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Abstract 
This thesis is based on the results of my PhD studies at Palacky University in Olomouc. 

The research deals with the task of improvement of existing quantum communication 
protocols with multimode entangled states. Firstly, we consider the mode-multiplexing in 
entanglement distribution and quantum key distribution, in this case each mode is used to 
carry separate quantum signal, hence it should be handled and measured separately. The 
other issue we study is the use of multimode bright states of light in quantum commu­
nication, in this case the modes are not discriminated in the measurement, the protocol 
does not use them for multiplexing, but instead multiple modes make the signal brighter 
and easier to work with in experimental implementation. 

We study multiplexing of the entangled states of light used in quantum communica­
tion and, in particular, in quantum key distribution. Mode-multiplexing allows to improve 
performance and increase capacities of quantum communication protocols. Unfortunately 
while improving protocols capacities, the multi-mode structure of quantum states can also 
introduces new imperfections, that are not present in single-mode implementations of the 
protocols. Our work is devoted to the study of some of these imperfections. The main 
focus of ours is the intramode cross talk and the ways to compensate it. In the process of 
generation, distribution and measurement the modes can get coupled to each other due 
to photon exchange between them, i.e. they experience cross talk. We theoretically study 
deteriorating effects of the cross talk on entanglement and the secure key in a simplified 
4-mode model and suggest methods that mitigate negative influence of the cross talk. The 
approaches we suggest can be both passive (optimization of the state during its prepa­
ration) or active (introducing network of optical elements that compensate for the cross 
talk). We then proceed to apply one of the active compensation methods to improve the 
source of frequency-multiplexed entangled light with strong coupling between the modes. 
We model the quantum key distribution protocol using the frequency-mode multiplexed 
entangled state produced experimentally by the group from Laboratoire Kastler Brossel. 
We show that after cross talk compensation the secret key rate of the protocol increases 
significantly, confirming viability of the proposed cross talk compensation method. 

Lastly, we study applicability of multimode bright states for quantum key distribution. 
The imperfect matching of the multi-mode signal with the phase reference beam during 
the measurement introduces noise to the signal, negatively affecting the quantum key 
distribution protocol performance. We demonstrate with the experimental data from the 
group from Max Planck Institute for the Science of Light, that the noise introduced by 
unmatched modes can be suppressed by the increase of the reference beam power, hence 
restoring the secret key. 

Key words 
Quantum communication, quantum key distribution, entanglement, continuous variables, 
Gaussian states, entangled states of light, frequency-multiplexed entanglement. 
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1 Introduction 

While quantum entanglement as a phenomenon was discovered almost a century ago, 
the technology employing it for quantum communication is still ongoing its development 
stage. One of the ways to improve communication protocols is to allow transfer of several 
entangled states simultaneously by multiplexing the channels. Quantum communication 
and, more narrowly, mode-multiplexing in quantum communication is a vast field of re­
search, this work concentrates on several use-cases. We theoretically study application 
of multimode Gaussian states of light for scalability improving efficiency of quantum key 
distribution (QKD) and of Gaussian entanglement distribution, that has its application 
in Q K D , in quantum teleportation and in the future, in distributed quantum computing. 
Mode multiplexing allows to increase channel capacities, which is essential for practical 
implementations of the the protocols. 

Entanglement phenomenon was first introduced as E P R paradox in Einstein-Podolsky-
Rosen paper [1] in 1935. It was investigated and the name "entanglement" was coined 
by Schrodinger in [2]. First experimental demonstration of E P R paradox and violation 
of Bell inequalities with polarization-entangled photon pairs were performed in [3,4] by 
Freedman and Clauser, E P R experiment for continuous variable states was done with 
two-mode squeezed vacuum by Ou [5]. Entanglement being equivalent to inseparability 
was first theoretically shown in [6]. The first cryptographic protocol that used (discrete) 
effectively entangled quantum states for generation of classical one-time pad for uncon­
ditionally secure communication was BB84 [7]. It started a whole new field of quantum 
key distribution (QKD) with both discrete variables (DV) and, later, continuous variables 
(CV). Shortly, the task of Q K D is to distribute a secret bit string between remote par­
ties using public channel with security ensured by laws of quantum physics. D V Q K D 
employs single photons' degrees of freedom as carriers of information, and single-photon 
detectors are either avalanche photo-diodes or super-conducting detectors that demand 
low temperatures. While the C V version of Q K D employs multi-photon states and co­
herent homodyne/heterodyne detection. For the C V states the E P R correlations occur 
between continuous-variable quadratures of electromagnetic field having infinite degrees 
of freedom. In the experiments the C V states conveniently can be handled with well 
developed and easily accessible and fast optical technologies [8-10]. 

C V entanglement is deployed in numerous quantum technologies, in quantum tele­
portation [11], in quantum random number generation [12], for quantum-enhanced sens­
ing [13], in combination with non-Gaussian resource it is also potentially useful in building 
scalable quantum computer [14], particularly with large cluster states [15]. Q K D remains 
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CHAPTER 1 

the most practically ready among the quantum technologies. C V Q K D can be imple­
mented with existing networks in telecom fibers or in atmosphere [16], it does not need 
extra low temperatures, it can be integrated on chips [17,18], and, in case of coherent 
state protocols, needs only classical components performing without excess thermal noise. 
Recently some protocols were implemented on hundreds kilometers distance (compara­
ble to D V Q K D distances) [10]. Multiple C V protocols have been developed [19] using 
either squeezed [20,21] or coherent states [22], with either homodyne or heterodyne de­
tection [23]. While new protocols and security proofs still keep developing, including twin 
field for D V [24], measurement-device independent [25,26], C V protocols using thermal 
states [27,28], C V protocols with non-Gaussian (discrete) modulation [29], in this thesis 
we keep our focus on the Gaussian protocols, for which the security proofs and tech­
niques are well developed, and which can be available and practical test-bed for testing 
the multiplexing techniques. 

Theoretically Q K D offers unconditional security (that only relies on quantum me­
chanics being correct), in practice any devices used in real-life implementations does not 
exactly correspond to theoretical models, this creates security vulnerabilities [16,30]. The 
field of study that raised to investigate these vulnerabilities is often referred to as quan­
tum hacking [16,31-34]. Originally done in the asymptotic regime, the security proofs 
were made with assumption of infinitely long data blocks, afterwards they were adjusted 
for more realistic finite regime [35-38]. 

Ways to improve the performance of existing protocols can go in several directions: 
one approach is to increase repetition rates, currently they reach up to hundred MHz [39] 
(it also demands high-speed detectors [40]), another approach is source and/or channel 
multiplexing. Multiplexing is a well developed approach in classical signal processing 
with optical fibres both in frequency domain with wavelength division multiplexing [41] 
and, later, also in spatial domain with spatial division multiplexing [42,43], integration of 
C V Q K D into existing telecom networks can benefit from both approaches. Wavelength 
multiplexing or spatial division multiplexing with multi-core (parallel channels) and/or 
multi-mode fibres (channels where several frequencies can be propagated simultaneously) 
can be applied to both D V [44] and C V Q K D [45,46]. Wavelength division multiplexing 
with high repetition rates demonstrated secret key rates up to 250 Mb/s for C V Q K D [47]. 
Coexistence of classical and quantum signals in multicore cables was also studied [48,49]. 
In principle multiplexing allows to achieve key rate N times (where N is the number of 
multiplexed channels) above the limit established by repeaterless bounds [50]. In practice 
significant loss occurring in the multicore fibres input and output (fan-in/fan-out) devices 
[51] and also cross talk between the modes can deteriorate the secret key. In multicore 
cables the cross talk between the classical and quantum signals is shown to be relatively 
low if quantum and classical signal occupy different frequency bands [45], however, even 
subtle effects can be crucial for quantum communication. In this thesis we theoretically 
study how cross talk between quantum signals influences entanglement distribution and 
Q K D performance. 

Channel multiplexed protocols demand the shared state to be multiplexed too, it is 
possible to achieve by using several independent sources, another approach is to use a 
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Introduction 

single intrinsically multimode frequency-multiplexed source. One way such frequency 
multiplexed entangled states (also referred to as frequency comb) [52] can be generated 
is using synchronously pumped optical parametric oscillator [53,54], separate frequency 
bands of such state can be measured with mode-discriminating homodyne detection [55]. 
In this work we demonstrate how frequency multiplexed entangled states can be used for 
multiplexing of entanglement-based C V Q K D protocol, after postprocessing eliminates 
(at least partially) cross talk between different frequency bands. 

C V Q K D is normally implemented with relatively weak signals, few tens of photons 
on average, which are difficult to control and handle on a practical level, macroscopically 
bright states having up to 106 photons per pulse [56,57] can help to solve this practical 
issue. States referred to as "macroscopic" are multimode/multiparticle quantum states 
[56,58]. Macroscopic entangled states were observed in experiments with bright squeezed 
vacuum [59] as well as with atom spin ensembles [60]. Possibility to use macroscopically 
bright states of light for Q K D was studied theoretically [61,62]. In our work we model 
a bright coherent state Q K D protocol with homodyne detection based on experimental 
data and study possibility to reduce noise caused by imperfect matching of bight/multiple 
modes with local oscillator during the measurement. 

This thesis aims at studying and removing the problems and limitations that can arise 
while implementing multiplexed C V entanglement distribution and Q K D protocols using 
multimode entangled states, at developing methods to overcome these limitations and, to 
extent possible with the available experiments, at testing these methods on the experi­
mental data. This work was conducted during my Ph.D. studies at Palacký University in 
Olomouc and this thesis is based on 3 articles published in peer-reviewed and impacted 
journals (Photonics research and Optics Express) during the course of my study. 

Outline of the thesis 
The thesis starts with the introduction of the theoretical tools for description of Gaus­

sian states and operations in Chapter 2. We remind the definitions of Gaussian entangle­
ment and the logarithmic negativity as its measure and a generic one-way entanglement 
distribution protocol. The chapter proceeds with description of generic C V Q K D proto­
col, its security, assumptions about the eavesdropper. In the end we introduce a scheme of 
multimode protocol with linear coupling (cross talk) among the modes, we also describe 
a frequency-multiplexed entangled state as a possible carrier state for this protocol. 

Chapters 3 to 5 contain results of our research which were published in the articles 
presented in Chapter 6. Chapter 3 concerns the theoretical model of the entanglement 
distribution in the presence of cross talk. We suggest a way to compensate the cross 
talk and restore entanglement with the help of optimized interference. Then we proceed 
comparing the suggested compensation method to another one that traces out some modes 
while enhances the entanglement of the other modes. 
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CHAPTER 1 

In Chapter 4 we describe a result of experimental-theoretical collaboration, where 
we implement the compensation method numerically to eliminate the cross talk in the 
experimentally measured frequency multiplexed entangled state introduced in Chapter 2. 
We then model the C V Q K D protocol using the multiplexed state showing how optimal 
postprocessing successfully eliminated the cross talk and increased the secure distance of 
the Q K D protocol. 

Chapter 5 concerns another experimental-theoretical collaboration. We model C V 
Q K D protocol with macroscopically bright coherent state, the bright state contains multi­
ple modes that are measured with a mode-non-discriminating measurement. We consider 
scenario where imperfect mode matching makes the signal noisy, destroying the secure 
key. Using the data from the proof-of principle experiment we show how the noise coming 
from the imperfect mode-matching can be suppressed and the secure key restored. 

Chapter 6 contains the copies of the articles published. Finally the summary of the 
main results, conclusions and outlook for future work are given in Chapter 7. 
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2 Quantum multimode continuous-
variable states 

2.1 Gaussian states 
States of a single mode of electromagnetic field (with defined frequency, polarisation and 
propagation direction) exists in infinite-dimensional bosonic Fock space % spanned over 
photon number basis {|^)j}o°- The Hilbert space of an N-mode state is then a straight­
forward extension <S>f=i Multimode state in such Hilbert spaces can be described by a 
set of 27V variables: pairs of creation and annihilation operators a\ and fij, % G {1, TV}, N is 
number of modes. Being bosonic operators they obey commutation relations [a*, aj] = Sij. 
In C V quantum optics the states of light are typically characterized by two quadratures of 
electromagnetic field, x and p in analogy to oscillator's position and momentum operator. 
These quadratures can be directly measured in the experiment by homodyne detection, 
as described in Section 2.1.2 . In this thesis we use convention 

making a vacuum shot noise equal to 1. Vacuum state is the zero-photon number state 
|0), with its noise (quadrature variance, defined as Var(.) =< ? > for a zero-mean 
quadrature operator) being minimal Var(x) = Var{p) = 1 in both quadratures. The 
multimode state quadratures of N-mode state can be described by a vector operator 
q = {xi,pi, ...XN,PN}T• Their mean values d = (q) describe the electromagnetic fields in 
the classical optics limit. 

In Gaussian approximation, multimode quadratures allow to define the state's covari-
ance matrix describing light fluctuations, i.e. the 27V x 27V matrix of second statistical 
moments of symmetrically-ordered quadrature operators [63], 

The commutation relation for quadrature variables can be written in form [qm, qn] — 

Obj^ Ct̂  l Ct̂  

(2.2) 

(2.3) 

2itt where f l •vnn ( 
0 1 
-1 0 ) is the symplectic form. It leads to a multimode gener-
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alisation of the Heisenberg inequality for the covariance matrix 7 

7 + i f i > 0 , (2.4) 

where Vt = Vtmn is a 27V x 27V block-diagonal symplectic form. 
Gaussian states are completely characterised by classical mean displacement d = (q) 

and covariance matrix 7 describing quantum fluctuations. They hey contain one of the 
most simple cases of non-classical states, the multimode squeezed states, that have wide 
range of application in quantum communication as they are relatively easy to generate and 
detect with technologically available sources, including homodyne detectors, sufficiently 
robust against optical loss. Moreover many standard linear or linearized optical devices 
preserve Gaussianity, assuming their parameters remain ideally stable. 

Minimum uncertainty single-mode classical states are coherent states and, as its partic­
ular case, the vacuum state. Coherent state (being a classical state) is the closest analogue 
of classical light established by coherence theory by Glauber [64] with precisely defined 
phase and amplitude a = \a\e1^. Crucially, the states generated by ideal shot-noise-limited 
monochromatic laser are coherent states, respectively to a phase reference given by the 
local oscillator. Vacuum state has zero displacement (dx,dp) = (0,0) and identity co-
variance matrix; coherent states \a) have nonzero displacement (dx,dp) = (29ft(a:), 2^(a)) 
and identity covariance matrix (2.3). Coherent state \a) is obtained by ideal external 
coherent classical drive on a linear oscillator, mathematically described by displacement 
operator acting on vacuum state \a) = D(a)\0) = eaat~a*a\0). Uncertainties in both 
quadratures are equal irrespectively to a, Var(x) = Var{p) = 1 and Var(x)Var(p) = 1 
in vacuum noise units. Displacement operator can be generalized for many-mode states 
for displacement £ G R2N, it is then called Weyl operator [65] 

D ( 0 = e ^ . 

Weyl operator allows to go from formalism of Hilbert space TL to the formalism of 
phase space representation. Symmetrically-ordered characteristic function of any state is 
given by average of Weyl operator D(£), Xs{Q — Tr[pD(£)]e%^2 [63]. Complex Fourier 
transform of it is Wigner function 

W(q) = — ! p J Xo(Oe^QWNC (2.5) 

it is a quasi-probability distribution on the phase space, it is normalised to 1 but it can 
take negative values. The state is Gaussian if its Wigner function in a phase space of 
quadratures x and p is a Gaussian function. For Gaussian states the Wigner function is 
always positive: 

^ 7 ) = p ^ ^ e " 1 < ^ ' M ' ( 2 ' 6 ) 

here q = {x\,pi, ...XN,PN}T is a real vector of quadrature variables in the 2N dimensional 
phase space. Wigner function for single mode Gaussian states is just two-variable normal 
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distribution W(X,P) = N(d, 7). In realistic cases we use the Gaussian approximation of 
the quantum state described by mean values and covariance matrices of the multimode 
states and refer to Eq. (2.6) as an approximative Gaussian state. Fortunately, for some 
protocols, including C V Q K D ones, the Gaussian approximation is sufficient and Gaussian 
states are extremal [66]. 

Besides classical coherent states, another important case of Gaussian states are non-
classical single and two-mode squeezed states. Non-classical states are the states that 
cannot be represented as a mixture of coherent states. For a Gaussian state to be non-
classical it needs to be squeezed, a pure non-classical Gaussian state has noise below 
uncertainty limit (below vacuum state) for a certain phase. [65] 

Several processes allow to produce squeezing [67,68]. In general squeezed states of light 
are obtained by strong coherent pumping of the dielectric medium with nonlinearity of 
second or higher order. For the first time non-classical squeezing was generated using 
the third order nonlinearity for four wave mixing [69], currently the best developed and 
most popular ways to generate squeezed states is spontaneous parametric down-conversion 
(SPDC) process [70,71], in an optical parametric amplifier (OPA) [69] or oscillator (OPO) 
[72]. SPDC process generates entangled pairs of photons in nonlinear crystal, but as 
nonlinear susceptibility is typically relatively weak, the squeezing achieved after a single 
pass of light through the crystal is not enough for many applications. Having the crystal 
placed in a cavity creates OPO, increasing the time of beam interacts with nonlinear 
medium, it produces single-mode squeezing from a degenerate process and two-mode 
squeezing from the non-degenerate one on the resonant frequency of the cavity. Another 
way is used in OPA without a cavity where an extra high power short pulse is used 
along with the signal beam to increase the effective nonlinear susceptibility of the crystal. 
Current record of single-mode squeezing is -15 dB [73] with 21 dB of anti-squeezing (anti-
squeezing being higher in absolute number than squeezing due to inevitable presence of 
loss), on the other hand, highly pure states can reach -10 dB of squeezing with 11 dB of 
anti-squeezing [73]. 

Minimal uncertainty condition Var(x)Var(p) — 1 > 1 puts limit on a product of 
quadrature uncertainties for all Gaussian states, both classical and non-classical. The 
pure states that have one quadrature squeezed with variance < 1 (and other quadra­
ture antisqueezed to preserve the uncertainty) are ideal non-classical minimal uncertainty 
states. The squeezed states is formally obtained by action of squeezing operator on a 
vacuum state, the squeezing operator acting on a single mode is S(z)\0) = e^(za ~z a •)|0), 
with complex squeezing parameter z = re~ld, where r gives the squeezing factor and 6 
gives phase of the squeezed quadrature. Single-mode squeezing is degenerate process cre­
ating photons of half frequency of the pump hj0 = 2hu, only even Fock states |2n) are 
present. The non-degenerate process instead creates photons in pairs of different frequen­
cies hu0 = hui + hju2, the generated state contains two modes, with corresponding change 
of creation operators at2 —> in the interaction Hamiltonian. Two-mode squeezing 
operator acting on two-mode vacuum state is S(z)\0,0) = e 2( z a b _ z * a t b t ) | 0 , 0). Squeezing 
can be generalized to multimode case [74] n ^ j = i 0), N is number of modes, 
S(zij) is a two-mode squeezing operator acting on modes % and j. 
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Two-mode squeezed vacuum (TMSV) state is an important example of many-mode 
Gaussian state, and it is actively used in bipartite Q K D . In the photon number basis 
(introduced in the beginning of this chapter) 

0 0 / T / 1 \ n/2 
\TMSV) = ̂ j:{^±) \nn) (2.7) 

' n=0 V 7 

with quadrature variance V = cosh(2r), here r is the squeezing parameter assumed to be 
real. In the quadrature picture both modes have zero displacements and corresponding 
covariance matrix is 

^ B = ( ^ 2 ^ r ) , (2-8) 
here D = [ | is the unity matrix, Z = [ ^ | is a Pauli Z matrix. 

T M S V has Wigner function that is a two-mode Gaussian distribution: 

W(a,P) = -^[-cosh(2r)( |a | 2 + \(3\2) + sinh(2r)(a/3 + a* (3*)}, (2.9) 

71 

where a = X\ + ipi and (3 = x 2 + ip2, or in terms of quadrature mean values [75]: 

4 
W(x1,p1,x2,p2) = ^ e x p (-e~2r[(x1 + x2)2 + (pi - p2f] - e 2 r[(xi - x2f + {px +p2f])) 

(2.10) 
displaying correlations of X quadratures and anticorrelations of P quadratures of the 
modes of T M S V . 

2.1.1 Gaussian operations 
Gaussian channels map Gaussian states into other Gaussian states [76]. They allow to 
transform states in the Gaussian approximation using only transformations of displace­
ment vectors and covariance matrices. Assumption of channel's Gaussianity allows to 
keep the calculation, data evaluation and interpretation within the Gaussian approxima­
tion. The Hamiltonians of corresponding processes are at most quadratic with regard to 
a, fit operators, therefore, they generate linear Heisenberg equations for the dynamics. 
They act on quadratures, displacement vector and covariance matrix as real symplectic 
transformations [77] with additive normally distributed noise. In its most general form 
Gaussian completely positive map acts on the Gaussian state with two matrices S and Z 

q = S q + d, (2.11) 

7' = SjST. (2.12) 

d! = Sd, (2.13) 

here Z is a symmetric matrix. 
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Symplectic group [78] is a set of linear operator transformations S G Sp(2N, R), that 
act on q and preserve commutation relations, leading to condition SQS = Q. If Wigner 
function in Eq.(2.6) of q is Gaussian, Wigner function of q' remains Gaussian, Gaussian-
ity is preserved under symplectic transformations, (the same is also true for Gaussian 
approximation). 

Orthogonal symplectic transformations, that preserve photon number (e.g. beam­
splitters and phase plates in the experiments), are energetically passive transformations. 
Active transformations that add photons to the modes (for example by squeezing) are 
not orthogonal and require a external coherent drive, in principle. Particular case of sym­
plectic transformations are orthogonal unitaries that present decomposition of multimode 
Gaussian states into single mode ones [78]. 

Williamson decomposition [78, 79] is a symplectic transformation of the covariance 
matrix into diagonal form 

7 = STuS, (2.14) 

where v = diag[z/i, u\, z/2, z / 2 , z / ^ , vN], z/j are the symplectic eigenvalues of the state. 
Williamson decomposition represents any Gaussian state as a superposition of indepen­
dent thermal states ( X J ) = {p^ = z/j with the mean photon number in each mode = 
and with the density matrix 

(2.15) 

The uncertainty relation Eq. 2.4 simplifies into z/j > 1 for symplectic eigenvalues. 
Bloch-Messiah decomposition [75] allows to present any symplectic transformation S 

as 
S = OKO'T, (2.16) 

where K = diag[e _ r i , e r i , e _ r j v , e r j v] is a diagonal matrix of a multimode squeezer and 
O and O' are orthogonal transformations by passive elements. Combining Bloch-Messiah 
decomposition with Williamson decomposition Eq.(2.14) gives a general decomposition of 
any multimode state 

7 = OKO'Tv 0'KOT. (2.17) 

Taking into account that the initial state is vacuum UQ = ^N, it allows us to see transfor­
mation of any pure N-mode Gaussian state into N pure squeezed states 7 = OK20T, with 
K2 = diag[e _ 2 r i , e 2 r i , e _ 2 r j v , e 2 r j v ]. This transformation is useful in quantum optics and 
quantum communication with light. 

Bloch-Messiah decomposition shows the way to present an (ideal, lossless) Gaussian 
operation as an equivalent of a network of interferometers (consisting of ideal beam­
splitters and phase shifters), followed by a sequence of one-mode squeezers, followed by 
another interferometer network. Combining it with Williamson (symplectic eigenmodes) 
decomposition that transforms any Gaussian state into a set of independent thermal 
states, we can view any N-mode Gaussian state as N thermal modes undergoing first a 
basis transformation, squeezing and then another basis transformation [80]. 
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One particular important case of the nonunitary Gaussian transformation, described in 
the next subsection, that is projecting multimode Gaussian state on one mode quadrature 
is the homodyne measurement. 

2.1.2 Homodyne detection 

In this thesis, any time measurement of any C V state is mentioned, the homodyne de­
tection is assumed. Homodyne measurement is a linear and Gaussian measurement [63], 
i.e. it produces Gaussian probability distribution for any Gaussian state measured. In 
this subsection first we describe the standard two-port homodyne detection [81] that uses 
difference of photocurrents between two detectors to measure one of the quadratures. 
Then it is generalised to a four-port scheme that allows to measure any combination of 
quadratures [82]. To highlight the principles, we assume that both the signal and the syn­
chronised in phase high intensity beam used as phase reference are monochromatic, and 
detectors are noiseless, these assumptions are realistic for currently available hodmodyne 
detectors. 

The homodyne measurement projects a state on a quadrature f = a^e1^ + ae~1^ of 
mode K , directly giving information about the quadrature value. The signal is measured 
after being mixed with strong coherent phase reference beam called local oscillator on 
a beam splitter and the resulting intensities are measured on the outputs. The phase 
reference is represented by a strong classical local oscillator beam that is usually generated 
from the same source as the signal itself. Homodyne detection, being a continuous-
variable measurement, allows no photon number resolution, the result of measurement 
is the difference of continuous photo-currents. In this simplest configuration (and with 
assumption of fast enough detection that captures separate pulses) with one beam-splitter 
and two detectors the homodyne observable (the difference of photo-currents intensities) 
is n_ = a\aLo + S s a ^ 0 assuming local oscillator to be a coherent state \a)e1^. 

In the regime of strong LO \a\2 3> (ns) it allows to approximately measure quadra­
ture ff/, = a^e1^ + ae~1^. Depending on reference phase, the edge cases when 0 = 0 and 
0 = 7r/2 are the quadratures x and p. Both the local oscillator and the signal may acquire 
extra noise while passing through the channel, any phase noise acquired by both beams 
travelling through the same channel should be almost the same, these phase fluctuations 
synchronise on the detectors and cancel out, the phase fluctuations that are not synchro­
nised bring extra noise to the quadratures measured. Local oscillator also suppresses any 
noise occurring in all the modes other than the reference mode. 

The homodyne measurement of one mode of the multimode state transforms the 
remaining state. Assuming the state being measured is Gaussian N-mode state, its many-
mode covariance matrix 7 A I . . . A n is transformed by homodyne measurement of one of the 
quadratures of mode K [83]: 

lAi_...AN\rK = lAi...AN ~ <?Ai...AN,K {R'lK • R)MF o\...AN,K-> (2-18) 

where 7x is the single-mode covariance matrix of the mode K , <JA1...AN,K is the correlation 
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—<2> 

Figure 2.1: Left: Standard homodyne detection. Signal and high intensity phase reference 
are mixed on the beam-splitter, intensities of output photocurrents are subtracted allowing 
to measure quadrature f. Adding a variable phase shift 0 to the LO beam allows to switch 
between quadratures. Right: generalized homodyne detection. Allows to measure linear 
combination of both quadratures while adding extra vacuum noise from the state |0 >. 

matrix between modes A\...A^ and K, matrix R is a diagonal matrix, being 
1 0 
0 0 

for an e m e _ f „ , ° J J for a m e _ , of p- q U ad r af U r e (can 

be generalized to any quadrature measurement), and MP stands for Moore-Penrose 
pseudo-inverse of a matrix, applicable to singular matrices. 

First moments (displacements) of a many-mode state are transformed as 

dAi. .AN\rK 
d>Ai...AN + &Ai...AN,K (2.19) 

here dAl...AN = {{xAl), {pAl)...,0K,0K,(XAn), (pAN)} is mean values of displacement 
before measurement, in the basic case when either X or P complementary quadrature is 
measured, QK = {XK, 0} or QK = {0, PK) is the result of measurement of the mode K, 
dK = {XK,PK} 

To measure both quadratures at the same time the heterodyne measurement, that 
projects the state onto a coherent state \a), can be used. It allows to measure simultane­
ously both x and p while adding extra vacuum noise, by dividing the signal on a 50/50 
beam-splitter (where vacuum noise enters) and then measuring the opposing quadratures 
with two separate homodyne measurements at the beam-splitter outputs. It is required for 
detection of off-diagonal elements of the covariance matrix, describing inter-mode correla­
tions. A slightly generalised version of heterodyne measurement where the beam-splitter 
is allowed to not be 50/50 but to have varied transmittance rj is depicted on the Fig. 2.1. 
This generalised homodyne measurement projects the state on an arbitrary chosen linear 
combination of quadratures sin 9x + cos dp depending on the choice of the beam-splitter 
transmittance. 
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Generalised homodyne measurement of a single mode i f of a multimode state with 
modes A\...A^ transforms the covariance matrix of the remaining state as 

IA^.A^K^ = 1/AI...AN ~ OA^...AN,K (IK + le)'1 O\...AN,K, (2.20) 

where CFA1...AN,K is the correlation matrix between modes A\...AN and K, and 

70 
^ 0 \ = / tan 2# 0 
0 ) ~ \ 0 tan" 2# 

is a covariance matrix of the linear combination of quadratures the state is projected on. 
For the balanced heterodyne measurement 70 = D. The displacement of the remaining 
state becomes 

dA1...AN\rK = d,Ai...AN + CTA1...AN,K {IK + le)'1 (QK — dK), (2-21) 

here QK = {XK, PK} is the result of measurement (either of quadratures) of the mode K . 
In reality homodyne detection is always nearly perfect, however, to be safe from over­

estimating results we need to consider that the detectors efficiency is limited, there is loss 
on the beam-splitter, the beam-splitter is not perfectly balanced, electronic noise is added 
on detectors, small phase shifts between the signal and LO can happen in the channel. 
The multimode local oscillator can be imperfectly matched with the modes of the state. 

Usually the local oscillator comes from the same laser that is used to generate the 
entangled signal state and is sent together with the state through the same channel. 
Longer channels can introduce phase and intensity fluctuations to the local oscillator 
that destroy perfect phase-matching necessary for homodyne detection. Generally noise 
in homodyne detection can arise from different (assumed to be statistically independent) 
sources: state preparation, Raman scattering, relative intensity noise, residual phase noise 
[84]. Fluctuations of the local oscillator intensity can lower the calibration of vacuum 
variance, affecting correctness of covariance matrix evaluation and security of C V Q K D 
protocols [85,86]. To avoid this, a local-local oscillator can be generated by a separate 
laser at a receiver station that is phase-locked with the signal phase [87]. 

2.2 Gaussian entanglement 
For the multimode states entanglement is a complicated issue, even narrowing down to 
Gaussian states only, as different partitions can be considered. In this thesis, devoted 
mainly to bipartite C V Q K D , we consider only bipartite entanglement and the task of 
multiplexing of bipartite entanglement. It is necessary, although not sufficient, resource for 
many of quantum communication applications, in particular for Q K D . We are interested 
in the communication protocols where two parties A and B aim to distribute a multimode 
entangled state, however, our considerations can be generalized to any two-parties in more 
complex communication scenario. To compare behaviour of entanglement and secure key 
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rate, we have to discuss the distribution of Gaussian entanglement in more details. 
Phenomenon of entanglement overcomes limits of of separability of quantum states. 

Separability of a state means that it can be generated with only local operations and classi­
cal communication. The composite system is entangled if and only if it is not separable. To 
define separability of pure states, consider Schmidt decomposition = X]j a« \ui) ® \vi)-> 
then separability of a given pure state means it can be written as = \UA) <8> \VB) and 
its Schmidt rank is 1. 

The entanglement for mixed states is defined generalizing this concept. The two-
party system is separable if it's density operator can be presented as p = ^ a« p^\ ® 
Pip- However, without exact and complete knowledge of full density matrix it is hard 
to conclusively estimate if the state is entangled or not. In [88, 89] Simon and Duan 
et al. showed that negative partial transpose is a sufficient and necessary criterion of 
entanglement for a bipartite Gaussian state (as well as for the Gaussian approximation of 
the bipartite state). For general system with arbitrary number of parties the negativity of 
partial transpose is only a sufficient condition [6,90]. Operational entanglement measures 
are numerous and they continue to develop: entropy of entanglement (von Neumann 
entropy), distillable entanglement, entanglement of formation, entanglement cost, etc. 
[91]. Particular case of Gaussian states entanglement is investigated far better than more 
general case for both bipartite and multipartite systems [92,93]. 

Transposition for continuous variables means complex conjugation of the density op­
erator, the time evolution operator changes sign, as zj^ —> —i§j., effectively for Gaussian 
states only relevant change is in signs of momentum operators pi —> —pi. Negativity of 
partial transpose of a bipartite system A B means time reversal for one party can make 
the joint state unphysical, no longer satisfying inequality Eq.(2.4) 

TA © DB 7 TA © DB +itt < 0, 

where TA is a transpose operator for partial state A. 
As an operational measure of bipartite Gaussian entanglement that quantifies nega­

tivity of partial transpose we use logarithmic negativity (LN). 

LiV i = max{0,log 2 | |p r "| | i}, (2.22) 

where | |p| | i = Try/pp^ is a trace norm. pFp signifies partial transpose of the state p. 
The logarithmic negativity of Gaussian states can be expressed in terms of symplectic 

eigenvalues. Before any partial transpose Williamson's decomposition of covariance ma­
trix 7 decomposes the initial state with density matrix p into superposition of independent 
thermal states with average photon numbers {Vj}, e.g. T M S V is decomposed into two 
thermal states. Each of these states has the density matrix pi = ^q-j- X ^ ( i ^ j ~ [ ) n l n ) ( n l -
The states pi are normalized and the respective eigenvalues are positive z/j > 1. This way 
before partial transpose the trace of each state in decomposition is equal to, 1 \\pi\\i = 1, 
as well as the trace of the total state \\p\\\ = 1 . After partial transpose the new state pTp 

can be transformed by Williamson decomposition into superposition of different thermal 

13 



CHAPTER 2 

states with mean photon numbers {pi}- If the state is entangled one of its eigenvalues 
is to be z>_ < 1 and for this eigenvalue the trace norm is | | p - | | i = for all other non-
negative eigenvalues the trace continues to be \ \pi\\\ = 1 • This way for T M S V the trace 
\\ff*\\x = J- and the Eq. (2.22) simplifies to [94] 

Logarithmic negativity, being an entanglement monotone [95], is a widely used operational 
entanglement measure for Gaussian states. 

Similarly to separability of states, separability of channels can be defined. Operational 
equivalent to a very formal mathematical idea of separability of channels as C P T P maps is 
local operations and classical communication (LOCC). A l l L O C C are separable but there 
exist separable channels that are not L O C C [96]. A real world implementation would 
be two distant labs that can process quantum information inside each lab only locally 
(through C P T P maps) and can communicate outcomes of local operations through a 
classical channel. 

The simplest Gaussian entanglement distribution protocol is described by the scheme 
given in Fig. 2.2. One party (Alice) possesses a source of T M S V states, she shares it with 
the remote party (Bob) through a quantum channel that introduces loss and adds noise 
to the shared state. The parties have additional free access to classical communication 
channel and can perform other operations locally in each lab (including Gaussian mea­
surements), i.e. only L O C C can be performed on the shared state. The noiseless channel 
(either free space of fiber) with constant transmittance T can be modeled as a simple 
beam-splitter interaction that couples one of the modes of the signal to a vacuum state. 
The channel also adds excess noise e to the second quadrature moments, transforming 

LNi = max{0, — log 2 z/_}, (2.23) 

Figure 2.2: Basic one-way entanglement distribution protocol 

T M S V (2.8) into: 

A B \ ^jT(V2-l) Z [ T ( V - l ) + l + e ] I J 

Both attenuation and excess noise make entanglement to deteriorate from 

(2.24) 

for T M S V to 

1) + T2(V - If + V2 - [1 + V + T(V - 1)]x 
(2.25) 

\J(T2 + 1)(V - l ) 2 + 2T(V - 1)(V + 3) 
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for T M S V after pure loss channel. 
A n asymptotic limit for entanglement that can be distributed with one maximally 

entangled state is given by the fundamental repeaterless bound [50]. The bound on 
entanglement shared through a pure loss channel of transmittance T with an ideal T M S V 
state in the limit of infinite squeezing r —> oo is 

LN(T) = - log i ^ . (2.26) 

Entanglement is deteriorated by channel loss, but in idealised case of pure loss channel 
no attenuation (T > 0) can fully destroy entanglement. For channels with additive noise 
s the repeaterless bound is lowered to 

LN(T) =-log1 ~ ^ ~ £ \ (2.27) 

giving the fundamental limit on maximal tolerable the excess noise added by two vacuua, 
above this noise level entanglement of any Gaussian state is destroyed. 

2.3 Q K D 
The goal of cryptography, to securely encrypt a message shared among the remote parties, 
can be accomplished with algorithms that are either computationally secure or informa­
tion theoretic secure. The majority of currently wide spread algorithms ensure secure 
encryption by computation complexity (like RSA algorithm that relies on impossibility to 
factorize product of prime numbers in polynomial time with classical computers). But the 
quantum Shor's algorithm [97] does allow to solve the factorisation problem by quantum 
computer in polynomial time. The one-time pad is free from this problem [98]; it assumes 
that the key is as long as the message; it is random (genuinely not pseudo-random). The 
key is added to message (bit-wise addition modular two - exclusive or - XOR) ; the result­
ing cipher-text is sent through a public authenticated channel; the receiver on the other 
side has a copy of the same key, the receiver adds the key modular two to the cipher-text 
once more and gets the original message. The key can be used only once. 

The task Q K D is to generate information-theoretic secure one-time pad for two distant 
trusted authenticated parties in presence of malicious eavesdropper with unlimited abil­
ities bounded only by laws of physics. Traditionally the parties are referred to as Alice 
(sender) and Bob (receiver), and Eve (the eavesdropper). Alice and Bob share quan­
tum states through a quantum channel that is considered to be fully controlled by the 
eavesdropper, and classical communication is happening openly through an authenticated 
classical channel. The goal of eavesdropper is to get a copy of the key while not bring­
ing in enough noise into state for trusted parties to notice and terminate the protocol. 
Assumptions about Eve as follows: 

• fully controls the quantum channel; 
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• knows everything Alice and Bob share through public channel (but the channel is 
authenticated, Eve cannot "impersonate" either side): 

• can perform any measurement physically possible (including ones that require quan­
tum memory) 

• has unlimited computational power. 

• Alice's and Bob's labs are secure. Eve has no access to measurement devices used 
by Alice and Bob. 

In practice a lot of device imperfections make attacks possible for eavesdropper, differ­
ent levels of trust can be assigned to the measurement devices and ability to characterise 
the preparation noise. 

Q K D protocol is to be secure (es-secure), correct (ec-correct) and robust [99-101]. 
Correctness means that barred some small probability ec Alice's key and Bob's key are 
the same P[KA 7̂  KB) < sc. Robustness means that with some (reasonably large even 
in presence of noise) probability (1 — pabort) the protocol produces secure key and is not 
terminated. Security is conceptualised as distance between the bit string generated by 
given Q K D protocol and ideal perfectly randomly distributed bit string [99]. Let's assume 
that Alice and Bob ended up with (identical) key strings SA = SB that belong to the key 
space S, the key has (classical) probability distribution Ps. Although obviously at the 
start of the C V protocol the state is infinite-dimensional, when the key is discretized the 
equivalent state becomes a discrete one. To represent the key's state as a joint state with 
eavesdropper's (quantum) state PE, it can be written as an operator p$ = Ps(s)\s)(s\ 
in orthonormal basis \s) on Hilbert space %s- Then the condition on distance between 
the key state and ideal fully mixed state being less than arbitrary small es is 

1„ 
-^WPSE - Pu ® PE\\I < £S (2.28) 

with pu = J2ses I s ' s)( s> s\ *s a n operator representation of randomly uniformly dis­
tributed key (which is equivalent to a finite-dimensional fully mixed state) and PSE = 

Ps(s)\s, s)(s, s\ ® p% is a tripartite state operator of whatever key was actually ob­
tained [99]. Eve can prepare any global state and make it interact with all the modes in 
all the pulses shared by trusted parties and measure resulting many-mode state collec­
tively, she is allowed to perform any global unitary transformation on her many mode-state 
prior to measurement. Even if the state prepared by Alice was optimal independent and 
identically distributed one, Eve can meddled with it and change the distribution. 

Variety of one-way C V protocols exist using different source states, either single-mode 
states (coherent, squeezed, even thermal states) or two-mode entangled states. Protocols 
in C V Q K D can be either entanglement based (EB) or prepare-and-measure (PM). In 
P M protocol one side has a source of single-mode carrier states and encodes normally 
distributed random variables (independent ones in x and p quadratures) into them by 
applying (truly random) displacements to the state. In E B protocols each party measures 
one mode of a shared bipartite entangled state. 
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P M protocols can employ both Gaussian [22,23] and non-Gaussian modulation [29], 
we only concentrate on Gaussian modulation ones. Any Gaussian P M protocol has 
an E B equivalent, assuming ideal modulation they are indistinguishable from the point 
of view of the eavesdropper. To prove security of P M protocol it is sufficient to prove 
security of the equivalent entanglement based one [83]. 

Prior using any Q K D protocol Alice and Bob authenticate themselves using classical 
channel, decide on the postprocesing stage (which error correction code, hash functions 
to use for reconciliation and privacy amplification, how to discretize the measured data 
into the alphabet etc.) 

Stages of a generic one-way Gaussian protocol: 

1. State preparation. For P M protocol state generation: Alice prepares a set of single-
mode states (either coherent or squeezed states are used in different protocols [20, 
22,23]), then applies Gaussin modulation displacing the states according to i.i.d. 
two-dimensional random distribution with 0 mean and variance V . The modulated 
states are sent to Bob. 
For E B protocol Alice prepares many copies of T M S V state, keeps one mode to 
herself, and sends the second mode and the local oscillator to Bob through the 
channel. The channel can be free space or fiber, for the security proofs without 
loss of generality it can be assumed to be Gaussian due to the proofs relying on 
extremality of Gaussian sates [66]. 

2. State measurement. In P M protocol Bob only, in E B protocol both sides use homo-
dyne detection. We assume that the devices are trusted, i.e. their imperfections are 
reliably accounted for in the device's theoretical model, Eve has no access to either 
of the measurement devices and no imperfection can be attributed to her tampering. 
In protocols with homodyne detection Bob measures a randomly chosen quadrature 
and informs Alice of his quadrature choice, or, in protocol with heterodyne detection, 
both quadratures are measured. Discretization of continuous variables according to 
agreed alphabet gives both sides two strings of measured results {ai,...,ajv} and 
{&i , . . . , 6 J V } . 

3. Information reconciliation. The string that belongs to one of the trusted side is 
treated as a raw key, the other side has to correct their string to match the raw key. 
If the reference side is Alice the reconciliation is called direct, if the reference side 
is Bob the reconciliation is reverse, (in practice it is almost always beneficial to use 
reverse reconciliation for better robustness against loss [83]). Both sides apply pre-
agreed linear error correction code [102] to their strings and the reference side (Bob) 
sends error syndrome to Alice, who uses a co-set error correction code (depending 
on error syndrome received) to correct her data string to match the raw key. Then 
they both calculate predetermined hash function and compare results, if the results 
coincide with probability 1 — eerr the error correction was successful, both sides now 
share same raw key { & i , b ^ } , otherwise this attempt failed and the raw key has 
to be discarded. 
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4. Parameter estimation. Evaluation of the upper bound on the eavesdroppers infor­
mation: At this step the sides disclose some portion of data to estimate the bounds 
on covariance matrix of the shared state [103-105]. Depending an amount of in­
formation available to the eavesdropper they determine length of the key I that is 
secure from Eve. If the estimated parameters are above certain threshold, meaning 
too much of shared state leaked to the eavesdropper, the protocol is aborted. 

5. Privacy amplification. Alice chooses hash function [102], a one-way function that 
maps a data string to a shorter string of fixed length, and declares the function 
to Bob. They both apply the hash function to their data strings to obtain shorter 
uniformly distributed data sets SA = SB of length / that is uncorrected to Eve's 
data [106]. 

Alice Bob 

Figure 2.3: Basic scheme of one-way entanglement-based C V Q K D protocol with homo-
dyne detection [20] using real local oscillator generated from the same laser as the T M S V 
state. The sender Alice generates a T M S V state, she shares one of the modes together 
with the phase reference through attenuating noisy quantum channel with the receiver 
Bob. Both sides measure their respective modes with homodyne detectors and proceed to 
postprocessing of the measurement results using classical channel to generate the secret 
key. The quantum channel is assumed to be controlled by the eavesdropper, the classical 
channel is authenticated and public, while Alice's and Bob's labs, where the measure­
ments and the state preparation happen, are secure from eavesdropper. This simplified 
protocol scheme is similar to ones implemented in the experiments [107-109] 

The entanglement distributed as in Fig. 2.2 can be used to generate the secret key 
in E B Q K D protocol, if several additional assumptions, about eavesdropper's abilities 
and about security of the state preparation and homodyne measurement, being met. 
The operational scheme of such entanglement-based protocol is given in Fig. 2.3. In 
her lab, secure from eavesdropper's interference, Alice prepares the T M S V state with 
covariance matrix given by Eq.(2.8), she measures one of the modes of T M S V with a 
homodyne detector and sends the other mode together with the local oscillator through 
the quantum channel of transmittance T to Bob. In his secure lab Bob measures the 
state by homodyne detection randomly switching between the quadratures. The parties 
proceed to information reconciliation and privacy amplification as described above in the 
protocol outline using authenticated public classical channel. The covariance matrix of 
the shared state JAB Eq. (2.24) after Bob measures one of the quadratures (here, without 
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loss of generality, quadrature p is chosen) becomes 

(V 0 \ 
1A\B = I T ( V 2 - I ) • (2-29) 

yO v T V _ T + 1 + e J 

The secret key per channel use is calculated as difference between the information be­
tween Alice and Bob, and the information between Eve and the reconciliation side (the 
side that discloses information about their state). While generating the key in the postpro­
cessing stage of the protocol Alice and Bob access classical information contained in their 
shared state. Classical information is Shannon entropy S(X) = J2xeX —p(x) \ogp(x) [98]. 
Taking into account that the state is Gaussian, their mutual classical information is calcu­
lated using the covariance matrix S^AB) = IAB = \ log 2 v^~- When assessing how much 
the information leaked to the eavesdropper, we must estimate upper bound on quantum 
information available to her. The quantum analogue of Shannon entropy of quantum 
state p is von Neumann entropy S(p) = — Tr[plogp\. For a Gaussian state von Neumann 
entropy can be expressed in terms of symplectic eigenvalues (2.14), it is computed as 

= SfcLi ^(^fc), w n e r e G(x) — (x + l ) log 2 (x + 1) — a;log 2x [63]. Upper limit on 
information that can be shared using quantum system p which contains subsystems px is 
given by the Holevo bound 

I(p)<S(p)-J2pxS(px), (2.30) 
i. 

here px is conditional probability to find the measured system in state px [110]. 
Assuming that sides can use protocol infinite number of times (infinite key length), 

Devetak-Winter bound [111] gives the asymptotic secret key rate. 

K = max {0, (3IAB - IAE/BE) (2.31) 

(5 G [0,1] is postprocessing efficiency, it depends on error correction algorithm used in 
classical postprocessing, in practice it can be close to 0.96 [112] for Gaussian (or nearly 
Gaussian) data sets. IAE/BE is information among either Alice or Bob chosen as a 
reference side and Eve. Historically the first approach introduced in C V Q K D was direct 
reconciliation [22], where Alice is the reference side in the reconciliation step. In this 
direct reconciliation virtually all loss occurs between the signal source and the remote 
side, and the channel attenuation of more than T=0.5 (3 dB) means information between 
Alice and Bob is less than information between Alice and Eve, the security is destroyed 
and the protocol is to be aborted. Reverse reconciliation with the remote side as the 
reference does not have 3 dB attenuation threshold [113]. Any practical one way Q K D 
protocols use only reverse reconciliation and in this work we always assume Bob to be the 
reference side. 

The states employed in the protocol don't necessary need to be Gaussian. A security 
proof for Gaussian states is sufficient, due to their extremality among all other quantum 
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states [66]. Gaussian states are the minimally entangled states among all C V states with 
same displacement and covariance matrix as given Gaussian state: for any state p there 
is a "Gaussified" state pc (a Gaussian state that has same first and second moments) 
for which f(p) > f(pc)- Here / is a continuous functional acting on bounded linear 
operators on the Hilbert space 7i, which is invariant and strongly super-additive under 
local unitaries f(U®NpW®N) = f(p) [66]. This leads to Gaussified state giving a lower 
bound on some entanglement measures (but not logarithmic negativity Eq. (2.23) [114]) 
for a non-Gaussian state and also the upper bound on quantum information and Holevo 
number (Gaussian states maximize von Neumann entropy allowing to estimate the lower 
bound of secure key rate). 

Attack strategies for eavesdropper. Eve having control of the channel implies that 
she can replace the real channel with a simulated one, that will be indistinguishable for 
the trusted parties from the real channel only with different level of noise. Any kind 
of attack happening in the channel can be modeled with Eve preparing probe states 
that interact with the signal states in the channel, the probe states are then stored and 
subsequently measured by Eve. Eavesdropper can perform attacks of different levels of 
generality depending on how Eve's probe state are prepared and measured: individual, 
collective [22,115,116] and coherent attacks [36,117]. It in turn gives restrictions on how 
Eve can prepare her probe states and how they can be stored and measured by her. 

1. Individual attacks [118]: during each round of protocol Eve's probe state interacts 
with each signal state separately, all the probe states , and the are stored in quantum 
memory and, after post-processing step of the protocol is finished, each probe state 
is measured by her separately in the correct basis. 

2. Collective attacks [115,116,119]: Eve performs independent attack in each round, 
her probe states are prepared individually each time and stored in a quantum 
memory after the interaction with the signal, after the protocol is finalized Eve 
accesses all probe states collectively performing optimal global measurement. The 
protocol is secure if the signal states prepared by Alice are known to be i.i.d. [19]. 

3. Coherent attacks [36,37,120]: there are no limitations on the probe states Eve can 
prepare and on correlations between her probe states, we have to assume that before 
protocol begins she prepares an optimal entangled state, this global probe state 
interacts with the signal states in each round of protocol and after she measures the 
probe state collectively. Proven security against coherent attacks guarantees that 
the protocol is secure independently of what actual signal states were prepared by 
Alice, signal states used in each round of protocol can have arbitrary correlations 
with each other. 

Gaussian attacks, using Gaussian probe states, are optimal for Eve on any level of gener­
ality [116]. In most cases the more general attacks are the more information eavesdropper 
gets, the coherent attacks are the optimal ones for eavesdropper. There are some special 
cases where less general attacks are proven to also be optimal. Taking into account re­
alistic expectation, that Eve's probe states stored in quantum memory experience some 
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decoherence, individual attacks can be optimal [121]. In more general case, assuming in­
finitely long blocks (asymptotic regime) and symmetric parameter estimation and privacy 
amplification algorithms (which is practically always the case), the secret key rate for 
coherent attacks is shown to converge to collective attacks key [115]. Gaussian de Finetti 
reduction [122,123] together with extremality of Gaussian states [66] allows to only con­
sider Gaussian collective attacks instead of general attacks for certain entanglement-based 
protocols and the corresponding P M protocols. It has been proven only for protocols with 
squeezed states and heterodyne detection (randomly switching between quadratures) or 
homodyne detection [37,104,115,116]. Nevertheless security against Gaussian collective 
attacks is a useful benchmark for any protocols. 

To prove security against collective attacks in the asymptotic limit of infinitely long 
key, taking into account extremality of Gaussian states, we assume that the initially pure 
Gaussian state PAB prepared by the sender is coupled to Eve's probe state while passing 
through the noisy channel, becoming a three-party state PABE- We assume that in each 
use of the protocol, Eve has access to and is able to perform any collective measurement of 
the rest of the three-party pure state (Eve holds purification of the state shared between 
Alice and Bob). The upper bound on her information is given then by the Holevo bound 
(2.30). Using the fact that the total PABE state is pure, the von Neuman entropy of 
the state available to Eve is equal to the entropy of the state shared by Alice and Bob 
S{PE) = S(PAB)- The secure key rate against collective attacks is [124]: 

K = max {0, f3IAB - XBE} (2.32) 

here XBE = S(IE) — S(JE\B) is Holevo bound (2.30) for Gaussian state with covariance 
matrix 7, difference of von Neumann entropy in the state available to Eve and the same 
state conditioned after measurement by the remote party. It gives the upper bound on 
information contained in the parts of state that can be available to Eve, due to channel loss 
and the protocol implementation imperfections. While the most conservative assumption 
to prove security against collective attacks is that Eve purifies the state, in the case if it 
can be certified that part of noise and loss that occur during state generation or on the 
detectors, indeed occurred inside the secured laboratories, the purification assumption 
assigning all the noise present in the state shared between Alice and Bob to the meddling 
by the eavesdropper can be relaxed, then S(PE) 7̂  S(PAB)-

2.4 One-way Gaussian communication protocol with 
multimode states. Model of the cross talk 

Multiplexing can increase robustness of quantum information protocols, allow parallel 
processing of information, increase transmittance capacities of channels. Source used for 
multiplexing can be intrinsically multimode source, for example a frequency comb, used in 
the following analysis and experiment, or it can be a set of single mode sources. Channel 
multiplexing in C V can be done with already accessible technologies, such as deterministic 
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squeezing sources, multicore fibers and mode discriminating homodyne detection, to 
increase capacity of quantum communication protocol. 

We consider multiplexing of the two-mode protocols in Sections 2.2 and 2.3, where to 
increase capacity N protocols are implemented in parallel. The basic protocol with two 
parties sharing a T M S V state (i.e. two signal modes) through a lossy and noisy channel 
of attenuation T, with the excess noise e, is extended to the case of N replicas of T M S V 
states (2N modes) and N channels. Ideally the pairs of modes do not interact between 
themselves and the modes are perfectly discriminated at the measurement stage. Then 
adding multiple modes becomes simply a question of scalability, scaling up the number 
of separate entangled pairs of modes shared times N and increasing the secret key rate of 
Q K D protocols N-folds. 

Due to imperfections in the process of the state generation, sharing through channels 
and measuring, the modes can get coupled to each other. We refer to this extra coupling 
as inter-mode cross talk. We apply linear cross talk model to initially independent T M S V 
states: multiplexed source starts as N independent two-mode states that are coupled 
to each other either in the channel, during measurement or the state preparation. Fig. 
2.4 shows the simplest possible case: a two-fold multiplexed entanglement distribution 
protocol, where two T M S V sources start independently and linear cross talk occurs in the 
receiver before the modes enter the channel [45,51]. Our model assumes that the sender 
possesses two sources of T M S V states (making the four-mode total state A1A2B1B2), the 
modes -B1-B2 are shared with the remote party through an attenuating channel with excess 
noise e (the channel attenuation is considered unbalanced, being different for each mode). 
On the senders side the modes BiB2 get coupled to each other, experiencing the cross 
talk. We model cross talk as linear beam-splitter-like interaction between the signal 
modes, in Fig. 2.4 it is depicted as a beam-splitter of transmittance tc. Of course in 
reality modes can experience more complicated interaction between each other, but the 
goal of our work is to only study the basic cross talk that is most likely to occur through 
linear coupling and can be compensated by the trusted parties applying L O C C . 

state preparation 

Figure 2.4: Entanglement distribution scheme with two pair of T M S V states, where cross 
talk is modeled as a beam-splitter of transmittance tc 

The initial state is a product of two T M S V states given by (2.8), assuming that 
the states squeezing parameters are identical and their variances are both V , their joint 
covariance matrix is •JA1A2B1B2 — JA1B1 © 1A2B2- After the linear cross talk mixes signal 
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modes and the channel attenuates them, the covariance matrix becomes 

V 1 ^/t^I\VVI^l Z 0 I — s / r ^ W V 5 ^ ! 
_ I Vt^TTW^l Z [ T i ( V + e - l ) + l ] I V ^ W ^ l Z 0 1 i , , ; , J O , 

7 A I A 2 B 1 B 2 - I 0 | ^r^^v^i z y o ^7yVy23i z I > y^-66) 
V ^ V V ^ l Z 0 I Vt^hW^l Z [ T 2 ( V + e - l ) + l ] 

here r c = 1 — tc. 
We study the multimode protocols theoretically, not bounding the model we use to 

any particular experimental implementation. In practice mode multiplexing can be im­
plemented in either spatial or frequency domain. The spatial modes can use similar 
frequencies, as in the wavelength division multiplexing with multicore fibers [45,48,125] 
where the cross talk occurs between neighbouring cores. Then each core has to be treated 
as a separate channels with linear cross talk between closest neighbouring channels (the 
experiment in [45] was designed in a way that quantum signal could only experience 
cross talk with classical signals in neighbouring cores, but for the goal of large-scale mode 
multiplexing more cores would be used for quantum signal with cross talk occurring be­
tween them). Another approach to multiplexing is using frequency domain, examples of 
frequency-multiplexed states can be several independent T M S V states with different fre­
quencies that experience cross talk while being shared through multimode fiber channel 
or a frequency-multiplexed state generated by synchronously pumped optical parametric 
oscillator [53,126-128] where different frequency modes can become coupled to each other 
during measurement. 

Important example of a device that produces the multimode Gaussian state for this 
thesis is a synchronously pumped optical parametric oscillator (SPOPO). It is an intrin­
sically multimode source that produces many entangled photon-pairs in all frequencies, 
some of these can be accessed by mode-discriminating homodyne measurement. SPOPO 
is an optical parametric oscillator, in which sequence of very short (and broad in spec­
trum) pulses is sent to the cavity containing a nonlinear crystal in such a way, that the 
pulses travelling between mirrors inside the cavity and new arriving pump pulses are syn­
chronised. As in normal OPO bellow threshold that is pumped with single frequency, 
each spectral component resonant with the SPOPO cavity undergoes parametric down-
conversion process uPi = + u2i and if pump is centered around cu0 the output state is 
centered around ou0/2. In the same time its output is not equal to just sum of all possible 
downconversion processes as the phase matching and momentum conservation conditions 
allow several processes to scatter into the photons of the same frequencies. The state 
generated by the SPOPO is Gaussian entangled state that is basically a frequency comb 
but with each frequency in given spectrum present. The state is entangled in frequency 
domain, which corresponds to a set of squeezed states in domain of Hermite-Gaussian 
modes. While the generated states contains huge number ( ~10 5) of frequency modes, 
such a big number of modes cannot be accessed individually, but it can be sliced into 
narrow frequency bands which then can be measured separately with multipixel homo-
dyne detection. Further these narrow frequency bands (and not single frequencies) will 
be referred to as spectral modes. Multipixel detection allows to measure all the modes 
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simultaneously, it is fully analogous to the single-mode homodyne detection described 
earlier but both multimode signal and multimode oscillator are dispersed on gratings into 
spectra that is then focused on two photodiode arrays [128]. 

Frequency multiplexed multimode state generated by SPOPO according to Eq. (2.17) 
can be from the point of view of theory treated as a result of mixing of N independent 
thermal modes that undergo basis change and each mode is then squeezed in this new 
basis (these are the squeezed Hermite-Gaussian modes), then the modes are mixed again 
with another basis change to the frequency basis. The frequency modes can be (to cer­
tain extend) experimentally accessed by multiplexed homodyne detection. The measured 
spectral modes are imperfect, they create an incomplete basis. It only approximates the 
orthonormal basis that can be transformed into Hermite-Gaussian basis of squeezed su-
permodes. The experiment [129] showed that it is possible to get sufficiently good access 
to the supermodes, proving that the measurement captured most of the SPOPO frequency 
range, and the measured state is close to its theoretical model. In this experiment all the 
frequency modes were measured simultaneously, while switching between quadratures x 
and p, and the covariance matrix was estimated had negligible intramode x — p corre­
lations. Although the SPOPO generates multipartite entanglement, for the purpose of 
the two-party Q K D the frequency modes are shared between two sides and in the very 
end only bipartite correlations shared among the trusted parties contribute to the key 
generation. The parties can only access classical information carried by the modes in 
frequency domain, while the eavesdropper has access to the state "leaked" through the 
channel as a whole and the Holevo bound on Eve's information is calculated from the 
states thermal decomposition (2.17). 

In general any practical implementations of C V sources contain multiple modes, in 
either frequency spectrum or any other degree of freedom. In the use-case we described 
above the multiple modes are a resource for mode multiplexing. In another possible case 
if extra modes appearing due to imperfections in the state generation, then some modes 
will inevitably be non-signal ones, they add noise or they can be abused by eavesdropper 
as side channels [34,130,131]. In this thesis besides mode multiplexing scenario we also 
consider another many-mode scenario where extra modes are generated all in the same 
state and are used in a Q K D protocol to increase signal's brightness, making it easier 
to handle in the experimental setting. A n obstacle to use these macroscopically bright 
states in Q K D can appear when the modes of the bright states don't perfectly match 
with the local oscillator while being measured with mode-non-discriminating homodyne 
detection [62]. 
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3 Cross talk compensation for multi-
mode entanglement distribution 

This Chapter mainly overviews the results of the published paper (see [1] Chapter 6). 
The paper is concerned with effects of a linear cross talk in an entanglement distribution 
scheme in Fig. 2.4 of Section 2.4. Preparing and distributing multiplexed entangled 
states with significant number of modes almost inevitably leads to cross talk between the 
modes [132-134]. We use a significantly simplified model of linear cross talk in distribution 
of two T M S V states to demonstrate possibility to compensate its negative effects with 
local manipulations of data on one of the sides of communication protocol. This data 
processing uses advantageous properties of continuous variable states and measurements 
that has no known analogy with single photon D V Q K D . 

3.1 Theoretical model 

In the entanglement distribution scheme with cross talk in Fig. (2.4) the initial logarithmic 
negativity of one T M S V state Eq.(2.8), before any cross talk and the channel loss occurs, 
is 

LN0(V) = --log2 (2V2 - 1 - 2VW^l), (3.1) 

After taking into account the cross talk, the channel attenuation and the excess noise, 
the logarithmic negativity of the first mode A^Bi of the shared state with the covariance 
matrix •JA1A2B1B2 i n Eq. (2.33) becomes 

LN = ~ log 2 + 2T,[e + (V - l)(tcV + tc + 1)] + 

Tf(e + V- lf + V2- [l + V + Ti(e + V - l)]x (3.2) 

^Tf{e + V - l ) 2 + (V - l ) 2 - 2T,{V -l)[e- 2tc(V + 1) + V - 1]). 

In the Section 2.2 Eq. (2.25) shows how entanglement in a single pair of modes is reduced 
by the channel attenuation. The presence of the cross talk reduces the entanglement even 
further and also makes it more sensitive to the destructive influence of the excess noise. 
These effects are plotted in Fig.(3.1) for the modes pair A\Bi. In the left panel the shared 
logarithmic negativity is plotted versus the initial logarithmic negativity of a single T M S V 
state demonstrating how presence of the cross talk suppresses the shared entanglement 
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and creates a maximal limit for it. The right panel illustrates how the presence of the 
cross talk makes the e = 2 SNU limit on the maximal tolerable excess noise tighter. 

Figure 3.1: Gaussian logarithmic negativity of the pair of modes A1: B\ after cross talk tc 

and after passing through a quantum channel versus the initial logarithmic negativity of 
the state (left) and versus the channel noise (right). The channel transmittance for both 
the modes is T = 0.9. Left: no excess noise e — 0. Right: fixed signal state variance 
V = 5. 

Without the cross talk the shared entanglement increases monotonously with the state 
variance and, in principle with the squeezing being unlimited, it can grow up to the 
repeaterless bound Eq.(2.26) of the entanglement distribution. In the limit of infinite 
state variance (V —> oo) and no cross talk in the attenuating channel with excess noise 
the repeaterless bound Eq.(2.26 depends not only on on T but also e and becomes 

lim L7V = - l o g 2

1 ~ T f ~ £ ) . (3.3) 
K -s -oo i- + J-i 

In the presence of cross talk with increase of the initial entanglement (or, equivalently, the 
state variance), the shared entanglement reaches its maximum and vanishes if the initial 
variance exceeds 

Vmax = , t ° ~ £ . (3-4) 

As an example of application for the multiplexed entanglement distribution scheme in 
Fig. 2.4, we consider a scenario where each mode of the 4-mode entangled state shared by 
the remote parties is measured with balanced homodyne detectors, and then the parties 
proceed to establish the secret key among themselves, implementing multiplexed version 
of the protocol described in Fig. 2.3. The mutual information distributed between Alice 
and Bob by two pairs of modes is additive and the secure key rate Eq. (2.32) becomes 

K = max {0, P{IAIBI + JA2B2) - XB1B2E} • (3.5) 

Taking into account the assumption that eavesdropper holds purification of the total state, 
here XBXB2E = S{^A1A2B1B2) — S{^A1A2B1B2\B1B2)-

By reducing or destroying the state's entanglement, cross talk also negatively influences 
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the secure key rate. The analogy between the cross talk effects on the secure key and 
entanglement can be seen comparing Fig. 3.2 to Fig. 3.1. In both cases cross talk 
introduces limitations on the initial state variance and enhances destructive influence of 
the excess noise. 

Figure 3.2: Secret key rate for multiplexed state 7 A I , A 2 , B I , B 2 with cross talk tc after atten­
uation by channel with transmittance T = 0.9 versus the initial state variance V of the 
state (left) and versus the channel noise (right). Left: no excess noise e — 0. Right: fixed 
signal state variance V = 5. Postprocessing efficiency (3 = 0.96. 

The initial state variance could be optimized with respect to cross talk tc and channel 
parameters T and e. Depending if the goal is to maximize the logarithmic negativity 
or the secure key rate, the optimal initial state variance in general would differ. But 
even with the optimization, the damage done by the cross talk remains significant. As 
an alternative to the initial state optimization we further proposed two passive optical 
schemes to eliminate the cross talk and restore entanglement at least partially. 

3.2 Cross talk compensation 
Linear cross talk we consider in our model should be possible to compensate by the linear 
interactions, combination of phase shifts and beam-splitters. In a more complicated case 
with higher number of modes the most general compensating scheme would consist of 
a sequence of Mach-Zender interferometers, but for a simpler case of two T M S V states 
we only need a sequence of a phase shift by 7r on one mode with the modes Bi,B2 

then interacting on a beam-splitter with transmittance tr, here tr is the parameter to be 
optimized. 

Applying this decoupling interaction changes the covariance matrix of a pair Ai,Bi 
to 

V 

v [VW^ + VTrfcU) Vv2 - 1 z 

V ^ + v ^ l v l ^ T Z [1 + T\tr(y — 1) + T2rr(V — 1)] D 

\ 
(3-6) 

here rr = 1 — tr. The pair of modes A2,B2 has similar covariance matrix up to the 
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Figure 3.3: Compensating cross talk with optical interference, when the remote side 
optimally applies phase shift (PS) by n to one of the modes and couples the signal modes 
on a variable coupler tr. 

replacement of Ti with T2. 
For a noiseless channel with balanced transmittance (same transmittance for both 

modes 7\ = T2 = T) it is straightforward to see that putting tr = tc turns covariance 
matrix in Eq. (3.6) into the covariance matrix of a T M S V Eq. (2.24) fully eliminating 
the cross talk. 

In general case the channel transmittance is unbalanced, i.e. it is different for different 
pairs of modes 7\ ̂  T 2 (without loss of generality we assume 7\ > T 2 ) , then the optimal 
tr has to be found numerically. Its value is bound from below and above by two important 
edge cases of very weak and infinitely strong initial entanglement for the mode pair Ai, B\ 

and 

C = ^ r, V oo. (3.8) 

For the second pair A2,B2 the limits are similar up to 7\ <->• T2 substitution, no choice 
of tr can maximize entanglement in both pairs simultaneously, it is up to our decision if 
either pair's entanglement or the average of their entanglement values is to be maximized. 
Nevertheless any tr in the interval [tl, increases the logarithmic negativity in both pairs 
compared to the case before compensation. 

Applying optimal coupling tr allows to significantly restore entanglement and to re­
move the limitations on the maximal initial variance Vmax in Eq.(3.4). For optimally 
chosen tr the logarithmic negativity is an increasing function of V. In Fig. 3.5 the log­
arithmic negativity restored by optimal decoupling (purple line) grows similarly, albeit 
being slightly lower, to the logarithmic negativity without any cross talk (given in Eq. 
2.25, blue line in the plots). For infinitely large initial state variance and tr given by (3.8) 
the logarithmic negativity approaches the limit: 

lim LNrev = — log 2 

V^oo 

tcT2 + TAl-tc-T2 (3.9) 
tcT2 + Tx(\-tc + T2) 

The proposed decoupling method allows to almost fully restore the entanglement and 
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eliminate the cross talk in both pairs of modes, but it depends on numerical optimization 
with respect to the generally unknown parameter tr. 

Further we consider an alternative way to compensate for entanglement loss (see Fig. 
3.4), that relies on the conditional measurement of one pair of modes (here a more at­
tenuated pair A2, B2 is chosen) with feeding forward the measurement result to displace 
another pair of modes Ai,Bi. This approach allows to increase entanglement in one pair 
of modes at the expense of completely losing the other pair, but it does not need any 
prior estimation of the cross talk strength. 

Alice: 
measurement and control 

Bob: 
measurement and control 

D x,p // 
// 

^ P 7 L B S 

Figure 3.4: Measurement and feed-forward control scheme to compensate the cross talk 
in the pair of modes A\,B\. The two parties perform generalized Gaussian measurements 
by splitting modes A2,B2 on variable beam-splitters tA,tB and measuring x-quadratures 
on the modes A2,B2 and p-quadratures on the auxiliary detection modes DA,DB. The 
measurement outcomes are then used to feed-forward modes Ai,Bi. The rest of the 
scheme (source, cross talk and channel) is as in Fig. 3.3. The scheme allows increasing 
entanglement in modes A\,B\ at the cost of tracing out modes A2,B2. 

On both sides Alice and Bob perform generalised homodyne measurement dividing the 
pair A2,B2 on beam-splitters of variable transmittances and ts respectively and then 
measuring both quadratures. The measurement transforms the state •yA1A2B1B2 as given 
by Eq. (2.20) and (2.21). tA and ts are the parameters to be optimized to maximize the 
logarithmic negativity. The covariance matrix of the first pair of modes 7A1B1, becomes 

'yA

en

B

meas = lM\pA->tB) CAiBi{tA,tB) ^ j n ^ e ^ e e X p i j c ^ - f o r m it j s given in the 
1 1 CAlBAtA,tB) lB1{tA,tB) 

paper [1] in Chapter 6. ^nmeas a j j o w s ^ 0 c a i c u i a t e the logarithmic negativity LN(tA,tB) 
from Eq. (2.23 and to maximize it. The optimal measurement of Bob's side does not 
depend on the state or channel parameters, it is always a homodyne measurement of 
either of the quadratures, the optimal ts is either tB = 1 for measurement of x or tB = 
0 for measurement of p. Without loss of generality we further put tB = 1- Optimal 
measurement on Alice's side does depend on the state variance V and the cross talk tc, 
channel transmittance T\ and T2 and excess noise e and in general case optimal tA can 
only be found numerically. Independently of what kind of the generalized measurement 
is applied to the pair of modes A2B2 (and what tA and ts are chosen), the measurement 
with feed forward always improves the entanglement in the pair AiBi. 

In the limit of a very short channel with low loss Ti 2 —)• 1 the optimal measurement 
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by Alice is the homodyne detection of a quadrature opposite to the one measured by Bob 
(e.g. if Bob measures x, Alice measures p with tA = 1)- Then the logarithmic negativity 
of the state in modes A\, B\ in the limit of V —> oo , for a noiseless channel (e = 0) tends 
to 

" i - T i ) [ 7 \ ( i - * c - r 2 ) + * cr 2] lim LNhom 

V—>oo " 2 l 0 g 2 
(3.10) 

t c ( l + T 0 2 T 2 

which may turn to zero for certain (albeit unrealistically strong) cross talk tc. In the 
opposing case in the limit of a very long channel with extremely high loss T 1 2 —> 0 
the optimal measurement is the balanced heterodyne detection with tA = 1/2. The 
logarithmic negativity of the pair Ai, B\ LNhet is a growing function of the state variance 
and in the limit of V —> oo and no excess noise (e = 0) it asymptotically approaches 

lim LNhet 

V—>oo 
log 2 

( l - t c T Q t l - t ^ - T a ) - ^ ] 
;I + Í C T 1 ) 2 - ( I - Í C ) T 2 ( I - Í C T 1 ; 

(3.11) 

In Fig. 3.5 yellow line illustrates how applying combination of balanced heterodyne de­
tection on sender side together with homodyne on the receiver side allows to restore 
entanglement in the remaining modes and avoid the limit Vmax on the initial entangle­
ment. 

A l l the proposed compensation methods are compared in Fig. 3.5 for the cases of longer 
(left panel) and shorter (right panel) channels. It demonstrates that all the compensation 
methods allow to significantly restore the Gaussian entanglement. Comparison of the 
behaviour of yellow and green curves in the left and right panels shows how in case of the 
feed forward control method for low loss channels superiority belongs to a combination 
of homodyne detection in opposing quadratures, while for channels with higher loss the 
combination of homodyne with balanced heterodyne detection gives superior results. But 
both implementations of the measurement and feed forward approach are less efficient in 
cross talk compensation than the optimal interference approach. For any realistic values 

— uncompensated crosstalk 
no cross talk 

...... decoupling BS 
— condit.meas. homodyne 
— condit.meas. heterodyne 

uncompensated cross talk 
no cross talk 
decoupling BS 
condit.meas. homodyne 
condit.meas. heterodyne 

LN0 

Figure 3.5: Logarithmic negativity in the pair A\,B\ after applying optical interference 
method or measurement of the pair A^^B^ and feed-forward control, as indicated in the 
plots, cross talk is tc = 0.9 , decoupling beam-splitter transmittance tr is given by eq.(3.8), 
no excess noise (e = 0). Left: low loss unbalanced channels (7\ = — QAdB, T2 = —0.5dB). 
right: high loss unbalanced channels (7\ = —9dB, T 2 = —lOdB). 
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the parameters of the state V, the cross talk tc and channel transmittance can take, 
the entanglement restored in the pair A\, B\ by optimal feed forward measurement (LNhom 

orLNhet) is always lower than the entanglement after compensating interference method 
LNrev in Eq.(3.9). The exception is a quite unrealistic situation where the transmittance 
for each pair modes is drastically different Ti >> T 2 . 

3.3 Main results 

Figure 3.6: Comparing different ways of cross talk compensation: optical interference us­
ing a decoupling beam-splitter, and entanglement concentration by optimized conditional 
measurement and feed-forward control. Plot shows the logarithmic negativity in a pair 
of modes after each respective method is applied. Initial entanglement is fixed LNQ = 4., 
cross talk is tc = 0.8, and transmittance ratio is Ti/T2 = 1.2, parameters tr and tA are 
optimized. The ideal case without any cross talk is not shown, but would be indistin­
guishable from the optimized interference method for given parameters. 

Comparison, how the entanglement in both pairs of modes restored by the different 
ways to compensate for cross talk, depending on the channel attenuation is given in 
Fig. 3.7. The passive method that implies the initial state variance optimization is the 
easiest to implement, it gives comparable results to the active methods, but only for high 
attenuation, it also does depend on the knowledge of the cross talk coupling tc. The active 
compensation schemes always perform better, in particular the optimal interference, in 
case of its ideal implementation, beats all the other methods. The optimal interference 
also preserves all the modes intact, while relying on the correct choice of the parameter 
tr, which can be challenging. While the measurement with the feed forward control 
halves the number of modes successfully distributed, but can be implemented without 
any knowledge of the strength of the cross talk tc. Depending on the applications this 
disadvantage can be crucial. In Q K D , where the mutual information in the pairs of modes 
is additive, the entanglement concentration method that traces out one of the mode pairs 
does not help to increase the key rate, but only deteriorates it further (except for the case 
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Key 

Figure 3.7: Different ways of cross talk compensation influencing the secret key rate 
for total state. Initial entanglement is fixed LN0 = 4.0, cross talk is tc = 0.8, and 
transmittance ratio is Ti/T2 = 1.2, tr is optimized. The compensation method using 
optimal measurement with feed forward is not applicable for Q K D . 

of unrealistically strong cross talk). In Fig. 3.6 we demonstrate how the proposed optimal 
interference compensation method allows to restore the secret key rate in the multiplexed 
entanglement-based Q K D scenario. 

Summary. In the entanglement distribution scheme presence of the cross talk de­
teriorates entanglement and the secret key rate. Depending on channel parameters and 
cross talk strength the initial state variance could be optimized to maximize entanglement 
shared. The negative effects of cross talk can be at least partially compensated by either 
of two methods we suggest and compare here. Depending on the purpose of entanglement 
distribution, e.g. for entanglement-based Q K D protocols, the physical implementation of 
the cross talk compensating schemes could be substituted with numerical data processing. 
In the following Chapter 4 we demonstrate applicability of numerical implementation of 
the optimal interference method to compensate the cross talk in the experimental source 
with significantly more modes. 

32 



4 | Compensating cross talk in 
frequency multiplexed entangled 
QKD source 

In this Chapter we present the main results of the published paper (see [2] in Chapter 
6), where we study a way to increase the performance of the entanglement based C V 
Q K D protocol by mode-multiplexing of optical transmission channel in the frequency 
domain. We test the method on the experimental data, obtained using the SPOPO as a 
source of entangled states and the mode-discriminating homodyne detection. Using the 
experimental data we then model a multimode version of the entanglement-base C V Q K D 
with homodyne detection shown in Fig 2.3. The cross talk between signal modes appears 
to be very strong, it deteriorates the secret key rate and negates benefits of multiplexing. 
We apply the multimode cross talk compensation method based on data manipulation, 
equivalent to linear state manipulations, similar to the optimized interference method 
suggested in Chapter 3. We evaluate security of resulting C V Q K D protocol, confirming 
the efficiency of cross talk compensation. 

4.1 Experimental source 

We model an E B C V Q K D protocol using data from the experiment [54] with SPOPO 
as a source of frequency multiplexed entanglement and mode-discriminating homodyne 
detection that distinguishes 16-frequency bands. The source of multimode entanglement 
used in the experiment is described in Fig.4.1. In the actual experiment all 16 modes are 
generated in a single beam, when we suggest the way to use it in the Q K D protocol, we 
have to model situation where half of the frequency modes are measured by Alice and the 
other half are distributed to Bob. 

To generate the entangled light, a synchronously pumped optical parametric oscilla­
tor (SPOPO) including a 2-mm-thick B i B 3 0 6 (BiBO) crystal, which operates below the 
threshold, was employed. The main laser is a Ti-sapphire pulse laser, with pulse duration 
of 120 fs centered at Ao ( = 795 nm) with a repetition rate of 76 MHz. The beam from 
the laser splits into two beams, where one is used for generating frequency-multiplexed 
entangled light, and the other serves as a LO for mode-discriminating homodyne detec­
tion. The pump laser for the SPOPO (centered at Aq/2) is prepared by second-harmonic 
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Mode-discriminating homodyne detection 

lens 
grating 

SLM lens 
A grating 

. BS 
Ti:sapphire ^ > \ i Pulse shaper 

LO 

BiBO BiBO PAB 

BS PD 
SPOPO 

PD' 
Frequency-multiplexed entangled light 

Figure 4.1: Experimental setup for generation of frequency-multiplexed multimode entan­
gled light and its measurement with mode-discriminating homodyne detection. The pulse 
shaper is constructed in the folded configuration in actual implementation. BS: beam 
splitter; S L M : spatial light modulator; PD: photodiode. 

generation of the main laser in a 0.2-mm-thick BiBO crystal. 

We consider a scenario, as shown in Fig. 4.2, where half of the modes (below the central 
frequency) is locally measured by Alice and another half (above the central frequency) 
transmitted to a remote trusted party Bob (trusted devices are given in dashed blocks) 
through a pure loss channel. Both multimode beams are detected by homodyne detectors 
and processed to optimally eliminate the cross talk and improve the secret key rate. The 
data processing corresponds to a local physical multimode symplectic transformation and 
was optimized to achieve higher key rate between the trusted parties. The trusted parties 
then can use authenticated classical channel to perform post-processing by correcting 
their errors and amplifying the data privacy in order to obtain quantum-secure key as the 
result. 

Optimized symplectic transformation we applied is equivalent to set of passive local 
operations on each side. The most general case would be a set of Mach-Zehnder interfer­
ometers acting on each possible combination of modes [135]. However, due to absence of 
the correlations between x and p quadratures no phase shifts can increase correlation (and, 
consequently, the mutual information) and a sequence of Mach-Zehnder interferometers 
simplifies to a sequence of beam-splitters between all possible pairwise mode permutations 
on each side. 

The model of local passive symplectic transformation between modes introduces a set 
of beam-splitters on each side. In total there is (N/2 — l)JV/2 = 56 beam splitters (28 
on Bob's and 28 on Alice's side), each beam-splitter in the sequence having transmit-
tance coefficient tij, with the modes i,j interacting on the given beam-splitter. The joint 

4.2 Q K D protocol 
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Figure 4.2: Bright colors show a sketch of a C V Q K D test-bed for study of the multi-
mode entangled source at the side of sender, Alice, with cross talk coupling between the 
frequency modes in both of the two beams, leaving the source. The entangled source is 
based on eight pairs of modes, here only four of them are shown for simplicity. The part 
of the C V - Q K D protocol tested experimentally (as shown in Fig.4.1) is given in bright 
colors, while the part, that is modelled theoretically, is given in dim colors. 

operation performed by Alice is 

8 
UA = T7^8...Th3Th2= J] Tid, (4.1) 

i=l ,j=i+l 

the operation Bob performs is 

16 
UB — ^15,16^14,16"-̂ 8,10^8,9 = Tij. (4-2) 

i=9j=j+l 

Their joint operation acts on the 16 x 16 covariance matrix 7 of the state 7/ = UAUBJUBU^. 
Symplectic unitary operation UAUB is equivalent to a basis change and it cannot influence 
information that leaked to eavesdropper. Basis change does not influence symplectic eigen­
values in Eq. (2.14) and Holevo bound Eq.(2.30) on Eve's information remains unchanged. 
To maximize the key rate Eq.(2.32) it is therefore enough to maximize the mutual infor­
mation. The mutual information between the sides is additive IAB = Ylt=i ^AiBi- Two 
functions we seek to maximize are mutual information values (calculated in each quadra­
ture separately) IXAB(t) and IPAB(t), here t = (hp,^2,3-^i5,i6) is the variable vector made 
of transmittance coefficients of the beam splitters. They are maximized numerically with 
respect to vector t using limited memory Broyden-Fletcher-Goldfarb-Shannon (1-BGFS) 
optimization algorithm with bound constraints [136] and basin hopping. As the function 
IAB{^) is not convex, the 1-BGFS method (even with basin hopping) doesn't guarantee 
that the maximum we found is a global one, but the results obtained show significant 
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increase in mutual information in both quadratures, more in p quadrature with increase 
from 0.28 to 0.517 bit per channel use. In the C V Q K D protocol with homodyne detection 
only one quadrature can be chosen for the quantum key generation, we therefore consider 
p quadrature for the key. 

mode i m o d e ' 

modej m o d e j 

Figure 4.3: Visualization of covariance matrices in p quadrature before 7 (left) and after 
7/ (right) the optimized linear data processing. 

The effect of optimal basis change on the covariance matrix is shown in Fig. 4.3. 

4.3 Main results 
We compare the secure key rate robustness to channel loss with the original experimental 
data and the data after optimal processing in Fig. 4.4. The optimized data manipula­
tion has noticeably improved robustness to loss (and, respectively, increased the secure 
distance) of frequency-multiplexed C V Q K D protocol, the tolerable loss increased from 
7.5 dB before processing (blue) to 28 dB (orange). To show how multimode nature of the 
source increases the key rate we also calculated the key rates for reduced states with only 
some modes used for the key generation and extrapolated it to the cases with significantly 
larger numbers of modes (dashed lines). The extrapolation for a larger number of pairs 
was done with the method of the least squares [137], with linear model for the key rate in 
the form K(x) = a + bx (a = —0.0501 and b = 0.0293). We then evaluated the prediction 
bands defined as K(x) ± ty/s2 + X C o v X T , where Cov is the covariance matrix for the 

coefficients a and 6, and s2 is the mean squared error for the data points, X — [ ^ ], t 
\ X J 

is defined from the Students distribution for 95% confidence level (resulting in t — 2.447). 
Comparing the results for different number of modes and extrapolations suggests that 
increasing the number of frequency bands measured with mode-discriminating homodyne 
detection can further increase performance of the Q K D protocol. 

Summary. This work suggests SPOPO in prospect can be a useful source for im­
plementation of frequency multiplexed entanglement-based C V Q K D protocols. During 
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K, bit per multimode channel use 

10 \ —before processing, 8 pairs 

processed, 2 pairs 
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0.100 

0.010 

40 
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Figure 4.4: Key rate of C V Q K D versus channel transmittance T (in dB) as obtained from 
the original data on the full multimode entangled state (blue solid line), after optimized 
local data manipulations performed by the trusted parties for different number of used 
pairs of modes (non-solid lines for reduced number of pairs and thick solid violet line for 
the maximum number of eight pairs), linear extrapolation for larger number of modes 
(blue and brown dashed lines). Post-processing efficiency (3 = 96%. 

generation and measurement this source suffers from cross talk between different fre­
quency modes that can be compensated by optimally applying data manipulations in the 
postprocessing stage of the protocol. The optimal data processing allowed to increase the 
mutual information between the sets of modes on both sides, while the leaked information 
is not affected. We observed increase of protocol robustness to channel attenuation from 
about 7.5 dB to 28 dB. 
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5 QKD with macroscopically bright 
coherent states of light 

Besides channel multiplexing, when each mode carriers signal individually and has to 
be measured individually, multimode states can be used even in quantum communication 
scenarios without mode-discriminating measurement. E.g. bright squeezed vacuum states 
(BSV) containing multiple squeezed modes can be treated in an experiment as single-mode 
states of higher intensity. The possibility to implement entanglement-based Q K D protocol 
with B S V was proposed earlier [62]. Here we present the main results of the published 
paper (see [3] in Chapter 6) that considers a prepare-and-measure C V Q K D protocol with 
bright coherent states, based on the results of the experimental test of their generation 
and detection. Bright states are called so in the sense that they consist of multiple modes, 
making them easier to handle in practical Q K D implementations. The downside of having 
multiple signal modes is that not all of them overlap successfully with the local oscillator 
during the homodyne measurement, hence creating additional noise. This paper tests 
the possibility to reduce the resulting noise and estimates the applicability of the bright 
nonclassical states for C V Q K D . 

5.1 Experiment 

In regular homodyne detection in Fig. 5.1 (left) single-mode signal beam is mixed with 
single-mode local oscillator on the balanced beam-splitter, while in homodyne detection 
of bright states it is necessary to mix all modes of the signal state with the multi-mode 
local oscillator. In case the mode matching is imperfect, some signal modes do not match 
with the local oscillator modes, these unmatched modes mix with vacuum on the beam­
splitter, adding extra noise to measurement results [62]. In Fig. (5.1 (right) we show the 
case with only two signal modes, one of which does not overlap with the local oscillator. 

The measured quadrature variance gains extra noise from the unmatched modes reg­
istered by the detector, variance of quadrature x becomes 

where Var(x) is the quadrature variance of the matched signal modes (being Var(x) = 1 
for pure coherent states), n is the mean number of photons in an unmatched signal mode 
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50/50 50/50 

a signal 

Pur, 

aL.o. vac. a 

Figure 5.1: The standard scheme for homodyne detection (left) and the scheme with 
uncompensated modes in the multimode signal beam (right). 

and 
Ne2 

M\aLO 
2 ' 

(5.2) 

where | o l o | is the mean photon number of the LO and e is the weight of the unmatched 
modes, corresponding, e.g., to filtering prior to detection. In the experiment and the Q K D 
protocol model described bellow e = 1 everywhere. 

In the experiment homodyne detection was performed on coherent states. Let's name 
the matched mode \a) and the unmatched one \() so that Eq. (5.1) becomes 

Var (x) 1 + 
WLO\ |2 ' 

(5.3) 

Figure 5.2: Measured normalized variance in shot-noise units as a function of the normal­
ized photon number in the unmatched mode (left) and in the local oscillator (right). The 
mean photon number in a signal mode of B S V is 105 

The results of the experimental test is given in Fig. 5.2, the variance measured has 
linear dependence on the photon number in the unmatched mode and inverse dependence 
on the mean photon number in local oscillator. By increasing the local oscillator intensity 
ten times the additional noise is reduced from 1.6 SNU to 0.16 SNU, which well matches 
the theory. 
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5.2 Bright coherent-state Q K D protocol 
Based on the experimental data, we consider a coherent state prepare-and-measure pro­
tocol described in Fig.5.3. Coherent-state protocols differ from entanglement-based ones 
described in the Section 2.3 only in the ways Alice prepares the state by displacing a co­
herent state in the phase space. We assume that Alice possesses a source of the multimode 

Figure 5.3: Operational scheme of prepare-and-measure C V Q K D protocol using bright 
coherent states. Alice prepares bright coherent states and applies Gaussian modulation 
to them. She sends them (and local oscillator) through the attenuating quantum channel 
to Bob, who measures the signal with homodyne detection. The detection is assumed to 
be imperfect. 

bright coherent light and applies Gaussian modulation to a signal preparing the thermal 
state. Initially Alice posses a bright coherent state with covariance matrix 7 ^ = D. After 
Alice applies modulation according to random variables she draws from two Gaussian dis­
tributions with zero mean, the covariance matrix of the state becomes that of a thermal 
state: 

R (V* + 1 0 \ 
7 c o , = |̂  Q v , + 1j. (5-4) 

The signal then travels through a quantum channel to a remote party Bob, who measures 
one of the signal quadratures with homodyne detection. The variance of the modulation 
has to be optimized depending on the channel parameters, attenuation T and excess noise 
VJV , here both optimal modulations are equal and we redefine the variance as V£ + 1 = 
V£ + 1 = V. The security proof for this protocol relies on the proof for an equivalent 
entanglement-based protocol described in the Section 2.3. The covariance matrix of the 
state shared through a channel for the the equivalent protocol is 

- ( V i v / T ( U 2 - l)az \ 
1 A B \ VT(V* - l)az [T(V + VN) + 1 - T + eltn] 0 ) ' ^ 

The secret key rate is calculated from the covariance matrix 7^5 using Eq. 2.32. The 
presence of unmatched modes brings extra noise to the results of Bob's homodyne mea­
surement. The security proof assumes that the eavesdropper purifies the state, forcing to 
attribute any noise to the eavesdropper's interference and lowering the secure key rate. 
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5.3 Main results 
In the prepare-and-measure protocol while Alice applies the Gaussian modulation to 
bright coherent states, she can either successfully displace in the phase space all the 
modes present, so that all the unmatched modes will arrive to Bob's detector in ther­
mal state, or else displacement can happen to only to some of them, the unmodulated 
modes then will stay in coherent state. In the first scenario both number of unmatched 
modes and their mean photon number n = Vm/2, in the second scenario all the modes 
that arrived to Bob's detector can be effectively treated as a single bright mode with a 
higher average photon number. In practice some combination of the scenarios will ap­
pear. These scenarios are different in the experimental implementation (the failure to 
successfully match modulated modes brings more noise to the measurement), but in this 
theoretical model we only deal with total unmatched photon number Nn. 

The asymptotic secure key rate versus increase in LO brightness for different channel 
transmittance is given in the left panel of Fig. 5.4. The key rate grows with the larger 
LO photon number, the maximal key rated is obtained with the maximum LO brightness 
of 106 photons reached in the experiment. In practice it is impossible to indefinitely rise 
LO brightness due to detectors limitations, in the right panel of Fig. 5.4 the theoretical 
prediction of the key rate vs mean photon number in unmatched modes is given for 
different fixed LO mean photon numbers for a mid-range 3 dB channel is plotted, showing 
how the key rate is destroyed by the noise the unmatched modes create. 

Unmatched mode mean photon number,|£| 2 

50000 100000 150000 190000 

LO mean photon number, | a | 2 Number of unmatched modes, N 

Figure 5.4: Left: the key rate for multimode coherent-state C V Q K D in the presence of 
mode mismatch versus the LO brightness at different values of the channel transmittance 
T, obtained from the experimentally measured noise (points with error bars) and from the 
calculated quadrature variance (5.1), N/M = 1 (lines). Right: the key rate for multimode 
coherent-state C V Q K D in the presence of mode mismatch (theoretically evaluated using 
(5.1) for the given parameters) versus the unmatched mode brightness, \(\ 2, when only the 
matched mode is modulated, or, equivalently, versus the number of unmatched modes, 
N, when all the modes are modulated, and the LO brightness is varied, T = 0.5. In both 
plots, the modulation variance is optimized, /3 = 0.96 and e2 = 1 as confirmed in the 
experiment. 
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Summary. Presence of bright unmatched modes can undermine the security of coherent-
state C V Q K D with multimode states by leading to the excess noise in homodyne mea­
surement results, which has to be assumed untrusted. The proof-of principle experiment 
demonstrated that this noise can be suppressed by increase of the power of the local os­
cillator. Further we used experimental parameters to model a prepare and measure C V 
Q K D protocol using multimode coherent states showing the possibility to perform C V 
Q K D with bright states using optimal modulation and proper mode matching. 
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Abstract: Two-mode squeezed states are scalable and robust entanglement resources for 
continuous-variable and hybrid quantum information protocols at a distance. We consider 
the effect of a linear cross talk in the multimode distribution of two-mode squeezed states 
propagating through parallel similar channels. First, to reduce degradation of the distributed 
Gaussian entanglement, we show that the initial two-mode squeezing entering the channel should 
be optimized already in the presence of a small cross talk. Second, we suggest simultaneous 
optimization of relative phase between the modes and their linear coupling on a receiver side 
prior to the use of entanglement, which can fully compensate the cross talk once the channel 
transmittance is the same for all the modes. For the realistic channels with similar transmittance 
values for either of the modes, the cross talk can be still largely compensated. This method relying 
on the mode interference overcomes an alternative method of entanglement localization in one 
pair of modes using measurement on another pair and feed-forward control. Our theoretical results 
pave the way to more efficient use of multimode continuous-variable photonic entanglement in 
scalable quantum networks with cross talk. 

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Photonic quantum entanglement [1] is not only a puzzling physical phenomenon, but as 
well a resource for quantum information processing and quantum communication tasks, in 
particular for quantum key distribution (QKD) [2, 3], quantum metrology [4] or quantum 
computing [5]. Continuous-variable (CV) entanglement, using generally multiphoton states of 
light, has experimentally enabled quantum communication and information processing with large 
information capacity [6-14]. It can be quantified using logarithmic negativity (LN) [15], being a 
measure of negativity of a state's partial transpose [16,17]. Advantageously, C V entanglement 
can be deterministically generated reaching two-mode squeezing bellow -WdB (corresponds to 
logarithmic negativity up to LN = 4.3) [18]. In CV quantum communication, one of the possible 
ways to simultaneously transfer many entangled states during the same period of time is to use 
frequency or spatial multiplexing of quantum states residing in different modes [19-22]. Such an 
approach was in particular used to improve quantum communication with multiplexed QKD [23] 
or with multiplexed quantum teleportation using frequency pulse modes [24]. The techniques 
for preparation and detection of multimode quantum states of light were drastically improved in 
the past years, which enabled generation of highly multimode frequency comb states [25,26] 
with the focus on quantum networks [27,28] or cluster states, which are multiplexed in the time 
domain [29-32]. 

In a massive mode multiplexing, it is challenging to avoid cross talk between the modes during 
preparation and distribution [33-35], which can reduce or even destroy logarithmic negativity 
of entangled pairs and undermine applicability of shared entanglement. It was, in particular, 
shown that cross talk effects in the multimode homodyne detection can undermine security 
of mode-non-discriminating C V Q K D [36-38]. However, the cross talk already in the state 
preparation before the distribution may substantially influence also other entanglement-based 
protocols, especially, if they are implemented over attenuating (lossy) channels [26,27]. 
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In the current paper, we theoretically study the role of linear cross talk between the signal 
modes on the state preparation side in distribution of multimode C V entangled states of light 
through an imperfect (lossy and noisy) channel (differently from the recent study of cross talk 
from the co-propagating classical signals in multimode C V QKD [39]). We consider Gaussian 
bipartite two-mode squeezed vacuum states (TMSV) [40], also known as twin beams, and 
show that even a small cross talk substantially degrades Gaussian entanglement contained in 
the mode pairs and makes the states more sensitive to excess noise in quantum channels used 
for entanglement distribution. Importantly, amount of initial two-mode squeezing should be 
optimally adjusted to maximize its transmission in the presence of cross talk. To overcome this 
basic passive method, we suggest active control of phase between the modes and controllable 
linear coupling of the output modes prior to their use on a remote side in order to compensate the 
cross talk, inspired by the method used to remove correlations in quantum memory channels [41] 
and in the squeezed state generation [42]. We show that such an active method, if used optimally, 
can completely eliminate the negative effect of cross talk once the noiseless channel transmittance 
is the same for all the modes. For a realistic case of asymmetrical quantum channels with slightly 
different transmittance for different modes, the cross talk can be still largely compensated for. 
To demonstrate the advantage we compare our method of active cross talk elimination to a 
deterministic entanglement localization scheme [43,44] using homodyne detection on one pair 
of modes and feed-forward control on another pair. We show that the active scheme provides 
better results in a wide range of realistic parameters, particularly, at relatively small cross talk and 
similar channel transmittance values for different modes, while remarkably preserving multimode 
structure of the signal. We also address stability of our method and show that it is robust against 
deviations of the linear coupling used to compensate the cross talk. 

2. Effect of cross talk on multimode continuous-variable entanglement distribu­
tion 

We consider multimode entangled idler and multimode entangled signal beams constituting 
TMSV emitted by a source [40]. Such states are entangled so that quadratures x = a* + a and 
p = i(d^ - a), defined for a given mode, are strongly respectively correlated and anti-correlated 
within a pair of modes belonging to the signal and the idler beams. To verify the entanglement, 
a sender (Alice) is performing homodyne quadrature measurement on each of the modes of a 
respective beam (e.g., signal) and a receiver (Bob) is measuring quadratures of each of many 
modes of another twin beam (e.g, idler) using another homodyne detector, after the modes 
experience cross talk and travel through generally attenuating and noisy quantum channels. In 
the relevant experimental examples [26,27,45] the crosstalk appears already in the source prior 
to the lossy and noisy channel. 

We assume the most common linear cross talk between two neighbouring modes, which can 
be represented by a beamsplitter coupling tc between the modes, as it is schematically shown in 
Fig. 1. Changing tc from 0 to 1 then means a transition from very strong inter-mode coupling 
(hence strong cross talk) to the absence of cross talk. Here we analyse weak nearest-neighbour 
coupling, although in general case multimode coupling is more complex, the model allows us to 
obtain necessary conditions for improvement to further numerically apply these methods to a 
more complex multiple mode cross talk. We parametrize the quantum channel with transmittance 
7} for a given «'-th mode and with the amount of phase-insensitive excess noise e added to the 
quadrature variance, which is assumed (and typically is) the same for all the modes. Excess noise 
in general depends on properties of the channel, but can be also concerned with unaccounted 
detection noise or imperfect state generation. For the fiber channels the observed excess noise is 
typically below 1 % shot noise unit (SNU), being the level of vacuum quadrature fluctuations, at 
the channel output [46,47]. We first analyse the role of cross talk in a basic case of two entangled 
mode pairs (so that the overall number of modes in signal and idler beams is four), then extend 
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Fig. 1. Four-mode C V entanglement distribution scheme in the presence of cross talk 
characterized by the linear coupling tc between the signal modes, performed over lossy 
and noisy channels with transmittance 7; for an i-th mode and with channel excess noise 
e added to all the modes. In order to decouple the entangled modes after the channel, 
we use optical interference, when the remote side optimally applies variable relative 
phase shift (PS) ip between the modes to one of the modes and couples the B\ and B2 

modes on a variable beam-splitter (BS) type of interaction with transmittance tr. We 
maximize entanglement in pairs of modes A \, B\ and A2, B2 over BS transmittance tr 

and phase <p. 

the results to three pairs. 
We describe the Gaussian multimode TMSV states [40] by covariance matrices with elements 

Jij = (rirj)> where ri = Pj) is a s e t of quadratures of a given z'-th mode, taking into account 
their zero mean values, i e [1,2N], here 2N is the overall number of modes (hence, N is the 
number of mode pairs, or, equivalently, the number of modes in each signal and idler beams). 
Then the system of four pairwise perfectly entangled modes #{i,2}> shown in Fig. 1, each 
having quadrature variance V > 1, is described by the 8x8 covariance matrix of the form 

yA,A2B,B2 

( v 1 V v 2 - i : 
V v 2 - i Z V I 

0 0 
0 0 

0 
0 

V I V v 2 ^ : 
v 1 

(1) 
0 V v 2 - i z 

Here I = diag[l, 1] is the unity matrix, Z = diag[l, -1] is a Pauli matrix. Quadrature variance 
V is related to the squeezing parameter r of TMSV, which defines the amount of two-mode 
squeezing applied to the two-mode vacuum in both quadratures Var[(xA, + XB,)/V2] = e~2r and 
Var[(pA, - Ps,)/V2] = e~2r, and V = cosh(2r), so that the larger r, the stronger is quadrature 
correlations between the modes, given by ((XA, +*B,)(.PA, _ PB,)) = sinh r. After a linear cross 
talk tc and lossy and noisy quantum channel, the covariance matrix changes to 

yAiA2BiB2 

V I 0 
4tTr^v2-\ z [r, (v+s-i)+i] 1 •<J7rr2^lv1-\ 

0 VrT7TVv 2-i z v 1 
V ^ r T V v 2 - ! Z 0 yiTTJVv 2 - ! z [r2(v+£-i)+i] 1/ 

(2) 

Here rc = I -tc. We characterize the bipartite Gaussian entanglement using L N [15] of a state 
p is defined as 

LN(p) = -\og2\\pr\\u (3) 

where p r is a partial transpose of p, | |p 111 is the trace norm of the operator p, that is equal to the 
sum of the absolute values of the negative eigenvalues of p r , quantifying the degree to which 
a partially transposed state fails to be positive [16,17]. For a Gaussian states with covariance 
matrix y the eq. (3) becomes the sum of all symplectic eigenvalues of the partially transposed 
that are less than one: LN(y) = £/t max{0, - log 2 v^}. For the TMSV states with the symplectic 
eigenvalues {v+, v_} the larger eigenvalue is v+ > 1 [48]. This way the L N of the i-th pair of 
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modes simplifies to 
LNi = max{0, - log 2 v,-_ }, (4) 

where v_ is the smallest symplectic eigenvalue of the covariance matrix of the partially transposed 
state of either the first or the second pair. We limit our study to the Gaussian TMSV states as the 
typical case of bipartite quadrature-entangled states of light. As the task is to deterministically 
transmit all pairs through the channel, we evaluate logarithmic negativity for each pair of modes 
separately. We also define the initial logarithmic negativity of a TMSV state (1), before the cross 
talk and before sharing the state over a noisy and lossy channel, see Fig. l , as 

LN0(V) = -X- log 2 (2V2 - 1 - 2VVV2 - l ) , (5) 

which is the same for the both pairs of modes. It represents the maximum of Gaussian 
entanglement in the pairs of modes, which can be shared in the perfect case of no cross talk and 
ideal (lossless and noiseless) channels. In the limit of small state variance (V —> 1), it behaves as 
L N o ~ I S i W 2 ^ - !)• In the limit of large V oo, LNQ ~ log 2(2V). 

In the absence of cross talk (tc = 1) the logarithmic negativity monotonously grows with 
increasing TMSV quadrature variance V, but its limit depends on the channel parameters as 

1 -7}(1 -e) 
lim LN = - l o g 2 'K (6) 

V - ^ o o 1 + 1 j-

For noiseless channels (s = 0) the entaglement never vanishes for any 7} > 0. For lossless 
channels (7} = 1) entanglement is lost at e > 2. In the presence of cross talk between the signal 
modes and after a lossy and noisy channel, as shown in Fig. 1, the logarithmic negativity becomes 

LN = -X- log 2 i ( l + 2Ti[e + (V - l)(tcV + tc + 1)] + T2(s + V - l ) 2 + V2-

[l+V + Ti(e + V - l)]^7/ 2(s + V - 1)2 + ( V - l)2-2Tt(V- l)[e - 2tc(V + 1) + V - 1]) 

(7) 

For channels with high loss (7/ <K 1), expanding (7) around 7} = 0 gives 

L N ' m ' e ~i^V* 1)1 ( l 4 [2 - . - (• - >.)(V , 1)] - «f^>) (8) 
For a very small transmittance, 7} —> 0, L N is well described by the first term in (8), LN ~ 
Ti[2-E-(\^tc)(v+\)} ^ m ^ s j j m j t ^ scared entanglement has linear dependence on the 
transmittance 7}. Provided that the cross talk is absent (tc = 1), the entanglement is independent 
on the initial variance V and is destroyed by the excess noise s = 2. The presence of cross 
talk introduces a new term -7/(1 - tc)V that reduces the shared entanglement, which then 
monotonically decreases with the increase of V. 

Beyond the limit of small initial entanglement (V —> 1), sensitivity of Gaussian entanglement 
of TMSV to cross talk can be seen in Fig. 2, left, where logarithmic negativity is plotted versus 
the initial entanglement at different cross talk coupling tc values and compared to the case when 
the cross talk is absent (tc = 1). It is numerically evident from (7) and from the plots in Fig. 2, 
left, that the amount of entanglement shared over the noiseless channel in the presence of cross 
talk becomes sensitive to the initial entanglement even for weak channel attenuation 7} = 0.9 and 
can be broken once the initial entanglement is too strong. This is concerned with the fact that 
due to cross talk the signal from an adjacent mode is coupled to the signal in another mode and 
thus effectively acts an uncorrelated noise appearing in one of the beams if all modes are treated 
independently. Amount of such a noise is larger for the higher state variance, i.e., for a larger 
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Fig. 2. Gaussian logarithmic negativity of the pair of modes A\, B\ after cross talk tc 

and after passing through a quantum channel versus the initial logarithmic negativity 
of the state (left) and versus the channel noise (right). The channel transmittance for 
both the modes is T\ 2 = 0.9. Left: no excess noise (e = 0). Right: fixed state variance 
V = 5. Entanglement is evidently reduced and made more sensitive to the excess noise 
even by a small cross talk, and is destroyed completely by the excess noise reaching 
the threshold (9). The initial entanglement can be optimized as in (11) to reach the 
maximum shared entanglement. 

initial entanglement. This destructive extra noise effect from the crosstalk is also dominant for 
channels with excess noise. Moreover, the presence of cross talk degrades robustness of the shared 
entanglement to the channel noise, as can be seen from Fig. 2, right. The shared entanglement is 
then destroyed by the level of noise, which is independent of the channel transmittance 7/ (hence 
being valid for any 7} > 0), and is given by 

emax = l+ tc-(l-tc)V. (9) 

Equivalently, the bound on the shared entanglement (variance V for which entanglement turns to 
0) is the same for any Tt > 0, and it reads 

1 + tr - e 
Vmax = c_ (10) 

1 tc 

Importantly, the maximum tolerable initial variance given by Vmax (or, equivalently, maximum 
tolerable initial entanglement) also does not depend on the channel transmittance and, for a 
purely attenuating channel, depends only on the cross talk coupling tc. The necessary condition 
V < Vmax therefore simplifies optimization if the cross talk is present only in the source. Note 
that if the channel is present also before the crosstalk, optimization becomes more complex and 
involves the channel transmittance values, however, the limitation V < Vmax remains. 

The above given results were obtained in the assumption that the cross talk occurs between two 
modes. In the case, when each of the multiple TMSV modes interacts with two neighbouring 
modes, i.e., the cross talk dominantly occurs between three modes, the equations (7, 10) hold up 
to the substitution tc t\, which leads to stronger sensitivity of the shared entanglement to the 
linear cross talk between the signal modes. In this case, Vmax is even more limited and therefore 
less entanglement can be transmitted. 

The shared entanglement, in the presence of cross talk, can be maximized by optimizing 
the initial entangled resource. The optimal state variance V, which maximizes the shared 
entanglement, reads 

= (1 - f c ) ( l - 7f)(l - Tj + eTj) + (Tj + 1)V(1 - tc)tcTi[4tc - s(2 - 27} + e7})] 
( l - f c ) [ l + 7 i ( 4 f c + 7 i - 2 ) ] ' ' 
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By optimizing the initial TMSV variance as in (11) we both reduce the negative influence of the 
cross talk, and rise tolerance to the excess noise. The maximal tolerable level of excess noise 
then becomes emax = 2tc SNU. 

For a small cross talk tc —» 1 the optimal variance can be approximated as 

( l - 7 f ) ( l - r f + e7f) V(2-e)7f(2 + eTf) 
Vop,x o^W + ( i + 7 i w r ^ ' ( 1 

If we neglect the excess noise, the expression (12) simplifies to 

Putting Tt = 1 in (13) allows to easily demonstrate the existence of the upper bound on the 
optimal state variance Vopt(T = 1) = y j = - It illustrates the fact that for any cross talk, even 
without noise and attenuation, the maximal possible shared entanglement is rather limited. For a 
strongly attenuating channel (7} —» 0) together with excess noise e, the optimal variance Vopt is 
approximately 

-JlTitr (2tc - e) 
VoP,*l+y . - (4f c -g)T, - (14) 

v i - tc 

which means that the optimal initial quadrature variance of TMSV is rather small (close to one) 
when channel is strongly attenuating even if the cross talk is small (tc —> 1). Therefore, amount 
of entanglement, which can be shared over lossy channels in the presence of even small cross 
talk, is then strongly limited. Note, that (14) explicitly shows the condition on excess noise s for 
the optimized V being s < 2tc SNU. 

For a channel with strong attenuation (7} —> 0), the optimized entanglement can be then 
approximated as 

T w n . , 27} [t^ - f - 2 ^ ( 1 - tc)(tc - f)77+ [3f c (l - tc) + f (1 - f )]7j] 
LN(Vopt) * ^ (15) 

or, in the absence of excess noise, 

2i c 7i ( l - 2 V ( l - f c ) 7 / + 3(1 - ic)!1,) 

log(2) 
LN(Vopt) * : T Z Z 7 ^ '-. (16) 

In the limit of a very small cross talk (tc > 0.98) for relatively strong excess noise (s > 0.2 
SNU) it is possible to find better approximation expanding optimized entanglement LN(Vopl) 
into series for a very low cross talk (tc ~ 1) in the the limit of strongly attenuating channel 
(7/ —> 0), then the optimized entanglement can be better analytically approximated as 

(l-Tt+eTA 27-/7(2 - e)7} (2 + e7}) , 

Figs. 2 - 3 illustrate that although optimization of the state variance during the state preparation 
helps to somewhat mitigate the negative effects of cross talk (allowing to reach maximal 
logarithmic negativity for given cross talk and excess noise that corresponds to the maximums in 
Fig. 2), nevertheless such optimization fails to fully compensate for the cross cross talk especially 
in the presence of a stronger excess noise. Comparison of the left and the right panel in the Fig. 
3 and the eqs. (15-17) show that in the strongly attenuating channel while for a weak cross talk 
logarithmic negativity decreases as LN VI - tc (eq. (15) and dashed lines), very soon it gets 
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Fig. 3. Optimized logarithmic negativity in one pair of modes versus cross-talk coupling 
tc after passing through the attenuating channel of transmittance 7} =0.1 for different 
levels of excess noise. The initial variance of the state is optimized. Solid lines 
correspond to the exact results, dashed lines - to the approximation (15), dotted lines -
to the approximation (17). Entanglement is reduced by cross-talk quite strongly even 
when the state is optimized before sharing. 

suppressed more by higher orders of tc (eq. (15-17) and dotted lines). Thus, even though initial 
entanglement can be optimized to achieve the maximum shared entanglement in the presence of 
cross talk, the shared entanglement will be still largely reduced by the cross talk, especially if 
combined with the channel loss and/or noise. 

We therefore consider the local active manipulations on either sender or receiver side in order 
to improve and possibly fully restore the shared entanglement by compensating the cross talk. If 
the mode coupling happens only in the source during the state preparation, it can be compensated 
by manipulating either the modes A\ and Aj, or B\ and B2 on the sender side or the modes 
B\ and B2 on the remote side after the states are shared through an imperfect channel. If an 
additional mode coupling also happens in the channel, manipulations on the receiver side are 
needed in addition to the manipulations at the sender side in order to simultaneously compensate 
both cross talk in the state preparation and in the channel. Generally both, the cross talk and the 
losses, can occur on both sender and receiver side and also in the source itself during the state 
preparation and distribution. In our study we assume that the shared part of the states (hence, 
modes B\ and B2) is the subject to cross talk. We then consider the manipulations on the receiver 
side, i.e., after the imperfect channel, in order to compensate the cross talk. The case of an ideal 
cross talk compensation on the sender side would be equivalent to the absence of cross talk, as 
can be seen in the next section. 

3. Cross talk compensation by optical interference 

We consider the feasible state operations prior to using the entangled states in order to compensate 
the cross talk, i.e., to reduce or completely eliminate its negative effect on the entanglement 
distribution. Since the cross talk is typically caused by an energetically passive photon exchange 
between the signal modes, we consider the beam-splitter type interaction based on a variable 
coupling tr between the signal modes. The compensating interaction can in principle be 
performed on either sender or receiver side. If no signal loss occurs on the sender side, it is 
sufficient to implement the beam-splitter with tr = tc coupling the modes A\ and A2 at the sender. 
To take into account the effects caused by the lossy channels we further concentrate on the case 
where the compensation is implemented on the modes B\ and B2 by the remote party of the 
entanglement distribution scheme. In this case the beam splitter needs to be preceded by an 
optimal phase shift (in the case of linear cross talk between two modes it is given by n) on one of 
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the modes (e.g., mode 2), as shown in Fig. 1. Then for a pair A\,B\ the covariance matrix reads 

v i (VT^vv + yfr^h) Vv2 -1 z 

{^hjcTr + ^fWcTr) V V 2 - 1 Z [1 + 7 i f r ( V - 1) +T2rr(V - 1)] I j 
(18) 

where r c = 1 - tc, rr = l-tr, and similarly for A2, B2 up to the replacement T\ «-> T2. It follows 
from the expression (18), that for the perfectly balanced noiseless channels T\ = Ti = T putting tr = 
tc turns the correlations into {^T2rcrr + ̂ Titctr) W 2 - 1 = ( v T ( l - tc) + vTf c ) V V 2 - 1 = 

v T v v 2 " 1 and the variances into 1 + Ttr(V - 1) + 7/(1 - f r)(V 
covariance matrix turns into the one without any cross talk: 

1) = 1 + 7 Y V - 1) so that the 

VrVv 2 -1 z \ 
r A , B , = 

V r V v 2 - 1 z [i + r ( v - i ) ] i ; 

(19) 

similarly for A2, B2, which fully restores entanglement and other Gaussian characteristics, 
affected by the cross talk. This can be generalized to a pair of arbitrary pure two-mode states 
in modes A\, A2 and B\,B2, considered as the product of ff d2ad2a P(a,a)\a)A\\a)B\ and 
ff d2/3d2B P(P,B)\0)A2\B)B2in the coherent-state overcomplete basis. This overcomplete basis 
decomposing unity allows to straightforwardly calculate the result for any pure two-mode state in 
equally lossy channels. Indeed, if two coherent basis states \a)sx and \B)Bl experience a linear 
cross talk tc and pass through the attenuating channels T\ and T2 and through the decoupling 
scheme with a phase shift and coupling tc as shown in Fig. 1, disregarding normalization and 
general phase they are transformed as 

and 

Choosing t, -

a')B! = I(ylTitctr + ̂ T2rcrr^ a + [^T2tcrr - ^T\rctr^ B^j 

T\r~r~ + yJT2tctr^ B + {^T2rctr - y/j\t~r~^ a^j 

T *2*~— the states change to 
T2tc+Tirc o 

W)BX = 

«2 

W")B2 

(?2-y/T2tc+TircB + 
y/T2tc+Tirc 

(20) 

(21) 

(22) 

(23) 
Bi 

We have therefore eliminated the contribution of the second mode B2 to the first one B\, but not 
vice versa. If, on the other hand, we chose tr = „ J2!z—, the cross talk will be eliminated from 
the second mode, but not from the first one. It is easy to see, that if T\ = T2 = T, (22) and (23) 
turn into la")^, = |y/fâ j and \B")Bl = ^JfB^j as it should be for two independent modes 

attenuated by a channel. Therefore for the perfectly balanced channels (T\ = T2) the cross talk is 
fully eliminated for a pair of arbitrary pure two-mode state. 

When the channel transmittance values 7\, T2 for modes B\, B2 are different, the cross talk 
cannot be fully compensated in both modes and entanglement cannot be fully restored in both 
transmitting channels. While transmittance values for different modes are typically similar in 
fiber channels [49], they can vary, e.g. for frequency modes in atmospheric channels [50]. We 
therefore consider the efficiency of the cross talk compensation in the unbalanced channels. In 
order to maximally reconstruct entanglement, one has to optimize the coupling tr, as shown 
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Fig. 4. Logarithmic negativity versus reverse coupling tr aimed at compensating 
the cross talk after the unbalanced channels with the imbalance T\ = -lOdB and 
T2 = -!0.5dB of the first pair of modes {A\B\, left), the second pair (A2B2, right). 
The uppermost (blue) horizontal line shows the logarithmic negativity of the respective 
pair without the cross talk, the upper (orange) and the lower (green) curves show the 
result of applying compensating beam-splitter of transmittance tr on Bobs's side at the 
same cross talk parameter tc. Initial state variance is V = 5, no excess noise (e = 0). 
The dotted horizontal lines (orange and green) correspond to the logarithmic negativity 
without the cross talk compensation but with the initial entanglement optimization. 

in Fig. 4. It is evident from the plots, that entanglement can still be largely compensated for 
weaker crosstalk (tc —» 1) between asymmetrical lossy channels and that the method of optical 
interference is stable to the setting tr. There is a difference between the optimal tr for the first 
pair and for the second one (it corresponds to the maximums of the curves on the left and right 
plots in Fig. 4), although, as it noticeable from the plots, their maximums are very close. In the 
second pair A2B2 we even can overcome the entanglement before the cross talk because we get 
stronger signal in the pair A2B2 that is taken from the pair A\B\ due to the cross talk. 

In a general case, tr should be optimized numerically to result in the maximally restored 
entanglement. However, the optimal setting can be derived analytically in the relevant limits of 
small and large initial entanglement (or, equivalently, small and high large initial state variance V). 
For a purely lossy channel (s = 0), the optimal transmittance, that maximizes the entanglement 
in the first pair of modes A\B\, reads 

tr = ^ V « 1 (24) 
Tltc+T2(l-tc)' 

and 
tr = r, V - > 00 (25) 

T2tc+Tl(l-tc)' 
And vice versa (7) «-» T2) for another pair. It is important to note that the optimal tr for any value 
of the state variance V always lies between the bounds given by (24-25) and, for realistically 
close T\ and T2, this interval is quite narrow. For tr defined by (25) the logarithmic negativity is 
an increasing function of V and for large initial state variance it approaches the limit: 

lim LN,r = - log 2 

V —>00 

tcT2+Tx{\-tc-T2) 
tcT2+Tl(\-tc+T2) 

(26) 

Note, that the above given equations (24-26) are applicable for maximization of the enanglement 
for the pair A\, B\. If, on the other hand, the goal is to maximize the logarithmic negativity in 
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the second pair A2, B2 , the same equations (24-26) can be applied with replacement T\ <^>T2. 
This also implies, that in the case of unbalanced channels T\ j= T2, the entanglement cannot be 
optimally restored in both modes. While applying the optical interference method to compensate 
the cross talk in the channels with different transmittance for each mode (T\ ± T2), one has 
to chose one mode in which to maximize the entanglement at the expense of the rest of the 
modes. The equations (24-26) refer to the first pair of modes A\B\. However, since in practical 
situations strong unbalancing between transmittance values for different modes is unlikely, i.e. 
T\ is typically close to T2, optimal settings for tr are also close and choosing tr in between the 
optimal settings for either of the pairs will give nearly optimal results in terms of entanglement 
for both the pairs. 

Advantage of the decoupling by interference is that cross talk from all entangled pairs can be 
nearly perfectly removed. Moreover, technical imperfections, as the modes match imperfectly 
at the decoupling BS, can be incorporated to the full optimization. Despite such a principal 
advantage, one may be interested in maximizing entanglement in only one pair of modes. In 
this case entanglement localization [43,44] can be applied by performing only an optimized 
measurement on one pair and feed-forward control on another pair of modes based on the 
measurement outcomes, which we consider in the next Section and compare it to the above 
suggested method of reversed coupling. 

4. Entanglement localization by measurement and feed-forward control 

In order to compensate the negative effect of cross talk in only one entangled pair in the scheme 
given in Fig. 1, we now consider a possibility to apply optimized Gaussian measurement of one 
pair of modes and feed-forward control of the other pair on the receiving sides and thus to increase 
the shared entanglement at the cost of losing one of the mode pairs. This method relies on the 
highly efficient and low-noise homodyne measurement and the high fidelity feed-forward control 
and coherent displacement [9,51]. Similarly as in the previous Section, we theoretically consider 
a simple two-mode case with the feed-forward control applied by Alice and Bob on the first pair 
of modes A\,B\ after the measurement on the second pair of modes A 2 , B2, as shown in Fig. 5. 
Instead of a direct interference of multimode signals on a coupler with variable tr, we interfere the 
signal modes A 2 , B2 with the local oscillator beams in a generalized Gaussian measurement [52] 
on both Alice and Bob sides of the scheme, as shown in Fig. 5. Photocurrents from this detection 
control the modulation units in the other pair of modes A\, B\. We therefore assume that both 
the sender and the receiver perform a general Gaussian measurement [52] on the second pair of 
modes ( A 2 , B2), i.e., a generalized heterodyne (also known as double-homodyne) measurement, 
using unbalanced beam-splitters with transmittance values ?A and ts in Alice's and Bob's sides 
respectively. The beam-splitters divide each of the measured modes A 2 , B2 (into auxiliary 
detection modes denoted as C A , CB, DA,DB) and the outputs are then measured in conjugate 
quadratures using two homodyne detectors (with no loss of generality we assume x-quadrature 
measured on CA, C B and p-quadrature measured on DA,DB). It is advantageous to optimize the 
measurement shown in Fig. 5, we are therefore searching for optimal ?A and ts that maximize 
the logarithmic negativity of the conditional state in the first pair of modes A\, B\. We evaluate 
conditional matrix of the state in modes A\,B\ after a homodyne measurement of a quadrature 
r (being either x or p) in mode K (being one of CA, CB,DA, Db). The covariance matrix of 

7A, CAIK 

the modes A\,B\ and K before the measurement is yA,B,K = CA,B, TBI CB\K 

( CA^K CB^K 7K 
measurement resulting in an outcome TK transforms the covariance matrix as [53] 

yA\B\ \ rji =7AIBI -0-AiBi,K ( ^ ' T / C ' R ) M P °~ALBL,K> (27) 
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Fig. 5. Measurement and feed-forward control scheme aimed at compensating cross 
talk and localizing maximum of entanglement in the pair of modes A i , B i . The two 
parties perform generalized Gaussian measurements by splitting modes ^2,62 on 
variable beam-splitters t^JB and measuringx-quadratures on the modes CB and 
p-quadratures on the auxiliary detection modes CB,D^,DB- The measurement 
outcomes are then used to modulate A\,B\. The rest of the scheme (source, cross talk 
and channel) is as in Fig. 1. The scheme allows increasing entanglement in modes 
A\, B\ at the cost of tracing out modes A2, £2-

where <TA,B,,K = 
CA,K 

is the correlation matrix between modes A\,B\ and K, matrix 
\^ CBiK J 

R is a diagonal matrix, being either | (I + Z) for an x-quadrature measurement or 5 (I - Z) 
for a measurement of p-quadrature, and MP stands for Moore-Penrose pseudo-inverse of a 
matrix, applicable to singular matrices. The state in equation (27) can be obtained either by 
an optimal feed-forward control of the state in modes A\,B\ or by post-selecting the states in 
modes A\,B\ based on a condition on the measurement outcomes in modes Ai, B2. While the 
first strategy is deterministic, but requires optimization of feed-forward, the second one does 
not rely on optimization, but is probabilistic. It only asymptotically approaches the result of 
feed-forward control, and while the probability of success greatly reduces while approaching 
this result due to reduction of the post-selection interval. On the other hand, it does not require 
gain optimization and optical modulation as the deterministic method does. Repeating the 
conditioning (27) generally for each of four measurements, we arrive at the general conditional 

matrix y A , B , XCA'XCB ,PDA,PDB 

which reads 
7A, 

CA,B, 7fi, 
with sub-matrices 

7A, 

T2rB(V-l)[V-tA(tcV+t+[V-l])] + V[tA(V-l)-V] 
tcT2rArB(V2-l) + [tA(V-l)-V][T2rB(V-l) + l] 

0 T2tB(V-l)[tA(V-l) + l-tcrA(V + l)] + V(tA-tAV-
tA{V-\){T2tB[\+tc-rcV]-\)-T2tB{V-l)-l 

YB, 

l + Ti(V-\) 
rcTirA{v2-l) 

[ tcT2rB (V2-t) 1 
tA+r

A IV - \+T2rB(V-t) \ 

l+7i(V-l ) -
rA+tA\V-

,T2,B(v2-\) 1 

i+r2tB(v-i)+i j 

(28) 

(29) 

and 

CA.B, 

JV2-ll(T2(l-2tA)rB+tA)(V-l)-V] 
tcT2rArB(V2-i) + {tA(V-i)-V}{i+T2rB(V-l)} 

0 ^J^T^V2-l[l+(tA(l-2T2tB)+T2tB)(V-l)} 
tA(V-l)[T2tB(l+tc+rcV)-l]-T2tB(V-l)-l I 

(30) 

where r& = 1 - ?A, ?B = 1 - * B - From this two-mode matrix we can evaluate Gaussian 
entanglement of the conditioned state in terms of logarithmic negativity, which we do numerically. 
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First, we observe that the best possible result for any given channel transmittance values and any 
cross talk level is achieved by using homodyne measurement on the receiver side. It corresponds 
to ts = 1 or ts = 0, i.e. measuring either only Cg (homodyne measurement of x-quadrature) or 
only DB (homodyne measurement of p-quadrature) mode in Fig. 5. We further assume with no 
loss of generality that ts = 1, which is equivalent to Bob measuring x-quadrature of the mode 
A 2 with a homodyne detector. On the other hand, an optimal tA on the receiver side generally 
depends on the TMSV state variance V, channel parameters (transmittance values and excess 
noise) and the cross talk coupling tc. In the general case ?A can be found only numerically, but in 
the limit of large V and noiseless channels, we can find the tA that maximizes the logarithmic 
negativity in yA,B, \XCA,XBI,PDA analytically. Then for V —> oo and s = 0 in the limit of the weak 
cross talk tc < 1 the optimal tA on the sender side is independent of the TMSV variance and can 
be approximated as 

tA„pt = max |0,1 
( i + 7 i ) ( i - r 2 ) 

2 + 2 7 ' 1 ( i - 7 2 ) - 4 7 2 

+ 0(1 -tc) (31) 

In the case, when additionally losses are low (T\ —> 1,72 —> 1), the optimal setting at the 
sender side is tA = 0. This means that for the highly transmitting channels or low cross talk 
the best strategy for the feed-forward method of cross talk compensation is to use homodyne 
measurement on Alice's side and measure complementary quadrature to the one that the receiver 
(Bob) measures. This phenomena can be explained using continuous-variable quantum erasing, 
where Alice by measurement prepares a squeezed state in front of the cross talk which, using 
homodyne measurement of antisqueezed variable and feed-forward control, can be used to 
eliminate beam-splitter type of cross talk [54,55]. The covariance matrix for a noiseless channel 
then turns to 

7A\B\\pA XB2 

V 
rcT2(V2-l) 
1+t2(v-1) 0 

V f c 7 H v 2 - i ) 

0 

V f c 7 - i ( V 2 - l ) 

0 - V f c 7 H V 2 - l ) 

1 + 7i (V - 1) 0 

- V f c 7 i ( V 2 - 1) 0 

0 

V 

0 

\ 

v + r i ( v - i ) ( V f c + f c - i ) 
v / 

(32) 
In a simple case of a perfect channel (7} = 1 and s = 0), the logarithmic negativity of the state in 
modes A\, B\ (conditioned on homodyne measurement outcomes on both sides) can be expressed 
analytically as 

LNhom = - log 2 yll+tc{V2-l)-Jtc ( V 2 - l ) (33) 

It is always larger than the logarithmic negativity in the same pair of modes after the 
crosstalk and in the same perfect channels, but without conditioning, which reads LN = 

l 
•log 2 

V 1 . The latter equation reaches maximum when V0] while 

(33) is a constantly growing function of V. It illustrates the fact that the conditional measurement 
overcomes the limit on the initial entanglement given by (10) and generally any need to optimize 
the initial state. Therefore it allows to use as high initial entanglement as it is experimentally 
achievable. When the state is conditioned on the optimal homodyne measurement in a highly 
transmitting channel, the logarithmic negativity of the state in modes A\,B\ is not bounded and 
in the limit of arbitrarily strong TMSV variance V —> oo , assuming a noiseless channel (s = 0) 
tends to 

lim LNhc 

1 
log 2 

(l-7-Q[7- 1(l-f c-7- 2)+f c7- 2] 
fc(l+7i)272 

(34) 
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(1 —T ) (I—T ) 

which may eventually for large initial variance turn to zero if the condition tc < \\T^\^Tl)+^Tl

 i s 

met. However, for realistic values of relatively weak cross talk (tc > 0.5), it happens only for 
very low T2. i.e. in channels with high loss. For such channels the homodyne measurement 
on the sender side is not the optimal one. As the losses in the channel increase, the optimal 
measurement gets closer to the balanced heterodyne, i.e., to tA = 1 /2. Moreover, in the most 
practical cases, i.e. when T\ is close to T2, and the cross talk is small, finding the optimal 
?A gives little improvement. In this case it is enough for sender to use homodyning for the 
highly transmitting (short) channels and heterodyning for the highly attenuating (long) ones, 
while receiver shall use homodyning in both cases. This result contrasts with the previous 
results [56] for recovering quantum information by conditional measurement of the modes leaked 
into environment, where heterodyne measurement on the receiver side is optimal. 

In the case, when the channels are strongly attenuating (T\^ —» 0), the optimal ?A given by 
(31) turns to 1 /2, i.e., the balanced heterodyne detection on the sender side becomes the optimal 
measurement. In this case, when we also chose the optimal * B = 1, the conditional covariance 
matrix of the state in modes A\, B\ becomes (assuming no excess noise, s = 0) 

7AlB1 \XA.,PDA,XB, 

U V U l - T 2 r c ( V - l ) 

V ' c T i ( v - i ) o ! + r ' ( V g : g ? : g ) ( v - ! ) o 

V 0 " i - S v - " ? 0 l + f c 7 i ( V - l ) 
(35) 

The logarithmic negativity is then as well not bounded and the optimization of the initial 
entanglement (11) is not needed. In the limit of very strong initial entanglement V —» oo 
(assuming no excess noise, e = 0) it tends to 

lim LNhet = - ^ l o g 2 

{l-tcT1)[l-tc(T1-T2)-T2] 
(i + f c r o 2 - ( i - f c ) r 2 ( i - f c r o 

(36) 

which is always positive, contrary to the logarithmic negativity before conditioning, which 
vanishes at (10). Eq. (34) and (36) show that by optimized conditional measurement one can 
beat the limit on the maximal initial entanglement given by (10) and recover the entanglement 
degraded or destroyed by the cross talk, although such strong initial squeezing and/or cross talk 
are not very likely in practical applications. 

In the general case of intermediate channel attenuation and level of cross talk an optimized 
heterodyne measurement on the sender side should be chosen by evaluating the respective 
logarithmic negativities, but entanglement in the remaining pair of modes after the measurement 
and feed-forward control is always no less, than before these operations. Therefore, optimized 
measurement and feed-forward can always improve (and fully restore in the case of almost 
perfectly balanced channels) entanglement in a single pair of modes at the cost of loosing 
another pair. We illustrate the efficiency and stability of the method with respect to the sender 
measurement settings in Fig. 6 and show that it can largely restore the entanglement in the 
remaining pair of modes and is stable with respect to the measurement setting tA- As it is evident 
from Fig. 6, any kind of Gaussian measurement on the pair A2, B2, even not an optimized one, 
largely restores entanglement in the pair A\, B\. The best result is achieved with the homodyne 
measurement of the x-quadrature on the sender side (tA = 1) in the low loss channels and with the 
heterodyne measurement (tA = 1 /2) in the strong loss channels, which agrees with approximate 
analytical results given above in (31). Remarkably, the optimized measurement allows to recover 
entanglement that was completely destroyed by the cross talk. 

We also compare the method of optimized measurement and feed-forward to the method of 
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Fig. 6. Logarithmic negativity in the A\, B\ pair of modes after applying measurement 
of the pair A2, B2 and feed-forward control, versus detection setting on the sender 
side. Left: low unbalanced channel loss (T\ = -OAdB, T2 = -0.5dB), right: strong 
unbalanced channel loss (T\ = -lOdB, T2 = -\0.5dB). On both plots no excess noise 
is present (e = 0). The thin dashed lines represent the logarithmic negativity in the 
A\, B\ pair without the optimized measurement and feed-forward control, but with the 
initial state variance being optimized as in (11). 

optical interference, suggested in the previous section, as shown in Fig. 7 for low and high 
channel losses. 

Fig. 7. Logarithmic negativity in the pair A\, B\ after applying optical interference 
method or measurement of the pair A2, B2 and feed-forward control, as indicated in 
the plots. Cross talk is tc = 0.9 , the optimal decoupling beam-splitter transmittance 
tr is given by eq. (25), no excess noise (e = 0). Left: low loss unbalanced channels 
(Ti = -OAdB, T2 = -0.5dB), right: high loss unbalanced channels (T\ = -9dB, 
T2 = — lOdB). The thin horizontal lines represent the asymptotes for LNQ —» oo given 
by (26) for the decoupling method, (34) and (36) for the homodyne and heterodyne 
measurement method, and (6) for the no cross talk case. 

It is evident from the plots, that the method of optimized optical interference is always more 
efficient in restoring the Gaussian entanglement and, besides, it preserves the multimode structure. 
Our further analysis shows, that this superiority holds always, unless the channels are strongly 
unbalanced (with either of the channels being strongly attenuating while another one being almost 
lossless, Ti —» 1 and Tj —> 0), which is, however, very unlikely in practical situations. While 
being less efficient, the measurement strategy can be sometimes nearly optimal and become very 
close to the optimized measurement strategy, however, the measurement inevitably destroys one 
pair modes. Both of the methods increase the amount of entanglement, that can be transferred, 
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and remove the necessity to optimize the initial entanglement. The lines corresponding to 
interference method (purple) and to the conditional measurement (green and yellow) continue 
to the right approaching the asymptotes given by (26), (34), (36), and the lines corresponding 
to the ideal case without cross talk (blue) approach the asymptote (6). We also compare the 
methods in Fig. 8 for the same initial entanglement in the large region of transmittance values 
and in the presence of unbalancing. In Fig.8 we plot the Gaussian entanglement for the both pairs 

LN 

Fig. 8. Comparison of the methods for the cross talk compensation: optical interference 
using a decoupling beam-splitter, and entanglement concentration by optimized condi­
tional measurement and feed-forward control. Plot shows the logarithmic negativity in 
a pair of modes after each respective method is applied. Initial entanglement is fixed 
LNQ = 4.0, cross talk is tc = 0.8, and transmittances ratio is T1/T2 = 1.2, parameters 
tr and are optimized. The ideal case without any cross talk is not shown, but would 
be indistinguishable from optimized interference for the given parameters. 

of modes in case of the optimized optical interference and show that method allows to restore 
the entanglement in both the modes contrary to the method of conditional measurement. For a 
weaker unbalancing the entanglement of both pairs of modes after the optimized interference 
would overlap. Only one (blue) line in Fig.8 corresponds to the conditional measurement method, 
it demonstrates that although this method is quite effective for restoring entanglement in one 
pair, it also destroys the second pair of modes. We have not presented the case with no cross talk 
on the plot because for the given set of parameters it will be almost fully overlapping with the 
results for the optimized optical interference method. It illustrates the fact that even for relatively 
strong cross talk, the optimized interference approach allows to recover the entanglement almost 
completely. Both active methods give substantial gain compared to initial state before recovery. 
For any cross talk tc, state variance V, and channel transmittance T\, T2 both the proposed 
methods outperform the simple optimization of the initial entanglement shared (or equivalently 
the variance V) as proposed in the Sec. 2. 

Conditional measurement with feed-forward control gives guaranteed entanglement gain no 
matter how strong is the cross talk and does not rely on our knowledge of cross talk coupling tc, 
while discarding one of the modes. However, this benefit is heavily paid for by a low probability 
of success of this asymptotic method. On the other hand, the optical interference scheme allows 
to preserve all the modes. It gives better results than the entanglement concentration with the 
conditional measurement scheme for most realistic values of tc, especially in channels with 
higher loss. In the case of the state having only several modes, both of the methods perform 
comparably. For multimode states with higher number of modes the advantage of the optimal 
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interference method will be more pronounced as it preserves all the modes, while the conditional 
measurement method is based on discarding most of them. 

5. Conclusion 

Entanglement distribution is a key ingredient of modern quantum technology. We considered the 
effect of cross talk on entanglement distribution using Gaussian multimode twin-beam states and 
shown that initial entanglement inserted to a multimode link has to be optimized to reach its 
maximal transmission already if cross talk is weakly present. We then suggest the method of cross 
talk compensation based on optimized optical interference using adjustable phase control and 
linear coupling of modes, and show that the method can completely eliminate the negative effect 
of cross talk once the channel transmittance is balanced, i.e., is the same for all the modes. The 
method is still very efficient for small unbalancing between the channel transmittance values for 
different modes and is stable with respect to the linear coupling setting, but requires knowledge of 
the cross talk strength. This methodology can be extended to many multiplexed modes, however, 
in such a case the numerical analysis and optimization are needed for specific real channels, 
as the model of the cross talk will be more complicated and vary in practical situations. We 
therefore leave the analysis of the real cross talk in the source or channel for future experimental 
tests. As an alternative, we suggest the method of cross talk compensation for one of the pairs of 
modes by optimized Gaussian measurement on another pair and feed-forward control, which 
does not rely on knowledge of cross talk strength and can restore entanglement in the remaining 
pair, while reducing the multimode structure, and is also limited in the unbalanced channels. 
The method of optical interference remains more efficient unless the channels are very strongly 
unbalanced, which is however not likely in the practical situations, and preserves the amount of 
entangled modes transmitted through the channel. Our methods can be prospective for realization 
of multimode quantum communication in the presence of cross talk in the sources and channels. 
Note that the described cross talk compensation methods distribute entanglement between the 
modes, but do not increase it beyond the initial entanglement in the source before the cross 
talk, hence not contradicting the impossibility of entanglement distillation by local Gaussian 
unitary operations [53,57]. Our results demonstrate basic principles in a simple case of only 
nearest-mode cross talk. The further investigation for larger number of modes in the presence 
of cross talk will require multi-parameter numerical optimizations and possibly application of 
modern methods of deep machine learning applicable to quantum optics [58] to find efficient 
strategy of cross talk compensation. Such numerical optimizations in application to complex 
multimode cross-talk effects will be the subject of future studies. 
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Abstract: Quantum key distribution with continuous variables already uses advantageous 
high-speed single-mode homodyne detection with low electronic noise at room temperature. 
Together with continuous-variable information encoding to nonclassical states, the distance for 
secure key transmission through lossy channels can approach 300 km in current optical fibers. 
Such protocols tolerate higher channel noise and also limited data processing efficiency compared 
to coherent-state protocols. The secret key rate can be further increased by increasing the system 
clock rates, and, further, by a suitable frequency-mode-multiplexing of optical transmission 
channels. However, the multiplexed modes couple together in the source or any other part of the 
protocol. Therefore, multiplexed communication will experience crosstalk and the gain can be 
minuscule. Advantageously, homodyne detectors allow solving this crosstalk problem by proper 
data processing. It is a potential advantage over protocols with single-photon detectors, which 
do not enable similar data processing techniques. We demonstrate the positive outcome of this 
methodology on the experimentally characterized frequency-multiplexed entangled source of 
femtosecond optical pulses with natural crosstalk between eight entangled pairs of modes. As the 
main result, we predict almost 15-fold higher secret key rate. This experimental test and analysis 
of frequency-multiplexed entanglement source opens the way for the field implementation of 
high-capacity quantum key distribution with continuous variables. 

© 2021 Chinese Laser Press 

1. Introduction 

Quantum key distribution (QKD) [1] is a pioneering application of quantum information theory 
enabled by fundamental particle and wave quantum features of light. Advantageously, in 
experiments at optical wavelengths, Q K D can exploit complementary photon counting and 
homodyne detection methods of quantum optics. Naturally, both methods have advantages 
and disadvantages, fundamental as well as technical. Therefore, the optimal implementation 
of a quantum-secure network will be likely hybrid in the future, combining the advantages 
and suppressing the weaknesses of different protocols respectively to the requirements and 
conditions [2]. Currently, homodyne detection is fast, efficient and extremely low-noise, tolerant 
to background noise in the channel [3]. This hardware already opened space for a high-speed 
secret key generation. For a long time, the homodyne detection stimulated a large set of theoretical 
proposals [4-6] and experimental protocols with coherent states of light [7-12]. With nonclassical 
squeezed and entangled states, the continuous-variable (CV) protocols [13-15] become more 
robust and potentially applicable at distances up to 300 km [16] in optical fibers with attenuation 
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0.2 dB per kilometer, and tolerant to data processing inefficiency [17]. Such protocols can 
be advantageously implemented in both optical fiber links [16] and free-space atmospheric 
channels with realistic turbulence [18]. Moreover, higher security can be offered by relaxing the 
assumption about trusted devices for both coherent-state and entanglement-based protocols, as it 
was demonstrated by implementation of one-sided device-independent protocols [19,20]. 

A rate of secret key can be increased in C V QKD by frequency multiplexing of transmission 
channels [21]. Frequency (wavelength) multiplexing is a well-known technique from classical 
optical communications [22], also with the homodyne detection [23]. It can be similarly 
considered to increase the secret key rate of C V Q K D protocols and has recently been studied 
using Gaussian modulation of frequency comb states [24], as well as using independent lasers 
for each mode for subsequent discrete [21] or Gaussian modulation [25]. In this paper we test 
the entanglement-based C V QKD protocol that uses multiple frequency modes to multiplex the 
signal. However, in practice generated multiple entangled modes can become mutually coupled 
to each other, resulting in cross-correlations as well as excess noise in the modes, that can be 
destructive for C V QKD. Importantly, homodyne detection of field quadratures gives sufficient 
information about states of light in the individual modes in order to compensate for the crosstalk. 
Based on these advantages, a crosstalk elimination based on state or data manipulations has 
been addressed in [26,27] demonstrating that such a limiting factor for multiplexed Q K D can 
be in principle deterministically eliminated by optimized data manipulation, using the whole 
multimode structure (contrary to modes selection e.g. used to improve quantum steering in [28]). 
Differently to protocols with single-photon detectors, it is therefore not required to implement 
an active strategy of optical decoupling which is very challenging for a large number of the 
transmitted modes. 

Nowadays, C V Q K D reaches a new level at which substantial increase of the secret key 
rate of mid-range protocols is a relevant target of the ongoing development and requires, in 
particular, development of crosstalk elimination methods. The previously suggested methods 
either required heterodyne detection with optimal engineering of auxiliary input states and were 
not applied to C V QKD security analysis [26] or considered only cross-talk interaction between 
the neighbouring modes of the otherwise perfect entangled states [27]. In the current paper we 
suggest the multimode crosstalk compensation method based on data manipulation, equivalent to 
linear state manipulations, experimentally test it on the real multiplexed entangled states measured 
with the mode-discriminating homodyne detection suitable for CV QKD, and evaluate the security 
of the resulting CV QKD protocol. Without such a test on the multimode state with real crosstalk 
and errors it is impossible to estimate applicability of the crosstalk compensation for a large 
number of modes. A positive result demonstrating that the secret key rate can be enhanced by 
channel multiplexing with high efficiency, despite crosstalk substantially reducing the achievable 
key rate already in the source, is necessary to open a pathway for further implementations and 
applications of frequency-multiplexed C V QKD. For the test we use simultaneously frequency 
multiplexed source of entanglement with 8 pairs of modes and mode-discriminating homodyne 
detection. For them, the crosstalk is a very natural phenomena pronouncedly reducing the key 
rate to a tiny number of 0.015 bits. We suggest and apply optimized data manipulation, which 
allows decoupling of modes under crosstalk and brings large improvement to the achievable 
secret key rate. The secret key rate can be enhanced by almost a factor of 15. Reducing the 
channel noise in all frequency multiplexed channels by this data manipulation, alternatively, can 
extend the secure distance (channel range at which generation of secret key is still possible) by 
approximately 100 kilometres. Moreover, as the source emits femtosecond pulses, allowing for 
high system clock rates, the performance of the system can be also further increased by time 
multiplexing. Our result solves the major problem of mode crosstalk in the source, however, it 
can be equally applicable to crosstalk in the link and detection (although the mode coupling 
inside an optical fiber is weak, if present at all, hence one can expect the mode interaction in the 



source to be the dominating cause of crosstalk). Therefore, it opens the possibility for high-speed 
and high-capacity entanglement-based CV QKD with femtosecond frequency-multiplexed states. 

2. Results 

We consider the use of entanglement source in multimode C V Q K D test-bed based on the 
frequency multiplexed femtosecond pulses of light, consisting of 16 modes and with mode-
discriminating homodyne detection, as described in Fig. 1. In our proof-of-principle experiment, 
all the 16 modes are generated in a single beam, and to test the applicability of the source for 
QKD purpose, we assume that the lower half of the frequency modes are distributed to Alice, 
and the other is to Bob. 

The experimental setup is shown in Fig. 2. The main laser is a Ti-sapphire pulse laser, having 
a duration of 120 fs centered at AQ ( = 795 nm) with a repetition rate of 76 MHz. The beam 
from the laser splits into two beams, where one is used for generating frequency-multiplexed 
entangled light, and the other serves as a local oscillator (LO) for mode-discriminating homodyne 
detection. To generate the entangled light, we employ a synchronously pumped optical parametric 
oscillator (SPOPO) including a 2-mm-thick B 1 B 3 O 6 (BiBO) crystal, which operates below the 
threshold [29,30]. The pump laser for the SPOPO (centered at AQ/2) is prepared by second-
harmonic generation of the main laser in a 0.2-mm-thick BiBO crystal. As a result, an entangled 
state of femtosecond pulses of light in multiple frequency modes (centered at AQ) is generated 

state preparation with linear crosstalk j detection 

processed 
data 

post-processing 

shared secret key 

processed 
data 

Fig. 1. Bright colors show a sketch of a C V QKD test-bed for study of the multimode 
entangled source at the side of sender, Alice, with crosstalk coupling between the 
frequency modes in both of the two beams, leaving the source. The entangled source 
is based on eight pairs of modes, where only four of them are shown for clarity. We 
consider a scenario where half of the modes (below the central frequency) is locally 
measured by Alice and another half (above the central frequency) transmitted to a 
remote trusted party Bob (trusted devices are given in dashed blocks). Both multimode 
beams are detected by homodyne detectors and processed to optimally eliminate the 
crosstalk and improve the secret key rate. The data processing corresponds to a local 
physical multimode symplectic transformation and was optimized to achieve higher key 
rate between the trusted parties. The trusted parties then can use authenticated classical 
channel to perform post-processing by correcting their errors and amplifying the data 
privacy in order to obtain quantum-secure key as the result (this part of the protocol 
was modelled numerically so is illustrated in pale colors). 



in a single beam, and the efficiency of the process is enhanced by the cavity constituting the 
SPOPO. For our purpose, we consider sixteen frequency-band modes of the generated multimode 
light, and assume that the lower half (eight) frequency modes are measured by the trusted sender 
Alice, while the other half frequency modes are measured by the trusted receiver Bob after a 
multimode channel. We stress that even if in practice this separation is not performed in the 
current experiment, spectrally splitting a beam in two halves can be readily done experimentally 
with a simple dispersive element, such as a grating, a dichroic mirror, or a prism. It is possible 
to use a high efficiency grating or prism, or fiber based wavelength division multiplexing [31]. 
These dispersive elements would introduce only small additional losses, leading to the excess 
noise in the generated multimode states. Such noise can be however considered trusted and will 
only have a limited negative effect on the key distribution [32]. 

To measure the generated multimode state, we use homodyne detection which can discriminate 
different frequency modes. As the LO of homodyne detection determines the frequency mode, 
we control the LO based on a pulse shaping technique. For this purpose, a pulse shaper in the 4-f 
configuration is employed: an input beam is diffracted by an optical grating (1200 grooves/mm), 
which is subsequently focused by a cylindrical lens (190-mm focal length). On the Fourier 
plane of the lens, a reflection-type spatial light modulator having 512 x 512 pixels controls the 
amplitude and the phase of frequency modes. The reflected beam comes back to the lens and 
the grating. The overall wavelength resolution is found to be 0.1 nm. Using the pulse shaper, 
a covariance matrix associated with the sixteen frequency modes was obtained by measuring 
quadrature outcomes in a sequential way from the mode-discriminating homodyne detection; in 
the homodyne detection, the two photodiodes have a quantum efficiency of 99 %, fringe visibility 
is 93-95 °7o, and demodulation frequency is 1 MHz [33]. The obtained covariance matrix is 
presented in Fig. 5 of Appendix A. 

Given the resolution of the pulse shaper, we consider that all the measured modes are 
realistically matched to the local oscillator. It also does not limit the applicability of the method 
which can be applied to the crosstalk in the multimode detector equally well. If the unmatched 
modes are present, they will contribute to noise [34] and may act as a detection side channel [35], 
but can be compensated for by increase of the brightness of the local oscillator [36]. 

To extend and verify the method of decoupling following the preliminary theoretical studies 
[26,27] for the source depicted in Fig. l , we assume a typical QKD scenario, where we suppose 
that Alice's preparation is trusted (being fully out of control by an eavesdropper Eve) and Alice 
is measuring her modes locally by a multimode homodyne, while the Bob's modes travel directly 
towards his detection. Bob is measuring his modes using mode-discriminating homodyne 
detectors, also assumed to be trusted (including the efficiency and the electronic noise of the 
detectors). Ability to address the individual local modes in the homodyne detection is crucial 
for channel multiplexing in C V Q K D and the multimode structure of entangled states can be 
harmful for the protocols otherwise [37]. To controllably investigate impact of lossy channel, we 
applied attenuation to Bob's measured results. It emulates an untrusted channel, characterized by 
the transmittance T, which is assumed to be fully controlled by an eavesdropper Eve, capable 
of collective attacks. We assume purely lossy (attenuating) channel as the background noise 
is already very small in real optical fiber channels, such approach allows modelling fiber as 
well as free-space channels, where fluctuations due to atmospheric turbulence are typically slow 
compared to the signal repetition rate [38]. To comply with the experimental test-bed, where the 
multimode source was characterized, we assume that the crosstalk appears in the source, but our 
methodology can also be directly applied also to crosstalk in the channel and detectors. 

Security of C V QKD is evaluated as the positivity of the lower bound on the key rate, which, 
in case of collective attacks and reverse reconciliation [5], reads 

K = max{0,BIAB - XBE}, (1) 
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Fig. 2. Experimental setup for generation of frequency-multiplexed multimode entangled 
light and its measurement with mode-discriminating homodyne detection. The generated 
multimode light p^s is in 16 frequency modes, where Alice (A) and Bob (B) access 
to the eight lower frequency modes and the other eight frequency modes, respectively. 
The pulse shaper is constructed in the folded configuration in actual implementation. 
BS: beam splitter; S L M : spatial light modulator; PD: photodiode. See main text for 
details. 

where /3 < 1 is the post-processing efficiency (further we realistically take /3 = 96%, which 
complies with the achieved post-processing efficiency [39]), IAB is the mutual classical (Shannon) 
information between Alice and Bob, and XBE is the Holevo bound, which upper limits the 
information accessible to a potential eavesdropper Eve on Bob's measurement results. We address 
security against collective attacks for the Gaussian entanglement-based CV QKD [40,41], which 
can be directly extended to the finite-size regime [42,43] and implies security against general 
attacks [44,45]. The reverse reconciliation is used to test secret key distribution for mid-range 
distance with channel attenuation below -3dB. The positivity of the lower bound (1) implies 
that the trusted parties are able to distill the secret key with at least the rate K by using classical 
post-processing (error correction and privacy amplification) [46]. We therefore analyze security 
of frequency-multiplexed CV QKD by evaluating the lower bound on the key rate per multimode 
channel use K (further also referred to as the key rate). We follow the Gaussian security proofs 
and respective security analysis methods, as described in the Appendix A. 

We demonstrate the power of the multimode states in C V Q K D by confirming the gradual 
increase of the overall key rate for increasing the number of pairs of modes measured by Alice 
and Bob, as shown in Fig. 3 (left), assuming channel transmittance T = 0.2. We first rank the 
pairs by the key rate between the individual pairs and then add pair by pair, thereby obtaining 
larger key rate, as seen in Fig. 3 (left, circles and the blue solid line). 

For the multimode states as shown in Fig . l , we optimize the data processing to achieve the 
maximum key rate (1). The applied data processing is equivalent to local passive symplectic 
transformations when both the sender and the receiver separately act on their respective modes by 
optimized beam splitter networks [47], see Appendix A for details. The results of the optimization 
are given in Fig. 3 (squares and solid yellow line) and it is evident, that optimized local data 
manipulations lead to almost 15-fold increase of the overall key rate for the multimode states. The 
optimization process can, therefore, efficiently retrieve multiple pairs of entanglement from the 
multimode entanglement resource, providing significant improvement for C V QKD. Moreover, 
the key rate becomes much more robust against statistical error in the finite data ensemble, as can 
be seen from the respective plots in Fig. 3 (squares and dashed yellow lines). 

The improvement of multimode C V Q K D by the local data processing is concerned with 



IBB, bit per multimode channel use 

Fig. 3. Left panel: Estimated key rate (in terms of bits per multimode channel use) of CV 
QKD based on the frequency multiplexed entangled source in Fig.l for different number 
of pairs measured by Alice and Bob as obtained from the original data before decoupling 
(circles, blue lines) and after decoupling of modes involved in the multimode crosstalk 
by optimized data processing performed by the trusted parties after the homodyne 
measurement (squares, yellow lines). The dotted, dot-dashed and dashed lines, represent 
the pessimistic estimates that take into account standard error for the respective number 
of measurements A' = 5 - 1 0 3 , A ' = 1 0 4 , A ' = 4 -10 4 , as indicated over the lines in the 
plots (see Appendix A for details). Note that blue non-solid lines are almost extinct on 
the plot. Shaded areas represent the method prediction bands with 95°7o confidence level 
in the asymptotic limit of infinitely many measurement points. Realistic reconciliation 
efficiency fi = 96% taken for the processed data, perfect ,8=1 taken for the original 
data. While multiplexing brings only small and fragile advantage when all the pairs 
are being used, it can be drastically improved by optimized local data manipulations, 
revealing power of frequency multiplexing in C V Q K D . The improvement gets more 
pronounced as the number of data points N increases. Right panel: Multimode mutual 
information (top) and Holevo bound (bottom) for different number of pairs measured by 
Alice and Bob as obtained from the original data (circles, blue line) and after optimized 
linear interactions performed by the trusted parties prior to the measurement (squares, 
yellow line). The plots illustrate the nature of improvement of frequency-multiplexed 
C V Q K D by optimized data manipulations, which is based on increase of the mutual 
information, while the Holevo bound remains unchanged and, therefore, the yellow and 
blue points overlap. 

the increase of the multimode mutual information, as can be seen from Fig. 3 (right, top), 
while Holevo bound is not affected, as seen from Fig. 3 (right, bottom). Indeed, the local data 
processing (equivalent to symplectic transformations) does not affect the quantum entropies 
contributing to the Holevo bound by not changing the symplectic spectrum (i.e., thermal-state 
decomposition) of the multimode Gaussian state. On the other hand, redistribution of modes 
occupation by the local symplectic transformations increases the additive classical mutual 
information due to increased correlations, and can be optimized to achieve the best performance. 
This also substantially simplifies the optimization of the method by reaching the maximum mutual 
information, leading to the maximum key rate. Our method is focused on maximizing mutual 
information (not on eliminating cross-correlations) and leads to optimal improvement of the key 
rate. Note, that our method can be advantageously combined with the protocol, in which the 
Holevo information, maximally accessible to Eve, is minimized [48]. In this scenario by proper 
multiplexing and elimination of crosstalk higher key rate can be achieved at low post-processing 
efficiencies, while not increasing the information leakage. This can be particularly promising 



for high-speed C V QKD, where fast, but less efficient error correction can be otherwise a very 
limiting bottleneck [8,17]. 

3. Discussion 

We also analyse the robustness of C V QKD against channel attenuation (which is equivalent to 
channel distance) with the full set of eight pairs of modes before and after the optimized data 
manipulation as shown in Fig. 4 (the 8-pair covariance matrix after optimized data processing 
is illustrated in Fig. 4 in the Appendix A). By eliminating the crosstalk, we reduce the state 
preparation noise in the individual channels and respectively increase the maximum tolerable 
channel noise. It is evident from the plot, that optimized local data manipulation increases the 
maximum tolerable channel attenuation of the protocol from approx. 8 dB to 28 dB of loss, thus 
demonstrating potentially more than threefold increase of the secure distance of the multimode 
CV QKD protocol (assuming 0.2 dB/km loss). We extrapolate the obtained results for the cases 
of 25 and 50 modes, which are expected to further improve the efficiency and robustness of CV 
QKD protocol up to approx. 34 and 36 dB, see Appendix A for details. We also address the 

0 . 1 0 0 

0 . 0 1 0 

K, bit per multimode channel use 

—before processing, 8 pairs 
processed, 2 pairs 
processed, 4 pairs 

— processed, 6 pairs 
— processed, 8 pairs 
— linear extrapolation, 25 pairs 
— • linear extrapolation, 50 pairs 

• \ 

4 0 ' 
T, dB 

Fig. 4. Key rate of C V Q K D versus channel transmittance T (in dB) as obtained 
from the original data on the full multimode entangled state (blue solid line), after 
optimized local data manipulations performed by the trusted parties for different number 
of used pairs of modes (non-solid lines for reduced number of pairs and thick solid 
violet line for the maximum number of eight pairs), linear extrapolation for larger 
number of modes (blue and brown dashed lines). Post-processing efficiency 8 = 96%. 
Evidently, optimized data manipulation can drastically improve robustness to loss (and, 
respectively, the secure distance) of frequency-multiplexed C V Q K D with entangled 
states. 

efficiency of our method by comparing the achieved results to the bounds set by eight times 
maximum performance of one best pair of modes (as the total number of pairs in our experiment 
is eight). In the way similar to maximization of the total key rate, we now run optimization 
to have as much as possible key in this particular pair. In terms of mutual information, the 
maximum in one pair is 0.28 bit per channel use, the total maximum mutual information achieved 
by our method is 0.517 bit per channel use, the bound (eight times the maximum value for one 
pair) is 2.24 bit per channel use, which is 4.3 times larger than we achieve. For the key rate the 
maximum for one pair is 0.163 bit per channel use, the total achieved key rate is 0.212 bit per 
channel use, the bound is 1.304 bit per channel use, which is 6.15 time larger than we achieve. 



We define the decoupling efficiency as the ratio between the secret key rate achieved and the 
secret key rate that could be achieved in a perfect setting with all 8 pairs having maximal mutual 
Shannon information. The efficiency of our method for the secret key rate therefore reaches 0.16. 
This removable limitation is caused by source imperfections beyond the linear crosstalk and 
would require development of additional advanced experimental and data processing methods 
to further improve practical frequency-multiplexed C V Q K D . Our results show that despite 
drastic improvement achieved with the suggested method for crosstalk elimination, even higher 
performance can be achieved by larger number of frequency channels with faster data processing 
and by further developed experimental techniques aimed at reduction of crosstalk. 

Summary and outlook 

By optimally applying data manipulations we were able to compensate the crosstalk in the 
frequency multiplexed C V Q K D with femtosecond-pulsed entangled states and substantially 
increase the mutual information between the sets of modes, measured by the trusted parties, 
while the leaked information, upper bounded by a function of Gaussian quantum entropies, did 
not change. Thus we can increase the achievable key rate for continuous-variable quantum key 
distribution or, equivalently, extend the secure distance of the protocols. The results of the 
optimized local data manipulations show the possibility to increase the overall key rate by almost 
the factor of 15 and extend the secure distance for the multiplexed entanglement-based protocol 
by the factor of three. Note, that while higher key rates can be as well obtained by increasing the 
system repetition rate, our method does not affect the information leakage and only increases 
the mutual information, hence drastically increasing the key. Nevertheless, our method can be 
further combined with the increase of the repetition rate to achieve even higher key rates. In 
the present demonstration, the calculations were performed on a covariance matrix obtained by 
mode-discriminating homodyne measurement and can be easily extended to large number of 
modes [49]. Furthermore, the crosstalk between the modes can also be further reduced or adapted 
to the measurement system manipulating the source through spectral shaping of the pump [50]. 
While we applied data manipulations to compensate crosstalk in the multimode CV QKD source, 
the method can be also used to eliminate crosstalk that appears in the multimode quantum 
channel. Our method is therefore very promising for improving key rates of continuous-variable 
quantum key distribution and can also be combined with the protocol based on minimization 
of the information leakage [48], especially with elimination of channel noise and efficient 
channel estimation techniques, in order to overcome the limitations imposed by realistic fast 
post-processing. Moreover, we can combine our method with the existing tools to eliminate 
correlated noise [51] and side channels [35]. We therefore open the pathway to very high-speed 
practical realization of quantum key distribution using continuous variables. It should be followed 
by a test of complete multiplexed protocol together with secret key generation and can be extended 
to networking entanglement-based communication settings. Furthermore, the suggested crosstalk 
compensation technique can be useful in other applications of continuous-variable quantum 
information, such as quantum imaging [52] or quantum illumination [53]. 

Appendix A 

Security analysis 

The key rate is calculated as K = max {0, BIPAB - XBE\, where IPAB is the classical information 
between Alice and Bob in p = i(a* - a) quadrature (We chose it because in this experiment it 
gives larger key than the x = a* + a quadrature). 

The classical mutual information for a pair of Gaussian-distributed data sets A and B 
with variances VA and VB respectively can be evaluated as IAB = log 2 (VA/VA\B), where 
VA\B = VA- C2

AB/VB is the conditional variance, which can be expressed through the correlations 



between the data sets, CAB- It is therefore straightforward to evaluate our multimode mutual 
information IAB = E, 8

=i ^ A , B , , which is the sum of bipartite mutual information quantities 
between eight pairs of data sets obtained from the homodyne measurements of different frequency 
modes on both Alice's and Bob's sides. Note that here and further the mutual information as 
well as the lower bound on the key rate (1) is evaluated in bits per multimode channel use. 

The calculation of the Holevo bound is more involved and is performed in the assumption that 
Eve is capable of collective measurement of the eight-mode state, reflected from the attenuating 
channel, similarly to the single-mode C V QKD in purely lossy channels [54], as Eve's vacuum 
modes, corresponding to the loss in each of the modes, cannot be correlated. The Holevo 
bound is then evaluated as the difference S(E) - S(E\B) between the von Neumann (quantum) 
entropies of the state available to Eve prior and after conditioning on the measurements of the 
receiving trusted party Bob. The von Neumann entropy of a state described by covariance 
matrix y is calculated as S(E) = G where At are symplectic eigenvalues of JE and 
G(x) = (x + 1) log 2(x + 1) - x l o g 2 x . Here S(E) is the entropy of the eight-mode state measured 
by Eve, and S(E\B) is the entropy of Eve's state, conditioned on the set of {x^,}, being the 
measurement outcomes of the homodyne detection in x-quadrature on eight modes at Bob's 
station (equivalently for the p-quadrature measurements). The calculation is performed in the 
covariance matrix formalism, within the pessimistic Gaussian state approximation (see more 
details on the Gaussian security analysis in [32]). 

Error estimation 

To estimate the effects of the measurement error on the key rate, we assume that every pair of 
modes has bi-variate normal quadrature distributions and covariance matrix for the i, ./-pair is 

between quadratures were observed, hence (xipj) = 0 Vi, j. The best estimate for the standard 
error for ytj after N measurements will be [55] 

We assume the worst case (pessimistic) scenario for different numbers of measurements and 
evaluate the lower bound on the secret key rate for each case. The pessimistic scenario implies 
that the diagonal elements of the covariance matrix (variances) are increased by the error value 
while the absolute value of the off-diagonal elements (correlations) are decreased [56,57], The 
results are presented in the Fig. 2 as dashed lines. It is evident from the plots in the Fig. 2, 
that even multiplexing of all eight pairs can only slightly restore the non-zero key rate if the 
measurement results are used without any processing, and that the key rate is very sensitive to 
the error in the finite data samples. One can expect that the performance of the multiplexed CV 
QKD is strongly limited by the crosstalk between the modes [27], which is likely to appear in 
the generation of frequency multiplexed entangled states under study. We therefore suggest and 
verify the method of optimized data manipulation after the homodyne detection, performed by 
the trusted sides, in order to substantially compensate the crosstalk and make the multimode 
resource more applicable for C V QKD. 

(2) 

CT- (3) 



Optimized data processing 

Generally all the sixteen modes are getting coupled in the state preparation and such crosstalk 
should be possible to at least partially compensate for using a global 16x16 symplectic transfor­
mation that maximizes the mutual information. The quantum communication scenario makes 
such global transformation impossible, but the crosstalk can be significantly reduced even when 
we consider Alice and Bob performing only local operations independently of each other. Both 
Alice and Bob each control 8 modes of the shared 16-mode state. Each of them can then introduce 
linear local passive operations on their respective sides in order to minimize the crosstalk while 
preserving the security of the protocol. We are therefore looking for two 8x8 local symplectic 
transformation matrices equivalent to a sequence of linear optical devices. 

The covariance matrix of the whole 16-mode state y can be represented as 

/ C i . 16 

V Cl6 , l Vl6 / 

(4) 

with Vi and Qj given in eq. (2) and below. To model the interaction we assume that a set of 
2 x 2 beam splitters is introduced between all possible pairwise mode permutations on the same 
side. i.e. there is (N/2 - l)N/2 = 56 beam splitters [58] (28 on Bob's and 28 on Alice's side). 
The phase convention we use for a 2 x 2 beam splitter acting on a 16-mode state is 

0 0 0 

V 1 - *ij 

o 0 

(5) 

where tij is the transmittance coefficient, i, j are the modes that are interacting on the given beam 
splitter. Then introducing the beam-splitter network on the sender side is equivalent to Alice 
acting on the covariance matrix with the sequence of the beam splitter two-mode linear coupling 
operation: first Alice acts with y' = T\^yTj2, then y" = T\^y'T^3 etc. As a result the sender 
(Alice) transforms the initial state with the product of 28 operators 

(6) 
i=l,/=i+l 

on her side and the receiver (Bob) acts in the same manner with the operation 

16 
UB = 7l5,167l4,16—TsyioTs,9 = ]~~[ Tij 

i=9,y=i'+l 
(7) 

on his side. Their joint interaction operation is U = UAUB- After the beam-splitter network is 
applied to the original state, the covariance matrix becomes jf = UyUT. 

We then calculate the mutual information IXAB and IPAB of the state y / separately in 
x and p quadratures and maximize the functions hAB{i) and IPAB(t) numerically, here 



t = (* 1 ,2 . *2,3—* 15,16) i s t n e variable vector made of transmittance coefficients of the beam 
splitters. There is no need to maximize the key rate, as the Holevo bound isn't affected by 
unitary transformations (indeed, the von Neumann entropy of the states is preserved, hence the 
maximization of the mutual information is sufficient). The optimization was done numerically 
using limited memory Broyden-Fletcher-Goldfarb-Shannon (1-BGFS) optimization algorithm 
with bound constraints [59] from SciPy library. The 1-BGFS performs 0(d) computation per 
iteration, where d is the number of the function's variables, in this case d = (N/2 -1)N/2 and the 
method performance scales depending on the number of the modes as 0(N2). In general, 1-BGFS 
does not converge to a global maximum if the function under maximization is not a convex one 
as is the case here. To find the global maximum we used the basin-hopping optimization method. 
Naturally there is no guarantee that each maximum we have found is indeed a global one, but 
the obtained results already shown drastic improvement of quantum communication using the 
multimode states. The visualization of the covariance matrices before and after the optimization 
is given in Fig. 5, where the raw data used in the optimization are reported in [33]. It shows 
noticeable redistribution of correlations between the modes. 

Fig. 5. Visualization of covariance matrices in x quadrature (left) and p quadrature 
(right) before (top) and after (bottom) the optimized linear data processing. 

It is worth mentioning that while here we optimize the state with only passive local operations, 
it is also possible to use an active transformation, although it would significantly increase the 
computing power needed. Besides, the most general set of passive local operations would be 
represented by sequence of Mach-Zehnder interferometers with beam splitters of optimized 
transmittance and optimized phase shifts between them. We have checked this kind of optimization 
setup as well but it did not help to increase the Shannon information and the secret key rate. This 
is due the fact that the correlations between x and p quadratures in the data are negligibly small. 

The matrix of the optimized interaction is to be found on the parameter estimation step of the 



QKD protocol based on the estimation of the state, shared between the trusted parties, in terms of 
its covariance matrix [57]. The optimization can be performed on either sender or receiver side 
and then announced publicly. Since the optimization parameters are not related to the raw key 
data, no further disclosure and discarding of the key bits is needed. Eavesdropper's knowledge of 
the optimized interaction does not influence security of the protocol as the security proof already 
assumes eavesdropper's ability to perform an optimal collective measurement on the intercepted 
signal [54] and the Holevo bound is not affected by the linear interactions between the signal 
modes on the trusted sides. 

Results extrapolation 

We predict the efficiency of our method for larger number of pairs, by evaluating prediction bands, 
as seen in Fig. 3 (left). To do so, we first used a linear fit for the key rate results in order to predict 
how the key rate will behave if we add more modes. If the pairs of modes were uncorrelated (i.e., 
experience no crosstalk) and all had the same variance, the key would grow linearly, therefore 
we assume that in our case of correlated modes dependence will stay close to linear. Using the 
method of the least squares [60] we got a linear model for the key rate in the form K(x) = a + bx 
(for the processed data we have a = -0.0501 and b = 0.0293). We then evaluated the prediction 
bands defined as K(x) + íVs 2 + X C o v X r , where Cov is the covariance matrix for the coefficients 

/ 
a and b, and s 2 is the mean squared error for the data points, X = 

\ x I 

Students distribution for 95% confidence level (resulting in t = 2.447). 
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Abstract: We address feasibility of continuous-variable quantum key distribution using bright 
multimode coherent states of light and homodyne detection. We experimentally verify the 
possibility to properly select signal modes by matching them with the local oscillator and this 
way to decrease the quadrature noise concerned with unmatched bright modes. We apply the 
results to theoretically predict the performance of continuous-variable quantum key distribution 
scheme using multimode coherent states in scenarios where modulation is applied either to all 
the modes or only to the matched ones, and confirm that the protocol is feasible at high overall 
brightness. Our results open the pathway towards full-scale implementation of quantum key 
distribution using bright light, thus bringing quantum communication closer to classical optics. 

© 2019 Optical Society of America under the terms of the O S A Open Access Publishing Agreement 

1. Introduction 

Quantum key distribution (QKD) is well known to be a practical application of quantum 
information science. It is aimed at providing trusted parties with the means to share a secret 
cryptographic key to be further used in classical symmetrical cryptosystems (such as widely 
used AES system), so that security of the key is guaranteed by the very laws of quantum physics 
(see [1-4] for reviews). The first suggestions of QKD, namely discrete-variable protocols, were 
based on single-photon states [5], and are being practically realized with weak coherent pulses, 
typically accompanied by so-called decoy states to reveal the photon-number splitting attacks [6]. 

In order to waive the need highly efficient single-photon detectors, continuous-variable (CV) 
QKD was suggested on the basis of quadrature modulation of squeezed light, subsequently 
measured using homodyne detectors [7]. It was later extended to the use of coherent states, 
potentially enabling Q K D without nonclassicality and with off-the-shelf telecommunication 
components [8-10] at a cost of acceptable reduction of efficiency and robustness of the protocols 
[11-13], also compared to the discrete-variable protocols [14]. This development brought QKD 
closer to a border between classical and quantum communication. However, light that carries 
information in classical optics is typically bright and multimode. It allows to easily operate 
the intensive and stable beams and to increase information capacity by multiplexing. Thus 
as the further development towards the use of bright light for Q K D , far from the originally 
suggested single-photon states, QKD was shown potentially applicable with multimode [15] and 
macroscopically bright [16] nonclassical states. 

Besides the conceptual interest in enabling Q K D with macroscopic bright light, contrary to 
the low-energy single-photon states, the high brightness can largely simplify manipulations with 
the beams, such as pointing by a sender, beam guiding at intermediate stations (repeaters), and 
signal recognition at a receiver. This can be especially fruitful for free-space applications with 
quick link deployment and, in particular, in satellite-based channels, and can be further enforced 

#375401 https://doi.Org/10.1364/OE.27.036154 
Journal © 2019 Received 21 Aug 2019; revised 25 Oct 2019; accepted 27 Oct 2019; published 25 Nov 2019 

https://doi.Org/1


Research Article Vol. 27, No. 25/9 December 2019/ Optics Express 36155 

by multiplexing techniques. Moreover, as the local oscillator (LO) beam, which serves as a phase 
reference for the homodyne detection in C V QKD, can be advantageously generated locally 
instead of being sent through the channel [17-19], the light arriving from the channel will not 
have a bright component, which complicates beam manipulations and may deem auxiliary bright 
modes necessary. 

The multimode structure of bright coherent light is imposed by the limitations on the modulation, 
that can be applied in C V QKD, which is caused by imperfect post-processing [12,20]. Thus 
the modulated signal must remain relatively dim and the high brightness can only be provided 
by the additional modes. However, mode mismatch can be present in the detection when some 
of the modes emitted by the source do not match the L O modes, which results in quadrature 
noise and limits the secure distance of the protocols [16]. Therefore, in this paper we analyze the 
applicability of C V QKD using bright multimode coherent states, containing up to 105 photons, 
which is much larger than tens of photons used in the existing implementations of C V Q K D 
[20-24]. We consider the role of bright mode mismatch and show how its negative effect can 
be reduced. In order to comply with the security proofs for C V QKD, we keep to the quantum 
description of bright multimode light, resulting in the noise due to the mode mismatch. In our 
work we consider joint homodyne detection of incoming modes, which is much more feasible than 
discrimination between the modes. However, the LO should match the signal modes despite the 
joint measurement. Even in such simplified scenario we experimentally confirm the possibility 
to select signal modes and reduce the noise arising from the mode mismatch by increasing the 
brightness of the local oscillator beam, serving as a phase reference for the homodyne detection. 
This is particularly important for QKD because the unmatched modes can be tampered with by a 
potential eavesdropper. The resulting noise has therefore to be assumed untrusted; this has a 
strong impact on the security of C V Q K D with bright multimode light as a side channel in the 
receiving station [25]. Using the obtained results we predict the performance of C V QKD with 
bright multimode coherent light and confirm its feasibility. 

2. Homodyne detection of bright states with mode mismatch 

We first study the homodyne detection of macroscopically bright light that consists of multiple 
modes. In the detection setup, multiple modes in the signal are not perfectly overlapped with 
the modes of the L O beam, which serves as a phase reference for the measurement. These 
unmatched modes add extra noise to the measurement results [16]. This problem was tested 
in our experiment with a simplified version of the homodyne detection of bright multimode 
coherent light. 

In contrast to the standard scheme of homodyne detection (Fig. 1, left), where the LO overlaps 
with a single mode of the radiation, we study the basic case when the input beam contains two 
modes (Fig. 1, right), being in the coherent states. One of the modes (in the state \a)) is properly 
overlapped with the LO, the other one (in the state \B)) is not. As theoretically shown in [16], 
in this case the measured variance of, e.g., amplitude quadrature f,- = a? + a,- in the «'-th signal 
mode is influenced by additional noise coming from the modes that are not matched with the 
LO. In the general case of M matched modes and N unmatched modes of a multimode state, 
the measured variance of the difference photocurrent of the two detectors (normalized to the 
measured vacuum variance) is 

where Var{x) is the quadrature variance of the matched signal modes (being Var{x) = 1 for pure 
coherent states, also referred to as the shot-noise unit, SNU, using the above given quadrature 
definition), n is the mean number of photons in an unmatched signal mode, and 

Var (x), = Var(x) + efotn, (1) 

Ns2 

(2) 
M\aL0\ |2 ' 
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where \aw\ is the mean photon number of the LO and s is the weight of the unmatched modes, 
corresponding, e.g., to filtering prior to detection. 

a, a 

50/50 
<<P) 

1 
Fig. 1. The standard scheme for homodyne detection (left) and the scheme with uncompen­
sated modes in the multimode signal beam (right). 

50/50 

In the simplified version realized in our experiment, there was one matched and one unmatched 
mode, both being coherent beams. In this case, instead of Eq. (1), one should have 

\B\2 

Var(x)meas = 1 + -r, (3) 
\aw\ 

which is equivalent to having efot = l/\aw\2- Equations (l)-(3) show that the result of the 
Gaussian measurement of the multi-mode bright signal is equivalent to the measurement of a 
one-mode dim signal (containing few photons on average, which for a CV QKD implementation 
would be imposed by an imperfect post-processing, that limits the modulation depth [12]) with a 
bright unmatched mode, containing more than 105 photons on average. The bright unmatched 
mode manifests itself in the form of extra noise that contributes to the overall quadrature noise 
(in contrast to a possible background radiation arriving at the homodyne detector, which does 
not match the LO but is as well too weak to non-negligibly contribute to the quadrature noise). 
The extra noise induced by imperfect modes matching depends on the ratio of brightness (mean 
photon number) of unmatched mode to LO brightness. 

The above given results were verified in the experiment. The setup is shown in Fig. 2. We used 
picosecond-pulsed radiation of Ti: sapphire laser with the wavelength 800 nm and 5 kHz repetition 
rate. After a half-wave plate HWP1 and a polarizing beamsplitter PBS1, the beam was split into 
a stronger one, further used as LO, and a weaker one, further used as a coherent state under test. 
The latter was controlled in intensity by means of a half-wave plate HWP2 and a film polarizer, 
and then split into two spatially displaced beams in a calcite beam displacer oriented at 45° to the 
vertical direction. The intensity ratio between the two spatially displaced beams, whose role was 
to mimic the two independent coherent modes, was controlled by means of polarizer orientation. 
One of the two modes was spatially overlapped with the LO on another polarizing beamsplitter 
PBS2, while the other one was spatially separated from the LO, which defined mode matching 
and unmatching, respectively. The losses arising in the PBS2 do not spoil the measurement, 
because the modes under test are coherent. Finally, because the LO and the coherent mode were 
orthogonally polarized, they were projected on the same polarization direction on the polarizing 
beamsplitter PBS3, where, at the same time, both beams were split and directed at two detectors 
D l and D2 for homodyne detection. The balancing of the homodyne detection scheme was 
performed using the half-wave plate HWP3. As D l and D2, we used charge-integrating detectors 
based on p-i-n diodes [26]. Their output pulses, scaling as the photon numbers in the input light 
pulses, were digitized in an Analog-to-Digit Converter (ADC) and then numerically subtracted 
to obtain the signal. 
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ADC+ 
*D1 subtraction 

HWP2 Polarizer 

Ti:Sa 
800 nm, 
1.6 ps HWP1 

PBS2 

Calcite@45° 

PBS1 

HWP3 
D2 

PBS3 

LO 

Fig. 2. The experimental setup used for the test of homodyne measurement of bright 
multimode coherent light. 

The experimental results are shown in Fig. 3 along with the theoretical prediction given by 
Eq. (3). In agreement with the theory, the variance of the difference signal (quadrature variance, 
normalized to the variance of vacuum measurements) depends linearly on the mean photon 
number in the unmatched mode (normalized to the L O power of 1.04 • 105 mean photons), as 
can be seen from Fig. 3 (left panel). This fact can considerably reduce the applicability of 
bright multimode radiation to C V Q K D . As a remedy against the increase in the quadrature 
variance, one can increase the LO brightness. The corresponding dependence of the normalized 
quadrature variance on the LO power (in terms of the mean photon number normalized to that of 
the unmatched mode, being 1.1 • 105) is given in Fig. 3 (right panel), along with the theoretical 
line defined by Eq. (3). Note that our system was optimized to work in the linear regime in the 
tested range of LO brightness between 105 and 2 • 106 photons on average, but the further drastic 
increase of L O brightness may lead to nonlinear detection regime. It is evident from the plot, 
that the experimental results are well matching the theory and that by ten-fold increase in the LO 
mean photon number the additional noise is reduced from 0.6 SNU to 0.06 SNU. Our results 
therefore confirm that the excess noise in the quadrature variance scales as the brightness of 
the unmatched mode (Fig. 3, left) and as the inverse brightness of the L O (Fig. 3, right). The 
coefficient s2 in our scheme was equal to 1, because no additional filtering, aimed at reducing 
the impact of the unmatched modes, was performed. 

Unmatched mode power normalized to LO LO power normalized to unmatched mode 

Fig. 3. Dependence of the normalized variance in SNU, experimentally measured (points) 
and theoretically predicted, according to Eq. (3) (lines), on unmatched mode power (left 
panel) and on LO power (right panel). 
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This was confirmed in various settings, including and excluding the unmatched mode, as shown 
in the histograms in Fig. 4, plotted for an intermediate LO setting with the power, normalized to 
the power of the unmatched mode, of 6.25, the latter having 1.14 • 105 mean photon number. 
Note that the measured quadrature variance of the coherent sate \a) was slightly above 1 SNU. It 
is evident from the histograms, that the appearance of an additional bright mode in the state \B) 
leads to a drastic increase of the detected quadrature noise, even though the mode is not matched 
to the LO. This increase is observed both in the absence of the signal (i.e., at \a\2 = 0) and in 
its presence (i.e., when \a\2 > 0). Note that the coherent state \a) representing the signal in 
our experiment was dim (as it would be in a practical C V Q K D implementation), containing 
few photons on average. The experimental verification gave us an estimate of the multimode 
homodyne detection for N = M = 1 unmatched and matched modes, respectively, in the absence 
of the filtration prior to detection, i.e., with e = 1. 

8 1,20 

|(3|2 = 0 |p|2 = 0 |pf>0 p2>o 

Fig. 4. Normalized variance of the quadrature measurements in SNU in the absence 
and presence of matched \a) and unmatched \B) modes, \B\2 = O.l6\aio\2• Theoretical 
prediction according to Eq. (3) is given in blue dashed lines. 

Normalized variance of the quadrature noise in Fig. 3 (right) decreases with |ttLo|2. However, 
the impact of a small residual noise can be still detrimental in applications such as C V QKD. 
Therefore, we apply the experimentally obtained results and parameters in order to evaluate the 
performance of C V QKD with multimode bright coherent states. 

3. CV QKD with bright multimode coherent states and mode mismatch 

Based on the experimental evidence obtained in the previous Section we can evaluate the 
feasibility of C V Q K D with bright multimode coherent states using homodyne detection. We 
consider prepare-and-measure C V Q K D protocol based on Gaussian modulation of multimode 
coherent states of light and homodyne detection, and analyze its security against collective attacks 
(which also implies security against general attacks in the asymptotic limit [27] and can be directly 
extended to finite-size regime up to data-size-dependent correction to the key rate [28,29]). In 
this protocol, the sender, Alice, modulates coherent states according to two Gaussian distributed 
zero-centered random variables by applying random quadrature displacements with variance 
VM, further referred to as the modulation variance. The signal states travel through the quantum 
channel to a remote party, Bob, who performs quadrature detection in either of the conjugate 
quadratures: above definedx = a1" - a orp = i(a* - a), so that Alice and Bob estimate the channel 
parameters and evaluate the information leakage. The channel is parametrized by transmittance 
T, which stands for the ratio of the signal coupling to a vacuum mode, corresponding to the signal 
loss, and the excess noise V/v, which contributes to the overall variance of the modulated signal 
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upon channel transmittance. Both the excess noise and the noise due to losses are attributed 
and assumed to be fully controlled (purified) by an eavesdropper Eve. We assess the security of 
the scheme by evaluating the lower bound on the secure key rate in the reverse reconciliation 
scenario (which is known to be robust against high loss and is therefore suitable for long-distance 
quantum communication [21]). The key rate reads 

K = max{0, (IAB - XBE}, (4) 

where f e (0,1) is the post-processing efficiency, which shows how close the trusted parties are 
able to reach IAB, the classical (Shannon) mutual information shared between Alice and Bob, and 
XBE is the Holevo bound. The latter upper-limits the information accessible to Eve on Bob's 
measured data and is relevant in the reverse reconciliation scenario. Following the optimality of 
Gaussian attacks and the purification-based approach to security analysis, we evaluate I A B and 
XBE from the covariance matrix of the equivalent entangled state shared between Alice and Bob. 
The evaluation is in terms of von Neumann entropies, obtained from symplectic eigenvalues of 
the covariance respective matrices (see details on covariance matrix formalism for Gaussian 
states in [30] and on symplectic security analysis in C V Q K D in [31]). The influence of the 
multimode structure and the mode mismatch then consists in the contribution of the respective 
detection noise sfotn to the excess noise induced by the channel. As it was mentioned, since 
Eve can tamper with the unmatched modes, the noise contribution from these modes has to be 
assumed untrusted. Then the two-mode covariance matrix, which corresponds to the C V QKD 
protocol with multimode coherent light and homodyne detection with mode mismatch, reads 

VI y/T(V2 - l)crz 

TAB = 

\ V7XV2 - l)o-z [T(V +VN)+l-T + ejotn] I 

where V = 1 + VM, the diagonal matrices I = diag{\, 1) and <rz = diag{\,-\) are the unity 
matrix and the Pauli z-matrix, respectively. Now if Alice conducts heterodyne measurement 
on mode A, matrix Eq. (5) corresponds to the purification of the prepare-and-measure scheme 
with multimode coherent states and detection mode mismatch. The mutual information then 
straightforwardly reads IAB = ( l /2) log 2 ( l + S), where S = T(V - 1)/(1 + TVN + efoth) is the 
signal-to-noise ratio. Now, using symplectic security analysis methodology we evaluate and plot 
the lower bound on the key rate Eq. (4). 

In our analysis we consider two different scenarios: i) when only matched modes are modulated, 
while the unmatched ones remain in the bright coherent state and ii) when all the modes are 
modulated. The two scenarios can in principle be combined so that part of the modes are 
modulated and a nonequivalent part of the modes is matched to a generally multimode LO. 
However, if the same modulation is applied to the signal modes and some of the modes do not 
arrive at the detection, this may lead to side channels concerned with excessive modulation in 
CV QKD [32] and should be avoided. In our work we therefore study the cases when either only 
matched modes or all the modes are modulated and the modulation is different in different modes 
so that the side channel is ruled out (independent multimode modulation and joint homodyne 
detection is discussed in context of C V QKD in [15]). In the first scenario the contribution from 
different modes can be effectively joined into one mode up to the scaling of the mean photon 
number. Indeed, the mean photon number of the multimode coherent state, containing N modes 
with n mean photons in each, has the mean total of Nn photons. In the second scenario the 
overall brightness of the unmatched modes will be defined by the total number of modes and 
by the modulation variance. This is because the latter is related to the mean photon number 
in the modulated mode as VM = 2», because Gaussian modulated coherent states have thermal 
quadrature distribution. Therefore, in either of the scenarios the same amount of detection noise 
would correspond either to different total unmatched modes brightness or to different number of 
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modes for given modulation variance VM, which we optimize to improve the performance of the 
protocols at given parameters (first of all, the efficiency £). The results are given in Fig. 5 versus 
the LO brightness, as set in the experiment (left panel) and versus total signal beam brightness at 
the maximum reached LO brightness of 106 photons (right) at T = 0.5, which would correspond 
to a few kilometers long free-space channel [33-35] (or cca. 15 kilometers of the telecom fiber 
with attenuation of -0.2 dB/km). The modulation variance VM is optimized for the given settings, 
the error correction efficiency is £ = 0.96 (which complies with the current post-processing 
techniques [36]). In Fig. 5 (left) we evaluate the key rate Eq. (4) for the experimentally obtained 
values of noise (points with error bars corresponding to the uncertainty of the noise estimation) 
and theoretically predict the key rate for the quadrature variance calculated as in Eq. (1) with 
sfot = l/\aw\2 as observed in the experiment (solid lines). We compare it to the ideal case of 
the perfect matching (horizontal solid lines), the key rate with mode mismatch then approaches 
the one with a perfect matching for higher L O intensities. In Fig. 5 (right) we theoretically 
evaluate the key rate Eq. (4), similarly predicting the measured quadrature variance Eq. (1) 
for the given L O brightness and varying the brightness of the unmatched modes. It is evident 
from the plots in Fig. 5 (left) that for relatively low attenuation (higher values of T) the key rate 
saturates with the brightness of the L O (similarly to the saturated decrease of the normalized 
variance in Fig. 3, right) and that 106 photons on average in the L O mode should be sufficient 
for C V Q K D with the same brightness in the unmatched modes. Stronger attenuation (lower 
values of T) however puts higher demand on the LO brightness, which should contain at least one 
order of magnitude more photons on average to provide non-negligible key rates. Similarly, for a 
fixed LO brightness and transmittance T = 0.5, corresponding to a mid-range free-space channel, 
we show how the key rate is continuously degraded with the increase in the brightness of the 
unmatched modes and is bound by cca 8 • 104 mean photons (equivalent to 1.5 • 104 modes with 
a weak optimized modulation on the order of a few SNU) at the maximum LO brightness. This 
limitation is even more strict once the LO brightness is lower. However, already at 104 photons 
(or 2 • 103 modulated modes) the performance of CV QKD with bright coherent states and a bright 
L O is comparable (with the key rate being roughly 15% lower) to that with the conventional 
low-energy signal. Thus we have shown that coherent-state C V Q K D is possible at very high 
brightness, even despite the mode mismatch, in either of the modulation scenarios, i.e., if all the 
modes or only matching modes are modulated, provided a bright LO is used. The applicability 
of the method can be limited by nonlinear detection response for very high brightness, but we 
demonstrated drastic reduction of excess noise concerned with mode mismatch already in the 
accessible linear regime. Increase of L O brightness can therefore be a feasible alternative to 
filtering of unmatched modes as the latter would increase set-up complexity and additionally 
attenuate the matched signals. Note that we consider the L O brightness at the detection input. 
In order to maintain such a strong LO, either proportionally higher brightness is needed at the 
channel input or the "local" L O scheme [17-19] with a locally generated L O can be applied. 
Furthermore, for a heavily multimode light the coupling efficiency between the signal and LO or 
vacuum may vary and be not exactly balanced for some modes, which may lead to slight increase 
of the noise concerned with unmatched modes observed in the detection [16]. 

In addition to the increase of the L O brightness, the trusted parties may also increase the 
number of matched modes M by properly constructing the multimode modulated signal and LO 
states. It is evident from Eqs. (1) and (2) that this would reduce the quadrature excess noise 
concerned with the mode mismatch in the detection. For example, the use of M = 10 matched 
modes would then be equivalent to increase of the LO brightness by the factor of ten, allowing to 
achieve key rates as shown in Fig. 5 (left) for 2 • 106 LO mean photon number upon much weaker 
LO of 2 • 105 photons on average. This illustrates the promising application of signal multiplexing 
in CV QKD even for a homodyne detector with joint measurement of the multiple signal modes. 
The obtained results can be further combined with the use of bright nonclassical states [16,26], 
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Fig. 5. Left: the key rate for multimode coherent-state C V Q K D in the presence of mode 
mismatch versus the LO brightness at different values of the channel transmittance T, obtained 
from the experimentally measured noise (points with error bars) and from the calculated 
quadrature variance Eq. (1), N/M = 1 (lines). The straight horizontal lines represent 
the ideal case where all the modes match perfectly. Right: the key rate for multimode 
coherent-state C V QKD in the presence of mode mismatch (theoretically evaluated using Eq. 
(1) for the given parameters) versus the unmatched mode brightness, \{S\2, when only the 
matched mode is modulated, or, equivalently, versus the number of unmatched modes, N, 
when all the modes are modulated, and the L O brigthness is varied, T = 0.5. In both plots, 
the modulation variance is optimized, ( = 0.96 and e 2 = 1 as confirmed in the experiment. 

broadband homodyne detection [37] and channel multiplexing [38] to increase secure key rate 
of the C V Q K D protocol with bright light. Although in our work we have addressed spatially 
multimode light, frequency modes can be considered as well. Furthermore, the broadband signal 
can be combined with multimode homodyne detection, addressing the modes individually [39], 
in order to further improve the key rate of bright-light C V QKD using signal multiplexing. 

4. Conclusion 

In a proof-of-principle experiment we have demonstrated the homodyne detection of bright 
multimode coherent light with some of the modes not matching the local oscillator. We have 
shown that their influence leads to the noise in the measurement, which, however, can be overcome 
by increasing the LO brightness. These tests, along with the numerical modeling, confirm the 
feasibility of quantum key distribution with macroscopically bright (intense and multimode) 
coherent states, which can be now fully implemented in real optical channels. Indeed, we show 
that key rates of about 0.25 bits per channel should be achievable with the states containing 104 

photons at attenuation of 50%, which corresponds to a few kilometers long atmospheric link 
[33-35] (or 15 kilometers of a telecom fiber) and at local oscillator brightness of 106 photons, so 
that the key rate is only 15% reduced compared to the standard quantum key distribution with 
low-energy signals. In addition to increasing the LO brightness, the trusted parties can suppress 
the noise, concerned with the mode mismatch, by increasing the number of matched modes, 
which shows the potential of multiplexed continuous-variable quantum key distribution even in 
the case of join measurement of the multiple signal modes. Our results therefore demonstrate 
that quantum key distribution can be realized with beams similar to classical ones and thus shift 
quantum cryptography even closer to classical optical technology. 
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7 Conclusions and outlook 

In this thesis we theoretically study possibility to implement mode multiplexing in Gaus­
sian quantum communication, in particular entanglement distribution and quantum key 
distribution. Our theoretical results have been experimentally verified in collaboration 
with L K B team at Sorbonne University in Paris (Prof. N . Treps) and the group at M P L 
Erlangen (Prof. M . Chekhova). Using the multimode quantum states, besides obvious 
advantage of multiplexing the protocol and increase in its capacity, can bring some issues, 
we address in detail one of them, the inter-mode cross talk, i.e. coupling of multiplexed 
modes among themselves. We also address the case when the mode-discriminating mea­
surement is not available, and the multiple modes are not used for channel multiplexing, 
but to increase the signal brightness. 

In Chapter 3 we theoretically study the cross talk problem in a simple 2-TMSV state 
model looking for the effect linear cross talk has on entanglement distribution. The en­
tanglement shared is shown to be damaged by the cross talk. The cross talk puts limit 
on maximal entanglement that could be shared through the channel of given parameters. 
Presence of the cross talk also makes the entanglement more sensitive to other deteriorat­
ing factors, the channel loss and the excess noise. These negative effects of the cross talk 
can be compensated with an optimally chosen network of passive optical elements. We 
propose a compensation scheme with the phase adjustment and optimized interference on 
a beam-splitter, and compare it to an alternative scheme that uses optimal generalised 
homodyne measurement with feed-forward control. Both compensation schemes allow to 
almost fully eliminate negative cross talk influence. The proposed interference method, if 
implemented in an optimal way, shows better results and, unlike the measurement with 
feed forward control, preserves all the modes intact. To further advance this research, 
a model with larger number of modes should be considered, that will take into account 
random cross talk coupling occurring between modes in the source, channel and during 
detection, this model extension will allow to numerically evaluate performance of the 
suggested methods for large-scale multiplexing. We leave this step to experimental verifi­
cation of such multiplexed protocols. Knowing how the proposed methods are scaling up 
is significant information for further development of multiplexed C V Q K D . 

In Chapter 4 we apply the optimal mode interference method, simplified version of 
which is theoretically described in Chapter 3, to an experimental multimode source. The 
synchronously pumped optical parametric oscillator produces a frequency multiplexed 
entangled state that is measured with mode-discriminating homodyne measurement. In 
the process of the state generation and measurement significant noise is introduced to 
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the signal, some of this noise can be attributed to linear cross talk among the frequency 
modes as in the theoretical model described in Chapter 3. We model an entanglement-
based Q K D protocol using data obtained from this experimental source, assuming that 
the party that posses the source shares half of the frequency modes bellow the maximal 
frequency with another remote party through a pure loss channel, and the parties then 
proceed to generate the secret key. Our analysis show that this Q K D protocol can be 
implemented with the state generated in the SPOPO experiment only with the channel of 
comparatively low attenuation. We apply optimal numerical postprocessing (equivalent 
to the sequence of optimized beam-splitters, that is a multimode generalisation of the 
optimal interference method from Chapter 3) with the aim to compensate the cross talk 
and increase the mutual information and the secret key rate. The postprocessing allowed 
to increase the secret key rate and robustness of the protocol to channel attenuation 
from 8 dB to 28 dB, showing that the given frequency multiplexed source after being 
improved with postprocessing can be used for entanglement-based Q K D . The next step is 
to implement experimentally and to analyse the frequency-multiplexed Q K D protocol with 
modes distribution among users and to numerically assess its security. This will require 
certain technical development of the multiplexed sources and mode selective homodyne 
detectors. 

Another way the use of multimode states can help Q K D implementations is discussed 
in Chapter 5. While mode multiplexing allows to enhance the Q K D protocol perfor­
mance if the modes can be successfully distinguished in the measurement, in case the 
mode-discriminating measurement is not available and all the modes are measured on a 
single homodyne detector, the multimode states can still be useful, as extra modes in­
crease the signal brightness making it easier to handle in the experiment. The problem 
in the implementation may arise if the modes are not perfectly matched with the local 
oscillator on the balanced beam-splitter of the homodyne detector, the unmatched modes 
bring noise to the signal. This noise can be suppressed by increasing of the local oscil­
lator intensity, as it was shown in proof-of-principle experiment described in Chapter 5. 
The extra noise destroys the security and decreases the secret key rate of the coherent 
state protocol we model with the help of the experimental data. We show that optimal 
state modulation and noise suppression by increasing local oscillator intensity improves 
the protocol performance. As a next step, full implementation of bright squeezed-state 
Q K D protocol using parametric homodyne detectors recently developed at M P L Erlangen 
should be considered. 

To conclude, mode multiplexing for quantum communication presents multiple chal­
lenges in practical implementation, this thesis tackles some of them, concentrating mainly 
on the inter-mode cross talk. In the future this general line of work can be further ex­
panded in several directions, experimentally with the verification of the C V Q K D protocol 
we modelled with frequency multiplexed source implementing physically mode separation 
and the channel between the protocol participants. When mode separation is efficiently 
implemented, the multimode structure of the state can be further used for advantage of 
multi-party Q K D , where secure key distribution between the parties can be either con­
trolled externally or by the users. Theoretically also the more complicated models of cross 
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talk (including more distant modes and possibly nonlinear interactions) can be considered 
if experimental practice will require it. The presented work is an essential step in develop­
ment and implementation of efficient continuous-variable quantum communication with 
mode multiplexing towards large-capacity multi-user local secure networks. 
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Abstract 

This thesis deals with the task of improvement of existing quan­
tum communication protocols using multimode entangled states. 
Firstly, we consider the mode-multiplexing in entanglement dis­
tribution and quantum key distribution. Mode-multiplexing al­
lows to improve performance and increase capacities of quantum 
communication protocols, in this case each mode carries separate 
signal and should be handled and measured separately. Unfortu­
nately while improving protocols capacities, multi-mode structure 
of quantum signal can also introduces new imperfections, such as 
the intramode cross talk. We study effects of the cross talk and the 
ways to compensate it. We then test one of the suggested meth­
ods to compensate for the cross talk in an experimental source of 
frequency-multiplexed entangled light. We model the quantum key 
distribution protocol using this frequency multiplexed source and 
demonstrate how the cross talk compensation method improves the 
secure key. 

The other side of multimode state use, we study is the applica­
tion of multimode bright states of light in quantum communication, 
in this case the modes are not discriminated in the measurement, 
the protocol does not use them for multiplexing, but instead mul­
tiple modes make the signal brighter and easier to work with in 
experimental implementation. 

Key words 

Quantum communication, quantum key distribution, entanglement, 
continuous variables, Gaussian states, entangled states of light. 
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1 Introduction 

This report gives a brief summary of the main results of my the­
sis "Multiplexed quantum optical communication using multimode 
entangled states". While quantum entanglement as a phenomenon 
was discovered almost a century ago, the technology employing it 
for quantum communication is still ongoing its development stage. 
One of the ways to improve communication protocols is to allow 
transfer of several entangled states simultaneously by multiplex­
ing the channels. Quantum communication and, more narrowly, 
mode-multiplexing in quantum communication is a vast field of 
research, this work concentrates on several use-cases. We theoret­
ically study application of multimode Gaussian states of light for 
scalability improving efficiency of quantum key distribution (QKD) 
and of Gaussian entanglement distribution, that has its application 
in Q K D , in quantum teleportation and in the future, in distributed 
quantum computing. Mode multiplexing allows to increase channel 
capacities, which is essential for practical implementations of the 
the protocols. 

The thesis aims at studying and removing the problems and 
limitations that can arise while implementing multiplexed C V en­
tanglement distribution and Q K D protocols using multimode en­
tangled states, at developing methods to overcome these limitations 
and, to extent possible with the available experiments, at testing 
these methods on the experimental data. This work was conducted 
during my Ph.D. studies at Palacký University in Olomouc and 
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CHAPTER 1 

this thesis is based on 3 articles published in peer-reviewed and 
impacted journals (Photonics research and Optics Express) during 
the course of my study. 

Firstly, in Chapter 1 we introduce theoretical concepts the most 
crucial this thesis. Chapter 2 concerns the theoretical model of the 
entanglement distribution in the presence of cross talk. We suggest 
a way to compensate the cross talk and restore entanglement with 
the help of optimized interference. Then we proceed comparing 
the suggested compensation method to another one that traces out 
some modes while enhances the entanglement of the other modes. 
In Chapter 3 we describe a result of experimental-theoretical collab­
oration, where we implement the proposed compensation method 
numerically to eliminate the cross talk in the experimentally mea­
sured frequency multiplexed entangled state. We then model the 
C V Q K D protocol using the multiplexed state, showing how the 
optimal postprocessing successfully eliminated the cross talk and, 
hence increased the secure distance of the Q K D protocol. Chapter 4 
concerns another experimental-theoretical collaboration. We model 
C V Q K D protocol with macroscopically bright coherent state, the 
bright state contains multiple modes that are measured with a 
mode-non-discriminating measurement. Using the data from the 
proof-of principle experiment we show how the noise coming from 
the imperfect mode-matching can be suppressed and the secure key 
restored. Finally in Chapter 4 we give the summary of the main 
results, conclusions and outlook for future work. 

2 



Methods 

The continuous-variable (CV) states of light are characterized by 
the conjugate quadratures of electromagnetic field, x = a) — a or 
p = i{o) — a), in analogy to oscillator's position and momentum 
operator. 

Gaussian states are fully characterised by its first statistical mo­
ments (displacements) and matrix of second statistical moments 
[1]. Important nonclassical Gaussian bipartite states, widely em­
ployed in quantum communication (and in this work), are two-
mode squeezed vacuum states (TMSV) [2]. T M S V has zero mean 
displacement and covariance matrix 

/ V D y/V2-l Z \ fr, -, \ 

1AB = ( z y j ) , (2.1) 

1 0 
here I = | ^ J is the unity matrix, Z = 

Pauli Z matrix. Covariance matrix of N-mode Gaussian states, is 
a 2N x 2N matrix with elements 7 ^ = (viVj), where vi = {xi,pj}, 
i £ [1,27V]. 

In this thesis, we consider only bipartite entanglement and the 
task of multiplexing of bipartite entanglement. It is necessary, al­
though not sufficient, resource for many of quantum communication 
applications, in particular for Q K D . 

As an operational measure of bipartite Gaussian entanglement 
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that quantifies negativity of partial transpose we use logarithmic 
negativity (LN) [3]. 

LNi = max{0,log 2 | | / 9 F p | | i } , (2.2) 

where \\p\\i = Tr>/ppi is a trace norm. prp signifies partial trans­
pose of the state p. The logarithmic negativity of Gaussian states 
can be expressed in terms of symplectic eigenvalues 

LNi = max{0, - log 2 (2.3) 

where V- is the smallest symplectic eigenvalue of the covariance 
matrix of the partially transposed state. 

We are interested in the communication protocols where two 
parties A and B aim to distribute a multimode entangled state. The 

A l i c e s - EPR source — T ' £ • BOD 
channel 

Figure 2.1: Basic one-way entanglement distribution protocol 

simplest Gaussian entanglement distribution protocol is described 
by the scheme given in Fig. 2.1. One party (Alice) possesses a 
source of T M S V states, she shares it with the remote party (Bob) 
through a quantum channel that introduces loss and adds noise to 
the shared state. The parties have additional free access to classical 
communication channel and can perform other operations locally in 
each lab (including Gaussian measurements), i.e. only local opera­
tions and classical communication (LOCC) can be performed on the 
shared state. The noiseless channel with constant transmittance T 
can be modeled as a simple beam-splitter interaction that couples 
one of the modes of the signal to a vacuum state. The channel 
also adds excess noise e to the second quadrature moments. En­
tanglement distribution implementation is essential part of many 
quantum technologies, in quantum teleportation [4], in quantum 
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random number generation [5], for quantum-enhanced sensing [6], 
it can be employed in quantum key distribution for entanglement-
based protocols. 

Gaussian C V quantum key distribution (QKD) employs conti­
nuous-variable states (squeezed and coherent) and coherent homo-
dyne or heterodyne detection [7]. It can be implemented with well 
developed and easily accessible optical technologies [8] The task 
of Q K D is to generate information-theoretic secure one-time pad 
for two distant trusted authenticated parties in presence of mali­
cious eavesdropper with unlimited abilities bounded only by laws of 
physics. Traditionally the parties are referred to as Alice (sender) 
and Bob (receiver), and Eve (the eavesdropper). Alice and Bob 
share quantum states through a quantum channel that is consid­
ered to be fully controlled by the eavesdropper, and classical com­
munication is happening openly through an authenticated classical 
channel. The goal of eavesdropper is to get a copy of the key while 
not bringing in enough noise into state for trusted parties to notice 
and terminate the protocol. 

To evaluate the security of Q K D protocol we have to evalu­
ate lower bound of the secure key rate. Assuming that sides can 
use protocol infinite number of times (asymptotic limit), Devetak-
Winter bound [9] gives the asymptotic secret key rate. 

K = max{0,f3IAB - XBE] (2.4) 

here IAB is the classical (Shannon) mutual information shared be­
tween Alice and Bob; XBE is Holevo bound [10] (upper bound 
on information between eavesdropper and the reference side of 
the protocol) for Gaussian state with covariance matrix 7 ^ ; (3 G 
[0,1] is postprocessing efficiency, it depends on error correction 
algorithm used in classical postprocessing, in practice it can be 
close to 0.96 [11] for Gaussian (or nearly Gaussian) data sets. 
Holevo bound on information available to Eve is calculated with 
the assumption that she is capable of collective measurement of 
the states leaked to her through the noisy attenuating quantum 
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channel [12]. It is calculated as difference of quantum informa­
tion (von Neumann entropy) of the state prior and after measure­
ment by Bob: XBE = S(7E) — S{JE\B), here £ ( 7 ) von Neumann 
entropy of a state with covariance matrix 7 , it is calculated as 
S(E) = J2i G A i

2 " 1 , where are symplectic eigenvalues of 7 ^ and 
G(x) — (x + 1) \og2(x + 1) — x log 2 x. 

To assess security of Q K D protocol against collective attacks 
[13 15] we have to assume that Eve holds purification of the state. 
It is shown for the Gaussian protocols considered in this thesis, 
that security against collective attacks also implies security against 
general attacks in the asymptotic limit [16]. Assuming that the 
tripartite state shared between Alice, Bob and Eve is pure (i.e. 
eavesdropper holds purification of the state), the bound on Eve's 
information becomes \BE = XAB = S(^AB) - S(^A\B). 

6 



Cross talk compen­
sation for multimode 
entanglement distri­
bution 

Preparing and distributing multiplexed entangled states with signi­
ficant number of modes almost inevitably leads to cross talk be­
tween the modes [17-20]. We use a significantly simplified model 
of linear cross talk in distribution of two T M S V states to demon­
strate possibility to compensate its negative effects with local ma­
nipulations of data on one of the sides of communication protocol. 
This data processing uses advantageous properties of continuous 
variable states and measurements that has no known analogy with 
single photon D V Q K D . 

We model a four-mode C V entanglement distribution scheme 
that consists of two T M S V states Fig. 3.1. We assume that cross 
talk, characterized by the linear coupling tc, occurs between two of 
the signal modes B\Bi prior to them being transmitted through an 
attenuating quantum channel. Two of the modes B\B2 are shared 
over lossy and noisy channels with transmittance Ti for an i-th 
mode and with channel excess noise e added to all the modes. 
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Figure 3.1: Entanglement distribution scheme with two pair of 
T M S V states, where cross talk is modeled as a beam-splitter of 
transmittance tc. The cross talk is compensated with optical inter­
ference, when the remote side optimally applies phase shift (PS) by 
7r to one of the modes and couples the signal modes on a variable 
coupler tr. 

The 8x8 covariance matrix of the shared state with cross talk is 

JA1A2B1B2 = 

/ v n vm\Vv2-i z o -Vr^vv2-i z \ 
Vt^J\VV2-l Z [ T i ( V + e - l ) + l ] D ^T~T2~^/V2-1 Z 0 

o V

/ ^ T Y W 2 - I Z V D Vt^vv'2-i z 
\-yfcT\y/V*=l Z 0 VUlhVV2~^l Z [ T 2 ( V + e - l ) + l ] 0 J 

(3-1) 

here r c = 1 — tc, D = rfm^[l, 1] is the unity matrix, Z = — 1]. 
Knowing 7A1A2-B1-B2

 w e c a n evaluate logarithmic negativity for 
each pair of modes separately using Eq. (2.3). In the entanglement 
distribution scheme with cross talk in Fig. (3.1) the initial loga­
rithmic negativity of one T M S V state, before any cross talk and 
the channel loss occurs, is 

LN0(V) = - - log 2 (2V2 - 1 - 2 F v V 2 - l ) , (3.2) 

After taking into account the cross talk, the channel attenuation 
and the excess noise, the logarithmic negativity of the first mode 
AiBi of the shared state with the covariance matrix 'yA1A2B1B2 i n 
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Eq.(3.1) becomes 

LN = - - log 2 - ( l + TTfe + (V - l)(tcV + tc + 1)] + 

Tf{e + V - l ) 2 + V2 - [1 + V + Ti(s + V - 1)] x 

^/T2(£ + V - 1)2 + (y - l ) 2 - 2Ti(V - l)[e - 2 t c (V + 1) + V - 1]). 

(3.3) 

Without the cross talk the shared entanglement increases mo­
notonously with the state variance and, in principle with the squeez­
ing being unlimited, it can grow up to the repeaterless bound [21] 
of the entanglement distribution. In the limit of infinite state vari­
ance (V —> oc) and no cross talk in the attenuating channel with 
excess noise the repeaterless bound depends not only on on T but 
also e and becomes 

lim LN = - \ o g 2

l ~ ^ f ~ £ ) . (3.4) 

In the presence of cross talk the shared logarithmic negativity is not 
growing function of initial state variance anymore. Wi th increase 
of the initial entanglement (or, equivalently, the state variance), 
the shared entanglement reaches its maximum and vanishes if the 
initial variance exceeds 

Vmat = 1±^£. (3.5) 

As an example of application for the multiplexed entanglement 
distribution scheme in Fig. 3.1, we consider a scenario where each 
mode of the 4-mode entangled state shared by the remote parties is 
measured with balanced homodyne detectors, and then the parties 
proceed to establish the secret key among themselves, implementing 
multiplexed version of the entanglement-based C V Q K D protocol 
[22]. The mutual information distributed between Alice and Bob 
by two pairs of modes is additive and the secure key rate Eq. (2.4) 
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becomes 

K = max{0, P(IA1B1 + TA2B2) - XB1B2E} • (3.6) 

Taking into account the assumption that eavesdropper holds pu­
rification of the total state, here 

XB1B2E = S(jA1A2B1B2) - S('jA1A2B1B2\B1B2)-

By reducing or destroying the state's entanglement, cross talk 
also negatively influences the secure key rate. The analogy between 
the cross talk effects on the secure key and entanglement can be 
seen comparing Fig. 3.2 left and right panels. In both cases cross 
talk reduces both shared entanglement and the secure key rate and 
introduces limitations on the initial state variance. 

LN K 

5 10 15 20 

Figure 3.2: Secret key rate for multiplexed state JA1,A2,B1,B2 with 
cross talk tc after attenuation by channel with transmittance T = 
0.9 versus the initial state variance V of the state (left) and versus 
the channel noise (right). Left: no excess noise s = 0. Right: fixed 
signal state variance V — 5. Postprocessing efficiency (3 = 0.96. 

The initial state variance could be optimized with respect to 
cross talk tc and channel parameters T and e. Depending if the 
goal is to maximize the logarithmic negativity or the secure key 
rate, the optimal initial state variance in general would differ. But 
even with the optimization, the damage done by the cross talk 
remains significant. 

10 
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Linear cross talk we consider in our model should be possible to 
compensate by the linear interactions, combination of phase shifts 
and beam-splitters, similar to the method to combat correlations in 
quantum memory channels [23]. In a more complicated case with 
higher number of modes the most general compensating scheme 
would consist of a sequence of Mach-Zender interferometers, but 
for a simpler case of two T M S V states we only need a sequence 
of a phase shift by IT on one mode with the modes B\, B2 then 
interacting on a beam-splitter with transmittance tr, as shown in 
Fig. 3.1, here tr is the parameter to be optimized. 

Applying this decoupling interaction changes the covariance ma­
trix of a pair A\, B\ to 

1A1B1 — y ( A / T 2 r c r T . + V T i t c t r . ) > / V ^ T Z [l+T1tr(V-l)+T2rr(V-l)] D J ' 

(3.7) 

where rr = l — tr. The pair of modes A2, B2 has similar covariance 
matrix up to the replacement of T\ with T2. 

For a noiseless channel with balanced transmittance (same trans­
mittance for both modes X i = T2 = T) it is straightforward to see 
that putting tr = tc fully eliminates the cross talk from the covari­
ance matrix in Eq. (3.7) 

In general case the channel transmittance is unbalanced, i.e. 
it is different for different pairs of modes T\ 7̂  T2 (without loss 
of generality we assume T\ > T2), then the optimal tr has to be 
found numerically. Its value is bound from below and above by 
two important edge cases of very weak and infinitely strong initial 
entanglement for the mode pair A\, B\ 

*J = ^ ^ 7 V, V~l (3.8) 

and 
t°° = v^oo. (3.9) 

Applying optimal coupling tr allows to significantly restore en-
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tanglement and to remove the limitations on the maximal initial 
variance Vmax in Eq.(3.5). For optimally chosen tr the logarithmic 
negativity is an increasing function of V. For infinitely large ini­
tial state variance and tr given by (3.9) the logarithmic negativity 
approaches the limit: 

lim LNrev = - log. 
V—>oo 

* c r 2 + r i ( i - t c - r 2 ) 
tcT2 + Ti(l - tc + T2) 

(3.10) 

The proposed decoupling method allows to almost fully restore the 
entanglement and eliminate the cross talk in both pairs of modes, 
but it depends on numerical optimization with respect to the gen­
erally unknown parameter tr. 

Further we consider an alternative way to compensate for entan­
glement loss (see Fig. 3.3), that relies on the conditional measure­
ment of one pair of modes with feeding forward the measurement 
result to displace another pair of modes A\, B\. This method is 
similar to entanglement localization proposed by [24,25]. This ap­
proach allows to increase entanglement in one pair of modes at the 
expense of completely losing the other pair, but it does not need 
any prior estimation of the cross talk strength. 

On both sides Alice and Bob perform generalised homodyne 
measurement dividing the pair A2l B2 on beam-splitters of variable 
transmittances tA and tu respectively and then measuring both 
quadratures. tA and ts are the parameters to be optimized to 
maximize the logarithmic negativity. The optimal measurement of 
Bob's side does not depend on the state or channel parameters, it 
is always a homodyne measurement of either of the quadratures, 
the optimal £g is either £g = 1 for measurement of x or £g = 0 
for measurement of p. Without loss of generality we further put 
ts — 1- Optimal measurement on Alice's side does depend on the 
state variance V and the cross talk t c, channel transmittance T\ and 
T2 and excess noise e and in general case optimal tA can only be 
found numerically. Independently of what kind of the generalized 
measurement is applied to the pair of modes A2B2 (and what tA 
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Figure 3.3: Measurement and feed-forward control scheme to com­
pensate the cross talk in the pair of modes A\,B\. The two 
parties perform generalized Gaussian measurements by splitting 
modes A2lB2 on variable beam-splitters £ A , £ B and measuring x-
quadratures on the modes A2, B2 and ^-quadratures on the aux­
iliary detection modes DA-,DB- The measurement outcomes are 
then used to feed-forward modes A\, B\. The rest of the scheme 
(source, cross talk and channel) is as in Fig. 3.1. The scheme allows 
increasing entanglement in modes A\, B\ at the cost of tracing out 
modes A2lB2. 

and ts are chosen), the measurement with feed forward always 
improves the entanglement in the pair A\B\. 

In the limit of a very long channel with extremely high loss 
2"i,2 ~ ~ 0 the optimal measurement is the balanced heterodyne 
detection with tA = 1/2. The logarithmic negativity of the pair 
Ai,Bi LNhet is a growing function of the state variance and in 
the limit of V —> oc and no excess noise (e = 0) it asymptotically 
approaches 

1 
Inn LNhet = - - log 2 

V—>oo Z 
(i-t cri)[i-t c(Ti-r2)-r2] 

(i-r-tcTi)2-(i-tc)r2(i-tcri) 
(3.11) 

A l l the proposed compensation methods are compared in Fig. 
3.5 and3.4, demonstrating that all the compensation methods allow 
to significantly restore the Gaussian entanglement and the optimal 
interference method significantly restores the key rate. Compari­
son, how the entanglement in both pairs of modes is restored by 
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LN 
pair 1, opt measurement - — pair 1, opt. variance 

1 
0.50 

0.10 

0.05 

0.01 

Figure 3.4: Comparing different ways of cross talk compensation: 
optical interference using a decoupling beam-splitter, and entan­
glement concentration by optimized conditional measurement and 
feed-forward control. Plot shows the logarithmic negativity in a 
pair of modes after each respective method is applied. Initial en­
tanglement is fixed LNQ = 4., cross talk is tc = 0.8, and transmit-
tance ratio is Ti/T2 = 1.2, parameters tr and tA are optimized. 
The ideal case without any cross talk is not shown, but would be 
indistinguishable from the optimized interference method for given 
parameters. 

the different ways to compensate for cross talk, depending on the 
channel attenuation is given in Fig. 3.5. The passive method that 
implies the initial state variance optimization is the easiest to im­
plement, it gives comparable results to the active methods, but only 
for high attenuation, it also does depend on the knowledge of the 
cross talk coupling tc. The active compensation schemes always 
perform better, in particular the optimal interference, in case of its 
ideal implementation, beats all the other methods. The optimal 
interference also preserves all the modes intact, while relying on 
the correct choice of the parameter t r , which can be challenging. 
While the measurement with the feed forward control halves the 
number of modes successfully distributed, but can be implemented 
without any knowledge of the strength of the cross talk tc. 

Depending on the applications this disadvantage can be crucial. 
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Key 

Figure 3.5: Different ways of cross talk compensation influencing 
the secret key rate for total state. Initial entanglement is fixed 
LNQ = 4.0, cross talk is tc = 0.8, and transmittance ratio is 
T\jTi = 1.2, tr is optimized. The compensation method using 
optimal measurement with feed forward is not applicable for Q K D . 

In Q K D , where the mutual information in the pairs of modes is ad­
ditive, the entanglement concentration method that traces out one 
of the mode pairs does not help to increase the key rate, but only 
deteriorates it further (except for the case of unrealistically strong 
cross talk). In Fig. 3.4 we demonstrate how the proposed optimal 
interference compensation method allows to restore the secret key 
rate in the multiplexed entanglement-based Q K D scenario. 

Summary. In the entanglement distribution scheme presence of 
the cross talk deteriorates entanglement and the secret key rate. 
Depending on channel parameters and cross talk strength the ini­
tial state variance could be optimized to maximize entanglement 
shared. The negative effects of cross talk can be at least partially 
compensated by either of two methods we suggest and compare 
here. Depending on the purpose of entanglement distribution, e.g. 
for entanglement-based Q K D protocols, the physical implementa­
tion of the cross talk compensating schemes could be substituted 
with numerical data processing. In the following Chapter 4 we 
demonstrate applicability of numerical implementation of the opti-
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mal interference method to compensate the cross talk in the exper­
imental source with significantly more modes. 
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4 | Compensating 
cross talk in 
frequency multi­
plexed entangled 
Q K D source 

In this Chapter we present the main results of the published paper, 
where we study a way to increase the performance of the entan­
glement based C V Q K D protocol by mode-multiplexing of optical 
transmission channel in the frequency domain. We test the method 
on the experimental data, obtained using the SPOPO as a source of 
entangled states and the mode-discriminating homodyne detection. 
Using the experimental data we then model a multimode version 
of the entanglement-base C V Q K D with homodyne detection. The 
cross talk between signal modes appears to be very strong, it de­
teriorates the secret key rate and negates benefits of multiplexing. 
We apply the multimode cross talk compensation method based on 
data manipulation, equivalent to linear state manipulations, similar 
to the optimized interference method suggested in previous Chap­
ter. We evaluate security of resulting C V Q K D protocol, confirming 
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the efficiency of cross talk compensation. 
We model an E B C V Q K D protocol using data from the ex­

periment [26] with SPOPO as a source of frequency multiplexed 
entanglement and mode-discriminating homodyne detection that 
distinguishes 16-frequency bands. To generate the entangled light, 
a synchronously pumped optical parametric oscillator (SPOPO) in­
cluding a 2-mm-thick BiBsOe (BiBO) crystal, which operates below 
the threshold, was employed. The main laser is a Ti-sapphire pulse 
laser, with pulse duration of 120 fs centered at Ao ( = 795 nm) with 
a repetition rate of 76 MHz. The beam from the laser splits into two 
beams, where one is used for generating frequency-multiplexed en­
tangled light, and the other serves as a L O for mode-discriminating 
homodyne detection. The pump laser for the SPOPO (centered at 
Ao/2) is prepared by second-harmonic generation of the main laser 
in a 0.2-mm-thick B i B O crystal. 

In the actual experiment all 16 frequency modes are generated 
in a single beam, when we suggest the way to use it in the Q K D 
protocol, we consider a scenario, as shown in Fig. 4.1, where half 
of the frequency modes are measured by Alice and the other half 
are distributed to Bob through pure loss channel. Both multimode 
beams are detected by homodyne detectors and processed to opti­
mally eliminate the cross talk and improve the secret key rate. The 
data processing corresponds to a local physical multimode sym-
plectic transformation and was optimized to achieve higher key 
rate between the trusted parties. The trusted parties then can 
use authenticated classical channel to perform post-processing by 
correcting their errors and amplifying the data privacy in order to 
obtain quantum-secure key as the result. 

Optimized symplectic transformation we applied is equivalent 
to set of passive local operations on each side. The most general 
case would be a set of Mach-Zehnder interferometers acting on each 
possible combination of modes [27]. However, due to absence of the 
correlations between x and p quadratures no phase shifts can in­
crease correlation (and, consequently, the mutual information) and 
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Figure 4.1: Bright colors show a sketch of a C V Q K D test-bed for 
study of the multimode entangled source at the side of sender, Alice, 
with cross talk coupling between the frequency modes in both of the 
two beams, leaving the source. The entangled source is based on 
eight pairs of modes, here only four of them are shown for simplicity. 
The part of the C V - Q K D protocol tested experimentally is given 
in bright colors, while the part, that is modelled theoretically, is 
given in dim colors. 

a sequence of Mach-Zehnder interferometers simplifies to a sequence 
of beam-splitters between all possible pairwise mode permutations 
on each side. Optimal symplectic unitary operation is equivalent 
to a basis change and it cannot influence information that leaked 
to eavesdropper. Basis change does not influence Holevo bound on 
Eve's information. To maximize the key rate Eq.(2.4) it is therefore 
enough to maximize the mutual information. In the C V Q K D pro­
tocol with homodyne detection only one quadrature can be chosen 
for the quantum key generation, we therefore consider p quadrature 
for the key. 

We compare the secure key rate robustness to channel loss with 
the original experimental data and the data after optimal process­
ing in Fig. 4.2. The optimized data manipulation has noticeably 
improved robustness to loss (and, respectively, increased the secure 
distance) of frequency-multiplexed C V Q K D protocol, the tolera-
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Figure 4.2: Key rate of C V Q K D versus channel transmittance T 
(in dB) as obtained from the original data on the full multimode 
entangled state (blue solid line), after optimized local data manip­
ulations performed by the trusted parties for different number of 
used pairs of modes (non-solid lines for reduced number of pairs 
and thick solid violet line for the maximum number of eight pairs), 
linear extrapolation for larger number of modes (blue and brown 
dashed lines). Post-processing efficiency (3 = 96%. 

ble loss increased from 7.5 dB before processing (blue) to 28 dB 
(orange). To show how multimode nature of the source increases 
the key rate we also calculated the key rates for reduced states with 
only some modes used for the key generation and extrapolated it to 
the cases with significantly larger numbers of modes (dashed lines). 
Comparing the results for different number of modes and extrap­
olations suggests that increasing the number of frequency bands 
measured with mode-discriminating homodyne detection can fur­
ther increase performance of the Q K D protocol. 

Summary. This work suggests SPOPO in prospect can be a 
useful source for implementation of frequency-multiplexed entangle­
ment-based C V Q K D protocols. During generation and measure­
ment this source suffers from cross talk between different frequency 
modes that can be compensated by optimally applying data manip-
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illations in the postprocessing stage of the protocol. The optimal 
data processing allowed to increase the mutual information between 
the sets of modes on both sides, while the leaked information is not 
affected. We observed increase of protocol robustness to channel 
attenuation from about 7.5 dB to 28 dB. 
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5 | Q K D with macro 
scopically bright 
coherent states of 
light 

Besides channel multiplexing, when each mode carriers signal in­
dividually and has to be measured individually, multimode states 
can be used even in quantum communication scenarios without 
mode-discriminating measurement.Bright states containing multi­
ple modes can be treated in an experiment as single-mode states of 
higher intensity. The possibility to implement entanglement-based 
Q K D protocol with B S V was proposed earlier [28]. Here we present 
the main results of the published paper that considers a prepare-
and-measure C V Q K D protocol with bright coherent states, based 
on the results of the experimental test of their generation and de­
tection. 

Bright states are called so in the sense that they consist of mul­
tiple modes, making them easier to handle in practical Q K D imple­
mentations. The downside of having multiple signal modes is that 
not all of them overlap successfully with the local oscillator during 
the homodyne measurement, hence creating additional noise. We 
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test the possibility to reduce the resulting noise and estimates the 
applicability of the bright states for C V Q K D . 

a s igna l 
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Figure 5.1: The standard scheme for homodyne detection (left) and 
the scheme with uncompensated modes in the multimode signal 
beam (right). 

In regular homodyne detection in Fig. 5.1 (left) single-mode 
signal beam is mixed with single-mode local oscillator on the bal­
anced beam-splitter, while in homodyne detection of bright states 
it is necessary to mix all modes of the signal state with the multi-
mode local oscillator. In case the mode matching is imperfect, 
some signal modes do not match with the local oscillator modes, 
these unmatched modes mix with vacuum on the beam-splitter, 
adding extra noise to measurement results [28]. In Fig. (5.1 (right) 
we show the case with only two signal modes, one of which does 
not overlap with the local oscillator. The measured quadrature 
variance gains extra noise from the unmatched mode, let's name 
the matched mode \a) and the unmatched one the measured 
quadrature variance becomes 

Var (x) 1 + ICI 
\<^LO\ 

|2 ' (5.1) 

where Var(x) is the quadrature variance of the matched signal 
modes (being Var(x) = 1 for pure coherent states), |£ | 2 is the 
mean number of photons in an unmatched signal mode, \QLLO\ is 
the mean photon number of the L O . 
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Figure 5.2: Operational scheme of prepare-and-measure C V Q K D 
protocol using bright coherent states. Alice prepares bright coher­
ent states and applies Gaussian modulation to them. She sends 
them (and local oscillator) through the attenuating quantum chan­
nel to Bob, who measures the signal with homodyne detection. The 
detection is assumed to be imperfect. 

In the experiment performed by the group at M P L Erlangen 
(Prof. M . Chekhova) the homodyne detection with two modes one 
mutched and one unmatched was performed on coherent states. 
Based on the experimental data we consider a coherent state prepare-
and-measure protocol described in Fig.5.2. 

Initially Alice posses a bright coherent state with covariance 
matrix r)^oh = D. After Alice applies modulation according to ran­
dom variables she draws from two Gaussian distributions with zero 
mean, the covariance matrix of the state becomes that of a thermal 

a quantum channel to a remote party Bob, who measures one of 
the signal quadratures with homodyne detection. The variance 
of the modulation has to be optimized depending on the channel 
parameters, attenuation T and excess noise VN- The covariance 
matrix of the state shared through a channel for the the equivalent 
entanglement-based protocol used for security proof [29] is 

The secret key rate is calculated from the covariance matrix JAB 

JAB = (5.2) 
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using Eq. (2.4). The presence of unmatched modes brings extra 
noise to the results of Bob's homodyne measurement. The security 
proof assumes that the eavesdropper purifies the state, forcing to 
attribute any noise to the eavesdropper's interference and lowering 
the secure key rate. 

LO mean photon number, | a | 2 

Figure 5.3: The key rate for multimode coherent-state C V Q K D 
in the presence of mode mismatch versus the L O brightness at 
different values of the channel transmittance T, obtained from the 
experimentally measured noise (points with error bars) and from 
the calculated quadrature variance (5.1), (lines). The modulation 
variance is optimized, (3 = 0.96 and e2 = 1 as confirmed in the 
experiment. 

The asymptotic secure key rate versus increase in L O brightness 
for different channel transmittance is given in Fig. 5.3. The key rate 
grows with the larger L O photon number, the maximal key rated is 
obtained with the maximum L O brightness of 106 photons reached 
in the experiment. In practice it is impossible to indefinitely rise L O 
brightness due to detectors limitations, in Fig. 5.4 the theoretical 
prediction of the key rate vs mean photon number in unmatched 
modes is given for different fixed L O mean photon numbers for a 
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Figure 5.4: The key rate for multimode coherent-state C V Q K D in 
the presence of mode mismatch versus the unmatched mode bright­
ness, |C| 2, when only the matched mode is modulated, or, equiv-
alently, versus the number of unmatched modes, 7V, when all the 
modes are modulated, and the L O brightness is varied, T = 0.5. 
The modulation variance is optimized, (3 = 0.96 and e2 = 1 as 
confirmed in the experiment. 

mid-range 3 dB channel is plotted, showing how the key rate is 
destroyed by the noise the unmatched modes create. 

Summary. Presence of bright unmatched modes can undermine 
the security of coherent-state C V Q K D with multimode states by 
leading to the excess noise in homodyne measurement results, which 
has to be assumed untrusted. We used experimental data that 
demonstrated how this noise can be suppressed by increase of the 
power of the local oscillator, to model a C V Q K D protocol with 
multimode coherent states, showing the possibility to perform C V 
Q K D with bright states using optimal modulation and proper mode 
matching. 
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6 Conclusions 

In this work we theoretically study possibility to implement mode 
multiplexing in Gaussian quantum communication, in particular 
entanglement distribution and quantum key distribution. Our the­
oretical results have been experimentally verified in collaboration 
with L K B team at Sorbonne University in Paris (Prof. N . Treps) 
and the group at M P L Erlangen (Prof. M . Chekhova). Using the 
multimode quantum states, besides obvious advantage of multiplex­
ing the protocol and increase in its capacity, can bring some issues, 
we address in detail one of them, the inter-mode cross talk, i.e. cou­
pling of multiplexed modes among themselves. We also address the 
case when multiple modes are not used for channel multiplexing, 
but to increase the signal brightness. 

Firstly, we theoretically study the cross talk problem in a sim­
ple 2-TMSV state model looking for the effect linear cross talk has 
on entanglement distribution. The entanglement shared is shown 
to be damaged by the cross talk. The negative effect of cross talk 
can be compensated with an optimally chosen network of passive 
optical elements. We propose a compensation scheme with the 
phase adjustment and optimized interference on a beam-splitter, 
and compare it to an alternative scheme that uses optimal gen­
eralised homodyne measurement with feed-forward control. The 
proposed interference method, if implemented in an optimal way, 
shows better results and, unlike the measurement with feed forward 
control, preserves all the modes intact. 
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We then proceed to apply a more generalised version of the 
proposed optimal mode interference method to an experimental 
multimode source of entanglement and model a C V Q K D protocol 
using this source, the synchronously pumped optical parametric os­
cillator. In the process of the state generation and measurement 
significant noise is introduced to the signal, some of this noise can 
be attributed to linear cross talk among the frequency modes. We 
apply optimal numerical postprocessing (that is a multimode gen­
eralisation of the optimal interference method) with the aim to 
compensate the cross talk and increase the mutual information and 
the secret key rate. As a result we increase robustness of the pro­
tocol to channel attenuation from 8 dB to 28 dB. 

Lastly, we study a case where the mode-discriminating mea­
surement is not applicable and multimode structure of the signal 
is used to increase its brightness, making it easier to handle in the 
experiment. The problem in the implementation may arise if the 
modes are not perfectly matched with the local oscillator on the 
balanced beam-splitter of the homodyne detector. The unmatched 
modes bring noise to the signal, decreasing the secret key rate of 
the coherent state protocol we model with the help of data from the 
proof-of-principle experiment. We show that optimal state modu­
lation and noise suppression by increasing local oscillator intensity 
improves the protocol performance. 

To conclude, mode multiplexing for quantum communication 
presents multiple challenges in practical implementation, this the­
sis tackles some of them, concentrating mainly on the inter-mode 
cross talk. In the future this general line of work can be further 
expanded in several directions, experimentally with the verification 
of the C V Q K D protocol we modelled. Theoretically also the more 
complicated models of cross talk can be considered if experimental 
practice will require it. The presented work is an essential step 
in development and implementation of efficient continuous-variable 
quantum communication with mode multiplexing 
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