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Abstract
This bachelor’s thesis aims to evaluate different data formats for storing tabular and im-
age data. To accomplish this task, this work designed a new benchmark of data formats.
The benchmarks are divided into three benchmark suites. These include the benchmark-
ing of uncompressed tabular formats, compressed tabular formats, and an image storage
benchmark. Overall tabular benchmark results suggest that the best tabular data format
for speed saving and reading is Feather, and the most memory-efficient format is Parquet.
The results of the image storage benchmark show that the fastest image storage is SQLite
and the least space is required by PNG format. The results of this work can contribute to
a better understanding of how different data formats behave and help to choose the right
format for tabular and image data.

Abstrakt
Cieľom tejto bakalárskej práce je ohodnotiť rôzne dátové formáty pre ukladanie tabulárnych
a obrazových dát. K zvládnutiu tejto úlohy táto práca navrhuje nový benchmark dátových
formátov. Benchmark je rozdelený do troch benchmarkových skupín. Tie zahŕňajú bench-
mark nekomprimovaných tabulárnych formátov, komprimovaných tabulárnych formátov
a benchmark obrazových úložísk. Celkové výsledky tabulárnych benchmarkov naznačujú,
že najlepší tabulárny formát pre rýchle ukladanie a čítanie je Feather a najviac pamäťovo
efektívny je Parquet. Výsledky benchmarkov ukladania obrázkov ukazujú, že najrýchle-
jšie úložisko obrázkov je v SQLite a najmenej miesta vyžaduje formát PNG. Výsledky
tejto práce môžu prispieť k lepšiemu pochopeniu správania sa rôznych dátových formátov
a pomôcť pri výbere správneho formátu pre tabulárne a obrazové dáta.
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Rozšírený abstrakt
Táto práca sa zaoberá výskumom v oblasti ukladania tabulárnych a obrazových dát. Jed-
ným z rozhodujúcich faktorov, ktorý ovplyvňuje efektivitu uloženia dát, je výber správneho
dátového formátu. Preto hlavným cieľom tejto bakalárskej práce je porovnať a zhodnotiť
širokú škálu tabulárnych formátov od textových po binárne. Okrem tabulárnych dát sa
práca venuje aj obrazovým dátam, ktoré sa v dnešnej dobe často používajú na tréno-
vanie neurónových sietí. V tejto časti bolo porovnaných šesť spôsobov ukladania obrázkov
vzhľadom k preddefinovaným metrikám.

K porovnaniu dátových formátov a obrazových úložísk bol navrhnutý nový benchmark.
Tento benchmark sa skladá z troch sád, kde každá sa zameriava na inú oblasť ukladania
dát. Prvá benchmarkuje dátové formáty na všeobecných tabulárnych dátach bez kompre-
sie, druhá pre vybrané dátové formáty povoľuje kompresiu a posledná skúma najvhodnejší
spôsob uloženia obrazových dát.

K správnemu vyhodnoteniu sú použité hlavne nasledujúce metriky: čas potrebný k ulo-
ženiu dát, čas potrebný k načítaniu dát z disku, veľkosť výsledného súboru po uložení
a maximálna alokovaná pamäť v RAM pri ukladaní aj čítaní. Benchmarky boli vykonané
na rôznych dátových sadách. Jednu kategóriu testovacích dát tvoria synteticky vygen-
erované dáta podľa definovanej schémy. Vytvorenie umelých dát zabezpečuje syntetický,
parametrizovateľný generátor dát. Okrem týchto dát boli použité aj statické dátové sady,
ktoré boli načítané pred spustením benchmarkov. Tieto sa využili hlavne v prípade bench-
markov obrazových dát, kde boli použité dátové sady CIFAR-10 a ImageNet-100.

Výsledky meraní benchmarkov sú prehľadne spísané v tabuľkách v tejto práci. Celko-
vo sa práca snaží zistiť najvhodnejší dátový formát alebo obrazové úložisko vzhľadom na
určité kritérium. Finálne výsledky benchmarkov tabulárnych dátových formátov naznačujú,
že v prípade potreby čo najrýchlejšieho ukladania a načítania dát je najvhodnejšie zvoliť
dátové formáty Feather alebo Pickle. Čo sa týka kritéria najmenšieho zabraného priestoru
na disku, z benchmarkov vyšli najlepšie dátové formáty Parquet a ORC. V kompresnom
benchmarku dosiahol najlepší kompresný pomer formát HDF5. Výsledky benchmarkov
obrazových úložísk ukazujú, že najrýchlejší spôsob ukladania a načítania obrázkov posky-
tujú SQLite a LMDB. Najmenej miesta na disku zaberie uloženie obrázkov do samostatných
PNG súborov s metadátami uloženými v CSV súbore.

Výsledky tejto práce môžu byť použité v prípade výberu vhodného dátového formátu
alebo obrazového úložiska. Ak má užívateľ vybrané kritériá, ktoré sú pre neho dôležité,
môže spustiť benchmark aby mu odporučil najvhodnejší dátový formát. Vždy je však
potrebné uvažovať aj nad kontextom, v akom budú dáta používané.

Okrem tohto môžu výsledky pomôcť k lepšiemu pochopeniu, aké atribúty vo význam-
nej miere zvyšujú alebo znižujú efektivitu dátových formátov. Na základe týchto zistení
sa môžu v budúcnosti navrhnúť nové moderné dátové formáty, ktoré dokážu zvládať aj veľmi
veľké dátové sady, ktoré sa používajú hlavne v oblastiach ako strojové učenie alebo počí-
tačové videnie. Dúfam, že táto práca prispeje do oblasti skúmania výkonnosti jednotlivých
dátových formátov.
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Chapter 1

Introduction

The area of effective tabular and image data storage is attracting considerable interest
because the data size is growing rapidly. These huge datasets, used for machine learning
purposes, need data formats that will match their needs.

In recent years, articles [18, 29] evaluated column-oriented data formats Parquet, ORC,
Arrow, and Feather. Those papers extracted properties of the real-world dataset, created
workloads, and designed benchmarks. Concerning effective image storage, some research
has also been done. For example, the conference paper [17] has conducted a benchmark of
several image storage options on three different image datasets. Although some research
has been done in the field of data formats benchmarking, there is still space for deeper
research.

This bachelor’s thesis focuses on finding key features that affect data formats. Based on
those principles, it will extensively compare popular and state-of-the-art data formats. This
thesis should answer the question which data formats are the best based on some metrics
and why. Furthermore, it will evaluate different possible ways to store images. To answer
those questions, the benchmark of data formats is the way to fairly and comprehensively
evaluate each of them. The results of the benchmarks will be visualised in the graphs.

The work is divided into several chapters that will first describe theoretical key points,
then describe the methodology of the benchmarks, and finally present an evaluation of
the results. Chapter 1 is a general introduction to the research topic with related work.
Chapter 2 will study the principles and features that affect data storage formats. Each
data format that will be benchmarked will be described in Chapter 3. This chapter also
lists different options for storing image data. Those will be benchmarked in the image
storage benchmarks. Chapter 4 will propose a set of benchmarks and how they were
conducted. Chapter 5 will describe the design and implementation of the benchmarks
that were introduced in the previous chapter. Chapter 6 will discuss the results of the
benchmarks and their implications. Chapter 7 will conclude this research and its results.
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Chapter 2

Principles and features of storing
tabular data

This chapter will introduce important principles and features of tabular data storage. These
principles affect the efficiency of data formats. Different data formats implement various
principles described in this chapter. One of the most important are the internal layout,
encoding, compression, and data types. Table 2.1 summarises the possible options for each
feature. The data format features taxonomy was taken from article [29].

Table 2.1: Summary of data storage features taxonomy.

Internal layout (2.1) NSM, DSM, PAX
Encoding (2.2) DICT, RLE, Delta, FOR, BP, Huffman, . . .

Compression (2.3) Gzip, Zlib, LZO, Bzip2, Snappy, LZ4, zstd, Brotli, . . .
Data types (2.4) defined type system, without support for data types

Indexes (2.5) Zone Map, Bloom Filter, Page Index, . . .

Tabular data is a type of data that can be represented by a table. A table consists
of rows and columns, as shown in Figure 2.1. A row is a record with a defined scheme,
based on a table header. The scheme indicates the data type of each column. The table
is a collection of records. In the Python Programming Language, this data structure is
represented by pandas.DataFrame.

ABCDE

Column 1

Table Representation

Column 2 Column 3

A1

A2

A3

A4

A5

A6

B1

B2

B3

B4

B5

B6

C1

C2

C3

C4

C5

C6

Figure 2.1: Table Representation of DataFrame. Scheme taken from the webpage [21].

5



2.1 Internal layout
Internal layout defines how the data are physically stored on a disk. There exist three
major approaches to how tabular data can be stored, N-ary Storage Model (NSM), De-
composition Storage Model (DSM) and Partition Attributes Across (PAX). Those layouts
differ in orientation on rows, columns, or a combination of both. All three will be part of
this benchmark, for example NSM in CSV or Avro, DSM in JSON or Feather and PAX in
Parquet or ORC.

N-ary Storage Model

The N-ary Storage Model, or row-oriented approach, is the most simple layout that stores
all records sequentially. Its main disadvantage is that encoding algorithms and compression
are ineffective because mixed-typed tuples are stored in a line. It is used in popular data
formats, for example CSV or XML. Figure 2.2 visualises this type of layout.

NSM

A1 A2 A3

A4 A5 A6

B1 B2 B3

B4 B5 B6

C1 C2 C3

C4 C5 C6

Figure 2.2: Layout of N-ary Storage Model. Scheme taken from the webpage [21].

Decomposition Storage Model

The decomposition storage model is a fully decomposed storage layout introduced by
Copeland and Khoshafian (1985) in the article [9]. Column-oriented fashion stores tabular
data by columns, as can be seen in Figure 2.3. As pointed out by Abadi et al. [1], this layout
significantly improves the similarity of the neighbouring values on a disk, thus improving the
effectiveness of compression algorithms. On the other hand, back reconstruction to table
format takes more time, because more seeking is needed, as stated by Ailamaki et al. [2].

DSM

A1 A2 A3 A4 A5 A6 B1 B2 B3

B4 B5 B6 C1 C2 C3 C4 C5 C6

Figure 2.3: Layout of Decomposition Storage Model. Scheme taken from the webpage [21].

Partition Attributes Across

The most modern data storage layout is Partition Attributes Across, which was presented
by Ailamaki et al. (2001) in the proceedings [2]. It is a combination of NSM and DSM.
The columns are divided into column chunks and grouped in row groups. This approach
combines inter-record spatial locality and low record reconstruction cost. Ailamaki’s study
also noted that PAX is performing faster query executions than DSM and incurs 75% less
data cache stall time than NSM. Data formats like Parquet or ORC internally follow this
storage model. Figure 2.4 shows the PAX storage layout.
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PAX

A1 A2 A3

A4 A5 A6

B1 B3B2

B4 B5 B6

C1 C2 C3

C4 C5 C6

column chunk 1

column chunk 1

column chunk 2

column chunk 2

column chunk 3

column chunk 3

row group 1

row group 2

Figure 2.4: Layout of Partition Attributes Across. Scheme taken from the webpage [21].

2.2 Encoding
Applying lightweight encoding algorithms can be highly beneficial to data formats. It can
reduce the overall file size by compressing the input data. Some data formats use multiple
encoding schemes to get an even better compression ratio. Furthermore, encoding can
decrease the time needed for I/O operations, as stated in article [1]. However, decoding
will require CPU time.

There exist two types of data formats, plain text and binary. Text formats, such as CSV
or XML, do not use any special encoding algorithm. Typically, they are coded to Unicode
or ASCII. They can store only text characters, which means they do not have support for
binary data, such as images. On the other hand, binary formats use a variety of encoding
algorithms to store data more effectively. Common ones are described below.

Dictionary Encoding (DICT) stores frequent data values with fixed-length codes. For
example, ”apple“ is 0, and ”banana“ is 1. The key-value dictionary is used to store this
mapping. It works well when the number of distinct values in the column is low and those
values have high frequencies. The drawback is that the dictionary must be included in the
encoded data. Dictionary encoding cannot be used effectively when the data has many
unique values.

Run-Length Encoding (RLE) replaces the consecutive sequences of the same value,
with the tuple that contains the value and the number of repetitions. This is particularly
effective in column-oriented formats, because there is a higher probability of repetition of
the same data value, as was stated in article [1]. This encoding can be combined with
others, leading to hybrid encoding, for example, RLE/Dictionary or RLE/Bit-packing.

Delta Encoding or Delta binary packed as presented by Lemire and Boytsov [16] uses
the differences, deltas, between the encoded value and the previous value. For example, the
sequence 4, 3, 7, 11, 10, 14, 13, 17 would be stored as the sequence 4, -1, 4, 4, -1, 4, -1, 4,
which consists of only 4 and -1. Parquet uses this encoding on numerical, but also string
data. When the prefix of the string is the same as before, it will store only the prefix length
and the rest of the string.

Frame-of-Reference (FOR) from Goldstein et al. [11] has a similar approach to delta
encoding. FOR can make relatively high numbers smaller, which means they can be coded
on fewer bits. For example, numbers in the sequence 135, 141, 144, 148, 149, 152, 156, 160
range from 135 to 160. That means that 135 can be subtracted from each number and the
sequence will be 0, 6, 9, 13, 14, 17, 21, 25. Numbers from 0 to 25 can be represented on 5
bits in binary code, instead of 8 bits. What is needed to take into consideration is the fact
that the number that was subtracted must be included in the encoded data, and also the
fact that the numbers are encoded on 𝑛 bits.
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Bit-Packing (BP) encodes the numerical data into fixed-length codes, by cutting off
the leading zeros. To give an example, the sequence 1, 2, 3, 4, 5, 6, 7 can be encoded
on 3 bits as follows: 001, 010, 011, 100, 101, 110, 111. Originally, it would be encoded
on 8 bits with 5 bits of redundant zeros.

Huffman Encoding, introduced in article [13], is a method that can find the minimum
redundancy prefix code. It is an entropy coding, which means it works with probabilities
of input symbols. Huffman encoding is used in many compression formats, such as ZIP,
JPEG or MP3.

2.3 Compression
As was noted by Abadi et al. [1], some data formats use general-purpose block compression
codes, to further decrease the file size. This feature also comes with disadvantages. More
time is needed to load data into memory because decompression takes CPU time. Different
compression levels can be set to increase the speed, but the trade-off is a worse compression
ratio. Furthermore, enabling compression can be detrimental to the end-to-end query speed
of data formats. This issue was experimentally proved by Zeng et al. [29].

An overview of popular compression algorithms is given in Table 2.1. Older algorithms,
such as Gzip (1992) or Zlib (1995), have native support in programming languages. Mod-
ern compression algorithms like zstd (2015) need external libraries, but they often lead
to better compression results.

2.4 Data types
The majority of data formats support various data types. However, a few formats do
not have this support because they are encoded in plain text. Data types are defined
in a type system, which can be highly complex or simple with only basic types. As stated
in the presentation by Andrew Pavlo [22], the type system can be either physical or logical.
A physical type is a machine-specific byte representation, such as IEEE-754. Logical data
types are defined by the data formats. Those types are mapped to physical types.

Data types can be primitive or composite. Common primitive types are Boolean,
Integer, Float and Double. These types can be represented on various numbers of bits,
for example, an integer can be Int8, Int16, Int32 or Int64. Composite data types are
compounded from several primitive types. An example of composite data types can be
Struct, List, Map, or Union. The data format can create auxiliary types to store a specific
kind of data.

2.5 Indexes
Indexes and filters can significantly boost the query performance of a data format. This
section will describe Zone map and Bloom filter. Both of those indexes are supposed
to ensure faster queries. The zone map defines ranges of values for columns. Bloom filter
is a special data structure based on hash functions. Indexes are optional for most data
formats and they can be omitted.
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Zone map

Zone map stores maximal and minimal values in a part of a file, known as a zone. If the
query value is larger or less than this range, then the whole zone can be skipped. This can
significantly speed up query execution. It works best when the similar values are near each
other or the columns are partially sorted. Typically, a zone map stores a value range for
more zones.

Bloom filter

Bloom filter [4] is a space-efficient, randomised data structure that answers the question
whether the element is in a set. It uses a hash functions to insert elements into the bit
array. The results of the membership query can generate false positives. This is not a big
issue if the probability of error is small enough. The advantage of the Bloom filter is
its time and space complexity. The time complexity of the insertion and search is 𝒪(𝑘),
where 𝑘 is the number of hash functions. The space complexity is 𝒪(𝑛), where 𝑛 is the
length of the bit array. There exist many variations of the Bloom filter, such as dynamic,
compressed, spectral, or split block Bloom filters. An example of a Bloom filter is shown
in Figure 2.5.

0 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0

{x, y, z}

w

Figure 2.5: Example of a Bloom filter with three elements 𝑥, 𝑦 and 𝑧. Element 𝑤 is not in
the set, because it has 0 as an output of the hash function. Scheme taken from slides [10].
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Chapter 3

Data formats

Based on the principles described in Chapter 2, this chapter will present tabular data
formats in Section 3.1 and list options for storing image data in Section 3.2. Data formats
and image storages, that are included in this chapter, will be benchmarked in Chapter 4.

3.1 Tabular storages
The data formats that will be presented in this section were chosen because they are ei-
ther state-of-the-art or they are generally popular and widely used. Every format will be
described separately. Table 3.1 summarises the key attributes of each file format.

Table 3.1: Overview of tabular data formats properties. Properties taken from the arti-
cles [18, 29] and data formats specifications.

Internal Encoding Data
layout variants Compression types

CSV NSM Text No No
JSON NSM, DSM Text No Yes
XML NSM Text No No

HDF5 Hierarchical RLE, Huffman LZ4, Snappy, YesZlib, zstd

Parquet PAX DICT, RLE, Snappy, Gzip, LZO, YesDelta, BP Brotli, LZ4, zstd
Feather DSM DICT LZ4, zstd Yes

ORC PAX DICT, RLE Zlib, Snappy, LZO, YesDelta, FOR, BP LZ4, zstd, Brotli
Pickle Stream Binary code No Yes
Excel NSM multiple XMLs Zip Yes
Lance PAX VLB, DICT No Yes
Avro NSM Binary, JSON Deflate, Snappy Yes

Comma-separated values

Comma-separated values (CSV) is a type of delimiter-separated file format which uses
a comma as a separator. Each record is located on a separate line and divided by commas
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into fields. The comma can be replaced by other characters, common ones are tab, colon
or semicolon. Optionally, the fields can be enclosed in double-quotes. CSV structure can be
ambiguous due to the lack of adherence to official standards. This often leads to improperly
formatted CSV files. An example of a formal specification is RFC 4180 [24], which defines
the MIME type text/csv.

CSV is one of the most popular data formats because it is encoded in human-readable
plain text and can be imported to spreadsheet editors, like Microsoft Excel or LibreOffice
Calc. On the other hand, CSV is not suitable for large datasets with millions of records,
because it does not use any special encoding to compress the data.

JavaScript Object Notation

JavaScript Object Notation (JSON) [38] is a lightweight, plain text and language-inde-
pendent data format. It is based on the JavaScript language, standard ECMA-262 [30].
JSON is popular because it is easy to parse in any programming language and is also human-
readable. JSON is common in REST API as a data-interchange serialisation format.

Although JSON is a text format, it supports basic data types such as boolean, string, in-
teger and float. JSON uses two main data structures, Object and Array. Objects and arrays
can be nested into each other. Deep nesting greatly decreases the speed of deserialisation,
because a recursive approach is needed.

As stated on the JSON’s official webpage [38], the object is a set of key-value pairs. The
object is enclosed in braces, and each pair is separated by a comma. In programming, it can
be realised as an object, record, struct, dictionary, hash table, keyed list or an associative
array. The array is an ordered list of values. The array is enclosed in brackets and each
value is separated by a comma. In programming, it can be realised as an array, vector, list
or a sequence.

JSON is a column-oriented data format, but it can be oriented on rows with JSON Lines.
JSON Lines is a line-delimited JSON format. On each line, it stores one record in the form
of a JSON object. JSON Lines supports parallel I/O operations. This is the approach that
I will benchmark.

Extensible Markup Language

Extensible Markup Language (XML) [6] is an open, free data format, standardised by
the World Wide Web Consortium. It was first introduced in 1998. It is designed as a
plain-text format for application data interchange, which means it is easily understandable
for both machines and humans. XML is a subset of the Standard Generalized Markup
Language (SGML), which is a meta-language for defining markup languages. Its main
purpose is to separate data and style. Extensible Stylesheet Language Transformations
(XSLT) can transform XML to other formats, such as an HTML web page or a PDF
document.

Unlike CSV or JSON, XML syntax is complex and verbose. It can express almost any
kind of data as a tree. The basic syntactic structure is an element. The element consists of
a start tag and an end tag. The start label is enclosed in a less-than sign and a greater-than
sign, <name>. The end tag is similar to the start tag, but it adds a slash after a less-than
sign, </name>. If the element is empty, it can be shortened as <name/>. Elements can have
attributes to further specify the data. XML document must have one root element in which
other elements are nested. Optionally, it can have an XML declaration on the first line,
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for example <?xml version=’1.0’ encoding=’utf-8’?>. If the XML document follows
the rules defined in specification [6], then it is called well-formated.

XML is highly criticised because it is verbose and redundant. Nowadays, it is replaced
by other modern data formats, such as JSON or YAML. They can store the same data
more effectively with less syntactic sugar. This leads to a smaller total file size.

Hierarchical Data Format 5

Hierarchical Data Format 5 (HDF5) [44] is a self-describing binary data format. It has
a more complex internal layout that can be used on a wide variety of heterogeneous data.
Figure 3.1 shows a simplified layout of an HDF5 file. As noted by Byna et al. [7], HDF5
is popular in the scientific world because it is suitable for a high volume of experimen-
tal and observational data (EOD). HDF5 also allows data compression. An overview of
supported compression algorithms is given in Table 3.1.

Superblock

File Drive Info

Extension

Dataset 1

Dataset 2

File Metadata

File Infrastructure

Dataset c

B-trees

Group Symbol Table

Group Entry

Local Heaps

Global Heap

Fractal Heap

Free Space Manager

Shared Headers

.

.

.

Filter

External File

Datatype

Dataspace

Link Info

Fill Value

Link Message

Layout

Group Info

Data

...

Figure 3.1: Simplified internal layout of HDF5 format. Gray parts are optional.

Moreover, HDF5 I/O operations can run in parallel processes. As experimentally proved
by Xie et al. [28], to obtain superior performance, it is important to select the right
parameters for this feature. Enabling collective I/O on file metadata write, placing the
metadata at the file start, and flushing the metadata cache at the file close deliver the best
results for HDF5 write.

Furthermore, HDF5 is portable and multi-platform. It is an open-source project, with
an official API provided in Java, C++, C, and Fortran. External libraries are developed in
Python, Perl and other programming languages.

As is visible from HDF5 specification [37], HDF5 layout is similar to the file system
structure. It consists of three main components: dataset, group and attribute. Dataset is
mainly used to store application data. Each dataset can have its own structure. Typically,
each column is stored in a separate dataset. Groups organise similar objects together.
They can be seen as directories. Attributes annotate datasets, groups and other objects.
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HDF5 file also includes metadata that describe the application data. In the begging of
every HDF5 file must be a superblock which defines the file itself. Descriptive metadata are
stored before each dataset, for example for updating the location of the dataset. Datasets,
groups, and attributes are HDF5 high-level objects. At the low level, HDF5 is made of
a superblock, b-tree nodes, heap blocks, object headers, object data and free space.

Two different formats of HDF5 will benchmarked – fixed and table. Fixed format
performs faster save and write operations, whereas table offers greater flexibility and allows
operations, such as searching or selecting.

Apache Parquet

Apache Parquet [35] is the first presented data format that uses the PAX model, designed
by X (Twitter) and Cloudera. It was inspired by the Google Dremel model, which was
presented by Melnik et al. [20]. Parquet uses record shredding and the assembly algorithm.
Parquet is one of the most memory effective data formats because it uses a wide variety
of encoding algorithms. With a combination of compression codes, it can greatly reduce file
size. The supported encoding variants and compression algorithms are listed in Table 3.1.

The internal layout of the Parquet can be seen in Figure 3.2. It follows the PAX
format, which means division into Row Groups and Column Chunks. A column chunk
typically consists of multiple Pages. Each page has defined encoding and compression. After
the application data, Bloom Filter and Page Index can be included. Parquet uses the Split
Block Bloom Filter, which was introduced by Jim Apple [3], and takes advantage of modern
SIMD instructions. The Parquet file ends with a Footer and its length. The footer contains
information about the file and about row groups. File metadata may include information
such as the version or the schema. Row groups metadata can be, for example, the offset
and the type.
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Figure 3.2: Internal layout of Parquet data format. Gray parts are optional. Scheme
taken from article [29].
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Feather

Feather [19] is a binary column-oriented data format. It was created as a file format for
easy and fast transfer of data between Python’s DataFrame and R’s DataFrame. It has
an official API written in Python, R, and Julia. Feather is fast, interoperable, and has
high performance in read and write operations. For strings, it uses dictionary encoding.
As mentioned on Apache Arrow’s documentation webpage [36], there exist two versions
of Feather. Feather V1 is a legacy version. This version lacks some features of V2. It does
not support compression and cannot store all Arrow data types. Feather V2 is represented
by the Arrow IPC file format. It allows all Arrow data types and also compression codes
LZ4 and zstd. This version will be used for the benchmarks in Chapter 4.

Optimized Row Columnar

Optimized Row Columnar (ORC) [12, 45] is a fast, small, binary data format. It was created
as a part of the Apache project, where it replaces the old RCFile in the Hive data ware-
house. ORC supports many encoding schemes and compression algorithms. An overview
is given in Table 3.1. Moreover, ORC follows ACID rules, which are common for database
transactions. It uses Zone Maps and Bloom Filters for query speed-up. In contrast to
Parquet, ORC supports a rich variety of data types. These include primitive types, but
also complex data types, such as Map or Union.

ORC file structure implements the PAX data storage model. ORC layout scheme is
shown in Figure 3.3. ORC consists of Row Groups and Column Chunks. The row groups
are stored sequentially and internally divided into column chunks. Each row group has
multiples Indexes. Zone maps are required, but Bloom filters are optional. ORC file ends
with a Footer. The footer stores the file metadata and information necessary for each row
group, such as their offset or data length.
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Figure 3.3: Internal layout of ORC data format. Gray parts are optional. Scheme taken
from article [29].
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Pickle

Pickle [42] is a binary serialisation data format. It is Python-specific and is not supported
in other programming languages. The layout of Pickle is a compact byte stream. Pickle does
not use special encoding or compression, which means that it is not suitable for big data
storage. On the other hand, its I/O performance is great and works best on numpy.ndarray
and pandas.DataFrame, as was pointed out in blog [26]. The process of creating a Pickle
file is called pickling. Pickle can use six different protocols for serialisation. Higher versions
of the protocols require newer versions of Python. Unpickling the data is not secure and can
result in the execution of arbitrary code.

Office Open XML Workbook

Office Open XML (OOXML) [41] is a file format that is used in Microsoft Office. It is
defined by the standard ECMA-376 [31]. It has four defined extensions: Wordprocess-
ingML for .docx documents, SpreadsheetML for .xlsx spreadsheets, PresentationML for
.pptx presentations and DrawingML for drawing shapes and schemes. OOXML file con-
sists of multiple XML files that are compressed by Zip to one archive. SpreadsheetML,
commonly known as Excel, has the following file structure:

• [Content_Types].xml – Required XML file, which is located in the archives root. It
links other XML files with their content type.

• _rels/ – Folder with one file, called .rels. This file defines relationships between
other XML files and external resources.

• docProps/ – Folder with two files, app.xml and core.xml. Both of them define
document properties.

• xl/ – Main folder with workbook definition and at least one or more wokrsheets. It
also contains the theme and style of the spreadsheet.

Lance

Lance [39] is a modern columnar data format, used primary to store ML data. These
can include images, videos, 3D points clouds, but also tabular data. Lance supports auto-
matic versioning of dataset, that means it is possible to access old versions of the dataset.
Lance data format structure is organised in a separate directory. It includes data directory,
manifest file with latest version of the dataset, directory with manifests for older versions
of the dataset, indexes and deletion files. Data layout employs the PAX format, it divides
rows into batches and each batch consists of more pages. After data, there follows metadata
with information about batch length or page table position. Then optionally manifest and
finally footer.

Apache Avro

Avro [34] is a binary, row-oriented serialisation data format. Avro is heavily based on a sche-
ma, which is defined in JSON. Since the schema is present in both read and write, there is
no need to determine the data types of the columns. This can reduce overhead and speed
up the process of storing and loading data. Avro supports a rich choice of data types, from
primitive to complex, such as maps or unions. Furthermore, it specifies two encodings:
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Binary and JSON. Binary is used more, because it is faster and smaller. JSON encoding
can be useful for web-applications or debugging. Avro also supports compression codecs
– Deflate is required and Snappy, bzip2, XZ and zstd are optional.

3.2 Image storages
After introducing tabular data formats in previous section, this section will introduce image
data formats. This set of image data storage was chosen to cover most of today’s used image
storage options. It includes the PNG format, Base64 encoding, HDF5, Parquet, SQLite,
and LMDB. Table 3.2 shows the image storage options and multiple variants of the same
storage type. Only a subset of those will be benchmarked.

Table 3.2: Options of storing image data.

Image formats PNG, JPEG, SVG . . .
Encoding Base64, BinHex, Quoted-printable . . .

Binary formats HDF5, Parquet, ORC, . . .
Key-value DB LMDB, LavelDB, TileDB, . . .

BLOB SQLite, PostgreSQL, . . .

Portable Network Graphics

Portable Network Graphics (PNG) [5] is a single raster image storage format. It can store
greyscale or truecolor RGB (red, green, blue) images with an optional alpha channel. PNG
files are well compressed because they use the lossless data compression algorithm Deflate,
which is a combination of LZ77 and the Huffman encoding. The PNG format is about 10%
to 30% more compressed than the GIF format, as stated by Shivashetty and Rajput [25].
On the other hand, PNG encoding takes more time because the whole process consists
of more parts and includes compression.

The drawback of PNG is that it is a single image storage format and more images require
multiple files. For example, the ImageNet-1k dataset used for training neural networks
consists of approximately 1,3 M images, and each of them would be stored in a separate
file. Moreover, most of the image datasets also include labels or metadata about the ima-
ges. PNG is only an image format, and other data cannot be stored along them. This
benchmark will store metadata into a CSV file with column ID, which will link the image
with the metadata.

The PNG format layout begins with a PNG signature and continues with different
chunks. Four chunks are critical and must be included in the PNG file. Other are optional
and can be omitted. Required chunks are IHDR, PLTE, IDAT, and IEND. IHDR is the header
of a PNG datastream with information about image height, width, bit depth and more.
PLTE links the colour palette with a PNG image. IDAT contains compressed and filtered
image data. IEND or image trailer, indicates the end of the PNG datastream. Figure 3.4
visualises the layout of the PNG image format.

Base64

Base64 [14] is an encoding of arbitrary binary data to a subset of printable ASCII characters.
Base64 algorithm creates a group of 3 bytes (24 bits). This group is divided into 4 concate-
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Figure 3.4: Internal layout of PNG image format. Gray parts are optional.

nated 6-bits groups, each of them is an index to the table of characters. If the end of binary
data is not aligned to 24 bits, then it is padded with zeros, and a special character ’=’ is
used for representation of them. The output of Base64 is an ASCII string. Base64 is consid-
ered not memory-efficient because it always causes 33 % lengthening of the input: 32

24 = 1, 3.
This benchmark will encode the images to Base64 strings and store them in a single CSV
file with labels on the same row.

Binary data formats

Images can be represented as n-dimensional arrays (width, height, channels). These arrays
are flattened, encoded into binary code, and stored into a file. It is necessary to include
the shape of the image and the color palette, because image datasets can contain images
with different shapes, RGB or greyscale. The back reconstruction is performed by array
reshaping. This is another option for storing images in binary data formats. This thesis
will benchmark HDF5 and Parquet binary data formats in image data storage benchmarks.
These two formats were previously described in more detail.

LMDB

Lightning Memory-Mapped Database (LMDB) [8] is a read-optimised database. Origi-
nally, it was slapd backend for OpenLDAP. LMDB is a key-value storage which can store
arbitrary data, including binary. As the Figure 3.5 shows, internally LMDB implements
B+ tree with Multi-Version Concurrency Control. The name ”Memory-Mapped“ comes
from the fact that LMDB is mapping the whole database to the virtual memory, and ev-
ery data access returns a direct pointer to the data, to avoid intermediate copies. LMDB
demonstrates high efficiency in data reading by employing the Single-Level Store. This
concept groups the entire computer memory hierarchy into a single address space, allowing
LMDB to retrieve the whole database in a single read operation.
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SQLite

SQLite [43] is self-contained, cross-platform database engine in a single file. It is fast,
small and full-featured relational SQL database. SQLite supports all advanced concepts
from database systems, such as transactions, indexes, materialised views and window func-
tions. SQLite is a single file data storage, which does not need any external resources.
Furthermore, it provides support for various data types, including BLOB. BLOB (Binary
Large OBject) is a special data type capable of storing arbitrary binary data. According
to webpage [32], SQLite has about 35 % faster writes and reads on small BLOBs, for ex-
ample thumbnail images, than the file system using functions fread() and fwrite().
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Chapter 4

Benchmark methodology

This chapter will outline the methodology for benchmarking tabular and image data for-
mats. Section 4.1 describes the environment in which the benchmarks were conducted. Sec-
tion 4.2 lists all the metrics that were used to evaluate data formats. Section 4.3 presents
a collection of benchmarks that were performed on different data formats. Section 4.4
presents the generated data and datasets that were used in the benchmarks.

4.1 Environment
Benchmarks were conducted on a server trafficgpu1 with 64 CPUs of Intel Xeon Sil-
ver 4314, 264 GB of RAM and 1,47 TB of M.2 NVMe SSD. The operating system is
Ubuntu 22.04.4 LTS. Most data format files are created by calling pandas functions with de-
fault parameters without index. Avro is created by the fastavro package and Lance is
created by the pylance package. JSON is stored in JSON Lines format, and the Par-
quet engine is pyarrow. Both table and fixed HDF5 formats are part of the benchmarks.
Compression is turned off unless the benchmark specifies otherwise. Recommended ver-
sion of Python for running benchmark is 3.10 or newer. All Python packages used in this
benchmark with their versions are listed in Table 4.1.

4.2 Metrics
This benchmark uses five different metrics: save time, read time, save peak memory
usage, read peak memory usage and total file size. Save and read time is measured
by the Python module timeit in seconds. Save time measures the time required for the sav-
ing from pandas.DataFrame to the benchmark data format. Read time measures the op-
posite process, loading data from the disk to the pandas.DataFrame. Peak memory usage
measures the maximum allocated resident memory while reading or writing data. Resident
memory is allocated by a process in the RAM. This metric is measured by the Python
module resource in MB or GB. Total file size metric is the final size of all created files
on the disk. It is measured by the Python module os in MB or GB. Other metrics are
derived from the above metrics.
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Table 4.1: Overview of required Python packages and their versions used in benchmarks.

Package Version
asv 0.6.3
pandas 2.2.1
numpy 1.26.4
dask 2024.4.1
dask-expr 1.0.10
tables 3.9.2
lxml 5.2.1
openpyxl 3.1.2
pylance 0.10.9
fastavro 1.9.4
pillow 10.3.0
h5py 3.10.0
lmdb 1.4.1
datasets 2.19.0
matplotlib 3.8.4

4.3 Benchmark suites
Benchmark suite described in this section should compare different data formats and image
storages from Chapter 3. This benchmark focuses on the efficiency of tabular data storage,
compression of data formats and performance of image storages. In order to accomplish
this, three different benchmark suites were designed:

1. Tabular – Tabular benchmark will compare all data formats without compression
on datasets with different data types. The results are given in Section 6.1.

2. Compression – Compression benchmark will compare data formats with enabled
compression codes. The benchmark will consider two different compression codes,
LZ4 and zstd. Only data formats that support internal compression with those two
codes will be bechmarked. That includes HDF5 table, Parquet, Feather and ORC.
The results are given in Section 6.2.

3. Image – Image benchmark will compare all image storages on two different image
datasets, CIFAR-10 and ImageNet-100. Results are given in Section 6.3.

4.4 Datasets
The benchmark described in this chapter uses two types of datasets. One part of them is
static and persistent datasets, which are loaded from memory into the pandas.DataFrame.
The other part consists of dynamic datasets. They are generated within the benchmark
application and only last until the end of the benchmark run. Tabular benchmarks will
use synthetically generated data and the WebFace10M dataset. The parameters of tabular
datasets are summarised in Table 4.2. The image storage benchmark will use the CIFAR-10
and ImageNet-100 datasets.
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Table 4.2: Number of rows and data type distribution in tabular datasets.

ColumnsDataset name Rows
Int64 Float64 Boolean String

eq 1 M 2 2 2 2
int 1 M 5 1 1 1
float 1 M 1 5 1 1
bool 1 M 1 1 5 1
str 1 M 1 1 1 5
webface 10 M 6 21 0 6

Synthetic data

Synthetic data are generated before the start of the benchmarks and have limited lifes-
pan. After the end of the benchmarks, they are destroyed, and a new one needs to be
created. Actual values are different for each execution of the benchmarks, but they follow
the defined schema. The schema defines the number of entries and the number of columns
for each data type (Int64, Float64, Boolean and String). Values in all columns are gen-
erated with a uniform distribution. Int64 and Float64 have a value range from 0 to 100
and String length is fixed to 10 characters. These constants were taken from article [29],
in this paper they extracted parameters from real datasets and about more than half
of the values were below those constants. Synthetic data are generated by the data gener-
ator, which will be described in more detail in Chapter 5 about implementation.

This benchmark methodology defines five different synthetic datasets, four of them will
be focused on different data types, and one will have a uniform distribution of all data
types in columns. Datasets int, float bool and str are biased by data types. They have
5 columns of the main data type and 3 columns are equally distributed between other data
types. The dataset eq with equal frequencies of data types is default and will be considered
as a base. All generated datasets have 1 M rows and 8 columns.

WebFace10M

WebFace10M is a synthetic generated dataset that was provided by the Innovatrics com-
pany. It consists of only tabular data that annotate face images. The dataset schema
that was used for data generation corresponds to their face datasets. It has 10 M rows
and 33 columns, some examples of its column names are age_iface, brightness_iface
or contrast_iface. It was generated as a benchmark model of real data that are used for
face classification, identification and verification. The distribution of data types in the Web-
Face10M dataset is also shown in Table 4.2.

CIFAR-10

CIFAR-10 [15] is an image dataset that contains 60000 colour images, 50000 of them are
training images and 10000 are test images. All images are small – they have a fixed reso-
lution of 32× 32 pixels. The images are divided into 10 classes: airplane, automobile, bird,
cat, deer, dog, frog, horse, ship and truck. Each image is labelled with one of those classes.
The label is a uint8 ranging from 0 to 9. There exists also a variant with 100 classes called
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CIFAR-100. CIFAR-10 and CIFAR-100 are labelled subsets of the 80 Million Tiny Images1

dataset. Figure 4.1 shows a few example images from the CIFAR-10 dataset.

Figure 4.1: Example images from CIFAR-10 dataset.

ImageNet-100

ImageNet-100 [27] dataset is a subset of a larger dataset, ImageNet-1k [23], and is comprised
of 100 classes that have been chosen randomly. Each image has also been resized to 160 pix-
els on the shorter side. In contrast to the CIFAR-10 dataset, ImageNet-100 has images
with different shapes. In total, ImageNet-100 has 126689 training images and 5000 valida-
tion images. All images are labelled with an index of the class. A few examples of classes
are bonnet, green mamba or langur. The label is a uint8 in range from 0 to 99. The images
are sorted according to their class index from the lowest to the highest. ImageNet-100 can
be used in machine learning for the task of multiclass image classification. Figure 4.2 shows
a few example images from the ImageNet-100 dataset.

Figure 4.2: Example images from ImageNet-100 dataset.

1http://groups.csail.mit.edu/vision/TinyImages/
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Chapter 5

Implementation of the benchmarks

This chapter will describe the implementation of the benchmarks designed in Chapter 4.
I implemented two versions of the benchmarks. Both were programmed in the Python pro-
gramming language using object-orientated programming. One uses the Airspeed Velocity
framework, details in Section 5.2, and the other one was implemented from scratch, further
description in Section 5.3. Although they are different, they share the same data generator
module and classes for each data format and image storage. These modules are described
in more detail in Section 5.1.

The high-level view of the benchmark implementation is shown in Figure 5.1. Firstly,
the data generator creates the synthetic dataset, or static dataset is loaded from the disk
to pandas.DataFrame. In case of image benchmarks, images are extracted from the dataset
to the list of numpy.ndarrays, and the labels are loaded similarly into a list. Once the data
are generated or loaded, they are stored to different data formats. Subsequently, the data
are read back from the data format to the memory. Throughout the process of storing
and reading the data, benchmark metrics are tracked. When the benchmarks are finished,
results can be visualised in the form of graphs.

Image
storages

Data
formats

read

save

read

save

Image
data

Data
generator

Tabular
data

Results

Figure 5.1: Overview of the benchmark implementation.

5.1 Core modules
Core modules are shared by both implementations and are necessary for them. They include
a data generator and classes for each data format and image storage.
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Data generator

Data generator module is stored in the folder data_generator/. Its purpose is to create
synthetic parameterized datasets or load static ones. It consists of three classes: GenDtype,
Generator and Dataset.

GenDtype class creates lists of random values of the same data type. Methods of this
class are implemented with numpy, random and string packages. It is able to create a list
of random integers, floats, booleans and strings with fixed or varying length, or a list of real
English words. The list of words is created by random choices from the list of one hundred
predefined words.1

Dataset is a class with no methods. It has only the attributes df, images, labels
and name. It is a structure for holding benchmark data. This class also overrides method
__repr__(), for correct visualization of the dataset name. All methods of Generator class
create an instance of Dataset class.

Generator is the main class of the data generator, which creates and loads datasets.
It has four methods. Method gen_dataset() generates synthetic, tabular dataset. It
has multiple parameters that specify the schema of a created dataset, like the number
of entries or the number of columns for each data type. Internally, this method calls methods
of GenDtype to create columns of values with the same data type. When all the columns
are generated, then they are shuffled, to create random order of the columns. Functions
zip() and dict() are then used to create a dictionary of values. Lastly, this dictionary
is passed to pandas.DataFrame(), which creates table representation from the dictionary.
This dataframe is wrapped in the instance of Dataset and returned.

The remaining three methods are load_(webface10M|cifar_10|imagenet_100)(). All
of them are responsible for loading static datasets. Each dataset needs a separate function
because every dataset is stored differently. Webface10M is stored in a single HDF5 file,
ImageNet-100 and CIFAR-10 are downloaded via Hugging Face. As was mentioned above,
all methods return an instance of the Dataset class.

Data formats

Each data format that is a part of benchmark has a separate class. All of these classes in-
herit the implementation from the class DataFormat. This class defines attributes filename
and pathname. Furthermore, it provides an interface for important abstract methods:
save(), read(), save_parallel() and read_parallel(). Save and read methods are
benchmarked in tabular benchmarks. These methods are abstract, and the concrete imple-
mentation depends on the data format. Most data formats are implemented via the calls
of pandas.to_* or pandas.read_*. Implementation of Lance data format requires pylance
package and Avro format requires fastavro package. Moreover, the DataFormat class im-
plements four other methods that are supposed to return the size of the created file(s),
or remove them. The implementation of these methods is encapsulated in a separate class
FileUtils.

Image storages

Similarly as with data formats, every image storage is implemented in a separate class
in the folder image_storages/. The implementation of image storage is more difficult
than the storage of tabular data, because there does not exist one package that could

1Words taken from https://becomeawritertoday.com/list-of-random-words/.
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store all images to different storages. Thus, specific packages are needed for each for-
mat. The implementation structure is also similar to the data formats, with one base class
ImageStorage. ImageStorage is a class from which all other image storage classes inherit.
This class declares abstract methods save() and read(). Those methods are benchmarked
in image benchmarks. Furthermore, the ImageStorage class defines the remove() method
to remove created files and the size() method to measure the size of images after storing
them.

5.2 Airspeed Velocity
Airspeed Velocity (asv) [33] is a benchmark framework for benchmarking Python projects
over their lifetime. It enables timing, raw timing, memory and peak memory benchmarks.
Furthermore, custom computed generic values can be tracked. The results of the bench-
marks can be easily published in the form of an interactive web frontend with graph grid.
This website requires only a static webserver to host. Examples of real-world projects that
use Airspeed Velocity are numpy, scipy or astropy.

The implementation of airspeed velocity benchmarks consists of multiple files and di-
rectories. The root folder requires the asv.conf.json file. It is a configuration file for
asv, with information on the required Python packages, the version of Python that runs
the benchmarks and the type of virtual environment. In addition to this file, the setup.py
file must also be included in the root directory. This file is necessary because asv expects
that the package, which is benchmarked, is installable by pip.

Other files of asv implementations are located in directories benchmarks/ and .asv/.
The benchmark/ folder contains all the implementation of the benchmarks. The hidden
.asv/ directory is divided into three subdirectories. Folder env/ stores virtual environ-
ment for running benchmarks, folder html/ stores generated interactive website and folder
results/ stores results of the benchmark runs.

Airspeed Velocity supports a wide variety of benchmark types. This benchmark will
use the timing benchmark, the peak memory benchmark and the tracking of generic values
for the total size metric. Timing benchmarks are all methods that have a name with the pre-
fix time. Peak memory benchmarks are all methods that have a name with the prefix
peakmem. For better reproducibility, asv runs every benchmark in a virtual environment
with its own process. Algorithm 1 shows how asv runs timing benchmarks. Algorithm
taken from asv documentation [33].

Algorithm 1: ASV Timing benchmark
1: for round in range(‘rounds‘):
2: for benchmark in benchmarks:
3: with new process:
4: <calibrate ‘number‘ if not manually set>
5: for j in range(‘repeat‘):
6: <setup ‘benchmark‘>
7: sample = timing_function(<run benchmark ‘number‘

times>) / ‘number‘
8: <teardown ‘benchmark‘>
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The results of the asv benchmarks can be displayed in the form of an interactive website.
An example of such a website is in Figure 5.2. The website comprises of multiple pages.
Home page presents all the benchmarks from the initial run to the last run in a graph grid.
After clicking on a graph, new page with the selected graph appears, where the user can
modify the parameters of the graph. Another page of the website is Benchmark list, which
shows all the measured values in the latest run and compares them with the previous run.
The last page of the website shows the regression.

Running asv benchmarks is simple and can be done with only a few commands, which
are listed below. The command asv run has optional parameters. If the benchmarks are
slow, --quick runs every benchmark only once, or --bench can run specific benchmark
suites only.

$ asv run [--quick] [--bench benchmark_suite]
$ python3 postprocessing.py
$ asv publish
$ asv preview

5.3 Custom benchmark
Custom benchmark was implemented without any framework. A major advantage over
asv benchmarks is in its faster and more effective algorithm for running benchmarks. Al-
gorithm 2 shows how the benchmark runner works. Runner in asv runs every bench-
mark in a new environment. Process of recreating the environment and removing it takes
a lot of time. Furthermore, it deletes saved benchmark data and that means they need
to be stored again for new benchmark. To overcome this issue, custom benchmark uses
a chain of benchmarks and one run of benchmark collects all defined metrics.

Algorithm 2: Custom Benchmark runner
1: all_results = []
2: for format in ‘formats‘:
3: results = dict()
4: with new process p_save:
5: results[save_time] = timing_function(<format save dataset>)
6: results[save_peakmem] = peakmem_function(p_save)
7: results[total_size] = size_function()
8: with new process p_read:
9: results[read_time] = timing_function(<format read dataset>)

10: results[read_peakmem] = peakmem_function(p_read)
11: <remove created files>
12: all_results.append(‘results‘)
13: return all_results

For every data format, the algorithm first creates a new dictionary for results. After-
wards, in a new process, it saves the benchmark data and measures the statistics. The total
file size is then retrieved. Because benchmarks continue in a chain, a new process reads
the data from the disk and measures the metrics. Finally, created files are removed and re-
sults are added to a list. This algorithm is more efficient in the number of disk operations.
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This implementation can run only one benchmark suite in one run. In order to execute
benchmarks, run the script main.py with the option --tabular, --compression or --image
on. Results of the run are printed to the terminal and saved to a CSV file. To make results
more visual, the user might run benchmarks with the option --report turned on. This
creates a report from the benchmark results. Example of such a report is in Figure 5.3.
A report consists of five bar graphs, each one visualizing specific metric. Green bars are for
values that are above average and red bars are for values that are below average.

$ python3 main.py (--tabular|--compression|--image)
[--webface <path>] [--report]

5.4 Continuous integration
In order to automate the process of running the benchmarks, continuous integration was
used. This enables the user to run the benchmarks and presents the results on a regu-
lar basis. For the Airspeed Velocity benchmarks, the script cron.sh was written. This
script first pulls the current versions of the benchmarks from the git. Then it runs every
benchmark suite. After the benchmarks are finished, results are published to the GitHub
webpage https://mariantaragel.github.io/asv-format-bench/. This process is done
by the command asv gh-pages. It creates a websites and pushes it to the gh-pages
branch. Then it start a GitHub Action pipeline that builds the page and deploys it.

To make this process fully automatic, a cron job can be employed on a server. Cron
jobs can be set to run a specific script repeatedly. To run the script cron.sh on the first
day of every month at 1:00, the below stated line can be added to a cron job list.

0 1 1 * * /home/xtarag01/asv_format_bench/cron.sh
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Figure 5.2: Example of a website with Airspeed Velocity benchmark results. Top figure
shows a graph with the results of a single benchmark. Bottom figure shows the main graph
grind page. Figures are only illustrative.
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Figure 5.3: Example of a report with results from the custom benchmark implementation.
Values in the graphs are only illustrative.
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Chapter 6

Results evaluation

This chapter will analyse the results of the benchmarks that were designed in Chapter 4
and implemented in Chapter 5. The purpose of this chapter is to evaluate which data
format or image storage is the best based on some metric. In each section, results related
to a single benchmark suite will be analysed. All the findings are summarized in Table 6.1
and Table 6.2.

Table 6.1: Summary of key findings from tabular benchmarks.

Metric Format Key advantage
Save time Feather Arrow columnar memory specification
Read time Pickle Optimized on deserialisation of Python objects
File size Parquet Wide variety of encodings
Save peak memory CSV Storing only text strings
Read peak memory Pickle Optimized on deserialisation of Python objects
Compression ratio HDF5 Effective metadata compression
Compression speed Parquet PAX layout

Table 6.2: Summary of key findings from image benchmarks.

Metric Format Key advantage
Save time SQLite Lightweight save process and BLOBs
Read time LMDB Single-Level Store
File size PNG DEFLATE compression

6.1 Tabular benchmarks
This section will describe the results of tabular benchmarks without compression. The met-
rics that will be used are save time, read time, file size, save peak memory and read peak
memory.

Save time. The first metric based on which data formats will be evaluated is saving
time, which means the time required to save pandas.Dataframe to a disk. The results
are given in Table 6.3. According to the benchmarks, the fastest data format to save
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Table 6.3: Experimental results of required saving time on different datasets.

Save timeFormat
eq [𝑠] int [𝑠] float [𝑠] bool [𝑠] str [𝑠] webface [𝑠]

CSV 2,65 1,84 4,85 1,91 2,30 250,33
JSON 1,88 1,39 1,80 1,36 1,75 111,43
XML 16,64 15,85 17,23 15,57 16,85 —
H5 fixed 1,78 1,48 1,49 1,45 2,59 —
H5 table 1,92 1,58 1,58 1,69 2,73 51,30
Parquet 0,39 0,24 0,33 0,28 0,71 17,72
Feather 0,24 0,10 0,13 0,11 0,45 10,96
ORC 0,43 0,33 0,27 0,34 0,74 16,58
Pickle 0,47 0,31 0,23 0,31 1,11 21,22
Excel 81,78 78,06 81,99 77,63 88,37 —
Lance 1,41 1,00 1,18 0,90 1,85 105,09
Avro 4,00 3,36 3,64 3,76 5,62 138,39

tabular data is Feather. It performs equally well on all data formats, regardless of the data
type distribution. On the Webface10M dataset, it outscored other formats with only 10 𝑠
required for saving. Its main advantage against other formats is the Arrow Columnar
memory specification, which is particularly effective for I/O operations. Other formats that
have fast save times are Parquet and ORC. What is a bit surprising is the performance of
Pickle, which is 2× slower on the Webface10M dataset than Feather. On the other side of
the spectrum are XML and Excel. JSON stands out as the fastest text format for saving
tabular data. It is faster than the CSV format and its performance is stable on all data
types.

Table 6.4: Experimental results of required reading time on different datasets.

Read timeFormat
eq [𝑠] int [𝑠] float [𝑠] bool [𝑠] str [𝑠] webface [𝑠]

CSV 1,26 0,86 1,13 0,91 1,84 65,84
JSON 2,68 2,65 2,70 2,35 2,97 192,34
XML 23,70 24,10 24,20 23,13 23,52 —
H5 fixed 1,60 1,45 1,47 1,37 2,15 —
H5 table 2,03 1,65 1,66 1,76 3,11 50,72
Parquet 0,64 0,28 0,33 0,28 1,31 15,23
Feather 0,42 0,24 0,24 0,27 0,87 11,13
ORC 0,58 0,29 0,30 0,35 1,42 15,37
Pickle 0,20 0,13 0,12 0,16 0,46 7,17
Excel 62,11 52,94 55,35 52,36 82,38 —
Lance 0,62 0,36 0,31 0,29 1,35 25,22
Avro 2,99 2,85 2,65 2,45 4,03 127,87

Read time. The next metric that is going to be analysed is the opposite process, read
time. Read time is the time required for the back-reconstruction from disk to a table rep-
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resentation. The results are in Table 6.4. Based on this metric, the fastest deserialisation
format is Pickle. On every dataset it needed the lowest amount of time. On the large
Webface10M dataset, it required only 7 𝑠 to load the entire dataset, which is twice as fast
as Parquet. Its key advantage over other formats is its tight integration with the Python
environment. Pickle is optimised for fast (de)serialisation of Python objects. Other hon-
orable mentions based on the read time metric are Feather and Parquet. Interestingly,
good results were also measured on the Lance data format. As with the save time met-
rics, the worst data formats are XML and Excel. This time, the fastest text data format
for reading is CSV. Compared to JSON, it has a simpler syntax, which can be deserialised
faster.

Total size. One of the most important metrics is the total file size on the disk. The re-
sults of this metric are given in Table 6.5. Based on the total file size metric, the best data
formats are Parquet and ORC. ORC is especially memory-efficient for smaller datasets.
For larger datasets, the winner is Parquet. On the Webface10M dataset, the difference
between these two formats is significant. Parquet requires only 4,6 GB, while ORC needs
6,9 GB. Both data formats are memory efficient because they employ the modern PAX for-
mat and use a wide variety of encoding schemes. Another data format worth mentioning is
Avro. On same datasets, its results are even better than Parquet. What is also clearly visi-
ble from the results is that text data formats require a lot more space than binary formats.
Among the text data formats, CSV is the best in total file size, because it has a simpler
syntax than JSON or XML.

Table 6.5: Experimental results of required space on different datasets.

Total sizeFormat
eq [MB] int [MB] float [MB] bool [MB] str [MB] webface [GB]

CSV 75 49 110 60 82 9,0
JSON 128 105 148 115 145 12,7
XML 228 202 263 213 235 —
H5 fixed 69 71 71 43 91 —
H5 table 62 67 67 39 75 24,4
Parquet 47 27 57 24 80 4,6
Feather 60 62 62 31 86 6,9
ORC 38 23 51 20 59 6,3
Pickle 60 62 62 34 82 6,9
Excel 66 58 95 52 51 —
Lance 69 66 66 35 107 7,2
Avro 43 27 53 25 65 6,5

Save peak memory. Besides the total file size, the memory that was allocated in the RAM
through the data saving process is also an important metric. The results of this experiment
are shown in Table 6.6. In the benchmark, the least allocated memory is required by CSV.
CSV is storing only simple strings, which means that almost no other memory is needed.
From the binary formats, the best data format is Pickle. Pickle can effectively store nu-
merical values with minimal allocated memory. On strings, its performance is considerably
worse, with 199 MB necessary for storing the str dataset. On the Webface10M dataset,
Pickle needed only 3,6 GB allocated in RAM. Parquet, Feather and ORC require similar
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Table 6.6: Experimental results of peak allocated memory during the saving process.

Save peak memoryFormat
eq [MB] int [MB] float [MB] bool [MB] str [MB] webface [GB]

CSV 5 4 8 5 5 0,01
JSON 630 515 728 566 712 62,1
XML 3196 3123 3358 3210 3202 —
H5 fixed 82 16 16 66 248 —
H5 table 107 61 61 61 299 29,7
Parquet 79 72 71 70 129 6,8
Feather 65 38 38 39 116 6,9
ORC 66 38 38 39 112 6,9
Pickle 68 2 2 35 199 3,6
Excel 2707 2677 2802 2739 2677 —
Lance 264 220 269 174 395 13,1
Avro 429 399 524 398 399 18,7

save peak memory allocated. As in the previous metric, the worst data formats are XML
and Excel.

Read peak memory. During the reading process, the peak memory metric was also eval-
uated. The exact results are in Table 6.7. In this metric, all the measured values are higher
compared to save peak allocated memory. From text formats, CSV needs the least addi-
tional memory while reading the data. Its performance is not as impressive as in the save
peak memory metric, but its results are still solid. From binary formats, the best accord-
ing to experiments is Pickle. From other formats, Parquet achieved satisfactory results.
On the opposite side are JSON and XML. For Webface10M JSON requires 97,5 GB, and
for the eq dataset XML requires 5,2 GB of extra memory allocated in RAM.

Table 6.7: Experimental results of peak allocated memory during the reading process.

Read peak memoryFormat
eq [MB] int [MB] float [MB] bool [MB] str [MB] webface [GB]

CSV 175 144 159 80 404 14,8
JSON 1564 1457 1708 1436 1841 97,5
XML 5212 5203 5376 5267 5210 —
H5 fixed 277 180 173 136 784 —
H5 table 314 213 212 173 738 45,2
Parquet 524 362 341 274 1090 20,2
Feather 243 196 179 148 452 11,3
ORC 462 307 306 245 996 13,5
Pickle 125 64 63 63 420 10,4
Excel 486 440 572 435 676 —
Lance 474 312 310 250 1016 13,8
Avro 619 602 704 529 830 37,6
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6.2 Compression benchmarks
This section is dedicated to the analysis of the benchmark results when the compression
codec was enabled. The benchmarks were executed twice, first with LZ4 compression
and next with zstd compression at level 1. Data formats that allow both of these com-
pressions are HDF5 table, Parquet, Feather, and ORC. The metrics that were measured
are compression ratio, save time delta and read time delta. Dataset Webface10M was
used in this benchmark. The results of this benchmark are shown in Table 6.8 for LZ4
and in Table 6.9 for zstd.

Table 6.8: Experimental results of enabling compression codec LZ4.

Save Read CompressionFormat time [Δ𝑠] time [Δ𝑠] ratio
H5 table +0,51 +0,12 0,17
Parquet +8,81 −0,73 0,50
Feather +19,03 +2,41 0,57
ORC +3,00 −0,46 1,00

Table 6.9: Experimental results of enabling compression codec zstd.

Save Read CompressionFormat time [Δ𝑠] time [Δ𝑠] ratio
H5 table +18,27 +7,56 0,13
Parquet +10,36 −0,77 0,21
Feather +21,89 +6,36 0,30
ORC +14,39 +3,83 0,41

Compression ratio. The first metric that was extracted from the compression benchmark
results is the compression ratio. Compression ratio is the ratio of the file size with compres-
sion over the file size without compression. The lower the number, the better. If the number
is equal to 1, then the file size with compression is the same as without compression. When
the compression ratio is greater than 1, the file size increases with compression. For both
compression codes, the best ratio was achieved by the HDF5 table format. The cause of this
is that the original uncompressed size is large, 24,4 GB, with a lot of redundant metadata.
Those can be effectively removed by compression and the file size afterwards is approx-
imately 3 GB. Other data formats also reach acceptable compression ratios. After zstd
compression, Parquet needs only 960 MB to save the Webface10M dataset with 10 million
rows. An interesting behaviour was observed in the ORC compression benchmark results.
Its compression ratio for LZ4 codec was equal to 1, which means the file was neither com-
pressed nor extended. This is because ORC disables compression when it detects LZ4,
since it would cause the file size to increase. This behaviour was also noticed in article [18].

Time of compression. The time of compression metric is the time added to save time
without compression. It was calculated as the difference between save time with compres-
sion and save time without compression. From the results it is clear that all the save times
were extended. For LZ4 compression, the lowest overhead was observed in the HDF5 table
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format save time. For the zstd codec, Parquet needs the least additional time for compres-
sion. The results of the Feather format are interesting. Without compression, Feather ex-
hibits extremely fast save and read times. After applying compression, its I/O performance
plummets. Compression LZ4 added +19,03 𝑠 and zstd added +21,89 𝑠 to the original save
time.

Time of decompression. The last metric measured in the compression benchmark was
the time of decompression. It was measured as the difference between read time with com-
pression and read time without compression. The results of this metric show that decom-
pression does not add too much time compared to the original read time. Parquet even
decreases its read time when compression is applied, -0,73 𝑠 for LZ4 and -0,77 𝑠 for zstd.
This comes mainly from the fact that the file size is low, and the required number of accesses
to the disk is therefore minimal.

6.3 Image benchmarks
This section will analyse the results of image storage benchmarks. The metrics that will be
considered are save time, read time and total size. The results are included in Table 6.10
for the CIFAR-10 dataset and in Table 6.11 for the ImageNet-100 dataset.

Table 6.10: Experimental results of image storages on the CIFAR-10 dataset.

Save Read TotalFormat time [𝑠] time [𝑠] size [MB]

PNG 10,54 5,72 113
Base64 2,63 1,55 205
HDF5 2,75 22,04 157
Parquet 0,43 1,45 154
SQLite 0,47 0,30 205
LMDB 0,75 0,32 207

Table 6.11: Experimental results of image storages on the ImageNet-100 dataset.

Save Read TotalFormat time [𝑠] time [𝑠] size [GB]

PNG 1076, 31 164, 61 8, 0
Base64 216, 00 117, 40 17, 7
HDF5 24, 38 76, 81 13, 3
Parquet 44, 67 28, 45 12, 5
SQLite 22, 12 12, 16 13, 4
LMDB 30, 38 11, 87 13, 7

Save time. The first metric that will be studied is the required time to save an image
dataset. In this, the results were comparable. On the smaller CIFAR-10 dataset, the winner
is Parquet, but on the larger ImageNet-100 dataset, results show that the fastest was
SQLite. SQLite’s performance on CIFAR-10 was almost as good as Parquet’s, with only
0,04 𝑠 difference. SQLite fast save and read operations are also benchmarked on SQLite’s
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webpage [32]. The slowest option is to save every image to a single PNG file. The main
reason why storing images to PNG is slow is because PNG uses DEFLATE compression,
which requires a lot of time and the whole process is complicated. Encoding to Base64 is
also slow and not recommended for fast saving time. The results of HDF5 and LMDB are
reasonable.

Read time. The second metric based on which image storages will be compared is read
time. It is the opposite process of loading images from a disk to the list of numpy.ndarrays.
In this metric, the first place was also tight. The fastest loading on the CIFAR-10 dataset
was measured on SQLite, but for ImageNet-100 the fastest was LMDB. LMDB employs
the Single-Level Store concept which enables extremely fast loading of images, as stated by
Howard Chu [8]. On the other side are PNG, Base64 and HDF5. All of them exhibit slow
reading of images.

Total size. The last metric that will be analysed from the image storage benchmark
results is the total size. With regard to this metric, the best image storage option is to save
every image to a single PNG file with labels in a CSV file. As was mentioned above, PNG
is using compression, while other tested formats are not using any specific compression
or encoding. Other formats, except Base64 encoding, are getting approximately the same
results. If we take average results of HDF5, Parquet, SQLite and LMDB, and compare
them with PNG, then PNG brings about 40 % size reduction, but the required save time is
prolonged about 34 times and the read time is extended about 5 times.
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Chapter 7

Conclusion

In conclusion, the main aim of this thesis was to explore the performance characteristics
of data formats. In addition to that, the work has also evaluated different options for image
storages. The main outcome is the designed set of benchmarks and their results. The bench-
marks were divided into more benchmark suites with defined metrics. Every benchmark
should suggest the best data format based on some metric.

The key findings of the benchmark results are summarised in Table 6.1 for tabular for-
mats and Table 6.2 for image storages. The results of tabular data formats show that data
format with the fastest save and read times is Feather. Parquet stands out as the most
memory-efficient data format. In image storage benchmarks, the results indicate that
the fastest image storages are SQLite and LMDB. The least memory space is required
when every image is stored in a single PNG file with labels in a CSV file.

This study can contribute to a better understanding of how different formats behave
and what the most important features and principles of modern data formats are. This
can help future data format engineers create new data formats that will match the needs
of large machine-learning datasets. Furthermore, benchmark results can help data scientists
choose the right data format for their data. If they have specific criteria for data formats,
such as fast save time or high memory efficiency, the benchmark can recommend the best
option.

Future study in the research area of benchmarking data formats and image storages
offers several opportunities. This benchmark could be extended to new data formats. In-
teresting new data formats that were not benchmarked are Protocol Buffers, MessagePack
or Ron. What is more, new benchmark suites could be designed. One option is to add
a benchmark of query speed execution, that is, search in loaded data. Another suite that
could be interesting is the benchmark of save and read time from/to different types of disks,
for example HDD, SSD, NVMe or RAMdisk.

All in all, I hope this Bachelor’s thesis can contribute to the area of benchmarking data
formats and image storages.
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Appendix A

Poster

Last addition to this work is a poster, which is depicted in Figure A.1.
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Motivation
This bachelor’s thesis aims to evaluate different data formats for
storing tabular and image data. The results of this work can
contribute to a better understanding of how different data
formats behave and help to choose the right format for tabular
and image data.
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Benchmark methodology
The benchmarks are divided into three benchmark suites. These
include the benchmarking of uncompressed tabular formats,
compressed tabular formats, and an image storage benchmark.

Figure	2:	High-level overview of the benchmark design.Figure	1: Different posibilities of storing data.

Graph	1: Saving time. Graph	2: Reading time. Graph	3: Total size.

Graph	4: Saving time. Graph	5: Reading time. Graph	6: Total size.

dataset Webface10M
10 M rows, 33 columns

dataset ImageNet-100
130 000 images

Figure A.1: Poster presenting this bachelor’s thesis, its goals and results.
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