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Abstract

The thesis starts with a review of design calculations of sandwich beams, plates, and
complicated structures, where FEM plays an important role. Next, optimization methods are
reviewed to shed light on the wide area of mathematical programming and basic topology
optimization principles up to its implementation by other authors in composite design,
including representative examples of analytical and numerical optimization of sandwiches.
The thesis objective is defined as an implementation of mass minimization with failure
constraints aiming to make the sandwich design process easier. This is done by own
implementation of gradient optimization based on topology optimization principles, known as
Discrete Material Optimization (DMO), which helps to find optimal layup. Approach to
material interpolation and failure constraints interpolation is developed and programmed in
Python, using First Order Shear Deformation Theory (FSDT) to evaluate stresses on elements,
based on element loads given by the Nastran FE solver. Gradient optimizer searches for
optimal materials for each layer of the sandwich face-sheet and core from the user-defined
candidates. The program is tested on examples of sequential complexity from one-element
beams where the true optimum is known up to a practical task of the sandwich galley from an
airliner. Results have shown that the algorithm can reach a discrete solution without
(significant) violation of constraints and thus can be practically used to make conceptual
sandwich design more efficient.
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Abstrakt

Tato doktorska disertacni prace je zaméfena na koncepcni ndvrh sendvicovych konstrukci
pomoci metody konecnych prvkd za pouziti diskrétni optimalizace materidlu (Discrete
Material Optimization — DMO), coZz je gradientni metoda vyuZivajici principt
multimateridlové topologické optimalizace.

V prvni ¢asti prace jsou popsany analytické pristupy vypoctu sendvicovych nosniku a panel,
které jsou jiz dlouho znamé a pouZivané. Siroce rozsifena je té7 aplikace metody konecnych
prvkt pri navrhu sendvicovych konstrukci, nebot' umoziuje analyzovat i sloZitou geometrii a
vrstveni. V rdmci prehledu soucasného stavu poznani jsou nastinény vybrané optimalizacni
metody. I kdyZ se vlastni pradce zaméfuje na gradientni metody, genetické algoritmy jsou
zminéné, diky svému rozsifeni v optimalizaci kompoziti a tim padem i sendvici.
Matematické programovani je dale rozvinuto v podobé nejcastéji uZivané metody topologické
optimalizace — SIMP (Solid Isotropic Material with Penalization), kterd v zahranic¢i poslouZila
jako vychozi bod pro vyvoj metody DMO a jejich variant, které se z uZiti na optimalizaci
kompoziti rozSifuji i v oblasti navrhu sendvici. Jako priklad obecného pristupu ke
konstrukéni optimalizaci je shrnuta optimalizace za pouZiti metody konecnych prvku
v Nastranu a tii fazova optimalizace kompoziti v OptiStructu. Pfimo v oblasti sendvici je
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numerickych metod.

Cil disertacni prace byl stanoven jako programova implementace optimaliza¢ni metody, ktera
by usnadnila proces navrhu sendvicové konstrukce za pouZiti MKP, tedy s geometrii, kterou
neni snadné navrhnout pomoci analytickych metod tak, aby se sniZil pocet navrhovych cykld,
které musi inZenyr rucné provadét (ménit vrstveni a kontrolovat splnéni poZzadavki).

Optimalizacni tdloha je formulovana jako minimalizace hmotnosti konstrukce pti dodrZeni
omezujicich podminek sendvi¢ovych poruch (maximalni napéti v potahu, smyk jadra,
crimping — zvInéni, wrinkling — zvrasnéni), kde ndvrhovymi proménnymi jsou materialy
(vCetné tloustky a orientace vrstvy) kompozitniho potahu a jadra. Metoda je zaloZena na
interpolaci hustoty dil¢ich materiali pomoci RAMP (Rational Approximation of Material
Properties) schématu v kazdé vrstvé, kdy jedna vrstva obsahuje podily vice sloZek materialu.
Diky vhodné penalizaci matice tuhosti vrstvy a poruch se optimalizér konverguje
k diskrétnimu vysledku (ve vrstvé zlistdva pravé jeden materidl) na rozdil od pocatecni
rovnomérné distribuce materidlovych proménnych. Logistickd funkce je pouZita pro
interpolaci hustoty jednotlivych vrstev potahu tak, aby se vrstvy odebiraly z vnéjsi strany a
navrhové veliCiny se plynule ménily. Pro dosaZeni diskrétnich vysledki, které spliuji
predepsana poruchova kritéria, byly stanoveny vychozi parametry optimalizace.

Vlastni softwarovd implementace je naprogramovana v Pythonu, kdy uZivatel nejprve
definuje potencidlni materidly a sit MKP modelu s okrajovymi podminkami a zatiZenim.
Program nasledné provede interpolaci vlastnosti, tak aby mohla byt pouZita v externim MKP
fesici, kterym je Nastran. Ten spocita linearni statickou analyzu a vypiSe vnitini silové ti¢inky
na jednotlivych elementech, které jsou uZ pak vlastnim programem pouZity k vypoctu
napjatosti ve vrstvach a opakovanému vyhodnoceni poruchovych kritérii tak, jak je poZaduje
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optimalizér (IPOPT) v rdmci vyc¢isleni omezujicich podminek, cilové funkce a jejich derivaci.
Po konvergenci k diskrétnim vysledktim vrstveni dojde k zaokrouhleni piipadnych
nepresnosti a ovéreni splnéni poruchovych kritérii na findlnim modelu. Za ticelem sniZeni
vypoctové narocnosti byly implementovany agregace omezujici podminek pomoci KS funkce
a ,patch design“, tedy sdruZeni elementd, které maji sdilené navrhové proménné (vrstveni).
UZivatel nakonec zkontroluje splnéni ostatnich podminek, které nejsou v optimalizaci
podchyceni, napt. deformace, ztratu stability a konstrukéni detaily.

Funkce metody byly testovany na piikladech rtizné sloZitosti, pocinaje jedno-elementovym
modelem sendvice zatiZeného tlakem v jeho roviné, smykem a ohybem, déle série simultanné
optimalizovanych nosnikii sestavajici z jednoho elementu. U téchto piikladG bylo feSeni
srovnano se zndmym optimem. Pfiklad s vySsim poctem proménnych byly panely s trojim
typem okrajovych podminek, kde je porovnana narocnost pri optimalizaci kaZdého elementu
zvlast, vSech elementl se spolecnym vrstvenim, pouZiti agregace omezujicich podminek a
navrhovych oblasti zatiZzeny pod tlakem na horni strané a krouticim momentem obdobné jako
kiidlo. Piiklady z praxe jsou skiii pouZivana v interiéru dopravniho letadla a velka kuchyrika.
Na piikladech bylo demonstrovano, Ze optimalizace je schopna nalézt FeSeni, které ma
vysokou miru diskrétnosti a vyhovuje poruchovym kritériim nebo je jen mirné narusuje. Pro
nékterd nastaveni nebylo nalezeno skutecné minimum hmotnosti, jak lze vidét
u jednoduchych prikladi. Vypoctova narocnost silné zavisi na poctu proménnych a
omezujicich podminek (zejména poctu elementti), takZe napft. vrstveni kuchyiiky s hrubou siti
Citajici cca 5000 elementi se optimalizovalo priblizné 14 hodin.

Pfinosy disertacni prace jsou v tom, Ze byl odzkouSen upravené postup vypoctu derivaci, které
umoziuji snadné pouZiti béZné pouzivanych skorepinovych MKP modeli. V rdmci DMO
byly zcela nové pouZity interpolace wrinklingu a crimpingu. Testovaci priklady ukézaly, Ze
optimalizér nekonverguje pri naruseni poruchovych kritérii z divodu koncentrace napéti nebo
nedostatecné pevnosti vyuZitelnych materialti, ale dobré konvergence bylo dosazZeno pouZitim
parametru, ktery predepisuje ignoraci malého mnoZstvi poruchovych kritérii. Program tedy
miZe poslouZit v inZenyrské praxi pro usnadnéni koncepcniho néavrhu sendvicovych
konstrukci tim, Ze sniZi pocCet ru¢nich dprav vrstveni a pfepocitdvani a vyhodnocovani poruch.
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1 Introduction

Sandwich structure combines a thick soft core in the middle of thin stiff face-sheets, which
effectively transfers bending moments and satisfies high bending stiffness, which
predetermines it to wide use in secondary structures required to be light and stiff under low or
intermediate load levels. Sandwich structures are used and designed widely in the aerospace
industry at least since Second World War. Since that, wide knowledge about them were
collected and various design approaches were developed and described in engineering and
scientific literature.

What is new in the recent years and decades is the use of calculations (mostly through the
finite element method), not only in the validation of human-made designs, but also directly
helping with design in the form of optimization used as a tool to find the best design
parameters fulfilling design criteria given by an engineer. Such a growing tool is the topology
optimization already established in the conceptual design of parts with isotropic materials. It
uses gradient methods to solve tasks with a large number of design variables. Discrete
Material Optimization (DMO) is a method based on similar principles as multimaterial
topology optimization applied to design composite layups. Sandwiches, as a subgroup of
fiber-reinforced composites, have a potential for ongoing research and the improvements of
DMO.

The thesis implements DMO with a modified application of derivative evaluation combined
with evolution within a given number of design cycles. The implementation is in the form of
Python program intended as a tool which could be used by engineers and help them in finding
a low mass design satisfying failure constraints on the level of global layup where an engineer
defines geometry, loads and boundary conditions, and available material candidates so that the
algorithm can search for the best suited combination of them.
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2 State of the art

Extensive review of current trends in research and applications of sandwich structures were
recently made by Birman and Kardomateas [1] which covers topics of nontraditional core
concepts, nanoinclusions, smart materials, functionally graded structures, damages and
various environmental effects in aerospace, civil, and marine engineering. The topic of
sandwich structures is clearly very wide and so the following review focuses specifically on
structural design calculations, on optimization, and application of topology optimization
principles to sandwich structures.

2.1 Design calculations

From the broader view, a typical development methodology of a composite structure can be,
according to the CMH-17-6 Composite Material Handbook [2], summarized to:

1. Requirements definition — usage, environment, geometry, loads. ...

2. Available material assessment — preliminary selection for face-sheets, core and glue.
3. Evaluation of available manufacturing technologies.
4

Preliminary design — structural type (sandwich or laminate), number of layers and
their orientation, core thickness and density, manufacturing tooling.

Verification tests of material properties.
Detailed design — design of joints, sealing. ...
Structural details and subassembly tests, optimization of mass, cost, lifespan, ...

Prototype test.

N A

Finishing documentation.

From the broader view, sandwich is a special case of composite structure and it is often
difficult to answer the question where to place a sandwich and where to use only a laminate
on the product, since it depends not only on the mechanical properties and mass but also on
other special requirements, reliability, and maintainability. These considerations need to be
addressed in relation to the specific part and manufacturer. The review in the following
paragraphs is focused to stress and deformation analysis, since it is a wider background of the
theses.

2.1.1 Sandwich beams

Difference between analytical calculation of the sandwich beams and homogeneous beams is
that sandwiches have, due to soft core and thin face-sheets, small shear stiffness so that shear
deformation cannot be neglected. Instead of Bernoulli equation for bending, it is necessary to
use more general Timoshenko formulation which includes shear effects
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d4w:( Ddz) ’ M

dx | sdx)?!

which can be rewritten in more demonstrative form of partial differential equations for
bending and shear displacements w=w, +w_ ,

d*w d*w,
X4b:q 5 S =—q , (2)

D
dx’

where q is distributed load; bending and shear stiffness are defined as

_E t,Eyt,d S_chz
~Et,+E,it, ~ Tt

c

3)

where E;. E, are elastic modules of the top and bottom face-sheet, G. is shear module of the

t,+t
core, ty, t, t. denotes face-sheet and core thickness, d :tc+% is a distance of face-sheet

centers.

The governing equation (1), which deduction is explained, e.g., by Zenkert [3], is valid with
typical sandwich assumptions that face-sheets transfer in-plane loads and bending moments,
but do not transfer shear force, whereas the core does not transfer in-plane loads and bending
moments, but transfer whole shear force. Error is small if the core has low modulus in the in-
plane direction and face-sheets are thin in compare to the core. Conditions for the error less
than 1 percent are if

d 6E,t,d°

—>5,77 , ———>100 . 4
tf E t3 ( )

cc

Simplification is drawn in Figure 1. In practical applications, it is possible for simplicity to
use beam equations to calculate real panels with neglected side boundary conditions.

In-plane normal stress 1
Transverse shear stress % % %
Without E <<E, E.<<E
approximations t <<t

Figure 1: Simplification of the stresses across a sandwich[32].

Theories of higher orders can be used to work with more precise deformation across the
sandwich, e.g., polynomial distribution instead of linear or involving nonzero out-of-plane
stress. These theories have application, e.g., in detailed calculations in the area where the

12



sandwich changes its thickness since tapered face-sheets carry also the shear force [5, 7, 9].
Accurateness of the results might be comparable with FEM, but setting the equations requires
considerable insight and they finally need to be solved numerically.

2.1.2 Classical panels

Wide attention was paid to the simple panels with constant layup and analytical methods for
their design were developed. Their applicability fits rather to the panels on large aircraft
where the structure can be divided into idealized panels (flat or with one curvature or
cylindrical) with analytical boundary conditions on the edges (simply supported, clamped, or
free) and clear loads (tension/compression, shear, bending moments acting on the whole edge,
and pressure acting on the surface). These loads can be calculated analytically or from the
global FE model. Several sources are described in the subsequent paragraphs.

As for the beam, panel behavior can be described by a set of differential governing equations
containing chosen independent variables, e.g., displacement w and shear forces T, T,.
According to over the thickness stress variation, first-order shear deformation theory (FSDT),
which application is described in detail in appendix Layer stress calculation 9.1, or higher-
order shear deformation theories (HSDT) can be used. Solution of the governing equations for
specific boundary conditions gives deformation distribution which can be finally used to
calculate stresses. Buckling and natural frequencies can be calculated as well. Equations can
be solved by numerical methods or approximately with help of energetic methods, e.g., Ritz
method which supposes the solution in the form

M, N,
W: Z Z Amnwmn(x

m=1n=1
M, N,

T=3 3 BuTwlx.y) ° ®)
Z_: Z o Ty (X, Y)

where Amn, Bmn, Cimn are unknown coefficients — amplitudes of the chosen functions W, Txmn,
Tymn which are usually in the form of function multiplication X, Y,

Solutions for various boundary conditions were collected into diagrams which can be used for
practical calculations and design. Many of them can be found in the handbook CMH-17-6 [2],
which is a revision of canceled MIL-HDBK-23 from 1974. Regarding the time of original
publishing, both handbooks are oriented rather to the metal materials and mostly analytical
approaches since composite materials were not so common and computers did not allow wide
use of FEA. By sequential use of proper diagrams, it is possible to determine needed core
thickness, face-sheet thickness, core shear module for flat panels with isotropic or orthotropic
face-sheets and core. For combined loads, it is recommended to use additive equation, e.g.,
for compression and shear loads

R.+R=1 , (6)
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where RZNi is ratio of real load to the critical load. Similar methodology is described for

cr

sandwich cylinders. Sandwich failures are checked afterwards.

Another significant source is Bruhn [11], who dedicated a detailed chapter to sandwich
strength calculations (again flat and curved panels, and cylinders for various load
combinations) and also focused on metal structures with hexagonal and square cell cores, and
corrugated cores, where core properties are approximated by empirical relations based on the
core density. Face-sheet plasticity is considered. Design of the flat panel with given load and
allowable stress follows the points:

1. Determination of the face-sheet thickness according to compression load.
2. Determining the core thickness and its shear modulus to prevent global buckling.

3. Define core parameters for sufficient strength in the out-of-plane direction loads and
selecting elastic module and shear module to prevent wrinkling.

4. Define the core size to prevent dimpling.

5. In the case of sandwich cylinders, the extra point is to check the bending stiffness of
the cylinder preventing buckling.

Kollar [13] describes the deduction of formulas for long plates (based on the analogy with
sandwich beams), plates with orthotropic layup loaded with pressure, buckling of long plates
simply supported and clamped, and orthotropic simply supported plates. Kollar mentions also
analytical formulas for natural frequencies of sandwich plates.

ASM Handobook [15] contains the methodology for sandwich panel design loaded with
uniform pressure by the help of superposition of two perpendicular beams which gives
conservative results of stress in the face-sheet and core. The handbook also recommends how
to reinforce the tapered endings of the sandwich with composite face-sheets.

Much simpler approach is summarized in the document [17] from the composite material
producer Hexcel. General approach to design a sandwich panel is:

1. Panel definition (geometry and boundary conditions) and load definition.
2. Constraints definition — displacements, thickness, mass, and safety factor.

3. Preliminary calculation — choosing panel thickness and core thickness and material,
stiffness calculation without shear deformation, next calculating displacement and
core shear stress.

4. Design optimization — core and face-sheet thickness modification, core material
modification.

5. Detailed calculation — with shear deformation included, calculating stress in the core
and face-sheets.

6. Checks — global buckling, displacement, crimping, wrinkling, intracell buckling, and
core crush.
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This approach is usable for manual calculation. Big simplification is the neglection of the
shear deformation during the optimization phase. Several typical loads of sandwich beams
and an example of the simply supported panel loaded with uniform pressure are described in
the cited source.

2.1.3 Finite element analysis

Finite element method (FEM) enables several different approaches to sandwich calculations.
When whole structures are calculated, the sandwiches are modeled by shell elements with
composite layup where the special layer acts as a core. It is necessary to use a proper element
type which does not neglect the shear deformation. Specialized programs might contain even
element types programmed directly with formulations valid for sandwiches, but general
software packages usually do not contain these element types. During postprocessing,
sandwich failures are evaluated from the stresses in the core and face-sheet on each element
according to analytical failure criteria. Buckling need to be checked separately by linear
buckling analysis or by nonlinear static analysis. Regarding sandwich assumptions, Hexcel
document [17] recommends for the honeycomb core to use the following material data: shear
modulus in L (ribbon) direction Gy, = G, and W (transverse) direction Gy, = Gw, and
compression modulus E, = E.. Other characteristics can be defined as close to zero
E~E~G,~0 , v ,~v, ~v ~0 .

b

Sandwich areas

Monolithic
areas

L
Facesheets Core Monolithic skin
(210 (3D (2D

Figure 2: Example of the model combining 2D and 3D elements on helicopter panel [27]
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Sandwich needs to be modeled more in detail if stress distribution is required inside detailed
structural parts such as joints, core inserts, geometrical changes, and so on. It is usually
enough to model the core as a continuum by 3D elements and modeling face-sheets by shell
elements with offset from the core or without the offset on the slightly thicker core.
Depending on the task, in case of plane strain, the core can be modeled by 2D elements and
face-sheets only as 1D beam elements. Continuous 3D elements can be used even for
honeycomb core with homogenized material properties found experimentally or from the FE
model of the representative sandwich section, where shell elements represent face-sheet and
core walls if they are not represented by very fine 3D elements to catch precisely local stress
[19, 21], but using 2D elements for honeycomb and corrugated walls is more common for
quite detailed models of the specimens [23, 25]. Example combining 2D for faces and 3D
elements for the core is in Figure 2, which is after the optimization for buckling on helicopter
fuselage panels [27].

2.1.3.1 Complicated structures

When solving a practical task, it is often not possible to split the structure to simple
geometrical parts (flat panels or panels with one curvature or cylindrical geometry) having
constant layup and loaded uniformly along its edges and by uniform pressure. In these cases,
analytical methods are hard to use so that FEM is necessary during design if it is not to be
tested only experimentally. Thanks to easiness and precision, FEM is also often used during
panel design where analytical methods could be used well. For example, designing the layup
of the light aircraft wing, analytical methods can be used with enough precision in the global
scale, but when designing a fuselage of a light aircraft [4, 6], using FEM is much more precise
than approximate analytical methods because these fuselages used to be geometrically more
complicated.

Design and strength checks of sandwich (laminated) structures, which are done in [4, 6] at the
Institute of Aerospace Engineering, have rather global modeling character since structural
details (such as hinge reinforcement, web-skin connection, sandwich-laminate transition) are
rather made according to the technological possibilities and experience of the manufacturer.
The workflow is shown in Figure 3. Geometry is used to create a relatively rough mesh with
loads and boundary conditions. Here are two options of modeling critical load cases: one way
is to model real cases, second way is to model experimental tests which should proof them.
Modeling of the experimental test is more idealized, but the test should be proposed to verify
critical sections of the structure and moreover, it is possible to validate FE model directly with
the experiment, which would be less representative in case of modeling the real case (e.g., due
to loading through test tools instead of aerodynamic loads acting on the whole skin). The first
layup is placed intuitively in Patran (Laminate modeler) with respect to manufacturing. Than
FEA is made. Postprocessing is done in the in-house program COMPOST [31], which
calculates sandwich and laminate failures for all elements. According to the results (over-
stressed and low used areas in the model), layup is manually modified, again regarding
manufacturing, and the analysis is repeated. Since the postprocessing is laborious (e.g., for 7
load cases), this optimization is repeated usually 10-15 times. In Figure 4 depicts a tail area
during postprocessing.
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Figure 3: Schema of the workflow for
designing a light aircraft layup.

When a light composite airplane fuselage is designed, thin wall structure principles can be
assumed, e.g., that the bending moment on the wing is transferred by the axial forces in the
beam flanges and the skin transfers only its small portion. If a sandwich is used in this case,
the core function is primarily to increase the buckling resistance of large areas of the skin
rather than increasing the bending moment transfer by sandwich face-sheets. In this regard
and due to technological reasons, several load carrying layers are placed on one side (usually
the smooth side of the skin). They are usually supplemented by the foam core and covered
with only one closing layer, although in the areas of local bending both face-sheets need to be
reinforced by additional layers.
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Figure 4: Example of the critical sandwich elements during side load of the tail of 4 seat
aircraft. In the area 11 and 12 core shear is critical, resp. core crush in the area 13 [6].
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2.2 Optimization

2.2.1 Optimization methods

A lot of methods were developed for the optimization of various tasks. In this chapter,
methods related to composite optimization or directly to the thesis are briefly introduced.

2211 Genetic algorithms

Genetic algorithms (GA) are widely used in composite optimization as can be found in
extensive review papers [8, 10, 12, 14]. GA work on probability bases and fall into the
heuristic category. A series of individuals carries genes where design variables are coded.
Goal function is evaluated in each iteration for each individual and individuals get fitting
parameters, which defines the probability with which the individual will continue to the next
iteration. Another tool is crossover, which means that two individuals swap part of the genes.
Mutation means that some variables in the gene are changed with a given probability. GA do
not require to derive gradients and can be easily parallelized. Thanks to the probability base,
they are less prone to end in the local optimum. By their nature, GA work with discrete
variables, which makes them convenient for composite layup optimization. Disadvantage is in
a high number of goal function evaluations (e.g., in case of wing composite panels layup [33]
it was needed 300 iterations with initial population of 400 individuals), so that models for
optimization by GA need to be easy to evaluate in each iteration and they should contain
rather small number of design variables.

2.2.1.2 Mathematical programming

To minimize goal function f(x) with constraint functions g(x). Lagrange function is typically
minimized

L(x,M)=f(x)+2 1, g,(x) 7)

where Lagrange multiplicators A are minimized together with variables x. Typical approach to
find minimum is to solve equation system where partial derivatives of the Lagrange function
are set to zero vector. The minimum can be proved by calculating Hessian matrix (matrix of
the second derivatives) which should be positive definite. Since this approach could be quite
difficult in general, for specific types of goal and constraint functions, efficient methods were
developed. Example of structural optimization with mathematical programming of the

PP

stiffened panel can be found in the paper by Pisték and PeSadk [34] and a wider description

was given by PiSték [35] including a heuristic approach based on the criteria of fully loaded
structure.

Important task in gradient optimization methods is derivative calculation which often takes
significant portion of the optimization time. If we assume that functions are continuously
differentiable, there are basically three options how to evaluate derivatives:

1. Symbolic differentiation — formula for the function derivative is made by hand or with
the help of mathematical software, which might give quite complicated result, but it
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can be used for substitution without user interaction. If the function is clearly defined
for analytical differentiation, it is usually more efficient than next approaches.

2. Numerical differentiation — the derivative is computed by the forward, backward, or
central difference which require to evaluate one (two for more precise central
difference) extra functional value(s) in the chosen step from the point where the
derivative is required. It is easy to implement, but it could be prohibitive for a high
number of variables or if the function takes long to evaluate, e.g., in the case of
calculating a large FE model.

3. Automatic differentiation (AD) — AD works on the principle of chain rule applied to
the function implemented in the given programming language. First, the original
function code is decomposed into intrinsic functions which are effectively
symbolically differentiated. Second, intrinsic functions and their derivatives are
multiplied together according to the chain rule and combined towards more
complicated parts up to the original function. This procedure can be done as a
transformation of the original function code or by modification during the code
compilation. Brief explanation can be found in the presentation by Berland [36]. AD is
reported to be computationally efficient even in calculation higher order derivatives,
when a user defines still only nonderived original function.

Since Python programming language was selected to work with in this thesis, the initial focus
was on the methods which are available through Python libraries. Large library for scientific
computing SciPy [37] contains two algorithms for constrained nonlinear problems: Trust-
constrained algorithms and SLSQP (Sequential Least SQuares Programming) [38]. For
constrained problems, “Trust constrained algorithms” use the interior point algorithm with
changing barrier parameters (preventing constraints violation) for the solution of sequential
subproblems.

Another available optimizer is IPOPT (Interior Point Optimizer) [39] which can be also called
from Python, but originally works in C++. IPOPT is open-source package which is also
available in MSC.Nastran for large scale optimization (topology optimization).

2.2.1.3 Topology optimization with SIMP method

In 1989, Bendsge [16] introduced Solid Isotropic Materials with Penalization (SIMP) method
to seek the distribution of material in the design space. SIMP method is established as the
most common method of topology optimization. Design variables are element pseudo
densities x,€(0,1) , which are continuous so that gradient optimization can be efficiently
used for large scale problems. To converge results back to the discrete solution (solid or void
material), the penalization coefficient p is defined with recommended values from 2 to 5 (or
increasing during iterations) as shown in Figure 5. Element stiffness matrix is interpolated as

Ke:XSKO ’ (8)

where K is the element stiffness matrix with original solid material. Optimization is typically
formulated to minimize compliance given by force vector F and displacement vector u
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min F'u , 9)

with equality constraint of static equilibrium typical for finite element method

N
(ZXSKo

e=1

u=F |, (10)

where the term in the parentheses is global stiffness matrix assembled from penalized element
matrices.

1

SIMP interpolation

RAMP interpolation

0,8

0,2

0 0,2 0,4 0,6 0,8 1
X 0 0,2 0,4 0,6 0,8 1

Figure 5: SIMP and RAMP interpolation.

Since minimal compliance (i.e. maximal stiffness) would be achieved when all elements are
solid, another constraint is prescribed to limit volume summed over elements v,

N
> v.xP<v . (11)
e=1
Derivative of the goal function (sensitivity) can be found analytically for the element e as

0 .

a—)I;Z—pr: 'u"K,u (12)
Sensitivity is usually filtered to suppress so called checkerboard effect where neighboring
elements are alternately solid and void in the pattern. Than some of the optimization method
is used, e.g., optimal criterion method, SLP (Sequential Linear Programming), or often MMA
(Method of Moving Asymptotes) [40]. Schema of the implementation is in Figure 6.
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Figure 6: Schema of the SIMP method [71].

Multi-material interpolation

When multi-material topology optimization is carried out, interpolation contains weighted
sum of stiffness matrices

K:ZM:WiKi ) (13)

i=1

where the weight coefficient can be defined in more ways, e.g.,

w=x[](1-x2,) (14)
j=1

and the term in parentheses binds i-th material variable x; with other material variables x;.

RAMP interpolation

Rational Approximation of Material Properties (RAMP) interpolation is another scheme
which was suggested by Stolpe and Svanberg [41] to replace SIMP interpolation from
equation (8) in the form
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X
K=——"7——K, , 15
e 1+ q(l _Xe) 0 ( )
where q is penalization parameter causing similar effect as p in SIMP scheme (Figure 5).
Numerical advantage of RAMP scheme is nonzero value and nonzero gradient at point x.=0,
which prevents instability in frequency analysis.

Stress constraints and constraint aggregation

Two difficulties were reported when applying stress constraints in topology optimization.
First, when the element variable vanishes, the stress constraint is singular since the compliant
element has large strain. Cheng and Guo [42] applied so-called e-relaxation in the solution of
truss structures, which prevents the stress singularity in void elements. Similar approach was
later used by Duysinx and Sigmund [43] on continuous structures. Alternative to the e-
relaxation was investigated by Bruggi [44] who achieved a similar effect by use of different
SIMP penalization of the stress and stiffness.

Second, difficulty with stress constraints is due to the large number of elements in topology
optimization. Prescribing stress constraints on each element would be prohibitive, so most of
the studies use aggregation by one of the following functions, where only one or several
constraints are passed to the optimizer. P-norm used by Duysinx and Sigmund [43] is

1 n o. p\l/p
GPN:(_Z(GH,;{ ) : (16)

n-;
where n is number of constraints (elements), the higher power p is, the closer Opy is to the
maximum stress value, but too high p can decrease numerical stability.

Other option is KS function [45]

KS=maxgl~+p%Sln(Z exp[sz(gj—max gi)]) , (17)
i j i

where g is constraint function, the higher coefficient pks the closer KS function is to the
maximum constraint, but too high pxs can decrease numerical stability. Maximum terms in the
formula should prevent data type overflow due to exponential function.

An overview of various approaches to mass minimization with stress constraints was given by
Le et al. [46]. Other aggregation functions are possible as were suggested by Kennedy and
Hicken [47]. When many local constraints are aggregated to one constraint, it leads inevitably
to decrease in the precision of original ones. Logically, there were attempts [48, 49] to
aggregate not to one but to a set of constraints by clustering constraints according to stress
level, element proximity, or physical meaning to find a good compromise between calculation
demands and precision.

There was also a study by Kennedy [50] which avoided the need of constraint aggregation by
using full-space barrier method which was able to solve the task efficiently with a large
number of stress constraints.
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2.2.1.4 Composite optimization with DMO method

Stegmann and Lund [18] applied topology optimization approach to the layer composite to
minimize compliance and in the second paper [20] to maximize the lowest eigenfrequency.
Material interpolation from equation (14) was used in the form for the constitutive matrix of
the layer so that layer stiffness matrix would be

Q:ZM‘,|:X1P ] (1_X§)¢i)]Qi > (18)

where ny is number of potential materials on the layer and x; is the i-th material pseudo
density (design variable), Q; is the i-th material constitutive matrix. This interpolation scheme
converges to one material with x; = 1 and others close to 0, but during iteration sum of x; on
the layer is not 1, which means that this scheme needs to be modified in case of frequency
minimization where the element mass matrix is to be interpolated as well. Scheme used by
Lund and Stegmann [20] for this purpose is extended by the normalizing term

Q:Z an xf’H(l—x?ﬁ) Q, , (19)
i=1 Z Wk j=1
k=1

but it was reported to converge slower. This approach is called DMO (Discrete Material
Optimization) and can be used also for the variable material orientation if we consider each
orientation as a new material variable. In the original form, DMO was used to minimize the
compliance with variable materials and orientations, so that sensitivity analysis can be done in
the same way as in the topology optimization, i.e. by the use of eq. (12). Later, Lund [22]
modified the method also for buckling optimization.

Sohouli et al. [51] developed a Matlab composite optimization framework involving Abaqus
solver. The main idea was to split DMO to two levels, where the first optimization was with
material variables and constant orientations, the second level was with orientation variables
and constant materials. Variables were then updated in the common model and the
optimization ran again until convergence. Each of the optimizations has a lower number of
variables and can run in parallel. The approach was called Decoupled Discrete Material
Optimization (DDMO) and was described and tested on plate and beam examples minimizing
compliance with mass (cost) and manufacturing constraints, preventing large orientation
changes between adjacent patches. DDMO was reported to converge to better results than the
original DMO.

Thickness variation

Original DMO has a fixed number of layers. Sgren et al. [24] described DMO including
thickness optimization by defining new density variable p_,€[0,1] on each element e and its

layer 1. Using RAMP scheme on the layer, the interpolation equation (18) takes the form
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where Qo holds properties for void layer and AQ = Q — Qo, r and q are penalization
coefficients. Optimization was done to minimize compliance with constraints on total mass
and density being lower in outer layers p,<p,(I+1) , and constraints limiting number of

dropped layers in the same location and layer continuity. Authors tested several optimization
schemes with Sequential Linear Programming. The approach was used for composite
optimization without sandwich core. Subsequent paper Sgren et al. [52] called the method
Discrete Material and Thickness Optimization (DMTO). The method is modified for practical
tasks to minimize mass constrained with buckling load factors, eigenfrequencies,
displacements, and basic manufacturing constraints. Patches were applied to group elements
and design domains for thickness variables and for material candidates were made
independently. In the example (main spar of the wind turbine blade), the foam material
candidate was included but its thickness was the same as of GFRP candidate and none
sandwich constraints were applied. Dealing with face-sheet thickness was improved by
Sgrensen and Lund [53] where the thickness was controlled by one independent variable
which drives the layer variables through the filtering function. Recent study by Sjglund et al.
[26] improved DMTO for sandwiches with variable thickness core and face-sheets. They used
the method to minimize the mass with displacement and buckling constraints.

2.2.2 Finite element analysis and optimization

Possibilities of optimization within large FEA programs are described on the example of
MSC.Nastran according to its manual [54].

In Nastran, the concept of design variables, the goal function, and constraint functions are
handled with an added layer of design properties (e.g., material property, element thickness,
node coordinate) which can be directly (or through an equation) linked to design variables
passed to the gradient optimizer. [POPT [39] and MSCADS optimizers are implemented in
MSC.Nastran. MSCADS is MSC derivative of the code developed originally for NASA by
Vanderplaats [55] as ADS (Automated Design Synthesis). If not selected by the user, a
specific gradient method is automatically chosen according to character of the task (number of
variables, linear or nonlinear constraints, etc.). Another specific term is the design response
which can be output from FE analysis (e.g., nodal displacement, stress, buckling factor as load
case dependent or model mass as global response) or design responses calculated by user-
defined equations from primary ones. Goal function is given by the value of one design
response. Design constraints are imposed on the design responses. Nastran contains a large
number of in-build formulas to calculate analytical sensitivities for various design responses,
otherwise sensitivities are calculated by the finite difference method. Scheme of optimization
is in Figure 7.

To decrease the number of full FE analysis, the optimizer iterates over the approximate model
before updating the design properties in the original model used in the full FE analysis. To
decrease size of the optimization task, design variables can be linked (which is in fact the
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same as a patch design where several elements in the patch are driven by the same design
variable), and constraints which are far from being violated are temporarily deleted. In this
way, the optimizer works with an approximate model which is easier to evaluate, but precise
enough in the given iteration.
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Figure 7: Scheme of the optimization in Nastran [54].

Zhou et al. [56] described three-phase process of composite optimization in OptiStruct, which
is used in designing wing layup of airliners with high number of layers. Phases are shown in
Figure 8:

1) Free-size optimization is used to find the concept design of material orientation and
placement. Design variables are on thickness of so-called superplies (plies with a
given orientation). Global responses are used in the goal function — compliance or key
displacements. Manufacturing constraints at this stage involve the minimal and
maximal percentage of the orientation and total laminate thickness.

2) Ply-bundle sizing optimization is used to split superplies to plies of a given
orientation, real thickness, and a covering specific area. Additional constraints are
applied on failures, buckling, and laminate behavior.
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3) Detailed optimization of the plies contains other constraints on consecutive number of
plies of the same orientation, pairing +/- angles, predefined covering layups, etc.

Phase 1
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= >;’5ﬁf g I 5
- ’ Rule based it
Automation Ply Bundle Sizing! - Q H
T ply shuffling
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Sequence!

Discrete Ply Thickness
Figure 8: Phases of composite optimization in OptiStruct [56].
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2.2.3 Analytical approaches to sandwich optimization

Due to the high number of variables and constraints, only relatively simple methods for
sandwich beam optimization are described here.

Prescribed bending stiffness or beam strength

Kuenzi [57] and Theulen [58] describe the deduction of the formula for minimal mass with
one prescribed parameter. When mass of glue is neglected, optimum for the fixed bending
stiffness is for the core mass W. being double times mass of both face-sheets together W;

W =2W, . (21)

If maximum bending stress in the face-sheets is taken as a fixed parameter, than minimal
sandwich mass is at

W=W, . (22)

Provided that core elastic properties are proportional to the face-sheet properties in ratio of
their densities, minimum mass limited by wrinkling will be in the same case as with fixed
bending strength, i.e. W =W, . In case of dimpling instead of wrinkling limit, similar
method leads to W =3W_ .

Prescribed beam deformation or strength

For practical purposes, total stiffness (bending and shear, not only the shear stiffness as in the
previous paragraph) is more interesting and load capacity is not limited only by bending
stress. Zenkert [3] summarized a method to find optimal sandwich beam with given boundary
conditions and prescribed materials.
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Let’s have a prescribed beam deflection and variable thickness of the core and of face-sheet
(same for top and bottom). Face-sheet thickness can be expressed from the equation of the
beam deflection and inserted to the goal function (sandwich mass)

WNpcd+2pftf > (23)

where p., p; are core and face-sheet densities, t; is face-sheet thickness, d is distance between
face-sheet centers which is roughly thickness of the core. Optimal thicknesses can be found
by a graphical solution of the equation %—3’:0 and back substitution. If the variable is core
density and if it is possible to describe core shear module G. with a relation of the constant Cg
and exponent n

Gc:CG p::l ’ (24)

then thicknesses d, t;, and core density p. can be found by partial derivation of the mass
equation with deflection equation.

When n = 1, optimum directs to increasing core thickness, decreasing core density, and
thinning face-sheets, so that real choice would be limited by maximal allowable sandwich
thickness and corresponding t; and p.. For n = 2 (foams) solution gives specific values of the
design variables.

Repeating same approach with substitution of some failure condition instead of deflection
equation into the goal function, it is possible to calculate optimum for each failure separately
and pick the lowest possible design variable values. Optimality criterion is often assumed to
be at a design point where all failure combinations occur together. With this condition, it is
possible to express each design variable from different failure criteria and substitute them to
the goal function, for example, the combination of the core shear failure with face-sheet
yielding or wrinkling is possible to use.

2.2.4 Numerical sandwich optimization

Since analytical methods are limited to examples which can be explicitly expressed and
differentiated, numerical optimization is often easier for more complex geometries or
parametrization. Various design parameters can be optimized, e.g., core material (density),
orientation and thickness, wall thickness and cell size of hexagonal core or angle of
corrugated core; number of layers and stacking sequence when laminated face-sheets are
used. The following examples are related to optimization on the global level (selecting
materials, thicknesses, and stacking sequence).

Wind turbine blades

Sjelund and Lund [59] used DMO in wind turbine blade design. Regarding the task scale
(~28000 solid-shell elements) and a set of constrains on buckling, displacement, failure
indices, and manufacturing, the authors decided to optimize only the thicknesses (laminate or
laminated face-sheets and core thickness) of predefined ply groups with constant properties.
Initial state was defined as conventional layup. High number of stress constraints (~1000000)
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was reduced (to 353) by P-norm functions used on patches. Authors used the internal design
optimization tool MUST (MUIltidisciplinary Synthesis Tool) with Sequential linear
programming and semianalytical gradients. Recently, Sjglund et al. [26] applied DMTO to
sandwich optimization with variable core thickness and face-sheets with displacement and
buckling constraints.

Blending design

Soremekun [60] used composite optimization denoted as blending design, where neighboring
panels are pressed to share bottom composite layers so that layers do not need to be disrupted
on the common boundaries during manufacturing. As an example, GA were used to optimize
3x%3 sandwich panels with evaluation of panel buckling, face-sheet strength, wrinkling, and
dimpling failures. In the first step, layup of each panel was designed separately. In the second
step, layer linking between panels were optimized with change of the layer number and
orientation (0°, 45°, 90°). The goal function f(x) was modified by additional term penalizing
unsuitable solutions by [ coefficient or advantaging solutions which fulfilled technological
constraints by coefficient €

n
p

f(x)

fi+Bgmin lfgmin<0 ] , (25)

i=1 |fi+&€gmn oOtherwise

where g'.i, is a constraint of the i-th panel of total panel number n,. The final variant was only
by 2.5% heavier than optimum without technological constraints.

Composite car body

By the use of current software packages, it is possible to use optimization problems
complexly. Velea et al. [28] described multicriteria optimization of the small car body. Multi-
criteria optimization enables to reach convenient parameters not only from the mass point of
view but also safety and driving properties which were quantified by torsional stiffness in the
longitudinal direction, stiffness during front impact, and a few other cases.

First, the free size optimization was solved as one criterion optimization (mass minimization)
with defined minimal and maximal layer thicknesses (glass fabric, PUR core, glass fabric) to
find load paths as can be seen in Figure 9 where the foam core thickness is displayed.
Thicknesses of other layers were found in the same way.
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Figure 9: Foam core thickness distribution after the free size
optimization [28].

Second, size optimization was carried out. Based on the technological possibilities, surfaces to
contain different cores were defined manually (well-shaped PUR, stronger PVC, honeycomb
to prevent buckling). In this step, 7 criteria were evaluated by weighting coefficients, 42
sections were defined manually (each with constant layer thicknesses), and thicknesses were
sought on them. In total, more than 5000 design points were evaluated. Final variant was
selected according to minimum of the cost function made of weighted contributions of
prescribed criteria.
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2.3

Summary of review

The review focused on sandwich design and optimization. State of the art in this broad field

can be summarized to:

1)

2)

3)

4)

5)

Traditional approach to sandwich design covered in (hand)books describes the analytic
design of sandwich beams and plates, so it is limited to basic geometry and boundary
conditions.

Practical tasks are typically solved with FE models of various detail. Structures are
often optimized by repeated manual modifications of layup and evaluation of design
requirements.

Non-gradient methods (especially genetic algorithms) are used in sandwich
optimization as a subtopic of optimization of fiber-reinforced composites. Such
methods can reach a robust solution (close to the global optimum), but their
computational demands quickly arise with the number of variables when FE model
needs to be involved.

Optimization of some simple tasks is possible through basic optimization methods, but
tasks of real complexity are designed in several phases, which can combine several
types of optimization tools and manual modifications to cover all requirements from
conceptual design to manufacturing.

In 2014, Discrete Material Optimization (DMO) was introduced. DMO is gradient
method and it has been used for fixed and later variable thickness composite
optimization. Goal function and constraints consist of responses on compliance, mass,
natural frequency, composite failures, manufacturing rules, but not specific sandwich
failures such as wrinkling and crimping.

31



3 Thesis objective

The goal of the thesis is to implement an automated optimization algorithm to improve the
design process of sandwich structures regarding stress and load capacity. Attention should be
paid to the structures with relatively low number of plies with the ability to solve tasks with
geometry and loads more complicated than classical panels, which can be designed by the
existing analytical approaches. Examples of the structures of interest are light aircraft
fuselages or airliner interior components. The implementation should contribute to the quality
of the designed structure and shorten the time needed for designing a new product. Used
methods should be programmed and the workflow should be validated by comparison of
theoretical and practical examples. Focus of the work is illustrated in Table 3.1.

Table 3.1: Thesis objective reasoning.

Sandwich design characteristics

Potential improvements

Simple sandwich panels with uniform loads
and structures, which can be split to them,
can be sequentially designed by the existing
approaches working with separated panels.

Sandwich design of the whole structure
considering nonuniform load, potentially with
complicated geometry where FEM is needed.

Details (like inserts, sandwich endings),
especially in the case of sandwiches with few
layers, are designed according to the
technological possibilities and standard
processes of the manufacturer.

Put attention rather to global characteristics
(number and orientation of the layers, core
material, and thickness) than details.

Trend in design methodologies is to use
automated optimization from the beginning
according to loads, boundary conditions, and
design constraints (including manufacturing)
rather than cyclical intuitive design with
sequential stress analysis. In the case of
topology optimization with isotropic material,
terms like “Design by load” or “Design for
manufacturing” are used in the simulation
software marketing.

Focus on the initial design phase of the layup
where optimization has the biggest impact.

Minimize design cycles where repetitive
human work is needed.

Optimal results might be hard to implement
in the industry.

Consider manufacturing constraints.

Need for validation.

Comparison with “optimal” results of simple
examples or studies from the literature.

If possible, cooperate with the industry to
design a product which will be
experimentally tested.

Although gradient methods contain an inherent risk of trapping in the local minimum or
infeasible design, this can be partially diminished by convenient penalization. Gradient
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optimization also requires continuous variables to determine derivatives. Contrary, the
sandwich design contains rather discrete variables (number of laminated face-sheet layers,
available core materials, etc.), which requires to be transformed to continuous ones and forced
to converge to discrete values or to be rounded, as performed in a classical topology
optimization on solid-void material. Provided that gradients can be efficiently evaluated, this
approach can efficiently reach the local optimum even with a large number of design
variables.

The thesis focuses on the core functionality of the sandwich optimization regarding sandwich
failure constrains. The scope of the scientific work is specified in these aims:

1) Implement gradient optimization of the sandwich structures based on DMO connected
to FE model with general geometry.

a) Minimize mass of the structure
b) Include constrains on sandwich failures
c) Consider manufacturing constraints
2) Demonstrate convergence to the optimum by simple examples

3) Demonstrate the application to the practical design task.
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4 Methods

The basic idea is to apply the principles of topology optimization to sandwich structures.
Topology optimization uses typically gradient methods, which can be efficiently used when
discrete variables are represented by penalized continuous variables. This means that the key
question is to transform the original discrete problem (composite layup) to the continuous
problem, which converges to the discrete solution due to convenient penalization. Such
approach is described in chapter 4.1 Optimization approach. Section 4.1.6 Failure constraints
develops composite and specific sandwich failure constraints in the form which fits to the
model with interpolated materials. Chapter 4.2 Software implementation describes application
of the mathematical model in the Python program, connection with FEA solver, connection of
the robust mathematical optimizer, and several heuristic features, which diminishes the
difficulties which appeared during algorithm testing and which increases the scope of the
tasks on which the program can be used. Finally, chapter 4.3 User workflow introduces how
the program can be used.

4.1 Optimization approach

4.1.1 Problem formulation

The first step is to define the goal function, constraints and design variables. General goal is
the overall costs of the component, including manufacturing, operation, service, and disposal.
This is, however, a vague term, because overall costs can be only estimated in relation to a
specific product, based on the situation on the market and experience with similar products,
which means that cost estimation is an important but also a difficult step in product
development and that it needs to be done by an informed engineer or a development team. In
the aircraft industry, a crucial cost factor is the mass which needs to be carried on by an
aircraft, so that mass minimization is typical goal of the optimization and it can be used in a
wide range of applications. From the implementation point of view, the advantage is that it
can be clearly defined and analytically differentiated.

The structure will be represented by the FE model, where each element can obtain an
independent design layup. Unknown orientations and materials of the face-sheet and the core
are parameterized by one variable for each material, which includes specific orientation and
thickness by the concept of DMO. Such an approach is reasonable when there is a short list of
predefined materials, orientations and core thicknesses, which is the common case for
manufacturers who keep a limited number of stock items. Use of multiple material variables
per each element requires a constraint on their sum to satisfy the physical meaning of having
one mixed material in the layer. The number of composite layers in the face-sheet is
controlled by the face-sheet thickness variable, so that the layers from outside have
diminished stiffness as void elements in classical topology optimization independently on
their material variable.
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Failure constraints follow common sandwich failures. Features improving manufacturability
are discussed in the program implementation. Optimization problem can be mathematically
formulated as

min M (x)
0<x;=<1  material variables
0.99

L

Nyc, Nyp

<x; <1 face-sheet thickness variables

x;=1 ateach element layer ’ (26)
FI <1 face-sheet stress

FI <1 core shear

FI_<1 crimping

FI <1 wrinkling

where the material variables x;x can be between 0 (not used) and 1 (used) as in topology
optimization. Indices denote i-th material candidate, j-th layer, k-th element (or patch). In the
meaning of this work, term “material” includes also orientation and thickness so that
orientation and layer thickness are dependent parameters, not directly design variables. Face
sheet thickness variables xt have lower bound on relative thickness of one layer 1/n;
(considering n; as number of layers and for numerical reasons used as 0.99/n.), which denotes
that face-sheet contains at least one layer. Sum of nwc core material candidates (nwr face
material candidates) on the layer must be 1 to fulfill physical meaning. Failure constraints are
nonlinear and are prescribed on face-sheet stresses, core shear, element crimping, and
wrinkling of each face-sheet. Vector notation means that they are calculated on each layer as
will be explained later.

4.1.2 Goal function

The goal function is a mass of the structure penalized in material density

M(x)= 2 A tux)puelx) @7)

where ng is the total number of finite elements, A is element area, tv is j-th layer thickness
interpolated linearly

Ny, Nyp

Cyc= . Xty (28)
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RAMP interpolation
Puik is a density interpolated with penalization as

Ny

X;;
P (XTk) Z W]k—x..)pi for face-sheet
P=) " : (29)
—ijkpi for core
; 1+q(1—xijk)

where Pk is the layer density and will be explained later, p; is the density of i-th material (in
physical meaning, so that it determines a cost of the material per volume). A fraction in the
sum is RAMP interpolation. In topology optimization, interpolation is used with q > 0 to
decrease intermediate element stiffness as shown in Figure 5. In this thesis, mass is penalized
with coefficient selected as -1 < q < 0, so the intermediate material has higher mass. Figure 10
shows the case for two candidate materials with variables x; and x,. Blue and red curves
denote the mass contribution of each material component related to x axis, which is drawn as
a portion of the first material (red) x; = x, and for the second material (blue) x, = 1 — x. After
the summation, the intermediate values are larger value so that gradient directs the
minimization towards the clear first material or clear second material. The graph also
demonstrates why the starting point for design variables (x1, x2) is chosen to be in the middle,
i.e., uniform distribution of the candidate materials (x; = x> = 0.5), otherwise the optimization
would be biased and it might be difficult to overcome the gradient which is steep when the
actual design point is close to discrete values. Interpolation in the figure is drawn for q = -0.7,
which proved to be a robust value in the test examples.

18
16
1,4
=12

x=1—x
sum

0 0,2 0.4 X 0,6 0,8 1

Figure 10: Penalization term for two material candidates with same
densities and for q = -0.7 [68].

If we consider the same (physical) densities of both materials, Figure 36 represents the shape
of the layer density defined in eq. (29). In practical cases, materials can differ in density:
Glass/epoxy composite density is 1.19 times higher than the carbon/epoxy composite
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(considering Vi = 0.35); the candidate core materials can differ much more in density and so
this case is demonstrated in Figure 11, where the second material has density 2 times larger
than the first. The starting point will be still in the middle (x; = x, = 0.5), so that the goal
function gradient will direct towards the lighter material, unless it is pressed by failure
constraints over the top of the curve to finally fall on the side of the heavier material.

2,5
- 2
QU
";;

L 15 _
= X,=X
x x,=1—x

1 sum
0,5
0
0 0,2 0,4 X 0,6 0,8 1

Figure 11: Density penalization for two material candidates where one
has density p; = 1, second material p, = 2; for q = -0.7.

The situation with more material candidates is analogous and more difficult to display, but
three materials can be still drawn on a paper, as shown in Figure 12. The base of the drawing
is a triangle. Material variables are distributed in the way that each corner is occupied by one
material variable. There is a proportional combination of the materials inside of the triangle
with equations for xi, X,, and x; dependent in x and y position on the paper. Colored triangle
shows RAMP interpolation of these three materials. We can see high values in the middle of
the triangle where the materials mix. Middles of the triangle edges mix only two materials
(the third is zero) and so corresponds to the previously explained case of two materials.
Corners have the lowest interpolation value so that the goal function optimization will direct
towards the corners with just one material. Starting point of the optimization will be set to the
triangle center (X1 = X2 = X2 = 0.333). The drawing is for the case where all materials have the
same density. One can note that in this specific case the goal function gradient is 0 and so the
optimization might stay with mixed variables. It can theoretically happen but is unlikely, since
in a practical case, the number of face-sheet layers will decrease due to the thickness variable
gradient and so some constraint (which is also penalized) will become violated and causes the
variables to move towards one of the materials.

If the materials will have different densities. Figure 12 will slightly change so that the highest
point of the interpolation value (including material density) will move towards the heaviest
material, so that the starting point in the middle of the triangle will slightly help moving
towards the lighter material(s).
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Variables

y
Xl:lix*ﬁ x2:x—% X3=%
x;=1
0 0
x;=1 x=1 0

Interpolation
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X
Figure 12: Interpolation value for 3 candidate materials with same density.

Layer density prjx

Layer density p ij€<0, 1) in eq. (29) serves as a coefficient determining how much the j-th
layer on k-th element is active. Prx is defined by the S shape function (also called logistic
function) dependent on the thickness variable xrx. Its shape is drawn in Figure 13, where ¢ =
0.5 marks center of the curve on x axis, k controls the steepness. This function will determine
the density of the given layer.

38



1+exp[k(c—x)]

0 0,25 0,5 0,75 1
X

Figure 13: Example of S shape function with center at c = 0.5.

The S shape function for each j-th layer is in the form

1 -1
J X, =— ,j=1,2,...,n, , 30
1+eXP[k(Xij_XTk)] b np J t (30)

Prjk=

where x; is the position of the beginning of the j-th layer measured from the core to the outer
face-sheet surface; it is constant during the optimization and does not depend on the thickness
of the material but only on the relative position from the core. Face-sheet thickness variable
Xtk is measured in the same way. Value of the steepness coefficient

k=2n;In(19) (31)

was derived from equation (30) substituting prj = 0.05, and (Xij —Xp )= , which means

2n;
that layer density changes from 0.05 to 0.95 within the length of relative layer thickness.
Densities are shown in Figure 14 for face-sheet with three layers. Curves for x;; = 0. 0.333,
0.666 are for densities of first, second, and third layer, their sum corresponds to the shape of
the goal function as it dependents on Xr.

If k is high, graph resembles stairs, so that xr being within the span of the layer counts almost
all its density, which is useful when the optimization is close to finish (reaching discrete
results). Waves are supposed to favor positions with lower gradient, i.e. in the middle of the
physical layer instead of in the region with large gradient where physical layers touches, so
that rounding xr to obtain discrete number of layers in the face-sheet will be clearer. However,

)

which is proportional to waviness of the red sum curve in Figure 14. Contrary, if k is lower,
the curves (and the gradient) are smoother, which help the optimizer to change xr easily, but it
causes overlaps of the layer densities, which is not convenient for the final rounding since it
would change the results significantly. The practical approach is to start with lower k and
increase it during the optimization. If it is not written otherwise, k is set to linearly change
from n.In(19) to 2.2n.In(19) in the thesis since it proved as a robust setting for various
examples.

sliding over more layers would cause large changes of the gradient (specifically I
T
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k=2n,In(19) k=n,In(19)

sum
xL=0

xL=0.333
xL=0.666

sum
xL=0

xL=0.333
s X =0.666

0 0,333 X 0,666 1 0 0,333 X 0,666 1

T

Figure 14: Layer densities of the face-sheet with three layers used in the goal function. Right
graph is for k two times lower[68].

4.1.3 Goal function derivatives

The goal function in equation (27) and its members were defined to be smooth. Their partial
derivatives can be analytically derived and efficiently evaluated during the optimization.

The derivative by the face-sheet thickness variable is:

oM S 0 Pk
—=A o . 32
e O (32)

Tk

where on the j-th layer

0 Pk _ 0Pk < Xijk
OXp  OXp 1+q(1_xijk

) i (33)

and

apij: k eXP[k(Xij_XTk)]
0 X {1+eXP[k(Xij_XTk)]}

2 - (34)

The derivative by the material variable is:

oM —A, O tygc + O Py

= . L — 35

axijk axijk P Mk Uik axijk , (35)
where

Oty

_Mﬂ‘:ti (36)

O Xjji
thanks to linear interpolation and for the face-sheet

0Py

o~ A 37)

Oxp 7 (qxp—q—1)
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or without Py for the core

OPup_ _ q+1 (38)
OXy (qxp—q—1Ff

After rearrangement, derivatives can be written as the following formulas: derivative by the
face-sheet thickness variable is

aM: - k eXP[k(Xij_XTk)] % Xijk

A o o; ,

Oxp T (Lvexp [k (xy—xq) P T 1+a(1-xy) (39)
ji—1 .
ijkZJn—L ,j=1,2,...,n;
derivative by the face sheet material variable is

oM g+1

=A Gt P 1| (40)
axijk ‘ M L]k(qxijk_q_l)z

derivative by the core material is the same formula with dropped Pr.

In the practical design, symmetry of the face-sheets is often used (top and bottom face-sheets
have same layup), so that optimization can work only with variables on the bottom face-sheet
and top face-sheet is mirrored. In this case, equation (40) should be multiplied by 2 for the
face-sheet.

Second practical feature is patch design, when more elements share the layups and driven by
same design variables. In this case, Ax in equations (39) and (40) is area of the patch instead
of separate element area.

4.1.4 Stiffness and thickness interpolation

Layers stiffness matrix

The layer stiffness matrix is linearly interpolated as:

ij: Z Xiiji ’ (41)

where Q, is the stiffness matrix of i-th material candidate in the finite element coordinate

system according to FSDT described in appendix 9.1, so the interpolation is done in common
coordinate system. Note that Q_jk does not depend on the layer thickness nor face-sheet

thickness variable xty.

Layer thickness

The layer thickness is linearly interpolated as in the goal function, but it includes the layer
density p;; which is modified from the one in densities inside the goal function. The layer

thickness is defined as:
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ﬁijZ Xt for face-sheet
B 1 (42)

ty=

Nyc

Z Xy t;  for core
i

The layer density ()ij(xT) includes dependency on the face-sheet thickness, i.e., if the layer

is active or not, which needs to be controlled by the thickness rather than stiffness matrix
Q_jk . Figure 15 shows the initial thickness of the face-sheet when xr = 1. When xr

decreases during the optimization, the outer layers are “squeezed” in thickness, so that the
outermost layers are very thin, but not having thickness 0, so that their derivatives can still be
evaluated during the optimization. At the end of the optimization, the thickness xt is rounded
upwards and rounded thicknesses correspond to discrete values of the candidate materials.
The “squeezing” of thicknesses and keeping original stiffness matrix Q_jk is important in a

wrinkling evaluation, where a quadratic moment of the face-sheet to its own neutral plane is
needed. Note that the use of fixed layer thickness and penalized stiffness matrix is an intuitive
application of the topology optimization principle, which would be equivalent for the in-plane
stiffness, but would not work properly for bending stiffness due to the quadratic dependency
on the cross-sectional thickness.

initial during optimization rounded
A t1 t1 ti= 0
% t2 ___tz =0
@ 13 . E I3
()] [
& N R t, Xt ts
v B s ts
@ A
Q
Q

Figure 15: Thickness of the face-sheet layers controlled by the thickness variable xr.
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3,0
k=2n,In(19)

sum
XL=0.167
XL=0.5
XL=0.833

2,5

1,0

0,5

0,0
0 0,333 Xg 0,666 1
Figure 16: Shifted layer density used for properties out of the goal

function [68].

The layer densities are defined by S shape function as:

_ 1 . _j-05 .
.: x. =179 1o n 43
Pusk 1+eXP[k()_<ij_XTk)] b np J t “43)

which are shifted from the densities defined for the goal function in equation (30). The shift is
given by X, which is smaller by half of the relative layer thickness 0.5/n., and corresponds
to the layer middle (compare Figure 16 and 14, where x;j corresponds with the layer
beginning). The logic of using one layer density for the goal function and one shifted for
physical thickness is that the goal function aims towards a step of the mass on boundary
between layers, so that the goal function gradient close to the boundary is larger than in the
middle of the layer, and so the optimizer would tend to finish just below the boundary (not to
strongly increase cost), which will use fully properties of the layer after rounding layer up to
the discrete. Contrary, physical thickness (using p, instead of pi) changes within the scope
of the layer respecting their physical position, e.g., for k = 2n.In(19) layer density p,
changes from 5% to 95% within the range of the layer thickness. It can be seen also in Figure
16 that, e.g., at point xr = 2/3, purple (outermost) layer will have the thickness 5% of the
material thickness ( p;;,=0.05 ), yellow (middle) layer will have the thickness 95% of the
material thickness ( P;,,=0.95 ), and green (inner) layer will have almost 100%, i.e.

P;3,=0.99985 . The strategy of increasing k during the optimization as was explained for
the goal function is the same here — k is lower at the beginning and so the overlaps are more
significant in smoothing the gradients; at the end, the overlaps are small (below 5%) which
prevents abrupt changes due to final rounding.
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4.1.5 Real mass of the structure

The optimization might finish with some elements not fully discrete, or if unsuccessful, it can
finish with most elements not fully discrete, which was often the case during searching for
convenient optimization parameters in the beginning of the work. In such cases, the real
physical mass of the structure differs from the goal function (penalized mass) not only during
the optimization but also at the end of the optimization. So that for practical insight to the
optimization process, real mass of the structure can be monitored during the optimization and
so it is calculated formally as

m(x)=3 At (X)o(x) (44)

where the thickness tx from equation (42) contains layer density p;; from equation (43),

which is more precise for actual mass, instead of equation (30) which was more convenient
for the gradient of the goal function.

Since layer density is now involved in the thickness, it is dropped from physical density
(compared to the goal function) and is now linearly interpolated without RAMP scheme

Ny Ny

pmjk(x): Z XikPi (45)

i

4.1.6 Failure constraints
Failure constraints are of the basic form

FI<1 , (46)

where FI is a failure index which will be defined separately for each failure type. This form is
common in composite design and is also convenient for the optimizer from the numerical
point of view because all FI values are expected to be between 0 and 1. Less or equality is
written in the formula since the optimizer keeps values on the limit and it would be hard to
enforce values which are just “a little” below. Element index k and layer index j are removed
in this section.

Penalization of the failure constraints will be defined precisely for each failure type, but the
overall principle is the same for all. The effect of FI and goal function penalization is shown
together in Figure 17 since it affects the convergence to discrete results. Cases consist of the
two material interpolation where the left material is heavier and better resists the loading (has
lower FI) compared to the right material, e.g., lighter and stronger core. Figure 17 shows four
cases:

a) Asituation when FI is linearly interpolated without penalization. Optimization starts in
the middle marked with dash-dot line where FI < 1 (below green line), so that the
failure constraint is not active and optimization is driven by the goal function (M)
gradient (blue arrow). When it reaches point 2, failure constraint becomes active at
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Fl=
=

b)

d)

1

point 3, but with the opposite constraint gradient, so the optimization sticks to point 3
without reaching the discrete solution.

Materials and loads are the same as in a), but with penalized FI. Optimization starts
with an active failure constraint due to penalization (point 1), so that FI gradient
directs the solution towards the stronger left material. When it reaches point 2, the
constraint is not active any more and the solution is directed by the goal function
gradient (blue arrow) towards the discrete solution (point 4). This is an ideal case
when optimization finds the best solution, however, the cases c) and d) describe
unfavorable situations.

In this case, the penalization causes a rather small constraint violation, so that FI
gradient directs the optimization towards the left stronger material (red arrow),
however, this direction is not optimal, since both materials are feasible, the green line
denoting FI = 1 is above the discrete ends of the red curve, so the lighter right material
is optimal, but when the optimization reaches point 2, failure constraint is fulfilled and
control is overtaken by the goal function gradient (point 3) which already directs
towards stronger material (point 4).

The difference from case c) is that left material is much stronger then right material.
When optimization reaches point 2, the goal function gradient directs towards the right
lighter material, but it activates the failure constraint again, so the solution is locked at

this point (3, resp. 2).
G/" R
3.

d)

a)

Figure 17: Schema of the mass and failure index interpolation in different situations.

Figure 18 b) shows same situations with the highlighted range A, which is the range between
the maximums of the constraint value FI and the goal function M. When FI = 1 within this
range, the optimization sticks due to opposing gradients. as was the case in Figure 17 d). For
the cases in Figure 18:

a)

Range A is large when FI is not penalized. The case without any penalization of FI and

M is not shown, but one can imagine that A would span the whole range between o
and [3.

b) Ais the distance between peaks.

©)

Higher penalization in FI shifts slightly the FI peak towards the center which leads to
slightly smaller A. The same would be true for M.
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d) Large difference between M(a) and M([3) shifts peak of the goal function out of the
center, which increases A. The same would be true for FI.

B Wby B @ b B o Wby B

—

L __“'\ /’_\
b) Q) d)

Figure 18: Range of the opposite gradients of failure constraint and goal function.

Different M(a) and M(P) is typical for cores of different thickness and/or different physical
density. Face-sheet materials can differ only in orientation, so their strength would be
different in the evaluated direction, but M(a) could equal to M([3), so the goal function curve
will have the peak in the center which would decrease A.

The explanation of the range A may lead to impression that the optimization is prone to
sticking to nondiscrete results. Test examples were used to check various optimization
parameters which resulted in robust settings for materials of common use and led to low
amount of nondiscrete elements.

Calculation of the stresses and stiffnesses is done by First Order Shear Deformation Theory
(FSDT). This chapter contains only details related closely to the applied constraints. Complete
relations are explained in the appendix 9.1.

Max stress criterion

First, max stress criteria of the face-sheet layers are evaluated for each material in its local
coordinate system for allowable stresses of the face-sheet materials Syxi, Sxxes Syy, Syye, Sxys
where t and c denotes tension and compression, so that failure indices of i-th material are

Fr =2 | pp o=l

yye i ’ Xy i ’
Syyc SXy

i XX i XX i o
FI L =—— s FI,L G =—— s FI =

- (47)
yyt Syyt
where failures are evaluated on the top and again on the bottom side of the layer to respect
stress changes over the thickness. Final failure criteria on the layer is a maximum of candidate
material failure indices defined above and penalized by the RAMP scheme as

Nyp

FI, =),

X; i

Same penalization as for density is used, again with ¢ = -0.7, so that intermediate material
will have larger FI as was shown, e.g., in Figure 10 and which corresponds with explanation
in Figure 17. Bruggi [44] and Lund [61] used similar approach to failure penalization.
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Note that other laminate failure criteria can be easily implemented by replacing FI' in equation
(48) with value from other failure criteria (e.g., max strain, Tsai-Hill, or Tsai-Wu) on i-th
material.

Core shear

Core shear failure is evaluated for the core shear stresses Ty, and Ty,in the same manner as max
stress criterion of the face-sheet layers. For allowable core shear stress Sy, and S,,, failure of
each material is

i _ Tl i _ [Ty
FIxz_ i ’ FIyz_ i (49)
S
Xz yz
and final failure criteria is
FI,=) — — max(FI',,FI')) . (50)

A 1"'CI(1_X1')

Crimping

Crimping is a core failure similar to anti-symmetric wrinkling where length of the half wave
approaches zero. It is caused by insufficient core shear strength. Crimping failure indices are
calculated in principal directions 1 and 2 as

__N1 __Nz

FI.= , FI,= 51
! Gcltc 2 GCZtc ( )

b

where t. is core thickness, principal load is calculated from element internal membrane forces
Nix, Nyy, Nyy as

N_+N N —N_\
Niw=—5 yyi\/( P yy)+N’2‘y 62

and corresponding rotation angle is

0 if N.=N, A N_=0
X . _
" if N.=N, A N >0
T . _
—1 if N.=N, A N_<0
T . _
5 it N,<N, A N, =0
0 =(1 2N (53)
p— L Xy T >
2arctg |Nxx_Nyy| +2 it N,<N, A N,>0
2N
larctg —» _ _|.% jf N <N, A N,<O
2 |Nxx_Nyy| 2 Y i’
2N
larctg —— if N >N
2 |Nxx_Nyy| Y
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Angle 8, is used to rotate core shear stiffness (due to interpolation already transformed to the
element coordinate system). Transformation from element to principal coordinate system for
anisotropic material gives core shear module

N 2 S . 2 S .
G.1=Quc08 0,+Qs58in"0,+2Q 45sin 6, cos 6,

- _ i , (54)
GczzQ55c0526p+Q4451n26p—2Q45sin 0,cos6,

where Q,, , Q.. ,and Q, are stiffness matrix members in element coordinate system
defined in eq. (88).

The FI penalization cannot be directly included in eq. (51) as in max stress criterion, since
there is no direct design variable interpolation in eq. (51). Material properties (Ga, Ge, tc)
depends on the interpolation and thus they need to include penalization to follow explanation
in Figure 17, however, stiffness matrix and layer thickness were defined with linear
interpolation, i.e. without penalization in eq. (41) and (42) to keep stiffness of the FE model
directly within design materials. Stiffness penalization of the FE model would change load
distribution among finite elements, which was considered undesirable after some
experimenting. This discrepancy was solved by definition of special stiffness matrix QNjk

which replaces Q i (eq. (41)) just only for the crimping and wrinkling evaluation, so the
stiffness matrix in element coordinate system is

Nye, Nye
>~ Xijk _
(? =
jk

=5 @, 55
i 1+q(1_xijk)Q (55)

where §>0 to penalize intermediate values in the opposite way from Figure 10 where
intermediate values were increased. Based on the test examples, §=5 is applied which is
plotted in Figure 19. Now, intermediate values of the stiffness matrix are decreased, including
core shear modulus which is used in eq. (51). Since G, is in denominator, it will have similar
effect on the crimping FI as the opposite penalization on the max stress FI.

Note again, that QNjk is used only for determining stiffness in crimping and wrinkling
evaluation. Layer stress calculation and finite element properties uses linearly interpolated

Q.
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Figure 19: Penalization term for two material candidates with same
densities and for =5 [68].

Wrinkling

Wrinkling is a local stability failure of the face-sheet loaded in compression. In the literature,
several formulas were theoretically derived in dependence on core thickness and type [62,
63], but significant influence is also due to face-sheet waviness depending on manufacturing
quality [2]. For uni-axial loading, Hoff and Mautner [29] suggested to use

Owr:kwr(EfEch)1/3 (56)

with conservative value k,,=0.5 for the design if more precise value is not available from
experiments. Effective face-sheet module is

E 12(1—3v2)Df

f : , (57)

f

where Dy is bending stiffness of the face-sheet.

In case of combined loading, failure index will be calculated according to Sullins [30].
Principal loads and directions are calculated for the face-sheet by eq. (52) and (53). If only
one principal load is in compression, wrinkling is evaluated as uni-axial. If both are in
compression, failure index is defined by addition equation

_| RI+R, ifR,<1

FI =
R1/3+R2 else

wr

(58)

where R,=—7.* and R,=—2 | which in fact denote separated wrinkling failure

wrl wr 2

indices in the first and second principal directions of the face-sheet loads. Sullins [30] defined

first row, i.e. R;+R,=1 to fit experimental results from bidirectionally loaded panels, so
this relation just corresponds with the state of wrinkling failure. In the optimization, it is
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necessary to evaluate FI not only before the failure (the structure withstands the loads) but
also above when FI > 1, which is a nonphysical situation, but the optimizer still needs
reasonable values to continue and converge to a feasible state. Figure 20 shows the functions
R;®> and R, which define FI,, contributions from loads in the first and second principal
directions. Intuitively, the second direction (i.e. more intensive compression) should have a
larger contribution whether R > 1 or R < 1, but R,* could overcome R, if R; > 1. Because of
this situation, equation (58) defines second case R)°+R, which fulfills the intuitive
requirement so that the weaker compressive load contributes less to the wrinkling failure
index FI.

0 0,2 04 0,6

1 12 14

08
R,,R,
Figure 20: Members of the addition equation for wrinkling [68].

In-plane loads of the face-sheet are calculated from the stresses obtained by eq. (98) in the
global coordinate system

n; n, n;
Npuw=2.404 o Nyp=2 4,0, , Ny=3 t,0,, (59)
J J J

where ny, is number of the given face-sheet layers. Principal loads of the face-sheet Ny; and Ny
are evaluated again by eq. (52) and (53). In each principal direction, wrinkling force is
according to eq. (56)

Nwri:kwr(EﬁN Echi)l/B) 121)2 ’ (60)
but thickness is dropped from effective modulus

En=12(1-v,vy) Dy, i=1,2 (61)
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core shear modulus is transformed to principal directions Ga, G by eq. (54). With
simplifying assumption of symmetrical laminate, i.e. B =0, D;s = D2 = 0, faces-sheet bending
stiffness is evaluated as

_ D,(s,)

= , i=1,2 (62)
1- Vip Vo

fi

where Poisson numbers are

_A12(ep) _A12(ep)
VZl_ ’ V12_
All(ep) Azz(ep)

(63)

Bending stiffnesses D11(8,), D2(0,), and membrane stiffness matrix members A11(0,), A12(8,),
A2(0,) of the face-sheet laminate are transformed from element coordinate system to the
principal directions 1 and 2 by 6, in the same manner as Q in eq. (88).

The same approach is used to calculate wrinkling of the opposite face-sheet.

4.1.7 Blending constraints

Blending design enforces the continuity of the layers between elements (patches). A direct
approach would lead to linear constraints on design variables similar to material constraints
(enforcing the sum of the material variables on the element layer). IPOPT optimizer tries to
fulfill constraints for “any” cost in the goal function which means that the direct approach
would enforce all bottom layers to have the same material. That can be useful on a small
model, but it may be too restrictive on a complex one. To control how strongly blending
should be enforced, a penalization term is added to the goal function instead of a direct
constraint on the optimizer side.

Penalization term

Goal function from eq. (27) contains additional term for blending penalization My:

Mx)=[ 2 A3 ¥ oun () M1 (64

where penalization term is defined as

n, n Ny
M,= Z Z (Mjk1+Mjk2)b0 Z ‘Xiljkl_Xiijz‘ , (65)
KLk2 i1,i2

where first sum is for set np of element pairs k1, k2. The penalization is done for every j-th
layer; My, and Mjx, denotes penalized layer mass of element k1 and k2

Mfk:Akthk(x)pMjk(x) . (66)

Coefficient b, controls how strongly blending is enforced. Third sum consists of absolute
value of differences between material variables between element pairs.
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Derivatives

Layer masses My are in fact dependent on material variables xjx and thickness variable xr,
but the term serves more like a scale of the penalization term and it is derived as a constant, so

oM
that ’~0 . Absolute value has not a derivative at 0. To improve convergence, absolute
X7k

value term is replaced

|Xiljk1_xi2jk2|:|A12|N\/Aiz-'-bs ) (67)

where b, is small tolerance which controls how smooth the function is as shown in Figure 21.
The term with a root is used only for derivative. Goal function contains absolute value, which
gives 0 at A1,=0.

1.4

1,2

— A%, +0.01
VAL +0.1
—— VAL+0.5

-1 08 06 -04 02 0] 062 04 06 038 1
Ap=Xi1 501~ Xi2 k2
Figure 21: Relaxation of the absolute value function.

Goal function derivative by material variable from eq. (40) is increased (decreased) by the
term from blending penalization

oM oM Ay
_ (M, +M ) by
0 Xi1jk1 ( 0 Xi1jk1 )noblending s saleo \ Ai2+ b, (68)
oM oM A
3 :(8 ) _(Mjk1+Mjk2)b02—12
Xi2 ji2 X2 jk2 | noblending \/ Al,+b,
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4.2 Software implementation

Python programming language was chosen since it is a relatively easy to learn and widely
used scripting language. Engineering programs such as Abaqus or MSC.Apex support it for
writing macros. Python is available freely, including professional editing programs where the
most popular are PyCharm and Spider. Python code is compiled directly during the run, and
so manual compilation after the code changes is not needed. This advantage is paid by lower
speed compared to lower level languages such as C++ or Fortran. However, thanks to a wide
range of libraries, extensive operations can be done by external libraries which are written in
more efficient languages, but are wrapped in Python interface.

Design material
properties

\4/

Element prop.
interpolation

v

FEA solver
(Nastran)

FE model

Preparation

—»

—~

element loads

20 design cycles

Design
cycle Updated ., X, X

igoal’” 'L T'U

<3

Optimizer M(x), M'(X),
K. =k+A, iterations <—» g(x), g'(x),
A (IPOPT) stop criteria

X

i+1

p= v
Rounding
results

Finalization < ¢

L FI recalculation

Figure 22: Algorithm flowchart [68].

Basic flowchart of the algorithm is in Figure 22. Inputs consist of candidate materials, their
properties, and FE model with mesh, boundary conditions and loads. Design cycle starts with
material interpolation where potential materials are combined with artificial element
properties to replace properties in the input FE model. FEA solver solves the linear static
analysis to calculate element loads. Goal discreteness d; g, box constraints xi, xy are updated
for values in the given design cycle to prevent extensive changes. Next, the optimizer tries to
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improve design variables and (within its own iterations) calls subfunctions to evaluate the
goal function, constraint function and their gradients. Twenty design cycles repeat with the
evolving coefficient k in S shape function for face-sheet thickness. Finally, design variables
are rounded to discrete values and the model with rounded properties is recalculated to check
its validity.

Following description goes through the algorithm in detail, including important options and
parameters. It is application of the method given in the chapter 4.1 and FSDT described in
appendix 9.1.

4.2.1 Preparation

The program starts with an optimization parameters definition, a candidate materials
definition that includes evaluation of the material stiffness matrix in the element coordinate
system (eq. (88)) including transverse shear, which will be repeatedly used to evaluate
stresses.

Layup

Design layup defines the maximum number of bottom layers, top layers (if not symmetric),
candidate materials defined above for face-sheets and for the core. Multiple layups can be
defined with different number of layers and/properties. It is also possible to define a layup
without a sandwich core, but the optimization is not intended to start with a sandwich and
decide whether using a core is optimal or not. Elements included in layups are recognized by
their Nastran property id associated with each design layup, so that the FE model can contain
other elements which are not subjected to optimization. Design layup determines design
variables (for face-sheet thickness and materials) which will be defined on each element that
has given design layup.

Patches

To decrease number of design variables and to obtain results which can be easily
manufactured, user can define patches by element numbers. If element is in the patch, design
variables are created only for the first element and sheared with others through the patch.

Number of design variables can be enumerated as
(ng+np)(nyc+nynyg) (69)

where each independent element and patch (ng+np) contain design variables for nyc number of
potential core materials and each layer contains nyr potential face-sheet materials. Potential
“materials” include all layer properties: physical material, thickness, and orientation. E.g.,
model with 50 elements, softer and stiffer isotropic core, both of two thicknesses, and 5 layers
with 1 fabric oriented in 0° or 45° will have (50+0)(4+5-2)=700 design variables. When
all 50 elements are in one patch, it would be only (0+1)(4+5-2)=14 which is easier to
handle by the optimizer.
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Nastran input file

Mesh is read from *.bdf file created in Patran and which defines elements with property id.
Specific properties of such elements do not matter because they will be overwritten in each
design cycle. When the id is associated to some design layup, design variables are initialized
on the element or associated to the guiding element if they are in a patch. Element areas (and
patch areas) are calculated from the corresponding nodes. Candidate materials are uniformly
distributed without preference, but loading initial design variable values from the file is
possible, so the optimization can be restarted from older results. Nastran input must contain a
request for element forces to be written in the HDF5 output file.

Linear and quadratic shell elements are recognized (CQUAD4, CQUADS8, CTRIA3,
CTRIAG). Element areas (and patch areas) calculated at this phase are later used in the mass
evaluation. The advantage is that unrecognized keys in *.bdf file are left untouched and
replicated during design cycles, so that the model can contain other element types or
connectors.

Multiple load cases can be defined in the *.bdf file or multiple *.bdf files can be defined
which contain other load cases. The later approach is slower but might be useful when
additional load cases require a modified model.

Constraint preparation

Set of constraints depend on the number of elements, design layup, and material candidates.
They are fixed during design cycles, so that material constrain matrix can be defined in the

Ny, Nyp
preparation phase. Linear material constrains Z x;=1 at each element layer are defined
i
in the form of the matrix J.. which binds candidate materials within the layers, in a matrix
notation:

Joa X=1 ", (70)

where J.., is shown in Figure 23 for layup with symmetry of the face-sheets, 3 face-sheet
layers with 3 material candidates and 3 material candidates for the core. The green rectangle
bounds one element, columns correspond to each design variable (face-sheet thickness, 3+3+3
face-sheet materials, and 3 core materials). Each row binds variables of the element in a
specific layer.
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design variable coefficients

0111000000000 layer 1

0000111000000 0. layer 2

0000000111000 layer 3
0000000000111 core layer

Joa = element 1 01110 layer 1

00001 layer 2

00000O0 layer 3
0. 00000 core layer

element 2
Figure 23: Example of the material constraint matrix.
Discreteness

Discreteness is used for the optimization process monitoring. It is evaluated before the first
design cycle and than during each optimizer iteration.

Core discreteness for k-th element is defined as

d\c= max X , (71)
i€(0,ny)

which is simply maximum of material variables on the core layer ( j -th layer)

Face-sheet discreteness

. :bij.Gr(’?)ax)Xijk
dp=—"t——"" (72)

nLF

2 P

J

is given by the maximum material variables on face sheet layers n;r weighted by layer density
from eq. (43), so that “empty” layers ( p;; — 0) does not contribute significantly to
discreteness. Checking separately discreteness of the core and face-sheet gives detail insight
to convergence. Average element discreteness is calculated by eq. (72) as if the core is next
layer with unit density, formally

Nyp

( max Xy +Z Py Max X,
L (73)
1"‘2 P Lk
J

Finally, average of all elements gives one value which can be plotted during optimization. For
example, in case of three candidate materials for the face-sheet and for the core, initial
discreteness will be 0.333. Ideally, discreteness should reach 1 at the end of the optimization.
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Blending preparation

Blending pairs are defined for all neighboring elements which shear at least 2 nodes except
the pairs inside a patch. Pairs are created for layers counted from the core on neighboring
elements so that blending can work also between elements with different design layups
(different number of candidate layers).

4.2.2 Design cycle

The algorithm (Figure 22) combines gradient optimization (IPOPT optimizer which makes
several iterations) and evolution of the model within the design cycle, which is similar to the
approach used within Nastran optimization (Figure 7). The difference is that gradients are
simplified, neglecting the derivative by the element loads and that element loads are fixed
during the optimizer run, so their evaluation does not require full FEA — running Nastran for
each x perturbation within a finite difference evaluation would be unbearable. Failure
constraint derivatives are evaluated independently on each element (the effect of the stiffness
change of neighboring elements is neglected). These simplifications are payed off by the
slower evolution of the model within design cycles (outer loop) which is controlled by
heuristic parameters:

1) The number of design cycles is fixedly defined to be i4. = 20, which behaved robustly
on the test examples.

2) The steepness coefficient starts at k = 0.5 k’ and incrementally grows to k = 1.1 k’
where k'=2n,In(19) corresponds to layer density change from 5% to 95% within
layer thickness as discussed in the chapter 4.1.2. Here, coefficients 0.5 and 1.1 are
based on experience with test examples.

3) Similar evolution strategy was implemented with penalization coefficients § , q
(separate parameters for density, stiffness, and for failures in eq. (29) (48) (50) (55)),
but results were rather worse so that these parameters were fixed on best values

q=5 andq=-0.7.

4) Sequential evolution of the model is controlled by the goal discreteness d; ga, which
defines ideal speed of the average discreteness changes (not too fast which would
decrease quality of the solution). It is linear interpolation between initial average
discreteness do and 0.999 as a goal in the last design cycle. Formally, goal discreteness
in i-th design cycle is:

0.999—d,
d %

+ (74)

igoaI: 0
Lac

Element property interpolation

Layer properties (layer stiffness matrix, thickness, density) are interpolated according to eq.
(41, 42, 45) and used to assemble the element stiffness matrix ABD and shear stiffness matrix
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according to FSDT as described in appendix 9.1. Usually, PCOMP or PCOMPG card is used
in Nastran input to define layers of the composite, however, these cards cannot be used since
they allow only 2D isotropic or orthotropic materials with transverse shear properties. In our
case, interpolation of orthotropic materials with different orientations leads to anisotropic
material in the layer and transverse shear properties must be used for sandwiches. As a result,
a more general PSHELL card is used by the optimization program. It defines shell properties
by total thickness, density (average of the sandwich layers is used), and stiffness matrices,
specifically in the form of matrices defined in MAT?2 cards as:

A -
=4 =128 ¢g=Cuw g-—B (75)
t ts t th
tot tot tot tot

where A is the membrane, B membrane-bending coupling, D bending. and transverse shear
Agheor matrices, and to: is the total element thickness. Default shear correction factor
K=0.833333, i.e. 5/6, is used for pure laminates only, 1 is used for sandwich (when a core is
present). New material properties are written to the input file which is a copy of the original
Nastran input file.

According to Nastran manual, PSHELL card does not include transverse shear in linear
buckling analysis, but buckling is not used in this thesis.

FEA solver

MSC.Nastran makes linear static analysis (SOL101) on the FE model. Optional Nastran
parameters can be used to set number of CPU threads or allocated memory. The later is
important to decrease when multiple optimizations are run in parallel (a user runs the whole
optimization with different parameters simultaneously), because MSC.Nastran allocates 50%
of the memory by default which would rise the error when running the second Nastran
analysis on the same computer.

Nastran writes results to the HDFS5 file. The script reads element loads (membrane forces,
bending moments, and shear forces per unit width). Number of load cases are recognized
from the repetition of the results on the first element in HDF5 file (results are accumulated in
one data field). Stresses and failures are evaluated later for evolving design variables within
iterations in the optimizer without (time consuming) Nastran interaction, so the loads are
updated only out of the optimizer.

Optimizer

Trials were done with three optimizers from which only the last one is finally implemented.
SciPy library [37] contains two methods for constrained large-scale nonlinear tasks. First,
Trust-constrained method [64] was used, but it did not converge well on small test examples.
Second, SLSQP [38] was used in the similar way, which performed well on small test
examples, but calculation time quickly increased with the number of variables and constraints,
which would be major bottleneck for practical tasks. This was the motivation to implement
third optimizer, [IPOPT [39], which is used through cyipopt wrapper (i.e. library that enables
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to call programs written in one programming language, C in case of IPOPT, by commands of
second language, Python in this case). The installation required compilation of the [IPOPT on
Windows, which might bring difficulties in getting whole optimization working on other
computers. The implementation required more coding compared to previous optimizers, but
[POPT enabled to apply user-defined convergence criteria and converged much faster on large
tasks, so that only IPOPT was kept.

The optimizer solves optimization problem:

min M (x)

D-1 D . D-1
max(O,xl.jk — A, =X <m1n(1 X —A

max) ifk— s Mjk max)

099 p-1 D . D-1
max(n—,ka —A, . SkaSmm(l,ka —A
L

max) , (76)

Z xlg;l
FI<1
where D is design cycle number. The difference from the original problem is given in eq. (26)
is that the box constraints on material and thickness variables (x;x, Xt«) are tightened, i.e. the

maximal change during the design cycle is limited to An.x = 0.2, which prevents abrupt
changes in the stiffness of the structure and consequently the element load distribution.

[POPT optimization is defined through a Python class, which contains functions to evaluate
the goal function, its gradient, constraints (linear and nonlinear), their derivatives (Jacobian
matrix), and an intermediate function which is called each iteration to the check convergence
criteria.

Goal function

Thicknesses and densities of all layers from eq. (28-30) are interpolated by actual variables
and substituted to the eq. (27) to evaluate the goal function. If blending is used (bo#0), the
goal function contains the blending penalization term according to eq. (65).

Goal function gradient

Since IPOPT calls the gradient function independently from the goal function (x may differ),
thicknesses and densities need to be interpolated again (values are not shared with those
evaluated during the goal function). Derivatives by thickness and material variables are then
evaluated according to eq. (39) and (40) and filled into the gradient vector respecting the
order of variables. When blending is used, gradient of the goal function increases by
derivative of the blending penalization term in eq. (68).
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Constraints

Vector of linear constraints is evaluated by multiplication of the material constraint matrix
(Figure 23) and design variable vector x, so they satisfy material constraints Z X=1 in
eq. (26, 76) per each layer.

Vector of nonlinear (failure) constrains is evaluated on each element for the element loads
previously calculated by Nastran. Layer stresses are calculated according to FSDT described
in appendix 9.1 (ABD matrix is assembled and numerically inverted), failures are calculated
on each element for max stress criteria of the face-sheet layers, core shear, crimping, and
wrinkling by eq. (48, 50, 51, 58). If the model has multiple load cases, failure constrains are
evaluated for all loads found in HDF5 results, e.g., 3 load cases will cause number of
nonlinear constraints (and evaluated failure indices) to be 3times compared to a model with
one load case.

[POPT input does not distinguish linear and nonlinear constraints (contrary to SLSQP), so
that their values are concatenated to one constraint vector. Lower bound is 1 for material
constraints and -oo for failure constraints. Upper bound is 1 for all constraints. (The optimizer
accepts equality constraints Z x;=1 defined as inequalities with same upper and lower

bounds.)

Constraint aggregation

The review chapter showed that the number of constraints can be decreased by p-norm or KS
function aggregation. KS function was implemented. Since it results in one value which
should approach to the maximum and IPOPT scales constraints internally. KS function is not
evaluated on this level. Maximum from failure constrains is given to [IPOPT

FI - max(FI) . (77)

KS function is used later when evaluating derivatives.

Constraint ignoring

Difficulties with convergence were encountered when some elements in the model were
failing even with the strongest materials. That can be explained by the priority on fulfilling all
constraints, so that the optimizer can violate material constraints (e.g., that materials overlap
on the layer Z X;;>1 so that the summary material exceeds 100%). Even if constraints are

violated on few elements, the optimizer does not improve the goal function too much, which
leads to poor results on the rest of the model. Such situation may happen with a model
containing stress concentration, concentrated loads, or with poor elements. For ordinary
analysis, an engineer interpreting the results may consider such failing elements to be
irrelevant.
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Heuristic approach to overcome such situations has been developed. Parameter A, defines
the fraction of the design domain area on which the failure constraints will be ignored. The
implementation is:

1) Atthe beginning, none elements are “ignored”.

2) The optimizer calls the function to evaluate constraints in each iteration. Elements
with the highest FI are marked as “candidates” for ignoring, other elements are
unmarked. The number of candidates respects Aig, e.g., if Aig,=0.1, then elements with
the highest F1, filling 10% of the design domain area, are marked.

3) At the end of the constrains evaluation, failure constraints on the ignored elements are
set to 0.

4) At the end of the design cycle, the ignored elements are reset and candidates are
activated for ignoring.

5) Final recalculation of the optimization results is done without ignoring.

Whole optimization can run for several A, so that the engineer can compare the elements
which are failing at the end of the optimization and consider local reinforcement. Including
reinforcing materials in the optimization would lead to high calculation demands and if the
reinforcing material differs strongly from the other materials, it might decrease the
convergence or quality of the solution.

Constraint ignoring is implemented for the case without constraint aggregation.

Jacobian

Constraint derivatives are filled to the Jacobian matrix which structure is shown in Figure 24.
It consists of two parts. First, derivatives of material constraints which were linear, so that this
part is directly the material constraint matrix J.. as can be seen from eq. (70). Jm, in Figure
24 is for clarity shown for the same case as it is in Figure 23. Second, derivatives of the
failure constraints Jg which are nonlinear. General shape of Jg is:

O0FI, OFI, OFI,
0x, 0Xx, 0x,
OFI, OFI,
Jp=| 0x, 0x, (78)
OFI OFI
0x, 0x,
' i
o O FI,
so that members a%; in Figure 24 correspond to on element e. They are evaluated as:
X
J

._OFI, FI(x+A;)—FI(x)

9= 0X.
J

A

i

b

(79)
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where finite difference in j-th variable A;=10" is used. Eq. (79) requires high number of FI
evaluation on each element for each optimizer iteration and so it is the most time consuming
operation of the whole optimization even when only the red diagonal in Figure 24 is filled.

Xl X2 X3
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000
000
000
Jinat
aln alp
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alml
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[eNe Nl
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111000000 0.
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0 00001
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- @' 0.
.............................. alm,
3211 3212 ........................ azlﬂ
ain . &
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3311.
.0... &z
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Figure 24: Structure of the Jacobian matrix

Since the evaluation of failures is time consuming, an additional parameter was defined:
cut_low_FI_threshold. It is a threshold FI below which Jacobian members a®; are not
evaluated and is set to 0, e.g., cut_low_FI_threshold = 0.5 denotes that eq. (79) will be
skipped (a% = O for all i and j) if all failure indices of the element e are below 0.5. Default
value is -o0 so that eq. (79) is used for all elements. Using a higher threshold is useful
especially when patch design is used, since patches consist of a higher number of elements,
but only a few of them are critical and so drives the optimization and the given threshold
decreases the calculation time without significant change in the optimization results.

The possibility to define Jacobina as a sparse matrix is a significant advantage of IPOPT
optimizer as regards large-scale problems. Since SLSQP accepts Jacobian as a dense matrix, it
required far more memory and calculation time on large test examples. IPOPT requires
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structure of the Jacobian to be explicitly defined as pairs locating each nonzero member. Pairs
for nonzero members are created according to Figure 24.

Jacobian with aggregated constraints
If failure constraints are aggregated to one FI, eq. (78) will simplify to one row:

_ OFI OFI OFI
Flagor-—\ ox, o0x, ~—~ 0x,

(80)

Maximum of failure constraints max(FI) is used in the constraint function, but it is not
convenient for derivation, since most of the variables has none influence on the max. value.
Thus, aggregation with KS function is used, so that:

OFI _0KS NKS(x+Aj)—KS(x)

81
0x; 0x; A; (81)
where KS function [45] is in the form
1 m
KS=max(FI)+p—KSln Zexp[pKS(FIi—max(FI))] . (82)

where m is number of constraints, coefficient pxs controls how close the KS function is to the
maximum, values from 2 to 100 were tried.

Trials were done also with aggregation per elements, where groups for aggregation consisted
of element constraints, so that final number of failure constraints were decreased to number of
elements, but it gave worse results than aggregation to one constraints from all elements, so
only this was kept in the code.

Convergence criteria of the optimizer

Due to the evolution of the loads, the optimizer is not supposed to have full convergence, thus
the number of IPOPT iterations is limited by the conditions which are tested by the function
called at the end of each IPOPT iteration as shown in Figure 25. Conditions are:

1) Average element discreteness d (average of eq. (73)) is above the goal discreteness of
the i-th design cycle d; ga. [t means that the desired evolution change of discreteness is
achieved and so the optimizer may finish.

2) First, maximum of failure index is below the threshold 1.001, which means that the
constraints are feasible or only slightly violated and so the optimizer can finish. Or
second, the average change of design variables x is above half of their maximum
change, so the optimizer should finish, otherwise the optimizer will press the variables
to their bounds even if they help decreasing constrains only a little — next design
cycles are assumed to change bounds and so the variables (which are effective in
decreasing constrains) could be changed, one half was selected heuristically as a part
of max. changes.
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3) Optimizer is finished when achieving the maximal number of iterations j = i4, where
10 is used, based on the test examples.

IPOPT
iteration j

max FI<1.001
or

X max

Ax|)=
avg laxl)==>

No

j = opt_maxiter

IPOPT
finish

Figure 25: Convergence criteria for IPOPT iterations

4.2.3 Finalization

After the end of the design cycle, design variables are rounded to obtain one discrete material
on each layer according to the highest portion of the candidate material, which is necessary
for the elements which finish without clearly discrete result. Final values are defined close to
0 or close to 1 to prevent numerical errors when evaluating failures by the same functions as
were used during optimization, because the interpolation is still involved. Presence of the
face-sheet layer is determined from layer density, Pix < 0.5 means empty layer, Pk > 0.5
means active layer.

Rounded variables are used to create input for Nastran and to recalculate the model to check
failures. Constraints are evaluated and saved for the check by a user.

Since rounding the core according to the portion with the highest design variable can violate
constraints due to lose of the thicker or higher density core, alternative rounding is used for
the core. If there is a heavier core with a portion of the design variable larger than 1%, the
core is rounded to the heavier (even if it was present only by a few percent), supposing that
the heavier core will satisfy constraints. These layups are also recalculated by Nastran again
and constraints are evaluated, so the user can choose which rounding is better in the specific
case. This option of rounding to the heavier core was implemented due to difficulties with
convergence which occurred with older settings. Actual default settings have not required this
step on test examples.
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Outputs

Output data are saved to several files in the working directory for later browsing, plotting
graphs or restarting the optimization. Table 4.1 explains details.

Table 4.1: Output files
File type Data Comment
* bdf Nastran input and analysis Nastran analysis bdf input is written in each
* h5 results design cycle. Element forces are loaded from
HDFS5. These files are usually not needed by
the user.
*rounded.bdf | Nastran input and analysis Nastran files from the final solution with

results

rounded materials.

*round_core_he
avier.bdf

*variables.npy

Nastran input and analysis
results

Design variables

Same as the previous, but the core is rounded
to the heavier if heavier material content is
above 1%.

Binary file with design variables, which can be
used for the restart of the optimization from
the selected design cycle.

Mesh data.

Element discreteness.
Face-sheet disc.

Core disc.

Layer materials

Results are from each design cycle for viewing
in Paraview. Discreteness is averaged on
element, for the core and averaged for face-
sheets. Prevailing (rounded) materials in each
layer are mapped on the mesh according to the
material number in user input.

*constraints.vtk

Mesh data.

Max. FI

Face-sheet Max stress FI
Core shear FI
Crimping FI 1 and 2
Wrinkling FI  top
bottom

and

Failure indices in final rounded results for
viewing in Paraview. Each layer can be
displayed for each load case.

*constraints_ma | ...

xLC.vtk

Same as the previous, but only max. values
from all load cases are printed for each failure

type.

*constraints_cor| ...

e_heavier.vtk

Same as *constraints.vtk, but after rounding to
heavier core material.

*constraints_cor| ...

e_heavier max
LC.vtk

Same as previous, but only max. values from
all load cases are printed for each failure type.
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printed_log.log | Mass ASCII file with debugging information and

Max. FI with an overview of values at the end of each
Face-sheet max. FI design cycle, which can be used to plot the
Max. core shear FI evolution of FI (by type) and discreteness. List
Max. crimping FI of ignored elements due to the parameter Ajg,
Max. wrinkling FI is given.

Average element disc.
Average face-sheet disc.
Average core disc.

* log.log Similar as previous, including input
parameters.

4.3 User workflow

Figure 26 summarizes the workflow during sandwich structure design when the optimization
program is used (With optimization). First, the usual FE model is created. Second order shell
elements with relatively large element size can be used for the optimization model to keep a
low number of design variables and constraints. Boundary conditions and loads are prescribed
as usual, preferably trying to avoid stress concentrations, because the optimization aims to
design a global layup, so that small details (local reinforcements) are out of the scope of the
optimization so the local concentrations would make difficulties in convergence. Multiple
load cases can be used. Nastran input file should the contain output request for internal forces
acting on shell elements of the design domain.

With optimization Without optimization
FEM mesh, FEM mesh,
BC, loads BC, loads

v v

Opt. parameters,

—# design materials, — Mstineiﬁ:ii%ynup
patches

3 v k5 v

I — Iz

‘F(g Optimizer run § FEA run

5 v 2 v

Check convergence, Check
and constraints constraints
Final design Final desian

and validation g

Figure 26: User workflow.

In the FE model, simple properties are prescribed on the optimized elements, since they will
be overwritten by the optimizer, but the orientation of the material must be defined if all
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elements do not have the same orientation. Properties of the design materials (elastic
constants, layer thickness and orientation) are prescribed in the program input together with
the optimization properties discussed in the previous chapter and listed in Table 4.2. When the
model contains patches, the ignoring area A;g, can be defined, so that areas which will require
local reinforcement will be found and the optimization can be run several times for varying
Aign. When patch design is used, the speed can be increased by using the parameter
cut_low_FI threshold.

The optimization is started from a Python console, so that only Nastran solver and Python
with appropriate libraries (bisect, operator, time, datetime, os, subprocess, sys, numpy, sympy,
h5py, ipopt) are needed.

Outputs are checked, especially convergence to discrete values (if convergence is low,
rounding errors might be high) and failure indices (maximum and specific failures) which can
be easily displayed in Paraview. If the results are not satisfactory, the optimization can be
launched again with altered parameters.

The optimization model can be used for further processing if it was not created only with
optimization intention at the beginning (e.g., due to the rough mesh in a large model needed to
satisfy a reasonable optimization time). According to the task, total displacement or buckling
can be validated since it is not included in the optimization. Structural details out of the
optimization scope need to be designed by common engineering practices.

Figure 26 right shows the workflow without the optimization program, where the initial layup
needs to be guessed manually according to engineering experience, including manufacturing
preferences which might be missing in the optimization. Instead of the loop where
optimization is run one or several times with various parameters, if the optimization is not
used, the engineer needs to manually evaluate the results from FEA and modify the layup to
improve the model behavior, mostly by reinforcing the failing area or changing layer
orientations. If the mass is to be minimal, the engineer tries several modifications, all time
manually evaluating results. Final design may involve additional features which do not need
to be evaluated by FEA. It can be seen that the workflow with optimization replaces laborious
modifications with a simple change of optimization parameters. On the other side, the
optimization may lack some of the constraints or manufacturing rules, so that they need to be
added manually at the end and validated, but the final validation is expected to be done only
ones.
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Table 4.2: Overview of the main optimization parameters

Parameter | Default Comment
value

q -0.7 | Penalization coefficient for density in the goal function, for max
stress and core shear criteria in eq. (29), (48), and (50)

q 5 Penalization coefficient for stiffness in crimping and wrinkling
evaluation in eq. (55)

ide 20 Number of design cycles (outer loop)

imax 10 Maximum number of the optimizer iterations (inner loop)

k [0.5, 1.1] | Steepness coefficient in S shape function in eq. (30) and (43). It
defines how discretely thickness of the face-sheet is defined. Value
changes during design cycles from min to max [min, max]

Ammax 0.2 Maximum change of design variable between design cycles
aggregate_c| False |Aggregation is switched off because of poor results in test examples
onst
Pxs 20 Coefficient in KS function in eq. (82)
Aign 0 Defines the area of the elements with the highest FI to be ignored in
the next design cycle. Implemented only for aggregate_const=False
by, b. 0,0.1 |Blending parameters from eq. (65), (67), bo=0 means no blending
cut_low_FI -00 Derivatives of constraints below this threshold will be skipped. i.e.
_threshold set to 0 in Jacobian matrix, saving time to their evaluation
Face-sheet Eu1, Eo, Gua, Gas, Gz, V12, 6, t, p, Sit, Site, S22t, Saze, Stz
materials
Core Eu, E», Es3, Giz, G, Gi3, V12, 0, t, p, Sa3, S13
materials
Design Each layup contains predefined: potential number of bottom face-
layups sheet layers, number of top face-sheet layers or symmetry to
bottom, face-sheet material candidates, core material candidates
Patches Each patch is defined by element numbers. Elements in the patch

share layup
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4.4

Summary of the implemented method

Key possibilities and limitations which are given by the method itself and its implementation

dare:

1)

2)

3)

4)

5)

6)

7)
8)

Shell elements (CQUAD4, CQUADS8, CTRIA3, CTRIAG6) can be in design domain.
There are no limitations on elements out of the optimization domain.

Multiple design layups can be used, including laminates (without sandwich core).
Limitation is that the optimization is not able to remove the core automatically.

Orthotropic materials are defined by engineering constants.

Patches can be defined (group of elements shearing layup). Blending is implemented
through penalization so that the user can control how strongly the continuation of
layers should be enforced.

Multiple load cases can be used in the Nastran file or in additional files (e.g., with
additional elements out of the optimization domain).

Optimization aims to discrete results — choosing among predefined core thicknesses
and densities, layer orientations, etc. “Continuous” options need to be approximated
by many design materials, which prolongs optimization.

Convergence would be more difficult when materials differ dramatically in properties.

The method is gradient based, so it finds the local extreme, there is no guarantee to
find the global extreme, even though interpolation helps to increase the chance of
finding a good result.
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5 Examples and results

Examples of various complexities were used to define default optimization parameters, to test
convergence and quality of results. The test examples are:

1. One element in edge-wise compression and one with shear and bending which test the
ability to converge to known optimal design.

2. Separated elements with simple loads test convergence to known optimum and
originally used to find default optimization parameters since there are multiple
elements with sequentially increasing loads of different types.

3. Panels with out-of-plane compression or side load search for the optimal layup on
each element and, in the next variant, when the whole panel is one patch. Panels were
also used to check and modify the default parameters, because their element loads may
change during optimization due to varying stiffness, which was not the case of
previous examples.

4. Long box with ribs loaded with underpressure on a top side and torque to test the use
of multiple patches and different design layups when the box contained sandwich
panels and UD laminated flanges.

5. Conceptual design of an airliner interior component — a stowage which is loaded by
the critical side load case.

6. Conceptual design of an airliner galley with multiple load cases.

All examples run on desktop computer with 80 GB DDR3 RAM, Intel Xeon E5-2620 at
2.00 GHz processor with 12 logical threads, 64bit Windows operation system, Python 3.7 and
MSC.Nastran 2020. The size of the examples was not limited by memory, but rather by
reasonable optimization time. Since the optimization code is not parallelized, more
optimizations were often running simultaneously to use computer capacity, so that the
calculation time specified in the description should be considered as approximate.

Material properties in examples

Laminated composites are used for the face-sheets with values according to Idaflieg [65]
which correspond to the properties after hand layup for volume content 0.35 as listed in Table
5.1. Area density of the reinforcement were selected as is commonly used in sport aircraft
(200 g/m? carbon fabric, 160 g/m? carbon UD tape, and 300 g/m? glass fabric). Composite
density is calculated by the rule of mixture as

p:pfvf+pmvm ’ (83)

where py is fiber density (1.77 g/cm?® for carbon, 2.55 g/cm® for glass) and epoxy matrix
density p; = 1.4 g/cm?, V= 0.35, and V,, = 0.65 are fiber and matrix volume contents.
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Corresponding thickness of the composite layer is

m
t=—~1— | (84)
Vipg

where my is the area density of the fiber reinforcement.

Foam core properties are for Airex C70.75 from the datasheet [66] (Table 5.2), starting with
commonly used density 60 kg/m® and with two foams with higher density. Honeycomb core
properties are for hexagonal shape 5052 aluminum alloy from datasheet [67] (Table 5.3). For
the core, average values were taken for density. Minimum values were taken for mechanical
properties to be conservative in design. When the minimum value was not known, 80% of the
typical value was used. Honeycomb properties E;;, E», Gy, are not covered in the datasheet
due to low importance; for numerical reasons (included in the calculation of element stiffness
by FSDT) small nonzero values were used.

Private material properties were used to solve the examples in cooperation with the industrial
partner (airliner stowage and galley). These material data are not directly listed in the thesis.
Interested readers may follow the material properties given in these tables to obtain a rough
overview.

Table 5.1: Face-sheet layer properties [65], *quessed values.

Carbon fabric Carbon UD Glass fabric

Vi 0.35 0.35 0.35
Pary g/m? 200 160 300

p g/cm’® 1.4 1.4 1.67

t mm 0.327 0.256 0.336
En MPa 39470 77000 16600
E» MPa 39470 3400 16600
Vi2 0.037 0.23 0.03
G MPa 1620 2870 3800
Gas* MPa 1620 1620 3800
Gi3* MPa 1620 1620 3800
S MPa 146 420 95
S1ic MPa 146 420 95
Saat MPa 146 50 95
S22c MPa 146 200 95
Si2 MPa 30 50 30
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Table 5.2: Foam core properties [66].

Airex C70.55 C70.75 C70.130 Comment
p kg/m® 60 80 130 average
t mm 5, 10, 15 5, 10, 15 5, 10, 15
Eu MPa 35 50 95 min
Ej MPa 35 50 95 min
| DES MPa 55 80 145 min
Vi2 0.1 0.1 0.1 guess
G2 MPa 18 24 45 min
G2 MPa 18 24 45 min
G MPa 18 24 45 min
S MPa 0.7 1 2.1 min
Sz MPa 0.7 1 2.1 min
Table 5.3: Honeycomb core properties [67].
HexWeb CRIII-3/16-5052 - 3.1 Comment
p kg/m® 50 average
En MPa 0.1 neglected
E» MPa 0.1 neglected
Essc MPa 413 0.8 of typical
Vi2 0 neglected
G2 MPa 0.1 neglected
Gx MPa 122 0.8 of typical
G MPa 310 min
S MPa 1.07 min
Sas MPa 0.62 min
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5.1 One element examples

Compression and bending examples test the basic ability of the algorithm to achieve optimal
material selection when only one element is concerned. These examples are simple enough to
check if the solution is truly optimal and aims to reveal potential shortcomings of the
implemented algorithm. Examples were optimized for several cases of loads and material
candidates.
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Figure 27: Schema of test cases for edge-wise compression and
bending with transverse shear.

5.1.1 Edge-wise compression

Compression example (Figure 27 left) is limited by compressive allowable stress in face-
sheets (depending only on face-sheet layup), crimping (depending on the core material and
thickness), and wrinkling (depending on both the core and face-sheets).

Design materials:

* Two fabric candidates for the face-sheet layers (0° and 45° carbon fabric) for up to 5
layers (each with thickness 0.327 mm). Face-sheets are symmetric (same top and
bottom face).

 Six core candidates (foams 60, 80, and 130 kg/m? all with 5 and 10 mm thickness).

The task consists of 17 design variables, which are linked through 6 material (linear)
constraints. Failures define 15 nonlinear constraints. The optimizations took less than two
minutes (mostly Nastran execution).
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Table 5.4: Results for the element loaded by a set of compressive forces F.

Loads
F [N] 2000 4000 8000 12000 16000 20000
Values at the end of optimization
Discreteness 1.000 1.000 1.000 1.000 1.000 1.000
m [g] 6.56 7.81 10.86 17.84 21.69 25.54
FI max 0.68 0.94 1.00 1.00 1.00 1.00
Rounded layup
Face-sheet 0/ 0/ 0,/ 03/ 04/ 05/
teore [Mm] 5 5 5 10 10 10
Peore 80 130 130 130 130 130
[kg/m?]
Properties after rounding
m [g] 6.58 7.83 12.41 20.23 24.81 29.39
FI faces 0.41 0.82 0.83 0.83 0.83 0.83
FI cr 0.33 0.36 0.71 0.53 0.71 0.89
FI wr 0.29 0.38 0.38 0.38 0.38 0.38
True optimum
Pcore = Pcore = Leore =
60kg/m®> | 60kg/m® | 10mm, peor
= 80kg/m’
m,, [g] 6.08 6.08 12.16

Optimization was done for a series of loads from 2 kN to 20 kN as shown in the columns of
Table 5.4. The table further shows values at the end of the optimization, i.e., before rounding:
all tasks converged successfully to discreteness 1.000 and feasible solution (FI < 1). Layup
was rounded to the face-sheet layers with orientation 0°, which is the direction of the load.
The number of face-sheet layers is optimal, however, three tasks found a solution where the
core is over dimensioned, as marked in red, compared to the true optimum in the bottom of
the table, so the mass is larger.

Table 5.5 contains graphs for mass, discreteness (element average, face-sheet average, core),
and failure indices as they evolved during optimization. Each point in the graph denotes a
design point at the end of the optimizer run for the given design cycle.

* For the lowest force (2000 N), the measures evolve mostly before design cycle 4 and
finally changes a bit. The load does not cause failure, but it seems that a heavier than
necessary core was determined in the beginning where the crimping FI is around 1.
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For 4000 N and 8000 N, the discreteness increased sequentially and the crimping
dropped down after initial violation. For 4000 N, the face FI has a peak close to the
end, but finally remains under 1. For 8000 N, the face FI remains close to 1 constantly.

For higher loads, the discreteness quickly gets close to 1. The crimping FI has a high
start due to the initial mixture with lighter core materials and penalization. The face FI
decreases at the beginning and remains close to 1. The wrinkling FI is also initially

violated and later remains well below 1.

Most of the graphs for the face FI drops down during the final rounding.
Corresponding increase is during the final rounding as is visible on mass graphs. This
is caused by the S shape function in the face-sheet properties.

Table 5.5: Mass, discreteness, and failure indices during design cycles.
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Mass and discreteness
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5.1.2 Beam bending and transverse shear

The same dimensions and design materials were used for the beam example which consists
again of one element, now fixed on one edge and loaded on the opposite end by the transverse
shear force T and the bending moment M (Figure 27 right). The algorithm works with internal
loads at the element center so that the loads at this point drives the design and s0 Tcener and
Meener are used for reference in Tables 5.6 and 5.7. Compared to the compression example,
core shear failure may occur in this case, but not crimping. Bending moment should lead to
higher thickness core and more face-sheet layers. Wrinkling and core shear will drive core
density, but core thickness helps also to decrease core shear failure.

Table 5.6: Results for the element loaded by transverse force and bending moment.

Loads

T center [N] 200 200 200 400 400 800 1200

Meenier [Nm] = 10 50 90 22 24 50 70

Values at the end of optimization

Discreteness  1.000 1.000 1.000 0.999 1.000 1.000  0.999
m [g] 6.56 16.00 23.45 11.52 11.06 15.99 19.77

FI max 0.88 1.00 1.00 1.00 1.00 1.00 1.00

Rounded layup

Face-sheet 0/ 04/ 04/ 0,/ 0°/ 04/ 04/

tore [mm] 5 10 10 5 10 10 10
[k:/":;_,,] 80 130 130 130 130 130 130

Properties after rounding

m [g] 6.58 20.23 24.81 12.41 11.08 20.23 = 20.23

FI faces 0.83 0.69 0.92 0.90 0.99 0.69 0.96
FI coreshear 0.70 0.16 0.15 0.60 0.36 0.63 0.95
FI wr 0.54 0.29 0.38 0.37 0.44 0.29 0.41

True optimum
face: 0/ face: 0/
teore=10mm | teore=10mMmMm | teore=10mm | teore=10mm
Peore=60 Peore=60 Peore=80 Peore=80
kg/m? kg/m’ kg/m* kg/m?
m, [g] 16.73 21.31 8.58 8.58

The overview of the results is in Table 5.6. Evolution of the measures are in Table 5.7. The set
of loads at the element center is selected to investigate cases with low transverse shear and
increasing bending moment as well as larger transverse shear and increasing bending moment.
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The optimization was successful in reaching a feasible and discrete solution, but not optimal
in all cases. Three cases reached the optimum, four did not, but only one of them ended with
more than necessary number of face-sheet layers, so the optimization mostly used a denser
core than necessary.

Load case Teener= 200 N and Mcener= 10 Nm led to the core with density 80 kg/m?, the
thickness and number of face-sheet layers were minimal. All graphs stabilized after
design cycle 4.

Load case Teener= 200 N and Mcener= 50 Nm led to 3 layers of face-sheet and thicker
core, but stacked at high density 130 kg/m>. Graphs stabilized after design cycle 5, but
there are large steps in mass and face FI in the final rounding. Note that the mass
before rounding 16 g is close to the optimum 16.73 g with softer core. That shows that
the algorithm was able to find a local minimum close to the global one, but rounding
to a discrete number of face-sheets degraded the solution.

Load case Teener= 200 N and Mcener= 90 Nm was very similar — heavier than necessary
core and visible increase of the mass in the final rounding.

Load cases with Teene:= 400 N and Meceper= 22 Nm or Meener= 24 Nm are interesting
because of the lighter solution achieved with higher loads. The solution with lower
load combined a thinner core with stronger face-sheets. Graphs evolved slowly and the
core discreteness is low for a very long time, especially in the less loaded case, which
points that the core was not clearly selected for most of the run time. Finally, a feasible
solution was found, but not with minimal mass.

Last two load cases with Teener= 800 N and Meener= 50 Nm, and Teener= 1200 N and
Meeneer= 70 Nm had not much options fort core selection due to high shear load and
(maybe thanks to it) their graphs stabilized soon and led to the optimal solution.

Table 5.7: Mass, discreteness, and failure indices during design cycles.
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5.2 Separated elements

The next example contains 14 elements which are separated, so that the element forces and
moments, shown in Figure 28, will not change during optimization. Elements are fixed on one
side. Eight elements are loaded with increasing compression force F, while other six elements
are loaded with increasing transverse force T which cause bending moment at the element
center Mcenger.

Design materials:

* Four UD carbon/epoxy composites for the face-sheet layers (0°, 90°, +45°, and -45°)
for up to 5 layers (each with thickness 0.256 mm). Face-sheets are symmetric (same
top and bottom face).

 Four core candidates (foams 80 and 130 kg/m? both with 5 and 10 mm thickness).

The task consists of 350 design variables which are linked through 84 material (linear)
constraints. Failures define 210 nonlinear constraints. Optimization took 6 minutes with more
than half spent on Jacobian evaluation.

150N |*F ’I 200N

mmmmmm

3920N
1100N 1570N 2040N 2510N 2980N 3450N
Figure 28: Separated elements with loads and boundary conditions.

The optimization converged well as can be seen in Figure 29 as the evolution for the selected
measures show. All of them stabilized after design cycle 8. Average discreteness reached the
value 1.000 on all elements for the core as well as face-sheets. Mass has a small step due to
the rounding of face-sheet thickness. Maximal failure indices plotted in the graph dropped
from higher initial values to finish close to 1 for all failure types.

Mass and discreteness Failure indices

7 1.2 6.0
6 1,0 5,0
5 0,8 4,0
o g

= 4 2 2
.;. 0,6 % ES‘O
0,4 a w2

= N~
o
N
- N
o =]

0 0,0 0.0
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Design cycle Design cycle
=8 mass =—#—disc_elem disc_face =#—disc_core -8 F|_faces =—4—FI|_coreshear Fl_cr == Fl_wr

Figure 29: Mass, discreteness, and failure indices during design cycles.
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Table 5.8 shows the loads for each element (in-plane force F for elements 1-8, or transverse
force and bending moment at the element M. for elements 9-14). Optimization found
correctly the optimal number of face-sheet layers on all elements, but elements 1-3 have
thicker core than necessary and element 1 has also higher core density than needed. That
might be due to the initial failure constraint violation when the optimization got on the track
of the stronger core and later when it was not violated any more and rather discrete, the
variables stack to the heavier core.

This example was extensively used for selecting robust default parameters for the
optimization. Primary concern was to achieve discrete results without failing elements, which
were achieved in this case, but with the price of some elements to be heavier than necessary.

Table 5.8: Resulting layups and failure indices.

Element 1 2 3 4 5 6 7 8
F [N] 1100 1570 2040 2510 2980 3450 3920 4390
Rounded layup
Face-sheet 0/ 0/ 0/ 0./ 0./ 0,/ 0,/ 05/
tore [mm] 10 10 10 10 10 10 10 10
Peore [kg/m?] | 80 80 80 80 80 80 80 80
Fltaces 0.50 0.71 0.93 0.58 0.68 0.79 0.90 0.68
Fl. 0.24 0.35 0.45 0.56 0.66 0.77 0.87 0.98
Fl. 0.53 0.75 0.98 0.61 0.72 0.84 0.95 0.71
True optimum
teore [mm] 5 5 5
Peore [kKg/M’] 60 80 80
Element 9 10 11 12 13 14
T [N] 45 80 100 120 150 200
Meenter 225 400 500 600 750 1000
[Nmm]
Rounded layup
Face-sheet 0/ 0/ 0/ 0/ 0/ 0/
teore [mm] 5) 5 5 10 10 10
Peore [kg/m’] | 60 80 80 80 80 80
FI faces 0.04 0.07 0.09 0.06 0.07 0.09
Flcore shear 0.81 0.69 0.86 0.54 0.68 0.91
Fl. 0.06 0.07 0.09 0.06 0.07 0.10
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Constraint aggregation

Constraint aggregation was done for a set of aggregation parameters Pxs from 2 to 100, which
is used in eq. (82). Table 5.9 shows results. When pks = 20 and more, the optimization did not
converge as can be seen from low discreteness. Consequently, the mass m after rounding is
height and the maximum failure index is above 1. Lower pks resulted in a feasible solution
with discreteness close to 1. Aggregation with pxs = 5 and 10 gave the lowest mass, but it is
still more compared to non-aggregated solution due to the heavier than necessary core.

It was expected that constraint aggregation will decrease the calculation time, but the example
took approximately the same time (around 6 minutes) with and without aggregation. Mild
speed increase due to the lower number of failure constrains was balanced with worse
convergence.

Table 5.9: Overview of (rounded) results with various aggregation parameters ps.

Pxs 2 3 5 10 20 50 100 Not aggregated
Discreteness | 0.99  1.00 1.00 1.00 0.57 0.38 0.35 1.00
m [g] 342  3.35 3.12 3.12 4.19 4.64 4.38 3.03
max FI 0.98 @ 0.98 0.98 0.98 1.32 1.65 1.97 0.98
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5.3 Panel with pressure or side load

This example consists of a 700x1400 mm panel loaded by the normal pressure 50 kPa with
fixed edges in the first variant and simply supported edges in the second variant. Third variant
has one edge fixed, the middle of the opposite edge is loaded by 6000 N in each of the 9
nodes (the distribution is to decrease stress concentration). It was meshed with 16x32 quad8
elements (second order quadrilateral elements with 8 nodes) as shown in Figure 30. This
example follows the results published in the article [68].

Fixed Hinged Side load
A A A
p =50 kPa p =50 kPa

=] (=] (=]
= g F=9x6000N ¢ 3
i - -

Y h 4 h 4

P 700 . < 700 . , 700 .

Figure 30: Panel with different boundary conditions [68].

Design materials:

* Four unidirectional layer candidates for the face-sheet layers (0°, 90°, -45°, and 45°
UD carbon) for up to 5 layers. Face-sheets are symmetric (same top and bottom face).

* Six core candidates (foams 60, 80, and 130 kg/m? all with 5 and 10 mm thickness).

5.3.1 Variable stiffness

Although the settings for various optimization parameters are not presented for their
extension, this example was used to find robust default parameters since element loads
depend on element stiffness and evolve during optimization, contrary to previous simple
examples which focused on the basic function of the optimization which quick runtime easy
to test the code.

In these settings, each of the 512 elements had its own design variables, which led to 12800
design variables linked through 3072 material (linear) constraints and 7680 failure (nonlinear)
constraints. Optimization took around 3 hours (fixed and hinged plates), resp. 3.5 hours (side
loaded panel), with 80% of the time spent on Jacobian evaluation.
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Table 5.10: Mass, discreteness, and failure indices during design cycles.

Fixed panel
Mass and discreteness Failure indices
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Fixed panel converged to discreteness 0.983 with max. FI 1.01 due to slight violation of the
wrinkling criterion after rounding. Graphs in Table 5.10 for the fixed panel show that the
discreteness increased at the beginning, stayed constant in the middle, and rose at the end
towards 0.983, so the convergence was not as smooth as in other examples, but the failure
constraints remained around 1 for most of the design cycles. Figure 31 shows the final
discreteness and failure index distribution. Discreteness of the face-sheets is above 0.85, some
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elements have core discreteness only above 0.53, which can be explained that the
optimization did not fully decide for the core on such elements, but important is that these
elements do not have a failure, as can be seen on the right plot. Layup in Figure 32 is with
numbering from the outer layer to the core, the opposite face-sheet is symmetric. The figure
shows that the fixed panel has empty outer layers 1-3. A pattern in orientation is that the layup
of most elements is oriented towards the nearest edge or corner. The core has weaker material
in the middle and on the diagonals connecting corners. Stronger core is close to edges. The
algorithm carries out an alternative rounding to a heavier core if that core material has a
design variable above 1%. In this particular example, the mass increased by 0.5% and max. FI
decreased to 0.98.

Hinged panel has straight convergence. Graphs in Table 5.10 stabilized after design cycle 9,
but the final max. FI is 1.01 due to slight violation of the wrinkling criterion after rounding.
Figure 31 shows high discreteness in face-sheets (above 0.95) and even higher for core
discreteness. Max. FI is also on most elements with high values close to 1. Layup in Figure 32
is different from the fixed panel and shows little covering in layers 1 and 2. Segmentation is
visible. Middle segment has 0° orientation, the segments close to the corners are oriented
diagonally to the bridge area of each segment. Core is almost everywhere with the strongest
option.

Panel with side load has no symmetry in loading nor in layup. In the graph in Table 5.10, the
discreteness reaches high values at design cycle 9 but slightly decreases after that to finish
with average discreteness 0.92 due to waves on FI which ends on 0.96. Figure 31 shows that
discreteness is rather uniformly lower, but some elements are weaker in face-sheet
discreteness starting at 0.49. Max. FI is high on a few elements, low FI is in the center and top
right corner, but there are still two face-sheet layers in Figure 32, which might be associated
with a significant step up during rounding in Table 5.10. Otherwise, layers 1-3 are populated
only on a few elements with stress concentration. Layers are oriented mostly in +45 or -45
from the fixed edge towards the load area. Core is reinforced in the segment with compressive
load.
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Figure 31: Core and face-sheet discreteness, maximum failure index.



Fixed

Layer 5 Core

Layer 1 Layer 2 Layer 3
Hinged
Layer 1l Layer 2 Layer 3
[ | ol
] ]
] ]
= =
Side load
Layer 1 Layer 2 Layer 3 Layer 4
P -
Face-sheet materials: empty Core materials:
=o°
I e0°
B 45°
B 45°

5mm 80 kg/m®

[ 10 mm 80 kg/m?
B 5 mm 130 kg/m*
W 10 mm 130 kg/m?

Figure 32: Layup for different boundary conditions, opposite face-sheet is symmetric.
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Figure 33: Layup for the panel with side load with different blending parameter b.

Blending

Blending was used for all panels, but hinged and fixed panels did not give much distinct
results from the solution without blending, thus only the panel with side load is presented. It
was calculated for b.=0.1 and three values of by (2, 4, and 8). Because of difficult
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convergence, the number of optimizer iterations im.=20 was doubled compared to the default
value. Figure 33 shows the final layup of the panel with side load for different parameters b.
It can be seen that the areas with the same material are more compact as b, increases, so that
by=8 has almost continuously filled layers 4 and 5 with -45°. In all cases, the core has
practically only two foams present. For by=8, heavier core stacked to the corner, which can be
interpreted as a trial to decrease the boundary between different core materials. When
blending was used, the mass increased variously according to the parameters b. and bo. For
b.=0.1, by=8, it increased by 7%.

Effect of stress concentration

Panel with side load is, according to Figure 30, loaded by a force distributed to 9 nodes to
diminish the stress concentration. In the following comparison, the force is concentrated to
one node as used to be in engineering practice according to Saint-Venant’s principle when
stress concentration is ignored during engineering interpretation.

Table 5.11 compares the results with different parameters Aiy, denoting a portion of the
elements with ignored failure constraints. When the force is concentrated and none element is
ignored (Ajg, = 0), the optimization did not converge as can be deducted from low discreteness
0.51 and mass almost two times larger than in the case of distributed load. This behavior can
be interpreted by the optimizer which has a priority on a solution feasibility, so that the
objective function (penalized mass) is not much taken into account. As a result, only one
element under the concentrated load is failing. As Ai,g increased to 0.01 (ignoring 5 elements
from total 515 elements), the discreteness and mass improved, but A;,; = 0.015 (ignoring 7
elements) or more was needed to reach discreteness and mass similar to the original case with
distributed load where layup was very similar to the original case in Figure 32.

It appears that ignoring some elements is necessary when a model contains concentrations
which cannot be designed with available materials to fulfill failure constraints. The price for
element ignoring is that the final design contains several failing elements which position was
not determined by the user, but important is that the optimizer is able to converge.

Table 5.11: Comparison of force application and parameters to ignore area Aign.

Distributed Concentrated force
load
Aign 0 0 0.01 0.015 0.02 0.025
Number of
ignored 0 0 5 7 10 12
elements
Number of
failing 0 1 4 7 10 9
elements
Discreteness 0.92 0.51 0.78 0.96 0.95 0.96
m [g] 2019 3908 2786 1997 1989 1984
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Constraint aggregation

The effect of constraint aggregation was tested on cases with each boundary condition for
aggregation parameters Pks from 2 to 100. Discreteness, mass, and maximum failure index
are compared with the solution without aggregation in Table 5.12.

For the fixed panel, the best results are with pxs = 10 (lowest mass and not violated
constraints) and the results do not differ too much from the solution without aggregation
(mass increase by 12%). For lower Pks, the discreteness is above 0.8 which is still not much,
but the mass is quite high for pxs = 2. Contrary, for pxs = 20 and more, discreteness is
unsatisfactory and the constraints are strongly violated.

For the hinged panel, the lowest mass is for pPxs = 5, but it is already by 55% heavier than the
solution without aggregation. Discreteness is above 0.9 for pks up to 5, then it drops to low
values together with high constraint violation. Contrary to expectations, the optimization time
increased due to aggregation from approximately 3 hours to 4 hours.

For the panel with side load, the low mass is also for pks = 5 with mass increased by 55%.
Constraints are violated for higher pks. Discreteness is low for all aggregated results. Since
the discreteness is the lower for not aggregated solution compared to the fixed and hinged
panels, it might be concluded that this example converges harder, but the constraint
aggregation decreases the quality more than in the previous cases.

Table 5.12: Overview of (rounded) results with various aggregation parameters pgs.

Fixed

Pxs 2 3 5 10 20 50 100 Not aggregated
Discreteness | 0.86 @ 0.81 0.82 0.59 0.35 0.37 0.38 0.98
m [g] 3871 3274 2976 | 2127 | 1809 @ 1808 | 1805 1901
max FI 0.65 0.65 0.69 0.79 4.11 3.27 3.22 1.01

Hinged

Pxs 2 3 5 10 20 50 100 Not aggregated
Discreteness | 0.97  0.97 0.93 0.57 0.35 0.35 0.36 1.00
m [g] 4077 4056 | 3991 | 4028 @ 1800 | 1799 | 1807 2574
max FI 091 0.83 0.94 1.24 7.92 6.71 5.53 1.01

Side load

Pxs 2 3 5 10 20 50 100 Not aggregated
Discreteness | 0.36 = 0.45 0.50 0.44 0.41 0.43 0.44 0.92
m [g] 4042 3780 | 2914 | 1803 @ 1801 | 1799 | 1797 2019
max FI 0.86 0.83 0.96 1.85 2.22 3.07 2.79 0.96
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Refined mesh

New models were made with the element size two times lower, leading to 2048 elements
instead of 512, thus the number of design variables increased to 51200, material constraints to
12288, and failure constraints to 30720. This resulted in the optimization time more than 16
hours (5-7 times more than the original mesh). Layups are not presented, since they were
similar with the fine mesh as with the original mesh in Figure 32. Overall results in Table 5.13
show that the solution quality rather decreased. Although the optimal mass can theoretically
alter due to the higher number of element centers (where failures are evaluated), the
maximum FI increased in all cases and violated constraints. For the fixed panel, max. FI
increased by 9%, for the hinged panel by 1%, and for the panel with side load FI=1.03
occurred. The decrease in solution quality for the panel with side load is visible also in
discreteness which dropped to 0.70, thus Ai,, parameter was tried, set to ignore 1% of
elements, but the solution did not improve significantly.

Possible explanation of the increase in max. FI is that a high number of variables is more
difficult to solve for the optimizer and/or that the optimization parameters were primarily
defined to achieve good results on the original mesh and so are not so robust for larger tasks.

Table 5.13: Comparison of original mesh 16%32 and refined to 32x64.

Fixed Hinged Side load
Mesh 16x32  32x64 16x32  32x64 | 16x32 32x64 | 16x32 32x64
Aign 0 0.01
Discreteness  0.98 1.00 1.00 0.97 0.92 0.70 0.96 0.78
max. FI 1.01 1.10 1.01 1.02 0.96 1.03 1.65 1.75
AR
m [g] 1901 1868 = 2828 | 3141 | 2019 = 2289 | 2052 @ 2116

5.3.2 Patch design

Panels were optimized with the use of one patch on all elements, so that the independent
design variables were only on one element and the other element layups are driven by the
same variables, which leads to a uniform layup on the whole panel. The number of design
variables was only 25, 6 material constraints, but 7680 failure constraints remain.
Optimization took 2-2.5 hours, which is only by ~35% less than the case where every element
has its own layup.

Results from these settings are in Table 5.14. All variants of boundary conditions finished
with discrete results and with a feasible solution (FI < 1). All cases ended with the strongest
core. For the fixed panel, face-sheet is over dimensioned, because 2 layers with 0° orientation
would transfer the loads without failure violation, but 3 layers were in the end of the
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optimization. Hinged panel seems to be correct with 2 layers. Panel with side load has 5
layers in the face-sheet where removing one would violate constraints. The orientation
corresponds to the results with blending in Figure 33 where layers 1, 2, and 3 were mostly

empty.
Table 5.14: Results for one patch over the panel.
Fixed Hinged Side load
Discreteness 1.00 1.00 1.00
max. FI 0.83 0.71 0.94
Face-sheet 45/-45,/ 0,/ -455/
Core 10 mm 130 kg/m*?
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5.4 Box with top underpressure and torque

5.4.1 Sandwich panels

Long box example with ribs is in Figure 34. It is cantilevered on the left end and loaded by
tensile underpressure 15 kPa on the top side and torque on the circumference of the ribs
through RBE3 elements, 2 Nm on each. Size of the load was selected to fit the load capacity
of the sandwich with the layup used in this thesis. It resembles aircraft wing loading, but it is
not any specific case. The mesh consists of 990 quad8 elements. Each panel was defined as
one patch, so that the model contains 25 patches. That together with design materials lead to
375 design variables, 150 material constraints, and 14850 failure constraints.

Design materials:

* Two fabric candidates for the face-sheet layers (0° and 45° carbon fabric) for up to 5
layers (each with thickness 0.327 mm). Face-sheets are symmetric (same top and
bottom face).

Four core candidates (foams 80 and 130 kg/m? both with 5 and 10 mm thickness).

m:'Mk =2 Nm

_wrs

lg

150,

Figure 34: Schema of the box example.

Optimization parameters were altered to find better a solution as concluded in Table 5.15. All
settings led to a feasible solution, but the differences in the final mass are large. Default
setting is the first column with the maximum number of optimizer iterations im.x=10 and
maximum change of the design variables within a design cycle An.=0.2. Altering of these
parameters helped to achieve a better result by smaller step in variables (Amx) and more
iterations on each design cycle (imsx) as can be concluded from discreteness 1.00 for cases
with imx=20 and the lowest mass when combined with An.=0.15. Therefore, graphs and
layups will be shown for these settings. Optimization time increased by ~50% from
approximately 2 hours (default settings) to more than 3 hours (the best solution).
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Table 5.15:

Result comparison for different in. and Ay

imax 10 15 20 10 15 20
Amax 0.2 0.15
Discreteness 0.96 0.96 1.00 0.93 0.99 1.00
max. F1 0.79 0.79 0.79 0.79 0.79 0.90
m [kg] 9.863 10.018 6.928 9.912 8.536 6.613

Maximal failure index in Figure 35 drop soon below 1 and remains relatively stable.
Discreteness grows up to design cycle 6, remains stable, and finally grows to 1. Mass has the
opposite behavior with a large drop rather close to the end. The ramp in the middle of
discreteness is due to the convergence criteria prescribed to the optimizer (the goal
discreteness of the design cycle in Figure 25 is reached immediately) and so the next design
cycle may start without significant change of the model.

Mass and discreteness Failure indices
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Figure 35: Mass, discreteness, and failure indices during design cycles for imaw=20, Anax=0.15

FIcr == Fl_wr

Table 5.16 shows the final layups of the patches. As expected, a stronger core and more face-
sheet layers are close to the root where the maximum of bending moment and torque is. Top
panels have a stronger core which can be easily explained by the underpressure load and by
the fact that the top panels are loaded in compression from the bending moment. Top and
bottom panels contain only 0° oriented face-sheets as expected. Front and back panels close to
the root (segments 1 and 2) have also face-sheets in 0° orientation probably due to
participation in bending moment transfer. Other segments of the back and rear panels have
orientations 45° which points to torque loads. All ribs have only a light core and one face-
sheet layer, some with 0° and some 45° orientation, which both safely satisfy the failure
constraints so the optimizer need not prefer any of them.

Figure 36 shows the maximum failure indices on the panels. It is obvious that the ribs are not
much loaded as well as the tip section. Front and back panels in section 3 are less effectively
used, which seems that lighter layup is probably possible there.
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Table 5.16: Layup of segments 1-5 from the fixed root to the free tip for imw=20, Anx=0.15

Segment 1 (root) 2 3 4 5 (tip)
0s/ 05/ 0./ 0/ 0/
Top 10 mm 10 mm 10 mm 5 mm 5 mm
130 kg/m? 130 kg/m? 130 kg/m? 130 kg/m? 130 kg/m?
0s/ 04/ 0,/ 0/ 0/
Bottom 10 mm 5 mm 5 mm 5 mm 5 mm
80 kg/m* 80 kg/m® 80 kg/m® 80 kg/m® 80 kg/m®
05/ 0./ 45,/ 45/ 45/
Front 10 mm 10 mm 5 mm 5 mm 5 mm
130 kg/m3 130 kg/m3 130 kg/m3 130 kg/m3 80 kg/m’
0y/ 0,/ 45,/ 45/ 45/
Back 10 mm 10 mm 5 mm 5 mm 5 mm
130 kg/m? 130 kg/m? 130 kg/m? 130 kg/m? 80 kg/m®
0/ 0/ 45/ 45/ 0/
Ribs 5 mm 5 mm 5 mm 5 mm 5 mm
80 kg/m’ 80 kg/m’ 80 kg/m’ 80 kg/m’ 80 kg/m’
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5.4.2 Sandwich panels with flanges

This variant of the box example contains flanges as shown in Figure 37. Flanges have
different layups from the rest. Only a number of UD carbon layers is optimized on the flanges
since the design layup contains 40 candidate layers without fabrics and without sandwich
core. Flange elements are in patches on every segment, but the left and right flange symmetry
is enforced by the design, because both top flanges are in one patch, and both bottom flanges
are also in one patch. Other elements have sandwich design layups with the same materials as
were used in the sandwich only box. Patches of the sandwich panels are smaller on the top
and bottom due to flanges, otherwise they are the same as previously.

The model contains 990 shell elements which are divided to 25 sandwich patches and 10
flange patches. That gives 795 design variables, 550 material constraints, and 19850 failure
constraints. Since the flanges increase the capacity to carry out the bending moment, the
underpressure on the top elements was increased to 50 kPa, the torque on the ribs was kept on
2 Nm per rib.

..__--f-f"ka =2 Nm
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n
o

—

sandwich —pF 11

i

UD laminate flange
Figure 37: Schema of the box with flanges.
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Optimization was run for the same settings as in sandwich-only box, i.e., imx=10, 15, 20 and
Amax=0.2, 0.15 as shown in Table 5.17. All cases satisfy the failure constraints and have
discreteness 0.98 or higher. The case with imx= 20 and default An.=0.2 is the only one with
discreteness 1.00 and clearly lower mass than other cases which reached similar values in
discreteness, maximum failure index as well as final mass. Even in the best case, the
maximum failure index 0.87 is still well below 1, which might signify that the solution can be
still improved.
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Table 5.17: Result comparison for different in. and Apay.

imax 10 15 20 10 15 20
Amax 0.2 0.15
Discreteness 0.98 0.99 1.00 0.98 0.98 0.98
max. F1 0.85 0.85 0.87 0.86 0.85 0.86
m [kg] 13.235 13.065 10.774 13.213 12.970 13.691

Figure 38 shows that discreteness stabilized after design cycle 6 and failure indices remained
below 1 even when the mass changed significantly during design cycles.
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Figure 38: Mass, discreteness, and failure indices during design cycles for in.=20, Apnw=0.2.

Layups of the best solution are in Table 5.18. Top panels have a strong core on segments 1-4
due to compression from bending moment and local bending from the underpressure, whereas
the bottom panels have a light core which corresponds to the expected tensile loading.
Orientations on the top and bottom panels are 0° with more maximum allowable number of
face-sheet layers on segments 1-3. Front and back panels have 45° layers and a strong core on
segments 1 and 2 as corresponds to shear from torque. Ribs have mostly a light core and one
45° face-sheet layer, but the tip rib ended with three layers probably as a support for the top
panel end.

Figure 39 shows the maximal failure indices for the best solution. The highest values are on
the bottom and especially top sandwich panels on segments 1 and 2 close to the root and on
the other top panels above ribs. Rather low FI on the front and back panels suggest that they
could be lighter as well as ribs 1 and 5. Flanges do not reach extra high FI, which denotes that
they did not reach the optimum because 7-40 UD layers are enough to remove some of them
without overwhelming increase of failure index.

98



Table 5.18: Layup of segments 1-5 from the fixed root to the free tip for imm=20, An=0.2.

Segment 1 (root) 2 3 4 5 (tip)
0s/ 0s/ 0s/ 04/ 05/
Top 10 mm 10 mm 10 mm 10 mm 10 mm
130 kg/m? 130 kg/m? 130 kg/m? 130 kg/m? 80 kg/m?
05/ 0s/ 0s/ 0/ 0/
Bottom 5 mm 5 mm 5 mm 5 mm 5 mm
80 kg/m® 80 kg/m® 80 kg/m* 80 kg/m* 80 kg/m®
455/ 453/ 453/ 45,/ 45/
Front 10 mm 10 mm 5 mm 5 mm 5 mm
130 kg/m? 130 kg/m? 130 kg/m*? 130 kg/m*? 130 kg/m*?
455/ 455/ 45,/ 45,/ 45/
Back 10 mm 10 mm 5 mm 5 mm 5 mm
130 kg/m? 130 kg/m? 130 kg/m? 130 kg/m? 130 kg/m?
45/ 45/ 45/ 45/ 45/0,/
Ribs 5 mm 5 mm 5 mm 5 mm 5 mm
130 kg/m® 80 kg/m’ 80 kg/m® 80 kg/m* 80 kg/m’
Top flanges Os0up 026 up 022up 07up 09 up
Bottom flanges O40up 025 up O12up Osup Osup

Figure 39: Maximum failure index for ims=20, Apnwx=0.2.
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5.5 Aircraft interior components

5.5.1 Stowage

Real stowage of an airliner was selected as a practical component. The mesh is in Figure 40.
The stowage is loaded in a side direction with acceleration acting on the point masses
connected to the structure through RBE3 elements. Boundary conditions consist of fixation at
attachment points where the stowage is connected to the floor through RBE2 elements. The
model contains springs, rods, and other connectivity elements as are usual for such a
component. Optimization does not limit their use and, in this example, the model for
optimization was taken from practice without modifications. It contains 4993 quad4 elements
on 11 flat panels selected as patches, which together with design materials led to 99 design
variables, 33 material constraints, and 44937 failure constraints.

Direction of
acceleration
load

/

* Attachment
points

Figure 40: FE model of the stowage.

Design materials:

* Only one material can be in the face-sheet (0° glass fabric) in 2 or 4 layers (each with
thickness 0.336 mm), thus it is modeled as two possible layers of double thickness
(0.672 mm and 0.672 mm).

* Six core candidates: honeycomb with thicknesses 6.35, 12.7, 18.8 mm and with
orientations 0° or 90°.

Attachments are not the subject of optimization, but the model typically does not simulate
their area in detail, so that RBE2 elements cause local stress concentration. Because of the
stress peaks, the stowage was optimized for several A, parameters as shown in Table 5.19.
When ignoring was not used (A;=0), the discreteness of the model was below 1 and the mass
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was high because thick face-sheets remained at the end of the optimization. The area of failing
elements around the attachment is low as can be seen in the bottom view in Figure 41.
Therefore, the optimization led to the same results for 0.1%, 0.5%, as well as 1% ignored
area.

Table 5.19: Result comparison for different Aign.

Aign 0 0.001 0.005 0.01
Discreteness 0.94 1.00 1.00 1.00
m [kg] 33.664 17.025 17.025 17.025
o~
1.

-

CONSTRAINT_MAXIMUM
2.8e04 1 2 3 3.6e+00

e

Figure 41: Bottom view on elements with FI>1 for A;z,=0.005.

Figure 42 shows the graphs for the case with Aig,=0.005. All measures stabilized after design
cycle 6. Discreteness reached 1, failure indices for core shear, crimping and wrinkling
remained below 1 during all design cycles. Face-sheet failure decreased from the initial high
value to 3.6 which is the value around the attachments as shown in Figure 41.
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Figure 42: Mass, discreteness, and failure indices during design cycles for Aign=0.005.

Optimization resulted in all panels with only two plies in the face-sheets for nonzero Aig,.
Optimization removed additional two plies. Figure 43 shows the core thicknesses of the
panels and their orientations marked by black lines. It is difficult to guess the best orientation
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of the middle panels, but the side walls have a vertical orientation which was expected from
the overall side load. Most of the core thicknesses are at the lowest value, which points to the
fact that the stowage should be rather designed by technological considerations and loads are
not critical in linear static analysis.

5.334 mm
5.334 mm

17.78 mm
- loading direction

Figure 43: Orientations and thicknesses on the stowage for
Aign=0.005.
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5.5.2 Galley

The final example represents application of the program to the conceptual design of an
airliner galley. The galley covers the rear bulkhead of the passenger compartment. It serves to
accommodate trolleys in the bottom section, equipment such as a coffee machine, and boxes
for refreshments. Shell FE model is typically used to analyze the strength and deformation of
the galley. Loads from the inner staff are applied as a pressure on the shelf faces or through
acceleration acting on concentrated masses connected to the shell structure through RBE2 and
RBE3 elements. The galley is connected to the primary structure through the floor, side and
top attachment points that can be modeled by RBE2 elements and springs, reflecting the
stiffness of each connection.

The optimization model (Figure 44) was done in the same manner but with rough mesh so
that the total number of shell elements was 4252, which was necessary to reach the
optimization results in reasonable time. Number of patches (panels) was 54 which led to 486
design variables, 162 number of material constraints, but the number of failure constrains was
38268. Six separate load cases were applied, defined by load factors in each of the basic
directions (forward, aft, left, right, up, down). Each load case was in a separate Nastran input
file due to the different arrangement of RBE elements. Optimization with this number of
elements and load cases took over 14 hours.

272
&

lil'l'l"‘_“

' 5
&

Figure 44: Optimization model with RBE arrangement for load case in up direction.
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Design materials were the same as in the stowage example. Aim of the optimization was to
select the global layup for the panels. Local reinforcement (metal doublers and inserts) cannot
be defined by the optimization algorithm, so it has to be defined manually after the
optimization. Omitting local reinforcement leads to local failures of the panels, so that using
A, toignore a certain portion of the elements is necessary to achieve meaningful results.

Table 5.20 shows the final discreteness and mass for a set of A g, Discreteness was 1.00 in all
cases with nonzero Ajg. It is obvious that none ignoring led to a very heavy solution. When
5% area was ignored, mass of the panels was only slightly higher than in cases with more
ignored elements. In cases with A;;,,=0.05 and more, all panels contain only two plies in face-
sheets and the mass difference is given only by the heights of the panel cores.

Table 5.20: Result comparison for different Aign.

Aign 0 0.02 0.05 0.1 0.15 0.2
Discreteness 0.95 1.00 1.00 1.00 1.00 1.00
m [kg] 147.004 124.357 82.521 82.215 79.446 77.216

Figure 45 shows that the discreteness and mass stabilized after design cycle 8, which denotes
good convergence as was, e.g., in one-element examples for the optimal solution. Maximal
failure indices remained at values under 1 for core shear, crimping, and wrinkling, but the
model failures are in face-sheet layers, which are mostly on ignored elements, but are not
filtered out from the graph.
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Figure 45: Mass, discreteness, and failure indices during design cycles for Ai;,=0.05.

Figure 46 shows the color plot corresponding to the core material, i.e., thickness and
orientation. Since the orientation depends on FE element orientation, black lines were added
manually according to the element orientations on each panel. In this example, the optimizer
had to evaluate element loads on each element of the panel for 6 different load cases, so it is
difficult to evaluate specifically the correctness of the resulting core orientations and
thicknesses.
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t=17.78mm

' t=11.684mm

t=5.334mm

Figure 46: Galley results with panels orientations and thicknesses for Aig,=0.05.

Figure 47 shows the failing elements, which are mostly in the ignored area. It is a useful
output for the designer so that these areas can be reinforced with doublers and inserts.
Imperfections of the model can also cause failures, which might be considered because some
elements might be failing just because of a poor quality of the mesh due to rough element

size.

Figure 47: Elements with max FI > 1, for Aizn=0.05.

CONSTRAINT_MAXIMUM
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5.6 Summary of examples

Findings from the test examples can be summarized to these points:
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1)

2)

3)

4)

5)

6)

Final discreteness and maximum failure index can be used for the first assessment of
the results. In most cases, the final design was without failure constraint violation.
Some examples finished with a slight violation. Final discreteness was usually close to
1, which denotes that the continuous variables converged successfully to a discrete
solution which is required in the composite design.

The optimizer was not able to reach a discrete solution when the failure constraints
could not be fulfilled by the strongest candidate materials (or) due to local stress
concentration. The difficulty can be avoided by the use of A, parameter prescribing
area of the elements which failure constraints are ignored.

Constraint aggregation did not work satisfactorily. Best solutions were achieved with
Pxs lower than reported in the literature, but it still did not reach the quality of a
solution without aggregation. Aggregation was expected to decrease the optimization
time, but examples with aggregation required similar or even longer time due to worse
convergence. These differences, compared to the literature, could be explained by a
different approach to derivatives and evolution of the design cycles.

Although default optimization parameters were defined to achieve a robust solution in
most cases, lower mass was achieved with altered parameters in some examples (the
box example performed better with higher number of iterations imax)-

Simple examples revealed that the program is capable of reaching the true optimum in
some cases, but not in all of them, which is not surprising when gradient optimization
is used. Box with flanges, as a representative of a larger task, contained patches with a
relatively low failure index, which also points to nonoptimal solution.

Optimization time ranged from minutes for one element to 14 hours for the galley with
multiple load cases. Most of the time is spent on Jacobian evaluation, related to the
number of failure constraints, thus time increases with number of candidate materials
on the layup, the number of elements, and the number of load cases. Number of design
variables also increases time, but not as significantly as was demonstrated by the panel
where one large patch did not shorten the time as dramatically compared to the case
without patches.



6 Conclusion

Theses described a new approach to sandwich optimization for the task of mass minimization
with sandwich failure constraints. The method is based on Discrete Material Optimization
(DMO), which applies the principles of multimaterial topology optimization to composite
optimization. The method uses continuous design variables which converge to discrete values
by the end of the optimization due to penalization.

Outcomes and contributions of the thesis:

1) The novelty of this approach is that it evaluates the gradients on elements separately
and the interaction of the neighboring elements is carried out by the controlled
evolution of the model. Gradient evaluation is separated from the FE model, which is
theoretically less efficient, but enables to use an ordinary Nastran model which can
contain common types of elements such as springs, RBE elements, etc.

2) Sandwich failure criteria within the concept of DMO require to deal with a
combination of the candidate materials. Among sandwich failures, crimping and
wrinkling were not found to be published previously in the scope of DMO.

3) The method was implemented as a Python program. It is able to deal with basic
features such as: general Nastran input with shell elements in the optimization domain,
multiple user-defined layups, multiple load cases, and patches.

4) Test examples were used to find robust default optimization parameters. It was shown
that optimization is able to achieve a discrete solution without failure constraint
violation or only slight violation.

5) Test example with concentrated load at one node revealed difficulties of the optimizer
to converge due to locally high failures. This issue was successfully solved by defining
a parameter which prescribes a small portion of the element failures to be ignored.

6) Examples demonstrated potential of the program for conceptual design of the
sandwich structure layup. As a result, the workflow of a designer can change as shown
in Figure 26, where the comparison with and without optimization is shown. Running
the optimization program takes longer machine time, but modification of the
optimization parameters is quick compared to manual layup modification and
checking the results each time to satisfy requirements when the optimization program
is not used.

The method can be further improved to fit a wider scope of engineering tasks. New
manufacturing constraints can be added as they will be required by specific components.
Implementation of the adjoint method for derivative calculation could help with additional
requirements on displacement and buckling. Other potential for scientific work is in
combination with different methods, such as GA, to decrease the risk of reaching a local
minimum.
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8 List of symbols and abbreviations

A, Aign
Aus, Ass, Ass
A

AD
ADS
by, b.

B
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DMO
DDMO
D,D

E, E
f(x)

F

FE, FEA, FEM
FI, Flo, ¢ e wr
FSDT

g(x)

GA

GFRP

G.

i, idc, irrlax

IPOPT

RN
wn S

4-Na

MA
MSCADS
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g, DM, Nvr, NMc, L, Np

n.p.
N, N,
p

PUR
PVC
q q
Q

element area, relative ignored area
transverse shear stiffness matrix members
membrane stiffness matrix

Automatic Differentiation

Automated Design Synthesis

blending parameters

bending-membrane coupling stiffness matrix
distance of face-sheet centers, discreteness
Discrete Material Optimization

Decoupled Discrete Material Optimization
bending stiffness (matrix)

elastic modulus, effective face-sheet modulus
goal function

force vector

finite element, finite element analysis, finite element method
failure index for face-sheets, core shear, crimping, wrinkling

First Order Shear Deformation Theory
constraint function

genetic algorithm

Glass Fiber Reinforced Polymer

core shear modulus

i-th candidate material, number of design cycles, number of optimizer

iterations

Interior Point Optimizer

j-th layer, design cycle

Jacobian matrix

k-th element, coefficient in the logistic function
wrinkling coefficient

shear correction factor

stiffness matrix
Kreisselmeier-Steinhauser function
Lagrange function

real mass

penalized mass in the goal function, bending moment

Method of Moving Asymptotes
MSC Automated Design Synthesis
MUItidisciplinary Synthesis Tool

materials, layers, pairs for blending
neutral plane
linear load, critical load
penalization coefficient
polyurethane
polyvinyl chloride
distributed load, penalization coefficient
shear force

number of elements, materials, face-sheet materials, core



Q Q
RAMP

RBE2, RBE3
S

SIMP
SLP
SLSQP
u

UD

t, b, &, &
M,

T

\'

V, Vi, Vi

w
W, Wi
Xijk, XTk
Z

A, Ay
pair
Armax
3
Y
9, 0,

-

A
\V)
P, Pxs, PL, Pm

P
0, Opn
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layer stiffness matrix, layer stiffness matrix in element coordinate system
Rational Approximation of Material Properties

Rigid Body Element

shear stiffness, allowable stresses in the face-sheet and core

Solid Isotropic Materials with Penalization

Sequential Linear Programming

Sequential Least SQuares Programming

displacement vector

uni-directional composite

thickness of first and second face-sheet, core, face-sheet

thickness in goal function

transverse force load

element volume

total volume, composite fiber volume content, composite matrix volume
content

deflection, weight coefficient

core mass, face-sheet mass

material variable, thickness variable

position of the layer from the neutral plane

finite difference of the variable, difference between variables in blending

allowable change of design variable per design cycle
strain

shear strain

material orientation, principle direction angle
Lagrange multiplier

Poisson’s number

material density, KS function coefficient, layer density, density in goal
function

shifted layer density

stress, P-norm function

shear stress



9 Appendix

9.1 Layer stress calculation

In this work, the First Order Shear Deformation Theory (FSDT) is used to calculate layer
stresses during optimization according to the element inner loads which are printed by the FE
solver. Stresses can be also taken as the output from the FE, solver but analytical formulas are
needed for evaluation of the derivatives of design constraints dependent on stresses. The
FSDT differs from the Classical Laminated Plate Theory (CLPT) in removing Kirchhoff
hypothesis so that transverse normals after deformation do not remain perpendicular to the
plate mid-surface. Practical consequence is that transverse shear stresses need to be evaluated.

Assumptions and restrictions of the theory [69]:
1) The layers are perfectly bonded together.
2) The material of each layer is orthotropic linearly elastic.
3) Each layer is of uniform thickness.
4) The strains and displacements are small.

5) The transverse shear stresses on the top and bottom surfaces of the laminate are zero.

Relations in this chapter are from Reddy [69] and Juracka [70]. Generalized plane stress is
assumed. Out-of-plane components 033 = 0, €33 # 0 are not further elaborated. Considering the
orthotropic material of the layer, its constitutive stress-strain relations are given by the lamina
stiffness matrix Q in

Ey Vi Ey
o, Qy, Qp, O £, I=vpvy 1=vpvy £,
[02]: Qu Qp 0 £ 1= VikEy E,, Er b (85)
T2 0 0 QY I=vpvy 1=vypvy Yiz
0 0 G,
u L

22 . .
where Va=Vn g - For sandwich structures transverse shear properties need to be
1

considered. It is assumed that shear stiffness is given by the core material, so the shear stress
and strain relation is

| % ol

Transformation to the plate coordinate system leads to the eq. (85) and (86) in the forms

G, O
0 Gy

T
Ti6

il ®
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o) |Q Qo Qe
[Ow]: Q_12 Q_zz Q_26 [Eyy}

Xy _Q16 Qy Qg Yw)
T — Q_44 Q_45 yyz
4

Q45 Q55
where transformed members of the matrix Q are

(87)

Q;=0Qy cos‘6+2 (Q12+2 QGG) sin’6 cos’6 +szsin40
Q_12:(Q11+Q22_4Q66)5m20C0520+Q12(5m40+C0540)

Q,=Qy;sin* 0 +2(Q,,+2 Q) sin’6 cos’H +Q,,cos* O

Q_16:(Q11_Q12_2 QGG) sin 0 cos’6 + (le— Q,+ 2Q66)Sin3 60 +cosO
Q,:=(Q,;—Q,—2Q,;)sin’ Acos O +(Q,,— Q,,+2Q,, )sin O +cos’6 - (88)
Qu=(Qu+Q,—2Q,,—2Q,) sin°6 cos’# +Q66(sin40 +cos'6)
Q,=Q,,cos’0+Q..sin’A

Q_45=(Q55—Q44) sin @ cos O

Q..=Q..cos’0+Q,,sin’H

'Z

Figure 48: Element force and moment resultants according to Reddy [69].

Constitutive equation for the whole laminate has the form

Nl_[A B (89)
M| |B D]k
where N and M are the in-plane and moment linear loading vectors as depicted in Figure 48,
€’ and k are the membrane and bending strain vectors

N M &l
XX XX XX K
_ _ 0_1] o — xx
N= Nyy , M= Myy , €= e, K—[Ew] . (90)
0 X
ny Mxy €y y
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Extensional stiffness matrix A, bending stiffness matrix D, and bending-extensional coupling
stiffness matrix B are 3x3 symmetric matrices which members are

N _ 1 N 1 N
:Z Qij,k(zk+1_ > UZEZ ik Zk+1 U:§Z i,k Zk+1 >
k=1 k=1 k=1
(1)
where N is number of the layers on the element and z (shown in Figure 49) is the layer

position according to the neutral plane calculated for non-symmetric layup as

N
z tk an"’ QZZk)
k=1

Z,=% - - . (92)
tk( Qllk +Q22k)

1

v —
i
)

k

bottom side

ZI
[——jl————f/ k /
v . top side

Figure 49: Layer numbering and position according to Reddy [69].
Bottom and top side are according to Nastran notation.

Additional constitutive equations for the transverse shear are

[Qy}:K A44 A45}
Q.

where extensional stiffnesses are for laminated composites

0
Yy,

o (93)
J/XZ

N N N
A44:kz Q;,k(zkﬂ_zk) , A45:kz QZS,k(ZkH_Zk) , A55:IZ Q5_5,k(zk+1_zk)
=1 -1 -1
(94)

K is the shear correction coefficient which takes into account change of the real shear stress
across the plate in contrast to constant distribution in this theory. For homogeneous plates it is
K = 5/6, for sandwiches K ~ 1 according to and for sandwiches shear stiffness is assumed to
be given only by the core as
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d’ - d - d
t_ s A45:Q45,kt_ s A55:Q55,kt_ (95)

Ay= Q44,k
where k denotes core layer, d is distance of face-sheet centers, t. is core thickness.

For the evaluation of lamina stresses, the global compliance matrix must be constructed as
inverted global stiffness matrix from the eq. (89), resp. (93). so that membrane and bending
strain vectors are calculated as

= ally] - (96)

It is worth noticing that in case of symmetric layup, inversion is simpler since matrix B = 0 so
thatb=0,a=A", andd =D

Strains on the k-th layer are than computed

0
&
& XX K
XX _ 0 XX
gyy — {;‘yy +Zk K}’}' (97)
yxy k yo ny

E

and corresponding stresses in the global coordinate system are

o, -
o, =Q
Tk

where Q is the transformed lamina stiffness matrix from eq. (87). Stresses in the desired
direction given by the angle 0 (e.g., in the material coordinate system) are given by

&

XX

E}'y

yxy

; (98)

k

. cos’ 6 sin’6 2sinf cos @ .
1 .2 2 . XX
[02} = sin“ @ cos 0 —2sin# cos O [ayy] (99)
Tk | —sinfcosf sinBcosf cos’—sin’O | T )k

Transverse shear stresses are considered constant through the composite by the FSDT so that
the eq. (93) with inverse constitutive matrix is

[yyz}: 1 - Ass  —Ag Q, (100)
and the layer transverse shear stresses can be evaluated again by the equation (87)

7, = Qu Qs J’yz} (101)

Tulk Qs Qss[l¥x

and finally by transformation to the material coordinate system by 0 we get

cosfd —siné
sinf cos@

T
Ti6

Tyz
Ty

(102)

k

k
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