
T
B R N O UNIVERSITY OF T E C H N O L O G Y
VYSOKÉ U Č E N Í TECHNICKÉ V BRNĚ

F A C U L T Y O F I N F O R M A T I O N T E C H N O L O G Y

F A K U L T A I N F O R M A Č N Í C H T E C H N O L O G I Í

D E P A R T M E N T O F I N F O R M A T I O N S Y S T E M S

ÚSTAV I N F O R M A Č N Í C H SYSTÉMŮ

W E B A P P L I C A T I O N PENETRATION
TESTING A U T O M A T I O N
AUTOMATIZACE PENETRAČNÍHO TESTOVÁNÍ WEBOVÝCH APLIKACÍ

M A S T E R ' S T H E S I S

DIPLOMOVÁ PRÁCE

A U T H O R

A U T O R PRÁCE

S U P E R V I S O R

VEDOUCÍ PRÁCE

B e . D A N I E L D U Š E K

I n g . J A N P L U S K A L

B R N O 2019

Brno University of Technology
Faculty of Information Technology

Department of Information Systems (DIFS) Academic year 2018/2019

M a s t e r ' s T h e s i s S p e c i f i c a t i o n
21678

Student:

Programme:

Title:

Dušek Daniel, Be.

Information Technology Field of study: Information Systems

Web Application Penetration Testing Automation

Category: Networking

Assignment:
1. Study approaches, methods and existing software used for Web Application penetration testing. Focus

on techniques and ways of penetration testing that can be automated. Select a suitable testing set of Web
Applications upon which you will be able to demonstrate studied approaches.

2. Design suitable, generally applicable approach to Web Application penetration testing focused
on retrieving information about target Web Applications that can be extracted by non-permanent and non
destructive interactions.

3. Design and implement an automated tool that follows the approach proposed in (2) for Web Application
penetration testing.

4. Evaluate the implemented tool against the testing set selected in (1).
5. Create user documentation for the implemented tool, do not omit examples of proper usage. Outline

possible ways of future extensions and discuss their benefits.
Recommended literature:

1. Zalewski, M. (2012). The tangled Web: A guide to securing modern web applications. No Starch Press.
2. Weidman, G. (2014). Penetration testing: a hands-on introduction to hacking. No Starch Press.
3. Stuttard, D., & Pinto, M. (2011). The web application hacker's handbook: Finding and exploiting security

flaws. John Wiley & Sons.
Requirements for the semestral defence:

• Items 1 and 2.
Detailed formal requirements can be found at http://www.fit.vutbr.cz/info/szz/
Supervisor: Pluskal Jan, Ing.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2018
Submission deadline: May 22, 2019
Approval date: October 30, 2018

Master's Thesis Specification/21678/2018/xdusek21 Strana 1 z 1

http://www.fit.vutbr.cz/info/szz/

Abstract
This work has two goals — to propose a generally applicable approach to web applicat ion
penetration testing that is non-destructive to a target applicat ion, and to implement a
tool that w i l l follow it . The proposed approach has three phases. In the first phase, a
tester gathers and adheres to the testing requirements (including the non-destructiveness),
prepares a tool set and starts the reconnaissance. In the second phase, addi t ional testing
tools are used to process collected information and to verify vulnerabili t ies and provide
conclusions. D u r i n g the th i rd phase, a final report is generated. The implemented tool is
buil t as a collection of modules that are capable of the detection of reflected X S S , hidden
query string parameters, resource enumeration and server misconfigurations detection. In
comparison to Acune t ix vulnerabi l i ty scanner, the implemented tool performs just as well in
the reflected X S S detection and outperforms the Acune t ix in hidden resources enumeration.
This work also brings a proof of concept implementat ion of a tool for Pastebin.com side-
channel monitoring.

Abstrakt
Tato p r á c e m á dva cíle — navrhnout obecně ap l ikovate lný p ř í s t u p k p e n e t r a č n í m u t e s tován í
webových apl ikací , k t e r ý bude využ íva t pouze n e d e s t r u k t i v n í c h in te rakc í , a dá le pak imple
mentovat n á s t r o j , k t e r ý se t í m t o postupem bude ř íd i t . N a v r h o v a n ý p ř í s t u p m á t ř i fáze -
v p r v n í fázi tester p o s b í r á p o ž a d a v k y pro tes tovac í sezení (vče tně p o ž a d a v k ů na nedestruk-
tivnost) a p ř ip r av í si n á s t r o j e a postupy, k t e rých př i t e s tován í využi je , ná s l edně začne s
p r ů z k u m e m . V d r u h é fázi využi je d o d a t e č n ý c h n á s t r o j ů pro zp racován í informací z p řed
chozí fáze a pro ověření a o d h a l e n í z ran i t e lnos t í . Ve t ř e t í fázi jsou všechny informace
překovány ve z p r á v u o p e n e t r a č n í m tes tován í . I m p l e m e n t o v a n ý n á s t r o j je p o s t a v e n ý na
modulech, k t e r é jsou schopny o d h a l e n í ref lektovaného X S S , serverových miskonfigurací ,
sk ry tých adresn ích p a r a m e t r ů a sk ry tých za j ímavých s o u b o r ů . V p o r o v n á n í s k o m e r č n í m
n á s t r o j e m Acune t ix je i m p l e m e n t o v a n ý n á s t r o j s rovna te lný v detekci ref lektovaného X S S a
lepší v detekci sk ry tých za j ímavých s o u b o r ů . P r á c e t a k é or ig iná lně p ř eds t avu j e n á s t r o j pro
s ledování p o s t r a n n í h o k a n á l u Pastebin.com s cí lem detekce ut íka j íc ích informací .

Keywords
Penetrat ion testing, web applications, automation, information security, security, open
source inteligence, automated security scanning.

Klíčová slova
P e n e t r a č n í t e s tován í , webové aplikace, automatizace, in formační bezpečnos t , veřejně dos
t u p n é informace, a u t o m a t i z o v a n é t e s tován í poč í t ačové bezpečnos t i .

Reference
D U Š E K , Danie l . Web Application Penetration
Testing Automation. Brno , 2019. Master 's thesis. Brno Univers i ty of Technology, Facul ty
of Information Technology. Supervisor Ing. J an P luska l

http://Pastebin.com
http://Pastebin.com

W e b A p p l i c a t i o n P e n e t r a t i o n

T e s t i n g A u t o m a t i o n

Declaration
Hereby I declare that this master's thesis was prepared as an original author's work under
the supervision of Ing. Jan P luska l . A l l the relevant information sources, which were used
during preparation of this thesis, are properly cited and included in the list of references.

Danie l D u š e k
M a y 13, 2019

Acknowledgements
I would like to thank my thesis advisor and supervisor Ing. Jan P luska l . The door to
his office was always open whenever I ran into a trouble spot or had a question about my
research or wri t ing.

Contents

1 Introduction 3

2 W e b Appl icat ion Penetration Testing Today 5
2.1 Web Appl ica t ions Today 6
2.2 Web App l i ca t i on Penetrat ion Testing Today 7
2.3 Penetrat ion Testing Approaches and Methods 9
2.4 C o m m o n Penetrat ion Testing Techniques 11
2.5 Ex i s t i ng Software for Penetrat ion Testing 15
2.6 Testing Web Appl i ca t ion Sets 20

3 Proposed A p p r o a c h 23
3.1 Non-destructive and Non-permanent Act ions 23
3.2 High-level Approach Proposal 23
3.3 Pre-penetration Testing Considerations 24
3.4 O S I N T S C A N Phase 25
3.5 3rd P A R T Y T O O L S Phase 26
3.6 O S I N T R E P O R T Phase 27

4 Too l Design and Implementation 28
4.1 Relat ionship Between Proposed Approach and ReconJay 29
4.2 Modules and Modu le Launching Design 29
4.3 Results Presentation Design 33
4.4 Module Launching Implementation 34
4.5 Results Presentation Implementation 36
4.6 Modules 38
4.7 Case Studies 48

5 Testing and Evaluation 52
5.1 Testing & Evaluat ion Process Design 52
5.2 Testing & Evalua t ion Results 58

5.3 Future Extensions 62

6 Conclusion 64

Bibl iography 67

Appendices 71

A Presentation styles 72

1

B ReconJay Tool — User M a n u a l 75

C Contents of the Opt ical Disc 77

2

Chapter 1

Introduction

One of the today's most interesting areas for penetration testing is the realm of web ap
plications. A great part of the day to day tasks that most people face can and is done
either through the web or other service that utilizes the web platform indirectly. W i t h this
relatively new trend the need for securing and security testing these platforms arises.

Th is work aims to study existing approaches, techniques and software used for web ap
plicat ion penetration testing and then propose new theoretical approach to i t . The new
approach hopes to be both generally applicable and possible to automate, while ut i l iz
ing non-permanent and non-destructive actions and operations. Using this type of actions
is motivated by the idea of later automation and their automated execution without the risk
of damaging the target applicat ion while doing so.

Proposed approach aspires to enable automation, which w i l l decrease the amount of manual
work that would otherwise needed to be performed by a tester. Th is saves their time
and frees their hands to focus on other tasks wi th higher priority, or the tasks that would
be normal ly out of the tested scope. A s the approach assumes that the automation w i l l
take place, it also considers enabling a tester to observe, follow, and process higher volume
of data through automated means, which then also increases the scope covered by testing.

Subsequently, the tool for web applicat ion penetration testing that follows the proposed
approach is designed, implemented and tested w i t h a vision of easing the work of a pen
etration tester. The expected output of the tool is not purely the report of discovered
vulnerabilit ies, but also recommendations for a tester relevant to a tested applicat ion.

Chapter 2 of this thesis summarizes the current state of the web applicat ion penetration
testing. This includes typica l actors that conduct i t , existing approaches and methods
such as Zero Entry Hacking [8] or OWASP Web Application Security Testing [29], common
techniques and existing software used for the penetration testing. The chapter closes up
wi th a specification of testing set of web applications against which the implemented tool
is to be tested later on i n the thesis.

Chapter 3 is dedicated to designing the suitable and generally applicable approach to web
application penetration testing, taking advantage of the already mentioned non-permanent
and non-destructive actions and operations.

In chapter 5 the final product of this thesis, ReconJay tool is designed. Later in the chap
ter its implementat ion is presented and the important parts are highlighted. The tool is

3

comprised of modules that support discovery of a reflected X S S vulnerabili ty, hidden re
sources and parameters enumeration and I I S / V C S misconfiguration detection. A p a r t from
that, a standalone module named PastebinTracker for moni tor ing the Pastebin.com side-
channel is designed, implemented and presented. Last part of the chapter 5 presents two
hypothetical case studies that explains possible use case of the both implemented tools.

Chapter 6 evaluates both implemented tools from mult iple perspectives. Eva lua t ion phase
begins w i t h a general functionality testing of the implemented tools and then continues
wi th evaluation of each of the implemented modules. After that a comparison to a com
mercial Acunetix vulnerabi l i ty scanner is presented. To wrap up the evaluation phase,
ReconJay tool is run against testing sets of web applications specified i n chapter 2.

4

http://Pastebin.com

Chapter 2

Web Application Penetration
Testing Today

This chapter aims to cover the current state of web applicat ion penetration testing i n rele
vance to the overall goal of the thesis.

Reading this chapter w i l l introduce the reader into some of the causes of vulnerabilit ies
in modern web applications and the reasons for their prevalence. The reader w i l l also learn
about the two approaches (methods) of penetration testing commonly used in the field
of web applicat ion security. This chapter also features frequently used web applicat ion pen
etration testing techniques and discusses their properties and possible automation. E n d i n g
of this chapter presents a set of target web applications used for testing the u t i l i ty im
plemented i n pract ical part of the thesis. Selection process of testing web applicat ion set
is also mentioned.

Fi rs t part of this chapter presents current state of web applications that are a l l typical ly
published on the today's Internet.

Second part discusses typica l actors operating in the realm of Web Application Penetration
Testing, their possible motives and agendas, as well as tools and approaches deployed.

T h i r d part of this chapter takes a closer look at the two most common and most used
penetration testing approaches (methods).

Four th section focuses on common web applicat ion penetration testing techniques while pay
ing special attention to those techniques that can be automated. Strengths, weak
nesses and potential to be performed without destructive consequences are discussed.

F i f th section of this chapter studies existing software used for penetration testing of web
applications. W h e n possible, chaining of such software to achieve greater automa
t ion is proposed. Strengths and weaknesses are discussed and possibil i ty of future
extensions and improvements is mentioned.

S ix th and final section of this chapter presents a set of target web applications against which
the u t i l i ty implemented i n pract ical part of the thesis is tested, including the selection
process of applications put into this set.

5

2.1 Web Applications Today

In the early days of the Internet, websites and web applications were mainly static H T M L
documents created by first Internet users, to be shared wi th others. A lot has changed since
then and the Internet has become more about communicat ion and user cooperation, than
about passive document sharing and reading. Th is shift towards more active user engage
ment and contr ibut ion is also known as a transi t ion from Web 1.0 towards Web 2.0 [7].

The Web 2.0 drastically changes the way web applications are buil t and used. The focus
is now more on bringing people together (social networks like Facebook, Twit ter , Instagram,
and others) and on allowing them to communicate efficiently (web email clients, team com
municat ion tools like M S Teams or Slack, or, of course, integrated chat into aforementioned
social networks) [7]. Onl ine and mobile banking applications are also becoming a norm [1].

In order to power the Web 2.0, loads of new languages and technology means were invented.
Use of Javascript on modern web is way more common then it used to be, new "hot"
frameworks and libraries are released almost every day and web developers are constantly
on the lookout for the new technology or the tr ick that would enable them to serve content
to their users just a l i t t le bit faster.

M o d e r n ways of developing web applicat ion — like for example using the Node.js — come
out of the box wi th an available package manager that enables developers to use other
developer's code in their applications very easily. F ina l ly , the produced web applications
are way more complex and comprise of way more source code than they used to.

Today's web applications are also way more connected to each other. One of the very
common patterns that can be spotted " i n the w i l d " is web applicat ion referencing sources
from different applications located on the internet. A great example of such behavior
is the Google Analytics Javascript code used for t racking user act ivi ty on the web. Other
popular 3rd party Javascript source files frequently included in websites are various kinds
of support chat for typica l e-commerce sites, or tools enabling addi t ional functionality
for visually impaired users.

A lot of applications that used to reside wi th in a user's computer, as desktop applications,
is also slowly replaced by their web-based alternatives or clones. Very frequently out of con
venience — if the user owns mult iple devices, it is easier to use cloud-based web applicat ion
instead of instal l ing the applicat ion on each and every device. Though it may not be too
obvious, this replacement has one important side effect — a lot of data that would normally
stay off the web (and a l l the third-parties) are now transmit ted and stored to new places
for which the data may have not been intended.

W h i l e a l l this heavily improves the user experience for both the developers and the standard
users, w i th a l l the new technology being introduced, the attack surface on web applica
tions grows larger every day. A n d so is the dependence of newly created web applications
on frameworks and libraries.

A l l of the mentioned above substantially increases the attack surface of a typ ica l modern
web applicat ion and should be pa id special attention i n the development phase. Combined
wi th the everlasting competi t ion between browser vendors for new H T M L 5 , C S S 3 , and
Javascript features [40], which also led to vulnerabili t ies in the past [40], web applicat ion
security becomes a very broad and current topic.

G

2.2 Web Applicat ion Penetration Testing Today

A t the t ime of wri t ing , most of the internet facing web applications is l ikely impacted by
some form of penetration testing on a dai ly basis — be it i n the development phase from
well-intended reasons by members of the development team, i n the product ion by curious
security-savvy visitor, or by automated security scanning crawlers wri t ten for various rea
sons. The need to secure web applications against the misuse by the users and potential ly
by the hackers is generally acknowledged.

Actors conducting penetration testing of web applications are often classified into three
categories [3, 36] (see below). The author of this thesis, based on his experience, proposes
one addi t ional category (the last bullet point):

• Researchers,

• malicious hackers,

• script kiddies,

• automated/autonomous systems.

Each of the mentioned categories has its representative members wi th various motives
for their actions. Prototypes of actors from these categories are briefly introduced and
discussed below. Note that this introduct ion does not a im to cover every possible actor
and their motivat ion, but rather to showcase the most commonly present actors and offer
the author's thoughts on their possible motivat ion and reasoning behind it.

A c t o r : Researcher

Web applicat ion researchers, sometimes also called "white-hats", are interested in ethical
hacking and penetration testing wi th a goal of improving the security state of the system
under test, while staying wi th in the law [30]. Very often they study already existing research
and techniques and then t ry to bu i ld on top of them, to take it a bit further [19].

Some of them may be motivated by the security bug bounty put out by software companies.
Others may be motivated by improving their own knowledge, information security field
in general or the combination of already mentioned. Very often, researchers publ ish their
research i n dedicated security conferences around the world.

Researchers very often write their own software tools that help them conduct penetration
testing. These tools are sometimes open-sourced and shared among other researchers so
they can be expanded and improved by the community. Example of such tools could be
Z A P , WebScarab or C A L 9 0 0 0 1 (all developed as a part of the O W A S P ini t iat ive) . There
are also commercial and community-free tools used by many, that are designed to ease
penetration testing and research, such as BurpSu i t e 2 .

1 Available at https: //www.owasp.org/index.php/Appendix_A: _Testing_Tools
2Vendor's website: https://portswigger.net/burp

7

http://www.owasp.org/index.php/Appendix_A
https://portswigger.net/burp

Actor: Malicious Hacker

Malic ious hackers, often called "black-hats", are actors that conduct penetration testing
wi th malicious intentions, very frequently motivated by financial or other personal gains [32].
They employ various creative ways necessary to successfully penetrate their target while
paying extra attention to covering their tracks and not being discovered.

These actors may come from very different backgrounds such as c r imina l organizations,
various government intelligence agencies, terrorist and hacktivist groups, but they can also
be working alone [18]. Mot iva t ion highly depends on their background — for cr iminal
organization hackers it could be money or access to sensitive information that could be
used for extort ion or avoidance of capture, for government intelligence agency hackers it
could be sensitive information and surveillance.

Tools being used are again dependent on the organization or background from which
the hackers come. Same as white hat hackers, malicious hackers certainly write a lot
of their own utili t ies and tools to simplify hacking, and they just as well use commercial
and community-powered tools too.

Actor: Script Kiddie

Actors falling wi th in this category are mostly people wi th insufficient computer skills relying
on other people's work that they can use to exploit and penetrate the systems. They tend
to use software developed by more qualified and more advanced hackers to attack their
targets. Due to their lack of skills and knowledge i n the field, they often do not take
the necessary precaution to avoid getting caught [31].

They are motivated by getting attention for their "hacks" and defacements of web applica
tions and similar, many times by making a name for themselves [23].

Generally, any tool that provides clear enough user interface and advertises that enables
hacking can be i n script k iddy 's repertoire. There are recorded cases when tools developed
likely by black-hats, targeted at script kiddies, were introducing malware into script kiddies '
computers and networks [14].

Actor: Automated/Autonomous System

The last category of penetration testing actors mentioned in this thesis is the category
of automated or event autonomous systems. Such systems crawl the internet facing web
applications and scan them for vulnerabilit ies. These systems can be deployed by any
of the previously named categories of actors to follow their agendas.

Such systems can vary i n their complexity and nature. Commerc ia l general purpose vu l
nerabili ty scanners such as Netsparker 3 or BurpSui te scanner are representatives of the au
tomated group. Penetrat ion testers deploy these tools against their target instance and
launch the scan. Once the scan finishes, they are provided wi th an overview of discovered
vulnerabilit ies and places where they were discovered. The results of these scanners cannot
be b l indly trusted [26] and it is up to penetration testers to reproduce and verify them.

3Vendor's website: https://www.netsparker.com/

8

https://www.netsparker.com/

Cer ta in systems deployed to the Internet are not only automated but also autonomous. E x
ample of such system is the Andromeda/Gamarue botnet that targeted Wordpress instances
and tr ied to break into their administrations [37]. Once it broke i n and gained control, it
used the instance to send out spam [6].

Other systems of s imilar nature exist, w i th various targets and agendas, scanning and
exploit ing vulnerabilit ies i n well-known web content management applications [35], and
very likely also systems that crawl the Internet and look for the well-known vulnerabi l i ty
classes.

Au tho r of this thesis believes that automated and autonomous actors w i l l be much more
prevalent i n the future as the number of internet-connected devices grows bigger every day.
W i t h the growing number of Internet-connected devices grows also the number of devices
that can be infected and abused for malicious purposes, such as running vulnerabi l i ty
scanning bots mentioned above.

2.3 Penetration Testing Approaches and Methods

Following text introduces two existing penetration testing approaches (also referred to as
testing methods). The first one being generally applicable to any form of penetration
testing, while the other one being developed specifically for web applicat ion penetration
testing.

Zero Entry Hacking (5 phases)

The most commonly used and cited approach to penetration testing states 5 significant
steps, or phases, i n which the penetration testing is executed. This approach sometimes
called Zero Entry Hacking Methodology (ZEE) [8] focuses on getting from broader phases
to the more specific ones. Opinions on the actual number of phases covered i n ZEE. differ,
as certain sources suggest only 4 steps, omi t t ing the last one. Reasons for omit t ing the fifth
phase is briefly introduced below.

The four plus one steps, as described by Pat r ick Engebretson i n the book The Basics
of Hacking and Penetration Testing: Ethical Hacking and Penetration Testing Made Easy [8],
are the following:

• Reconnaissance (also "Information Gather ing", "Recon") — Penetrat ion tester col
lects available information about their target. The goal of this phase is to collect as
much relevant information about the target as possible.

• Scanning — M a n u a l and automated tools are used to scan the target for vulnera
bilities and weaknesses in its defense.

• Exploi t ing — Penetrat ion tester attacks discovered weak spots and tries to exploit
vulnerabilit ies. The usual goal is to gain access either to administrative-level privileges
on the target or to the sensitive data stored there.

9

• Mainta in ing Access — Once the target is breached, penetration tester establishes
the way to access the target again i n the future. Th i s may often include instal l ing
backdoors or creating new administrative accounts on the target machine.

• Covering Tracks (also "Hiding" or "Destroying evidence") — After successful pen
etration and ensuring there is a way to mainta in access i n the future, penetration
testers may take further action to cover the fact that penetration occurred. This
may, for example, include deleting or altering logs from the t ime window when phases
1 to 4 took place. Some sources do not recognize or state this phase, from ethical and
educational reasons.

To illustrate the decreasing scope and the decreasing amount of information gathered across
the phases of ZEH, the inverted triangle diagram is sometimes used [8].

Figure 2.1: The Zero E n t r y Hacking Penetrat ion Testing methodology visualized as a re
verse triangle diagram, i l lustrat ing the decreasing scope and amount of information when
progressing from the in i t i a l phases to the final phases [8]. The diagram is extended by
the fifth phase dedicated to covering the tracks of successful penetration.

O W A S P Web Application Security Testing

O W A S P (Open Web Application Security Project) is an open community dedicated to help
ing companies to conceive, develop, acquire, operate, and main ta in web applications that
can be trusted [29]. To help wi th these efforts, the OWASP Testing Guide (O T G) was
created and later several times revised, w i th the latest version 4.0 from 2014 [27].

The O T G is comprised of 3 significant chapters covering a great range of topics from the web
application security. The first chapter of the guide, The OWASP Testing Framework, targets
mainly activities relevant to applicat ion development, maintenance, and operation, whereas
the second chapter, The Web Application Security Testing, presents O W A S P methodology
for web applicat ion penetration testing. A l l of that is then closed by chapter 3, Reporting,
which advises the tester on how to report their discoveries. Further down i n this section
of the thesis, methodology from chapter 2 of O T G is briefly introduced.

10

Phases of penetration testing by O T G v4.0 [27]:

• Passive mode phase

• Ac t ive mode phase:

— Information Gather ing

— Configuration and Deployment Management Testing

— Identity Management Testing

— Authent ica t ion Testing

— Author iza t ion Testing

— Session Management Testing

— Input Val ida t ion Testing

— Er ro r Handl ing

— Cryptography

— Business Logic Testing

— Client Side Testing

Unl ike the previously mentioned methodology, the O T G proposes a different approach
to testing for and discovering security issues. It divides penetration testing into two signif
icant phases — passive mode and active mode phase.

In the passive mode phase, penetration tester is supposed to interact and "play around"
wi th the system under test, while passively collecting information about the possible ways
to communicate w i th the applicat ion. Special attention should be pa id to so-called gates
or access points of the system. Use of tools to collect useful information about the target
application in the background, as tester uses the application, is recommended.

Then , i n an active mode phase, the tester is to start testing for 11 O W A S P defined subsec
tions and their respective methodologies. Each of the subsections of active mode phase has
its methodology defined. These methodologies are usually fairly concrete about the vu l
nerabilities and ways how to test given subsection, very often even recommended input
is suggested.

2.4 Common Penetration Testing Techniques

Number of interesting penetration testing techniques is presented in this section. Special
attention is paid to techniques that can be automated and to such techniques that are non
destructive and make no permanent changes to the target web application.

Static Code Analysis

Static source code analysis is a process of inspecting source code without executing i t ,
usually performed by an automated tool [39]. There are different reasons for performing
the static source code analysis, such as type checking, style checking, program understanding,

11

program verification, bug finding or security reviews [5]. N o matter the reason, the too l per
forming static analysis w i l l always check for pre-defined patterns contained wi th in the source
code and then report (with varying precision) its observations relevant to its reasons [9].

W h e n web browser is used to visit website, prior to rendering the website's user interface, its
source code needs to be requested from server that hosts the website [12]. Most commonly
retrieved source code formats today include, but are not l imi ted to, HTML files, XML files,
CSS files and JavaScript files.

The last mentioned, JavaScript files, can be interesting from penetration testing perspec
tive, as modern single page web applications take advantage of JavaScript to communi
cate w i th the backend application, rather than using the t radi t ional request-response pro
cess [16]. It is possible, for penetration tester to learn about backend application's endpoints
by performing static analysis of JavaScript source files and looking for a l l calls to functions
that open connection to remote server. In serious cases of flawed implementation, analysis
of the source code can also reveal other useful information, for example, like applicat ion
secrets or vulnerable coding patterns.

Static code analysis technique is a great candidate to be used as a way of penetration
testing that is non-destructive and non-permanent. Retr ieval of JavaScript source files
must be executed by using H T T P verb GET, which does not affect requested object [10].
Final ly , static analysis was from the very beginning meant to be performed by machine and
not by human [39], which once again, makes it a perfect candidate for use in automated
penetration testing.

Subdomain Enumeration

Sometimes it can be useful for penetration tester to discover existing subdomains of the tar
get appl icat ion to gain addi t ional information, that could be later helpful i n finally breach
ing the target. Ex i s t i ng subdomains does not necessarily have to be expl ic i t ly mentioned
anywhere i n the product ion application, because services hosted there have no connec
t ion to appl icat ion w i t h which the regular user is supposed to interact. Such subdomains,
for example, could be used as a testing environment for development team, or maybe
even for different internal purposes. Sudbdomains of this k ind are of part icular interest
to the penetration testers.

M u l t i p l e approaches to subdomain enumeration exist, the most well-known are the follow
ing [15]:

• Zone Transfer Request to DNS — It is possible to t ry issuing AXFR request to D N S
server to obtain the contents of the whole zone. In real life, this approach is usually
not applicable, as it is recommended best practice to deny zone transfer requests
from unauthorized sources [21].

• Searching the Google Lndex — Searching for site:domain.com w i l l reveal a l l pages
indexed by Google on given domain, including subdomains[13]. Th is process can not
be automated, because google forbids and prevents any automated use of its searching
services in their Terms of Service'1.

4Available online: https://policies.google.com/terms

12

https://policies.google.com/terms

• Certificate Search5 — If subdomain or subdomains are using H T T P S , they can be dis
covered by searching the Certificate Search for their parent domain.

• Brute Forcing/Dictionary Attack — Try ing various well-known subdomain names,
dictionaries of words or straight up brute forcing subdomain names is also possible,
but t ime consuming way to discover existing subdomains. Use of a good subdomain
name dict ionary can theoreticaly improve the performance.

One, most notable tool , that combines and utilizes the mentioned and the few other ap
proaches is called SublistSr . The Sublist3r automates the process completely — penetra
t ion tester only needs to run the tool on the target applicat ion.

Aga in , subdomain enumeration uses only H T T P GET verbs to make enumeration requests,
which does not affect requested object [10].

Subdomain Takeover

There are cloud service providers that offer applicat ion hosting services w i th possibil i ty
of serving the applicat ion content on the customer's own canonical domains or subdomains.

This is the best explained wi th an example: A n imaginary cloud service provider Hosting
Company provides the applicat ion hosting and deploys these applications by default on U R L
app-name.hosting-company.com, but also allows the customers to point these U R L s to their
own canonical domains, such as for example app-name.customer.com.

To point the hosted applicat ion to the customer's canonical domain, D N S CNAME record
can be used [25]. Customer typical ly sets the CNAME record for their canonical domain app-
name.customer.com to the subdomain hosted by Hosting Company. Whenever the real
visi tor then inputs the app-name.customer.com address into their browser and hits the en
ter, content served from app-name.hosting-company.com is shown.

Subdomain takeover attack relies on the possibil i ty that sometime i n the future, the domain
of the appl icat ion (owned by the cloud service provider) w i l l become available for registra
t ion again. Tha t may happen when the customer decides that the applicat ion is no longer
needed and terminates the contract w i th cloud service provider. W h e n they do this and
forget to remove the CNAME record set up for their app-name.customer.com domain, they
become vulnerable. At tacker can register the expired domain wi th cloud service provider
and start serving their content on the v ic t im's canonical domain, because the CNAME record
s t i l l exists.

P rac t ica l example of attack that could be carried out by the attacker is for example dis
playing a logon form on the vulnerable domain and phishing user credentials. The affected
users have no way of knowing that they are not really entering their credentials into the fake
logon form.

Examples of the real cloud service providers that offer this functionality at the t ime of writ
ing this thesis are: Heroku7, GitHub8 or Amazon Web Services9.

5Available online: h t tps : / /cr t . sh/
6Tool is available online: https://github.com/aboul31a/Sublist3r
7See https://www.heroku.com/
8See https://github.com/
9See https://aws.amazon.com/

13

http://app-name.hosting-company.com
http://app-name.customer.com
http://name.customer.com
http://app-name.customer.com
http://app-name.hosting-company.com
http://app-name.customer.com
https://crt.sh/
https://github.com/aboul31a/Sublist3r
https://www.heroku.com/
https://github.com/
https://aws.amazon.com/

Once again, testing for subdomain takeover vulnerabi l i ty is possible without issuing de
structive or permanent trace leaving interactions and the testing can be automated.

Locating Hidden Resources

For the purposes of this technique, any file available on the target appl icat ion is consid
ered to be a resource. A hidden resource is a file to which there is no direct l ink wri t ten
i n the source code that is presented to a visitor.

In some situations, these files may get into the product ion environment by accident -
for example, the developer copies whole folder w i th applicat ion source files to the product ion
F T P folder, including a l l the "invisible" files and directories — as well as by negligence or
by the lack of knowledge — a developer does not expect anyone to specifically t ry to visit
addresses to which there are no hyperlinks from the website.

Rea l life examples of such files include:

• Readable configuration files — M a y contain passwords, secrets, access tokens or other
sensitive information.

• Version control files and folder — C a n leak the actual appl icat ion code to the attacker,
including the incremental history of the applicat ion source. Examples of these files
and folders may be a .git or .gh folder, files w i t h .svn extension, and similar.

• Server logs — If server or applicat ion logs are stored in the predictable location
(or the locat ion address can be discovered, e.g. through enabled directory browse),
information about server's or application's inner workings can be revealed.

• IDE configuration files — Another valuable source of information about the tar
get web applicat ion are the I D E configuration files. For example when inspecting
the JetBrains10 I D E configuration file located at . idea/workspace .xml, extraction
of the complete web applicat ion directory and file structure is possible.

There is also a special k ind of files that can be, by the definition mentioned at the begin
ning of this section, considered a hidden resource — files like robots.txt or files located
under .well-known sub-directory. These files contain instructions meant to be processed
by machines, for example what pages should and should not be indexed, or what are the re
strictions on ways of accessing certain locations [28, 20]. It is possible for a tester to extract
valuable information from them too, if the files' purpose was misunderstood by the devel
opers.

Discovering these files is a t r i v i a l task of sending H T T P GET requests and checking the re
sponse codes. W h e n the response code is the 200 OK, the contents of the file are returned
and can be reviewed by a tester, otherwise the file is either not available (404 Not Found)
or the access is not possible (various reasons and codes). Penetrat ion tester can specify
their own files and directories of interest, or they can take advantage of already compiled
lists of most common hidden resources.

1 0See https://www.jetbrains.com/

14

https://www.jetbrains.com/

Cer ta in server misconfiguration can make locating of the hidden resources even more t r iv ia l .
W h e n the server has enabled so called directory browse, accessing the existing folder without
default file (index .htm, default. aspx and similar) w i l l provide tester w i th a l is t ing of files
present i n the directory [33].

A s it was already mentioned, testing for hidden resources can be done i n an automated
manner without changing the target application's state.

Application Finger-printing

W h e n the target applicat ion runs on the well-known software solution like Wordpress11 or
Drupal12, or is powered by s imilar ly known framework, such as Laravel1^ or Zend , it may
be beneficial for the penetration tester to figure out what the applicat ion or the framework
in use is. The process of figuring this type of information is known as finger-printing [27].
In the same way, servers that are physically hosting the target applicat ion can be also finger
printed [27].

The benefit of discovering what appl icat ion or framework is powering the target, on what
server, lies in the opportuni ty to look up already known exploits that were developed
for finger-printed applications, frameworks or servers.

Detection itself is usually based on the number of specific characteristics that the applica
t ion, framework or server exhibits — to name a few, it may be specific meta tag inside the
request response, HTTP header disclosing the server software version and name or existence
of certain specific file [27].

Number of already implemented solutions for identifying technologies and software used
in the web applicat ion exist — among the most notable ones are the WhatCMS1" and
Wappalyzer1^. B o t h of these services offer paid A P I which makes integration wi th auto
mated tool possible, but pricey. Difference worth mentioning is that when the th i rd party
tool such as any of the two mentioned is used, requests against the target appl icat ion are
coming from the different source and not the penetration tester's machine — this can be
beneficial when some rate-limits for the testing session apply.

2.5 Exist ing Software for Penetration Testing

This section takes a closer look on already existing tools that are designed to be used
for web applicat ion penetration testing. For each of the analyzed tools its intended purpose
is stated as well as brief description of the tool's functionality, implementat ion language
and target platforms. Detected strenghts, weaknesses and l imitat ions are mentioned.

1 1See https://wordpress.com/
1 2See https://www.drupal.org/
1 3See https://laravel.com/
1 4See https://framework.zend.com/
1 5 Tool is available online to try https://whatcms.org/
1 6 Tool is available online to try https://www.wappalyzer.com/

15

https://wordpress.com/
https://www.drupal.org/
https://laravel.com/
https://framework.zend.com/
https://whatcms.org/
https://www.wappalyzer.com/

truffleHog

The truffleHog1' is an u t i l i ty wri t ten i n P y t h o n language, designed for finding interesting
strings commit ted into the git repositories. Such interesting string is often called a Secret.
Secrets are published into the publ ic ly available repositories most often by accident. For big
organizations that mainta in dozens, sometimes hundreds even, of repositories, it may be
hard to efficiently keep the track of potential ly sensitive information being published. A n d
the truffleHog can help w i t h just these efforts.

Identified Strengths

• C o m m i t history awareness — truffleHog identifies secrets that were removed or rewrit
ten i n the past but were left in the commit history.

• W i d e range of parameters — there is a great range of options that can be configured
before launching the tool . Support for J S O N output, possibil i ty to selectively tu rn
off some of its functions or specify m a x i m u m depth for searching the commit history.

• Possibi l i ty of extension — it is possible for a user to write their own rules to extend
the search.

Identified Limitations

• Cus tom extension rules must be supplied as J S O N — when the tool loads the rules
from provided J S O N , it natural ly fails for inval id J S O N files. Th is requires escaping
certain special characters which appear in rules' definitions.

• Does not run on files or directory structures — it is not possible to use the truffleHog
to scan single files or the directory structures without addi t ional effort (e.g. setting
up dummy repository i n the directory structure).

• N o easy way to detect short secrets — implementat ion at the t ime of wr i t ing this thesis
does not allow searching for secrets shorten than 20 characters, as the high-entropy
algori thm would start to pick up strings that are not real secrets.

The truffleHog too l w i th a l l its strenghts and weaknesses is the k ind of tool that would fit
into the software company's Blue Team repertoire, to help them keep an eye on both their
public and private repositories.

Other s imilar tools exist and were researched i n the course of working on the thesis.
In their nature, they work s imilar ly to truffleHog, and they are not getting dedicated section
in the thesis. Instead, they are discussed briefly in the following paragraphs. Researched
tools are Reposcanner18, repo-supervisor19 and git-all-secrets20.

Reposcanner is a tool wri t ten i n Py thon , very similar to the truffleHog, that brings
a number of new useful parameters for the scan configuration. Parameter -e/-entropy
allows configuration of the entropy level being reported, the -c / -count allows l imi t ing

1 7 Tool is available online: https://github.com/dxa4481/truffleHog
1 8 Tool is available online: https://github.com/Dionach/reposcanner
1 9 Tool is available online: https://github.com/authO/repo-supervisor
2 0 Tool is available online: https://github.com/anshumanbh/git-all-secrets

16

https://github.com/dxa4481/truffleHog
https://github.com/Dionach/reposcanner
https://github.com/authO/repo-supervisor
https://github.com/anshumanbh/git-all-secrets

number of commits that are scanned, and -l/-length allows for l imi t ing the max imum
line length to be considered.

Another tool , repo-supervisor, this t ime wri t ten i n JavaScript w i t h Node.js, is buil t
specifically for scanning of JavaScript and J S O N files for secrets. Compared to the previous
tools, it does not need to scan the git repository to work, it can scan directories and single
files as well . Th is option makes it possibly a great too l to be used i n automation scenarios.

Example of such scenario could be chaining it together w i th another tool , that creates
local copy of the files used by target applicat ion. After the tool creates the local copy,
the repo-supervisor is launched on the local copy directory and the secrets are provided
on the output.

Another great functionality provided by the repo-supervisor is the possibil i ty of extension
of the supported file types, as described by the repo-supervisor author in documentation [17].

Last researched tool of this nature is a git-all-secrets ut i l i ty. It is wri t ten in Go language
and already utilizes other existing tools to search for the secrets. It uses both the truffleHog
and repo-supervisor and adds great variety of run parameters on top of them.

The tool is again focused on retrieving secrets from git repositories w i th support for
organization-wide and enterprise-wide repository scanning, including: scanning a l l the pub
lic and private repositories belonging under GitHub organization, scanning a l l the repos
itories of users inside the GitHub organization, scanning the user gists and various other
combinations of the mentioned at once. It is a "big gun" tool that is capable of in-depth
search for secrets across the whole organization.

waybackurls

There are mult iple implementations i n various programming languages, from different au
thors, that exhibit the same functionality. This section presents the research of the two
such tools. The first one is wri t ten i n P y t h o n 2 1 , the other one is wri t ten i n G o 2 2 language.

The waybackurls tool takes advantage of Internet Archive feature that allows extracting
the historically recorded u r l addresses of given domain or domains. It does that using
Internet Archive 's search feature to search for regular expression which matches any possible
address on given domain or its subdomains. Internet Arch ive offers the GET endpoint for this
search (the $D0MAIN$ is to be replaced by the domain of interest), as shown i n figure 2.2.

http://web.archive.org/cdx/search/cdx?url=*.$DOMAIN$/*&output=json
&fl=original&collapse=urlkey

Figure 2.2: Web Archive endpoint that allows searching for the existing records of specific
U R L i n the index.

2 1 Tool is available online: https://gist.github.com/mhmdiaa/adf6bff70142e5091792841d4b372050
2 2 Tool is available online: https://github.com/tomnomnom/waybackurls

17

http://web.archive.org/cdx/search/cdx?url=*.$DOMAIN$/*&output=json
https://gist.github.com/mhmdiaa/adf6bff70142e5091792841d4b372050
https://github.com/tomnomnom/waybackurls

Identified Strengths

• N o interaction wi th target applicat ion — The tool retrieves known U R L s without
direct interaction w i t h the target applicat ion, because it is requesting the data from
Internet Archive service.

• Potent ia l of hidden address discovery — A s Internet Archive keeps snapshots of his
torical versions of the pages, it is possible to retrieve addresses that were later hidden
by target appl icat ion authors, but are s t i l l accessible. This may be also beneficial
for the penetration tester, because they can learn about the way old U R L parame
ters were named and chained, which can help them to predict or understand current
application design better.

Identified Limitations

• Incomplete sitemap — It is not guaranteed that every page of the target applicat ion
is known to Internet Archive and therefore returned results cannot be considered
a complete map of the target applicat ion.

• Possibi l i ty of a significant noise overhead — The potential for discovering hidden
addresses is sadly a double-edged sword. Should the target appl icat ion undergo a lot
of version changes throughout its history, and should there be snapshots of these,
great number of returned results w i l l be completely inval id and irrelevant.

Employ ing this tool or its functionality in the penetration testing automation process could
be very beneficial, especially in the context of this work. Not only the interactions used
to collect information about target web applicat ion are non-destructive and non-permanent,
they are also undetectable by the target applications, as none of these interactions is exe
cuted directly towards the target application.

Penetrat ion tester can gain a lot of knowledge about the target applicat ion without send
ing single request against i t . They can discover what U R L parameters are or were used
by the applicat ion, how application's directory structure is roughly organized, what sub-
domains of the target applicat ion were used in the past and probably much more. Disad
vantages exists though — as the Internet Archive stores snapshots of webpages from points
in history, it is possible for the retrieved information to be be out of date and /or no longer
relevant.

Arjun

Arjun1,3' is a tool designed to discover hidden U R L parameters that are available on supplied
U R L address. It is wri t ten i n Python language, for 3.4 vesion and higher.

Available parameters are discovered using two techniques — looking for H T M L attributes
that could be l inked to parameter name and brute-forcing the parameters based on the list
of well-known U R L parameters. F i rs t , the target application's U R L without any added
parameter is requested and the response is recorded. After that, six characters long pseudo
random string is generated and used as dummy parameter for the target U R L (it is expected

2 3 Tool available online: https://github.com/s0md3v/Arjun

18

https://github.com/s0md3v/Arjun

that this parameter does not exist on target application), new request is sent and the re
sponse is again analyzed.

Dur ing the first response analysis, H T M L elements such as form or input are looked for and
their attributes are parsed for possible parameter names. If the parameters are found they
are added to the list of parameters which w i l l be later fuzzed by Arjun.

W h i l e analyzing the second request, appl icat ion checks whether pseudo-randomly generated
string used as a parameter exists and whether its name or value were reflected in the re
sponse. B o t h requests' response codes are compared. Th is way the Arjun learns how target
application reacts when being provided wi th parameter that does not exist.

Once the in i t i a l requests are sent and analyzed, Arjun starts preparing and sending out new
requests to the target application's U R L wi th appended parameters based both on the list
of well-known U R L parameters, and the possible parameters extracted from the first re
quest's response.

Identified Strengths

• Support for POST and GET H T T P methods — Launch parameters allow penetration
tester to specify what H T T P method the tool should use when looking for hidden
parameters.

• Possibi l i ty to supply custom U R L parameter lists — Penetrat ion tester can supply
their own list of parameters to check.

• Mul t i - th read implementation — Launch parameters allow to specify number of threads
to be used when sending out H T T P requests.

• Spot on launch parameter options — Parameters to set specific headers for requests
and to set a delay between requests.

Identified Limitations

• Header specification possible only through an external editor — Al ready mentioned
setting of request headers is possible, but text editor is required to do so. Possibi l i ty
to specify headers directly from command line would be more convenient and flexible.

Aga in , s imilar tools like Arjun exist and they w i l l be briefly discussed in the following
paragraphs, the tools are: param-miner2'1 and parameth25.

The parameth is s imply another implementation of the similar principles that were im
plemented i n Arjun ut i l i ty. It is described as a tool to brute discover P O S T and G E T
parameters [24] and provides few addi t ional parameters to extend the functionality — like
setting addi t ional headers from command line, specifying the user agent or treshold differ
ence of the in i t i a l response and the response wi th new parameter, and few more.

The param-miner, on the other hand, is a Java p lugin for BurpSui te that provides wide
variety of settings that can be configured. It searches for hidden U R L parameters and
also H T T P headers wi th configurable possiblity of enabling brute-force. Other configurable

2 4 Tool is available online: https://github.com/PortSwigger/param-miner
2 5 Tool is available online: https://github.com/maK-/parameth

19

https://github.com/PortSwigger/param-miner
https://github.com/maK-/parameth

settings include, but are not l imi ted to: setting number of threads to be used, discovering
cache poisoning, searching only for the U R L parameters or the headers, choosing between
different brute-force wordlists, and a lot more.

2.6 Testing Web Applicat ion Sets

In this section, the selection of suitable testing set of Web Appl ica t ions to test against
is covered. Basic selection cri teria are proposed and based on them, the two testing groups
of Web Appl ica t ions are created, each wi th different purpose.

Approach to Test Set Selection

To test the implementat ion of the tool from pract ical part of the thesis, a testing set of web
applications must be established. A u t h o r proposes creation of the two distinct groups of web
applications:

• H igh ly secure web applications — applications that are often subjected to penetration
testing and therefore expected to mainta in higher level of security.

• R a n d o m applications or applications that are not frequently penetration tested — ap
plications that are subjected to either very rare penetration testing or no penetration
testing at a l l .

Web applications falling down into the first group are defined by their expected level of se
curity. A u t h o r of this thesis expects that testing the tool against the first group testing
set — highly secure web applications — w i l l yield l i t t le to no positive results, as the web
applications from this group are tested on dai ly basis by other penetration testers.

Testing against the second group testing set — random or under-tested applications -
should on the contrary, yield some amount of positive results. Testing against these groups
and observing results dur ing implementat ion could help to verify that implemented tool
operates properly.

In the final testing stage, the tool w i l l be tested against bo th of these groups. The final
testing set should be comprised of applications wi th various levels of security. Results
of the final testing w i l l then say how successful the implementat ion and the approach were.

Test Set 1: Highly Secure Web Applications

To put together a list of highly secure web applications, the two most known bug bounty
programme sites were used — HackerOne.com26 and Bugcrowd.com27. These sites provide
way for penetration testers and hackers to safely test real web applications for vulnera
bilities, while providing companies wi th an opportuni ty to get their applications tested.
A s these websites are frequented by a lot of penetration testers, web applications put up
there are expected to be thoroughly tested and highly secure.

2 6See https://hackerone.com
2 7See https: //bugcrowd. com

20

http://HackerOne.com26
http://Bugcrowd.com27
https://hackerone.com

Other benefit of using only applications from the bug bounty programmes is the impl ic i t
consent to penetration testing as long as given bug bounty programme rules are followed
by the testers.

Set of expectedly highly-secure web applications is presented i n table 2.1.

Company U R L Notes

Flickr https / / f lickr.com A n d a l l its subdomains.

BOHEMIA INTERACTIVE

https
https
https
https
https
https
https
https
https
https

//bistudio.com
//bohemia.net
//ylands.com
//ylands.net
//arma2.com
//arma3.com
//dayz.com
//armamobileops.com
//minidayz.com
//vigorgame. com

Hyatt Hotels
https
https
https

/ / www .hy at t. c om
//wor ld.hyatt.com
//starbucks.com

Table 2.1: Table is l is t ing expectedly highly secure web applications, their U R L s and
the companies that run their bug bounty programmes are mentioned.

Test Set 2: Under-tested Web Applications

To put together a list of questionably secure web applications, author browsed the Internet
for websites that belongs to smaller to middle sized companies, bloggers and individuals
that would be wi l l ing to offer their consent and let their web applicat ion get tested. M a i n
criterion for selecting a company for this set was whether the company had website buil t
on top of a professional C M S or whether someone put the website together from a scratch.
Appl ica t ions buil t from scratch were favored.

A t the t ime of wr i t ing the thesis, author reached out to 50 companies out of which only
one replied. Negatively.

The table 2.2 presents the set of questionably secure web applications. Owners and main-
tainers of these applications gave consent to penetration testing that is to be conducted
in context of this thesis. Where applicable, specific circumstances of the given consent
are mentioned in Notes column.

21

http://lickr.com
http://arma2.com
http://arma3.com
http://armamobileops.com
http://ld.hyatt.com
http://starbucks.com

U R L N o t e s

http: / / d a v i d r i h a.cz Author allowed penetration testing in exchange for final
report being shared wi th them.

https: / / danieldusek.com Thesis author's web applicat ion.
https: //www.netsearch.cz/ A n d their infrastructure. Permission acquired through the

work's supervisor.
https: / / n e s a d .fit . v u t b r.cz Scope is l imi ted to the resources maintained by the work's

supervisor.
http: / / t e s t p h p . vulnweb.com Acunetix scanner's test web applicat ion known to contains

security issues.

Table 2.2: Table is l is t ing applications that are not frequently penetration tested.

22

http://davidriha.cz
http://danieldusek.com
http://www.netsearch.cz/
http://fit.vutbr.cz
http://vulnweb.com

Chapter 3

Proposed Approach

This chapter starts w i t h the definition of non-destructive and non-permanent actions in
the context of this thesis and their relationship wi th HTTP (protocol) and HTTP requests.
After that high level approach to web applicat ion penetration testing proposal is presented,
its phases are introduced and then explained on examples.

3.1 Non-destructive and Non-permanent Actions

The final product of this work aims to test and evaluate the security state of target web
application, without changing or damaging it or the service it provides. Communica t ion
between the implemented tool and the target applicat ion occurs s t r ic t ly over the H T T P ,
using the HTTP requests.

In the thesis the non-destructive and non-permanent interactions are considered to be the
HTTP requests sent w i t h so called Safe Methods, or subset of methods and parametrized
methods of so called Idempotent Methods group. Safe Methods are described as essentially
read-only methods where the client sending the request does neither expect nor requests
change of the state or data on the remote server. These are the GET and HEAD methods [10].

Addi t ional ly , OPTIONS and TRACE methods should have no side effects [10] and i n the context
of this work w i l l be considered non-permanent and non-destructive. The tool also takes
advantage of the POST method wi th certain very specific parameters, w i th which the action
is expected not to change the target application's state. There are no guarantees to support
this use and it is discussed i n the later chapters.

It is possible for any of the considered non-destructive and non-permanent interactions to
be destructive when executed against the target appl icat ion that is implemented i n contra
dict ion to H T T P specification. In such case, it is considered the resource owner's respon
sibi l i ty [10].

3.2 High-level Approach Proposal

This section proposes high level design of the generally applicable approach to web ap
plicat ion penetration testing that is focused on retrieving information about the target

23

application solely by using non-permanent and non-destructive interactions as they are
defined in section 3.1.

Proposed approach expects U R L address to be in i t ia l ly the only input provided to the
penetration tester. In the very first phase, a tester should collect as much openly available
information, about the applicat ion residing on provided U R L , as possible. Collected infor
mat ion should be then filtered, processed and categorized. Separate categories are use-case
specific and are up to a penetration tester to properly establish them.

Based on the category to which collected information belongs, addi t ional processing steps,
again, category specific, should be taken. Report summarizing the findings w i l l be then
generated from the results of steps taken and provided back to the penetration tester.
Depending on the nature of information collected and processed, the output report can
take form of discovered vulnerabili t ies, suggested actions or something else entirely.

Target web app URL OSINT
SCAN

Detected
parsable
artifacts

Detected
artifacts OSINT

REPORT

3rd PARTY
TOOLS

Detected
artifacts

VULN.
REPORT

SUGGESTED
ACTIONS

Figure 3.1: Block scheme of the process flow describing the high-level proposal of the
generally applicable approach to web applicat ion penetration testing. F low starts w i th
the input consisting of the u r l address of the target web applicat ion heading towards the
OSINT SCAN block. Once the O S I N t scan is performed, two sets of detected artifacts are
put on the output, both heading to different blocks. Detected artifacts that are no longer
parsable go direct ly into the OSINT REPORT block, while detected parsable artifacts are
first processed by other, possibly 3rd party toolsets (visualized as 3rd PARTY TOOLS
block). After parsible artifacts are processed, they also flow into the OSINT REPORT
block. Two expected forms of output from OSINT REPORT block are expected, the
VULNERABILITY REPORT containing the specific vulnerabili t ies that are present in the
target web applicat ion, and the SUGGESTED ACTIONS containing recommendations for
a tester regarding further penetration testing.

3.3 Pre-penetration Testing Considerations

For legal reasons, it is not possible to just execute penetration testing against any web
application — under the Computer Fraud and Abuse Act (18 U.S.C. 1030) it is considered
a federal crime to "intentionally computer without authorizat ion or exceed autho
rized access". The mentioned statement is very broad and can be applied to almost any
form of penetration testing and can lead to penetration tester being prosecuted.

It is advisable for the penetration tester to acquire a wri t ten consent w i th penetration test
ing, or to test only web applications that clearly state their penetration testing policies, and
adhering to these policies while conducting the testing. A t the t ime of wr i t ing the thesis, a
security.txt Internet-Draft is being developed wi th one of its goal being the standardized
indicat ion of security policies availabil i ty [11].

24

W h i l e it should not be possible to damage or irrecoverably change properly implemented
target application, the risk of overloading it must be considered. Most of the information
about the target applicat ion w i l l be expectedly retrieved by issuing HTTP requests against
it and by reading the response.

Before the penetration tester engages i n automated testing, they should consider what
rate-limits are to be enabled on the tool to prevent accidental overloading of the target.
This information can be sometimes extracted from the rules of engagement document, i f
the target appl icat ion provides one.

3.4 O S I N T S C A N Phase

The O S I N T S C A N block represents the first and the most complex phase of the proposed
penetration testing approach. A tester sets up areas of interest and their requirements,
researches and implements tools to scan these areas in an automated manner and runs
the scan. The first phase of the approach is proposed to be split into the following, chrono
logically ordered steps:

• Define — Tester decides and defines which ctr6cts sire to be scanned on the target ap
plicat ion and what form w i l l the results have. For example, a tester may be interested
in acquiring the complete site-map of the applicat ion, either because:

(a) formal requirements on the final penetration testing report require complete site
map to be present i n the report, or,

(b) tester intends to run other tools against the discovered U R L s .

In case of (a), the site-map is considered to be a non-parsable artifact which is passed
directly to the OSINT REPORT phase where it later gets turned into the part of the
final report. In case of (b), the site-map is considered to be a par sable artifact which
is fed into one or more, possibly 3rd party, tools, that w i l l further process i t . O n l y
after the parsable artifacts are processed and made into non-parsable artifacts, they
are again input ted into the OSINT REPORT phase.

• Research — W i t h areas and requirements from the previous step i n mind , a tester
researches existing tools that could be used for obtaining the artifacts i n an automated
manner. License l imitat ions of the researched tools must be taken into an account as
well as testing security considerations (see section 3.3) and the nature of interactions
executed by the tools (see section 3.1). Using the previous example, penetration
tester is supposed to discard using the site-mapping tool that would submit forms on
the target applicat ion when mapping the it.

• Implement — After tester identifies which parts of the O S I N T scanning process can
be solved by using the 3rd party tools and which parts of the system need to be im
plemented from scratch, they design and implement the system that is capable of con
ducting the scan and providing corresponding artifacts to the following phases. Whi l e
designing and implementing it may be desirable to consider future use of the tools in
the same context and account for por tabi l i ty i n advance.

25

• R u n — Tester runs the implemented system and executes the automated penetration
testing. R u n outputs (the artifacts) are passed onto the next phases of the penetration
testing approach.

Direct and Indirect Requests

There are services like Google Search or Web Archive that make a copy of the website
i n certain point i n time, and some of these services offer A P I for searching in their copies.
Through these A P I s it is possible to discover information about the target applicat ion
without even directly requesting i t . Taking advantage of such services can prove itself
helpful when expected number of requests on the applicat ion is high and rate-limits apply.

Similarly, when applicat ion or its parts are hosted i n the publ ic ly available repository
(GitHub, GitLab and others), analyzing applicat ion source code is possible without the d i
rect interaction.

Au tho r of this thesis proposes considering use of these and similar services i n the Define
step of the O S I N T S C A N phase — both to broaden the scope of the testing and the amount
of information processed.

Side Channel Monitoring

Author of this thesis also proposes an extension to be considered in the Define step, when
the tested applicat ion belongs to a larger organization wi th many employees. The idea
of this extension is to identify channels that are used by the employees (or sometimes even
customers) of the organization and can be monitored for information relevant to the scope
of the penetration testing. For example when developers troubleshoot their code and share
it v ia th i rd party channels like Pastebin1, fragments of sensitive and valuable information
may be leaked.

Identifying these channels and setting up their automated moni tor ing — based for example
on detecting certain sensitive organization-related words — can provide a tester w i th valu
able information which can be further used for penetrating the applicat ion. The automation
here is crucial as it allows the processing of high volume of information, that would not be
otherwise possible.

3.5 3rd P A R T Y T O O L S Phase

One of the goals of the proposed approach is to enable automated execution of penetration
testing and to allow processing of high volume of information that would not be humanly
possible. For this very reason, the approach contains the 3rd PARTY TOOLS phase which
is designated to use of already existing and developed tools for addi t ional data processing
or penetration testing tasks.

Few examples of addi t ional data processing that could be applied through the use of th i rd
party tools to enhance the testing results:

1See https: //pastebin.com

26

• Machine learning algorithms to classify themes or topics of analyzed pages — In the
specific scenario when penetration tester wants to brute-force user password, under
standing the general content of the page could be beneficial for targeted dict ionary
generation.

• Extracting contact information — Penetrat ion tester can be tasked wi th assessing
what contact information is disclosed on the target applicat ion. Ex t rac t ing emails
and phone numbers from the textual response is to be offloaded to the th i rd party
tool dedicated for this purpose.

• Static analysis — Ex te rna l appl icat ion for performing static analysis on JavaScript
source files can be used to discover secrets or appl icat ion endpoints.

Th is phase should not be understood in a sense that exclusively and only the 3rd party
tools may be used — a tester can, of course, decide to reuse their own tools to evaluate the
data or to further test the application.

3.6 O S I N T R E P O R T Phase

The phase is dedicated to working wi th gathered non-parsable artifacts coming both from
O S I N T S C A N and 3rd P A R T Y T O O L S phases, and compil ing them into the final testing
report. Output of this phase may be influenced by the requirements on the penetration
testing as specified by the party that is being tested. In general, the output can be expected
to take form of a report of discovered vulnerabilit ies, a list of sensitive information or
information worth inspecting, a list of recommended steps to be taken by a penetration
tester before finishing up the penetration testing session, or a presentable document w i th
testing results.

For i l lustrat ion, few examples of the output artifacts:

• Discovered applicat ion secrets or access tokens,

• complete site-map,

• list of discovered resources,

• detected vulnerable endpoints,

• endpoints suggested for further testing,

• leaking personal information, or,

• system users w i t h weak or well-known passwords.

Of course, as the output of the OSINT REPORT phase can take mult iple forms — includ
ing a list of recommended actions. It makes sense to optionally include a v i r tua l phase or
block that would be dedicated to manual penetration testing where a tester acts on the rec
ommendations provided by the tool .

27

Chapter 4

Tool Design and Implementation

In this chapter, ReconJay — a tool , that follows the approach proposed i n chapter 3 -
is presented. E a r l y parts of this chapter describe how the tool is designed and structured
and how the implemented tool maps to the aforementioned approach. Later parts of this
chapter then present how were the main parts of the tool implemented and what are their
capabilities and l imitat ions.

Technology and Platform Support

Python i n version 3.6 was chosen as an implementation language for the ReconJay tool .
The decision to use Python as the main implementat ion language was made due to its
mult i -platform por tabi l i ty [38] and available convenient packaging system PIP1 that makes
it easy to take advantage of third-party libraries [4] (such as the requests2 and beautifulsoup3

packages), hence leading to less wheel-reinvention situations and more clean implementa
t ion.

The implemented tool is intended to be run from the command line and does not provide
any other than the textual interface. Dur ing its run, only the most important messages
are wr i t ten on the standard output, typical ly informing about the problems that arose or
about the transitions between modules that took place.

A n important part of the implemented tool is the presentation of the results. Once the tool
finishes its penetration testing activities, a final report file is generated. HTML, CSS,
and JavaScript technologies are ut i l ized to provide this report. The web technologies were
chosen for presentation purposes due to today's widespread availabil i ty of the software
for viewing web pages, and due to a variety of formatt ing options brought by the HTML
and CSS.

From the platform-support-wise perspective, the tool is designed and tested to operate
correctly under both Windows and Linux based systems. W h i l e it was not expl ici t ly tested
to work on the MacOS operating system, it should be also possible to run the implemented
tool there, as long as the Python 3.6 or above environment is installed.

1Package Installer for Python: https:/ /pypi.org/project/pip/
2Pytlion Requests Package Homepage: https://python-requests.org
3BeautifulSoup Package Homepage: https://www.crummy.com/software/BeautifulSoup/bs4/doc/

28

https://pypi.org/project/pip/
https://python-requests.org
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

4.1 Relationship Between Proposed Approach and ReconJay

The ReconJay tool implemented in the course of working on this thesis aims to map the pro
posed approach to the concrete implementation. Purpose of this mapping is to showcase
and demonstrate a real-life applicat ion of the approach in a pract ical implementation, that
benefits from the qualities brought to the table by the approach.

In order to reflect qualities of the proposed approach, such as high re-usability and support
for automation of the manual and repetitive tasks, most of the ReconJay tool 's functionality
is implemented as single-purpose modules, that are launched by a module loader. More
on this later, in section 4.2 Modules and Modules Launching Design.

Initially, ReconJay receives only a target application's U R L and launches the first of its mod
ules, w i th the provided U R L being its only parameter. This behavior directly maps to the
beginning of the OSINT SCAN and 3rd PARTY TOOLS phases (described in chapter 3).
Note that the tool respects the number of in i t i a l parameters on the input . In the same way
as the earlier described approach, it starts only wi th the target application's U R L . F i g
ure 4.1 illustrates the mapping between approach phases and the ReconJay tool's behavior.

$ python ./ReconJay.py http://target.app.com
Target URL

[I] Discovered modules: SiteCopier, RequestMiner, . . .
[I] Starting SiteCopier

OSINT
SCAN

3RD PARTY
TOOLS

[I] Last module has finished.
[I] Cal l ing SiteCopier presenter.. .

[I] Generated report can be found in 'reports ' folder
OSINT

REPORT

Figure 4.1: Mapping of the ReconJay tool's execution stages to approach proposed in the chapter 3.

The proposed approach mentions artifacts and parsable artifacts as an output of OSINT
SCAN and 3rd PARTY TOOLS phases. Aga in , this maps directly into the ReconJay tool 's
behavior. W h e n launched module returns its results back they are expected to be either
parsable or non-parsable. Based on their type, they are further piped as an input into one
or more other modules, or into the OSINT REPORT phase.

A s was already hinted i n the previous paragraph, the output from the modules that were
run during the tool's execution is used for report generation purposes. Th is functionality
maps to the OSINT REPORT phase of the approach. The detected artifacts on the report
generation phase's input map to non-parsable results recorded by the launched modules.

4.2 Modules and Module Launching Design

The final product of this thesis is split into two main parts — a module loader and modules
facil i tating the actual web applicat ion penetration testing. Its intended purpose is to sup-

29

http://target.app.com

port higher re-usability and healthy responsibility separation, bo th of which are considered
to be the key principles of good software design [22].

The first part of the solution — a module loader — is focused on discovering implemented
modules and taking the necessary steps to successfully execute them. This process encom
passes:

1. Discovering implemented modules,

2. determining an order i n which the modules are to be executed,

3. collecting module results and enabling inter-module communicat ion,

4. generating a report.

Figure 4.2 illustrates the decision process leading either to module execution or to the ap
plication's premature termination.

Are there any
modules?

Is there a valid
launch order?

Tester Starts
ReconJay tool

YES Determination of
module run order

NO

Terminate

NO

Present results

YES

YES

Are there results
to be presented?

Run modules

Figure 4.2: Conceptual diagram of the module-loading process flow. There are three decision nodes
between the start and the end block: Are there any modules? Is there a valid launch order? Are
there results to be presented? Whenever an answer is no, the process terminates. In case of positive
answers, process flows from a tester starting the ReconJay tool, through determination of module
run order and running the modules, to results presentation and consequent termination.

The second part of the solution — implemented modules — is essentially the most important
part of the final product i n terms of actual penetration testing. Each module encases
concrete security scanning functionality w i th its specific goal or bulks of such functionality
that cover related domains of the web applicat ion security. Addi t ional ly , each module is
equipped w i t h a presentation class that contains logic for presenting a module's results.

In a real-life scenario, penetration tester is expected to keep their own modules folder w i th
al l the modules they have historically implemented for various penetration testing sessions.
Based on the requirements of future testing sessions, they would then only need to pick
which modules apply for the target applicat ion at hand and use them.

30

Module A P I

There are certain A P I methods that every module needs to provide, in order for it to be
loaded by the module loader. This section lists the methods:

1. get_dependecies() — Returns a dependency object (see Module Dependencies sec
t ion 4.2 later in this chapter) that is used by the module loader for module run
scheduling purposes.

2. set_options() — A l lows to set a module's run options from the module loader.

3. provide_results() — Al lows a module to access results of other modules. Every
module keeps a copy of results of the modules it is dependent on.

4. execute (target) — Ca l led by the module loader when a module is supposed to exe
cute the security-related functionality it addresses. Target application's U R L is passed
through the descriptively named parameter.

5. get_presenter(results_structure) - - Retrieves an instance of the Presenter
class that belongs to a given module. The results_structure parameter makes
available the results of a l l the modules that were run during the ReconJatfs execu
tion.

6. get_results() — Provides module artifacts back to the module loader to be shared
(see Module Results Structure section 4.2 later i n this chapter).

7. leaves_physical_artifacts() — Provides information about whether a module
leaves physical artifacts after it is run (e.g. files in the file-system).

A s long as the aforementioned methods are provided, a module can contain any number
of other methods and reference any number of other classes it needs to perform its job.

Module Results Structure

After a module finishes its work, the module loader accesses its results v i a the get_results ()
method cal l . To pass results between the module loader and even between other modules,
a results object is used. This object reflects the possibil i ty of returning parsable and non
par sable artifacts.

Code snippet 4.1 illustrates the expected format of the results object. E a c h module is
expected to provide a single results object.

Module Dependencies

Each module is capable of announcing its dependency on another module or modules prior
to its execution. The module loader reacts to the announcement by scheduling a given
module to be run only after their dependency module or modules has finished. This feature
allows modules to bu i ld upon and extend on the results provided by other modules. It also

31

results_object = {
"nonparsable": {

"nonparsable_artifacts_01": [value, value2, . . .] ,
"nonparsable_artifacts_02": [value, value2, . . .] ,

}.
"parsable": {

"parsable_artifacts_01": [{objectXl}, {objectX2}, ...]
"parsable_artifacts_02": [{objectYl}, {objectY2>, ...]

}

}

Code snippet 4.1: Results object provided from a module to the module loader upon
get_results () method call. It contains two main properties — nonparsable and parsable which
map onto the parsable and non-parsable artifacts proposed in the chapter 3.

enables a penetration tester to create more complex processing pipelines without breaking
S O L I D principles and without unnecessary redundancy in code.

Code snippet 4.2 illustrates the expected format of a module dependency object. Each
module can provide a list of dependency objects to specify:

• W h a t module it depends on.

• W h a t is the type of the dependency (e.g. it is dependent on the output generated by
the dependency module, or it only needs it to execute prior to itself).

• If the dependency is essential for the module to run.

dependency_object = {
"depends_on": "DependencyModuleName",
"dependency_type": "output",
"i s _ e s s e n t i a l " : True

}

Code snippet 4.2: Accepted format of a dependency object provided by a module upon
get_dependencies() method call. Each of the dependency object records contains information
about a module it depends on, its dependency type (e.g. output, or just run) and whether this
dependency is essential for a module to run.

Module Options

The implemented tool supports functionality for adjusting configuration on a per-module
basis. In the root directory of the tool's implementation, there is an options, json file
which enables a penetration tester to configure specific settings of existing modules.

A n option of a module is represented internally as a class property. E a c h module has its own
options, which it allows to set — this is realized through the A P I method set_options()

32

and the property setting is based on white-l ist ing those that can be set. The white-l ist ing
is done inside the mentioned method and it is done to avoid unwanted property overrides.

Code snippet 4.3 describes a structure of the options. j son file, which is comprised of col
lections of options for every module.

{

"ModuleName": {
"DELAY": 1,
"RANDOMIZE_SELECTION": True

}.
"DifferentModule": {

"MAX_REQUESTS": 1000,
"DELAY": 5

>
}

Code snippet 4.3: Structure of op t ions , j son file.

4.3 Results Presentation Design

Once a l l modules finish and their results are collected by the module loader, a report
of the modules' findings needs to be generated — this corresponds to the OSINT REPORT
phase of the proposed approach and provides a penetration tester w i t h the means to review
findings i n a structured and readable way.

:ModuleLoader

« c r e a t e »
Module

get_presenter(results_object)

p = presenter

« c r e a t e »
Presenter

p.present_content(style)

presentable = content

content = get_content()

Figure 4.3: Interaction diagram featuring the ModuleLoader, Module and Presenter objects. First,
the module loader instantiates a module object and invokes its get_presenter () method, passing it
the results object that contains results to be presented. Module object then instantiates its presenter
class and returns it back to the module loader. Finally, the module loader calls present_content ()
method on the presenter object and retrieves presentable data from it.

The responsibili ty for presentation and report generation is distr ibuted among the modules.
Each module has its own Presenter class that contains logic for presenting its findings

33

in a human-readable manner. W h e n a Presenter class is indirect ly instantiated from
the module loader, it receives information about a preferred style i n which the output
should be generated. If a requested style is not available, Presenter class is required
to fallback to default plaintext style.

Figure 4.3 illustrates the conceptual interaction between the module loader, a module and
its Presenter class.

Presenter A P I

In order for the module loader to be able to compile a final report file together from
the par t ia l outputs received from modules, it needs to interact w i th their Presenter classes
in a standardized way. This section lists the A P I methods that need to be provided by
a module's Presenter class:

1. present_content (presentation_style) — Returns content ready for presentation
in the style specified by its parameter.

2. generates_media() - - Returns information about whether supplementary media
resources were generated as a part of the findings presentation (e.g. an image file or
a proof of concept code).

3. get_media_path() — Returns path to directory in which generated media files are
stored.

4. get_importance () — Returns information about how "important" a module per
ceives itself to be.

5. set_information_level () — Influences what type of information should be con
tained wi th in a generated output.

4.4 Module Launching Implementation

A n entry point into the implemented tool is located i n the ReconJay.py file, which is in its
essence the module loader. Its job is to discover existing modules and launch them — if
they are correctly implemented, that is.

The module loader expects, by default, that a l l modules are stored under modules folder,
which is located in the same directory as ReconJay. py file. The locat ion of a module source
folder can be easily altered.

Figure 4.4 presents a simplified directory structure of the implemented tool , focused on
modules folder and the folders otherwise relevant to the module loading and launching.
F rom the scoped directory modules it is visible that each module has its own directory
wi th the same name as the module. Inside this directory, again a python file named after
the module (in this case SiteCopier) is located. A presence of i n i t .py file indicates
that any ReconJay module is considered to be a python language module as well.

Folder output is used by the modules and the module loader to store artifacts produced dur
ing the application's run-time. W i t h every run of the ReconJay tool , a new, time-stamped

34

ReconJay/
— core/
— modules/

— SiteCopier/
— i n i t .py
— Crawler.py
— Presenter.py
I — SiteCopier.py

— XSSFinder/
I — ... similar as above ...

— output/
— payloads/
— reports/
— ReconJay.py
— PastebinTracker.py
— keywords.txt

Figure 4.4: Tool's directory structure overview, scoped onto the modules folder.

and pseudo-randomly named folder is created wi th in the output directory (e.g. for a Re
conJay run ini t ia ted on 28th A p r i l 2019 at 1300 sharp, a folder 2019-04-28_130000_YG0GZ
would be created). Inside this folder, physical artifacts left behind by the modules are
stored.

The reports directory serves for storage of the generated reports and is discussed later
in section 4.5.

Determining Launching Order of Modules

ReconJay''s modules can be dependent one on another and the proper order of their execu
t ion must be ensured. To guarantee that every module that can be run w i l l run, the following
algori thm is applied:

1. Module loader scans the module source directory (modules) and instantiates every
module it discovers.

2. Module loader calls a get_dependencies() method on a l l instances and classifies
modules into the following three categories:

(a) Independent modules — Modules that do not require any dependency.

(b) Dependent modules — Modules that require one or more dependencies of existing
and available modules.

(c) Non-runnable modules — Modules that return dependencies on modules that do
not exist.

3. Module loader executes a l l independent modules.

4. Module loader schedules the run of modules w i t h dependencies that can be satisfied.

35

5. Module loader executes scheduled modules.

6. If in the previous step at least 1 module was executed A N D there are dependent
modules wait ing for execution, go to step 4. Otherwise report a circular dependency
for every remaining module and terminate.

4.5 Results Presentation Implementation

After a l l modules finish, their recorded results are available i n the module loader. The next
step is to use these results to generate a human-readable report for a penetration tester.

The functionality responsible for the creation of the report lies wi th in PresentationHelper
class of the core.helpers module. This class provides functionality for compil ing the fi
nal report together of a l l its parts, that are received from the corresponding modules.
The PresentationHelper class keeps an internal representation of a l l the received parts
of the report, where each part is comprised of a module name, a module description,
a formatted representation of the results and importance of the part.

W h e n the generate_report () function is later called, the mentioned importance is used
to determine where i n the final report should be the given part rendered — the higher
the importance, the higher the posit ion i n the final report.

The set_options() method of the PresentationHelper class allows a tester to specify
certain options wi th which the class w i l l operate. The implemented tool features a boolean
show_module_description opt ion that controls whether a description of a module w i l l be
rendered into the final report. A possibil i ty to suppress the module descriptions is a useful
setting for scenarios when a penetration tester generates report for themselves — when
they do not need to see the description, because they are the author — in contrast to when
a penetration tester generates the report for someone else to review (e.g. for the requester
of a penetration testing audit) , who has no idea what which module does and why.

Presentation Styles

The implemented tool supports two major styles of a produced report — a style named
BWFormal (an abbreviation of "Black and Whi te , Formal") and default "plaintext" style.
See Append ix A . l and Append ix A . 2 for an example overview of these styles.

Each of the modules is responsible for its results presentation and supports at least the
two mentioned styles. Decision what style w i l l be used is made i n the module loader part
of the implementat ion and communicated to the corresponding presenters when they are
called v i a the present_content () method. The method accepts a presentation style as
its only parameter. If the requested style is not recognized by a presenter, it falls back
to default plaintext style.

Outside the presentation of the results wi th in a final report, two addi t ional communicat ion
channels are ut i l ized by the ReconJay too l to communicate w i th a tester — a terminal
window and a verbose log file.

The former channel serves to communicate high prior i ty status updates, messages and error
reports to a tester that runs the tool . This is i l lustrated i n figure 4.5

36

$ python ./ReconJay.py http://example.com
[I] Run directory 2019-05-02_120229_XKClR created.
[D] Module c l a s s i f i c a t i o n done.
Independent modules:

|-> SiteCopier
Potentially s a t i s f i a b l e modules:

|-> MisconfChecker
I-> RequestMiner
I-> TokenFinder
|-> XSSFinder

[I] SiteCopier module output directory created.
[SiteCopier]: Starting crawling operations...
[SiteCopier]: Target acquired: http://example.com
[SiteCopier]: 50 requests sent (Successfully: 50 I Failed 0)
[SiteCopier]: 100 requests sent (Successfully: 100 I Failed 0)
[SiteCopier]: 150 requests sent (Successfully: 150 I Failed 0)
[SiteCopier]: TOTAL_REQUESTS_LIMITATION (150) reached. Crawling w i l l stop.
[SiteCopier]: Crawled work finished. Goodbye!
[I] Module SiteCopier finished and saved results.

Figure 4.5: Illustration of a terminal high-priority communication channel.

The latter channel logs, i n addi t ion to the already mentioned type of messages, also the mes
sages wi th a lower pr ior i ty and of an informational character. In case of an unsuccessful
application run, these messages can be used for debugging purposes and tracking down
a cause of failure. Figure 4.6 illustrates this channel.

[D] Discovered modules:
|-> modules.MisconfChecker
I-> modules.RequestMiner
|-> modules.SiteCopier
I-> modules.TokenFinder
|-> modules.XSSFinder

[SiteCopier]: Requested: https://danieldusek.com
[SiteCopier]: DONE: 1 | QUEUED: 14 | FILTERED: 6 I FAILED: 0
[SiteCopier]: Requested: https://danieldusek.com/.../GHMark.png
[SiteCopier]: Response i s binary, no links w i l l be extracted.
[SiteCopier]: DONE: 2 | QUEUED: 13 I FILTERED: 6 I FAILED: 0

Figure 4.6: Illustration of a verbose log file communication channel.

37

http://example.com
http://example.com
https://danieldusek.com
https://danieldusek.com/.../GHMark.png

4.6 Modules

In this section, a l l of the implemented modules are first designed and then their implemen
tat ion is discussed. The section covers modules responsible for crawling a target applicat ion
and extracting information about it and modules that search for vulnerabilit ies and server
misconfigurations. The closing paragraph of this section presents a standalone module
for monitor ing of the Pastebin.com side channel.

SiteCopier Module

In the first stage of a penetration testing process, a target applicat ion needs to be explored
and its content discovered. The SiteCopier takes on this task and provides its exploration
results to the rest of the modules.

Design

SiteCopier module is designed to explore and crawl an applicat ion from its root U R L
address. In the process of doing so, it stores every request it sends and every response it
receives from the target.

After retrieving response data for the first request, SiteCopier looks for and extracts
the l inks and addresses contained i n the response. Discovered links that are in the scope
of a target applicat ion are normalized, duplicates are removed and then scheduled to be
requested. B o t h request and response, including headers, are stored to disk.

Purpose of this module is not to verify a security standing of a target applicat ion, but rather
to provide other modules w i t h information about their target. Pre-fetching the content
of an entire web applicat ion only once should also decrease a load on the applicat ion, and
increase the speed of penetration testing conducted by other modules.

Interaction between SiteCopier module and its target uses only non-destructive and non-
permanent H T T P verbs (as described i n section 3.1) and ensures that a reasonable delay
between consecutive requests is kept, to avoid target being overloaded. The delay can be
configured by a tester.

It is possible for a web applicat ion to be composed of an infinite number of pages and
SiteCopier addresses this possibil i ty by the configurable l imi t on the number of requests
that are sent.

Implementation

SiteCopier module uses two auxi l iary classes to separate responsibili ty for crawling of a tar
get appl icat ion and for storing the tuple of a request, a response body and response headers
onto the file system.

Firs t class, Crawler, is responsible for crawling a target applicat ion. Crawl ing of available
pages on a target appl icat ion is achieved by sending pairs of H T T P H E A D and H T T P
G E T requests and processing received responses. Based on the content type of a received
response, appropriate l ink extraction algori thm is used.

38

http://Pastebin.com

For text/html type of content, the H T M L is parsed into the beautifulsoup object which is
then queried for tags that may contain U R L address i n their attributes. Values of these
attributes are extracted, U R L addresses are normalized and duplicate entries are removed.
Normal iza t ion of U R L s consists of the following steps:

1. Removal of a t ra i l ing slash,

2. converting a host part and a scheme part to lowercase characters,

3. alphabetical ordering of query str ing parameters.

If any of the discovered U R L s are relative, they are translated to their absolute versions
before normalizat ion process takes place. Responses of different content types are searched
for U R L s using a regular expression that matches http and https l inks.

Before a U R L is added into the request queue, its fragment part is removed and it is verified
that the U R L was not requested yet and that it is not present i n the queue already.

U R L s that are out of the scope of a target applicat ion are filtered out and are not requested,
the only exception being U R L s of JavaScript or C S S files.

Respecting a delay between consecutive requests is ensured by sleeping down the applicat ion
thread for the specified amount of seconds specified i n the module run options (reflected by
the REQUEST_DELAY property). In the same way, a m a x i m u m allowed number of requests is
guaranteed.

Second class, Storer, is responsible for storing outgoing requests and incoming responses,
their headers included.

B y default, the requests and responses are stored under output\run_folder\SiteCopier
directory (see section 4.4 for details on module run output directory naming convention).
For every request sent, a new directory appears i n that location, w i th the following three
files:

1. X.request — contains target U R L of the request, where X is the number of the re
quest being sent (starts at 0).

2. X.response — contains response provided by a target applicat ion.

3. X.response .headers — contains headers that accompanied the response from a tar
get.

Given the scenario when ten requests are sent, ten directories are created i n the aforemen
tioned location. The first named 0 and the last named 9. E a c h of these directories w i l l
contain 3 files described above.

Figure 4.7 displays a relationship between the SiteCopier module and the two classes re
sponsible for crawling the page and storing the requests data.

There is a l imi ta t ion to the SiteCopier module's implementat ion — if a target applicat ion
is serving a potential ly infinite number of unique pages, the module can run i n a loop
infinitely too. A pract ical example of when this si tuation may occur is when there is

39

file:///run_folder/SiteCopier

SiteCopier Crawler

+ crawler + request_queue + crawler + request_queue

+ presenter + storer

+ execute()
+ REQUEST_LIMIT

+ get_dependencies()
+ REQUEST_DELAY

+ set_options(options) + set_target(string)

+ get_results() + set_options(options)

+ get_presenter() + issue_request(string)

+ should_request(string[])

Storer
+ process_response(string, string)

+ output_dir
+ process_links(string[])

+ extract_links(string[]) + extract_links(string[])

+ store(string, string, int)
+ apply_links_filtering(string[])

+ format_headers(string[])
+ add_to_queue(string) + add_to_queue(string)

Figure 4.7: SiteCopier class diagram depicts relationship between the SiteCopier module class
and two of its auxiliary classes, Crawler and Storer

a calendar component which takes the year number out of a query string. For every year
it displays it also renders a l ink to the next and the previous year w i t h an updated query
string. These l inks are correctly extracted and processed by the module and scheduled
to be requested, which is when the module also enters the loop.

To mitigate these scenarios, the SiteCopier module allows setting the REQUEST_LIMIT opt ion
prior to its run, to l imi t the m a x i m u m number of requests sent towards a target applicat ion.
It is advisable for a tester to provide this option.

A secondary mit igat ion strategy to prevent SiteCopier from being stuck i n a loop and
requesting only the problematic part of a target is a pseudo-random request selection.
Whenever a next request is being selected from the queue, it is randomly chosen by
the random.choice() function provided by Python.

TokenFinder Module

TokenFinder module serves for the detection of sensitive information contained i n a target
application's source code. The sensitive information is typical ly represented by high-entropy
strings, which this module detects in responses provided by a target applicat ion.

40

Design

The ma in purpose of the TokenFinder module is to locate the intentionally randomly
generated strings, based on an assumption that such strings are secret and should not
be disclosed to the publ ic . Such strings can be detected due to a high-entropy [34].

These strings are l ikely to occur wi th in the JavaScript applicat ion source code, or even
inside H T M L comments, and therefore there is no need for the module to interact w i th
a target applicat ion directly. The TokenFinder module can use physical artifacts that
the SiteCopier module collected and perform their inspection without directly interacting
wi th a target.

The module is essentially dependent (see section 4.2) on the output of the SiteCopier
module.

Implementation

A t the beginning of its run , the TokenFinder module reads a l l the physical artifacts collected
by the SiteCopier module, which are stored i n the module output directory. Then it starts
i terating over them.

Every response recorded by the SiteCopier module is split by lines. The lines are then fur
ther tokenized into the tokens comprised only of characters that can appear in a val id base64
string. There is also a requirement on a token's length — it must be over 20 characters
long. It was experimentally tested that tokens shorter than 20 characters yie ld too many
false positives when entropy is calculated. Figure 4.8 illustrates an example tokenization
on a concrete line of code.

l e t r a t h e r L o n a V a r i a b l e N a m e = " 7 x 0 6 o a S 9 Z r a h K u s v r T R b c A q Y "

TOKEN1 TOKEN2

Figure 4.8: Example of line tokenization algorithm that splits the line of code into tokens of valid
base64 strings that are at least 20 characters long.

For each of these tokens, a Shannon entropy is computed using the a lgori thm depicted
i n code snippet 4.4. Calcula ted entropy value can range between 1.0 — the lowest entropy —
and 8.0 — the highest entropy. If a token's entropy is higher than ENTR0PY_TRESH0LD value,
it is determined to be a potential secret. Its source address and posit ion i n the response is
recorded.

def shannon_entropy(data, character_set):
i f not data:

return 0
entropy = 0
for x i n character_set:

p_x = float(data.count(x))/len(data)
i f p_x > 0:

entropy += - p_x*math.log(p_x, 2)
return entropy

Code snippet 4.4: A l g o r i t h m used to compute Shannon entropy of the string.

41

R e q u e s t M i n e r M o d u l e

RequestMiner module's intended purpose is to gather addi t ional security-related informa
t ion about a target appl icat ion and provide this information to other modules.

Design

The RequestMiner module is capable of providing following information about a target web
site:

• Ex i s t i ng query string parameters,

• existing response headers,

• hidden query string parameters,

• security standing of received response headers.

A l l of the mentioned above is detected through the use of non-destructive and non-permanent
interactions (see section 3.1).

Ex i s t ing values that are present on a target page, such as query string parameters or
response headers, are parsed from physical artifacts recorded by the SiteCopier module.

Hidden values, on the other hand, are discovered by interacting wi th a target applicat ion
in such a way, that their existence is verified. These values come from a source list of possible
hidden values, that are tested to be present in a target applicat ion.

If a response to a request that was crafted to reveal hidden values is different from a response
to a standard, non-altered request, it is considered a sign of hidden value or values being
present.

A security standing of received response headers is evaluated by the th i rd party tool designed
for this purpose and the result is included in the report.

Th is module is essentially dependent on the output of the SiteCopier module.

Implementation

Discovery of existing query string parameters and existing response headers is done through
iterating over physical artifacts left behind by SiteCopier module and extracting corre
sponding information.

For every discovered parameter, a parameter record is created or updated. Code snippet 4.5
shows the parameter record structure.

A list is used as a data structure to hold discovered existing response headers. Standard re
sponse headers, such as Content-Type, Content-Length or Content-Encoding are filtered
out of this list for brevity and low informational value to a tester.

To discover query string parameters that are hidden — meaning there is no mention of them
in an application's source code — requests to a target are necessary. The implemented tool

42

discovered_parameters = {
"parameterName": {

"sources": ['http://target.url/index.php?parameterName=l', .
"values": [1, 2, 29, . . .] ,
" r e f l e c t s " : False

}.
"parameterName2": {

// Same as above
>

>

Code snippet 4.5: A dictionary of discovered parameter names. For each parameter, a source
U R L s and discovered values are recorded. Additionally a check whether a parameter value reflects
into the page is done.

uses a source file of 25 000 query string parameter names that most commonly appear
i n web applications.

T ry ing to discover hidden parameters contained in the source file one-by-one is not feasible
for bo th t ime and traffic reasons. For this purpose, specifically crafted discovery U R L s are
prepared. E a c h of these U R L s is kept below 2000 characters l imi t , and as many unique
parameter names as possible are appended to them. For every parameter name, a unique,
8 characters long, pseudo-random string is generated (also called "canary") as its value.
This reduces the number of requests that need to be made to discover hidden parameters
significantly and also provides a mechanism to check for parameter reflection.

P r io r to discovery U R L s being requested, a pair of cal ibrat ion requests is sent to determine:

(a) Target's response to request w i th a non-existing parameter,

(b) target's response to request without any addi t ional parameters.

Once the tool starts requesting discovery U R L s , it compares the received responses wi th the
two previously mentioned responses. If the received response differs from them, the tool
tries to pinpoint which of the included parameters in the discovery U R L caused the re
sponse to change. W h e n a canary string is present i n the response, the tool detects it and
immediately discovers which parameter or parameters exist. Addi t ional ly , such parameters
are marked as reflected, as their values appeared i n the response body.

W h e n a canary str ing is not present in the received response, the tool tries the parameters
contained in the discovery U R L one-by-one.

A possible l imi ta t ion to this approach is a si tuation when a target applicat ion reflects
the whole U R L or a l l of its parameters. Th is issue is mit igated by stopping the discovery
process after more than 25 parameters are discovered to be reflected in the first received
response. The too l then announces that probably every parameter reflects and proceeds
to move onto the next tasks.

43

http://target.url/index.php?parameterName=l'

XSSFinder Module

A subset of X S S , a reflected XSS vulnerabi l i ty can be discovered in a target applicat ion
through non-destructive and non-permanent interactions. Reflected X S S is typical ly based
on displaying an improper ly sanitized input provided by a user. This module aims to dis
cover places where this vulnerabi l i ty occurs.

Design

A data structure of reflected query string parameters acquired from the RequestMiner mod
ule is provided on the input of the XSSFinder module. The module then tries to discover
and verify which of these parameters are vulnerable to reflected X S S vulnerability.

XSSFinder utilizes a detector string to understand how a target applicat ion sanitizes user
input. The detector str ing is passed as a value for every of the reflected parameters and
then a response is inspected and the level of user input sanit izat ion is determined:

• None — User supplied input is not sanitized i n any way.

• Encoded for H T M L body — Characters < and > are encoded.

• Encoded for attributes — Single and double quotes are encoded.

• Encoded — User supplied input is properly encoded and a l l special characters (<,
>, &, and single and double quotes) are encoded.

• Otherwise Modif ied — User input is not encoded i n a way that can be considered
safe, but also cannot be put into any of the categories above.

After input sanit izat ion level is determined, the context of the reflected detector string is
determined too. If no sanit ization is performed, or i f it does not correspond to the context
in which the detector string is rendered, a potential X S S is reported.

W h e n a sanit izat ion level of Otherwise Modified is discovered, a potential X S S is always
reported. Th is decision is based on an assumption that any other than complete output
encoding is prone to vulnerabili ty.

Th is module is essentially dependent on the RequestMiner module.

Implementation

A t the beginning of the reflected X S S discovery, XSSFinder receives parameters that were
detected as reflected by the RequestMiner and starts testing parameter after parameter
on reflection, using their source U R L s .

F i rs t , the detector string <"'> is used to determine a level of user input sanit izat ion that
is performed on the parameter value before it is reflected. If sanit izat ion level is None or
Otherwise Modified, a discovered XSS object is crafted and stored. If the sanit ization level
is Encoded, no further act ion is taken. Code snippet 4.6 shows a structure of the discovered
X S S object.

44

discovered_xss = {
" u r l " : "http://target.app/index.php?page=Home",
"param": "page",
"protection": "None",
"context": n u l l

}

Code snippet 4.6: Discovered XSS object that is crafted for potential reflected XSS vulnerability
findings.

W h e n determined sanit izat ion level is either EncodedForHTML or EncodedForAttributes,
an attempt to guess its rendering context is made and i f a mismatch between encoding style
and rendering context is found, again, discovered XSS object is crafted and stored.

Context-guessing algori thm takes into account three non-whitespace characters to the left
and to the right of the reflected detector string. If characters =, ", or ' are discovered
in the correct order wi th in this range, the attribute context is guessed. Otherwise defaults
to guessing the tag context.

MisconfChecker Module

This module's intended purpose is to detect a Version Con t ro l System (V C S) and server's
Internet Information Services (IIS) misconfigurations that endanger deployed application.

Design

MisconfChecker module is capable of discovering certain improper IIS settings, accessible
leftover version control files and enumerating hidden resources.

Th is module operates i n two stages — during the first stage, hidden resources are enumer
ated and leftover V C S files are discovered, and in the second stage, an IIS misconfiguration,
enabled directory listing, is searched for. The order of the stages has its purpose. Detect ion
of the enabled directory l is t ing is queued to be the second task so it can take advantage
of discovered hidden resources and V C S leftovers.

Input for hidden resource enumeration and V C S leftover files discovery is a source file
that contains common resources available i n web applications, del imited by the newline
character. Hidden resources include, but are not l imi ted to, configs, database backups, and
readable credentials files, as well as V C S configuration files.

Enabled directory l is t ing detection accepts on its input a list of U R L s that were seen
to appear across the applicat ion. These U R L s are tokenized into possible directory U R L s
and then requested.

The Provided response is checked to contain indicators of directory l is t ing being enabled
- if these are present, U R L address exhibi t ing these characteristics is stored as a result.

45

http://target.app/index.php?page=Home

Implementation

Responsibi l i ty for the two stages i n which this module operates is d ivided between HRLocator
and DLDetector classes. The former class encases logic for enumeration of hidden resources
and V C S leftovers, while the latter class focuses on detecting enabled directory l ist ing.
The relationship between the module and these classes is shown i n Figure 4.9.

HRLocator
+ resourcesjound

+ REQUEST_DELAY

+ MAX_REQUESTS

+ RANDOMIZE_SELECTION

+ discover_hidden_res()

+ request_resource(string)

+ locate_vcs_resource(string)

+ is_vcs_leftover(string)

+ build_url(string)

MisconfChecker
+ resources

+ directory _listing

+ vcs_resources

+ resourcejocator

+ dirlisting_detector

+ execute()

+ get_results()

+ get_presenter()

DLDetector
+ directory _listing

+ REQUEST_DELAY

+ detect_directory_listing()

+ is_dl_reply()

+ detect_virtual_dirs()

+ build_virtual_dir_cmpnts()

Figure 4.9: Relationship between MisconfChecker module and its HRLocator and DLDetector
classes.

HRLocator first loads a list of resources to discover from the resources.txt file, which
contains frequently used hidden resource names. The implemented tool provides a list
of roughly 29 000 hidden resources to be discovered, but i n a real scenario, a tester would
use a resource list specific to technologies that are used by a tested applicat ion. The Mis
confChecker's resource enumeration capabilities are as effective as the list of resource names
it uses.

A smal l subset of the resources.txt file is stored aside i n resources_vcs.txt. Th is file
contains commonly known V C S resource names and serves for the identification of V C S
leftovers.

HRLocator builds and requests U R L s of the hidden resources and checks responses returned
by a target applicat ion. If any n o n - V C S resource returns 200 O K H T T P code, it is an
nounced as a discovered hidden resource. W h e n a V C S resource returns 200 O K or 403
Forbidden H T T P code, it is announced as a discovered V C S file.

Discovered hidden resource U R L s are then passed to DLDetector that checks them for en
abled directory l is t ing. Dur ing its operation, it decomposes a l l val id U R L s that were seen
in the applicat ion into their probable directory paths and requests them. If the reply has
an H T T P status code of 200 and there are enabled directory l ist ing indicators present,
the U R L is added between the module results. Code snippet 4.7 shows strings that are
used to indicate that a response was an enabled directory l is t ing occurrence.

Once again, configuring the delay between consecutive requests and the to ta l amount of re
quests that are sent is possible through module run options 4.2.

46

•./
•./
Parent Directory
Parent Directory

Code snippet 4.7: String indicators that if present in response from a server, indicate enabled
directory listing feature.

Standalone Tool: PastebinTracker

In some scenarios, it is possible to acquire sensitive information about a target applicat ion
from channels that are not directly l inked to i t .

Cruc ia l information may be shared by the users, employees or someone else entirely, outside
the standard channels that are dedicated to i t . One such channel is Pastebin.com'1, a website
that allows users to share snippets of code — or more precisely, snippets of text. A typical
use case — one user needs help wi th configuring a service they use and wants to share their
current configuration. They decide to use Pastebin.com to paste their configuration and
send a l ink Pastebin generates for them to a person that is helping them. The helping person
even prefers this as the code w i l l not get mangled up by the instant messaging they use,
and if the configuration is wr i t ten in a commonly known language, a syntax highlighting
w i l l be applied.

W h a t they do not realize is that i f they do not adjust v is ibi l i ty settings before posting,
everything they just shared is public . The PastebinTracker tool that has been implemented
in this thesis aims to take advantage of that.

Design

PastebinTracker too l detects and stores a local copy of interesting public pastes that are cre
ated by the users of Pastebin.com website. The interestingness of a given paste is measured
by the presence of specific keywords i n its contents. A tester can specify these keywords
on the tool's input.

New pastes on the Pastebin.com website are created every few seconds and the tools reflect
this by periodical ly fetching new pastes. Delay between consecutive requests can be specified
by a tester.

W h e n a paste that is processed contains one or more of the keywords specified on its input,
its copy is created and stored for later inspection by a tester.

Implementation

Pastebin.com service offers a scraping API intended to be used by the scripts and auto
mated tools. For access to this A P I , a Lifetime PRO account is required.

4See online: https://pastebin.com
5 See https: //pastebin.com/scraping

47

http://Pastebin.com'1
http://Pastebin.com
http://Pastebin.com
http://Pastebin.com
http://Pastebin.com
https://pastebin.com
http://ebin.com/scr

After starting, the tool reads the keywords file that was provided by a tester. Th is file
contains keywords which should trigger the tool to save a paste for further inspection.
Keywords are separated by a line break.

The A P I is ut i l ized i n the PastebinTracker too l and it is periodical ly queried for new pastes.
Right after the tool is launched, 20 latest pastes are fetched and searched for keywords
specified by a tester. In a user-specified interval, the A P I is re-queried and new pastes are
fetched and searched again.

W h e n a paste contains keyword specified by a tester, its copy is created and wri t ten into
a file. Each paste has a unique identifier which is used as a file name. L o c a l copies are
stored into the directory that a tester specifies by one of the tool's parameters.

4.7 Case Studies

This section presents two hypothet ical case studies of the possible use of the ReconJay and
PastebinTracker tools i n two scenarios. The first case study deals w i t h a penetration testing
of a hobby web applicat ion smaller in size, w i th fewer dai ly visitors, while the second one
deals w i th a penetration testing of a big company wi th thousands of employees. These
case studies are presented to demonstrate the use of the implemented tools i n different
environments.

Case Study I: Small Hobby Web Application

A male penetration tester B o b is tasked wi th penetration testing of a smal l hobby web site
that belongs to a female owner A l i ce . F r o m Al i ce , he knows the following:

• Web applicat ion uses PHP and MySQL technologies.

• Web applicat ion is buil t on top of the WordPress C M S .

• Web applicat ion has less than 100 accessible pages.

• App l i ca t ion does not use any 3rd party service that would require remote authenti
cation.

• Host ing services are charged annually i n advance and they are not derived from the ap
plication's traffic.

• App l i ca t ion owner prefers verbal explanation of possible discovered security short
comings over the formal report.

• Target address of this appl icat ion is https://hobby.example.com

Based on the acquired information, B o b briefly considers excluding the existing TokenFinder
module from modules that are to be run but then decides against it to remain thorough.

A s the appl icat ion uses the MySQL technology, B o b decides to implement a new module
called SQLiFinder that w i l l detect error-based S Q L injection i n the appl icat ion under

18

https://hobby.example.com

test. D u r i n g its development, B o b follows a l l the coding best practices which in tu rn leads
to the reusable new module being developed.

K n o w i n g that the applicat ion is not charged per its traffic, B o b sets up an aggressive
hidden resource enumeration. Th is resource discovery is conducted by the existing Miscon-
fChecker module wi th no enforced REQUEST_DELAY value and no MAX_REQUESTS l imi ta t ion .
B o b is aware that the appl icat ion is powered by WordPress C M S and so he prepares a re
source enumeration file of commonly known WordPress and WordPress Plugins resources
for the enumeration procedure.

B o b is informed about the appl icat ion having under 100 accessible pages, so he preemptively
sets up the l imi ta t ion on 500 requests sent by the SiteCopier module. B o b sets this l imi t
both to remain thorough in case the applicat ion has more than announced 100 pages, and
to prevent the too l from getting stuck i n case there is a crawling loop i n the applicat ion
(e.g. the calendar component w i th year reflected from query string parameter).

The applicat ion under test is a hobby page wi th few hundreds of dai ly visitors and no
intention or support for bui ld ing a community around i t . Bob , therefore, decides not
to monitor side-channels for information relevant to his target.

The last th ing B o b does before launching the u t i l i ty is to set the show_module_description
presentation setting to False and request the tool to produce a Plaintext report. He w i l l
not be sending the report to Al i ce and the plaintext report is more convenient to work wi th
from terminal .

B o b starts the ReconJay too l and after it finishes, he reviews the report. Discovered findings
could be summarized as follows:

• TokenFinder d id not identify any high-entropy strings contained i n the application's
source code.

• The to ta l of 274 pages were crawled by the SiteCopier module.

• A number of hidden WordPress-specific query str ing parameter was discovered. Not
a single of these parameters is reflected into the page.

• One non-standard WordPress parameter (photoid) was discovered. It is not reflected
into the page.

• A n occurrence of S Q L injection was discovered in photoid parameter.

• N o X S S occurrence were discovered.

• Enabled directory l is t ing was discovered for a number of standard WordPress direc
tories, such as wp-includes and similar.

Out of these findings, Bob draws the following conclusions:

• The applicat ion runs on a misconfigured server — the directory l is t ing feature is
enabled which allows attackers to enumerate files i n known or discovered directories.

• A vulnerable photo-gallery plugin was installed on the WordPress instance that in
troduced a S Q L Injection vulnerability.

49

B o b verifies these conclusions by an addi t ional round of manual penetration testing (details
of the manual testing are out of the scope of this case study). After verification of findings
and conclusions, Bob sets up a meeting wi th Al i ce where he explains the results to her and
offers further assistance in the remediation of the issues.

Case Study II: Large Corporate Website

Once again, Bob , the penetration tester finds himself preparing for a penetration testing
session. Th is t ime, he is expected to test a website that belongs to the large E-Corp
company. A corporation that employs thousands of employees across the globe and operates
i n various industries.

F rom the in i t i a l meeting wi th an E-Corp's risk management team and a female C I S O
A m a n d a , he knows the following:

• Appl ica t ion ' s hosting service bills are charged based on its traffic. The budget for
the penetration testing session is set to cover up to 300 000 requests.

• Number of accessible pages is not known.

• A m a n d a requires to receive a penetration testing report detail ing the discovered v u l
nerabilities. It should come as a P D F that follows the official E-Corp's style guide.

• E-Corp corporation has an organization profile on the GitHub service.

• Target application's U R L is https://e-corp.example.com

B o b does not know the exact number of pages that should be crawled and scanned, but
he can make an educated guess by using the s i t e : e-corp. example. com Google dork and
observing the number of results returned — roughly a 12 000 pages. B o b sets up a hard
l imi t for SiteCopier module to a m a x i m u m of 30 000 requests — to cover pages indexed
by the Google and to account for possible pages that are not in the Google index.

Also , as he is aware that the corporation employs thousands of people, he considers mon
i toring possible side-channels for sensitive information. He takes advantage of already
implemented tool PastebinTracker and sets it up to look for a l l mentions of the E-Corp site
U R L and the E-Corp's m a i l suffix. Addi t ional ly , he implements a GitHub t racking mod
ule to continuously monitor additions to the organization's repositories for high-entropy
strings.

The testing session is expected to span over the course of five working days and for the whole
time, the PastebinTracker and the GitHubTracker w i l l run . B o b starts these util i t ies as
soon as he starts the testing.

Modules to discover V C S misconfiguration, hidden U R L parameters, X S S and the reusable
SQLiFinder implemented during the previous penetration testing session are also set up
to be run.

One final th ing that B o b does before launching ReconJay u t i l i ty is implementing new report
style named ECorpFormal. Th is format respects style guidelines required by E-Corp''?, C I S O
and w i l l be used to generate the final report.

50

https://e-corp.example.com

B o b runs the tool and summarizes the results:

• SiteCopier crawled 18289 pages.

• Two high-entropy strings were detected by TokenFinder module, bo th of them are
false positives — they do not serve as means of authentication.

• Directory l is t ing is disabled on the server.

• N o V C S leftover files were detected.

• Parameters userld, ordering and category from archive/oldportal subdirectory
are vulnerable to S Q L injection.

• Parameters search, userName and userld from prvt/hackaton2012/app subdirec
tory are vulnerable to reflected X S S .

A l l of the mentioned vulnerabilit ies were generated into the final report which was then
converted into requested the P D F format. A d d i t i o n a l manual penetration testing that is
outside the scope of this case study was conducted during the 5-day long penetration testing
session.

Dur ing the testing session, the side-channel moni tor ing tools produced the following results:

• Paste containing user credentials of certain E-Corp domain users was detected on
the second day of monitoring.

• O n the th i rd day of monitoring, 100 pastes containing fake credentials of E-Corp's
users were detected.

• O n the fourth day of monitoring, a single paste containing mock up H T M L design
of E-Corp's survey form was detected.

• E-Corp's developers d id not push any sensitive information into their public reposi
tories during the whole 5 day moni tor ing window.

W h e n the credentials dump was detected, B o b immediately contacted the organization's
security team and informed them about the leak. They responded prompt ly by requesting
the deletion of a paste i n question from Pastebin.com and deployed their established mi t i
gation procedure. The mit igat ion procedure can be observed on the th i rd day of monitor ing
when 100 pastes containing fake credentials were detected.

B o b compiled a l l of these results together and presented them at the closing meeting
for the E-Corp's risk management team and their C I S O . Tha t is where this case study
ends.

51

http://Pastebin.com

Chapter 5

Testing and Evaluation

This chapter discusses the methodology of testing and evaluation used to verify that the im
plemented tool operates and performs correctly. The chapter is d ivided into two main parts

- in the first part, the testing process of the implemented tool and its parts is outl ined,
while in the second part, the results are presented.

5.1 Testing &; Evaluation Process Design

This section proposes a testing and evaluation process design that is used for evaluating
the implemented ReconJay tool . Mul t i p l e ways of evaluation are used to increase confidence
in the implemented tool and to showcase its abi l i ty to perform operations it was designed
to perform. Fol lowing directions of the evaluation process were chosen:

1. Testing M o d u l e Loading Functionality — Tests and evaluates the tool's key
abil i ty to load and execute modules is performed correctly.

2. Testing Implemented Modules — Tests a l l implemented modules, one by one.
Evaluates the security scanning functionality provided by the modules.

3. Testing Standalone PastebinTracker M o d u l e — S imi lar ly evaluates a stan
dalone module that is implemented for moni tor ing of Pastebin.com side channel.

4. Comparison Testing: Acunet ix — Compares results discovered by the imple
mented u t i l i ty to results discovered by the commercial vulnerabi l i ty scanner.

5. Testing in Product ion Environment — Evaluates results reached by the Re
conJay tool when run against testing set of product ion websites that were selected
in chapter 2.6.

Testing Module Loading Functionality

Part of the implemented ReconJay tool is a module loading functionality that scans a mod
ule source directory for modules and tries to load them. These modules can be dependent
one on another and loading and execution need to account for that.

52

http://Pastebin.com

The dependency system needs to be tested on detection of a circular dependency and its
capabil i ty to recover from states where such dependency is discovered. A n occurrence
of circular dependency should not prevent the whole tool from running the modules that
do not suffer from it.

Fol lowing scenarios should produce the following outcomes:

Scenario 1 Independent module is a dependency of one or mult iple other modules — no
issues during module loading and execution.

Scenario 2 Dependent module (dependency can be satisfied) is a dependency of one or
multiple other modules — no issues caused by this dependency during module
loading and execution.

Scenario 3 Dependent module (dependency cannot be satisfied) is a dependency of one
or more other modules — neither of the modules is executed, they are skipped
and an error message is produced.

Scenario 4 Dependent module 1 is dependent on a dependent module 2, while the depen
dent module 2 is dependent on module 1. Other modules directly or indirect ly
dependent on module 1 and module 2 exist — none of the modules is executed,
the error message is produced.

Outside the module loading functionality, the ReconJay tool 's abi l i ty to run on both Win
dows and Linux machine should be verified.

Testing Implemented Modules

This section presents experiments and scenarios that are designed to evaluate whether
implemented modules behave as expected. For each of the modules, a testing scenario or
an experiment is presented first, followed by conditions that a module under test must fulfill
to pass.

Testing TokenFinder M o d u l e

In order to test that TokenFinder module is capable of detecting secrets i n a target appli
cation, a test appl icat ion wi th hidden secret strings was prepared.

The test applicat ion contains randomly generated high-entropy strings of the following
properties:

• 5 strings that are 20 characters long and their calculated entropy is below 4.0 (thresh
old value for being discovered)

• 5 strings that are 20 characters long and their calculated entropy is 4.0 or greater.

• 5 strings that are 19 characters long and their calculated entropy is 4.0 or greater.

53

For TokenFinder module to pass this test, the expected outcome is as follows:

• 5 high-entropy secret strings that are 19 characters long are not detected — min
imum required length for a character sequence to be considered a secret string is
20 characters.

• 5 high-entropy secret strings that are 20 characters long and their calculated entropy
is 4.0 or greater are detected.

• 5 secret strings wi th calculated entropy being less than 4.0 are not detected.

Testing X S S F i n d e r M o d u l e

To test the XSSFinder module's abi l i ty to detect reflected X S S i n a target applicat ion,
a vulnerable testing applicat ion was developed.

The test appl icat ion contains the following parameters w i th their respective reflection prop
erties:

• 10 parameters that correctly encode user-supplied input and only then reflect it into
the page — i n both inside and outside H T M L attribute contexts.

• 5 parameters that do not perform any input sanit izat ion before reflection.

• 2 hidden parameters that reflect user input i n at tr ibute context without sanit izing
single and double quotes.

• 2 hidden parameters that reflect user input i n attr ibute context after correctly encod
ing single and double quotes.

• 2 hidden parameters that reflect user input outside at tr ibute context and fail to san
itize opening character of an H T M L tag.

• 2 parameters that reflect user input into the page after converting H T M L opening
and closing character to a pound character.

For XSSFinder module to pass this test, the expected outcome is as follows:

• 10 parameters that correctly encode user supplied input are not reported to be vu l
nerable to X S S .

• 5 parameters that do not perform any input sanit izat ion are reported as vulnerable
to X S S .

• 2 hidden parameters reflected without sanit ization i n at tr ibute context are reported
as vulnerable to X S S , while the 2 hidden parameters that perform correct sanit izat ion
are not reported.

• 2 parameters that reflect user input after custom sanit ization algori thm is applied are
noted as potential ly vulnerable to X S S .

54

Testing MisconfChecker M o d u l e

To evaluate MisconfChecker module's abi l i ty to discover hidden resources and to detect
enabled directory l is t ing functionality, a simple testing scenario is sufficient. The testing
application needs to contain commonly known hidden resources and a V C S directory or
a file. The server on which the applicat ion runs must have the directory l is t ing feature
enabled.

For the testing purposes following resources were created in the testing application:

• V C S Resources — .git folder, .git/config file.

• Other resources — . env file, php. i n i file, phpMyAdmin directory.

The module passes the test i f it successfully detects these resources and reports the enabled
directory l is t ing for a .git folder.54

Testing SiteCopier M o d u l e

Unlike other modules, SiteCopier module executes no testing that could be classified
as unauthorized penetration testing. For this very reason, it is possible to set up a testing
scenario that w i l l not need a separate testing applicat ion, but instead, w i l l use already
existing applications on the Internet.

M a i n functionality provided by this module is crawling web applicat ion and making a local
copy of a l l its important parts that are requested. In order to test whether the module
operates correctly, the three applications listed below w i l l be crawled by the module.

• https://danieldusek.com — N o crawling loops, smal l web applicat ion. Expected
number of physical artifacts copied locally: 24

• http: //davidriha.cz — A crawling loop is present, smal l web applicat ion. Expected
number of physical artifacts stored locally: E q u a l to the requests l imi ta t ion .

• https://kentico.com — N o crawling loops, large applicat ion. Expected number
of physical artifacts copied locally: 3161.

After the crawling is finished, physical artifacts left behind by the implemented tool w i l l be
inspected and their match to the crawled applications w i l l be verified.

To pass this test, SiteCopier module must crawl the applications successfully and store
their responses as its physical artifacts. It must not get stuck i n an infinite crawling loop.

Testing RequestMiner M o d u l e

RequestMiner module discovers and reports response headers in use, parameters i n use
and hidden parameters that were possible to detect. In order to test the module's abi l i ty
to perform these actions, a testing applicat ion w i t h the following properties is used:

55

https://danieldusek.com
http://davidriha.cz
https://kentico.com

• App l i ca t ion uses and references these parameters: page, section, year, and month.

• App l i ca t ion uses but does not reference parameters: ban and ban_reason.

• App l i ca t ion uses and does not reference following parameters: xq24xca and 2xxxc22.

• App l i ca t ion reports these specific headers outside the standard headers: Server,
X-Test-Header and Generated-By.

The module under test should be capable of detecting a l l headers and parameters used and
referenced by the applicat ion.

It is admissible for the module not to detect hidden parameters that do not manifest
themselves i n the application's response content or status code.

Parameters of seemingly random names (xq24xca, 2xxxc22) which are not referenced by
the applicat ion, and are not among the commonly known parameters, are not expected
to be detected.

Testing Standalone PastebinTracker Module

To evaluate the tool's abi l i ty to monitor the Pastebin.com side channel, an experiment is
to be conducted. Fol lowing paragraphs detai l a design of this experiment and the expected
outcome, that should be produced by the tool under test.

Fi rs t , a u t i l i ty capable of posting code snippets to the mentioned service is to be created.
The experiment w i l l span over 24 hours, i n which this u t i l i ty w i l l post precisely 200 pastes
that w i l l contain pseudo-randomly generated string sequences and a code word. This code
word w i l l be known to the PastebinTracker u t i l i ty and w i l l be registered as a monitored
keyword.

Dur ing the 24 hours window, the u t i l i ty w i l l monitor Pastebin.com for the agreed code
word, while the aforementioned code snippet posting u t i l i ty w i l l post new pastes containing
the code word i n pseudo-random t ime intervals. A half (100) of the posted pastes w i l l be
removed by the u t i l i ty after a pseudo-randomly chosen t ime interval. The deletion request
w i l l be delayed for a pseudo-random time from an interval between 10 seconds and 20
minutes after posting.

In order for the PastebinTracker to pass this test, a l l 200 pastes generated by the u t i l i ty
should be recorded.

Comparison Testing: Acunetix

This evaluation scenario proposes comparing the ReconJay too l to the commercial vu l
nerabili ty scanner Acunetix1. Acunetix scanner was chosen as a reference tool as it is
a commonly known vulnerabi l i ty scanner w i th a great repertoire of detection capabilities
and also because it allows scanning of the prepared Test PHP Vulnweb2 applicat ion.

1See vendor's website: https://www.acunetix.com/
2Available online: http://testphp.vulnweb.com

56

http://Pastebin.com
http://Pastebin.com
https://www.acunetix.com/
http://testphp.vulnweb.com

The mentioned applicat ion contains a number of security vulnerabili t ies that can be de
tected by both tools. W h e n evaluating results, it must be kept i n m i n d that Acunetix
performs even destructive and permanent trace leaving interactions wi th a target. Recon
Jay, on the other hand, sticks to the non-destructive and non-permanent interactions. Due
to this, there w i l l be differences i n discovered and reported vulnerabilities.

Testing in Production Environment

In chapter 2, section Testing Web Application Sets 2.6, two groups of web applications
for testing were selected. The first group is comprised of highly secure applications and
the second group is comprised of random applications and applications that are not fre
quently penetration tested. This chapter contains a testing plan for evaluating the ReconJay
uti l i ty 's performance against these targets.

A l l of the tool's runs w i l l share the same module options (defined in the options, json
file). Code snippet 5.1 shows used option values.

{

"MisconfChecker": {
"DELAY": 0.3,
"RAND0MIZE_SELECTI0N": "True",
"MAX_REQUESTS": 500

}.
"RequestMiner": {

"DELAY": 0.3,
"CANARY_LENGTH": 5,
"MAX_REFLECTION_REQUESTS": 15,
"URLPARAM_DISCOVERY_HEURISTICS": "START_PAGE",
"MAX_ACCEPTED_URL_LENGTH": 2000

}.
"XSSFinder": {

"DELAY": 0.3
}.
"SiteCopier": {

"TOTAL REQUESTS LIMITATION": 10000
}.
"TokenFinder": {

"ENTR0PY_TRESH0LD": 4.0,
"MIN_T0KEN_LEN": 20

}
>

Code snippet 5.1: Module Options values that are used by the ReconJay tool during its evaluation
runs.

ReconJay w i l l be launched against a l l of the targets described earlier i n this thesis and
the reports w i l l be manual ly reviewed by the author of this thesis. Based on these reports,
conclusions w i l l be drawn and the future extensions w i l l be proposed.

57

The purpose of this testing scenario is not to make a binary decision on whether ReconJay
passed or failed this test. It is rather to see how the tool performs against the real, existing
targets and what vulnerabilit ies is it capable of detecting.

5.2 Testing & Evaluation Results

A c t u a l testing and evaluation results are detailed and discussed i n the following paragraphs.
This section retains the same structure as the section 5.1 where the testing and evaluation
process was proposed.

Module Loading Functionality Testing Results

This section details the results of the testing scenarios outl ined in the section Testing Module
Loading Functionality 5.1. Table 5.1 presents testing results for given scenarios.

Scenario no. 1 2 3 4
Result O K O K O K O K

Table 5.1: Results of module loading scenarios testing (outlined i n section 5.1).

A l l the testing scenarios led to expected outcomes, implemented tool , therefore, passes
the module loading functionality tests.

Implemented Modules Testing Results

This section presents the results of the testing that was conducted according to the testing
plan designed in section Testing Implemented Modules 5.1. Based on the testing results,
conclusions are drawn.

TokenFinder M o d u l e Testing Results

TokenFinder module correctly detected 5 high-entropy secret strings hidden inside the test
ing application's source code and included them into the generated report. The module
also correctly ignored 5 high-entropy secret strings that were only 19 characters long and
therefore below the detection threshold. The five secret strings below the calculated entropy
threshold were also correctly ignored.

Based on these results, the TokenFinder module passes the test.

X S S F i n d e r M o d u l e Testing Results

XSSFinder module provided expected outcome after it was set up to run against the testing
application and therefore passes the test. The two parameters which reflect user input after
custom sanit izat ion algori thm were reported as OtherwiseModif ied protection level and
an advisory paragraph was generated into the final report.

58

MisconfChecker M o d u l e Testing Results

MisconfChecker module discovered the following resources: a .git folder, a .git/config
file, a . env file, a php. i n i file and a phpMyAdmin directory.

Enabled directory l is t ing was reported for the . g i t folder. These results correspond to ex
pectations established i n the testing plan and the module passes the test.

SiteCopier M o d u l e Testing Results

Results of the test p lan execution proposed i n section Testing Implemented Modules 5.1
are summarized i n table 5.2. Discovered number of artifacts matches the expected number
of artifacts for each of the testing applications. For each of these applications, the SiteCopier
module also terminated successfully and d id not get stuck in a loop.

Expected Discovered Stuck i n
Art ifacts Art ifacts Loop

danieldusek.com 24 24 N o
davidriha.cz 5000 5000 No
kentico.com 3161 3161 No

Table 5.2: Table of results reached when testing a SiteCopier module.

The second applicat ion has a high number of expected artifacts which corresponds to
the T0TAL_REQUESTS_LIMITATI0N value (5000). Th is is due to the fact that the appli
cation contains a crawling loop in which it loops unt i l this l imi ta t ion is reached.

SiteCopier module passes the test.

RequestMiner M o d u l e Testing Results

Dur ing its test run, RequestMiner module discovered the following parameters:

• page, section, year, and month — These parameters were discovered because they
are expl ici t ly referenced by the testing applicat ion and their presence can be detected
easily from the SiteCopier ' s physical artifacts.

• ban — This parameter was discovered during the commonly known parameters list
testing, due to the altered response from applicat ion, when the parameter was added
to the U R L .

RequestMiner failed to discover the following parameters:

• ban_reason — Th is parameter was not detected, because it does not manifest itself
by altering the applicat ion response.

• xq24xca, 2xxxc22 — These two parameters were not discovered, because they are
not i n the list of commonly known parameters.

59

http://danieldusek.com
http://davidriha.cz
http://kentico.com

A l l non-standard response headers (X-Test-Header, Server and Generated-By) were dis
covered. Accord ing to cri teria defined i n section Testing Implemented Modules 5.1, the mod
ule passes the test.

Standalone PastebinTracker Module Testing Results

Experiment Snippets posted 200
Setup Snippets deleted 100

Experiment Snippets deleted under 120 seconds since their creation 12
Results Snippets stored by PastebinTracker u t i l i ty 188

Table 5.3: Interpreted results of the PastebinTracker tool experiment designed i n section 5.1

After conducting the experiment designed i n section 5.1, the results presented by table 5.3
were observed. Exper iment ing wi th the PastebinTracker too l revealed that the tool is
capable of successfully moni tor ing the Pastebin.com side channel for specified code words
wi th one very specific l imi ta t ion . W h e n the paste containing the code word is removed
i n under 120 seconds after it is created, it is not detected by the uti l i ty.

Further investigation of this behavior uncovered the fact that there is a 2 minutes long
caching window between the Pastebin.com front-page l ist ing and the caching server that
is used by the service's scraping A P I . This behavior was discussed w i t h the administrators
of the service, who c la im that it is an intended feature.

In theory, this l imi ta t ion could be circumvented by scraping the Pastebin.com front-page
directly and discovering the paste there before it gets deleted. Unfortunately, this would
be i n a direct breach of the Terms of Service^ document.

Despite the fact that original evaluation cri teria required a 100% detection rate, Pastebin
Tracker too l passes the test. The discovered l imi ta t ion of the Pastebin service was not
known at the t ime and therefore accounted for.

Acunetix Comparison Testing Results

B o t h ReconJay too l and Acunetix t r i a l version were run against the Test PHP Vuln Web ap
pl icat ion. Table 5.4 compares discovered vulnerabilit ies that are possible to detect through
using non-destructive and non-permanent interactions.

Acunetix identifies also other types of vulnerabili t ies, such as Server Side Request Forgery,
Stored XSS, Weak Passwords, or Brute-forceable Login Forms, but a l l of these vulnerabili t ies
require potential ly destructive or at least permanent trace leaving interactions. ReconJay,
on the other hand, only detects vulnerabili t ies that can be detected without the risk of al
tering a target application's state. W h e n considering only the vulnerabilit ies detectable
this way, ReconJay's abi l i ty to detect them is comparable to that of Acunetix.

3See: https: //pastebin.com/doc_terms_of_service

60

http://Pastebin.com
http://Pastebin.com
http://Pastebin.com
http://ebin.com/doc_terms_of_service

ReconJay Acune t ix
Reflected X S S 4 4
Enabled Directory L i s t ing 12 12
Backup Files 1 2
. idea directory 1 1
Possible sensitive directories 8 3

Table 5.4: Compar ison table of detected vulnerabilit ies by Acunetix and ReconJay.

ReconJay was as strong as Acunetix at detection of enabled directory l is t ing and slightly
better at hidden resource discovery. These results are caused by a better resource payload
dict ionary that is used by the ReconJay. There is one exception to this c la im and that is
a number of discovered backup files. ReconJay managed to discover only one backup file
of the two present on target applicat ion — again, due to different dictionaries i n use.

Testing in Production Environment Results

The two groups of web applications chosen for final evaluation in section 2.6 were tested
by the implemented ReconJay tool . Table 5.5 details the results of testing the first group
of highly secure applications, while table 5.6 shows testing results of the latter group of ran
dom web applications that are not frequently tested.

X S S
Resources vcs Directory Detected Pages

X S S
Found Leftovers Lis t ing Parameters Crawled

flickr.com 0 0 0 0 0 10000
bistudio.com 0 0 0 0 0 57
bohemia.net 0 0 0 0 10 2917
ylands.com 0 0 0 0 0 8
ylands.net 0 0 0 0 0 8
arma2.com 0 0 0 0 107 10000
arma3.com 0 0 0 0 35 2874
dayz.com 0 0 0 0 0 20
armamobileops.com 0 0 0 0 0 41
minidayz.com 0 0 0 0 0 12
vigorgame .com 0 0 0 0 0 12
hyatt .com 0 0 0 0 2 N / A
world.hyatt .com 0 0 0 0 0 N / A
starbucks.com 0 0 0 0 0 6997

Table 5.5: Results recorded by ReconJay too l when security scanning highly secure web
applications (Test Set 1).

Results recorded i n table 5.5 confirm the original hypothesis that applicat ion from this test
set w i l l yield l imi ted to no results.

Several applications also put some obstacles into the path of automated testing. A s can be
read from the number of issued requests, ylands applicat ion cannot be efficiently crawled —
these applications are almost entirely wri t ten i n JavaScript. The ReconJay''s crawler does
not support JavaScript-based crawling.

61

http://flickr.com
http://bistudio.com
http://bohemia.net
http://ylands.com
http://ylands.net
http://arma2.com
http://arma3.com
http://dayz.com
http://armamobileops.com
http://minidayz.com
http://hyatt.com
http://world.hyatt.com
http://starbucks.com

The applications residing on hyatt.com and world.hyatt.com could not be crawled, as they
actively prevent automated crawling and processing of their applicat ion - e.g. they refuse
connection i f they identify it was made using the python requests l ibrary.

X S S
Resources

Found
V C S

Leftovers
Directory

L i s t ing
Detected

Parameters
Pages

Crawled
davidriha.cz 3 1 1 2 8 10000
danieldusek. com 0 0 0 0 0 57
netsearch.cz 0 0 0 0 25 138
nesad.fit.vutbr.cz 0 0 0 0 1 38
testphp.vulnweb.com 4 12 1 10 7 57

Table 5.6: Results recorded by ReconJay too l when security scanning a selection of appli
cations that are not frequently penetration tested (Test Set 2).

Testing of applications from the Test Set 2 showed that ReconJay tool is capable of detecting
vulnerabilit ies in real applications that are not under frequent penetration testing. For two
applications from this test set, places vulnerable to reflected X S S were discovered.

W h e n testing davidriha.cz application, it was also discovered that a remote host where
the applicat ion physically resides, is capable of detecting that it is being scanned for vu l
nerabilities. Some of the requests on hidden resources were automatical ly sinked to non-
existing www. ihateexploits . cc domain.

5.3 Future Extensions

This section presents a few extensions that are planned to be implemented in the future.
Some of these extensions are a direct result of evaluation and testing phase, while other pro
posed extensions are completely standalone improvements of existing functionality. They
focus mainly on increasing the scope of vulnerabi l i ty testing that would lead to a more
broad repertoire of detected vulnerabilit ies and vulnerable patterns.

PastebinTracker Detection Improvements

The evaluation phase of the standalone PastebinTracker module discovered that when
a paste was deleted under 120 seconds since its creation, the module was unable to de
tect i t . Proposed future extension addresses these issues and manages to detect newly
created pastes directly from the Pastebin. corn's front page.

Significant challenges in implementing this extension exist. One of these challenges is that
implementing and using this functionality is a viola t ion of the Pastebin's Terms of Service
document. The other challenge lies i n implemented protection against this form of scraping
on the Pastebin's side — a way to avoid getting detected by the service's anti-scraping
functionality needs to be designed.

62

http://hyatt.com
http://world.hyatt.com
http://davidriha.cz
http://netsearch.cz
http://nesad.fit.vutbr.cz
http://testphp.vulnweb.com
http://davidriha.cz

More Vulnerability and Information Disclosure Detection Modules

The ReconJay u t i l i ty was designed to be easily extended by new modules. Such modules
can extend and bu i ld upon already existing modules or implement completely new security
scanning and evaluation functionality.

One of such modules was already hinted in the first hypothetical case study 4.7 — SQLiFinder
module that is capable of detecting error-based S Q L Injection type of vulnerabil i ty. Other
possible extensions are standalone modules for moni tor ing side-channels such as GitHub,
GitLab and other existing public boards for sharing information.

Improving RequestMiner Module Functionality

One of the core modules, RequestMiner is dedicated to acquiring information about tar
get applicat ion based on the physical artifacts collected by the SiteCopier module and
on its interactions w i t h a target applicat ion. Ex tend ing this module's functionality, e.g. by
the abi l i ty to brute-force some of the existing but hidden query string parameters, could
bring a benefit to a penetration tester using this tool .

Another possible extension would be to implement functionality for observing a target
application's behavior when provided w i t h various request headers. The benefit here lies
i n a possibil i ty of discovering reflected request header values, or in opening doors to debug-
only functionality, not intended for the public.

63

Chapter 6

Conclusion

This thesis had two goals — firstly, to propose a generally applicable approach to web
application penetration testing that utilizes only non-destructive and non-permanent in
teractions wi th a target application, and secondly, to implement a tool that would follow
the proposed approach and could be used for penetration testing. B o t h of these goals were
achieved — the approach is proposed and subsequently the ReconJay too l following it is
designed and implemented.

There are 5 items in the master thesis specifications that place certain requirements on the fi
nal outcome of this work. The first i tem requires s tudying approaches, methods and existing
software used for web applicat ion penetration testing. This work studies the two most com
monly known and used methodologies for penetration testing, five non-invasive penetration
testing techniques and eight penetration testing tools.

Another requirement, specified by the second i tem, is to design the aforementioned ap
proach. A u t h o r of this thesis proposes and designs the approach comprised of 3 significant
steps. The steps cover typica l stages of the penetration testing methodologies that were
studied, but utilizes only non-destructive and non-permanent interactions.

The th i rd i tem deals w i th the implementat ion of a too l that follows the designed approach.
It was addressed by ReconJay tool being developed. This tool can be used for non
destructive penetration testing and follows the principles outl ined i n the approach. It
supports the detection of reflected X S S vulnerabilit ies, reflected query str ing parameters,
certain server misconfigurations and hidden resource enumeration. Except for detecting
the vulnerable patterns, the tool is also capable of providing security relevant information
about a target applicat ion to a tester. Example of this is l is t ing the existing query string
parameters, non-standard headers or leftover version control files. M a i n original contri
but ion of this work is an implementat ion of the standalone PastebinTracker module that
serves for moni tor ing the Pastebin.com side-channel for information leakage. This module
was developed as a supportive tool to be used together w i th the ReconJay. F ina l ly , two case
studies showcasing the tools were presented. One of them deals w i th penetration of a small
web applicat ion, while the other one focuses on a large corporation target.

The fourth i tem requires an evaluation of the implemented tool . Testing and evaluation
is approached from mult iple perspectives. F i rs t , the tool's capabil i ty to load its modules
is tested by executing corner-case scenarios. Th is is followed by testing of each of the five
implemented modules on their capabil i ty to perform what they were buil t for. The results

64

http://Pastebin.com

are presented and provided outputs are explained. After that, an experiment w i t h the stan
dalone module PastebinTracker is conducted. The experiment results testify that it is able
to operate correctly and potential ly discover leaking information. The tool's l imi ta t ion
to detect information that is deleted wi th in a 120 seconds t ime window after its creation
is revealed, then closely explained and reasoned about. A comparison of the ReconJay
tool to a commercial Acunetix vulnerabi l i ty scanner follows next. The comparison test
ing revealed that in non-destructive and non-permanent penetration testing, the ReconJay
tool outperforms the Acunetix scanner i n identification of potential ly vulnerable resources.
ReconJay detected 8 occurrences of potential ly vulnerable resources, while Acunetix was
able to detect only 3 of them. ReconJay performs just as well as Acunetix in reflected
X S S and enabled directory l is t ing detection. A n d finally, the tool's performance is tested
on testing applicat ion sets designed whilst working on i tem one. The tool d id not de
tect any vulnerabilit ies i n expected highly secure applications. It d id manage to discover
X S S vulnerabili t ies, enabled directory l is t ing and hidden resources disclosure in 2 of the 5
applications in the set of applications that are not frequently penetration tested.

Item five of the specification requires a user documentat ion to be made. The user docu
mentation is delivered in appendix B and contains instal lat ion instructions and examples
of a proper tool usage. I tem five also requires an out l ining of the future extensions of the tool
and explaining their benefits. This was mostly covered as a followup to the evaluation
and testing chapter and proposed extensions include: extending the existing functional
i ty of the RequestMiner module, for example by adding support for brute-forcing query
string parameters or request headers, and also implementing new modules for monitor ing
side-channels other than Pastebin.com.

A n extension that could be made i n the nearest future would focus on improving the Re
questMiner's functionality. The addi t ion of brute-force guessing of query string parameter
names and hidden request header names would further improve the tool's reflected X S S
detection capabilities.

The extension plan for the far future encompasses implementing the SQLiFinder module
wi th advanced capabilities of S Q L Injection detection. Such extension must s t i l l adhere to
the non-destructive and non-permanent requirements and needs to come up w i t h a smart
way to detect existing S Q L injection in a target applicat ion.

This work was presented at conference Excel@FIT2019.

65

http://Pastebin.com

Glossary

Blue Team is a team of security people, typical ly inside a company. The blue team
members are actively t ry ing to prevent security incidents from happening and to
improve the overall security of the company. 16

BurpSui te is a penetration testing tool w i th graphical interface and a various tools, bo th
automated and manual that make penetration testing of web applications easier. 7,
8, 19

C A L 9 0 0 0 is a software comprised of several other software tools that ease the manual
penetration testing. The project was allegedly abandoned by its project team. 7

Internet Archive is a non-profit organization that is bui ld ing a d igi ta l l ibrary of the
internet. Snapshot of various web sites and their pages are taken i n different points
in t ime. Users can request page snapshot being taken and can also browse these
snapshots for any of the recorded web pages [2]. 17

J S O N The abbreviat ion itself stands for Javascript Object Notation and is the way that
objects are standardly described i n JavaScript . These days it is used by a wide variety
of software, because it allows easy exchange of structured data. 16, 17

Netsparker is an automated web applicat ion security scanner that scans the web appli
cation for a number of known vulnerabilit ies from various vulnerabi l i ty classes. The
tool provides fairly accurate results w i th working proof of concepts that demonstrate
discovered vulnerabili t ies. 8

Secret is a password or a passphrase that should not be disclosed to the th i rd parties and
people outside the need-to-know basis. Example of secrets can be access tokens for
user accounts or product ion applications' environments. 16

WebScarab is a software designed to serve as a proxy between the user browser and web
server that allows the penetration tester to alter the requests sent to and from the
webserver. 7

Z A P The abbreviat ion stands for Zed Attack Proxy and it is a tool helping wi th both man
ual and automated penetration testing of web applications. Main ta ined and improved
by the open-source community. 7

66

Bibliography

[1] Trends i n Consumer M o b i l i t y Report . Technical Report 1.415.913.4416. Bank of
Amer ica . August 2017.

[2] archive.org: A b o u t the Internet Archive . 2018, (accessed January 1, 2019).
Retrieved from: https://archive.org/about/

[3] Barber , R . : Hackers profiled—who are they and what are their motivations?
Computer Fraud & Security, vol . 2001, no. 2. 2001: pp. 14-17. I S S N 1361-3723.
doi:10.1016/S1361-3723(01)02017-6.

[4] Beazley, D . ; Jones, B . K . : Python Cookbook: Recipes for Mastering Python 3. ,,
O ' R e i l l y Media , Inc.". 2013. I S B N 978-1-449-34037-7.

[5] Chess, B . ; West, J . : Secure programming with static analysis. Pearson Educat ion .
2007. I S B N 0-321-42477-8.

[6] C impanu , C : Gamarue Botnet Uses Hijacked WordPress Sites to Send Spam wi th JS
Payloads. A p r i l 2016, (accessed November 21, 2018).
Retrieved from: https: //news.softpedia.com/news/gamarue-botnet-uses-
hijacked-wordpress-sites-to-send-spam-with-js-payloads-502842. shtml

[7] Cormode, G . ; Krishnamurthy, B . : K e y differences between Web 1.0 and Web 2.0.
First Monday, vol . 13, no. 6. 2008. I S S N 13960466. doi:10.5210/fm.vl3i6.2125.

[8] Engebretson, P. : The Basics of Hacking and Penetration Testing: Ethical Hacking
and Penetration Testing Made Easy. Syngress Publ i sh ing , second edition. 2013. I S B N
9780124116412.

[9] Erns t , M . D . : Static and dynamic analysis: Synergy and duality. In WODA 2003:
ICSE Workshop on Dynamic Analysis. New Mexico State Univers i ty Por t land , O R .
2003. I S B N 0-7695-1877-X. I S S N 0270-5257. pp. 24-27.
doi:10.1109/ICSE.2003.1201290.

[10] F ie ld ing , R . ; Reschke, J . : Hypertext Transfer P ro toco l (H T T P / 1 . 1) : Semantics and
Content. R F C 7231. R F C Edi to r . June 2014.

[11] Foudi l , E . : A M e t h o d for Web Security Policies. Informational securitytxt-rfc.
ietf.org. January 2019.

[12] Garsiel , T. ; Irish, P.: How browsers work: Beh ind the scenes of modern web
browsers. Google Project, August. 2011.

67

http://archive.org
https://archive.org/about/
http://tpedia.com/news/gamarue-botnet-uses-
http://ietf.org

[13] Google: Refine web searches. 2019 (accessed January 1, 2019).
Retrieved from: h t t p s : / / suppor t . goog le . com/websea rch /answer /2466433

[14] Hatmaker, T . : Facebook password stealing software comes packed wi th a trojan that
steals your passwords. August 2017, (accessed November 17, 2018).
Retrieved from:
h t t p s : / / t echc runch .com/2017 /08 / 1 0 / f a c e b o o k - p a s s w o r d - s t e a l i n g - s o f t w a r e -
c o m e s - p a c k e d - w i t h -a- t r o j a n - t h a t - s t e a l s - y o u r - p a s s w o r d s /

[15] Hudak, P. : Analysis of DNS in cyber security. Master thesis. Masaryk University,
Facul ty of Informatics, Brno . 2017.

[16] Jadhav, M . A . ; Sawant, B . R . ; Deshmukh, A . : Single page applicat ion using
angularjs. International Journal of Computer Science and Information Technologies.
vol . 6, no. 3. 2015: pp. 2876-2879. I S S N 0975-9646.

[17] Karpowicz , R . : Cus tom file formats. Jun 7, 2017 (accessed January 1, 2019).
Retrieved from:
h t t p s : / / g i t h u b . c o m / a u t h O / r e p o - s u p e r v i s o r / w i k i / C u s t o m - f i l e - f o r m a t s

[18] Kaspersky: W h a t is a Black-Hat hacker? 2016, (accessed November 17, 2018).
Retrieved from:
h t t p s : //www. k a s p e r s k y . c o m / r e s o u r c e - c e n t e r / t h r e a t s / b l a c k - h a t - h a c k e r

[19] Ket t le , J . : So you want to be a web security researcher? M a y 2018, (accessed
November 17, 2018).
Retrieved from: h t t p s :
/ / p o r t s w i g g e r . n e t / b l o g / s o - y o u - w a n t - t o - b e -a-w e b - s e c u r i t y - r e s e a r c h e r

[20] Koster , M . : A M e t h o d for Web Robots Cont ro l . Informational norobots-rfc.
robotstxt.org. December 1996. h t t p : / / w w w . r o b o t s t x t . o r g / n o r o b o t s - r f c . t x t .
Retrieved from: h t t p : / / w w w . r o b o t s t x t . o r g / n o r o b o t s - r f c . t x t

[21] Langston, M . : Six Best Practices for Securing a Robust Doma in Name System (DNS)
Infrastructure. Feb 6, 2017 (accessed January 27, 2019).
Retrieved from:
h t t p s : / / i n s i g h t s . s e i . c m u . e d u / s e i _ b l o g / 2 0 1 7 / 0 2 / s i x - b e s t - p r a c t i c e s - f o r -
s e c u r i n g-a - r o b u s t - d o m a i n - n a m e - s y s t e m - d n s - i n f r a s t r u c t u r e . h t m l

[22] M a r t i n , R . C : Clean code: a handbook of agile software craftsmanship. Pearson
Educa t ion . 2009. I S B N 9780136083238.

[23] McAfee : 7 Types of Hacker Motivat ions . M a r c h 2011, (accessed November 17, 2018).
Retrieved from: h t t p s : / / s e c u r i n g t o m o r r o w . m c a f e e . c o m / c o n s u m e r / f a m i l y -
s a f e t y / 7 - t y p e s - o f - h a c k e r - m o t i v a t i o n s /

[24] M c N a l l y , C : maK- /pa rame th . 2018, (accessed January 1, 2019).
Retrieved from: h t t p s : / / g i t h u b . c o m / m a K - / p a r a m e t h /

[25] Mockapetr is , P. : Doma in names - implementat ion and specification. S T D 13. R F C
Edi to r . November 1987.

68

http://support.google.com/websearch/
http://echcrunch.com/20
http://kaspersky.com/resource-
http://swigger.net/blog/
http://robotstxt.org
http://www.robotstxt.org/norobots-rfc.txt
http://www.robotstxt.org/norobots-rfc.txt
http://insights.sei.cmu.edu/
http://securingtomorrow.mcafee.com/
https://github.com/maK-/parameth/

[26] Mohamed, R . : Assessment of Web Scanner Tools. International Journal of Computer
Applications (0975 - 8887). vol . 13, no. 6. January 2016. I S S N 0975-8887.
doi:10.1.1.735.7781.

[27] Mul l e r , A . ; Meucc i , M . ; Keary, E . ; et a l . : O W A S P testing guide 4.0. 2014 (accessed
November 21, 2018).

[28] Not t ingham, M . ; Hammer-Lahav, E . : Defining W e i l - K n o w n Uni form Resource
Identifiers (URIs) . R F C 5785. R F C Edi to r . A p r i l 2010.

[29] O W A S P : A b o u t The Open Web App l i ca t i on Security Project. September 2018,
(accessed November 25, 2018).
Retrieved from: https: //www.owasp.org/index.php/
About_The_Open_Web_Application_Security_Project

[30] Rouse, M . : W h a t is white hat? January 2018, (accessed November 17, 2018).
Retrieved from: https: //searchsecurity.techtarget.com/def inition/white-hat

[31] Rouse, M . : W h a t is a script k iddy (or script kiddie) . June 2007, (accessed November
17, 2018).
Retrieved from:
https: //searchmidmarketsecurity.techtarget.com/definition/script-kiddy

[32] Rouse, M . : W h a t is black hat? June 2017, (accessed November 17, 2018).
Retrieved from: https: //searchsecurity.techtarget.com/definition/black-hat

[33] Samir Pate l , R . A . : Directory Browse < directory Browse >. Sep 26, 2016 (accessed
February 9. 2019).
Retrieved from: https: //docs.microsoft.com/en-us/iis/configuration/
system.webserver/direct orybrowse

[34] Shannon, C . E . : A mathematical theory of communicat ion. Bell system technical
journal, vol . 27, no. 3. 1948: pp. 379-423.

[35] Shirokova, A . ; Valeros, V . : A n Overview of the W C M S Brute-forcing Malware
Landscape. The Journal on Cybercrime & Digital Investigations, vol . 3, no. 1. 2017:
pp. 20-29. I S S N 2494-2715. doi :10 .18464/cybin .v3i l . l8 .

[36] Simmonds, A . ; Sandilands, P. ; V a n Ekert , L . : A n ontology for network security
attacks. In Asian Applied Computing Conference. Springer. 2004. I S B N
978-3-540-23659-7. pp. 317-323. doi:10.1007/978-3-540-30176-9_41.

[37] Valeros, V . : Make It Count : an Analys is of a Brute-forcing Botnet . The Journal on
Cybercrime & Digital Investigations, vol . 1, no. 1. 2016. I S S N 2494-2715.
do i :10 .18464/cybin .v l i l .5 .

[38] V a n Hat tem, R . : Mastering Python. Packt Publ i sh ing L t d . 2016. I S B N
978-1-78528-972-9.

[39] Wichmann , B . ; Canning , A . ; Clut terbuck, D . ; et a l . : Industr ial perspective on static
analysis. Software Engineering Journal, vol . 10, no. 2. 1995: pp. 69-75. I S S N
0268-6961. doi:10.1049/sej.1995.0010.

69

http://www.owasp.org/
http://searchsecurity.techtarget.com/
http://techtarget.com/definition/script-kiddy
http://searchsecurity.techtarget.com/
http://microsoft.com/en-us/

[40] Zalewski, M . : The Tangled Web: A Guide to Securing Modern Web Applications. San
Francisco, C A , U S A : N o Starch Press, first edit ion. 2011. I S B N 1593273886,
9781593273880.

70

Appendices

71

Appendix A

Presentation styles

The appendix A demonstrates the two presentation styles available i n the implemented
ReconJay u t i l i ty :

1. BWFormal — Black & Whi te , Formal A . l

2. Plaintext — Basic plaintext style A . 2

72

Web Application Penetration Testing Report
Generated by ReconJay Tool
Target: http://davidriha.cz

XSSFinder
An XSSFinder m o d u l e takes advantage of in format ion gathered by both SiteCopier and RequestMiner m o d u l e s . It looks for con ten t suppl ied by the

user that is ref lected back into the page and then de te rm ines w h e t h e r the w e b s i t e author i m p l e m e n t e d suff ic ient protect ion aga ins t X S S (typically

encod ing) .

X S S F i n d e r is a w a r e of the contex t in w h i c h t h e payload is ref lected and before report ing d iscovered X S S . it ver i f ies that n e c e s s a r y precond i t ions

w e r e sat isf ied for t h e f inding, thus avoiding fa lse posi t ives.

S c a n detec ted 3 ref lected X S S vulnerabi l i t ies.

U R L V u l n e r a b l e p a r a m e t e r P r o t e c t i o n R e n d e r i n g C o n t e x t

h t t p : / / d a v i d r i h a . c z / ? m o n t h = 4 & p a g e = z a p a s y & s e k c e = k a l e n d a r & y e a r = 2 0 1 9 year None —

h t t p : / / d a v i d r i h a . c z / ? m o n t h = 4 & p a g e = z a p a s y & s e k c e = k a l e n d a r & y e a r = 2 0 1 9 year None —

h t t p : / / d a v i d r i h a . c z / ? m o n t h = 4 & p a g e = z a p a s y & s e k c e = k a l e n d a r & y e a r = 2 0 1 9 year None

MisconfChecker
MisconfChecker m o d u l e c h e c k s for conf igurat ion er rors in deployed appl icat ion, s u c h a s enab led d i rectory l ist ing, V C S s t ruc tu res put into the

product ion and hidden r e s o u r c e s that are avai lable, but not m e a n t to be seen .

O the r interest ing r e s o u r c e s w e r e found in the fo l lowing locat ions:

o ht tp: / /davidr iha.cz/ l ightbox

Figure A . l : Presentation style: Black and Whi t e , Formal

73

http://davidriha.cz
http://davidriha.cz/?month=4&page=zapasy&sekce=kalendar&year=2019
http://davidriha.cz/?month=4&page=zapasy&sekce=kalendar&year=2019
http://davidriha.cz/?month=4&page=zapasy&sekce=kalendar&year=2019
http://davidriha.cz/lightbox

DOCUMENT_NAME: V u l n e r a b i l i t y Report (2019-05-03_14064B_LCDHK)

WEB APPLICATION PENETRATION TESTING REPORT
Generated by: ReconJay t o o l
T a r g e t : h t t p : / / d a v i d r i h a . c z

-> Module: x s s F i n d e r

An XSSFinder module t a k e s advantage of i n f o r m a t i o n gathered by both s i t e c o p i e r and
RequestMiner modules, i t l o o k s f o r content s u p p l i e d by t h e user t h a t i s r e f l e c t e d
back i n t o t h e page and then determines whether t h e w e b s i t e author implemented
s u f f i c i e n t p r o t e c t i o n a g a i n s t x s s (t y p i c a l l y encoding).

scan d e t e c t e d 3 r e f l e c t e d x s s v u l n e r a b i 1 i t i e s . F o r m a t : URL | v u l n e r a b l e parameter name | P r o t e c t i o n | Rendering
h t t p : / / d a v i d r i ha.cz/?month=5&paqe=zapasy£!sekce=kalendar&year=2019lyear|None|-http://davi d r i ha. cz/?month=5&page=
month=5&page=zapasy£!sekce=kalendar&year=2019lyear|None|-

-> Module: M i s c o n f c h e c k e r

M i s c o n f c h e c k e r module checks f o r c o n f i g u r a t i o n e r r o r s i n deployed a p p l i c a t i o n , such as enabled d i r e c t o r y
l i s t i n g , v c s s t r u c t u r e s put i n t o t h e p r o d u c t i o n and hidden r e s o u r c e s t h a t are a v a i l a b l e , but not meant t o
be seen.

M i s c o n f c h e c k e r d i d not c o l l e c t any p r e s e n t a b l e data.

Figure A . 2 : Presentation style: Plaintext , default fall-back when style name is not recog
nized, or not supplied.

74

http://davidriha.cz
http://davi
http://davi

Appendix B

ReconJay Tool — User Manual

The appendix B contains a user manual for the implemented ReconJay tool . Examples of
the proper tool usage are included.

Installation

O n the opt ical disk attached to the thesis, there is a ReconJay folder which contains source
files of the implemented tool . A m o n g these files, requirements.txt file is located. This
file specifies P I P packages that need to be downloaded and installed prior to the ReconJay's
run. They can be installed by running one of the commands presented i n code snippet B . l .

pip i n s t a l l -r requirements.txt
OR
python -m pip i n s t a l l - r requirements.txt

Code snippet B . l : Installation of P I P dependencies.

For a problem-free execution of implemented tools, P y t h o n version 3.6 or higher is recom
mended.

Usage

Two executable Python scripts are attached to this work. F i rs t of them is the ReconJay. py
that accepts only a single parameter — the U R L address of a web applicat ion. After the
command presented i n code snippet B .2 is run, it w i l l execute non-destructive penetration
testing of an applicat ion that resides on provided U R L .

python ReconJay.py http://example.com

Code snippet B .2 : ReconJay tool : Example of use.

Addi t ional ly , it is possible to set certain options for each module loaded by the ReconJay
tool , on per module basis. For this purpose, options, json file can be used. Inside this
file, a dict ionary object is present, where its keys correspond to module names. Under

75

http://example.com

these keys, certain module settings are configurable. A complete demonstration of these
settings and possible values is shown i n the options, j son file inside ReconJay folder on
the attached opt ical disk.

The second executable Python script, PastebinTracker .py, is intended for continuous
monitor ing of the Pastebin.com site for interesting pastes that appear there.

A tester must provide the script w i th keywords for which to look i n newly posted pastes.
This is realized through -k or —keywords-file parameter. Provided file should contain
the list of keywords, each of them on a new line. W h e n no keywords file is specified,
keywords. txt file is used.

They can also provide — f etch-interval value to specify how often w i l l the script retrieve
information about new pastes — a number of seconds is expected. Fetch timeout defaults
to 10 seconds when not set.

Last parameter that a tester can specify is an output directory to which the interesting
pastes should be stored. This parameter defaults to the recorded_pastes value and can
be adjusted by -o or —output-dir parameter.

Code snippet B .3 shows examples of how the script can be run.

python PastebinTracker py —output - d i r pastes
python PastebinTracker py —fetch-timeout 5 -k keywords_creditcards.txt \

-o cards

Code snippet B . 3 : PastebinTracker tool : Example of use.

76

http://Pastebin.com

Appendix C

Contents of the Optical Disc

O n the opt ical disc attached to this thesis, following contents can be found:

• ReconJay/ containing complete source codes of the implemented tool .

• thesis/ containing electronic version of this document i n .pdf.

• thesis-latex/ containing source files of this thesis.

• report-samples/ containing sample reports produced by the ReconJay applicat ion.

• readme. txt containing brief description of the files on the opt ical disc and a user
manual for the ReconJay applicai ton.

77

