p i U = 0.05 ), yellow (middle) layer w i l l have the thickness 95% of the 
material thickness ( p i 2 f c = 0.95 ), and green (inner) layer w i l l have almost 100%, i.e. 

= 0.99985 . The strategy of increasing k during the optimization as was explained for JL3k~ 
the goal function is the same here - k is lower at the beginning and so the overlaps are more 
significant in smoothing the gradients; at the end, the overlaps are small (below 5%) which 
prevents abrupt changes due to final rounding. 

43 



4.1.5 Real mass of the structure 
The optimization might finish with some elements not fully discrete, or if unsuccessful, it can 
finish with most elements not fully discrete, which was often the case during searching for 
convenient optimization parameters in the beginning of the work. In such cases, the real 
physical mass of the structure differs from the goal function (penalized mass) not only during 
the optimization but also at the end of the optimization. So that for practical insight to the 
optimization process, real mass of the structure can be monitored during the optimization and 
so it is calculated formally as 

m{x) = yZAk

yZtjk{x)pmjk{x) , (44) 
k j 

where the thickness tjk from equation (42) contains layer density pLjk from equation (43), 
which is more precise for actual mass, instead of equation (30) which was more convenient 
for the gradient of the goal function. 

Since layer density is now involved in the thickness, it is dropped from physical density 
(compared to the goal function) and is now linearly interpolated without R A M P scheme 

nMCnMF 
PmjM= X xijkPi • (45) 

4.1.6 Failure constraints 
Failure constraints are of the basic form 

FJ<1 , (46) 

where FI is a failure index which w i l l be defined separately for each failure type. This form is 
common in composite design and is also convenient for the optimizer from the numerical 
point of view because all FI values are expected to be between 0 and 1. Less or equality is 
written in the formula since the optimizer keeps values on the limit and it would be hard to 
enforce values which are just "a littie" below. Element index k and layer index j are removed 
in this section. 

Penalization of the failure constraints w i l l be defined precisely for each failure type, but the 
overall principle is the same for all. The effect of FI and goal function penalization is shown 
together in Figure 17 since it affects the convergence to discrete results. Cases consist of the 
two material interpolation where the left material is heavier and better resists the loading (has 
lower FI) compared to the right material, e.g., lighter and stronger core. Figure 17 shows four 
cases: 

a) A situation when FI is linearly interpolated without penalization. Optimization starts in 
the middle marked with dash-dot line where FI < 1 (below green line), so that the 
failure constraint is not active and optimization is driven by the goal function (M) 
gradient (blue arrow). When it reaches point 2, failure constraint becomes active at 
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point 3, but with the opposite constraint gradient, so the optimization sticks to point 3 
without reaching the discrete solution. 

b) Materials and loads are the same as in a), but with penalized FI. Optimization starts 
with an active failure constraint due to penalization (point 1), so that FI gradient 
directs the solution towards the stronger left material. When it reaches point 2, the 
constraint is not active any more and the solution is directed by the goal function 
gradient (blue arrow) towards the discrete solution (point 4). This is an ideal case 
when optimization finds the best solution, however, the cases c) and d) describe 
unfavorable situations. 

c) In this case, the penalization causes a rather small constraint violation, so that FI 
gradient directs the optimization towards the left stronger material (red arrow), 
however, this direction is not optimal, since both materials are feasible, the green line 
denoting FI = 1 is above the discrete ends of the red curve, so the lighter right material 
is optimal, but when the optimization reaches point 2, failure constraint is fulfilled and 
control is overtaken by the goal function gradient (point 3) which already directs 
towards stronger material (point 4). 

d) The difference from case c) is that left material is much stronger then right material. 
When optimization reaches point 2, the goal function gradient directs towards the right 
lighter material, but it activates the failure constraint again, so the solution is locked at 
this point (3, resp. 2). 

Figure 17: Schema of the mass and failure index interpolation in different situations. 

Figure 18 b) shows same situations with the highlighted range A, which is the range between 
the maximums of the constraint value FI and the goal function M . When FI = 1 within this 
range, the optimization sticks due to opposing gradients, as was the case in Figure 17 d). For 
the cases in Figure 18: 

a) Range A is large when FI is not penalized. The case without any penalization of FI and 
M is not shown, but one can imagine that A would span the whole range between a 
and |3. 

b) A is the distance between peaks. 

c) Higher penalization in FI shifts slightly the FI peak towards the center which leads to 
slightly smaller A. The same would be true for M . 
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d) Large difference between M(a) and M((3) shifts peak of the goal function out of the 
center, which increases A. The same would be true for FI. 

Figure 18: Range of the opposite gradients of failure constraint and goal function. 

Different M(a) and M(ß) is typical for cores of different thickness and/or different physical 
density. Face-sheet materials can differ only in orientation, so their strength would be 
different in the evaluated direction, but M(a) could equal to M(ß) , so the goal function curve 
wi l l have the peak in the center which would decrease A. 

The explanation of the range A may lead to impression that the optimization is prone to 
sticking to nondiscrete results. Test examples were used to check various optimization 
parameters which resulted in robust settings for materials of common use and led to low 
amount of nondiscrete elements. 

Calculation of the stresses and stiffnesses is done by First Order Shear Deformation Theory 
(FSDT). This chapter contains only details related closely to the applied constraints. Complete 
relations are explained in the appendix 9.1. 

Max stress criterion 

First, max stress criteria of the face-sheet layers are evaluated for each material in its local 
coordinate system for allowable stresses of the face-sheet materials Sxxt, S x x c , S y y t , S y y c , S x y , 
where t and c denotes tension and compression, so that failure indices of i-th material are 

Ff — ° ™- fp — 0 x x FT1 — °yy FT1 = ° y y FT' = ^ x y \ (A7\ 
r l x x t „i > r l x x c „i > r l y y t „i > r l y y c „i > r 1 xy „i ' V*') 

xxt xxc yyt yyc xy 

where failures are evaluated on the top and again on the bottom side of the layer to respect 
stress changes over the thickness. Final failure criteria on the layer is a maximum of candidate 
material failure indices defined above and penalized by the R A M P scheme as 

«MF x 

Same penalization as for density is used, again with q = -0.7, so that intermediate material 
w i l l have larger FI as was shown, e.g., in Figure 10 and which corresponds with explanation 
in Figure 17. Bruggi [44] and Lund [61] used similar approach to failure penalization. 
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Note that other laminate failure criteria can be easily implemented by replacing FP in equation 
(48) with value from other failure criteria (e.g., max strain, Tsai-Hill , or Tsai-Wu) on i-th 
material. 

Core shear 

Core shear failure is evaluated for the core shear stresses t x z and T y z in the same manner as max 
stress criterion of the face-sheet layers. For allowable core shear stress S x z and S y z , failure of 
each material is 

F 4 = ^ . K = y " (49) 
XL yz 

and final failure criteria is 

Fl-r 
^ ? W h o ^ ( F I - F I ^ • ( 5 0 ) 

Crimping 

Crimping is a core failure similar to anti-symmetric wrinkling where length of the half wave 
approaches zero. It is caused by insufficient core shear strength. Crimping failure indices are 
calculated in principal directions 1 and 2 as 

FL = 1 - > FI2 = 

Gcltc 

Gc2tc 

(51) 

where tc is core thickness, principal load is calculated from element internal membrane forces 
N x x , N y y , N x y as 

N+N 
yy. 

N-N 
yy + N 

AT 
(52) 

and corresponding rotation angle is 

"4 

arctg | 

arctgl 

2Nxy \ 
^2 Nyy\) ^2 

2N*y jt 
K " N J ) ~2 

2Nxy 

if = Nyy A 

if = Nyy A N*y 

if = Nyy A N*y 

if <Nyy A 

if N^Nyy A jV, y>0 

if N^N^ A iV x y <0 

(53) 
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Angle 0 P is used to rotate core shear stiffness (due to interpolation already transformed to the 
element coordinate system). Transformation from element to principal coordinate system for 
anisotropic material gives core shear module 

where QM , Q 5 5 , and Q 4 5 are stiffness matrix members in element coordinate system 

defined in eq. (88). 

The FI penalization cannot be directly included in eq. (51) as in max stress criterion, since 
there is no direct design variable interpolation in eq. (51). Material properties (G c i , G C 2, t ) 
depends on the interpolation and thus they need to include penalization to follow explanation 
in Figure 17, however, stiffness matrix and layer thickness were defined with linear 
interpolation, i.e. without penalization in eq. (41) and (42) to keep stiffness of the F E model 
directly within design materials. Stiffness penalization of the F E model would change load 
distribution among finite elements, which was considered undesirable after some 
experimenting. This discrepancy was solved by definition of special stiffness matrix Qjk 

which replaces Qjk (eq. (41)) just only for the crimping and wrinkling evaluation, so the 
stiffness matrix in element coordinate system is 

where q>0 to penalize intermediate values in the opposite way from Figure 10 where 
intermediate values were increased. Based on the test examples, q = 5 is applied which is 
plotted in Figure 19. Now, intermediate values of the stiffness matrix are decreased, including 
core shear modulus which is used in eq. (51). Since G c i is in denominator, it w i l l have similar 
effect on the crimping FI as the opposite penalization on the max stress FI. 

Note again, that Qjk is used only for determining stiffness in crimping and wrinkling 

evaluation. Layer stress calculation and finite element properties uses linearly interpolated 

Gc i = Q 4 4 cos 2 6 p + Q 5 5 s in 2 9 p+ 2 Q 4 5 sin 9 p cos 6 p 

Gc 2 = Q 5 5 cos 2 9 p + Q 4 4 s in 2 9 p - 2 Q 4 5 sin 9 p cos 6 p 

(54) 

(55) 

Q 
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Figure 19: Penalization term for two material candidates with same 
densities and for q = 5 [68]. 

Wrinkling 

Wrinkling is a local stability failure of the face-sheet loaded in compression. In the literature, 
several formulas were theoretically derived in dependence on core thickness and type [62, 
63], but significant influence is also due to face-sheet waviness depending on manufacturing 
quality [2]. For uni-axial loading, Hoff and Mautner [29] suggested to use 

owr-kwr(EfEcGl 

\ l /3 (56) 

with conservative value kw r=0.5 for the design if more precise value is not available from 
experiments. Effective face-sheet module is 

Ef = -

12 1- - v 2 ) D , 
(57) 

where Df is bending stiffness of the face-sheet. 

In case of combined loading, failure index w i l l be calculated according to Sullins [30]. 
Principal loads and directions are calculated for the face-sheet by eq. (52) and (53). If only 
one principal load is in compression, wrinkling is evaluated as uni-axial. If both are in 
compression, failure index is defined by addition equation 

Fl. 
R\ + R2 

, < 3
 + i? 2 

- N n 

where R, = — 
N 

ifR,<l 

else 

-N 

(58) 

and R,=-
N 

(2 which in fact denote separated wrinkling failure 
' wrl 1 V wr2 

indices in the first and second principal directions of the face-sheet loads. Sullins [30] defined 

first row, i.e. R\ + R2 = l to fit experimental results from bidirectionally loaded panels, so 

this relation just corresponds with the state of wrinkling failure. In the optimization, it is 
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necessary to evaluate FI not only before the failure (the structure withstands the loads) but 
also above when FI > 1, which is a nonphysical situation, but the optimizer still needs 
reasonable values to continue and converge to a feasible state. Figure 20 shows the functions 
R i 3 and R 2 which define F I w r contributions from loads in the first and second principal 
directions. Intuitively, the second direction (i.e. more intensive compression) should have a 
larger contribution whether R > 1 or R < 1, but R i 3 could overcome R 2 if R i > 1. Because of 

1/3 
this situation, equation (58) defines second case Rx +R2 which fulfills the intuitive 
requirement so that the weaker compressive load contributes less to the wrinkling failure 
index F I w r . 
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Figure 20: Members of the addition equation for wrinkling [68]. 

In-plane loads of the face-sheet are calculated from the stresses obtained by eq. (98) in the 
global coordinate system 

"i «i nL 

% = E t j C r x x j ,
 A ? / v v = Z ' / < r n / > NfXy= E *}°xyj > (59) 

i i i 

where n L is number of the given face-sheet layers. Principal loads of the face-sheet N f i and N f 2 

are evaluated again by eq. (52) and (53). In each principal direction, wrinkling force is 
according to eq. (56) 

Nwri=kwr{EnNEcGci)u\ i = l ,2 , (60) 

but thickness is dropped from effective modulus 

E / ! N = 1 2 ( l - v 1 2 v 2 1 ) D / ! , f = l , 2 , (61) 
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core shear modulus is transformed to principal directions G c i , G c 2 by eq. (54). With 
simplifying assumption of symmetrical laminate, i.e. B = 0 , D i 6 = D 26= 0, faces-sheet bending 
stiffness is evaluated as 

D „ ( e 

; i 2 , y 2 1 

where Poisson numbers are 

Dn = - i n p' , i = l ,2 , (62) 
' l - v „ v . 

V z - * M _ J ^ M . ( 6 3 ) 

Bending stiffnesses Du(0 p), D 2 2 (0 P ) , and membrane stiffness matrix members An(0 p ) , Ai 2 (0 p ) , 
A 2 2 (0 P ) of the face-sheet laminate are transformed from element coordinate system to the 
principal directions 1 and 2 by 0 P in the same manner as Q in eq. (88). 

The same approach is used to calculate wrinkling of the opposite face-sheet. 

4.1.7 Blending constraints 
Blending design enforces the continuity of the layers between elements (patches). A direct 
approach would lead to linear constraints on design variables similar to material constraints 
(enforcing the sum of the material variables on the element layer). IPOPT optimizer tries to 
fulfill constraints for "any" cost in the goal function which means that the direct approach 
would enforce all bottom layers to have the same material. That can be useful on a small 
model, but it may be too restrictive on a complex one. To control how strongly blending 
should be enforced, a penalization term is added to the goal function instead of a direct 
constraint on the optimizer side. 

Penalization term 

Goal function from eq. (27) contains additional term for blending penalization Mb: 

M ( x ) : Z -A/<Z tMjk(x)pMjk(x +Mh(x) (64) 

where penalization term is defined as 

np nL n M 

M b = X Z ( M j 7 c i + M j 7 c 2 ) & o Z \ x n j k i - x i 2 j k 2 \ 
kl,k2 j i l , i 2 

(65) 

where first sum is for set n P of element pairs k l , k2. The penalization is done for every j-th 
layer; M ] k i and M ] k 2 denotes penalized layer mass of element k l and k2 

M j k = A k t M J x ) p 'Mjk \ (66) 

Coefficient b 0 controls how strongly blending is enforced. Third sum consists of absolute 
value of differences between material variables between element pairs. 
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Derivatives 

Layer masses Mjk are in fact dependent on material variables xyk and thickness variable x-m, 
but the term serves more like a scale of the penalization term and it is derived as a constant, so 

BMb 

that 1=«0 . Absolute value has not a derivative at 0. To improve convergence, absolute 
dxTk 

value term is replaced 

Ixiijfci - xi2jk2|=IAi2| ̂ VA^2+bE , (67) 

where bE is small tolerance which controls how smooth the function is as shown in Figure 21. 
The term with a root is used only for derivative. Goal function contains absolute value, which 
gives 0 at Ai2=0. 

1,4 

Figure 21: Relaxation of the absolute value function. 

Goal function derivative by material variable from eq. (40) is increased (decreased) by the 
term from blending penalization 

dM dM 

dXilikl \^Xilikl 

dM 

^Xi2jk2 

+ {Mjkl+Mik2)b '12 

]kl J 

\ 

noblending 
jk2) u0 

^2+K 

dM 

3 Xi2jk2 J 

(68) 

noblending 
,Mjki+Mjk2)b0 

*12 

^2
 + K 
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4.2 Software implementation 
Python programming language was chosen since it is a relatively easy to learn and widely 
used scripting language. Engineering programs such as Abaqus or M S C . A p e x support it for 
writing macros. Python is available freely, including professional editing programs where the 
most popular are PyCharm and Spider. Python code is compiled directly during the run, and 
so manual compilation after the code changes is not needed. This advantage is paid by lower 
speed compared to lower level languages such as C++ or Fortran. However, thanks to a wide 
range of libraries, extensive operations can be done by external libraries which are written in 
more efficient languages, but are wrapped in Python interface. 

Preparation 

Design 
cycle 

Finalization < 

Design material 
properties FE model 

o 
CM 

Element prop, 
interpolation 

FEA solver 
(Nastran) 

element loads 

Update d ^ . x , , ^ 

k+A, 
Optimizer 
iterations 
(IPOPT) 

M ( X ) , M ' ( X ) , 

g(x), g'(x), 
stop criteria 

Rounding 
results 

I 
Fl recalculation 

Figure 22: Algorithm flowchart [68]. 

Basic flowchart of the algorithm is in Figure 22. Inputs consist of candidate materials, their 
properties, and F E model with mesh, boundary conditions and loads. Design cycle starts with 
material interpolation where potential materials are combined with artificial element 
properties to replace properties in the input F E model. F E A solver solves the linear static 
analysis to calculate element loads. Goal discreteness d i g o a i , box constraints x l , x u are updated 
for values in the given design cycle to prevent extensive changes. Next, the optimizer tries to 
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improve design variables and (within its own iterations) calls subfunctions to evaluate the 
goal function, constraint function and their gradients. Twenty design cycles repeat with the 
evolving coefficient k in S shape function for face-sheet thickness. Finally, design variables 
are rounded to discrete values and the model with rounded properties is recalculated to check 
its validity. 

Following description goes through the algorithm in detail, including important options and 
parameters. It is application of the method given in the chapter 4.1 and F S D T described in 
appendix 9.1. 

4.2.1 Preparation 
The program starts with an optimization parameters definition, a candidate materials 
definition that includes evaluation of the material stiffness matrix in the element coordinate 
system (eq. (88)) including transverse shear, which wi l l be repeatedly used to evaluate 
stresses. 

Layup 

Design layup defines the maximum number of bottom layers, top layers (if not symmetric), 
candidate materials defined above for face-sheets and for the core. Multiple layups can be 
defined with different number of layers and/properties. It is also possible to define a layup 
without a sandwich core, but the optimization is not intended to start with a sandwich and 
decide whether using a core is optimal or not. Elements included in layups are recognized by 
their Nastran property id associated with each design layup, so that the F E model can contain 
other elements which are not subjected to optimization. Design layup determines design 
variables (for face-sheet thickness and materials) which w i l l be defined on each element that 
has given design layup. 

Patches 

To decrease number of design variables and to obtain results which can be easily 
manufactured, user can define patches by element numbers. If element is in the patch, design 
variables are created only for the first element and sheared with others through the patch. 

Number of design variables can be enumerated as 

{nE+nP){nMC + nLnMF) , (69) 

where each independent element and patch (nE+nP) contain design variables for n M c number of 
potential core materials and each layer contains nMF potential face-sheet materials. Potential 
"materials" include all layer properties: physical material, thickness, and orientation. E.g., 
model with 50 elements, softer and stiffer isotropic core, both of two thicknesses, and 5 layers 
with 1 fabric oriented in 0° or 45° w i l l have (50+0)(4 + 5-2) = 700 design variables. When 
all 50 elements are in one patch, it would be only (0 + l ) ( 4 + 5-2) = 14 which is easier to 
handle by the optimizer. 
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Nastran input file 

Mesh is read from *.bdf file created in Patran and which defines elements with property id . 
Specific properties of such elements do not matter because they w i l l be overwritten in each 
design cycle. When the id is associated to some design layup, design variables are initialized 
on the element or associated to the guiding element if they are in a patch. Element areas (and 
patch areas) are calculated from the corresponding nodes. Candidate materials are uniformly 
distributed without preference, but loading initial design variable values from the file is 
possible, so the optimization can be restarted from older results. Nastran input must contain a 
request for element forces to be written in the H D F 5 output file. 

Linear and quadratic shell elements are recognized ( C Q U A D 4 , C Q U A D 8 , C T R I A 3 , 
CTRIA6) . Element areas (and patch areas) calculated at this phase are later used in the mass 
evaluation. The advantage is that unrecognized keys in *.bdf file are left untouched and 
replicated during design cycles, so that the model can contain other element types or 
connectors. 

Multiple load cases can be defined in the *.bdf file or multiple *.bdf files can be defined 
which contain other load cases. The later approach is slower but might be useful when 
additional load cases require a modified model. 

Constraint preparation 

Set of constraints depend on the number of elements, design layup, and material candidates. 
They are fixed during design cycles, so that material constrain matrix can be defined in the 

in the form of the matrix J m a t which binds candidate materials within the layers, in a matrix 
notation: 

where J m a t is shown in Figure 23 for layup with symmetry of the face-sheets, 3 face-sheet 
layers with 3 material candidates and 3 material candidates for the core. The green rectangle 
bounds one element, columns correspond to each design variable (face-sheet thickness, 3+3+3 
face-sheet materials, and 3 core materials). Each row binds variables of the element in a 
specific layer. 

preparation phase. Linear material constrains at each element layer are defined 

(70) 
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design variable coefficients 

J mat 

0 1 1 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 0 0 0 0 0 0 ...0... 
0 0 0 0 0 0 0 1 1 1 0 0 0 

...0... 

0 0 0 0 0 0 0 0 0 0 1 1 1 
element 1 0 1 1 1 0 ... 

0 0 0 0 1 ... 
0 0 0 0 0 ... 

...0... 0 0 0 0 0 ... 

element 2 

layer 1 
layer 2 
layer 3 
core layer 
layer 1 
layer 2 
layer 3 
core layer 

Figure 23: Example of the material constraint matrix. 

Discreteness 

Discreteness is used for the optimization process monitoring. It is evaluated before the first 
design cycle and than during each optimizer iteration. 

Core discreteness for k-th element is defined as 

dkc= max xrjk , 
ie 0 , n , J 

(71) 

which is simply maximum of material variables on the core layer ( j -th layer) 

Face-sheet discreteness 

Pijk m a x xijk 
i e 0 , 0 

kF' (72) 

Pijk 

is given by the maximum material variables on face sheet layers RLF weighted by layer density 
from eq. (43), so that "empty" layers ( p~Ljk -• 0) does not contribute significantly to 
discreteness. Checking separately discreteness of the core and face-sheet gives detail insight 
to convergence. Average element discreteness is calculated by eq. (72) as if the core is next 
layer with unit density, formally 

max x,-., 
i e ( 0 , n „ 

i-jk)+H p Ljk m a X Xijk 
i e 0 , n „ J 

(73) 

1 + X P Ljk 

Finally, average of all elements gives one value which can be plotted during optimization. For 
example, in case of three candidate materials for the face-sheet and for the core, initial 
discreteness w i l l be 0.333. Ideally, discreteness should reach 1 at the end of the optimization. 
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Blending preparation 

Blending pairs are defined for all neighboring elements which shear at least 2 nodes except 
the pairs inside a patch. Pairs are created for layers counted from the core on neighboring 
elements so that blending can work also between elements with different design layups 
(different number of candidate layers). 

4.2.2 Design cycle 
The algorithm (Figure 22) combines gradient optimization (IPOPT optimizer which makes 
several iterations) and evolution of the model within the design cycle, which is similar to the 
approach used within Nastran optimization (Figure 7). The difference is that gradients are 
simplified, neglecting the derivative by the element loads and that element loads are fixed 
during the optimizer run, so their evaluation does not require full F E A - running Nastran for 
each x perturbation within a finite difference evaluation would be unbearable. Failure 
constraint derivatives are evaluated independendy on each element (the effect of the stiffness 
change of neighboring elements is neglected). These simplifications are payed off by the 
slower evolution of the model within design cycles (outer loop) which is controlled by 
heuristic parameters: 

1) The number of design cycles is fixedly defined to be idc = 20, which behaved robustly 
on the test examples. 

2) The steepness coefficient starts at k = 0.5 k' and incrementally grows to k = 1.1 k' 
where k ' = 2 n L l n ( l 9 ) corresponds to layer density change from 5% to 95% within 
layer thickness as discussed in the chapter 4.1.2. Here, coefficients 0.5 and 1.1 are 
based on experience with test examples. 

3) Similar evolution strategy was implemented with penalization coefficients q , q 
(separate parameters for density, stiffness, and for failures in eq. (29) (48) (50) (55)), 
but results were rather worse so that these parameters were fixed on best values 

q=5 and q =-0.7. 

4) Sequential evolution of the model is controlled by the goal discreteness d s g o a i , which 
defines ideal speed of the average discreteness changes (not too fast which would 
decrease quality of the solution). It is linear interpolation between initial average 
discreteness do and 0.999 as a goal in the last design cycle. Formally, goal discreteness 
in i-th design cycle is: 

0 . 9 9 9 - d n 

digoal=d0+ : °-i . (74) 
ldc 

Element property interpolation 

Layer properties (layer stiffness matrix, thickness, density) are interpolated according to eq. 
(41, 42, 45) and used to assemble the element stiffness matrix A B D and shear stiffness matrix 
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according to F S D T as described in appendix 9.1. Usually, P C O M P or P C O M P G card is used 
in Nastran input to define layers of the composite, however, these cards cannot be used since 
they allow only 2D isotropic or orthotropic materials with transverse shear properties. In our 
case, interpolation of orthotropic materials with different orientations leads to anisotropic 
material in the layer and transverse shear properties must be used for sandwiches. A s a result, 
a more general P S H E L L card is used by the optimization program. It defines shell properties 
by total thickness, density (average of the sandwich layers is used), and stiffness matrices, 
specifically in the form of matrices defined in M A T 2 cards as: 

^ _ A _ _12B _Ashear _ —B . . 

tot ttot ttot ttot 

where A is the membrane, B membrane-bending coupling, D bending, and transverse shear 
Ahear matrices, and t t o t is the total element thickness. Default shear correction factor 
K=0.833333, i.e. 5/6, is used for pure laminates only, 1 is used for sandwich (when a core is 
present). New material properties are written to the input file which is a copy of the original 
Nastran input file. 

According to Nastran manual, P S H E L L card does not include transverse shear in linear 
buckling analysis, but buckling is not used in this thesis. 

F E A solver 

MSC.Nastran makes linear static analysis (SOL 101) on the F E model. Optional Nastran 
parameters can be used to set number of C P U threads or allocated memory. The later is 
important to decrease when multiple optimizations are run in parallel (a user runs the whole 
optimization with different parameters simultaneously), because MSC.Nastran allocates 50% 
of the memory by default which would rise the error when running the second Nastran 
analysis on the same computer. 

Nastran writes results to the H D F 5 file. The script reads element loads (membrane forces, 
bending moments, and shear forces per unit width). Number of load cases are recognized 
from the repetition of the results on the first element in H D F 5 file (results are accumulated in 
one data field). Stresses and failures are evaluated later for evolving design variables within 
iterations in the optimizer without (time consuming) Nastran interaction, so the loads are 
updated only out of the optimizer. 

Optimizer 

Trials were done with three optimizers from which only the last one is finally implemented. 
SciPy library [37] contains two methods for constrained large-scale nonlinear tasks. First, 
Trust-constrained method [64] was used, but it did not converge well on small test examples. 
Second, S L S Q P [38] was used in the similar way, which performed well on small test 
examples, but calculation time quickly increased with the number of variables and constraints, 
which would be major bottleneck for practical tasks. This was the motivation to implement 
third optimizer, IPOPT [39], which is used through cyipopt wrapper (i.e. library that enables 
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to call programs written in one programming language, C in case of IPOPT, by commands of 
second language, Python in this case). The installation required compilation of the IPOPT on 
Windows, which might bring difficulties in getting whole optimization working on other 
computers. The implementation required more coding compared to previous optimizers, but 
IPOPT enabled to apply user-defined convergence criteria and converged much faster on large 
tasks, so that only IPOPT was kept. 

The optimizer solves optimization problem: 

m i n M ( x ) 

max (0 ,x° k

 1 - A m a x ) < x ° <min (1, x°~ 1 - A m a J 

0.99 D—1 » \ D • / 1 D —1 » \ 
>XTk - ^ a x N * ^ ™ " ! 1 ' * ™ " A

m J ( 7 6 ) 
max 

NMC>NMF 

i 

FI<1 

where D is design cycle number. The difference from the original problem is given in eq. (26) 
is that the box constraints on material and thickness variables (x i ] k, x T k ) are tightened, i.e. the 
maximal change during the design cycle is limited to A m a x = 0.2, which prevents abrupt 
changes in the stiffness of the structure and consequendy the element load distribution. 

IPOPT optimization is defined through a Python class, which contains functions to evaluate 
the goal function, its gradient, constraints (linear and nonlinear), their derivatives (Jacobian 
matrix), and an intermediate function which is called each iteration to the check convergence 
criteria. 

Goal function 

Thicknesses and densities of all layers from eq. (28-30) are interpolated by actual variables 
and substituted to the eq. (27) to evaluate the goal function. If blending is used (b 0^0), the 
goal function contains the blending penalization term according to eq. (65). 

Goal function gradient 

Since IPOPT calls the gradient function independently from the goal function (x may differ), 
thicknesses and densities need to be interpolated again (values are not shared with those 
evaluated during the goal function). Derivatives by thickness and material variables are then 
evaluated according to eq. (39) and (40) and filled into the gradient vector respecting the 
order of variables. When blending is used, gradient of the goal function increases by 
derivative of the blending penalization term in eq. (68). 
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Constraints 

Vector of linear constraints is evaluated by multiplication of the material constraint matrix 

(Figure 23) and design variable vector x, so they satisfy material constraints ^ xijk=l in 

eq. (26, 76) per each layer. 

Vector of nonlinear (failure) constrains is evaluated on each element for the element loads 
previously calculated by Nastran. Layer stresses are calculated according to F S D T described 
in appendix 9.1 ( A B D matrix is assembled and numerically inverted), failures are calculated 
on each element for max stress criteria of the face-sheet layers, core shear, crimping, and 
wrinkling by eq. (48, 50, 51, 58). If the model has multiple load cases, failure constrains are 
evaluated for all loads found in H D F 5 results, e.g., 3 load cases wi l l cause number of 
nonlinear constraints (and evaluated failure indices) to be 3times compared to a model with 
one load case. 

IPOPT input does not distinguish linear and nonlinear constraints (contrary to SLSQP) , so 
that their values are concatenated to one constraint vector. Lower bound is 1 for material 
constraints and -oo for failure constraints. Upper bound is 1 for all constraints. (The optimizer 
accepts equality constraints Z x p - 1 defined as inequalities with same upper and lower 
bounds.) 

Constraint aggregation 

The review chapter showed that the number of constraints can be decreased by p-norm or K S 
function aggregation. K S function was implemented. Since it results in one value which 
should approach to the maximum and IPOPT scales constraints internally. K S function is not 
evaluated on this level. Maximum from failure constrains is given to IPOPT 

FI -» max{Fl) . (77) 

K S function is used later when evaluating derivatives. 

Constraint ignoring 

Difficulties with convergence were encountered when some elements in the model were 
failing even with the strongest materials. That can be explained by the priority on fulfilling all 
constraints, so that the optimizer can violate material constraints (e.g., that materials overlap 
on the layer Z x p > l s o m a t m e summary material exceeds 100%). Even if constraints are 
violated on few elements, the optimizer does not improve the goal function too much, which 
leads to poor results on the rest of the model. Such situation may happen with a model 
containing stress concentration, concentrated loads, or with poor elements. For ordinary 
analysis, an engineer interpreting the results may consider such failing elements to be 
irrelevant. 
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Heuristic approach to overcome such situations has been developed. Parameter A i g n defines 
the fraction of the design domain area on which the failure constraints w i l l be ignored. The 
implementation is: 

1) A t the beginning, none elements are "ignored". 

2) The optimizer calls the function to evaluate constraints in each iteration. Elements 
with the highest FI are marked as "candidates" for ignoring, other elements are 
unmarked. The number of candidates respects A i g n , e.g., if A i g n = 0 . 1 , then elements with 
the highest FI, filling 10% of the design domain area, are marked. 

3) A t the end of the constrains evaluation, failure constraints on the ignored elements are 
set to 0. 

4) A t the end of the design cycle, the ignored elements are reset and candidates are 
activated for ignoring. 

5) Final recalculation of the optimization results is done without ignoring. 

Whole optimization can run for several A i g n so that the engineer can compare the elements 
which are failing at the end of the optimization and consider local reinforcement. Including 
reinforcing materials in the optimization would lead to high calculation demands and if the 
reinforcing material differs strongly from the other materials, it might decrease the 
convergence or quality of the solution. 

Constraint ignoring is implemented for the case without constraint aggregation. 

Jacobian 

Constraint derivatives are filled to the Jacobian matrix which structure is shown in Figure 24. 
It consists of two parts. First, derivatives of material constraints which were linear, so that this 
part is directly the material constraint matrix J m a t as can be seen from eq. (70). J m a t in Figure 
24 is for clarity shown for the same case as it is in Figure 23. Second, derivatives of the 
failure constraints J F i which are nonlinear. General shape of J F i is: 

dFIl dFIl dFIl 

dxl d x2 dxn 

dFI2 dFI2 

dxl d x2 

dFIm SFIm 

dxl dxn 

so that members aeij in Figure 24 correspond to 

e_dFIi Fliix+Aj-FlM 
^ OX, ^ A ; 

5 FT,. 
on element e. They are evaluated as: dx} 

(79) 
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where finite difference in j-th variable Aj=10"9 is used. Eq. (79) requires high number of FI 
evaluation on each element for each optimizer iteration and so it is the most time consuming 
operation of the whole optimization even when only the red diagonal in Figure 24 is filled. 

element 1 element 2 

X 1 X 2 X 3 . . . • X n 

O i l 
0 0 0 
0 0 0 
0 0 0 

1 0 
0 1 
0 0 
0 0 

0 0 
0 0 
1 1 
0 0 

0 0 0 
0 0 0 
0 0 0 
1 1 1 

...0... 

0 1 
0 0 
0 0 
0 0 

...0... 

1 1 0 0 0 0 0 0 0 0 0 
0 0 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 0 1 1 1 

0 1 
0 0 
0 0 
0 0 

0 0 
0 0 

a 1 ! ! a\2 a^n 
a V .. . . . . a x

2 n .0... 

a V 

cl2U 3.212 
ahi... 

a 2m 
a 2

2 n 

a 2 m i 

...0... a 3 2 i 

a 3 m i 

Figure 24: Structure of the Jacobian matrix 

Since the evaluation of failures is time consuming, an additional parameter was defined: 
cut_low_FI_threshold. It is a threshold FI below which Jacobian members aeij are not 
evaluated and is set to 0, e.g., cut_low_FI_threshold = 0.5 denotes that eq. (79) w i l l be 
skipped (aeij = 0 for all i and j) if all failure indices of the element e are below 0.5. Default 
value is -00 so that eq. (79) is used for all elements. Using a higher threshold is useful 
especially when patch design is used, since patches consist of a higher number of elements, 
but only a few of them are critical and so drives the optimization and the given threshold 
decreases the calculation time without significant change in the optimization results. 

The possibility to define Jacobina as a sparse matrix is a significant advantage of IPOPT 
optimizer as regards large-scale problems. Since S L S Q P accepts Jacobian as a dense matrix, it 
required far more memory and calculation time on large test examples. IPOPT requires 
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structure of the Jacobian to be explicitly defined as pairs locating each nonzero member. Pairs 
for nonzero members are created according to Figure 24. 

Jacobian with aggregated constraints 

If failure constraints are aggregated to one FI, eq. (78) w i l l simplify to one row: 

dFI dFI dFI 
^ Flaggr.' dxx dx2 d xn 

(80) 

Maximum of failure constraints max(FI) is used in the constraint function, but it is not 
convenient for derivation, since most of the variables has none influence on the max. value. 
Thus, aggregation with K S function is used, so that: 

dFI dKS KS{x+Aj)-KS{x) ^ 

j j j 

where K S function [45] is in the form 

KS = max(Fl) + 
^ l n \ f e K P [ p ^ { F I t - m a x { F l ) ) ] \ . (82) P 

where m is number of constraints, coefficient pks controls how close the K S function is to the 
maximum, values from 2 to 100 were tried. 

Trials were done also with aggregation per elements, where groups for aggregation consisted 
of element constraints, so that final number of failure constraints were decreased to number of 
elements, but it gave worse results than aggregation to one constraints from all elements, so 
only this was kept in the code. 

Convergence criteria of the optimizer 

Due to the evolution of the loads, the optimizer is not supposed to have full convergence, thus 
the number of IPOPT iterations is limited by the conditions which are tested by the function 
called at the end of each IPOPT iteration as shown in Figure 25. Conditions are: 

1) Average element discreteness d (average of eq. (73)) is above the goal discreteness of 
the i-th design cycle d i g o a i . It means that the desired evolution change of discreteness is 
achieved and so the optimizer may finish. 

2) First, maximum of failure index is below the threshold 1.001, which means that the 
constraints are feasible or only slightly violated and so the optimizer can finish. Or 
second, the average change of design variables x is above half of their maximum 
change, so the optimizer should finish, otherwise the optimizer w i l l press the variables 
to their bounds even if they help decreasing constrains only a littie - next design 
cycles are assumed to change bounds and so the variables (which are effective in 
decreasing constrains) could be changed, one half was selected heuristically as a part 
of max. changes. 

63 



3) Optimizer is finished when achieving the maximal number of iterations j = i d c , where 
10 is used, based on the test examples. 

IPOPT 
iteration j 

IPOPT 
finish 

Figure 25: Convergence criteria for IPOPT iterations 

4.2.3 Finalization 
After the end of the design cycle, design variables are rounded to obtain one discrete material 
on each layer according to the highest portion of the candidate material, which is necessary 
for the elements which finish without clearly discrete result. Final values are defined close to 
0 or close to 1 to prevent numerical errors when evaluating failures by the same functions as 
were used during optimization, because the interpolation is still involved. Presence of the 
face-sheet layer is determined from layer density, p i j k < 0.5 means empty layer, pLjk ^ 0.5 
means active layer. 

Rounded variables are used to create input for Nastran and to recalculate the model to check 
failures. Constraints are evaluated and saved for the check by a user. 

Since rounding the core according to the portion with the highest design variable can violate 
constraints due to lose of the thicker or higher density core, alternative rounding is used for 
the core. If there is a heavier core with a portion of the design variable larger than 1%, the 
core is rounded to the heavier (even if it was present only by a few percent), supposing that 
the heavier core wi l l satisfy constraints. These layups are also recalculated by Nastran again 
and constraints are evaluated, so the user can choose which rounding is better in the specific 
case. This option of rounding to the heavier core was implemented due to difficulties with 
convergence which occurred with older settings. Actual default settings have not required this 
step on test examples. 
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Outputs 

Output data are saved to several files in the working directory for later browsing, plotting 
graphs or restarting the optimization. Table 4.1 explains details. 

Table 4.1: Output files 

File type Data Comment 

*.bdf 
*.h5 

Nastran input and analysis 
results 

Nastran analysis bdf input is written in each 
design cycle. Element forces are loaded from 
H D F 5 . These files are usually not needed by 
the user. 

*rounded.bdf Nastran input and analysis 
results 

Nastran files from the final solution with 
rounded materials. 

*round_core_he 
avier.bdf 

Nastran input and analysis 
results 

Same as the previous, but the core is rounded 
to the heavier if heavier material content is 
above 1%. 

*variables.npy Design variables Binary file with design variables, which can be 
used for the restart of the optimization from 
the selected design cycle. 

*.vtk Mesh data. 
Element discreteness. 
Face-sheet disc. 
Core disc. 
Layer materials 

Results are from each design cycle for viewing 
in Paraview. Discreteness is averaged on 
element, for the core and averaged for face-
sheets. Prevailing (rounded) materials in each 
layer are mapped on the mesh according to the 
material number in user input. 

*constraints.vtk Mesh data. 
Max. FI 
Face-sheet M a x stress FI 
Core shear FI 
Crimping FI 1 and 2 
Wrinkling FI top and 
bottom 

Failure indices in final rounded results for 
viewing in Paraview. Each layer can be 
displayed for each load case. 

*constraints_ma 
xLC.v tk 

Same as the previous, but only max. values 
from all load cases are printed for each failure 
type. 

*constraints_cor 
e_heavier.vtk 

Same as * constraints .vtk, but after rounding to 
heavier core material. 

*constraints_cor 
e_heavier_max 
LC.v tk 

... Same as previous, but only max. values from 
all load cases are printed for each failure type. 
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printed_log.log Mass 
Max. FI 
Face-sheet max. FI 
Max. core shear FI 
Max. crimping FI 
Max. wrinkling FI 
Average element disc. 
Average face-sheet disc. 
Average core disc. 

A S C I I file with debugging information and 
with an overview of values at the end of each 
design cycle, which can be used to plot the 
evolution of FI (by type) and discreteness. List 
of ignored elements due to the parameter A i g n 

is given. 

*_log.log Similar as previous, including input 
parameters. 

4.3 User workflow 
Figure 26 summarizes the workflow during sandwich structure design when the optimization 
program is used (With optimization). First, the usual F E model is created. Second order shell 
elements with relatively large element size can be used for the optimization model to keep a 
low number of design variables and constraints. Boundary conditions and loads are prescribed 
as usual, preferably trying to avoid stress concentrations, because the optimization aims to 
design a global layup, so that small details (local reinforcements) are out of the scope of the 
optimization so the local concentrations would make difficulties in convergence. Multiple 
load cases can be used. Nastran input file should the contain output request for internal forces 
acting on shell elements of the design domain. 

With optimization 

~0 
CD 

in 
CO 

ITl 
O 
c 

FEM mesh, 
BC, loads 

1 

Opt. parameters, 
design materials, 

patches 

I 
Optimizer run 

Check convergence, 
and constraints 

1 

Final design 
and validation 

Without optimization 

'•a 
Cfl 
-t—I o c 

Figure 26: User workflow. 

FEM mesh, 
BC, loads 

Manual layup 
definition 

FEA run 

Check 
constraints 

Final design 

In the F E model, simple properties are prescribed on the optimized elements, since they w i l l 
be overwritten by the optimizer, but the orientation of the material must be defined if all 
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elements do not have the same orientation. Properties of the design materials (elastic 
constants, layer thickness and orientation) are prescribed in the program input together with 
the optimization properties discussed in the previous chapter and listed in Table 4.2. When the 
model contains patches, the ignoring area A i g n can be defined, so that areas which w i l l require 
local reinforcement w i l l be found and the optimization can be run several times for varying 
A i g n . When patch design is used, the speed can be increased by using the parameter 
cut_low_FI_threshold. 

The optimization is started from a Python console, so that only Nastran solver and Python 
with appropriate libraries (bisect, operator, time, datetime, os, subprocess, sys, numpy, sympy, 
h5py, ipopt) are needed. 

Outputs are checked, especially convergence to discrete values (if convergence is low, 
rounding errors might be high) and failure indices (maximum and specific failures) which can 
be easily displayed in Paraview. If the results are not satisfactory, the optimization can be 
launched again with altered parameters. 

The optimization model can be used for further processing if it was not created only with 
optimization intention at the beginning (e.g., due to the rough mesh in a large model needed to 
satisfy a reasonable optimization time). According to the task, total displacement or buckling 
can be validated since it is not included in the optimization. Structural details out of the 
optimization scope need to be designed by common engineering practices. 

Figure 26 right shows the workflow without the optimization program, where the initial layup 
needs to be guessed manually according to engineering experience, including manufacturing 
preferences which might be missing in the optimization. Instead of the loop where 
optimization is run one or several times with various parameters, if the optimization is not 
used, the engineer needs to manually evaluate the results from F E A and modify the layup to 
improve the model behavior, mostly by reinforcing the failing area or changing layer 
orientations. If the mass is to be minimal, the engineer tries several modifications, all time 
manually evaluating results. Final design may involve additional features which do not need 
to be evaluated by F E A . It can be seen that the workflow with optimization replaces laborious 
modifications with a simple change of optimization parameters. On the other side, the 
optimization may lack some of the constraints or manufacturing rules, so that they need to be 
added manually at the end and validated, but the final validation is expected to be done only 
ones. 
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Table 4.2: Overview of the main optimization parameters 

Parameter Default 
value 

Comment 

q -0.7 Penalization coefficient for density in the goal function, for max 
stress and core shear criteria in eq. (29), (48), and (50) 

R 5 Penalization coefficient for stiffness in crimping and wrinkling 
evaluation in eq. (55) 

ldc 20 Number of design cycles (outer loop) 

lmax 10 Maximum number of the optimizer iterations (inner loop) 

k [0.5, 1.1] Steepness coefficient in S shape function in eq. (30) and (43). It 
defines how discretely thickness of the face-sheet is defined. Value 
changes during design cycles from min to max [min, max] 

^max 0.2 Maximum change of design variable between design cycles 

aggregate_c 
onst 

False Aggregation is switched off because of poor results in test examples 

Pks 20 Coefficient in K S function in eq. (82) 

A i g n 0 Defines the area of the elements with the highest FI to be ignored in 
the next design cycle. Implemented only for aggregate_const=False 

bo, b E 0, 0.1 Blending parameters from eq. (65), (67), b0=0 means no blending 

cut_low_FI 
_threshold 

-00 Derivatives of constraints below this threshold wi l l be skipped, i.e. 
set to 0 in Jacobian matrix, saving time to their evaluation 

Face-sheet 
materials 

E n , E 2 2 , G 1 2 , G 2 3 , G 1 3 , V12, 0, t, p, S i l t , S l l c , S22t, S22c, S12 

Core 
materials 

E n , E 2 2 , E 3 3 , G 1 2 , G 2 3 , G 1 3 , V12, 0, t, p, S23, S13 

Design 
layups 

Each layup contains predefined: potential number of bottom face-
sheet layers, number of top face-sheet layers or symmetry to 
bottom, face-sheet material candidates, core material candidates 

Patches Each patch is defined by element numbers. Elements in the patch 
share layup 

68 



4.4 Summary of the implemented method 
Key possibilities and limitations which are given by the method itself and its implementation 
are: 

1) Shell elements ( C Q U A D 4 , C Q U A D 8 , C T R I A 3 , C T R I A 6 ) can be in design domain. 
There are no limitations on elements out of the optimization domain. 

2) Multiple design layups can be used, including laminates (without sandwich core). 
Limitation is that the optimization is not able to remove the core automatically. 

3) Orthotropic materials are defined by engineering constants. 

4) Patches can be defined (group of elements shearing layup). Blending is implemented 
through penalization so that the user can control how strongly the continuation of 
layers should be enforced. 

5) Multiple load cases can be used in the Nastran file or in additional files (e.g., with 
additional elements out of the optimization domain). 

6) Optimization aims to discrete results - choosing among predefined core thicknesses 
and densities, layer orientations, etc. "Continuous" options need to be approximated 
by many design materials, which prolongs optimization. 

7) Convergence would be more difficult when materials differ dramatically in properties. 

8) The method is gradient based, so it finds the local extreme, there is no guarantee to 
find the global extreme, even though interpolation helps to increase the chance of 
finding a good result. 
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5 E x a m p l e s a n d r e s u l t s 
Examples of various complexities were used to define default optimization parameters, to test 
convergence and quality of results. The test examples are: 

1. One element in edge-wise compression and one with shear and bending which test the 
ability to converge to known optimal design. 

2. Separated elements with simple loads test convergence to known optimum and 
originally used to find default optimization parameters since there are multiple 
elements with sequentially increasing loads of different types. 

3. Panels with out-of-plane compression or side load search for the optimal layup on 
each element and, in the next variant, when the whole panel is one patch. Panels were 
also used to check and modify the default parameters, because their element loads may 
change during optimization due to varying stiffness, which was not the case of 
previous examples. 

4. Long box with ribs loaded with underpressure on a top side and torque to test the use 
of multiple patches and different design layups when the box contained sandwich 
panels and U D laminated flanges. 

5. Conceptual design of an airliner interior component - a stowage which is loaded by 
the critical side load case. 

6. Conceptual design of an airliner galley with multiple load cases. 

A l l examples run on desktop computer with 80 G B D D R 3 R A M , Intel Xeon E5-2620 at 
2.00 G H z processor with 12 logical threads, 64bit Windows operation system, Python 3.7 and 
MSC.Nastran 2020. The size of the examples was not limited by memory, but rather by 
reasonable optimization time. Since the optimization code is not parallelized, more 
optimizations were often running simultaneously to use computer capacity, so that the 
calculation time specified in the description should be considered as approximate. 

Material properties in examples 

Laminated composites are used for the face-sheets with values according to Idaflieg [65] 
which correspond to the properties after hand layup for volume content 0.35 as listed in Table 
5.1. Area density of the reinforcement were selected as is commonly used in sport aircraft 
(200 g/m 2 carbon fabric, 160 g/m 2 carbon U D tape, and 300 g/m 2 glass fabric). Composite 
density is calculated by the rule of mixture as 

P=PfVf

 + PmVm , (83) 

where p f is fiber density (1.77 g/cm 3 for carbon, 2.55 g/cm 3 for glass) and epoxy matrix 
density p f = 1.4 g/cm 3, V f = 0.35, and V m = 0.65 are fiber and matrix volume contents. 
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Corresponding thickness of the composite layer is 

t = 7 T ^ . (84) 
VfPf 

where m f is the area density of the fiber reinforcement. 

Foam core properties are for Airex C70.75 from the datasheet [66] (Table 5.2), starting with 
commonly used density 60 kg/m 3 and with two foams with higher density. Honeycomb core 
properties are for hexagonal shape 5052 aluminum alloy from datasheet [67] (Table 5.3). For 
the core, average values were taken for density. Minimum values were taken for mechanical 
properties to be conservative in design. When the minimum value was not known, 80% of the 
typical value was used. Honeycomb properties E n , E 2 2 , G 1 2 are not covered in the datasheet 
due to low importance; for numerical reasons (included in the calculation of element stiffness 
by FSDT) small nonzero values were used. 

Private material properties were used to solve the examples in cooperation with the industrial 
partner (airliner stowage and galley). These material data are not directly listed in the thesis. 
Interested readers may follow the material properties given in these tables to obtain a rough 
overview. 

Table 5.1: Face-sheet layer properties [65], *guessed values. 

Carbon fabric Carbon UD Glass fabric 

v f 0.35 0.35 0.35 

Pdry g/nr 200 160 300 

P g/cm3 1.4 1.4 1.67 

t mm 0.327 0.256 0.336 

E u MPa 39470 77000 16600 

E22 MPa 39470 3400 16600 

V12 0.037 0.23 0.03 

G12 MPa 1620 2870 3800 

G 2 3 * MPa 1620 1620 3800 

G 1 3 * MPa 1620 1620 3800 

Sm MPa 146 420 95 

S l l c MPa 146 420 95 

S22t MPa 146 50 95 

S22c MPa 146 200 95 

S12 MPa 30 50 30 

71 



Table 5.2: Foam core properties [66]. 

Airex C70.55 C70.75 C70.130 Comment 

P kg/m 3 60 80 130 average 

t mm 5, 10, 15 5, 10, 15 5, 10, 15 

E u MPa 35 50 95 min 

E22 MPa 35 50 95 min 

E33C MPa 55 80 145 min 

V12 0.1 0.1 0.1 guess 

G12 MPa 18 24 45 min 

G23 MPa 18 24 45 min 

G13 MPa 18 24 45 min 

Sl3 MPa 0.7 1 2.1 min 

S23 MPa 0.7 1 2.1 min 

Table 5.3: Honeycomb core properties [67]. 

HexWeb CRIII-3/16-5052 - 3.1 Comment 

P kg/m 3 50 average 

E u MPa 0.1 neglected 

E22 MPa 0.1 neglected 

E33c MPa 413 0.8 of typical 

Vl2 0 neglected 

G12 MPa 0.1 neglected 

G23 MPa 122 0.8 of typical 

G13 MPa 310 min 

S13 MPa 1.07 min 

S23 MPa 0.62 min 
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5.1 One element examples 
Compression and bending examples test the basic ability of the algorithm to achieve optimal 
material selection when only one element is concerned. These examples are simple enough to 
check if the solution is truly optimal and aims to reveal potential shortcomings of the 
implemented algorithm. Examples were optimized for several cases of loads and material 
candidates. 

I l l 

o o 
II 

CvJ 
+ 

L=100 

Figure 27: Schema of test cases for edge-wise compression and 
bending with transverse shear. 

5.1.1 Edge-wise compression 
Compression example (Figure 27 left) is limited by compressive allowable stress in face-
sheets (depending only on face-sheet layup), crimping (depending on the core material and 
thickness), and wrinkling (depending on both the core and face-sheets). 

Design materials: 

• Two fabric candidates for the face-sheet layers (0° and 45° carbon fabric) for up to 5 
layers (each with thickness 0.327 mm). Face-sheets are symmetric (same top and 
bottom face). 

• Six core candidates (foams 60, 80, and 130 kg/m 3 all with 5 and 10 mm thickness). 

The task consists of 17 design variables, which are linked through 6 material (linear) 
constraints. Failures define 15 nonlinear constraints. The optimizations took less than two 
minutes (mostiy Nastran execution). 
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Table 5.4: Results for the element loaded by a set of compressive forces F. 

Loads 

F[N] 2000 4000 8000 12000 16000 20000 

Values at the end of optimization 

Discreteness 1.000 1.000 1.000 1.000 1.000 1.000 

m [g] 6.56 7.81 10.86 17.84 21.69 25.54 

FI max 0.68 0.94 1.00 1.00 1.00 1.00 

Rounded layup 

Face-sheet 0/ 0/ 0 2/ 0 3/ oy 0s/ 

t o r e [mm] 5 5 5 10 10 10 

Pcore 

[kg/m3] 
80 130 130 130 130 130 

Properties after rounding 

m [g] 6.58 7.83 12.41 20.23 24.81 29.39 

FI faces 0.41 0.82 0.83 0.83 0.83 0.83 

FI cr 0.33 0.36 0.71 0.53 0.71 0.89 

FI wr 0.29 0.38 0.38 0.38 0.38 0.38 

True optimum 

Pcore 

60kg/m 3 

Pcore 

60kg/m 3 

tcore 

10mm, p c o r e 

= 80kg/m 3 

m„pt [g] 6.08 6.08 12.16 

Optimization was done for a series of loads from 2 k N to 20 k N as shown in the columns of 
Table 5.4. The table further shows values at the end of the optimization, i.e., before rounding: 
all tasks converged successfully to discreteness 1.000 and feasible solution (FI < 1). Layup 
was rounded to the face-sheet layers with orientation 0° , which is the direction of the load. 
The number of face-sheet layers is optimal, however, three tasks found a solution where the 
core is over dimensioned, as marked in red, compared to the true optimum in the bottom of 
the table, so the mass is larger. 

Table 5.5 contains graphs for mass, discreteness (element average, face-sheet average, core), 
and failure indices as they evolved during optimization. Each point in the graph denotes a 
design point at the end of the optimizer run for the given design cycle. 

• For the lowest force (2000 N), the measures evolve mostly before design cycle 4 and 
finally changes a bit. The load does not cause failure, but it seems that a heavier than 
necessary core was determined in the beginning where the crimping FI is around 1. 
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For 4000 N and 8000 N , the discreteness increased sequentially and the crimping 
dropped down after initial violation. For 4000 N , the face FI has a peak close to the 
end, but finally remains under 1. For 8000 N , the face FI remains close to 1 constantly. 

For higher loads, the discreteness quickly gets close to 1. The crimping FI has a high 
start due to the initial mixture with lighter core materials and penalization. The face FI 
decreases at the beginning and remains close to 1. The wrinkling FI is also initially 
violated and later remains well below 1. 

Most of the graphs for the face FI drops down during the final rounding. 
Corresponding increase is during the final rounding as is visible on mass graphs. This 
is caused by the S shape function in the face-sheet properties. 

Table 5.5: Mass, discreteness, and failure indices during design cycles. 
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5.1.2 Beam bending and transverse shear 
The same dimensions and design materials were used for the beam example which consists 
again of one element, now fixed on one edge and loaded on the opposite end by the transverse 
shear force T and the bending moment M (Figure 27 right). The algorithm works with internal 
loads at the element center so that the loads at this point drives the design and so T c enter and 
M c e n t e r are used for reference in Tables 5.6 and 5.7. Compared to the compression example, 
core shear failure may occur in this case, but not crimping. Bending moment should lead to 
higher thickness core and more face-sheet layers. Wrinkling and core shear w i l l drive core 
density, but core thickness helps also to decrease core shear failure. 

Table 5.6: Results for the element loaded by transverse force and bending moment. 

Loads 

TCenter [N] 200 200 200 400 400 800 1200 

Mcenter [Nm] 10 50 90 22 24 50 70 

Values at the end of optimization 

Discreteness 1.000 1.000 1.000 0.999 1.000 1.000 0.999 

m [g] 6.56 16.00 23.45 11.52 11.06 15.99 19.77 

FI max 0.88 1.00 1.00 1.00 1.00 1.00 1.00 

Rounded layup 

Face-sheet 0/ 0s/ 0V 0 2/ 0°/ O3/ O3/ 

t o r e [mm] 5 10 10 5 10 10 10 

Pcore 

[kg/m3] 
80 130 130 130 130 130 130 

Properties after rounding 

m [g] 6.58 20.23 24.81 12.41 11.08 20.23 20.23 

FI faces 0.83 0.69 0.92 0.90 0.99 0.69 0.96 

FI coreshear 0.70 0.16 0.15 0.60 0.36 0.63 0.95 

FI wr 0.54 0.29 0.38 0.37 0.44 0.29 0.41 

True optimum 

tcore—10mm 

Pcore=60 

kg/m 3 

tcore—10mm 

Pcore=60 

kg/m 3 

face: 0/ 
tcore = 10mm 

Pcore=80 

kg/m 3 

face: 0/ 
tcore =10mm 

Pcore=80 

kg/m 3 

m„pt [g] 16.73 21.31 8.58 8.58 

The overview of the results is in Table 5.6. Evolution of the measures are in Table 5.7. The set 
of loads at the element center is selected to investigate cases with low transverse shear and 
increasing bending moment as well as larger transverse shear and increasing bending moment. 
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The optimization was successful in reaching a feasible and discrete solution, but not optimal 
in all cases. Three cases reached the optimum, four did not, but only one of them ended with 
more than necessary number of face-sheet layers, so the optimization mostly used a denser 
core than necessary. 

• Load case T c e nter= 200 N and M c e nter= 10 N m led to the core with density 80 kg/m 3 , the 
thickness and number of face-sheet layers were minimal. A l l graphs stabilized after 
design cycle 4. 

• Load case T c e nter= 200 N and M c e nter= 50 N m led to 3 layers of face-sheet and thicker 
core, but stacked at high density 130 kg/m 3 . Graphs stabilized after design cycle 5, but 
there are large steps in mass and face FI in the final rounding. Note that the mass 
before rounding 16 g is close to the optimum 16.73 g with softer core. That shows that 
the algorithm was able to find a local minimum close to the global one, but rounding 
to a discrete number of face-sheets degraded the solution. 

• Load case T c e n t e r = 200 N and M c e n t e r = 90 N m was very similar - heavier than necessary 
core and visible increase of the mass in the final rounding. 

• Load cases with T c e nter= 400 N and M c e nter= 22 N m or M c e nter= 24 N m are interesting 
because of the lighter solution achieved with higher loads. The solution with lower 
load combined a thinner core with stronger face-sheets. Graphs evolved slowly and the 
core discreteness is low for a very long time, especially in the less loaded case, which 
points that the core was not clearly selected for most of the run time. Finally, a feasible 
solution was found, but not with minimal mass. 

• Last two load cases with T c e nter= 800 N and M c e nter= 50 N m , and T c e nter= 1200 N and 
MCenter= 70 N m had not much options fort core selection due to high shear load and 
(maybe thanks to it) their graphs stabilized soon and led to the optimal solution. 

Table 5.7: Mass, discreteness, and failure indices during design cycles. 
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5.2 Separated elements 
The next example contains 14 elements which are separated, so that the element forces and 
moments, shown in Figure 28, w i l l not change during optimization. Elements are fixed on one 
side. Eight elements are loaded with increasing compression force F, while other six elements 
are loaded with increasing transverse force T which cause bending moment at the element 
center M c e n t e f 

Design materials: 

• Four U D carbon/epoxy composites for the face-sheet layers (0°, 90°, +45°, and -45°) 
for up to 5 layers (each with thickness 0.256 mm). Face-sheets are symmetric (same 
top and bottom face). 

• Four core candidates (foams 80 and 130 kg/m 3 both with 5 and 10 mm thickness). 

The task consists of 350 design variables which are linked through 84 material (linear) 
constraints. Failures define 210 nonlinear constraints. Optimization took 6 minutes with more 
than half spent on Jacobian evaluation. 

Figure 28: Separated elements with loads and boundary conditions. 

The optimization converged well as can be seen in Figure 29 as the evolution for the selected 
measures show. A l l of them stabilized after design cycle 8. Average discreteness reached the 
value 1.000 on all elements for the core as well as face-sheets. Mass has a small step due to 
the rounding of face-sheet thickness. Maximal failure indices plotted in the graph dropped 
from higher initial values to finish close to 1 for all failure types. 

Mass and discreteness Failure indices 

Design cycle Design cycle 
mass —•— d i s c e l e m d i s c f a c e — ^ d i s c _ c o r e - B - F I J a c e s —•— FI_coreshear —¥-FI_cr - * — F l _ w r 

Figure 29: Mass, discreteness, and failure indices during design cycles. 
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Table 5.8 shows the loads for each element (in-plane force F for elements 1-8, or transverse 
force and bending moment at the element M c e n t e r for elements 9-14). Optimization found 
correctly the optimal number of face-sheet layers on all elements, but elements 1-3 have 
thicker core than necessary and element 1 has also higher core density than needed. That 
might be due to the initial failure constraint violation when the optimization got on the track 
of the stronger core and later when it was not violated any more and rather discrete, the 
variables stack to the heavier core. 

This example was extensively used for selecting robust default parameters for the 
optimization. Primary concern was to achieve discrete results without failing elements, which 
were achieved in this case, but with the price of some elements to be heavier than necessary. 

Table 5.8: Resulting layups and failure indices. 

Element 1 2 3 4 5 6 7 8 

F[N] 1100 1570 2040 2510 2980 3450 3920 4390 

Rounded layup 

Face-sheet 0/ 0/ 0/ 0 2/ 0 2/ 0 2/ 0 2/ 0 3/ 

tore [mm] 10 10 10 10 10 10 10 10 

Pore [kg/m3] 80 80 80 80 80 80 80 80 

F If aces 0.50 0.71 0.93 0.58 0.68 0.79 0.90 0.68 

F I c r 0.24 0.35 0.45 0.56 0.66 0.77 0.87 0.98 

FT 0.53 0.75 0.98 0.61 0.72 0.84 0.95 0.71 

True optimum 

tcore [mm] 5 5 5 

Pcore [kg/m3] 60 80 80 

Element 9 10 11 12 13 14 

T[N] 45 80 100 120 150 200 

•Î -center 
[Nmm] 

225 400 500 600 750 1000 

Rounded layup 

Face-sheet 0/ 0/ 0/ 0/ 0/ 0/ 

tcore [mm] 5 5 5 10 10 10 

Pcore [kg/m3] 60 80 80 80 80 80 

FI faces 0.04 0.07 0.09 0.06 0.07 0.09 

FIcore shear 0.81 0.69 0.86 0.54 0.68 0.91 

FT 0.06 0.07 0.09 0.06 0.07 0.10 
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Constraint aggregation 

Constraint aggregation was done for a set of aggregation parameters P K S from 2 to 100, which 
is used in eq. (82). Table 5.9 shows results. When P K S = 20 and more, the optimization did not 
converge as can be seen from low discreteness. Consequendy, the mass m after rounding is 
height and the maximum failure index is above 1. Lower pKs resulted in a feasible solution 
with discreteness close to 1. Aggregation with P K S = 5 and 10 gave the lowest mass, but it is 
still more compared to non-aggregated solution due to the heavier than necessary core. 

It was expected that constraint aggregation w i l l decrease the calculation time, but the example 
took approximately the same time (around 6 minutes) with and without aggregation. M i l d 
speed increase due to the lower number of failure constrains was balanced with worse 
convergence. 

Table 5.9: Overview of (rounded) results with various aggregation parameters pxs-

P K S 2 3 5 10 20 50 100 Not aggregated 

Discreteness 0.99 1.00 1.00 1.00 0.57 0.38 0.35 1.00 

m [g] 3.42 3.35 3.12 3.12 4.19 4.64 4.38 3.03 

max FI 0.98 0.98 0.98 0.98 1.32 1.65 1.97 0.98 
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5.3 Panel with pressure or side load 
This example consists of a 700x1400 mm panel loaded by the normal pressure 50 kPa with 
fixed edges in the first variant and simply supported edges in the second variant. Third variant 
has one edge fixed, the middle of the opposite edge is loaded by 6000 N in each of the 9 
nodes (the distribution is to decrease stress concentration). It was meshed with 16x32 quad8 
elements (second order quadrilateral elements with 8 nodes) as shown in Figure 30. This 
example follows the results published in the article [68]. 

Fixed Hinged Side load 

\ 

\ 

\ it 

p = 50 kPa \ 
\ 
\ 
\ 

\ o o 
\ TH 

\ 
\ 
\ 
\ 
\ V 

700 
— • 

Figure 30: Panel with different boundary conditions [68]. 

Design materials: 

• Four unidirectional layer candidates for the face-sheet layers (0°, 90°, -45°, and 45° 
U D carbon) for up to 5 layers. Face-sheets are symmetric (same top and bottom face). 

• Six core candidates (foams 60, 80, and 130 kg/m 3 all with 5 and 10 mm thickness). 

5.3.1 Variable stiffness 
Although the settings for various optimization parameters are not presented for their 
extension, this example was used to find robust default parameters since element loads 
depend on element stiffness and evolve during optimization, contrary to previous simple 
examples which focused on the basic function of the optimization which quick runtime easy 
to test the code. 

In these settings, each of the 512 elements had its own design variables, which led to 12800 
design variables linked through 3072 material (linear) constraints and 7680 failure (nonlinear) 
constraints. Optimization took around 3 hours (fixed and hinged plates), resp. 3.5 hours (side 
loaded panel), with 80% of the time spent on Jacobian evaluation. 
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Table 5.10: Mass, discreteness, and failure indices during design cycles. 

Fixed panel 
Mass and discreteness 
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Fixed panel converged to discreteness 0.983 with max. F l 1.01 due to slight violation of the 
wrinkling criterion after rounding. Graphs in Table 5.10 for the fixed panel show that the 
discreteness increased at the beginning, stayed constant in the middle, and rose at the end 
towards 0.983, so the convergence was not as smooth as in other examples, but the failure 
constraints remained around 1 for most of the design cycles. Figure 31 shows the final 
discreteness and failure index distribution. Discreteness of the face-sheets is above 0.85, some 
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elements have core discreteness only above 0.53, which can be explained that the 
optimization did not fully decide for the core on such elements, but important is that these 
elements do not have a failure, as can be seen on the right plot. Layup in Figure 32 is with 
numbering from the outer layer to the core, the opposite face-sheet is symmetric. The figure 
shows that the fixed panel has empty outer layers 1-3. A pattern in orientation is that the layup 
of most elements is oriented towards the nearest edge or corner. The core has weaker material 
in the middle and on the diagonals connecting corners. Stronger core is close to edges. The 
algorithm carries out an alternative rounding to a heavier core if that core material has a 
design variable above 1%. In this particular example, the mass increased by 0.5% and max. FI 
decreased to 0.98. 

Hinged panel has straight convergence. Graphs in Table 5.10 stabilized after design cycle 9, 
but the final max. FI is 1.01 due to slight violation of the wrinkling criterion after rounding. 
Figure 31 shows high discreteness in face-sheets (above 0.95) and even higher for core 
discreteness. Max. FI is also on most elements with high values close to 1. Layup in Figure 32 
is different from the fixed panel and shows little covering in layers 1 and 2. Segmentation is 
visible. Middle segment has 0° orientation, the segments close to the corners are oriented 
diagonally to the bridge area of each segment. Core is almost everywhere with the strongest 
option. 

Panel with side load has no symmetry in loading nor in layup. In the graph in Table 5.10, the 
discreteness reaches high values at design cycle 9 but slightly decreases after that to finish 
with average discreteness 0.92 due to waves on FI which ends on 0.96. Figure 31 shows that 
discreteness is rather uniformly lower, but some elements are weaker in face-sheet 
discreteness starting at 0.49. Max. FI is high on a few elements, low FI is in the center and top 
right corner, but there are still two face-sheet layers in Figure 32, which might be associated 
with a significant step up during rounding in Table 5.10. Otherwise, layers 1-3 are populated 
only on a few elements with stress concentration. Layers are oriented mostly in +45 or -45 
from the fixed edge towards the load area. Core is reinforced in the segment with compressive 
load. 
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F i x e d 
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Figure 31: Core and face-sheet discreteness, maximum failure index. 
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Figure 32: Layup for different boundary conditions, opposite face-sheet is symmetric. 
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side load b 0=2 
Laver 1 Layer 2 Layer 3 Layer 4 Layer 5 

side load b 0 = 4 
Laver 1 Layer 2 Layer 3 Layer 4 Layer 5 

side load b 0=8 
Laver 1 Layer 2 Layer 3 Layer 4 Layer 5 

Face-sheet materials: empty 
0° 
90° 
45° 
-45° 

Core materials: 

Core 

Core 

Core 

5 mm 80 kg/m3 

10 mm 80 kg/m3 

5 mm 130 kg/m3 

10 mm 130 kg/m3 

Figure 33: Layup for the panel with side load with different blending parameter bo-

Blending 

Blending was used for all panels, but hinged and fixed panels did not give much distinct 
results from the solution without blending, thus only the panel with side load is presented. It 
was calculated for bE=0.1 and three values of bo (2, 4, and 8). Because of difficult 
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convergence, the number of optimizer iterations i m a x =20 was doubled compared to the default 
value. Figure 33 shows the final layup of the panel with side load for different parameters b 0 . 
It can be seen that the areas with the same material are more compact as b 0 increases, so that 
b0=8 has almost continuously filled layers 4 and 5 with -45°. In all cases, the core has 
practically only two foams present. For b0=8, heavier core stacked to the corner, which can be 
interpreted as a trial to decrease the boundary between different core materials. When 
blending was used, the mass increased variously according to the parameters b E and bo. For 
bE=0.1, b0=8, it increased by 7%. 

Effect of stress concentration 

Panel with side load is, according to Figure 30, loaded by a force distributed to 9 nodes to 
diminish the stress concentration. In the following comparison, the force is concentrated to 
one node as used to be in engineering practice according to Saint-Venant's principle when 
stress concentration is ignored during engineering interpretation. 

Table 5.11 compares the results with different parameters A i g n denoting a portion of the 
elements with ignored failure constraints. When the force is concentrated and none element is 
ignored ( A i g n = 0), the optimization did not converge as can be deducted from low discreteness 
0.51 and mass almost two times larger than in the case of distributed load. This behavior can 
be interpreted by the optimizer which has a priority on a solution feasibility, so that the 
objective function (penalized mass) is not much taken into account. A s a result, only one 
element under the concentrated load is failing. A s A i n g increased to 0.01 (ignoring 5 elements 
from total 515 elements), the discreteness and mass improved, but A i n g = 0.015 (ignoring 7 
elements) or more was needed to reach discreteness and mass similar to the original case with 
distributed load where layup was very similar to the original case in Figure 32. 

It appears that ignoring some elements is necessary when a model contains concentrations 
which cannot be designed with available materials to fulfill failure constraints. The price for 
element ignoring is that the final design contains several failing elements which position was 
not determined by the user, but important is that the optimizer is able to converge. 

Table 5.11: Comparison of force application and parameters to ignore area Ah 

Distributed 
load 

Concentrated force 

Aign 0 0 0.01 0.015 0.02 0.025 

Number of 
ignored 
elements 

0 0 5 7 10 12 

Number of 
failing 

elements 
0 1 4 7 10 9 

Discreteness 0.92 0.51 0.78 0.96 0.95 0.96 

m [g] 2019 3908 2786 1997 1989 1984 
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Constraint aggregation 

The effect of constraint aggregation was tested on cases with each boundary condition for 
aggregation parameters P K S from 2 to 100. Discreteness, mass, and maximum failure index 
are compared with the solution without aggregation in Table 5.12. 

For the fixed panel, the best results are with pKs = 10 (lowest mass and not violated 
constraints) and the results do not differ too much from the solution without aggregation 
(mass increase by 12%). For lower pKs, the discreteness is above 0.8 which is still not much, 
but the mass is quite high for pKs = 2. Contrary, for pKs = 20 and more, discreteness is 
unsatisfactory and the constraints are strongly violated. 

For the hinged panel, the lowest mass is for pKs = 5, but it is already by 55% heavier than the 
solution without aggregation. Discreteness is above 0.9 for P K S up to 5, then it drops to low 
values together with high constraint violation. Contrary to expectations, the optimization time 
increased due to aggregation from approximately 3 hours to 4 hours. 

For the panel with side load, the low mass is also for pKs = 5 with mass increased by 55%. 
Constraints are violated for higher pKs- Discreteness is low for all aggregated results. Since 
the discreteness is the lower for not aggregated solution compared to the fixed and hinged 
panels, it might be concluded that this example converges harder, but the constraint 
aggregation decreases the quality more than in the previous cases. 

Table 5.12: Overview of (rounded) results with various aggregation parameters pxs-

Fixed 

P K S 2 3 5 10 20 50 100 Not aggregated 

Discreteness 0.86 0.81 0.82 0.59 0.35 0.37 0.38 0.98 

m [g] 3871 3274 2976 2127 1809 1808 1805 1901 

max FI 0.65 0.65 0.69 0.79 4.11 3.27 3.22 1.01 

Hinged 

P K S 2 3 5 10 20 50 100 Not aggregated 

Discreteness 0.97 0.97 0.93 0.57 0.35 0.35 0.36 1.00 

m [g] 4077 4056 3991 4028 1800 1799 1807 2574 

max FI 0.91 0.83 0.94 1.24 7.92 6.71 5.53 1.01 

Side load 

P K S 2 3 5 10 20 50 100 Not aggregated 

Discreteness 0.36 0.45 0.50 0.44 0.41 0.43 0.44 0.92 

m [g] 4042 3780 2914 1803 1801 1799 1797 2019 

max FI 0.86 0.83 0.96 1.85 2.22 3.07 2.79 0.96 
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Refined mesh 

New models were made with the element size two times lower, leading to 2048 elements 
instead of 512, thus the number of design variables increased to 51200, material constraints to 
12288, and failure constraints to 30720. This resulted in the optimization time more than 16 
hours (5-7 times more than the original mesh). Layups are not presented, since they were 
similar with the fine mesh as with the original mesh in Figure 32. Overall results in Table 5.13 
show that the solution quality rather decreased. Although the optimal mass can theoretically 
alter due to the higher number of element centers (where failures are evaluated), the 
maximum FI increased in all cases and violated constraints. For the fixed panel, max. FI 
increased by 9%, for the hinged panel by 1%, and for the panel with side load FI=1.03 
occurred. The decrease in solution quality for the panel with side load is visible also in 
discreteness which dropped to 0.70, thus A i g n parameter was tried, set to ignore 1% of 
elements, but the solution did not improve significantiy. 

Possible explanation of the increase in max. FI is that a high number of variables is more 
difficult to solve for the optimizer and/or that the optimization parameters were primarily 
defined to achieve good results on the original mesh and so are not so robust for larger tasks. 

Table 5.13: Comparison of original mesh 16><32 and refined to 32><64. 

Fixed Hinged Side load 

Mesh 16x32 32x64 16x32 32x64 16x32 32x64 16x32 32x64 

Aig„ 0 0.01 

Discreteness 0.98 1.00 1.00 0.97 0.92 0.70 0.96 0.78 

max. FI 1.01 1.10 1.01 1.02 0.96 1.03 1.65 1.75 

Number of 
failing elements 

4 12 8 8 0 1 5 16 

m [g] 1901 1868 2828 3141 2019 2289 2052 2116 

5.3.2 Patch design 
Panels were optimized with the use of one patch on all elements, so that the independent 
design variables were only on one element and the other element layups are driven by the 
same variables, which leads to a uniform layup on the whole panel. The number of design 
variables was only 25, 6 material constraints, but 7680 failure constraints remain. 
Optimization took 2-2.5 hours, which is only by ~35% less than the case where every element 
has its own layup. 

Results from these settings are in Table 5.14. A l l variants of boundary conditions finished 
with discrete results and with a feasible solution (FI < 1). A l l cases ended with the strongest 
core. For the fixed panel, face-sheet is over dimensioned, because 2 layers with 0° orientation 
would transfer the loads without failure violation, but 3 layers were in the end of the 
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optimization. Hinged panel seems to be correct with 2 layers. Panel with side load has 5 
layers in the face-sheet where removing one would violate constraints. The orientation 
corresponds to the results with blending in Figure 33 where layers 1, 2, and 3 were mostly 
empty. 

Table 5.14: Results for one patch over the panel. 

Fixed Hinged Side load 

Discreteness 1.00 1.00 1.00 

max. FI 0.83 0.71 0.94 

Face-sheet 45/-45 2/ 0 2/ -45 5/ 

Core 10 mm 130 kg/m 3 
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5.4 Box with top underpressure and torque 

5.4.1 Sandwich panels 
Long box example with ribs is in Figure 34. It is cantilevered on the left end and loaded by 
tensile underpressure 15 kPa on the top side and torque on the circumference of the ribs 
through R B E 3 elements, 2 N m on each. Size of the load was selected to fit the load capacity 
of the sandwich with the layup used in this thesis. It resembles aircraft wing loading, but it is 
not any specific case. The mesh consists of 990 quad8 elements. Each panel was defined as 
one patch, so that the model contains 25 patches. That together with design materials lead to 
375 design variables, 150 material constraints, and 14850 failure constraints. 

Design materials: 

• Two fabric candidates for the face-sheet layers (0° and 45° carbon fabric) for up to 5 
layers (each with thickness 0.327 mm). Face-sheets are symmetric (same top and 
bottom face). 

• Four core candidates (foams 80 and 130 kg/m 3 both with 5 and 10 mm thickness). 

Figure 34: Schema of the box example. 

Optimization parameters were altered to find better a solution as concluded in Table 5.15. A l l 
settings led to a feasible solution, but the differences in the final mass are large. Default 
setting is the first column with the maximum number of optimizer iterations i m a x =10 and 
maximum change of the design variables within a design cycle Am ax=0.2. Altering of these 
parameters helped to achieve a better result by smaller step in variables (A m a x) and more 
iterations on each design cycle ( i m a x ) as can be concluded from discreteness 1.00 for cases 
with imax=20 and the lowest mass when combined with A m a x =0.15. Therefore, graphs and 
layups w i l l be shown for these settings. Optimization time increased by ~50% from 
approximately 2 hours (default settings) to more than 3 hours (the best solution). 
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Table 5.15: Result comparison for different imax and A, 

l m a x 10 15 20 10 15 20 

A max 0.2 0.15 

Discreteness 0.96 0.96 1.00 0.93 0.99 1.00 

max. FI 0.79 0.79 0.79 0.79 0.79 0.90 

m [kg] 9.863 10.018 6.928 9.912 8.536 6.613 

Maximal failure index in Figure 35 drop soon below 1 and remains relatively stable. 
Discreteness grows up to design cycle 6, remains stable, and finally grows to 1. Mass has the 
opposite behavior with a large drop rather close to the end. The ramp in the middle of 
discreteness is due to the convergence criteria prescribed to the optimizer (the goal 
discreteness of the design cycle in Figure 25 is reached immediately) and so the next design 
cycle may start without significant change of the model. 
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Figure 35: Mass, discreteness, and failure indices during design cycles for imax=20, Amax=0.15 

Table 5.16 shows the final layups of the patches. A s expected, a stronger core and more face-
sheet layers are close to the root where the maximum of bending moment and torque is. Top 
panels have a stronger core which can be easily explained by the underpressure load and by 
the fact that the top panels are loaded in compression from the bending moment. Top and 
bottom panels contain only 0° oriented face-sheets as expected. Front and back panels close to 
the root (segments 1 and 2) have also face-sheets in 0° orientation probably due to 
participation in bending moment transfer. Other segments of the back and rear panels have 
orientations 45° which points to torque loads. A l l ribs have only a light core and one face-
sheet layer, some with 0° and some 45° orientation, which both safely satisfy the failure 
constraints so the optimizer need not prefer any of them. 

Figure 36 shows the maximum failure indices on the panels. It is obvious that the ribs are not 
much loaded as well as the tip section. Front and back panels in section 3 are less effectively 
used, which seems that lighter layup is probably possible there. 
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Table 5.16: Layup of segments 1-5 from the fixed root to the free tip for imax=20, Amax=0.15 

Segment 1 (root) 2 3 4 5 (tip) 

Top 
Os/ 

10 mm 
130 kg/m 3 

O3/ 

10 mm 
130 kg/m 3 

0 2/ 
10 mm 

130 kg/m 3 

0/ 
5 mm 

130 kg/m 3 

0/ 
5 mm 

130 kg/m 3 

Bottom 
0s/ 

10 mm 
80 kg/m 3 

O3/ 

5 mm 
80 kg/m 3 

0 2/ 
5 mm 

80 kg/m 3 

0/ 
5 mm 

80 kg/m 3 

0/ 
5 mm 

80 kg/m 3 

Front 
Oaf 

10 mm 
130 kg/m 3 

10 mm 
130 kg/m 3 

45 2 / 
5 mm 

130 kg/m 3 

45/ 
5 mm 

130 kg/m 3 

45/ 
5 mm 

80 kg/m 3 

Back 
O3/ 

10 mm 
130 kg/m 3 

0 2/ 
10 mm 

130 kg/m 3 

45 2 / 
5 mm 

130 kg/m 3 

45/ 
5 mm 

130 kg/m 3 

45/ 
5 mm 

80 kg/m 3 

Ribs 
0/ 

5 mm 
80 kg/m 3 

0/ 
5 mm 

80 kg/m 3 

45/ 
5 mm 

80 kg/m 3 

45/ 
5 mm 

80 kg/m 3 

0/ 
5 mm 

80 kg/m 3 



5.4.2 Sandwich panels with flanges 
This variant of the box example contains flanges as shown in Figure 37. Flanges have 
different layups from the rest. Only a number of U D carbon layers is optimized on the flanges 
since the design layup contains 40 candidate layers without fabrics and without sandwich 
core. Flange elements are in patches on every segment, but the left and right flange symmetry 
is enforced by the design, because both top flanges are in one patch, and both bottom flanges 
are also in one patch. Other elements have sandwich design layups with the same materials as 
were used in the sandwich only box. Patches of the sandwich panels are smaller on the top 
and bottom due to flanges, otherwise they are the same as previously. 

The model contains 990 shell elements which are divided to 25 sandwich patches and 10 
flange patches. That gives 795 design variables, 550 material constraints, and 19850 failure 
constraints. Since the flanges increase the capacity to carry out the bending moment, the 
underpressure on the top elements was increased to 50 kPa, the torque on the ribs was kept on 
2 N m per rib. 

Figure 37: Schema of the box with flanges. 

Optimization was run for the same settings as in sandwich-only box, i.e., i m a x=10, 15, 20 and 
A m a x =0.2, 0.15 as shown in Table 5.17. A l l cases satisfy the failure constraints and have 
discreteness 0.98 or higher. The case with i m a x = 20 and default A m a x =0.2 is the only one with 
discreteness 1.00 and clearly lower mass than other cases which reached similar values in 
discreteness, maximum failure index as well as final mass. Even in the best case, the 
maximum failure index 0.87 is still well below 1, which might signify that the solution can be 
still improved. 
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Table 5.17: Result comparison for different imax and A, 

lmax 10 15 20 10 15 20 

A max 0.2 0.15 

Discreteness 0.98 0.99 1.00 0.98 0.98 0.98 

max. FI 0.85 0.85 0.87 0.86 0.85 0.86 

m [kg] 13.235 13.065 10.774 13.213 12.970 13.691 

Figure 38 shows that discreteness stabilized after design cycle 6 and failure indices remained 
below 1 even when the mass changed significantiy during design cycles. 

Mass and discreteness Failure indices 

Figure 38: Mass, discreteness, and failure indices during design cycles for imax=20, Amax=0.2. 

Layups of the best solution are in Table 5.18. Top panels have a strong core on segments 1-4 
due to compression from bending moment and local bending from the underpressure, whereas 
the bottom panels have a light core which corresponds to the expected tensile loading. 
Orientations on the top and bottom panels are 0° with more maximum allowable number of 
face-sheet layers on segments 1-3. Front and back panels have 45° layers and a strong core on 
segments 1 and 2 as corresponds to shear from torque. Ribs have mostly a light core and one 
45° face-sheet layer, but the tip rib ended with three layers probably as a support for the top 
panel end. 

Figure 39 shows the maximal failure indices for the best solution. The highest values are on 
the bottom and especially top sandwich panels on segments 1 and 2 close to the root and on 
the other top panels above ribs. Rather low FI on the front and back panels suggest that they 
could be lighter as well as ribs 1 and 5. Flanges do not reach extra high FI, which denotes that 
they did not reach the optimum because 7-40 U D layers are enough to remove some of them 
without overwhelming increase of failure index. 
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Table 5.18: Layup of segments 1-5 from the fixed root to the free tip for imax=20, Amax=0.2. 

Segment 1 (root) 2 3 4 5 (tip) 

Top 
Os/ 

10 mm 
130 kg/m 3 

0 5/ 
10 mm 

130 kg/m 3 

Os/ 
10 mm 

130 kg/m 3 

O3/ 

10 mm 
130 kg/m 3 

O3/ 

10 mm 
80 kg/m 3 

Bottom 
0s/ 

5 mm 
80 kg/m 3 

0 5/ 
5 mm 

80 kg/m 3 

Os/ 
5 mm 

80 kg/m 3 

0 2/ 
5 mm 

80 kg/m 3 

0/ 
5 mm 

80 kg/m 3 

Front 
4 5 5 / 

10 mm 
130 kg/m 3 

453/ 

10 mm 
130 kg/m 3 

4 5 3 / 

5 mm 
130 kg/m 3 

4 5 2 / 

5 mm 
130 kg/m 3 

4 5 / 

5 mm 
130 kg/m 3 

Back 
4 5 5 / 

10 mm 
130 kg/m 3 

45s/ 

10 mm 
130 kg/m 3 

4 5 2 / 

5 mm 
130 kg/m 3 

4 5 2 / 

5 mm 
130 kg/m 3 

4 5 / 

5 mm 
130 kg/m 3 

Ribs 
4 5 / 

5 mm 
130 kg/m 3 

4 5 / 

5 mm 
80 kg/m 3 

4 5 / 

5 mm 
80 kg/m 3 

4 5 / 

5 mm 
80 kg/m 3 

45/O2/ 

5 mm 
80 kg/m 3 

Top flanges O40UD O26 UD O22 UD O7UD O9 UD 

Bottom flanges O40UD O25 UD 0l2 UD 08UD O5UD 

Figure 39: Maximum failure index for imax=20, Amax=0.2. 

99 



5.5 Aircraft interior components 

5.5.1 Stowage 
Real stowage of an airliner was selected as a practical component. The mesh is in Figure 40. 
The stowage is loaded in a side direction with acceleration acting on the point masses 
connected to the structure through R B E 3 elements. Boundary conditions consist of fixation at 
attachment points where the stowage is connected to the floor through R B E 2 elements. The 
model contains springs, rods, and other connectivity elements as are usual for such a 
component. Optimization does not limit their use and, in this example, the model for 
optimization was taken from practice without modifications. It contains 4993 quad4 elements 
on 11 flat panels selected as patches, which together with design materials led to 99 design 
variables, 33 material constraints, and 44937 failure constraints. 

Figure 40: FE model of the stowage. 

Design materials: 

• Only one material can be in the face-sheet (0° glass fabric) in 2 or 4 layers (each with 
thickness 0.336 mm), thus it is modeled as two possible layers of double thickness 
(0.672 mm and 0.672 mm). 

• Six core candidates: honeycomb with thicknesses 6.35, 12.7, 18.8 mm and with 
orientations 0° or 90°. 

Attachments are not the subject of optimization, but the model typically does not simulate 
their area in detail, so that R B E 2 elements cause local stress concentration. Because of the 
stress peaks, the stowage was optimized for several A i g n parameters as shown in Table 5.19. 
When ignoring was not used (A i g n=0), the discreteness of the model was below 1 and the mass 
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was high because thick face-sheets remained at the end of the optimization. The area of failing 
elements around the attachment is low as can be seen in the bottom view in Figure 41. 
Therefore, the optimization led to the same results for 0.1%, 0.5%, as well as 1% ignored 
area. 

Table 5.19: Result comparison for different An 

Aign 0 0.001 0.005 0.01 

Discreteness 0.94 1.00 1.00 1.00 

m [kg] 33.664 17.025 17.025 17.025 

CONSTRAINT.MAXIMUM 
2.8e-Q4 1 2 3 3.6e+00 

I 1 I 

Figure 41: Bottom view on elements with FI>1 for Aign=0.005. 

Figure 42 shows the graphs for the case with Ai g n =0.005. A l l measures stabilized after design 
cycle 6. Discreteness reached 1, failure indices for core shear, crimping and wrinkling 
remained below 1 during all design cycles. Face-sheet failure decreased from the initial high 
value to 3.6 which is the value around the attachments as shown in Figure 41. 

Mass and discreteness 
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Figure 42: Mass, discreteness, and failure indices during design cycles forAu 
Fl_wr 

0.005. 

Optimization resulted in all panels with only two plies in the face-sheets for nonzero A i g n . 
Optimization removed additional two plies. Figure 43 shows the core thicknesses of the 
panels and their orientations marked by black lines. It is difficult to guess the best orientation 
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of the middle panels, but the side walls have a vertical orientation which was expected from 
the overall side load. Most of the core thicknesses are at the lowest value, which points to the 
fact that the stowage should be rather designed by technological considerations and loads are 
not critical in linear static analysis. 

^ - J o a d i n g direction 

Figure 43: Orientations and thicknesses on the stowage for 
Aiqn=0.005. 
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5.5.2 Galley 
The final example represents application of the program to the conceptual design of an 
airliner galley. The galley covers the rear bulkhead of the passenger compartment. It serves to 
accommodate trolleys in the bottom section, equipment such as a coffee machine, and boxes 
for refreshments. Shell F E model is typically used to analyze the strength and deformation of 
the galley. Loads from the inner staff are applied as a pressure on the shelf faces or through 
acceleration acting on concentrated masses connected to the shell structure through R B E 2 and 
R B E 3 elements. The galley is connected to the primary structure through the floor, side and 
top attachment points that can be modeled by R B E 2 elements and springs, reflecting the 
stiffness of each connection. 

The optimization model (Figure 44) was done in the same manner but with rough mesh so 
that the total number of shell elements was 4252, which was necessary to reach the 
optimization results in reasonable time. Number of patches (panels) was 54 which led to 486 
design variables, 162 number of material constraints, but the number of failure constrains was 
38268. Six separate load cases were applied, defined by load factors in each of the basic 
directions (forward, aft, left, right, up, down). Each load case was in a separate Nastran input 
file due to the different arrangement of R B E elements. Optimization with this number of 
elements and load cases took over 14 hours. 

Figure 44: Optimization model with RBE arrangement for load case in up direction. 
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Design materials were the same as in the stowage example. A i m of the optimization was to 
select the global layup for the panels. Local reinforcement (metal doublers and inserts) cannot 
be defined by the optimization algorithm, so it has to be defined manually after the 
optimization. Omitting local reinforcement leads to local failures of the panels, so that using 
A i g n to ignore a certain portion of the elements is necessary to achieve meaningful results. 

Table 5.20 shows the final discreteness and mass for a set of A i g n . Discreteness was 1.00 in all 
cases with nonzero A i g n . It is obvious that none ignoring led to a very heavy solution. When 
5% area was ignored, mass of the panels was only slightly higher than in cases with more 
ignored elements. In cases with A i g n =0.05 and more, all panels contain only two plies in face-
sheets and the mass difference is given only by the heights of the panel cores. 

Table 5.20: Result comparison for different A,, 

Aig n 0 0.02 0.05 0.1 0.15 0.2 

Discreteness 0.95 1.00 1.00 1.00 1.00 1.00 

m [kg] 147.004 124.357 82.521 82.215 79.446 77.216 

Figure 45 shows that the discreteness and mass stabilized after design cycle 8, which denotes 
good convergence as was, e.g., in one-element examples for the optimal solution. Maximal 
failure indices remained at values under 1 for core shear, crimping, and wrinkling, but the 
model failures are in face-sheet layers, which are mostly on ignored elements, but are not 
filtered out from the graph. 

Mass and discreteness Failure indices 

o - l - o , o o.o V ~- -,- ••—,* >• " , — — , — - — - •— 
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 S 10 12 14 16 18 20 

Design cyc le _ Design cyc le 
- • - m a s s —•— disc_elem d i s c j a c e - * - d i s c _ c o r e - • - Fl faces — * — Fl coreshear F l_cr - * - F I _ w r 

Figure 45: Mass, discreteness, and failure indices during design cycles for Aign=0.05. 

Figure 46 shows the color plot corresponding to the core material, i.e., thickness and 
orientation. Since the orientation depends on F E element orientation, black lines were added 
manually according to the element orientations on each panel. In this example, the optimizer 
had to evaluate element loads on each element of the panel for 6 different load cases, so it is 
difficult to evaluate specifically the correctness of the resulting core orientations and 
thicknesses. 
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Figure 46: Galley results with panels orientations and thicknesses for Aign=0.05. 

Figure 47 shows the failing elements, which are mostly in the ignored area. It is a useful 
output for the designer so that these areas can be reinforced with doublers and inserts. 
Imperfections of the model can also cause failures, which might be considered because some 
elements might be failing just because of a poor quality of the mesh due to rough element 
size. 

Figure 47: Elements with max FI > 1, for A,g n=0.05. 
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5.6 Summary of examples 
Findings from the test examples can be summarized to these points: 

1) Final discreteness and maximum failure index can be used for the first assessment of 
the results. In most cases, the final design was without failure constraint violation. 
Some examples finished with a slight violation. Final discreteness was usually close to 
1, which denotes that the continuous variables converged successfully to a discrete 
solution which is required in the composite design. 

2) The optimizer was not able to reach a discrete solution when the failure constraints 
could not be fulfilled by the strongest candidate materials (or) due to local stress 
concentration. The difficulty can be avoided by the use of A i g n parameter prescribing 
area of the elements which failure constraints are ignored. 

3) Constraint aggregation did not work satisfactorily. Best solutions were achieved with 
p K s lower than reported in the literature, but it still did not reach the quality of a 
solution without aggregation. Aggregation was expected to decrease the optimization 
time, but examples with aggregation required similar or even longer time due to worse 
convergence. These differences, compared to the literature, could be explained by a 
different approach to derivatives and evolution of the design cycles. 

4) Although default optimization parameters were defined to achieve a robust solution in 
most cases, lower mass was achieved with altered parameters in some examples (the 
box example performed better with higher number of iterations imax). 

5) Simple examples revealed that the program is capable of reaching the true optimum in 
some cases, but not in all of them, which is not surprising when gradient optimization 
is used. Box with flanges, as a representative of a larger task, contained patches with a 
relatively low failure index, which also points to nonoptimal solution. 

6) Optimization time ranged from minutes for one element to 14 hours for the galley with 
multiple load cases. Most of the time is spent on Jacobian evaluation, related to the 
number of failure constraints, thus time increases with number of candidate materials 
on the layup, the number of elements, and the number of load cases. Number of design 
variables also increases time, but not as significantiy as was demonstrated by the panel 
where one large patch did not shorten the time as dramatically compared to the case 
without patches. 
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6 C o n c l u s i o n 
Theses described a new approach to sandwich optimization for the task of mass minimization 
with sandwich failure constraints. The method is based on Discrete Material Optimization 
(DMO) , which applies the principles of multimaterial topology optimization to composite 
optimization. The method uses continuous design variables which converge to discrete values 
by the end of the optimization due to penalization. 

Outcomes and contributions of the thesis: 

1) The novelty of this approach is that it evaluates the gradients on elements separately 
and the interaction of the neighboring elements is carried out by the controlled 
evolution of the model. Gradient evaluation is separated from the F E model, which is 
theoretically less efficient, but enables to use an ordinary Nastran model which can 
contain common types of elements such as springs, R B E elements, etc. 

2) Sandwich failure criteria within the concept of D M O require to deal with a 
combination of the candidate materials. Among sandwich failures, crimping and 
wrinkling were not found to be published previously in the scope of D M O . 

3) The method was implemented as a Python program. It is able to deal with basic 
features such as: general Nastran input with shell elements in the optimization domain, 
multiple user-defined layups, multiple load cases, and patches. 

4) Test examples were used to find robust default optimization parameters. It was shown 
that optimization is able to achieve a discrete solution without failure constraint 
violation or only slight violation. 

5) Test example with concentrated load at one node revealed difficulties of the optimizer 
to converge due to locally high failures. This issue was successfully solved by defining 
a parameter which prescribes a small portion of the element failures to be ignored. 

6) Examples demonstrated potential of the program for conceptual design of the 
sandwich structure layup. A s a result, the workflow of a designer can change as shown 
in Figure 26, where the comparison with and without optimization is shown. Running 
the optimization program takes longer machine time, but modification of the 
optimization parameters is quick compared to manual layup modification and 
checking the results each time to satisfy requirements when the optimization program 
is not used. 

The method can be further improved to fit a wider scope of engineering tasks. New 
manufacturing constraints can be added as they w i l l be required by specific components. 
Implementation of the adjoint method for derivative calculation could help with additional 
requirements on displacement and buckling. Other potential for scientific work is in 
combination with different methods, such as G A , to decrease the risk of reaching a local 
minimum. 
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8 L i s t of s y m b o l s a n d a b b r e v i a t i o n s 
A , A i g n 

A 4 4 , A 4 5 , A 5 5 
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A D S 
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D M O 

D D M O 

D , D 
E , E f 

f(x) 
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F E , F E A , F E M 

F I , F l a , T, cr, wr 

F S D T 
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G A 

G F R P 
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I P O P T 
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I V W R 
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K S 
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M M A 

M S C A D S 

M U S T 

riE, IIM, IIMF, IIMC, 

n.p. 
N , N c r 

P 

P U R 

P V C 

q, q 
Q 

element area, relative ignored area 
transverse shear stiffness matrix members 
membrane stiffness matrix 
Automatic Differentiation 
Automated Design Synthesis 
blending parameters 
bending-membrane coupling stiffness matrix 
distance of face-sheet centers, discreteness 
Discrete Material Optimization 
Decoupled Discrete Material Optimization 
bending stiffness (matrix) 
elastic modulus, effective face-sheet modulus 
goal function 
force vector 
finite element, finite element analysis, finite element method 
failure index for face-sheets, core shear, crimping, wrinkling 
First Order Shear Deformation Theory 
constraint function 
genetic algorithm 
Glass Fiber Reinforced Polymer 
core shear modulus 
i-th candidate material, number of design cycles, number of optimizer 
iterations 
Interior Point Optimizer 
j-th layer, design cycle 
Jacobian matrix 
k-th element, coefficient in the logistic function 
wrinkling coefficient 
shear correction factor 
stiffness matrix 
Kreisselmeier-Steinhauser function 
Lagrange function 
real mass 
penalized mass in the goal function, bending moment 
Method of Moving Asymptotes 
M S C Automated Design Synthesis 
MUltidisciplinary Synthesis Tool 

nL, n p number of elements, materials, face-sheet materials, core 
materials, layers, pairs for blending 

neutral plane 
linear load, critical load 
penalization coefficient 
polyurethane 
polyvinyl chloride 
distributed load, penalization coefficient 
shear force 
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Q, Q layer stiffness matrix, layer stiffness matrix in element coordinate system 
R A M P Rational Approximation of Material Properties 
R B E 2 , R B E 3 Rigid Body Element 
S shear stiffness, allowable stresses in the face-sheet and core 
SIMP Solid Isotropic Materials with Penalization 
SLP Sequential Linear Programming 
S L S Q P Sequential Least SQuares Programming 
u displacement vector 
U D uni-directional composite 
ti, t2, tf thickness of first and second face-sheet, core, face-sheet 
tM, thickness in goal function 
T transverse force load 
v element volume 
V, V f , V m total volume, composite fiber volume content, composite matrix volume 

content 
w deflection, weight coefficient 
W c , W f core mass, face-sheet mass 
x i j k , x T k material variable, thickness variable 
z position of the layer from the neutral plane 

A, A 1 2 finite difference of the variable, difference between variables in blending 
pair 
A m a x allowable change of design variable per design cycle 
e strain 
Y shear strain 
9, 9 P material orientation, principle direction angle 
A Lagrange multiplier 
V> Poisson's number 
P , P K S , P L , P M material density, K S function coefficient, layer density, density in goal 

function 
p shifted layer density 

a, 0"PN stress, P-norm function 
T shear stress 
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9 A p p e n d i x 

9.1 Layer stress calculation 
In this work, the First Order Shear Deformation Theory (FSDT) is used to calculate layer 
stresses during optimization according to the element inner loads which are printed by the F E 
solver. Stresses can be also taken as the output from the F E , solver but analytical formulas are 
needed for evaluation of the derivatives of design constraints dependent on stresses. The 
F S D T differs from the Classical Laminated Plate Theory (CLPT) in removing Kirchhoff 
hypothesis so that transverse normals after deformation do not remain perpendicular to the 
plate mid-surface. Practical consequence is that transverse shear stresses need to be evaluated. 

Assumptions and restrictions of the theory [69]: 

1) The layers are perfectly bonded together. 

2) The material of each layer is orthotropic linearly elastic. 

3) Each layer is of uniform thickness. 

4) The strains and displacements are small. 

5) The transverse shear stresses on the top and bottom surfaces of the laminate are zero. 

Relations in this chapter are from Reddy [69] and Juracka [70]. Generalized plane stress is 
assumed. Out-of-plane components O33 = 0, £33 * 0 are not further elaborated. Considering the 
orthotropic material of the layer, its constitutive stress-strain relations are given by the lamina 
stiffness matrix Q in 
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(85) 
12 

where v 2 = v 1 2 - '22 For sandwich structures transverse shear properties need to be 

considered. It is assumed that shear stiffness is given by the core material, so the shear stress 
and strain relation is 

(86) (T26J = Q 4 4 0 ' fy2 6 j= 
G23 0 ' fy 26J 

[T16j 0 Q 5 5 . 0 G 1 3 

Transformation to the plate coordinate system leads to the eq. (85) and (86) in the forms 
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[y*yj , (87) 

Q 4 4 Q 4 5 ' 

l r 4 Q 4 5 Q 5 5 . 

where transformed members of the matrix Q are 

Q 1 1 = Q 1 1 c o s 4 0 + 2 ( Q 1 2 + 2 Q 6 6 ) s i n 2 0 c o s 2 0 + Q 2 2sin 4e 

Q 1 2 = ( Q u + Q 2 2 - 4 Q 6 6 ) sin 2 0 cos 2 6 + Q 1 2 (sin 4 6 +cos4 6) 

Q~ 2 2 =Q n s in 4 0 +2 (Q 1 2 +2 Q 6 6 ) s in 2 0 cos 2 0 +Q 2 2 cos 4 0 

Q ~ i 6 = ( Q 1 1 " Q 1 2 " 2 Q 6 6 ) sin 0 cos 3 6 + ( Q 1 2 - Q 2 2 +2 Q 6 6 ) s in 3 0 + cos d 
Q2^Qn-Q12-2Qjsm36cos6 + {Q12-Q22+2Qjsm6+cos36 • (88) 

Q 6 6 = ( Q 1 1 + Q 2 2 - 2 Q 1 2 - 2 Q 6 6 ) s i n 2 0 c o s 2 0 + Q 6 6 ( s i n 4 0 + c o s 4 0 ) 

Q 4 4 = Q 4 4 c o s 2 0 + Q 5 5 s i n 2 0 
Q ~ 4 5 = ( Q 5 5 - Q j s i n 0 c o s 0 

Q" 5 5 =Q 5 5 c o s ^ + Q ^ s i n 2 ^ 

Figure 48: Element force and moment resultants according to Reddy [69]. 

Constitutive equation for the whole laminate has the form 

lN\= A B U0} 
1M) B D I AT J 

(89) 

where N and M are the in-plane and moment linear loading vectors as depicted in Figure 48, 
£° and K are the membrane and bending strain vectors 
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° XX 
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K- (90) 
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Extensional stiffness matrix A , bending stiffness matrix D, and bending-extensional coupling 
stiffness matrix B are 3x3 symmetric matrices which members are 

N ^ N ^ N 

A i 3 = l l Q ~ i j A z k + i - z k ) , B , j = ^ Z Q y , k ( z L - z k ) , A J = T Z Q n , k { z l + i - z l ) > 
k=l z k=l J k=l 

(91) 

where N is number of the layers on the element and z (shown in Figure 49) is the layer 
position according to the neutral plane calculated for non-symmetric layup as 

22 k) 

Z = 
k=l 

np N 

Z h i Q n k + Q 
k=l 

22k) 

(92) 

bottom side 

n.p. 

•k+i 

top side 

Figure 49: Layer numbering and position according to Reddy [69]. 
Bottom and top side are according to Nastran notation. 

Additional constitutive equations for the transverse shear are 

A A 

•^44 -^45 

^ 4 5 ^ 5 5 

c (93) 

where extensional stiffnesses are for laminated composites 

^ 4 4 — S Q44,k(Zk + l Zk) > A 4 5 ~ ^ l Q 45,k(Zk+l Zk) > A55~ S Q55,k(Zk + l Zk 
k=l k=l k=l 

(94) 

K is the shear correction coefficient which takes into account change of the real shear stress 
across the plate in contrast to constant distribution in this theory. For homogeneous plates it is 
K = 5/6, for sandwiches K ~ 1 according to and for sandwiches shear stiffness is assumed to 
be given only by the core as 
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- d - d - d A44 = Q44k — , A45=Q45k— , A55=Q55k — (95) 

where k denotes core layer, d is distance of face-sheet centers, L is core thickness. 

For the evaluation of lamina stresses, the global compliance matrix must be constructed as 
inverted global stiffness matrix from the eq. (89), resp. (93). so that membrane and bending 
strain vectors are calculated as 

1- a b IN) 
1 b d ImJ 

(96) 

It is worth noticing that in case of symmetric layup, inversion is simpler since matrix B = 0 so 
that b = 0, a = A" 1, and d = D"1. 

Strains on the k-th layer are than computed 

K~ yy I 
(97) 

and corresponding stresses in the global coordinate system are 

a 
a (98) 

Y xy\k 

where Q is the transformed lamina stiffness matrix from eq. (87). Stresses in the desired 
direction given by the angle 0 (e.g., in the material coordinate system) are given by 

a A = 
, T 12 ]k 

cos 6 
sin 2ö 

sin 2ö 
cos 2 ö 

2sinö cosö 
—2sinö cosö 

2 2 
-sin6cos6 sin6cos6 cos —sin 6 

(99) 

Transverse shear stresses are considered constant through the composite by the FSDT so that 
the eq. (93) with inverse constitutive matrix is 

y yz 
I y xi KyA^A^ A45) 

A. 55 1 M 5 

A45 A, 
"A4 

4̂4 

Qy\ (100) 

and the layer transverse shear stresses can be evaluated again by the equation (87) 

\ T A = Q44 Q 4 5 - \yA 
Q 4 5 Q 5 5 . 

(101) 

and finally by transformation to the material coordinate system by 0 we get 

16 ]k 

cosd — sind 
sind cosd yz (102) 
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