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Abstract 
This bachelor's thesis aims to evaluate different data formats for storing tabular and im­
age data. To accomplish this task, this work designed a new benchmark of data formats. 
The benchmarks are divided into three benchmark suites. These include the benchmark­
ing of uncompressed tabular formats, compressed tabular formats, and an image storage 
benchmark. Overall tabular benchmark results suggest that the best tabular data format 
for speed saving and reading is Feather, and the most memory-efficient format is Parquet. 
The results of the image storage benchmark show that the fastest image storage is SQLite 
and the least space is required by P N G format. The results of this work can contribute to 
a better understanding of how different data formats behave and help to choose the right 
format for tabular and image data. 

Abstrakt 
Cieľom tejto bakalárskej práce je ohodnotiť rôzne dátové formáty pre ukladanie tabulárnych 
a obrazových dát. K zvládnutiu tejto úlohy tá to práca navrhuje nový benchmark dátových 
formátov. Benchmark je rozdelený do troch benchmarkových skupín. Tie zahŕňajú bench­
mark nekomprimovaných tabulárnych formátov, komprimovaných tabulárnych formátov 
a benchmark obrazových úložísk. Celkové výsledky tabulárnych benchmarkov naznačujú, 
že najlepší tabulárny formát pre rýchle ukladanie a čítanie je Feather a najviac pamäťovo 
efektívny je Parquet. Výsledky benchmarkov ukladania obrázkov ukazujú, že najrýchle­
jšie úložisko obrázkov je v SQLite a najmenej miesta vyžaduje formát P N G . Výsledky 
tejto práce môžu prispieť k lepšiemu pochopeniu správania sa rôznych dátových formátov 
a pomôcť pri výbere správneho formátu pre tabulárne a obrazové dáta. 

Keywords 
data formats benchmark, data format, data storage features, tabular data, image data, 
dataset, storing data, visualization 
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Rozšírený abstrakt 
Táto práca sa zaoberá výskumom v oblasti ukladania tabulárnych a obrazových dát. Jed­
ným z rozhodujúcich faktorov, ktorý ovplyvňuje efektivitu uloženia dát, je výber správneho 
dátového formátu. Preto hlavným cieľom tejto bakalárskej práce je porovnať a zhodnotiť 
širokú škálu tabulárnych formátov od textových po binárne. Okrem tabulárnych dát sa 
práca venuje aj obrazovým dátam, ktoré sa v dnešnej dobe často používajú na tréno­
vanie neurónových sietí. V tejto časti bolo porovnaných šesť spôsobov ukladania obrázkov 
vzhľadom k preddefinovaným metrikám. 

K porovnaniu dátových formátov a obrazových úložísk bol navrhnutý nový benchmark. 
Tento benchmark sa skladá z troch sád, kde každá sa zameriava na inú oblasť ukladania 
dát. Prvá benchmarkuje dátové formáty na všeobecných tabulárnych dátach bez kompre­
sie, druhá pre vybrané dátové formáty povoľuje kompresiu a posledná skúma najvhodnejší 
spôsob uloženia obrazových dát. 

K správnemu vyhodnoteniu sú použité hlavne nasledujúce metriky: čas potrebný k ulo­
ženiu dát, čas potrebný k načítaniu dát z disku, velkost výsledného súboru po uložení 
a maximálna alokovaná pamäť v R A M pri ukladaní aj čítaní. Benchmarky boli vykonané 
na rôznych dátových sadách. Jednu kategóriu testovacích dát tvoria synteticky vygen­
erované dáta podľa definovanej schémy. Vytvorenie umelých dát zabezpečuje syntetický, 
parametrizovateľný generátor dát . Okrem týchto dát boli použité aj statické dátové sady, 
ktoré boli načítané pred spustením benchmarkov. Tieto sa využili hlavne v prípade bench-
markov obrazových dát, kde boli použité dátové sady CIFAR-10 a ImageNet-100. 

Výsledky meraní benchmarkov sú prehľadne spísané v tabuľkách v tejto práci. Celko­
vo sa práca snaží zistiť najvhodnejší dátový formát alebo obrazové úložisko vzhľadom na 
určité kritérium. Finálne výsledky benchmarkov tabulárnych dátových formátov naznačujú, 
že v prípade potreby čo najrýchlejšieho ukladania a načítania dát je najvhodnejšie zvoliť 
dátové formáty Feather alebo Pickle. Co sa týka kritéria najmenšieho zabraného priestoru 
na disku, z benchmarkov vyšli najlepšie dátové formáty Parquet a O R C . V kompresnom 
benchmarku dosiahol najlepší kompresný pomer formát HDF5. Výsledky benchmarkov 
obrazových úložísk ukazujú, že najrýchlejší spôsob ukladania a načítania obrázkov posky­
tujú SQLite a L M D B . Najmenej miesta na disku zaberie uloženie obrázkov do samostatných 
P N G súborov s metadátami uloženými v C S V súbore. 

Výsledky tejto práce môžu byť použité v prípade výberu vhodného dátového formátu 
alebo obrazového úložiska. Ak má užívateľ vybrané kritériá, ktoré sú pre neho dôležité, 
môže spustiť benchmark aby mu odporučil najvhodnejší dátový formát. Vždy je však 
potrebné uvažovať aj nad kontextom, v akom budú dáta používané. 

Okrem tohto môžu výsledky pomôcť k lepšiemu pochopeniu, aké atribúty vo význam­
nej miere zvyšujú alebo znižujú efektivitu dátových formátov. Na základe týchto zistení 
sa môžu v budúcnosti navrhnúť nové moderné dátové formáty, ktoré dokážu zvládať aj veľmi 
veľké dátové sady, ktoré sa používajú hlavne v oblastiach ako strojové učenie alebo počí­
tačové videnie. Dúfam, že tá to práca prispeje do oblasti skúmania výkonnosti jednotlivých 
dátových formátov. 
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Chapter 1 

Introduction 

The area of effective tabular and image data storage is attracting considerable interest 
because the data size is growing rapidly. These huge datasets, used for machine learning 
purposes, need data formats that will match their needs. 

In recent years, articles [18, 29] evaluated column-oriented data formats Parquet, O R C , 
Arrow, and Feather. Those papers extracted properties of the real-world dataset, created 
workloads, and designed benchmarks. Concerning effective image storage, some research 
has also been done. For example, the conference paper [17] has conducted a benchmark of 
several image storage options on three different image datasets. Although some research 
has been done in the field of data formats benchmarking, there is still space for deeper 
research. 

This bachelor's thesis focuses on finding key features that affect data formats. Based on 
those principles, it will extensively compare popular and state-of-the-art data formats. This 
thesis should answer the question which data formats are the best based on some metrics 
and why. Furthermore, it will evaluate different possible ways to store images. To answer 
those questions, the benchmark of data formats is the way to fairly and comprehensively 
evaluate each of them. The results of the benchmarks will be visualised in the graphs. 

The work is divided into several chapters that will first describe theoretical key points, 
then describe the methodology of the benchmarks, and finally present an evaluation of 
the results. Chapter 1 is a general introduction to the research topic with related work. 
Chapter 2 will study the principles and features that affect data storage formats. Each 
data format that will be benchmarked will be described in Chapter 3. This chapter also 
lists different options for storing image data. Those will be benchmarked in the image 
storage benchmarks. Chapter 1 will propose a set of benchmarks and how they were 
conducted. Chapter 5 will describe the design and implementation of the benchmarks 
that were introduced in the previous chapter. Chapter 6 will discuss the results of the 
benchmarks and their implications. Chapter 7 will conclude this research and its results. 
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Chapter 2 

Principles and features of storing 
tabular data 

This chapter will introduce important principles and features of tabular data storage. These 
principles affect the efficiency of data formats. Different data formats implement various 
principles described in this chapter. One of the most important are the internal layout, 
encoding, compression, and data types. Table 2.1 summarises the possible options for each 
feature. The data format features taxonomy was taken from article [29]. 

Table 2.1: Summary of data storage features taxonomy. 

Internal layout (2.1) 
Encoding (2.2) 

Compression (2.3) 
Data types (2.4) 

Indexes (2.5) 

N S M , D S M , P A X 
DICT, R L E , Delta, FOR, BP, Huffman, . . . 
G Z I P , Z L I B , L Z O , B Z I P 2 , S N A P P Y , L Z 4 , Z S T D , B R O T L I , . . . 
defined type system, without support for data types 
Zone Map, Bloom Filter, Page Index, . . . 

Tabular data is a type of data that can be represented by a table. A table consists 
of rows and columns, as shown in Figure 2.1. A row is a record with a defined scheme, 
based on a table header. The scheme indicates the data type of each column. The table 
is a collection of records. In the Python Programming Language, this data structure is 
represented by pandas .DataFrame. 

Table Representation 

Column 1 Column 2 Column 3 

A l B l C I 

A2 B2 C2 

A 3 B3 C3 

A 4 B4 C4 

A 5 B5 C5 

A 6 B6 C6 

Figure 2.1: Table Representation of DataFrame. Scheme taken from the webpage [21]. 
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2.1 Internal layout 

Internal layout defines how the data are physically stored on a disk. There exist three 
major approaches to how tabular data can be stored, N-ary Storage Model (NSM), De­
composition Storage Model (DSM) and Partition Attributes Across (PAX) . Those layouts 
differ in orientation on rows, columns, or a combination of both. A l l three will be part of 
this benchmark, for example N S M in C S V or Avro, D S M in JSON or Feather and P A X in 
Parquet or ORC. 

N-ary Storage Mode l 

The N-ary Storage Model, or row-oriented approach, is the most simple layout that stores 
all records sequentially. Its main disadvantage is that encoding algorithms and compression 
are ineffective because mixed-typed tuples are stored in a line. It is used in popular data 
formats, for example C S V or X M L . Figure 2.2 visualises this type of layout. 

N S M 

A l B l C I A2 B2 C2 A 3 B3 C3 

N S M N S M 

A 4 B4 C4 A 5 B5 C5 A 6 B6 C6 

Figure 2.2: Layout of N-ary Storage Model. Scheme taken from the webpage [21]. 

Decomposition Storage Mode l 

The decomposition storage model is a fully decomposed storage layout introduced by 
Copeland and Khoshafian (1985) in the article [9]. Column-oriented fashion stores tabular 
data by columns, as can be seen in Figure 2.3. As pointed out by Abadi et al. [1], this layout 
significantly improves the similarity of the neighbouring values on a disk, thus improving the 
effectiveness of compression algorithms. On the other hand, back reconstruction to table 
format takes more time, because more seeking is needed, as stated by Ailamaki et al. [2]. 

D S M 

A l A2 A 3 A 4 A 5 A 6 B l B2 B3 

D S M D S M 

B4 B5 B6 C I C2 C3 C4 C5 C6 

Figure 2.3: Layout of Decomposition Storage Model. Scheme taken from the webpage [21]. 

Partition Attributes Across 

The most modern data storage layout is Partition Attributes Across, which was presented 
by Ailamaki et al. (2001) in the proceedings [2]. It is a combination of N S M and D S M . 
The columns are divided into column chunks and grouped in row groups. This approach 
combines inter-record spatial locality and low record reconstruction cost. Ailamaki's study 
also noted that P A X is performing faster query executions than D S M and incurs 75% less 
data cache stall time than N S M . Data formats like Parquet or O R C internally follow this 
storage model. Figure 2.4 shows the P A X storage layout. 
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column chunk 1 column chunk 2 column chunk 3 

PAX 

A l A2 A 3 B l B2 B3 C I C2 C3 row group 1 

PAX PAX 

A 4 A 5 A 6 B4 B5 B6 C4 C 5 C6 row group 2 

column chunk 1 column chunk 2 column chunk 3 

Figure 2.4: Layout of Partition Attributes Across. Scheme taken from the webpage [21]. 

2.2 Encoding 

Applying lightweight encoding algorithms can be highly beneficial to data formats. It can 
reduce the overall file size by compressing the input data. Some data formats use multiple 
encoding schemes to get an even better compression ratio. Furthermore, encoding can 
decrease the time needed for I /O operations, as stated in article [1]. However, decoding 
will require C P U time. 

There exist two types of data formats, plain text and binary. Text formats, such as C S V 
or X M L , do not use any special encoding algorithm. Typically, they are coded to Unicode 
or ASCII . They can store only text characters, which means they do not have support for 
binary data, such as images. On the other hand, binary formats use a variety of encoding 
algorithms to store data more effectively. Common ones are described below. 

Dictionary Encoding (DICT) stores frequent data values with fixed-length codes. For 
example, „apple" is 0, and „banana" is 1. The key-value dictionary is used to store this 
mapping. It works well when the number of distinct values in the column is low and those 
values have high frequencies. The drawback is that the dictionary must be included in the 
encoded data. Dictionary encoding cannot be used effectively when the data has many 
unique values. 

Run-Length Encoding (RLE) replaces the consecutive sequences of the same value, 
with the tuple that contains the value and the number of repetitions. This is particularly 
effective in column-oriented formats, because there is a higher probability of repetition of 
the same data value, as was stated in article [1]. This encoding can be combined with 
others, leading to hybrid encoding, for example, RLE/Dict ionary or RLE/Bit-packing. 

Delta Encoding or Delta binary packed as presented by Lemire and Boytsov [16] uses 
the differences, deltas, between the encoded value and the previous value. For example, the 
sequence 4, 3, 7, 11, 10, 14, 13, 17 would be stored as the sequence 4, -1, 4, 4, -1, 4, -1, 4, 
which consists of only 4 and -1. Parquet uses this encoding on numerical, but also string 
data. When the prefix of the string is the same as before, it will store only the prefix length 
and the rest of the string. 

Frame-of-Reference (FOR) from Goldstein et al. [11] has a similar approach to delta 
encoding. F O R can make relatively high numbers smaller, which means they can be coded 
on fewer bits. For example, numbers in the sequence 135, 141, 144, 148, 149, 152, 156, 160 
range from 135 to 160. That means that 135 can be subtracted from each number and the 
sequence will be 0, 6, 9, 13, 14, 17, 21, 25. Numbers from 0 to 25 can be represented on 5 
bits in binary code, instead of 8 bits. What is needed to take into consideration is the fact 
that the number that was subtracted must be included in the encoded data, and also the 
fact that the numbers are encoded on n bits. 
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Bit-Packing (BP) encodes the numerical data into fixed-length codes, by cutting off 
the leading zeros. To give an example, the sequence 1, 2, 3, 4, 5, 6, 7 can be encoded 
on 3 bits as follows: 001, 010, O i l , 100, 101, 110, 111. Originally, it would be encoded 
on 8 bits with 5 bits of redundant zeros. 

Huffman Encoding, introduced in article [13], is a method that can find the minimum 
redundancy prefix code. It is an entropy coding, which means it works with probabilities 
of input symbols. Huffman encoding is used in many compression formats, such as ZIP, 
J P E G or M P 3 . 

2.3 Compression 

As was noted by Abadi et al. [1], some data formats use general-purpose block compression 
codes, to further decrease the file size. This feature also comes with disadvantages. More 
time is needed to load data into memory because decompression takes C P U time. Different 
compression levels can be set to increase the speed, but the trade-off is a worse compression 
ratio. Furthermore, enabling compression can be detrimental to the end-to-end query speed 
of data formats. This issue was experimentally proved by Zeng et al. [29]. 

A n overview of popular compression algorithms is given in Table 2.1. Older algorithms, 
such as G Z I P (1992) or Z L I B (1995), have native support in programming languages. Mod­
ern compression algorithms like ZSTD (2015) need external libraries, but they often lead 
to better compression results. 

2.4 Data types 

The majority of data formats support various data types. However, a few formats do 
not have this support because they are encoded in plain text. Data types are defined 
in a type system, which can be highly complex or simple with only basic types. As stated 
in the presentation by Andrew Pavlo [22], the type system can be either physical or logical. 
A physical type is a machine-specific byte representation, such as IEEE-754. Logical data 
types are defined by the data formats. Those types are mapped to physical types. 

Data types can be primitive or composite. Common primitive types are Boolean, 
Integer, Float and Double. These types can be represented on various numbers of bits, 
for example, an integer can be Int8, Intl6, Int32 or Int64. Composite data types are 
compounded from several primitive types. A n example of composite data types can be 
Struct, List, Map, or Union. The data format can create auxiliary types to store a specific 
kind of data. 

2.5 Indexes 

Indexes and filters can significantly boost the query performance of a data format. This 
section will describe Zone map and Bloom filter. Both of those indexes are supposed 
to ensure faster queries. The zone map defines ranges of values for columns. Bloom filter 
is a special data structure based on hash functions. Indexes are optional for most data 
formats and they can be omitted. 
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Zone map 

Zone map stores maximal and minimal values in a part of a file, known as a zone. If the 
query value is larger or less than this range, then the whole zone can be skipped. This can 
significantly speed up query execution. It works best when the similar values are near each 
other or the columns are partially sorted. Typically, a zone map stores a value range for 
more zones. 

Bloom filter 

Bloom filter [4] is a space-efficient, randomised data structure that answers the question 
whether the element is in a set. It uses a hash functions to insert elements into the bit 
array. The results of the membership query can generate false positives. This is not a big 
issue if the probability of error is small enough. The advantage of the Bloom filter is 
its time and space complexity. The time complexity of the insertion and search is 0(k), 
where k is the number of hash functions. The space complexity is 0(n), where n is the 
length of the bit array. There exist many variations of the Bloom filter, such as dynamic, 
compressed, spectral, or split block Bloom filters. A n example of a Bloom filter is shown 
in Figure 2.5. 

{x,y,z} 

0 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0 

w 

Figure 2.5: Example of a Bloom filter with three elements x, y and z. Element w is not in 
the set, because it has 0 as an output of the hash function. Scheme taken from slides [10]. 
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Chapter 3 

Data formats 

Based on the principles described in Chapter 2, this chapter will present tabular data 
formats in Section 3.1 and list options for storing image data in Section 3.2. Data formats 
and image storages, that are included in this chapter, will be benchmarked in Chapter 4. 

3.1 Tabular storages 

The data formats that will be presented in this section were chosen because they are ei­
ther state-of-the-art or they are generally popular and widely used. Every format will be 
described separately. Table 3.1 summarises the key attributes of each file format. 

Table 3.1: Overview of tabular data formats properties. Properties taken from the arti­
cles [18, 29] and data formats specifications. 

Internal 
layout 

Encoding 
variants 

Compression Data 
types 

C S V N S M Text No No 
J S O N N S M , D S M Text No Yes 
X M L N S M Text No No 

H D F 5 Hierarchical R L E , Huffman LZ4 , S N A P P Y , 
Z L I B , Z S T D 

Yes 

Parquet P A X 
DICT, R L E , 

Delta, B P 
S N A P P Y , G Z I P , L Z O , 

B R O T L I , L Z 4 , ZSTD 
Yes 

Feather D S M DICT LZ4 , ZSTD Yes 

O R C P A X 
DICT, R L E 

Delta, FOR, B P 
Z L I B , S N A P P Y , L Z O , 

LZ4 , Z S T D , B R O T L I 
Yes 

Pickle Stream Binary code No Yes 
Excel N S M multiple X M L s Z I P Yes 
Lance P A X V L B , D I C T No Yes 
Avro N S M Binary, JSON D E F L A T E , S N A P P Y Yes 

Comma-separated values 

Comma-separated values (CSV) is a type of delimiter-separated file format which uses 
a comma as a separator. Each record is located on a separate line and divided by commas 
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into fields. The comma can be replaced by other characters, common ones are tab, colon 
or semicolon. Optionally, the fields can be enclosed in double-quotes. C S V structure can be 
ambiguous due to the lack of adherence to official standards. This often leads to improperly 
formatted C S V files. A n example of a formal specification is R F C 4180 [24], which defines 
the M I M E type text/csv. 

C S V is one of the most popular data formats because it is encoded in human-readable 
plain text and can be imported to spreadsheet editors, like Microsoft Excel or LibreOffice 
Calc. On the other hand, C S V is not suitable for large datasets with millions of records, 
because it does not use any special encoding to compress the data. 

JavaScript Object Notation 

JavaScript Object Notation (JSON) [38] is a lightweight, plain text and language-inde­
pendent data format. It is based on the JavaScript language, standard ECMA-262 [30]. 
JSON is popular because it is easy to parse in any programming language and is also human-
readable. JSON is common in R E S T A P I as a data-interchange serialisation format. 

Although JSON is a text format, it supports basic data types such as boolean, string, in­
teger and float. JSON uses two main data structures, Object and Array. Objects and arrays 
can be nested into each other. Deep nesting greatly decreases the speed of deserialisation, 
because a recursive approach is needed. 

As stated on the JSON's official webpage [38], the object is a set of key-value pairs. The 
object is enclosed in braces, and each pair is separated by a comma. In programming, it can 
be realised as an object, record, struct, dictionary, hash table, keyed list or an associative 
array. The array is an ordered list of values. The array is enclosed in brackets and each 
value is separated by a comma. In programming, it can be realised as an array, vector, list 
or a sequence. 

J S O N is a column-oriented data format, but it can be oriented on rows with JSON Lines. 
JSON Lines is a line-delimited JSON format. On each line, it stores one record in the form 
of a JSON object. JSON Lines supports parallel I /O operations. This is the approach that 
I will benchmark. 

Extensible M a r k u p Language 

Extensible Markup Language ( X M L ) [6] is an open, free data format, standardised by 
the World Wide Web Consortium. It was first introduced in 1998. It is designed as a 
plain-text format for application data interchange, which means it is easily understandable 
for both machines and humans. X M L is a subset of the Standard Generalized Markup 
Language (SGML), which is a meta-language for defining markup languages. Its main 
purpose is to separate data and style. Extensible Stylesheet Language Transformations 
(XSLT) can transform X M L to other formats, such as an H T M L web page or a P D F 
document. 

Unlike C S V or JSON, X M L syntax is complex and verbose. It can express almost any 
kind of data as a tree. The basic syntactic structure is an element. The element consists of 
a start tag and an end tag. The start label is enclosed in a less-than sign and a greater-than 
sign, <name>. The end tag is similar to the start tag, but it adds a slash after a less-than 
sign, </name>. If the element is empty, it can be shortened as <name/>. Elements can have 
attributes to further specify the data. X M L document must have one root element in which 
other elements are nested. Optionally, it can have an X M L declaration on the first line, 
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for example <?xml version^ 1.0' encodingsutf-8'?>. If the X M L document follows 
the rules defined in specification [6], then it is called well-formated. 

X M L is highly criticised because it is verbose and redundant. Nowadays, it is replaced 
by other modern data formats, such as JSON or Y A M L . They can store the same data 
more effectively with less syntactic sugar. This leads to a smaller total file size. 

Hierarchical Data Format 5 

Hierarchical Data Format 5 (HDF5) [44] is a self-describing binary data format. It has 
a more complex internal layout that can be used on a wide variety of heterogeneous data. 
Figure 3.1 shows a simplified layout of an HDF5 file. As noted by Byna et al. [7], HDF5 
is popular in the scientific world because it is suitable for a high volume of experimen­
tal and observational data (EOD). HDF5 also allows data compression. A n overview of 
supported compression algorithms is given in Table 3.1. 
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Ex te rna l File 

G r o u p Info 
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Figure 3.1: Simplified internal layout of HDF5 format. Gray parts are optional. 

Moreover, HDF5 I /O operations can run in parallel processes. As experimentally proved 
by Xie et al. [28], to obtain superior performance, it is important to select the right 
parameters for this feature. Enabling collective I /O on file metadata write, placing the 
metadata at the file start, and flushing the metadata cache at the file close deliver the best 
results for HDF5 write. 

Furthermore, HDF5 is portable and multi-platform. It is an open-source project, with 
an official A P I provided in Java, C+-1-, C, and Fortran. External libraries are developed in 
Python, Perl and other programming languages. 

As is visible from HDF5 specification [37], HDF5 layout is similar to the file system 
structure. It consists of three main components: dataset, group and attribute. Dataset is 
mainly used to store application data. Each dataset can have its own structure. Typically, 
each column is stored in a separate dataset. Groups organise similar objects together. 
They can be seen as directories. Attributes annotate datasets, groups and other objects. 
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HDF5 file also includes metadata that describe the application data. In the begging of 
every HDF5 file must be a superblock which defines the file itself. Descriptive metadata are 
stored before each dataset, for example for updating the location of the dataset. Datasets, 
groups, and attributes are HDF5 high-level objects. At the low level, HDF5 is made of 
a superblock, b-tree nodes, heap blocks, object headers, object data and free space. 

Two different formats of HDF5 will benchmarked - fixed and table. Fixed format 
performs faster save and write operations, whereas table offers greater flexibility and allows 
operations, such as searching or selecting. 

Apache Parquet 

Apache Parquet [35] is the first presented data format that uses the P A X model, designed 
by X (Twitter) and Cloudera. It was inspired by the Google Dremel model, which was 
presented by Melnik et al. [20]. Parquet uses record shredding and the assembly algorithm. 
Parquet is one of the most memory effective data formats because it uses a wide variety 
of encoding algorithms. Wi th a combination of compression codes, it can greatly reduce file 
size. The supported encoding variants and compression algorithms are listed in Table 3.1. 

The internal layout of the Parquet can be seen in Figure 3.2. It follows the P A X 
format, which means division into Row Groups and Column Chunks. A column chunk 
typically consists of multiple Pages. Each page has defined encoding and compression. After 
the application data, Bloom Filter and Page Index can be included. Parquet uses the Split 
Block Bloom Filter, which was introduced by Jim Apple [3], and takes advantage of modern 
SIMD instructions. The Parquet file ends with a Footer and its length. The footer contains 
information about the file and about row groups. File metadata may include information 
such as the version or the schema. Row groups metadata can be, for example, the offset 
and the type. 

Row Group 1 

Row Group 2 

Row Group r 

Bloom Filter 

Page Index 

Footer 

Footer Length 

Column 
Chunk 1 

Page 1 

Column 
Chunk 2 V 

\ 

Page 2 \ 
\ 

\ 
\ 

\ 
\ 
\ 

\ 

\ 
\ 
\ 

Column 
Chunk c 

\ 
\ 
V 

\ 
Page p 

\ 
\ 

Metadata: version, schema, 

Row Group 1 Metadata 

Row Group r Metadata 

Page Header 

Definition Levels 

Repetit ion Levels 

Values 

Column 1 Metadata: offset, 
type, encoding, compression, 
zone maps... 

Column c Metadata 

Figure 3.2: Internal layout of Parquet data format, 
taken from article [29]. 
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Feather 

Feather [19] is a binary column-oriented data format. It was created as a file format for 
easy and fast transfer of data between Python's DataFrame and R's DataFrame. It has 
an official A P I written in Python, R, and Julia. Feather is fast, interoperable, and has 
high performance in read and write operations. For strings, it uses dictionary encoding. 
As mentioned on Apache Arrow's documentation webpage [36], there exist two versions 
of Feather. Feather VI is a legacy version. This version lacks some features of V2. It does 
not support compression and cannot store all Arrow data types. Feather V2 is represented 
by the Arrow IPC file format. It allows all Arrow data types and also compression codes 
L Z 4 and Z S T D . This version will be used for the benchmarks in Chapter 4. 

Optimized Row Columnar 

Optimized Row Columnar (ORC) [12, 45] is a fast, small, binary data format. It was created 
as a part of the Apache project, where it replaces the old RCFi le in the Hive data ware­
house. O R C supports many encoding schemes and compression algorithms. A n overview 
is given in Table 3.1. Moreover, O R C follows A C I D rules, which are common for database 
transactions. It uses Zone Maps and Bloom Filters for query speed-up. In contrast to 
Parquet, O R C supports a rich variety of data types. These include primitive types, but 
also complex data types, such as Map or Union. 

ORC file structure implements the P A X data storage model. O R C layout scheme is 
shown in Figure 3.3. O R C consists of Row Groups and Column Chunks. The row groups 
are stored sequentially and internally divided into column chunks. Each row group has 
multiples Indexes. Zone maps are required, but Bloom filters are optional. O R C file ends 
with a Footer. The footer stores the file metadata and information necessary for each row 
group, such as their offset or data length. 
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Figure 3.3: Internal layout of O R C data format. Gray parts are optional. Scheme taken 
from article [29]. 
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Pickle 

Pickle [42] is a binary serialisation data format. It is Python-specific and is not supported 
in other programming languages. The layout of Pickle is a compact byte stream. Pickle does 
not use special encoding or compression, which means that it is not suitable for big data 
storage. On the other hand, its I /O performance is great and works best on numpy. ndarray 
and pandas .DataFrame, as was pointed out in blog [26]. The process of creating a Pickle 
file is called pickling. Pickle can use six different protocols for serialisation. Higher versions 
of the protocols require newer versions of Python. Unpickling the data is not secure and can 
result in the execution of arbitrary code. 

Office Open X M L Workbook 

Office Open X M L ( O O X M L ) [41] is a file format that is used in Microsoft Office. It is 
defined by the standard ECMA-376 [31]. It has four defined extensions: Wordprocess-
ingML for .docx documents, SpreadsheetML for .xlsx spreadsheets, PresentationML for 
.pptx presentations and DrawingML for drawing shapes and schemes. O O X M L file con­
sists of multiple X M L files that are compressed by Z I P to one archive. SpreadsheetML, 
commonly known as Excel, has the following file structure: 

• [Content_Types] .xml - Required X M L file, which is located in the archives root. It 
links other X M L files with their content type. 

• _rels/ - Folder with one file, called .rels. This file defines relationships between 
other X M L files and external resources. 

• docProps/ - Folder with two files, app.xml and core.xml. Both of them define 
document properties. 

• xl/ - Main folder with workbook definition and at least one or more wokrsheets. It 
also contains the theme and style of the spreadsheet. 

Lance 

Lance [39] is a modern columnar data format, used primary to store M L data. These 
can include images, videos, 3D points clouds, but also tabular data. Lance supports auto­
matic versioning of dataset, that means it is possible to access old versions of the dataset. 
Lance data format structure is organised in a separate directory. It includes data directory, 
manifest file with latest version of the dataset, directory with manifests for older versions 
of the dataset, indexes and deletion files. Data layout employs the P A X format, it divides 
rows into batches and each batch consists of more pages. After data, there follows metadata 
with information about batch length or page table position. Then optionally manifest and 
finally footer. 

Apache Avro 

Avro [34] is a binary, row-oriented serialisation data format. Avro is heavily based on a sche­
ma, which is defined in JSON. Since the schema is present in both read and write, there is 
no need to determine the data types of the columns. This can reduce overhead and speed 
up the process of storing and loading data. Avro supports a rich choice of data types, from 
primitive to complex, such as maps or unions. Furthermore, it specifies two encodings: 
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Binary and J S O N . Binary is used more, because it is faster and smaller. J S O N encoding 
can be useful for web-applications or debugging. Avro also supports compression codecs 
- D E F L A T E is required and S N A P P Y , BZIP2 , X Z and ZSTD are optional. 

3.2 Image storages 

After introducing tabular data formats in previous section, this section will introduce image 
data formats. This set of image data storage was chosen to cover most of today's used image 
storage options. It includes the P N G format, Base64 encoding, HDF5, Parquet, SQLite, 
and L M D B . Table 3.2 shows the image storage options and multiple variants of the same 
storage type. Only a subset of those will be benchmarked. 

Table 3.2: Options of storing image data. 

Image formats 
Encoding 

Binary formats 
Key-value D B 

B L O B 

P N G , J P E G , S V G . . . 
Base64, BinHex, Quoted-printable 
HDF5, Parquet, O R C , . . . 
L M D B , LavelDB, Ti leDB, . . . 
SQLite, PostgreSQL, . . . 

Portable Network Graphics 

Portable Network Graphics (PNG) [5] is a single raster image storage format. It can store 
greyscale or truecolor R G B (red, green, blue) images with an optional alpha channel. P N G 
files are well compressed because they use the lossless data compression algorithm D E F L A T E , 
which is a combination of LZ77 and the Huffman encoding. The P N G format is about 10% 
to 30% more compressed than the GIF format, as stated by Shivashetty and Rajput [25]. 
On the other hand, P N G encoding takes more time because the whole process consists 
of more parts and includes compression. 

The drawback of P N G is that it is a single image storage format and more images require 
multiple files. For example, the ImageNet-lk dataset used for training neural networks 
consists of approximately 1,3 M images, and each of them would be stored in a separate 
file. Moreover, most of the image datasets also include labels or metadata about the ima­
ges. P N G is only an image format, and other data cannot be stored along them. This 
benchmark will store metadata into a C S V file with column ID, which will link the image 
with the metadata. 

The P N G format layout begins with a P N G signature and continues with different 
chunks. Four chunks are critical and must be included in the P N G file. Other are optional 
and can be omitted. Required chunks are IHDR, PLTE, IDAT, and IEND. IHDR is the header 
of a P N G datastream with information about image height, width, bit depth and more. 
PLTE links the colour palette with a P N G image. IDAT contains compressed and filtered 
image data. IEND or image trailer, indicates the end of the P N G datastream. Figure 3.4 
visualises the layout of the P N G image format. 

Base64 

Base64 [14] is an encoding of arbitrary binary data to a subset of printable ASCII characters. 
Base64 algorithm creates a group of 3 bytes (24 bits). This group is divided into 4 concate-
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Figure 3.4: Internal layout of P N G image format. Gray parts are optional. 

nated 6-bits groups, each of them is an index to the table of characters. If the end of binary 
data is not aligned to 24 bits, then it is padded with zeros, and a special character '=' is 
used for representation of them. The output of Base64 is an ASCII string. Base64 is consid­
ered not memory-efficient because it always causes 33 % lengthening of the input: | | = 1,3. 
This benchmark will encode the images to Base64 strings and store them in a single C S V 
file with labels on the same row. 

Binary data formats 

Images can be represented as n-dimensional arrays (width, height, channels). These arrays 
are flattened, encoded into binary code, and stored into a file. It is necessary to include 
the shape of the image and the color palette, because image datasets can contain images 
with different shapes, R G B or greyscale. The back reconstruction is performed by array 
reshaping. This is another option for storing images in binary data formats. This thesis 
will benchmark HDF5 and Parquet binary data formats in image data storage benchmarks. 
These two formats were previously described in more detail. 

L M D B 

Lightning Memory-Mapped Database (LMDB) [8] is a read-optimised database. Origi­
nally, it was slapd backend for OpenLDAP. L M D B is a key-value storage which can store 
arbitrary data, including binary. As the Figure 3.5 shows, internally L M D B implements 
B + tree with Multi-Version Concurrency Control. The name „Memory-Mapped" comes 
from the fact that L M D B is mapping the whole database to the virtual memory, and ev­
ery data access returns a direct pointer to the data, to avoid intermediate copies. L M D B 
demonstrates high efficiency in data reading by employing the Single-Level Store. This 
concept groups the entire computer memory hierarchy into a single address space, allowing 
L M D B to retrieve the whole database in a single read operation. 
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Figure 3.5: Internal layout of L M D B is a B + tree. In the figure k stands for key, 
p for pointer and v for value. Scheme taken from webpage [40]. 

S Q L i t e 

SQLite [43] is self-contained, cross-platform database engine in a single file. It is fast, 
small and full-featured relational SQL database. SQLite supports all advanced concepts 
from database systems, such as transactions, indexes, materialised views and window func­
tions. SQLite is a single file data storage, which does not need any external resources. 
Furthermore, it provides support for various data types, including B L O B . B L O B (Binary 
Large OBject) is a special data type capable of storing arbitrary binary data. According 
to webpage [32], SQLite has about 35% faster writes and reads on small BLOBs , for ex­
ample thumbnail images, than the file system using functions freadQ and fwriteQ. 
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Chapter 4 

Benchmark methodology 

This chapter will outline the methodology for benchmarking tabular and image data for­
mats. Section 4.1 describes the environment in which the benchmarks were conducted. Sec­
tion 4.2 lists all the metrics that were used to evaluate data formats. Section 4.3 presents 
a collection of benchmarks that were performed on different data formats. Section 4.4 
presents the generated data and datasets that were used in the benchmarks. 

4.1 Environment 

Benchmarks were conducted on a server trafficgpul with 64 CPUs of Intel Xeon Sil­
ver 4314, 264GB of R A M and 1,47TB of M.2 N V M e SSD. The operating system is 
Ubuntu 22.04.4 LTS. Most data format files are created by calling pandas functions with de­
fault parameters without index. Avro is created by the fastavro package and Lance is 
created by the pylance package. JSON is stored in JSON Lines format, and the Par­
quet engine is pyarrow. Both table and fixed HDF5 formats are part of the benchmarks. 
Compression is turned off unless the benchmark specifies otherwise. Recommended ver­
sion of Python for running benchmark is 3.10 or newer. A l l Python packages used in this 
benchmark with their versions are listed in Table 4.1. 

4.2 Metrics 

This benchmark uses five different metrics: save time, read time, save peak memory 
usage, read peak memory usage and total file size. Save and read time is measured 
by the Python module time i t in seconds. Save time measures the time required for the sav­
ing from pandas .DataFrame to the benchmark data format. Read time measures the op­
posite process, loading data from the disk to the pandas .DataFrame. Peak memory usage 
measures the maximum allocated resident memory while reading or writing data. Resident 
memory is allocated by a process in the R A M . This metric is measured by the Python 
module resource in M B or G B . Total file size metric is the final size of all created files 
on the disk. It is measured by the Python module os in M B or G B . Other metrics are 
derived from the above metrics. 
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Table 4.1: Overview of required Python packages and their versions used in benchmarks. 

Package Version 

asv 0.6.3 
pandas 2.2.1 
numpy 1.26.4 
dask 2024.4.1 
dask-expr 1.0.10 
tables 3.9.2 
lxml 5.2.1 
openpyxl 3.1.2 
pylance 0.10.9 
fastavro 1.9.4 
pillow 10.3.0 
h5py 3.10.0 
lmdb 1.4.1 
datasets 2.19.0 
matplotlib 3.8.4 

4.3 Benchmark suites 

Benchmark suite described in this section should compare different data formats and image 
storages from Chapter 3. This benchmark focuses on the efficiency of tabular data storage, 
compression of data formats and performance of image storages. In order to accomplish 
this, three different benchmark suites were designed: 

1. Tabular - Tabular benchmark will compare all data formats without compression 
on datasets with different data types. The results are given in Section 6.1. 

2. Compression - Compression benchmark will compare data formats with enabled 
compression codes. The benchmark will consider two different compression codes, 
L Z 4 and Z S T D . Only data formats that support internal compression with those two 
codes will be bechmarked. That includes HDF5 table, Parquet, Feather and O R C . 
The results are given in Section 6.2. 

3. Image - Image benchmark will compare all image storages on two different image 
datasets, CIFAR-10 and ImageNet-100. Results are given in Section 6.3. 

4.4 Datasets 

The benchmark described in this chapter uses two types of datasets. One part of them is 
static and persistent datasets, which are loaded from memory into the pandas.DataFrame. 
The other part consists of dynamic datasets. They are generated within the benchmark 
application and only last until the end of the benchmark run. Tabular benchmarks will 
use synthetically generated data and the WebFacelOM dataset. The parameters of tabular 
datasets are summarised in Table 4.2. The image storage benchmark will use the CIFAR-10 
and ImageNet-100 datasets. 
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Table 4.2: Number of rows and data type distribution in tabular datasets. 

Dataset name Rows 
Int 64 

Columns 

Float64 Boolean String 

eq 1 M 2 2 2 2 
int 1 M 5 1 1 1 
float 1 M 1 5 1 1 
bool 1 M 1 1 5 1 
str 1 M 1 1 1 5 
webface 10M 6 21 0 6 

Synthetic data 

Synthetic data are generated before the start of the benchmarks and have limited lifes­
pan. After the end of the benchmarks, they are destroyed, and a new one needs to be 
created. Actual values are different for each execution of the benchmarks, but they follow 
the defined schema. The schema defines the number of entries and the number of columns 
for each data type (Int64, Float64, Boolean and String). Values in all columns are gen­
erated with a uniform distribution. Int64 and Float64 have a value range from 0 to 100 
and String length is fixed to 10 characters. These constants were taken from article [29], 
in this paper they extracted parameters from real datasets and about more than half 
of the values were below those constants. Synthetic data are generated by the data gener­
ator, which will be described in more detail in Chapter 5 about implementation. 

This benchmark methodology defines five different synthetic datasets, four of them will 
be focused on different data types, and one will have a uniform distribution of all data 
types in columns. Datasets int, float bool and str are biased by data types. They have 
5 columns of the main data type and 3 columns are equally distributed between other data 
types. The dataset eq with equal frequencies of data types is default and will be considered 
as a base. A l l generated datasets have 1 M rows and 8 columns. 

WebFace lOM 

WebFacelOM is a synthetic generated dataset that was provided by the Innovatrics com­
pany. It consists of only tabular data that annotate face images. The dataset schema 
that was used for data generation corresponds to their face datasets. It has 10 M rows 
and 33 columns, some examples of its column names are age_iface, brightness_iface 
or contrast_if ace. It was generated as a benchmark model of real data that are used for 
face classification, identification and verification. The distribution of data types in the Web­
FacelOM dataset is also shown in Table 4.2. 

C I F A R - 1 0 

CIFAR-10 [15] is an image dataset that contains 60000 colour images, 50000 of them are 
training images and 10000 are test images. A l l images are small - they have a fixed reso­
lution of 32 x 32 pixels. The images are divided into 10 classes: airplane, automobile, bird, 
cat, deer, dog, frog, horse, ship and truck. Each image is labelled with one of those classes. 
The label is a uint8 ranging from 0 to 9. There exists also a variant with 100 classes called 
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CTFAR-100. CTFAR-10 and CIFAR-100 are labelled subsets of the 80 Million Tiny Images 
dataset. Figure 4.1 shows a few example images from the CIFAR-10 dataset. 

mkU Mb K 

turn 

BfliSElffVB 

Figure 4.1: Example images from CIFAR-10 dataset. 

ImageNet-100 

ImageNet-100 [27] dataset is a subset of a larger dataset, ImageNet-lk [23], and is comprised 
of 100 classes that have been chosen randomly. Each image has also been resized to 160 pix­
els on the shorter side. In contrast to the CIFAR-10 dataset, ImageNet-100 has images 
with different shapes. In total, ImageNet-100 has 126689 training images and 5000 valida­
tion images. A l l images are labelled with an index of the class. A few examples of classes 
are bonnet, green mamba or langur. The label is a uint8 in range from 0 to 99. The images 
are sorted according to their class index from the lowest to the highest. ImageNet-100 can 
be used in machine learning for the task of multiclass image classification. Figure 4.2 shows 
a few example images from the ImageNet-100 dataset. 

Figure 4.2: Example images from ImageNet-100 dataset. 

x
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Chapter 5 

Implementation of the benchmarks 

This chapter will describe the implementation of the benchmarks designed in Chapter 4. 
I implemented two versions of the benchmarks. Both were programmed in the Python pro­
gramming language using object-orientated programming. One uses the Airspeed Velocity 
framework, details in Section 5.2, and the other one was implemented from scratch, further 
description in Section 5.3. Although they are different, they share the same data generator 
module and classes for each data format and image storage. These modules are described 
in more detail in Section 5.1. 

The high-level view of the benchmark implementation is shown in Figure 5.1. Firstly, 
the data generator creates the synthetic dataset, or static dataset is loaded from the disk 
to pandas .DataFrame. In case of image benchmarks, images are extracted from the dataset 
to the list of numpy .ndarrays, and the labels are loaded similarly into a list. Once the data 
are generated or loaded, they are stored to different data formats. Subsequently, the data 
are read back from the data format to the memory. Throughout the process of storing 
and reading the data, benchmark metrics are tracked. When the benchmarks are finished, 
results can be visualised in the form of graphs. 

storages 

Figure 5.1: Overview of the benchmark implementation. 

5.1 Core modules 

Core modules are shared by both implementations and are necessary for them. They include 
a data generator and classes for each data format and image storage. 
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Data generator 

Data generator module is stored in the folder data_generator/. Its purpose is to create 
synthetic parameterized datasets or load static ones. It consists of three classes: GenDtype, 
Generator and Dataset. 

GenDtype class creates lists of random values of the same data type. Methods of this 
class are implemented with numpy, random and string packages. It is able to create a list 
of random integers, floats, booleans and strings with fixed or varying length, or a list of real 
English words. The list of words is created by random choices from the list of one hundred 
predefined words.1 

Dataset is a class with no methods. It has only the attributes df, images, labels 
and name. It is a structure for holding benchmark data. This class also overrides method 

repr (), for correct visualization of the dataset name. A l l methods of Generator class 
create an instance of Dataset class. 

Generator is the main class of the data generator, which creates and loads datasets. 
It has four methods. Method gen_dataset () generates synthetic, tabular dataset. It 
has multiple parameters that specify the schema of a created dataset, like the number 
of entries or the number of columns for each data type. Internally, this method calls methods 
of GenDtype to create columns of values with the same data type. When all the columns 
are generated, then they are shuffled, to create random order of the columns. Functions 
zip() and dict() are then used to create a dictionary of values. Lastly, this dictionary 
is passed to pandas .DataFrameO, which creates table representation from the dictionary. 
This dataframe is wrapped in the instance of Dataset and returned. 

The remaining three methods are load_ (webf acelOM | cif ar_101 imagenet_100) (). A l l 
of them are responsible for loading static datasets. Each dataset needs a separate function 
because every dataset is stored differently. WebfacelOM is stored in a single HDF5 file, 
ImageNet-100 and CTFAR-10 are downloaded via Hugging Face. As was mentioned above, 
all methods return an instance of the Dataset class. 

Data formats 

Each data format that is a part of benchmark has a separate class. A l l of these classes in­
herit the implementation from the class DataFormat. This class defines attributes filename 
and pathname. Furthermore, it provides an interface for important abstract methods: 
save(), read(), save_parallel() and read_parallel() . Save and read methods are 
benchmarked in tabular benchmarks. These methods are abstract, and the concrete imple­
mentation depends on the data format. Most data formats are implemented via the calls 
of pandas. to_* or pandas. read_*. Implementation of Lance data format requires pylance 
package and Avro format requires f astavro package. Moreover, the DataFormat class im­
plements four other methods that are supposed to return the size of the created file(s), 
or remove them. The implementation of these methods is encapsulated in a separate class 
FileUtils. 

Image storages 

Similarly as with data formats, every image storage is implemented in a separate class 
in the folder image_storages/. The implementation of image storage is more difficult 
than the storage of tabular data, because there does not exist one package that could 

1

Words taken from https://becomeawritertoday.com/list-of-random-words/. 
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store all images to different storages. Thus, specific packages are needed for each for­
mat. The implementation structure is also similar to the data formats, with one base class 
ImageStorage. ImageStorage is a class from which all other image storage classes inherit. 
This class declares abstract methods save() and read(). Those methods are benchmarked 
in image benchmarks. Furthermore, the ImageStorage class defines the remove () method 
to remove created files and the size() method to measure the size of images after storing 
them. 

5.2 Airspeed Velocity 

Airspeed Velocity (asv) [33] is a benchmark framework for benchmarking Python projects 
over their lifetime. It enables timing, raw timing, memory and peak memory benchmarks. 
Furthermore, custom computed generic values can be tracked. The results of the bench­
marks can be easily published in the form of an interactive web frontend with graph grid. 
This website requires only a static webserver to host. Examples of real-world projects that 
use Airspeed Velocity are numpy, scipy or astropy. 

The implementation of airspeed velocity benchmarks consists of multiple files and di­
rectories. The root folder requires the asv. conf. json file. It is a configuration file for 
asv, with information on the required Python packages, the version of Python that runs 
the benchmarks and the type of virtual environment. In addition to this file, the setup.py 
file must also be included in the root directory. This file is necessary because asv expects 
that the package, which is benchmarked, is installable by pip. 

Other files of asv implementations are located in directories benchmarks/ and .asv/. 
The benchmark/ folder contains all the implementation of the benchmarks. The hidden 
.asv/ directory is divided into three subdirectories. Folder env/ stores virtual environ­
ment for running benchmarks, folder html/ stores generated interactive website and folder 
results/ stores results of the benchmark runs. 

Airspeed Velocity supports a wide variety of benchmark types. This benchmark will 
use the timing benchmark, the peak memory benchmark and the tracking of generic values 
for the total size metric. Timing benchmarks are all methods that have a name with the pre­
fix time. Peak memory benchmarks are all methods that have a name with the prefix 
peakmem. For better reproducibility, asv runs every benchmark in a virtual environment 
with its own process. Algorithm 1 shows how asv runs timing benchmarks. Algorithm 
taken from asv documentation [33]. 

Algorithm 1: A S V T I M I N G B E N C H M A R K 

l: for round in range('rounds') : 
2: for benchmark in benchmarks: 

3: with new process: 

4: <calibrate 'number' i f not manually set> 

5: for j in range ('repeat') : 

6: <setup 'benchmarks 

7: sample = timing_function(<run benchmark 'number' 

times>) / 'number' 

8: <teardown 'benchmarks 
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The results of the asv benchmarks can be displayed in the form of an interactive website. 
A n example of such a website is in Figure 5.2. The website comprises of multiple pages. 
Home page presents all the benchmarks from the initial run to the last run in a graph grid. 
After clicking on a graph, new page with the selected graph appears, where the user can 
modify the parameters of the graph. Another page of the website is Benchmark list, which 
shows all the measured values in the latest run and compares them with the previous run. 
The last page of the website shows the regression. 

Running asv benchmarks is simple and can be done with only a few commands, which 
are listed below. The command asv run has optional parameters. If the benchmarks are 
slow, —quick runs every benchmark only once, or —bench can run specific benchmark 
suites only. 

$ asv run [—quick] [—bench benchmark_suite] 

$ python3 postprocessing.py 

$ asv publish 

$ asv preview 

5.3 Custom benchmark 

Custom benchmark was implemented without any framework. A major advantage over 
asv benchmarks is in its faster and more effective algorithm for running benchmarks. A l ­
gorithm 2 shows how the benchmark runner works. Runner in asv runs every bench­
mark in a new environment. Process of recreating the environment and removing it takes 
a lot of time. Furthermore, it deletes saved benchmark data and that means they need 
to be stored again for new benchmark. To overcome this issue, custom benchmark uses 
a chain of benchmarks and one run of benchmark collects all defined metrics. 

Algorithm 2: Custom B E N C H M A R K R U N N E R 

l: all_results = [] 

2: for format in 'formats': 

3: results = dict() 

4: with new process p_save: 

5: results[save_time] = timing_function(<format save dataset>) 

6: results[save_peakmem] = peakmem_function(p_save) 

7: results [total_size] = size_f unctionO 

8: with new process p_read: 

9: results [read_time] = timing_function(<format read dataset>) 

10: results[read_peakmem] = peakmem_function(p_read) 

l i : <remove created files> 

12: all_results. append ('results') 

13: return a l l results 

For every data format, the algorithm first creates a new dictionary for results. After­
wards, in a new process, it saves the benchmark data and measures the statistics. The total 
file size is then retrieved. Because benchmarks continue in a chain, a new process reads 
the data from the disk and measures the metrics. Finally, created files are removed and re­
sults are added to a list. This algorithm is more efficient in the number of disk operations. 
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This implementation can run only one benchmark suite in one run. In order to execute 
benchmarks, run the script main. py with the option —tabular, —compression or —image 

on. Results of the run are printed to the terminal and saved to a C S V file. To make results 
more visual, the user might run benchmarks with the option —report turned on. This 
creates a report from the benchmark results. Example of such a report is in Figure 5.3. 
A report consists of five bar graphs, each one visualizing specific metric. Green bars are for 
values that are above average and red bars are for values that are below average. 

$ python3 main.py (—tabular|—compression!—image) 

[—webface <path>] [—report] 

5.4 Continuous integration 

In order to automate the process of running the benchmarks, continuous integration was 
used. This enables the user to run the benchmarks and presents the results on a regu­
lar basis. For the Airspeed Velocity benchmarks, the script cron.sh was written. This 
script first pulls the current versions of the benchmarks from the git. Then it runs every 
benchmark suite. After the benchmarks are finished, results are published to the GitHub 
webpage https://mariantaragel.github.io/asv-format-bench/. This process is done 
by the command asv gh-pages. It creates a websites and pushes it to the gh-pages 
branch. Then it start a GitHub Action pipeline that builds the page and deploys it. 

To make this process fully automatic, a cron job can be employed on a server. Cron 
jobs can be set to run a specific script repeatedly. To run the script cron. sh on the first 
day of every month at 1:00, the below stated line can be added to a cron job list. 

0 1 1 * * /home/xtarag01/asv_format_bench/cron.sh 
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Figure 5.2: Example of a website with Airspeed Velocity benchmark results. Top figure 
shows a graph with the results of a single benchmark. Bottom figure shows the main graph 
grind page. Figures are only illustrative. 
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Figure 5.3: Example of a report with results from the custom benchmark implementation. 
Values in the graphs are only illustrative. 
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Chapter 6 

Results evaluation 

This chapter will analyse the results of the benchmarks that were designed in Chapter 4 
and implemented in Chapter 5. The purpose of this chapter is to evaluate which data 
format or image storage is the best based on some metric. In each section, results related 
to a single benchmark suite will be analysed. A l l the findings are summarized in Table 6.1 
and Table 6.2. 

Table 6.1: Summary of key findings from tabular benchmarks. 

Metric Format Key advantage 

Save time Feather Arrow columnar memory specification 
Read time Pickle Optimized on deserialisation of Python objects 
File size Parquet Wide variety of encodings 
Save peak memory CSV Storing only text strings 
Read peak memory Pickle Optimized on deserialisation of Python objects 
Compression ratio HDF5 Effective metadata compression 
Compression speed Parquet P A X layout 

Table 6.2: Summary of key findings from image benchmarks. 

Metric Format Key advantage 

Save time SQLite Lightweight save process and B L O B s 
Read time L M D B Single-Level Store 
File size P N G D E F L A T E compression 

6.1 Tabular benchmarks 

This section will describe the results of tabular benchmarks without compression. The met­
rics that will be used are save time, read time, file size, save peak memory and read peak 
memory. 

Save time. The first metric based on which data formats will be evaluated is saving 
time, which means the time required to save pandas .Dataframe to a disk. The results 
are given in Table 6.3. According to the benchmarks, the fastest data format to save 
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Table 6.3: Experimental results of required saving time on different datasets. 

Format 
eq[s] int [s] float[ 

Save time 
's] bool [s] str [s] webf ace [s] 

C S V 2,65 1,84 4,85 1,91 2,30 250,33 
JSON 1,88 1,39 1,80 1,36 1,75 111,43 
X M L 16,64 15,85 17,23 15,57 16,85 — 
H5 fixed 1,78 1,48 1,49 1,45 2,59 — 
H5 table 1,92 1,58 1,58 1,69 2,73 51,30 
Parquet 0,39 0,24 0,33 0,28 0,71 17,72 
Feather 0,24 0,10 0,13 0,11 0,45 10,96 
ORC 0,43 0,33 0,27 0,34 0,74 16,58 
Pickle 0,47 0,31 0,23 0,31 1,11 21,22 
Excel 81,78 78,06 81,99 77,63 88,37 — 
Lance 1,41 1,00 1,18 0,90 1,85 105,09 
Avro 4,00 3,36 3,64 3,76 5,62 138,39 

tabular data is Feather. It performs equally well on all data formats, regardless of the data 
type distribution. On the WebfacelOM dataset, it outscored other formats with only 10 s 
required for saving. Its main advantage against other formats is the Arrow Columnar 
memory specification, which is particularly effective for I /O operations. Other formats that 
have fast save times are Parquet and O R C . What is a bit surprising is the performance of 
Pickle, which is 2x slower on the WebfacelOM dataset than Feather. On the other side of 
the spectrum are X M L and Excel. JSON stands out as the fastest text format for saving 
tabular data. It is faster than the C S V format and its performance is stable on all data 
types. 

Table 6.4: Experimental results of required reading time on different datasets. 

Format 
eq[s] int [s] 

Read time 
float [s] bool [s] str [s] webf ace [s] 

C S V 1,26 0,86 1,13 0,91 1,84 65,84 
JSON 2,68 2,65 2,70 2,35 2,97 192,34 
X M L 23,70 24,10 24,20 23,13 23,52 — 
H5 fixed 1,60 1,45 1,47 1,37 2,15 — 
H5 table 2,03 1,65 1,66 1,76 3,11 50,72 
Parquet 0,64 0,28 0,33 0,28 1,31 15,23 
Feather 0,42 0,24 0,24 0,27 0,87 11,13 
ORC 0,58 0,29 0,30 0,35 1,42 15,37 
Pickle 0,20 0,13 0,12 0,16 0,46 7,17 
Excel 62,11 52,94 55,35 52,36 82,38 — 
Lance 0,62 0,36 0,31 0,29 1,35 25,22 
Avro 2,99 2,85 2,65 2,45 4,03 127,87 

Read time. The next metric that is going to be analysed is the opposite process, read 
time. Read time is the time required for the back-reconstruction from disk to a table rep-
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resentation. The results are in Table 6.4. Based on this metric, the fastest deserialisation 
format is Pickle. On every dataset it needed the lowest amount of time. On the large 
WebfacelOM dataset, it required only 7 s to load the entire dataset, which is twice as fast 
as Parquet. Its key advantage over other formats is its tight integration with the Python 
environment. Pickle is optimised for fast (de)serialisation of Python objects. Other hon­
orable mentions based on the read time metric are Feather and Parquet. Interestingly, 
good results were also measured on the Lance data format. As with the save time met­
rics, the worst data formats are X M L and Excel. This time, the fastest text data format 
for reading is C S V . Compared to JSON, it has a simpler syntax, which can be deserialised 
faster. 

Total size. One of the most important metrics is the total file size on the disk. The re­
sults of this metric are given in Table 6.5. Based on the total file size metric, the best data 
formats are Parquet and O R C . O R C is especially memory-efficient for smaller datasets. 
For larger datasets, the winner is Parquet. On the WebfacelOM dataset, the difference 
between these two formats is significant. Parquet requires only 4,6 G B , while O R C needs 
6,9 G B . Both data formats are memory efficient because they employ the modern P A X for­
mat and use a wide variety of encoding schemes. Another data format worth mentioning is 
Avro. On same datasets, its results are even better than Parquet. What is also clearly visi­
ble from the results is that text data formats require a lot more space than binary formats. 
Among the text data formats, C S V is the best in total file size, because it has a simpler 
syntax than JSON or X M L . 

Table 6.5: Experimental results of required space on different datasets. 

Format 
eq [MB] int [MB] 

Total size 
float [MB] bool [MB] str [MB] webf ace [GB] 

C S V 75 49 110 60 82 9,0 
JSON 128 105 148 115 145 12,7 
X M L 228 202 263 213 235 — 
H5 fixed 69 71 71 43 91 — 
H5 table 62 67 67 39 75 24,4 
Parquet 47 27 57 24 80 4,6 
Feather 60 62 62 31 86 6,9 
O R C 38 23 51 20 59 6,3 
Pickle 60 62 62 34 82 6,9 
Excel 66 58 95 52 51 — 
Lance 69 66 66 35 107 7,2 
Avro 43 27 53 25 65 6,5 

Save peak memory. Besides the total file size, the memory that was allocated in the R A M 
through the data saving process is also an important metric. The results of this experiment 
are shown in Table 6.6. In the benchmark, the least allocated memory is required by CSV. 
C S V is storing only simple strings, which means that almost no other memory is needed. 
From the binary formats, the best data format is Pickle. Pickle can effectively store nu­
merical values with minimal allocated memory. On strings, its performance is considerably 
worse, with 199 M B necessary for storing the str dataset. On the WebfacelOM dataset, 
Pickle needed only 3,6 G B allocated in R A M . Parquet, Feather and O R C require similar 
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Table 6.6: Experimental results of peak allocated memory during the saving process. 

Format 
eq [MB] i n t [MB] 

Save peak memory 
f l o a t [MB] bool [MB] s t r [MB] webf ace [GB] 

C S V 5 4 8 5 5 0,01 
JSON 630 515 728 566 712 62,1 
X M L 3196 3123 3358 3210 3202 — 
H5 fixed 82 16 16 66 248 — 
H5 table 107 61 61 61 299 29,7 
Parquet 79 72 71 70 129 6,8 
Feather 65 38 38 39 116 6,9 
O R C 66 38 38 39 112 6,9 
Pickle 68 2 2 35 199 3,6 
Excel 2707 2677 2802 2739 2677 — 
Lance 264 220 269 174 395 13,1 
Avro 429 399 524 398 399 18,7 

save peak memory allocated. As in the previous metric, the worst data formats are X M L 
and Excel. 

Read peak memory. During the reading process, the peak memory metric was also eval­
uated. The exact results are in Table 6.7. In this metric, all the measured values are higher 
compared to save peak allocated memory. From text formats, C S V needs the least addi­
tional memory while reading the data. Its performance is not as impressive as in the save 
peak memory metric, but its results are still solid. From binary formats, the best accord­
ing to experiments is Pickle. From other formats, Parquet achieved satisfactory results. 
On the opposite side are JSON and X M L . For WebfacelOM JSON requires 97,5 G B , and 
for the eq dataset X M L requires 5,2 G B of extra memory allocated in R A M . 

Table 6.7: Experimental results of peak allocated memory during the reading process. 

Format 
eq [MB] i n t [MB] 

R e a d peak memory 
f l o a t [MB] bool [MB] s t r [MB] webf ace [GB] 

C S V 175 144 159 80 404 14,8 
JSON 1564 1457 1708 1436 1841 97,5 
X M L 5212 5203 5376 5267 5210 — 
H5 fixed 277 180 173 136 784 — 
H5 table 314 213 212 173 738 45,2 
Parquet 524 362 341 274 1090 20,2 
Feather 243 196 179 148 452 11,3 
O R C 462 307 306 245 996 13,5 
Pickle 125 64 63 63 420 10,4 
Excel 486 440 572 435 676 — 
Lance 474 312 310 250 1016 13,8 
Avro 619 602 704 529 830 37,6 
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6.2 Compression benchmarks 

This section is dedicated to the analysis of the benchmark results when the compression 
codec was enabled. The benchmarks were executed twice, first with L Z 4 compression 
and next with Z S T D compression at level 1. Data formats that allow both of these com­
pressions are HDF5 table, Parquet, Feather, and O R C . The metrics that were measured 
are compression ratio, save time delta and read time delta. Dataset WebfacelOM was 
used in this benchmark. The results of this benchmark are shown in Table 6.8 for L Z 4 
and in Table 6.9 for Z S T D . 

Table 6.8: Experimental results of enabling compression codec L Z 4 . 

„ , Save Read Compression 
format 

time [As] time [As] ratio 

H5 table +0,51 +0,12 0,17 
Parquet +8,81 -0,73 0,50 
Feather +19,03 +2,41 0,57 
ORC +3,00 -0,46 1,00 

Table 6.9: Experimental results of enabling compression codec Z S T D . 

Format 
Save 

time [As] 
Read 

time [As] 
Compression 

ratio 

H5 table +18,27 +7,56 0,13 
Parquet +10,36 -0,77 0,21 
Feather +21,89 +6,36 0,30 
O R C +14,39 +3,83 0,41 

Compression ratio. The first metric that was extracted from the compression benchmark 
results is the compression ratio. Compression ratio is the ratio of the file size with compres­
sion over the file size without compression. The lower the number, the better. If the number 
is equal to 1, then the file size with compression is the same as without compression. When 
the compression ratio is greater than 1, the file size increases with compression. For both 
compression codes, the best ratio was achieved by the HDF5 table format. The cause of this 
is that the original uncompressed size is large, 24,4 G B , with a lot of redundant metadata. 
Those can be effectively removed by compression and the file size afterwards is approx­
imately 3 G B . Other data formats also reach acceptable compression ratios. After ZSTD 

compression, Parquet needs only 960 M B to save the WebfacelOM dataset with 10 million 
rows. A n interesting behaviour was observed in the O R C compression benchmark results. 
Its compression ratio for L Z 4 codec was equal to 1, which means the file was neither com­
pressed nor extended. This is because O R C disables compression when it detects L Z 4 , 
since it would cause the file size to increase. This behaviour was also noticed in article [18]. 

Time of compression. The time of compression metric is the time added to save time 
without compression. It was calculated as the difference between save time with compres­
sion and save time without compression. From the results it is clear that all the save times 
were extended. For L Z 4 compression, the lowest overhead was observed in the HDF5 table 
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format save time. For the ZSTD codec, Parquet needs the least additional time for compres­
sion. The results of the Feather format are interesting. Without compression, Feather ex­
hibits extremely fast save and read times. After applying compression, its I /O performance 
plummets. Compression L Z 4 added +19,03 s and ZSTD added +21,89 s to the original save 
time. 

Time of decompression. The last metric measured in the compression benchmark was 
the time of decompression. It was measured as the difference between read time with com­
pression and read time without compression. The results of this metric show that decom­
pression does not add too much time compared to the original read time. Parquet even 
decreases its read time when compression is applied, -0,73 s for L Z 4 and -0,77 s for Z S T D . 

This comes mainly from the fact that the file size is low, and the required number of accesses 
to the disk is therefore minimal. 

6.3 Image benchmarks 

This section will analyse the results of image storage benchmarks. The metrics that will be 
considered are save time, read time and total size. The results are included in Table 6.10 
for the CIFAR-10 dataset and in Table 6.11 for the ImageNet-100 dataset. 

Table 6.10: Experimental results of image storages on the CIFAR-10 dataset. 

Format Save 
time [s] 

Read 
time [s] 

Total 
size [MB] 

P N G 10,54 5,72 113 
Base64 2,63 1,55 205 
HDF5 2,75 22,04 157 
Parquet 0,43 1,45 154 
SQLite 0,47 0,30 205 
L M D B 0,75 0,32 207 

Table 6.11: Experimental results of image storages on the ImageNet-100 dataset. 

Format Save 
time [s] 

Read 
time [s] 

Total 
size [GB] 

P N G 1076,31 164,61 8,0 
Base64 216,00 117,40 17,7 
HDF5 24,38 76,81 13,3 
Parquet 44,67 28,45 12,5 
SQLite 22,12 12,16 13,4 
L M D B 30,38 11,87 13,7 

Save time. The first metric that will be studied is the required time to save an image 
dataset. In this, the results were comparable. On the smaller CIFAR-10 dataset, the winner 
is Parquet, but on the larger ImageNet-100 dataset, results show that the fastest was 
SQLite. SQLite's performance on CIFAR-10 was almost as good as Parquet's, with only 
0,04 s difference. SQLite fast save and read operations are also benchmarked on SQLite's 
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webpage [32]. The slowest option is to save every image to a single P N G file. The main 
reason why storing images to P N G is slow is because P N G uses D E F L A T E compression, 
which requires a lot of time and the whole process is complicated. Encoding to Base64 is 
also slow and not recommended for fast saving time. The results of HDF5 and L M D B are 
reasonable. 

Read time. The second metric based on which image storages will be compared is read 
time. It is the opposite process of loading images from a disk to the list of numpy .ndarrays. 
In this metric, the first place was also tight. The fastest loading on the CIFAR-10 dataset 
was measured on SQLite, but for ImageNet-100 the fastest was L M D B . L M D B employs 
the Single-Level Store concept which enables extremely fast loading of images, as stated by 
Howard Chu [8]. On the other side are P N G , Base64 and HDF5. A l l of them exhibit slow 
reading of images. 

Total size. The last metric that will be analysed from the image storage benchmark 
results is the total size. Wi th regard to this metric, the best image storage option is to save 
every image to a single P N G file with labels in a C S V file. As was mentioned above, P N G 
is using compression, while other tested formats are not using any specific compression 
or encoding. Other formats, except Base64 encoding, are getting approximately the same 
results. If we take average results of HDF5, Parquet, SQLite and L M D B , and compare 
them with P N G , then P N G brings about 40 % size reduction, but the required save time is 
prolonged about 34 times and the read time is extended about 5 times. 
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Chapter 7 

Conclusion 

In conclusion, the main aim of this thesis was to explore the performance characteristics 
of data formats. In addition to that, the work has also evaluated different options for image 
storages. The main outcome is the designed set of benchmarks and their results. The bench­
marks were divided into more benchmark suites with defined metrics. Every benchmark 
should suggest the best data format based on some metric. 

The key findings of the benchmark results are summarised in Table 6.1 for tabular for­
mats and Table 6.2 for image storages. The results of tabular data formats show that data 
format with the fastest save and read times is Feather. Parquet stands out as the most 
memory-efficient data format. In image storage benchmarks, the results indicate that 
the fastest image storages are SQLite and L M D B . The least memory space is required 
when every image is stored in a single P N G file with labels in a C S V file. 

This study can contribute to a better understanding of how different formats behave 
and what the most important features and principles of modern data formats are. This 
can help future data format engineers create new data formats that will match the needs 
of large machine-learning datasets. Furthermore, benchmark results can help data scientists 
choose the right data format for their data. If they have specific criteria for data formats, 
such as fast save time or high memory efficiency, the benchmark can recommend the best 
option. 

Future study in the research area of benchmarking data formats and image storages 
offers several opportunities. This benchmark could be extended to new data formats. In­
teresting new data formats that were not benchmarked are Protocol Buffers, MessagePack 
or Ron. What is more, new benchmark suites could be designed. One option is to add 
a benchmark of query speed execution, that is, search in loaded data. Another suite that 
could be interesting is the benchmark of save and read time from/to different types of disks, 
for example H D D , SSD, N V M e or RAMdisk. 

A l l in all, I hope this Bachelor's thesis can contribute to the area of benchmarking data 
formats and image storages. 

37 



Bibliography 

[1] A B A D I , D. J.; M A D D E N , S. R. and F E R R E I R A , M . C. Integrating Compression and 
Execution in Column-Oriented Database Systems. In: Proceedings of the 2006 ACM 
SIGMOD International Conference on Management of Data. Association for 
Computing Machinery, 2006, p. 671-682. ISBN 1595934340. Available at: 
https: //doi.org/10.1145/1142473.1142548. 

[2] A I L A M A K I , A . ; D E W I T T , D . J . ; H I L L , M . D. and S K O U N A K I S , M . Weaving Relations 
for Cache Performance. In: Proceedings of the 27th International Conference on Very 
Large Data Bases. Morgan Kaufmann Publishers Inc., 2001, p. 169-180. ISBN 
1558608044. Available at: https://dl.acm.org/doi/10.5555/645927.672367. 

[3] A P P L E , J . Split block Bloom filters. ArXiv.org. 5th ed. Cornell University Library, 
2021. ISSN 2331-8422. Available at: https://doi.org/10.48550/arXiv.2101.01719. 

[4] B L O O M , B . H . Space/Time Trade-offs in Hash Coding with Allowable Errors. 
Communications of the ACM. Association for Computing Machinery, 1970, vol. 13, 
no. 7, p. 422-426. ISSN 0001-0782. Available at: 
https://doi.org/10.1145/362686.362692. 

[5] B O U T E L L , T. PNG (Portable Network Graphics) Specification Version 1.0 RFC 2083. 
March 1997. Available at: https://datatracker.ietf.org/doc/html/rfc2083. [cit. 
2024-03-26]. 

[6] B R A Y , T.; P A O L I , J . ; S P E R B E R G - M C Q U E E N , C. M . ; M A L E R , E . and Y E R G E A U , F. 
Extensible Markup Language (XML) 1.0 online. 5th ed. 26. november 2008. Available 
at: https://www.w3.org/TR/xml/. [cit. 2024-03-17]. 

[7] B Y N A , S.; B R E I T E N F E L D , M . S.; D O N G , B. ; K O Z I O L , Q . ; P O U R M A L , E . et al. 
ExaHDF5: Delivering Efficient Parallel I /O on Exascale Computing Systems. 
Journal of Computer Science and Technology. Springer, 2020, vol. 35, p. 145-160. 
ISSN 1000-9000. Available at: https://doi.org/10.1007/sll390-020-9822-9. 

[8] C H U , H . M D B : A Memory-Mapped Database and Backend for OpenLDAP. 
In: Proceedings of the 3rd International Conference on LDAP. 2011. Available at: 
https: //www.openldap.org/pub/hyc/mdb-paper.pdf. 

[9] C O P E L A N D , G . P. and K H O S H A F I A N , S. N . A decomposition storage model. 
SIGMOD Record. Association for Computing Machinery, 1985, vol. 14, no. 4, 
p. 268-279. ISSN 0163-5808. Available at: https://doi.org/10.1145/971699.318923. 

[10] E P P S T E I N , D . and G O O D R I C H , M . T. Streaming Algorithms for Straggler Detection 
online. Irvine: University of California, Computer Science Department, 2007, 

38 

https://dl.acm.org/doi/10.5555/645927.672367
http://ArXiv.org
https://doi.org/10.48550/arXiv.2101.01719
https://doi.org/10.1145/362686.362692
https://datatracker.ietf.org/doc/html/rfc2083
https://www.w3.org/TR/xml/
https://doi.org/10.1007/sll390-020-9822-9
http://www.openldap.org/pub/hyc/mdb-paper.pdf
https://doi.org/10.1145/971699.318923


2010-03-13. Available at: https://ics.uci.edu/~eppstein/pubs/EppGoo-WADS-07.pdf. 
[cit. 2024-04-07]. 

[11] G O L D S T E I N , J.; R A M A K R I S H N A N , R. and S H A F T , U . Compressing relations and 
indexes. In: Proceedings 14th International Conference on Data Engineering. I E E E 
Computer Society, 1998, p. 370-379. ISBN 0-8186-8289-2. Available at: 
https://doi.org/10.1109/ICDE.1998.655800. 

[12] H U A I , Y . ; C H A U H A N , A . ; G A T E S , A . ; H A G L E I T N E R , G . ; H A N S O N , E . N . et al. Major 
Technical Advancements in Apache Hive. In: Proceedings of the 2014 ACM SIGMOD 
International Conference on Management of Data. Association for Computing 
Machinery, 2014, p. 1235-1246. ISBN 9781450323765. Available at: 
https://doi.org/10.1145/2588555.2595630. 

[13] H U F F M A N , D . A . A Method for the Construction of Minimum-Redundancy Codes. 
Proceedings of the IRE. I E E E , 1952, vol. 40, no. 9, p. 1098-1101. ISSN 0096-8390. 
Available at: https://doi.org/10.1109/JRPR0C.1952.273898. 

[14] J O S E F S S O N , S. The Basel6, Base32, and Base64 Data Encodings R F C 4648. October 
2006. Available at: https://datatracker.ietf.org/doc/html/rfc4648. [cit. 
2024-03-29]. 

[15] K R I Z H E V S K Y , A . Learning Multiple Layers of Features from Tiny Images. 2009. 
Master's thesis. University of Toronto, Department of Computer Science. Available 
at: https : //www.cs.toronto.edu/~kriz/learning-f eatures-2009-TR.pdf. 

[16] L E M I R E , D . and B O Y T S O V , L . Decoding billions of integers per second through 
vectorization. Software: Practice and Experience. John Wiley & Sons, Inc., 2015, 
vol. 45, no. 1, p. 1-29. ISSN 0038-0644. Available at: 
https: //doi.org/10.1002/spe.2203. 

[17] L I M , S.; Y O U N G , S. R. and P A T T O N , R. A n analysis of image storage systems for 
scalable training of deep neural networks. System, 2016, vol. 5, no. 7, p. 11. Available 
at: http://tiny.cc/k4mkxz. 

[18] L i u , C ; P A V L E N K O , A . ; I N T E R L A N D I , M . and H A Y N E S , B . A Deep Dive into 
Common Open Formats for Analytical DBMSs . Proceedings of the VLDB 
Endowment. V L D B Endowment, 2023, vol. 16, no. 11, p. 3044-3056. ISSN 
2150-8097. Available at: https://doi.org/10.14778/3611479.3611507. 

[19] M C K I N N E Y , W . Feather: fast, interoperable data frame storage online. 2024. 
Available at: https://github.com/wesm/feather. [cit. 2024-03-21]. 

[20] M E L N I K , S.; G U B A R E V , A . ; L O N G , J . J.; R O M E R , G . ; S H I V A K U M A R , S. et al. Dremel: 
Interactive Analysis of Web-Scale Datasets. Proceedings of the VLDB Endowment. 
V L D B Endowment, 2010, vol. 3, 1-2, p. 330-339. ISSN 2150-8097. Available at: 
https://doi.org/10.14778/1920841.1920886. 

[21] P A R A D A R A M I , T. High-performance genetic datastore on AWS S3 using Parquet and 
Arrow online. 8. february 2021. Available at: 
https: //medium.com/23andme-engineering/genetic-datastore-4b213256db31. [cit. 
2024-03-10]. 

39 

https://ics.uci.edu/~eppstein/pubs/EppGoo-WADS-07.pdf
https://doi.org/10.1109/ICDE.1998.655800
https://doi.org/10.1145/2588555.2595630
https://doi.org/10.1109/JRPR0C.1952.273898
https://datatracker.ietf.org/doc/html/rfc4648
http://www.cs.toronto.edu/~kriz/learning-f
http://tiny.cc/k4mkxz
https://doi.org/10.14778/3611479.3611507
https://github.com/wesm/feather
https://doi.org/10.14778/1920841.1920886


[22] P A V L O , A . Data Formats & Encoding / online. Carnegie Mellon University, 2024. 
Available at: https://15721. courses.cs.cmu.edu/spring2024/slides/02-datal.pdf. 

[cit. 2024-05-02]. 

[23] R U S S A K O V S K Y , O.; D E N G , J . ; Su, H . ; K R A U S E , J . ; S A T H E E S H , S. et al. ImageNet 
Large Scale Visual Recognition Challenge. International Journal of Computer 
Vision. Springer, 2015, vol. 115, no. 3, p. 211-252. ISSN 0920-5691. Available at: 
https://doi.org/10.1007/sll263-015-0816-y. 

[24] S H A F R A N O V I C H , Y . Common Format and MIME Type for Comma-Separated Values 
(CSV) Files R F C 4180. October 2005. Available at: 
https://datatracker.ietf.org/doc/html/rfc4180. [cit. 2024-03-16]. 

[25] S H I V A S H E T T Y , V . and R A J P U T , G . A Survey on Different Types of Image Formats 
and Compression Techniques. International Journal of Science and Research, 2014, 
vol. 3, no. 6, p. 798-802. ISSN 2319-7064. Available at: 
https: //www.i j sr.net/archive/v3i6/MDIwMTQyNA==.pdf. 

[26] S H O K R Z A D , R. Pickle, J SON, or Parquet: Unraveling the Best Data Format for 
Speedy ML Solutions online. 15. november 2023. Available at: 
https://medium.com/Oreza.shokrzad/pickle-j son-or-parquet-unraveling-the-best-

data-f ormat-f or-speedy-ml-solutions-10c3f 7bf4d0c. [cit. 2024-03-23]. 

[27] T I A N , Y . ; K R I S H N A N , D . and I S O L A , P. Contrastive Multiview Coding. In: Computer 
Vision-ECCV 2020: 16th European Conference, Glasgow, UK, Proceedings, Part XI. 
Springer, 2020, p. 776-794. ISBN 978-3-030-58620-1. Available at: 
https://doi.org/10.1007/978-3-030-58621-8_45. 

[28] X I E , B. ; T A N G , H . ; B Y N A , S.; H A N L E Y , J . ; K O Z I O L , Q . et al. Battle of the Defaults: 
Extracting Performance Characteristics of HDF5 under Production Load. In: 2021 
IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet 
Computing (CCGrid). I E E E Computer Society, 2021, p. 51-60. ISBN 
978-1-7281-9586-5. Available at: https://doi.org/10.1109/CCGrid51090.2021.00015. 

[29] Z E N G , X . ; H u i , Y . ; S H E N , J . ; P A V L O , A . ; M C K I N N E Y , W . et al. A n Empirical 
Evaluation of Columnar Storage Formats. Proceedings of the VLDB Endowment. 
V L D B Endowment, 2023, vol. 17, no. 2, p. 148-161. ISSN 2150-8097. Available at: 
https://doi.org/10.14778/3626292.3626298. 

[30] ECMA-262: ECMAScript Language Specification. 3rd ed. Geneva, Switzerland: 
E C M A (European Association for Standardizing Information and Communication 
Systems), december 1999. Available at: 
https: //ecma- international.org/publications-and-standards/standards/ecma-262/. 

[31] ECMA-376: Office Open XML File Formats. 5th ed. Geneva, Switzerland: E C M A 
(European Association for Standardizing Information and Communication Systems), 
december 2021. Available at: 
https: //ecma- international.org/publications-and-standards/standards/ecma-376/. 

[32] 35% Faster Than The Filesystem online. 5. december 2023. Available at: 
https://www.sqlite.org/fasterthanfs.html. [cit. 2024-04-02]. 

40 

https://15721
http://courses.cs.cmu.edu/
https://doi.org/10.1007/sll263-015-0816-y
https://datatracker.ietf.org/doc/html/rfc4180
http://www.i
https://medium.com/Oreza.shokrzad/pickle-j
https://doi.org/10.1007/978-3-030-58621-8_45
https://doi.org/10.1109/CCGrid51090.2021.00015
https://doi.org/10.14778/3626292.3626298
http://international.org/publications-and-standards/
http://international.org/publications-and-standards/
https://www.sqlite.org/fasterthanfs.html


[33] Airspeed velocity online. 2024. Available at: 
https://asv.readthedocs.io/en/stable/index.html. [cit. 2024-04-10]. 

[34] Apache Avro™ - a data serialization system online. December 2023. Available at: 
https://avro.apache.org/. [cit. 2024-04-03]. 

[35] Apache Parquet online. 2024. Available at: https://parquet.apache.org/. [cit. 
2024-03-21]. 

[36] Feather File Format online. 2024. Available at: 
https://arrow.apache.org/docs/python/feather.html. [cit. 2024-03-21]. 

[37] HDF5 File Format Specification Version 3.0 online. 2024. Available at: 
https: //docs.hdf group.org /hdf5/develop/_f_m_t3.html. [cit. 2024-03-21]. 

[38] Introducing JSON online. 2023. Available at: https://www.json.org/json-en.html. 
[cit. 2024-03-16]. 

[39] Lance: modern columnar data format for ML online. Apr i l 2024. Available at: 
https://lancedb.github.io/lance/. [cit. 2024-04-02]. 

[40] LMDB freelist online. 2024. Available at: 
https://github.com/ledgerwatch/erigon/wiki/LMDB-freelist. [cit. 2024-04-09]. 

[41] [MS-XLSX]: Excel (.xlsx) Extensions to the Office Open XML SpreadsheetML File 
Format online. 2023. Available at: 
https://learn.microsoft.com/en-us/openspecs/office_standards/ms-xlsx/. [cit. 
2024-03-24]. 

[42] Pickle — Python object serialization online. 2024. Available at: 
https://docs.python.org/3/library/pickle.html. [cit. 2024-03-23]. 

[43] SQLite online. 9. march 2024. Available at: https://www.sqlite.org/index.html. [cit. 
2024-04-02]. 

[44] The HDF5® Library & File Format online. 2023. Available at: 
https://www.hdfgroup.org/solutions/hdf5/. [cit. 2024-03-21]. 

[45] The smallest, fastest columnar storage for Hadoop workloads online. 2024. Available 
at: https://orc.apache.org/. [cit. 2024-03-22]. 

41 

https://asv.readthedocs.io/en/stable/index.html
https://avro.apache.org/
https://parquet.apache.org/
https://arrow.apache.org/docs/python/feather.html
http://group.org
https://www.json.org/json-en.html
https://lancedb.github.io/lance/
https://github.com/ledgerwatch/erigon/wiki/LMDB-freelist
https://learn.microsoft.com/en-us/openspecs/office_standards/ms-xlsx/
https://docs.python.org/3/library/pickle.html
https://www.sqlite.org/index.html
https://www.hdfgroup.org/solutions/hdf5/
https://orc.apache.org/


Append i x A 

Poster 

Last addition to this work is a poster, which is depicted in Figure A . l . 

COLUMN-ORIENTED AND IMAGE DATA 
FORMAT BENCHMARKS 
Marián Taragel', 2024 

Motivation 
This bachelor's thesis aims to evaluate different data formats for 
storing tabular and image data. The results of this work can 
contribute to a better understanding of how different data 
formats behave and help to choose the right format for tabular 
and image data. 

Benchmark methodology 
The bench marks arc divided into three benchmark suites. These 
include the benchmarking of uncompressed tabular formats, 
compressed tabular formats, and an image storage benchmark 
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Figure 2: High-level overview of the benchmark design. 

Data formats benchmark results 

Graph 1: Savin si time. Graph 2: Reading time. 

Image storages benchmark results * d a t a s e t I m a s e N e t - i o o 
. 130000 images 

•rquet S<JI 
Graph4: Savin.si time. Graph 5: Reading time. 

Supervisor: Ing. |akub Spaňhel 
Consultant Ing. Petr Chmelař :• i n n o v A T r i c s 

Figure A . l : Poster presenting this bachelor's thesis, its goals and results. 
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