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1 Introduction

Compositional data (CoDa) are present in many applications from nume-

rous scienti�c �elds (e.g., economy, sociology, psychology, biology, geochemistry,

environmental studies or so-called omics sciences covering metabolomics, geno-
mics, proteomics, transcriptomics, and other branches producing high-throughput

data). Logratio methodology based on the Aitchison geometry on simplex (Ait-

chison, 1986; Pawlowsky-Glahn et al., 2015; Filzmoser et al., 2018) can and should

be used as a cornerstone every time the statistician works with strictly positive
data carrying relative information. At the same time not only vectors but also
more complex structures with the interest lying in several factors can be seen
as CoDa. In this dissertation thesis I would like to show the wide potential of
the logratio methodology using various di�erent tasks interconnected by a high-

dimensionality (or the need for its reduction, respectively) of the relevant data

sets using pivot coordinates (Fi²erová and Hron, 2011; Filzmoser et al., 2018) or

their modi�cations. Because, to answer any questions about CoDa requires to as-
sign them �appropriate� real coordinates before applying any statistical method

(both frequentist and Bayesian) in order to transform the problem from simplex

to the real space. Those are, depending on the type of task, especially cente-

red logratio (clr) coe�cients allowing for an intuitive interpretation even when

dealing with the high-dimensionality and isometric logratio (ilr) coordinates (re-

cently renamed to orthonormal logratio (olr) coordinates to better re�ect their

geometric properties) � with the special emphasis precisely on pivot coordinates

and their weighted counterpart (Hron et al., 2017; �tefelová et al., 2021). The

latter are a necessity particularly when some processes in data need to be �ltered
out in order to obtain better interpretable outputs of the analysis. An overview of
logratio methodology for CoDa with the entire development of pivot coordinates,
their bene�ts, and disadvantages is provided in Chapter 2 of this thesis.

The main bottleneck of the statistical analysis and its interpretation in all

omics sciences is probably the (ultra) high-dimensionality of their data sets; there

are usually hundreds to thousands variables involved with only lower tens (or even

less in case of very rare diseases) observations. Another speci�c of these sciences

is the need for a thorough and substantial data pre-processing before any sta-
tistical methods can be even applied. This step includes methods used for the
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conversion of the original measurements (i.e., chemometric signals) to the data

chart, detection of noise variables, and inevitably also data transformation and/or

normalization. Naturally, the quality of pre-processing can easily in�uence the re-
sults of the subsequent statistical analysis. For example in the �eld of untargeted
metabolomics or lipidomics where the analysis of clinical patient samples presents
a promising way of novel biomarker detection further allowing for a better under-
standing of pathobiochemical mechanisms and a prediction of various diseases,
most of the current publications greatly focus also on the prepocessing steps.

For the data transformation, mainly (natural logarithm of) so-called probability

quotient normalization (PQN) is used (Dieterle et al., 2006). Here the original

data are expressed in terms of ratios to a median of components normalized with

respect to some reference sample (usually composed from component-wise me-

dians). The PQN representation is successfully seconded by logratio coordinates

where the posed challenge is to �nd an appropriate counterpart within the lo-
gratio methodology to better re�ect geometric properties of the relative omics
data.

After data pre-processing, tools from both univariate and multivariate sta-
tistics are usually used for the analysis in metabolomic experiments aimed at

discovering metabolites discriminating the group(s) of patients from healthy con-

trols. In the article

� de Sousa J∗, Vencálek O, Hron K, Václavík J, Friedecký D, Adam T (2020)

Bayesian Multiple Hypotheses Testing in Compositional Analysis of Un-
targeted Metabolomic Data. Analytica Chimica Acta 1097: 49�61. DOI:

10.1016/j.aca.2019.11.006.
∗ Corresponding author

(Chapter 3 of this thesis) we presented a novel Bayesian approach to a univari-

ate statistical analysis of metabolomic data expressed in �rst pivot coordinates

(or clr coe�cients which are up to a scaling constant equal to them) for a mul-

tiple hypotheses testing problem. One of the most widespread tools for biomarker

identi�cation in omics sciences is the so-called volcano plot (Cui and Churchill,

2003) functioning as a double �lter: the size of e�ect given as a ratio of medians

of the patient vs. control data (i.e., a fold-change) is depicted against statistical

signi�cance represented by a negative decadic logarithm from p-values obtained
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in t-tests of all variables (metabolites). The traditional frequentist way of volcano

plot construction, however, su�ers from limitations posed by multiple testing of

high-dimensional data (Wasserstein and Lazar, 2016) which can result, depending

on the choice of the p-value corrections, in a high number of false positives or
false negatives leading to a loss of potential biomarkers. On the other hand, the
proposed Bayesian approach does not need to rely on any corrections to the num-
ber of multiple tests performed from its nature; the decision about a hypothesis

is build on highest density intervals (HDI) working with the entire posterior dis-

tributions (Kruschke, 2013; Thulin, 2014). Another advantage is the robustness

of the method (in Bayesian context) achieved through the prior assumption of

the data distribution where a student t-distribution with a possibility of hea-

vier tails is favored over the Gaussian outlier-sensitive option (Kruschke, 2013).

For the construction of the volcano plot itself, we suggested to work with the
mean values of posterior distributions as a measure of the size of the e�ect and
with newly introduced b-values. The latter provide quite a complex information
by taking into account entire posterior distributions and representing them by
a singe value substituting the statistical signi�cance. Furthermore, it was shown
that a combination of the measures from both axes of the Bayesian volcano plot
can be conveniently used in the �nal assessment of the potential biomarkers. As
such, we proposed to construct so-called HDI zones, i.e., distances of the borders
of HDI from zero. The entire concept was applied to the analysis of two di�erent
inherited rare metabolic diseases, each of them with a bit di�erent speci�cs and
thanks to that also dimensionality, and two simulations. The �rst one compared
the stability of the introduced method and traditional multiple t-testing in case of
a loss of samples, while the other scenario considered the in�uence of the chosen
data transformation to a resulting Bayesian volcano plot in case of a systematic
error occurring during data measurement.

The results of multivariate statistical methods in metabolomics (or generally

also in other omics as well as for example in geochemistry) often su�er from the

in�uence of a handful strong biomarkers on the other variables. This happens
regardless to the chosen data transformation due to the nature of mathematical
expressions of clr coe�cients, pivot coordinates, PQN etc. where such biomarkers

impact the coordinates of other components through the (geometric) mean or

reference variable, respectively, in the denominator of the coordinate formulas.
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An endeavor to eliminate this phenomenon led to a development of selective pivot

coordinates (SPCs) presented in the article

� �tefelová N, de Sousa J∗, Hron K, Palarea-Albaladejo J, Dobe²ová D, Kvas-

ni£ka A, Friedecký D (2023) Selective Pivot Logratio Coordinates for PLS-

DA Modelling with Applications in Metabolomics. Under review.
∗ Corresponding author

(Chapter 4 of this thesis). Pivot coordinates, here termed for better clarity as

ordinary pivot coordinates (OPCs), follow a principle where the �rst (�pivoting�)

coordinate aggregates all logratios with the compositional part of interest, kee-

ping an easy interpretation just like in the case of clr coe�cients (Fi²erová and

Hron, 2011) (i.e., a dominance of a certain metabolite over the entire metabo-

lome represented by a geometrical mean of all/the rest of metabolites). At the

same time, it is possible to create more systems of pivot coordinates (usually

the same number as the number of compositional parts) which can be conver-

ted to each other by an orthogonal transformation (Filzmoser et al., 2018) and

where the part of interest in the �rst coordinate is permuted. In case of weighted
pivot coordinates, the �rst coordinate from each coordinate system aggregates

a relative weighted information about the compositional part of interest (Hron

et al., 2017; �tefelová et al., 2021). The atonement for capturing only the rele-

vant and, in other words, more immaculate information in the �rst coordinate,
is generation of a remainder, i.e., another coordinate involving the part of in-
terest where its redundant information is stored. As a weighting technique for
classi�cation problems of high-dimensional CoDa, we suggested zero-one weights
allowing to fully eliminate aberrant pairwise logratios of the compositional part
of interest in its �rst SPC. The big advantage of such weighting is that there
is no speci�c residual coordinate for the part of interest since the creation of
SPCs results in OPC systems with just one di�erence � the pivoting coordinate
of each system is generally no longer the �rst one. Therefore, SPCs can be seen as
a certain orthogonal rotation of the original pivot coordinates which means that
the quality of binary classi�cation tasks using multivariate statistical methods
on data sets expressed in SPCs does not get deteriorated. As for the particular
choice of strategy to assign the weights to the individual compositional parts, we
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chose Welch t-statistics with Qn estimator-based (Rousseeuw and Croux, 1993)

con�dence intervals to determine individual logratios which should be eliminated

from the pivoting coordinate of each set of SPCs (i.e., by assigning zero weights to

the respective pairwise logratios). After constructing Welch-based SPCs, partial

least squares � discriminant analysis was applied on the data as a well-established
method for classi�cation tasks in omics sciences. The estimated regression para-
meters were further standardized using a bootstrap-based signi�cance test with
Benjamini-Hochberg corrections for multiple testing. A comparison of sensitivity
and speci�city among logarithmized PQN, OPCs and SPCs was provided in a si-

mulation based on the biochemical equation from Filzmoser and Walczak (2014).

Especially in case of a higher ratio of potential biomarkers in the total number of
metabolites, the newly proposed coordinates outperform the others in both true
positive and true negative rate which makes them a very versatile transformation
option. The e�ect of the introduced weighting technique was illustrated on two
data sets from targeted lipidomics and untargeted metabolomics, respectively.

More complex CoDa structures where the observations are carrying inhe-

rently relative information about data distribution on the basis of two (or even

more) factors are not yet common in omics, geochemistry or biology. Neverthe-

less, to model for example a relative structure of unemployed people depending on
their gender and age group, or a relative structure of university students among
di�erent study subjects with relation to the obtained university degree, could
not be done otherwise. Next to these examples from socioeconomics, other cases
of two-factorial compositions might be found e.g., in the �eld of environmental
management, such as mineral resources divided into groups based on their re-
newability and the type of extraction, or the size of protected areas on land and
in the ocean further characterized by the degree of the territorial protection. If we
had such data at hand from di�erent countries, the measurements would probably
considerably di�er depending e.g., on the population size and so the relevant in-
formation would be more likely captured by the ratios than absolute values. From
the mathematical point of view, we talk about two-factorial extension of vector

CoDa, called compositional tables (Egozcue et al., 2008, 2015). Using the logratio

methodology, each compositional table can be decomposed into an independent

and an interactive part and olr coordinates assigned to each of them (Fa£evicová

et al., 2016) enabling further statistical processing of compositional tables using
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popular multivariate methods. However, the construction of aforesaid coordina-
tes generally requires prior knowledge of the data and it is rather complicated
to contemplate the connections among the independence table, interaction table
and the entire compositional table where the latter two are in�uenced by relati-
onships between the two factors. At the same time, it is precisely the connectivity
of the individual coordinate systems that should pose as the crucial point in the
choice of the coordinates. After all, the comparison of independence and inter-
action tables is what allows for a better understanding of the original data. For
this purpose, in the article

� de Sousa J∗, Fa£evicová K, Hron K, Filzmoser P (2021) Robust Principal

Component Analysis for Compositional Tables. Journal of Applied Statis-

tics 48(2):1�20. DOI: 10.1080/02664763.2020.1722078.
∗ Corresponding author

(Chapter 5 of the thesis) we proposed a particular choice of pivot coordinates

for all three compositional tables (i.e., the original table and its decomposed

parts) with a direct link to clr coe�cients including their explicit formulas and

interpretation. This is a key step for an application of robust multivariate methods
on two-factorial CoDa as well as for a generalization of the entire situation for

more than two factors (i.e., multifactorial compositional cubes (Fa£evicová et al.,

2022)). Regarding the former, we applied on the data expressed in the presented

coordinates a robust principal component analysis (rPCA) since one of the most

common tasks in statistics is a dimension reduction. To estimate covariation
matrix for rPCA, a so-called MCD estimator (Maronna et al., 2006) was used.

This approach requires to carry out the computations of loadings and scores using
pivot coordinates of vectorized compositional tables, as clr representation leads to
singularity, and transform them to clr coe�cients only afterward for the purpose
of compositional biplots construction. The entire process was illustrated on the
two economical data sets mentioned at the beginning of this paragraph.

In addition to the previously mentioned methodological papers, below are
listed further papers from an interdisciplinary work in metabolomics, where the
focus was primarily
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� to improve pre-processing of the measurements by removing data multipli-
cities using correlation networks:

Kou°il �∗, de Sousa J∗, Václavík J, Friedecký D, Adam T (2020) CROP:

Correlation-based Reduction of Feature Multiplicities in Untargeted Meta-

bolomic Data. Bioinformatics 36(9):2941�2942. DOI: 10.1093/bioinforma-

tics/btaa012.
∗ Joint �rst authors

� to identify novel biomarkers in order to help with the description of un-
derlying pathobiochemistry of the studied diseases using the logratio me-
thodology as well as previously mentioned CROP and Bayesian volcano
plot:

Václavík J, Mádrová L, Kou°il �, de Sousa J, Brumarová R, Jane£ková H,
Já£ová J, Friedecký D, Knapková M, Kluijtmans L A J, Grünert S C, Vaz

F M, Janzen N, Wanders R J A, Wevers R A, Adam T (2020) A newborn

screening approach to diagnose 3-hydroxy-3-methylglutaryl-CoA lyase de-

�ciency. JIMD Reports 54(1):79�86. DOI: 10.1002/jmd2.12118.

Mádrová L, Sou£ková O, Brumarová R, Dobe²ová D, Václavík J, Kou°il �,
de Sousa J, Friedecká J, Friedecký D, Bare²ová V, Zikánová M, Adam T

(2022) Combined Targeted and Untargeted Pro�ling of HeLa Cells De�ci-

ent in Purine De Novo Synthesis. Metabolites 12(3):241. DOI: 10.3390/me-

tabo12030241.

� to enhance the decision process in the newborn screening program of inborn
errors of metabolism using a machine learning method coupled with CoDa
approach:

Kou°il �, de Sousa J, Fa£evicová K, Gardlo A, Muehlmann C, Nordhausen

K, Friedecký D, Adam T (2023) Multivariate Independent Component Ana-

lysis Identi�es Patients in Newborn Screening Equally to Adjusted Refe-
rence Ranges. Under review.
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2 Logratio methodology of compositional data

As discussed in the previous chapter, the relative structure of the observati-
ons may be more interesting than the absolute values of their components in many
real-world applications. For example, when considering numbers of students at-
tending bachelor, master and doctoral studies at di�erent universities, the ratios
among these three groups can be more relevant for a statistical analysis than just
the empirical values, which might not be comparable because of di�erent total

student numbers. In other words, the actual total number of students (su�ciently

high so that the impact of a measurement error with small sample sizes can be

neglected) might be considered as not informative for the purpose of the analysis.

An important point connected to this is the invariance to the change of scale.
Suppose that the student numbers are multiplied by a scalar which does not es-
sentially change the information contained in the data. That means, both the
original and e.g., percentage representations carry the same information when
the relative structure of student degrees is of primary interest. Of course, the
challenge is then to process such kind of information in a statistically coherent
way. Moreover, if only for example undergraduate student numbers were to en-
ter the analysis, the analysis could be misleading if not conducted carefully to
assure results consistent with the �ndings emerging from the entire composition.
Therefore, to work with quantitatively described contributions of a given whole
in a concise and meaningful manner, some concepts need to be introduced �rst.

A positive (row) vector x = (x1, x2, . . . , xD) is de�ned to be a D-part com-

position if it carries relative information, i.e., the ratios between the components

are informative (Aitchison, 1986; Pawlowsky-Glahn et al., 2015). Any compositio-

nal vectors with equal number of parts are considered to be representatives of the
same equivalence class if one vector is obtained from another by a positive scalar

multiplication (Pawlowsky-Glahn et al., 2015). This is an important point e.g.,

for some omics sciences where the total often might not be known (i.e., when only

peak intensities but not real concentrations are measured). Accordingly, equiva-

lence classes of compositional data are represented without loss of information in
a D-part simplex,

SD =

{
x = (x1, . . . , xD)|xi > 0, i = 1, . . . , D,

D∑

i=1

xi = κ

}
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for any κ > 0. The choice of κ (being 1 for proportions and 100 for percentages)

is irrelevant for the analysis and can also vary throughout the compositional data
set. Formally, the closure operation

C(x) =
(

κ · x1∑D
i=1 xi

,
κ · x2∑D
i=1 xi

, . . . ,
κ · xn∑D
i=1 xi

)

can be applied to rescale the data to a given constant sum (κ) representation.

Accordingly, the D-part simplex is a sample space of (representatives of equi-

valence classes of) compositions. As an interesting consequence of the constant

sum representation, possibly outlying observations from the main data cloud are
characterized by aberrant ratios rather than by signi�cantly deviating absolute

values of components (Filzmoser and Hron, 2013).

Therefore, results of statistical processing should not depend on the sum κ of
compositional parts and instead of the standard Euclidean distances which rely

on absolute (squared) di�erences between components, relative di�erences are

used to express distances between observations. This principle called scale inva-

riance is the �rst of three basic compositional principles (Pawlowsky-Glahn et al.,

2015). Moreover, the original data often contain some non-informative part(s) in

the compositional vector that are not of interest. Hence, we do not expect any
change of results concerning the respective subcomposition when these parts are
removed from the data. Subcompositional coherence is a principle declaring that
results obtained from a d -part subcomposition, d < D, are not in contradiction
with results obtained by an analysis of the original D-part composition. Finally,
permutation invariance states that the results are independent from a chosen
order of parts within the composition, an anticipative premise for any reasona-
ble statistical processing and one of the key assumptions for the idea behind the

construction of pivot coordinates (Chapter 2.2).

The importance of the compositional principles and possible impacts on the
discrepancy of the subsequent analysis are illustrated on a toy example of spuri-
ous correlation in Table 1. Let us imagine a metabolomic study where groups of
amino acids, organic acids, nucleotides, lipids and other metabolites are measured
on samples from 3 healthy controls. Two approaches to the metabolomic analysis
are considered and the resulting values are always closed to aliquots; approach A

where the mass spectrometry is done with all the metabolites (Table 1a) and ap-
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proach B where metabolomics and lipidomics are measured separately, thus lipids

are excluded from the metabolomic data set (Table 1b). It is a well expectable

assumption for the correlation structure of the groups of metabolites to hold re-
gardless of the chosen analytical approach, however, it is not the case here. It can
be seen that the pairwise correlations between amino acids and organic acids,
and amino acids and nucleotides, respectively, change when a subcomposition of

samples without lipids (after closure operation) is examined (Table 1d). While

the former suddenly presents with a positive Pearson correlation coe�cient, the
latter changes to the negative value; both originally starting with the same zero

correlation (Table 1c). Also, correlation coe�cient of amino acids with the group

of �others� increases from moderate to a very strong between approaches A and
B. The reason for this behavior is the choice of the Pearson correlation coe�cient
for assessing the strength of relationship between compositional parts which is
based on Euclidean geometry where the key compositional assumptions generally
do not hold.

Table 1: A toy example on spurious correlation of metabolomic data (a whole
composition; approach A) and their subcomposition (measurements without
lipids; approach B). Closed samples from 3 healthy controls are considered
following the distribution of 15 % of amino acids (AA), 18 % of organic acids
(OA), 16 % of nucleotides (N), and 13 % of lipids (L) detectable in a human
metabolome (Sana et al., 2013) together with the remainder of other metabolites
(O).

samples AA OA N O L
1 0.15 0.18 0.16 0.39 0.12

2 0.16 0.19 0.15 0.37 0.13

3 0.16 0.17 0.17 0.39 0.11

(a) closed data acquired by approach A

samples AA OA N O
1 0.17 0.21 0.18 0.44

2 0.18 0.22 0.17 0.43

3 0.18 0.19 0.19 0.44

(b) closed data acquired by approach B

AA OA N O L
AA 1 0 0 −0.5 0

OA 1 −1 −0.87 1

N 1 0.87 −1

O 1 −0.87

L 1

(c) correlation matrix for approach A

AA OA N O
AA 1 0.31−0.31−0.89

OA 1 −1 −0.7

N 1 0.7

O 1

(d) correlation matrix for approach B
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Therefore, the above principles and the relative scale of CoDa should be
captured by a meaningful geometric structure, preferably following the proper-
ties of the Euclidean vector space. This is provided by the Aitchison geome-

try (Pawlowsky-Glahn and Egozcue, 2001; Egozcue et al., 2003). Operations of

perturbation and power transformation, being analogous to a sum of two vectors
and a multiplication of a vector by a scalar in the real Euclidean geometry, are
de�ned as

x⊕ y = (x1y1, . . . , xDyD) and α⊙ x = (xα1 , . . . , x
α
D), (1)

where x and y are D-part compositions, and α is a real constant. Accordingly,

operations of perturbation and power transformation form a (D−1)-dimensional

vector space (SD,⊕,⊙) (Pawlowsky-Glahn et al., 2015).

To obtain Euclidean vector space structure, the Aitchison inner product,

norm and distance are de�ned for D-part compositions x and y as

⟨x,y⟩A =
1

2D

D∑

i=1

D∑

j=1

ln
xi
xj

ln
yi
yj
, (2)

∥x∥A =
√
⟨x,x⟩A, dA(x,y) = ∥x⊖ y∥A , (3)

respectively, where x⊖ y = x⊕ [(−1)⊙ y].

Given the introduced speci�cs of compositional data endowed with the Ait-
chison geometry, standard statistical methods cannot be applied directly on raw
data. Instead of adapting the methods to this speci�c geometry, it is rather pre-
ferred to �rstly express compositional data in meaningful real coordinates and
then proceed with further statistical processing; i.e., employing the working on

coordinates principle (Mateu-Figueras et al., 2011).

2.1 Centered logratio coe�cients

Generally, there are three types of logratio coordinate representations re-
specting the Aitchison geometry with interpretation in terms of logratios or

their aggregations, centered logratio coe�cients (clr), additive logratio coordina-

tes (alr) (Aitchison, 1986) and isometric logratio coordinates (ilr) (Egozcue et al.,
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2003). The former two are de�ned as

alr(x) =

(
ln
x1
xD

, ln
x2
xD

, . . . , ln
xD−1

xD

)
(4)

and

clr(x) =

(
ln

x1
g(x)

, ln
x2
g(x)

, . . . , ln
xD
g(x)

)
, (5)

where g(x) stands for the geometrical mean of the whole composition. While alr

coordinates could be potentially used in some omics sciences with xD representing
an �anchoring� or �reference� feature, they are only generated with respect to an

oblique basis of the simplex (i.e., they form an oblique coordinate system) and do

not map the Aitchison inner product (2), norm and distance (3) to the real space

resulting also in a violation of the subcompositional coherence (Pawlowsky-Glahn

et al., 2015). Since their usage with standard statistical methods thus has some

limitations and also represents another streamline in CoDa analysis, they will not
be further described for the purpose of this thesis.

On the other hand, clr representation keeps the metric properties of CoDa
and enables for a simple and meaningful interpretation in terms of dominance
of a given compositional part with respect to the other parts on average. Con-
sequently, clr coe�cients are useful for a graphical interpretation of compositi-
onal data including compositional biplots as a result of a dimension reduction

through PCA (Aitchison and Greenacre, 2002) or a multiple hypotheses testing

based Bayesian volcano plot (de Sousa et al., 2020). The e�ect of clr represen-

tation is illustrated by another toy metabolomic example (Fig. 1). Imagine the

statistical analysis is started with two samples of three metabolites, M1,M2,M3

and M′
1,M

′
2,M

′
3, respectively. The measured values vary between these sam-

ples (e.g., a situation with di�erently diluted urine samples), however, the ratios

among metabolites are preserved (i.e, 1:16:4). Thus, when the single metabolites

are expressed relative to all metabolites (represented by a geometric mean of the

entire respective metabolome), the same �absolute� values are achieved for both

samples. After applying natural logarithm, the ratios change so the di�erences

in small peaks are exhibited (de Sousa et al., 2020). The logarithmization of the

ratios is also a source of some further advantages since it brings symmetry to
the data. The values shift from strictly positive onto the entire real space and
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Figure 1: Illustration of the e�ect of clr coe�cients to the (metabolomic) data.
Two steps of the work�ow can be seen: i) metabolites represented relative to
the whole metabolome allow to reveal relative information hidden in the data,
ii) application of the natural logarithm provides a way to exhibit di�erences in
smaller peaks.

changing the role of numerator and denominator does not change the information

provided by the logratio except for its sign (i.e., ln(xi/xj) = − ln(xj/xi), with

i, j = 1, . . . , D).

Another possibility how to understand clr transformed data is through a row-
wise centering of logarithmized data,

clr(x)=

[(
lnx1 −

1

D
(lnx1 + · · ·+ lnxD)

)
, . . . ,

(
lnxD − 1

D
(lnx1 + · · ·+ lnxD)

)]
.

It means that compositional parts after logarithmization are represented in every
sample by their arithmetic mean and this mean is subtracted from the logarithmi-
zed parts. More importantly, one can see that pairwise logratios to all individual
compositional parts are involved in each clr coe�cient,

clr(x) =


ln

x1

D

√∏D
i=1 xi

, . . . , ln
xD

D

√∏D
i=1 xi




=
1

D

[(
ln
x1
x2

+ · · ·+ ln
x1
xD

)
, . . . ,

(
ln
xD
x1

+ · · ·+ ln
xD
xD−1

)]
,

where 1/D plays the role of a scaling constant. This is convenient because it

guarantees that no information is lost when considering relative contribution of
xi within a given composition. However, it may also lead to biased results caused

by presence of either strongly discriminating or �noise� variables (e.g., powerful
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biomarkers and values close to detection limit, respectively, in metabolomics)

which can heavily in�uence logratios aggregated into the clr coe�cient. Fortuna-
tely, while this is quite signi�cant for lower-dimensional data and may even lead

to some controversies (Filzmoser and Walczak, 2014), for increasing number of

parts the di�erent e�ects predominantly cancel out for any kind of compositional

data (Gardlo et al., 2016; Mert et al., 2016). Moreover, our newly proposed wei-

ghting technique used in the construction of SPCs (�tefelová et al., 2023) has the

potential to improve the results of the consecutive statistical analysis in terms of
both false positive and false negative ratios in such cases.

It is worth noting that clr coe�cients sum up to zero which leads to a singular
covariance matrix. This re�ects dimensionality of compositions, which is justD−1

for D-part compositional data. Given the zero-sum condition, it is generally not
desirable to analyze any clr part separately without considering the others nor

to use clr coe�cients with common robust statistical methods (Filzmoser et al.,

2009; Filzmoser and Hron, 2013; de Sousa et al., 2021).

2.2 Pivot coordinates

To avoid disadvantages of clr coe�cients, ilr coordinates can be used for the
mapping of CoDa from simplex to the real space. These orthonormal coordina-

tes (therefore recently proposed to be called rather orthonormal logratio (olr)

coordinates (Martín-Fernández, 2019)) with respect to the Aitchison geometry,

z ∈ RD−1, can be derived as

z = olr(x) =
(〈
x, e1

〉
A
,
〈
x, e2

〉
A
, . . . ,

〈
x, eD−1

〉
A

)
, (6)

whereD-part compositions ei = C(ei1, ei2, . . . , eiD), i = 1, . . . , D−1, form an ortho-

normal basis on the simplex.

Obviously, the interpretation of olr coordinates might be more intricate than
in the case of clr coe�cients as there are in�nitely many possibilities of their

construction depending on the choice of basis vectors ei. Sequential binary parti-

tioning (SBP) of compositional parts is one possibility for providing a meaningful

choice of ei for the practitioner which is corresponding to the prior knowledge

about compositions and resulting in coordinates called balances (Egozcue and

Pawlowsky-Glahn, 2005). Those can be described as normalized ratios or con-
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trasts formed always between two groups of compositional parts which do not
overlap until there is nothing left to be further divided anymore.

There is a linear transformation between olr coordinates and clr coe�cients,

done through a D × (D − 1) matrix V of clr representations of the olr basis

vectors (i.e., logcontrast coe�cients de�ned generally as a linear combination of

logarithmized parts with zero-sum constraint on the respective coe�cients),

clr(x) = Vz = [clr(e1)T , clr(e2)T , . . . , clr(eD−1)T ] · olr(x)T . (7)

To enable a link to clr coe�cients within an olr coordinate system, (ordinary)

pivot coordinates (OPCs), z(l) = (z
(l)
1 , . . . , z

(l)
D−1), with z

(l)
i , i = 1, . . . , D−1, given

as

z
(l)
i =

√
D − i

D − i+ 1
ln

x
(l)
i

D−i

√∏D
j=i+1 x

(l)
j

, (8)

were introduced as a special case of olr coordinates (Fi²erová and Hron, 2011;

Hron et al., 2017). They are appropriate especially in situations where no prior

knowledge about how to perform SBP is available (e.g., in Bruno et al. (2015);

Buccianti et al. (2014); Dumuid et al. (2018); Kalivodová et al. (2015)), because

they are constructed �semi-automatically�. This is certainly an advantage for

high-dimensional data and/or multifactorial CoDa structures.

Here, x(l)i refers to the i -th part of the re-ordered composition (xl, x1, . . . ,

xl−1, xl+1, . . . , xD) which can be rewritten as (x
(l)
1 , x

(l)
2 , . . . , x

(l)
l , x

(l)
l+1, . . . , x

(l)
D ). This

indicates that in each of the D coordinate systems, a permutation of compositio-

nal parts needs to be performed, so that the l -th part (l = 1, . . . , D) of x stands

at the �rst (�pivoting�) position. It ensures that for each part of the original

composition, the desired interpretation can be reached in one of the coordinate
systems.

Accordingly, the �rst OPC in each system, z(l)1 , then clearly explains all

relative information about part xl and, additionally, it is proportional to the

respective clr coe�cient from the expression (5) as

z
(l)
1 =

√
D

D − 1
clr(x)l, (9)
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being an extra asset in case of the univariate statistical analysis. The linear

transformation between clr coe�cients and olr coordinates (7) naturally holds

also for pivot coordinates with logcontrast coe�cients

clr(ei) =

√
D − i

D − i+ 1


0, . . . , 0︸ ︷︷ ︸

i−1

, 1,− 1

D − i
, . . . ,− 1

D − i︸ ︷︷ ︸
D−i


, i = 1, . . . , D − 1.

Just as clr coe�cients could be rewritten in terms of pairwise logratios, the
same can be done with OPCs yielding

z
(l)
i =

1√
(D − i+ 1)(D − i)

[
ln

(
x
(l)
i

x
(l)
i+1

)
+ · · ·+ ln

(
x
(l)
i

x
(l)
D

)]
. (10)

As an alternative to the situation where all pairwise logratios in z(l)1 are tre-

ated with the same relevance, weighted pivot coordinates (WPCs) were proposed

in Hron et al. (2017) with the objective to provide a possibility to enhance or

mitigate the e�ect of some pairwise logratios with the compositional part of inte-

rest. If we rewrite the �rst OPC in the form of the expression (10) with weights

α
(l)
j , j = 2, . . . , D as

α
(l)
2 ln

x
(l)
1

x
(l)
2

+ . . .+ α
(l)
D ln

x
(l)
1

x
(l)
D

, α
(l)
2 , . . . α

(l)
D ≥ 0, α

(l)
2 + . . .+ α

(l)
D = 1,

the �rst WPC can be then obtained from here as follows

w
(l)
1 =

1√
1 +

∑D
j=2

(
α
(l)
j

)2 ln
x
(l)
1

∏D
j=2

(
x
(l)
j

)α(l)
j

. (11)

A toll for the non-equal handling of the pairwise logratios with the pivoting

compositional part is another coordinate involving x(l)1 where its remaining (re-

lative) information not included in (11) gets stored, i.e., a residual coordinate

w
(l)
D−1. While the general formulas for WPC w

(l)
2 , . . . , w

(l)
D−1 are not provided in

the thesis because they are computationally laborious to derive, the way to ob-
tain them is to sequentially apply the orthonormal property of the corresponding

logcontrast coe�cients, i.e., clr(ei(l))clr(ei(l))T = 1 and clr(ei(l))clr(ek(l))T = 0,
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i, k = 1, . . . , D − 1, i ̸= k, and the identity clr(ei(l))1T = 0, starting with

clr(e1(l)) =
1√

1 +
∑D

j=2

(
α
(l)
j

)2
(
1,−α(l)

2 , . . . ,−α(l)
D

)
, l = 1, . . . , D.

So far, there are two di�erent weighting techniques presented in the litera-
ture, both arising from the limitations of OPCs in di�erent practical applications.
The �rst approach published together with the general WPCs formulation in Hron

et al. (2017) re�ects the need to �lter some background noise in geochemical map-

ping where the calculated concentrations often su�er from measurement errors
and imputed rounded zeros. While this could be relatable also for some omics
sciences, the chosen weight function

(
α
(l)
j

)p
=

(
α̃
(l)
j

)p

∑D
k=2

(
α̃
(l)
k

)p with
(
α̃
(l)
j

)p
=

1(
t
(l)
m,n

)p , j = 2, . . . , D; p > 0

based on the variation matrix

T(l) =

[
Var

(
ln
x
(l)
m

x
(l)
n

)]D

m,n=1

=
[
t(l)m,n

]D
m,n=1

would generally not work there, as in a majority of situations a certain response
variable needs to be considered together with the omics compositional data set.

For regression tasks with high-dimensional compositional explanatory vari-
ables, where the response variable is continuous, a weighting approach taking

into account the correlation structure of the data was proposed in �tefelová et al.

(2021). The weights before normalization, α̃(l)
j , are de�ned based on a vector of

correlations

r(l) =

(
Cor

(
Y, ln

x
(l)
1

x
(l)
2

)
, . . . ,Cor

(
Y, ln

x
(l)
1

x
(l)
D

))

computed between the response variable Y and data expressed in pairwise lo-
gratios which are subsequently smoothed by a kernel density estimation and �-

nally integrated from zero to the correlation given by r(l)j , j = 2, . . . , D.

Both these weighting schemes downplay the parts of the original composition
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which have some sort of a poor association with either the pivoting part or the
response variable. However, they are not suitable for classi�cation tasks. For the
purpose of a categorical response variable coupled with high-dimensional CoDa
from metabolomics, another weighting strategy, that can hopefully be seen as
the �last piece missing� within the approach where pivot coordinates sophistically

aggregate (some) information from all possible pairwise logratios, is presented in

Chapter 4.

The geosciences where the usage of pairwise logratios still prevails motivate

also the origin of backwards pivot coordinates published in Hron et al. (2021a).

Employing some kind of �reverse order� in the construction of pivot-like coordi-

nates (i.e., starting with a simple balance of two compositional parts as a scaled

pairwise logratio and adding others one by one in an SBP procedure) leads to

a possibility of working with the desirable e�ects of simple logratios without
sacri�cing the orthonormality of olr coordinates required by many multivariate

statistical methods. Starting with a choice of interpretable pairwise logratios (e.g.,

alr coordinates (4) with xD as a normalizing geochemical element or any other

reference role), an entire set of olr coordinates is built around each of them. This

results in systems of D − 1 backwards pivot coordinates

b
(l′)
i =

√
i

i+ 1
ln

i

√∏i
j=1 x

(l′)
j

x
(l′)
i+1

, i, l′ = 1, . . . , D − 1,

which are just orthogonal rotations of each other like in the case of OPCs. The

l′-th reordering of the parts of the original composition is chosen in such a way
that the pivoting compositional part occupies the �rst position and the deno-

minator xD the second one, x(l′) = (xl′ , xD, . . . , xl′−1, xl′+1, . . . , xD−1). With this

particular order, a direct link between the �rst backwards pivot coordinate and

the respective l′-th alr coordinate can be expressed similarly to the relationship (9)

established between the �rst OPC and l-th clr coe�cient as

b
(l′)
1 =

1√
2
ln
x
(l′)
1

x
(l′)
2

=
1√
2
ln
xl′

xD
=

1√
2
alr(x)l′ .

For the sake of completeness in the state of the art of the pivot coordinates

family, symmetric pivot coordinates (Kyn£lová et al., 2017) and their weighted
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counterpart (Hron et al., 2021b) should be listed here. As the name suggests,

they capture dominance of a compositional part x(l)1 and x(l)2 , respectively, over

the (weighted) rest of the parts of x(l) in a symmetric way. Their simpli�ed

formulas expressed in terms of pairwise logratios are as follows

sz
(l)
1 = N

(l)
1

(
N2 ln

x
(l)
1

x
(l)
2

+ ln
x
(l)
1

x
(l)
3

+ · · ·+ ln
x
(l)
1

x
(l)
D

)
,

sz
(l)
2 = N

(l)
1

(
N2 ln

x
(l)
2

x
(l)
1

+ ln
x
(l)
2

x
(l)
3

+ · · ·+ ln
x
(l)
2

x
(l)
D

)
,

sw
(l)
1 = N

(l)
3

(
λ(l) ln

x
(l)
1

x
(l)
2

+ ψ
(l)
3 ln

x
(l)
1

x
(l)
3

+ · · ·+ ψ
(l)
D ln

x
(l)
1

x
(l)
D

)
,

sw
(l)
2 = N

(l)
4

(
λ(l) ln

x
(l)
2

x
(l)
1

+ δ
(l)
3 ln

x
(l)
2

x
(l)
3

+ · · ·+ δ
(l)
D ln

x
(l)
2

x
(l)
D

)
,

where N
(l)
1 , N

(l)
3 , N

(l)
4 > 0, and N2

D→∞−−−→ 1/2 are normalizing constants and

λ(l) > 0, ψ
(l)
3 , . . . , ψ

(l)
D , δ(l)3 , . . . , δ

(l)
D are weights, all explicitly de�ned in Kyn£lová

et al. (2017) and Hron et al. (2021b) together with the strategies to complete

the olr coordinate systems sz(l) and sw(l), respectively. The need for the symme-
trical property of logratio coordinates arises from essentially bivariate statistical

methods such as correlation analysis (see e.g., the toy example in Table 1 of

Chapter 2) and negative correlation bias of clr coe�cients.

2.3 Compositional tables

A considerable amount of practical data sets, such as in econometrics (Fa-

£evicová et al., 2014, 2016), biology (Herder et al., 2008; Dickhaus et al., 2012),

or sociology (Egozcue et al., 2008; Ortego and Egozcue, 2016), consist of ob-

servations carrying intrinsically relative information about the distribution ac-

cording to two factors (i.e., two random variables in case of distributional data).

From a mathematical perspective, this leads to a two-factorial extension of vec-

tor CoDa (Aitchison, 1986; Pawlowsky-Glahn et al., 2015) carrying information

about a relationship between and within these (row and column) factors.

25



Such a structure, called a compositional table x,

x =

(
x11 · · · x1J
... . . . ...
xI1 · · · xIJ

)
, xij > 0, i = 1, . . . , I, j = 1, . . . , J, (12)

thus can be represented, e.g., either as a contingency table (with su�ciently high

numbers of counts in the cells) or as a table of the same order with maximum

likelihood estimates of the respective probabilities � due to scale invariance, the

relative information (contained in the ratios between the cells) is the same in both

cases (Egozcue et al., 2008, 2015). Hence, the concept of compositional tables co-

vers both the discrete case of contingency tables and its continuous counterpart

(e.g., input-output tables in Fa£evicová et al. (2014)). Nevertheless, in the com-

positional context, a particular table represents usually just one realization in
a sample from a multivariate continuous distribution. Due to the decision to
treat such two-factor data compositionally, the possible order of the factor ca-

tegories (for example age or education levels) is ignored, making this a relevant

subject for future research.

Since compositional tables form a direct extension of vector CoDa, all the
principles and operations introduced in Chapter 2 apply, up to some minor mo-

di�cations due to the two-factorial (row and column) structure of the tables.

Accordingly, the closure operation

C(x) =




κx11∑
i,j xij

· · · κx1J∑
i,j xij

... . . . ...
κxI1∑
i,j xij

· · · κxIJ∑
i,j xij




is used to represent a compositional table x in an IJ-part simplex SIJ of vec-

torized tables vec(x) = (x11, . . . , xI1, . . . , xIJ). Perturbation, powering (1), and

the Aitchison inner product (2) of two tables x, y and a real number α can be

de�ned analogously (Egozcue et al., 2008, 2015),

x⊕ y =

(
x11y11 · · · x1Jy1J

... . . . ...
xI1yI1 · · · xIJyIJ

)
, α⊙ x =

(xα11 · · · xα1J... . . . ...
xαI1 · · · xαIJ

)
,

⟨x,y⟩A =
1

2IJ

∑

i,j

∑

k,l

ln
xij
xkl

ln
yij
ykl
,
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while the Aitchison norm and distance are obtained in the same way as in (3).

It is straightforward to derive that the dimension of the simplex SIJ is IJ − 1,

corresponding to the dimensionality of (I × J)-compositional tables.

Permutation invariance and subcompositional coherence are valid with re-
spect to the two factors of the compositional tables, allowing to permute and
discard entire rows or columns only.

To analyze compositional tables, it is bene�cial to work also with the so-
called independence and interaction tables where their separate analysis can be
advantageous for further interpretation concerning both factors and their relation-
ships. These independent and interactive parts can be obtained from the original

table (12) through an orthogonal decomposition (Egozcue et al., 2008)

x = xind ⊕ xint. (13)

Here, the independence table is constructed to extract all the relative information
about row and column factors under the assumption that the original composi-
tional table is a product of its row and column geometric marginals, and the
interaction table contains information about the relationships between the row
and column factors. Therefore, in case of actual independence in the data at hand

(in the above sense but also in the standard probabilistic sense), all the entries

of the interaction table are the same, since there is no remaining information
left in the data after the construction of the independence table; the interaction
table thus forms a neutral element with respect to the Aitchison geometry of
compositional tables. Otherwise, the interactive part describes the nature of the
deviation from an independent situation.

It turns out that the introduced decomposition can be easily derived from
row and column projections of the compositional table onto marginal subspaces

(for further details, see Egozcue et al. (2008)),

row⊥(x) =



g(x11, . . . , x1J) · · · g(x11, . . . , x1J)

· · · · · · · · ·
g(xI1, . . . , xIJ) · · · g(xI1, . . . , xIJ)


 ,

27



col⊥(x) =



g(x11, . . . , xI1)

... g(x1J , . . . , xIJ)
...

...
...

g(x11, . . . , xI1)
... g(x1J , . . . , xIJ)


 ,

where g(.) denotes the geometric mean of the cells in the argument and ⊥ stands

for orthogonality of the projections.

Recalling the case of independence in probability tables, it is instant to
get the independence table simply by perturbing both these projections, xind =

row⊥(x)⊕col⊥(x). From (13) it follows that the interaction table is just a decom-

position remainder in xint = x ⊖ xind. For practical calculations, the following
formulas are used to obtain the single entries of these tables,

xindij =

(
I∏

k=1

J∏

l=1

xkjxil

) 1
IJ

∝
(

I∏

k=1

xkj

) 1
I
(

J∏

l=1

xil

) 1
J

,

xintij =

(
I∏

k=1

J∏

l=1

xij
xkjxil

) 1
IJ

. (14)

It is crucial to realize that the dimensions of xind and xint lower to I+J−2 for the
independence tables, which follows immediately from the dimensions of the row

and column projections being, respectively, I−1 and J−1, and to (I−1)(J−1)

for the interaction tables, which is easily obtained from the orthogonality of the
decomposition.

Hence, similarly to vector CoDa, an appropriate real coordinate represen-
tation of compositional tables, which in addition follows the decomposition into
independent and interactive parts, needs to be established with respect to the

the sample space dimensionality and the Aitchison geometry (Fa£evicová et al.,

2016).

In case of compositional tables (and particularly their decomposed parts),

a generalization of balance coordinates needs to consider two SBPs according

to each factor (Fa£evicová et al., 2018). However, even for moderate numbers of

rows and columns, the interpretation of such coordinate representation gets rather
complex without a deeper expert knowledge. Therefore, only a two-factorial al-

ternative to pivot coordinates is appealing for practice (Fa£evicová et al., 2016,
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2018).

Generally, there are three types of OPCs corresponding to the row, column

and �odds ratio� partitioning of the compositional table (Fa£evicová et al., 2016).

The �rst two types jointly form a coordinate representation of the independence
table, the third one is used for the interaction table. Altogether, they provide
a coordinate representation of the original compositional table. In case of row
and column types of coordinates, the entire �rst row or column, respectively,
is taken as the pivoting element and separated from the rest. In the next step,
this pivot is not considered anymore and the following row or column is taken

as the new (reduced) pivoting element, and so on, until the following I + J − 2

coordinates are obtained,

zri =

√
(I − i)J

1 + I − i
ln

g(xi•)

[g(xi+1•), . . . , g(xI•)]1/(I−i)
, i = 1, . . . , I − 1,

zcj =

√
I(J − j)

1 + J − j
ln

g(x•j)

[g(x•j+1), . . . , g(x•J)]1/(J−j)
, j = 1, . . . , J − 1, (15)

where g(xi•) and g(x•j) stand for the geometric mean of the i-th row and j-th

column, respectively.

The process of obtaining the remaining (I − 1)(J − 1) coordinates is based

on a division of the original compositional table into four blocks, say upper left
A, upper right B, lower left C and lower right D, where A contains always just

one (pivot) cell indexed by rs. The odds ratio interpretation should be now easily

seen from the following formula, where the elements of blocks A and D are in
the numerator, and the elements of blocks B and C in the denominator of the
logratio,

zOR
rs =

√
1

(I − r)(J − s)(I − r + 1)(J − s+ 1)
ln

I∏

i=r+1

J∏

j=s+1

xijxrs
xisxrj

. (16)

To obtain all OPCs of the odds ratio type in a proper order corresponding to the

zr and zc coordinates (15), the position of the pivoting cell is moving �rstly by

rows with �xed �rst column, r = 1, . . . , I − 1, then by columns with �xed last
row, s = 1, . . . , J−1, and afterward the row position is always leveled back down
by one and the column position moves again from 1 to J − 1 for the given row
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until all sizes of the r × s table are covered.

Finally, permutations of the entire rows or columns following the same prin-
ciple as stated in Chapter 2.2 could be performed. Hereby for all combinations

of rows and columns, di�erent OPC systems consisting of zr(k)i , zc(l)j and zOR(kl)
rs ,

where (kl), k = 1, . . . , I, l = 1, . . . , J, de�nes row and column permuted to the

pivoting position within the whole table, would be gained (Fa£evicová et al.,

2016).
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3 Bayesian multiple hypotheses testing

in compositional analysis of untargeted

metabolomic data

Targeted as well as untargeted metabolomic analyses of clinical samples form
a promising way to discover new biomarkers allowing better prediction of some
diseases. Application of both basic univariate and advanced multivariate statisti-
cal methods is a necessary part of all metabolomic experiments aiming to �nd the
most discriminating metabolites between groups of healthy and ill people. After
pre-processing the raw untargeted or targeted metabolomic data, respectively,
into uniquely characterized features or metabolites, respectively, the di�erences
between patients and controls are often evaluated using t-test or, assuming nor-
mality of metabolites is rejected in many cases, its nonparametric alternative
� Wilcoxon rank-sum test. The results from multiple testing are compared me-
rely by p-values and fold-changes using a so-called volcano plot. Nevertheless,
this approach su�ers from the usual frequentist problems, speci�cally, the high-
dimensional character of metabolomic data induces that the multiple simultane-

ous testing (when used in the correct way, i.e., with p-value corrections) is too

strict and tends to produce false negative outputs.

This chapter aims to provide a Bayesian counterpart to the traditional

(frequentist) approach. Generally, the methods of Bayesian inference modify prior

probabilities of all possible hypotheses or parameter values based on the evidence

in the data, until a posterior distribution is obtained (Kruschke, 2014; Gelman

et al., 2013). Given �xed parameters, Bayesian t-test assumes t-distributed vari-

ables which, since t-distribution is characterized by heavier tails than the normal

distribution, results in a robust method in the Bayesian context (Kruschke, 2013).

Moreover, it is not needed to consider p-value corrections in Bayesian statistics
when running more tests simultaneously since decisions are not based on p-values;

Bayesian inference rather relies on the properties of posterior distributions (Gel-

man et al., 2013; Kruschke and Liddell, 2018). To compare results from multiple

hypotheses testing of metabolites and evaluate biomarker candidates, a volcano-
like graph using means of posterior distributions together with more sophisticated

information provided by the entire posteriors (called b-values) is proposed here.

Finally, we suggest incorporating distance levels of the posterior highest density
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intervals from zero as an additional feature into the Bayesian version of the vol-
cano plot.

Since a metabolome in an arbitrary biological material can be seen as a com-

plex collection made of ample amount of small molecules (i.e., metabolites), it is

rather straightforward to see metabolomic data as compositional in their nature.
Also, given that a mass spectrometric response to individual metabolites di�ers
based on their diverse physicochemical properties, signals measured in a metabo-
lomic experiment do not re�ect actual concentrations of metabolites. The molar
quanti�cation is di�cult, laborious, time consuming, and rarely done in current
metabolomic experiments since it requires appropriate calibration together with
use of suitable internal standards for all metabolites. Hence, the relevant infor-
mation in metabolomic data is naturally contained not in absolute levels but in

ratios/parts of the whole, although the output is anticipated to be interpretable in

sense of (groups of) the original metabolites. That is why their analysis needs to

be based on the relative structure rather than on absolute values of mass spectro-
metric measurements even in case of PQN, which have become one of traditio-

nal competitors of logratio techniques in omics context (Filzmoser and Walczak,

2014), or other normalizations. The logratio methodology for CoDa introduced

in Chapter 2 should be, therefore, an essential step in any statistical treatment

of such data including Bayesian analysis. Given the linear transformation (7) be-

tween olr coordinates and clr coe�cients which gets reduced to the relation (9)

for the univariate case, it is su�cient to work with the clr representation of the
data in what follows, bearing the respective �rst OPC in mind instead. Although
like in many omics data analyses, also here the interpretability of clr coe�cients
is satisfactory, the above described mental step leading to pivot coordinates is
still needed as univariate analysis with clr coe�cients is otherwise inappropriate
due to their zero-sum constraint which distorts the covariance structure.

Restrictions of both t-test and its nonparametric version in a multiple hy-
potheses testing, as well as the limited information they provide, are reminisced

in Chapter 3.1. In Chapter 3.2, a Bayesian counterpart to a (non)parametric

t-test and its evaluation in the case of multiple testing are provided. Theoretical
developments are illustrated in Chapter 3.3 on real data analyses comparing, re-
spectively, plasma samples and dry blood spots of healthy controls and patients
su�ering from inherited metabolic disorders of 3-hydroxy-3-methylglutaryl-CoA
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lyase de�ciency (HMGCLD) and medium-chain acyl-CoA dehydrogenase de�ci-

ency (MCADD). Lastly, two simulations designed to mimic a loss of samples and

a systematical measurement error are used to compare the performance of the
traditional methods with the newly proposed approach in Chapter 3.4.

3.1 Limitations of traditional hypothesis testing

Prior to the introduction of the Bayesian approach to hypothesis testing, the
procedure of the frequentist approach is recalled, i.e., the case of a parametric
two-sample t-test. The null hypothesis suggests that there is no di�erence between
central tendencies of two compared groups, whose observations are described by
normal distributions with parameters µ1, σ1, and µ2, σ2, respectively. A p-value of
such a test is a probability to, assuming the null hypothesis is true, obtain the data
we have or even more extreme results towards the alternative hypothesis. If this
probability is very low, it suggests that the observations are in contradiction with
the null hypothesis and therefore the hypothesis should be rejected in favor of the
alternative; there is a statistically signi�cant di�erence between the groups. The
threshold of a p-value for rejection is usually set to a signi�cance level α = 0.05.

Running more tests simultaneously (under the assumption of indepen-

dence), say D t-tests for D measured metabolites, results in an unacceptable

(1 − (1 − α)D) · 100% probability of getting at least one false positive result

and, therefore, the signi�cance level needs to be appropriately lowered. There is
a number of approaches to do so; a well-known concept is a simple Bonferroni

correction, setting α = 0.05/D for each of the multiple comparisons. However,

with increasing D this results in a close-to-zero signi�cance level and the Bon-
ferroni correction becomes useless because it tends to produce false negative re-
sults; the procedure is not able to detect true biomarkers. Furthermore, in the
case of nonparametric testing, i.e., when using the well-known Wilcoxon rank-
sum test, the newly set signi�cance level might not be even feasible to overcome.
Thus it might be impossible to reject the null hypothesis if only a small number
of observations was available; this is anyway a frequent case in metabolomics of
rare diseases. A less conservative way, appropriate in particular when dealing with
high-dimensional data, is to use some corrections derived from a so-called false

discovery rate (FDR), e.g., Benjamini-Hochberg (Benjamini and Hochberg, 1995)

33



or Benjamini-Yekutieli corrections (Benjamini and Yekutieli, 2001). FDR-based

corrections, which are frequently used in the last years, weaken the negative ef-
fects of the crude Bonferroni correction but are not fully able to overcome them

(i.e., corrected p-values still may not exceed the signi�cance level in case of hun-

dreds of metabolites). Unfortunately, even today numerous publications build the

�nal conclusions only on completely uncorrected results of multiple tests despite

the opposite general consensus published in Wasserstein and Lazar (2016).

In addition, (parametric) t-tests are not designed to handle outliers which

can easily occur in metabolomic analysis and lead to a distortion of classical sta-
tistical procedures including hypothesis testing. Their robust counterparts exist
but may become numerically unstable with small sample sizes which are typi-
cal for metabolomic data of rare diseases. Hence it is an advantage of Bayesian
counterpart to a t-test, introduced in the next chapter, to be a �naturally robust
method� due to a proper choice of the prior distribution. In compositional data,
moreover, the outlying observations are characterized by deviating logratios, while

in standard data sets the same is caused by deviating (absolute) values of the

original components. This needs to be taken into account when clr coe�cients or
OPCs are processed.

Another problem raising from performing multiple t-tests is the absence of
a statistically sound decision criterion for an order of the results according to

the magnitude of di�erences between the tested groups (e.g., some criterion orde-

ring the metabolites in consonance with the importance of di�erences separating

patients and healthy controls) and, consequently, identifying the possible bio-

markers. Although p-values are still too frequently misinterpreted as a tool for
doing so, they do not provide any means of comparability among the rejected

hypotheses (Wasserstein and Lazar, 2016). That is why the choice of potential

biomarkers should never be done only based on p-values arrangement. On the

other hand, volcano plot (Cui and Churchill, 2003; Li, 2012), which is a type

of a scatter plot used to identify signi�cant changes in large data sets (Fig. 2),

already grants a certain way to compare the results of multiple tests thanks to

its double-�ltering (i.e., by an e�ect size and a statistical signi�cance). Volcano

plot is usually depicting a log2 fold change of means (medians) of the two groups

on x-axis and a − log10 of the t-test (Wilcoxon rank-sum test, ANOVA) p-values

on y-axis for every metabolite. Size of the negative logarithm of p-value tends
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to increase with an absolute value of the logarithm of the fold change (Cui and

Churchill, 2003) and thus all the points in this graph form a �V� shape while

potential biomarkers can be found in both upper corners (on one side for healthy

controls and on the other one for patients). Yet, the decision based on a volcano

graph is to a large extent subjective as there is no general consensus regarding the

interpretation of the plot (i.e., importance of the axes and their thresholds) (Li,

2012). We suggest here a Bayesian counterpart that will not su�er from this

limitation.
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Figure 2: An example of a traditional volcano plot with an e�ect size ex-
pressed by log2(fold-change) on x-axis and a statistical signi�cance given as
−log10(p-value) on y-axis. Variables depicted in blue are evaluated as signi�-
cant by employing the most frequent thresholds, abs(log2(fold-change)) = 1 and
p-value = (Bonferroni-corrected α), which are highlighted in orange.

3.2 Bayesian counterpart to a t-test

Methods of Bayesian inference basically reallocate some prior credibility
across the space of all possible hypotheses or values of parameters consistently

with the data evidence (Kruschke, 2014; Gelman et al., 2013). For the con-

struction of the Bayesian counterpart to the t-test, several steps are needed.

First, as mentioned above, classical t-test assumes a normal distribution
of each of the two samples. The normal distribution has light tails and, con-
sequently, it is not appropriate for a description of any data containing outliers.
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Here, t-distribution seems to be more convenient because it can be much hea-
vier tailed, depending on degrees of freedom ν. Higher the value of ν is, closer
the tails are to those of the normal distribution which is also why ν is called

a normality parameter in Bayesian statistics (Kruschke, 2013). It turns out that

t-distribution is a suitable choice also for the logratio representation (speci�cally

clr coe�cients as a workhorse for OPCs) of metabolomic data. Please note that

the original measurements (strictly positive data) could hardly be characterized

by a t-distribution whose domain is the whole real line. In Bayesian t-test, each
of the two groups of samples, i.e., clr represented patients and controls, has its
own mean µpat and µcon, respectively, whose di�erence is of the main interest,

and its own standard deviation σpat and σcon. The normality parameter is shared

by both groups (Kruschke, 2013). To make a quali�ed decision about the null hy-

pothesis stating no di�erence in means among the tested samples, all �ve model
parameters need to be inferred.

When choosing prior distributions of the parameters, it is always bene�cial to

have at least some knowledge about the behavior of the variables (and therefore

the parameters), i.e., central tendencies in groups of controls and patients for

mass to charge ratios (m/z) of all metabolites, because the initial belief should

be ideally re�ected in the choice of priors. Conversely, when there are no relevant
historical data or expert assumptions, it is generally advised to select as vague
priors as possible, named non-informative priors, to allow already a moderate
amount of data to de�ect the original setting into the direction driven by the

evidence (Kruschke, 2014). Additionally, the usage of non-informative priors is

supported by utilization of so-called credible sets (Thulin, 2014) which will be

de�ned later. Here, the case of vague priors allowing for their reduced importance
during the inference is almost inevitable to follow as in untargeted metabolomics
it is prevailing not to have any well-founded prior knowledge for a vast majority
of the measured features.

In line with the previous thoughts, priors of the mean value parameters

are taken as normally distributed, µ• ∼ N (x•, 10002s2•), where x• and s2• are

group sample means and variances from the clr representation of the data at
hand with • denoting the group of patients and controls, respectively. In accor-
dance with the non-informative priors philosophy, they are scaled relative to
the observations and wide enough not to be con�ning. The initiatory distri-
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bution of the standard deviation is assumed to be uniform on a large enough

interval, σ• ∼ U(1/1000s•, 1000s•), and �nally, the prior of the shared pa-

rameter ν is exponential with expectation equal to 30 to accommodate the
initial credibility evenly between light-tailed data and data with outliers, i.e.,

ν − 1 ∼ Exp(1/29) (Kruschke, 2013).

Once the prior assumptions are assigned, the distributions of parameters
µ•, σ•, and ν can be continuously modi�ed with gradually coming observations
in terms of conditional �probabilities� of these data X, given the values of the

parameters (likelihood). Eventually, this process of credibility reallocation leads

towards the posterior distribution. The inference is driven by the Bayes' rule

stating the posterior to be proportional (up to an integration constant) to the

likelihood times prior,

f(µpat, σpat, µcon, σcon, ν|X) ∝ f(X|µpat, σpat, µcon, σcon, ν)

× f(µpat, σpat, µcon, σcon, ν), (17)

where the joint prior distribution density f(µpat, σpat, µcon, σcon, ν) can be, assu-

ming independent parameters, rewritten as a product of marginal densities of
the single parameters. This assumption permits to take the posterior density
simply as a product of prior parameter distribution densities, and t-distributed
probability density re�ecting the data evidence, making this an important step
simplifying the computations.

In practice, posterior density is numerically approximated by a class of Mar-

kov chain Monte Carlo methods (MCMC) (Gelman et al., 2013) which generates

samples from the (non-normalized) posteriors (17),
〈
µj
pat, σ

j
pat, µ

j
con, σ

j
con, ν

j
〉
, j = 1, . . . , N, N large,

corresponding to both the data and the priors. The only disadvantage of this ap-
proach is a possible presence of autocorrelations in the generated sample since for

each j, k = 1, . . . , N, k ̸= j, the parameter combinations
〈
µj
pat, σ

j
pat, µ

j
con, σ

j
con, ν

j
〉

and
〈
µk
pat, σ

k
pat, µ

k
con, σ

k
con, ν

k
〉
are no longer independent. Thankfully, it can be

observed that for a long enough MCMC sample, say N = 100,000, the autocorre-
lation is e�ectively lowered just by the chosen chain length and the estimation of

the posterior distribution remains credible (Kruschke, 2014).
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The �nal decision concerning the null hypothesis is very intuitive in Bayesian

hypothesis testing with the use of credible sets (Thulin, 2014), for example highest

density interval (HDI), which can be formally de�ned by the following inequality

P(µpat − µcon ∈ ΘHDI|X) ≥ 1− α, (18)

is constructed to contain 95 % of the most frequented posterior values ΘHDI. Since
the resulting MCMC chain of di�erences between means of clr representation of
both original groups of samples can be plotted into a histogram, it may easily be
computed where those ΘHDI values are allocated. If this interval does not contain
zero, the hypothesis about equality of parameters µpat and µcon is rejected and

the posterior distributions are accepted to be signi�cantly di�erent. Moreover, as
can be seen in Fig. 3, the sign of the majority of HDI values further reveals the
direction of this di�erence.

In the same manner as (18), HDI can be constructed also for the di�erence

Figure 3: Examples of null hypotheses rejection based on highest density inter-
vals (HDI) where MPDs stand for means of posterior distributions. Di�erences
between Monte Carlo Markov Chain generated posteriors of µpat and µcon are
depicted in blue, where their respective parts in negative and positive values
are given by the percentages in red. In both examples, there is strong evidence
against the equality of means of the clr represented groups and thus biomarker
candidates are detected. On the left, the signi�cant di�erence is caused by unex-
pectedly high levels of the metabolite in a group of patients with respect to an
average behavior of the whole metabolome; on the right, the opposite tendencies
with a relatively high concentration of the depicted metabolite in a metabolome
of healthy controls can be observed.
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of standard deviations σpat − σcon instead of central parameters, which produces

a very similar output (up to the type of the probability distribution) as in Fig. 3,

allowing for a further Bayesian analysis of variance.

An interesting property of the Bayesian t-test is that the null hypothesis
can be also accepted. To do so, a concept of a region of practical equivalence

(ROPE) (Kruschke, 2013) needs to be introduced. Researchers might specify an

interval of values being interchangeable with zero for all practical purposes. For
example, the di�erence of 0.5 between groups of patients and controls for a certain
metabolite can be determined to be equivalent with no di�erence at all due to

some measurement tolerance. Then it is natural to set the ROPE = [−0.5, 0.5]

for such a metabolite. Every time HDI of the posterior distribution happens to
be located entirely inside its ROPE and to contain the zero value at the same
time, it is a strong enough evidence for accepting the null hypothesis. However,
this particularity is impossible to achieve with small ROPE and a small number
of observations at the same time, or in other words in untargeted metabolomics
of rare diseases.

3.2.1 Multiple Bayesian hypotheses testing

While it was quite immediate, how a decision is made in a single Bayesian
t-test, multiple testing complicates the situation a bit. Naturally, except for the
hypotheses rejection, we also seek some importance order of metabolites based on
the results of the analysis. This can be done simply according to means of poste-

rior distribution (MPD) criterion which is a mean of a di�erence of posteriors of

given parameters µpat, µcon. However, it would lead to a serious loss of information

if the complex posterior distribution was reduced just to its MPD value. In addi-
tion, empirical probabilities that the di�erences in µpat and µcon would have an

opposite sign than indicated by posterior distributions can be considered. Even
though it is inappropriate to sort the metabolites using just p-values obtained
from classical t-tests, some ordering based on the above-mentioned probabilities,
which we suggest to call b-values, can be performed. Formally, we propose to
de�ne

b -value = min {P(µpat − µcon > 0),P(µpat − µcon < 0)} , (19)
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where the probabilities are computed from the MCMC posterior distribution. The
idea of b-values comes from the concept of discrepancies for posterior predictive

assessment of model �tness described in Gelman et al. (1996). Here, instead of

judging the �t of some model to the analyzed data, compatibility with the null
hypothesis is evaluated by a b-value.

An analogous procedure was proposed to quantify the evidence against the
rejected hypothesis when computing the largest credible set which does not con-
tain those values of the tested parameter θ that are valid just under the as-
sumption of the null hypothesis; say credible set ΘT without values θ0. Then
a probability

P(θ /∈ ΘT |X) = αmin, (20)

where αmin is the smallest α ensuring that the credible set ΘT does not contain
θ0, has a very similar meaning to the p-value from a traditional t-test whilst

considering the entire posterior distribution, in particular also its tails (De Bra-

gança Pereira and Stern, 1999; Thulin, 2014). The above-suggested b-value (19)

could be seen as a certain variation to the idea described by the expression (20),

using the smaller part of HDI divided into two intervals by θ0 = µpat − µcon = 0

as an empirical probability of a realization of the posterior on the other side of
the zero value.

The b-values are hardly computable when the data from both groups are
strongly discriminated. As a consequence, the posterior distributions obtai-
ned from the di�erence of central tendencies of both groups of samples, i.e.,
µpat − µcon, are far from zero. They can be even so far from zero that the empiri-

cal probabilities of them having opposite signs naturally equal zero (as is also the

case of both the examples given in Fig. 3), which may happen for a considera-

ble number of metabolites. Recall that the posterior distributions are acquired by
MCMC and as such, the tails are cut at a certain point. Since this can often occur

when dealing with real metabolomic data sets (see Chapter 3.3.2), b-values might

be alternatively computed using a �tted theoretical distribution to the posterior
histograms.

Although a di�erence of two or more t-distributed probability density functi-

ons (pdf) is generally a Behrens-Fisher pdf (i.e., a linear combination of Student's

pdf with coe�cients formed by sine and cosine of a certain constant which is re-
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�ecting di�erent population variances), it can be approximated under reasonable

conditions by a t-distribution (Patil, 1965; Davis and Scott, 1973). This is also the

case of the Bayesian t-test posteriors and so we propose a pooled t-distribution
to be �tted on the posterior di�erence of µpat − µcon resulting from each of the

multiple tests. Due to the tails of this �t going already to the in�nity as opposed
to the MCMC result, required b-values are no longer of a zero value albeit they

can be fairly small. Subsequently, a version of b-values (empirical or t-distributed

pdf�based) which can be used to order the metabolites according to their ability

for discrimination is always available.

Both MPD values and b-values are at disposal for the �nal choice of potential
biomarkers from all original metabolites. At this point, some kind of a Bayesian
version of the volcano plot may be just the convenient tool for a graphic represen-
tation of the results from multiple hypotheses testing, depicting the MPD values
on x-axis and −log10 of the b-values on y-axis. Nonetheless, it still remains to

a subjective decision which axis should contribute more to the �nal decision; it
is advisable to consider both statistical and metabolomic background. Generally,
whenever the variances of posteriors tend to signi�cantly di�er among metabo-

lites (e.g., in the analysis of cells), we suggest to rather rely on MPD criterion

since the in�uence of the variance �uctuation a�ecting the b-values could be even
more in�ated by the logarithm. In other cases, given some variance stability, the
complex information of posterior distributions re�ected on the y-axis is favorable.

Another advantage of the Bayesian approach can be seen in the possibility
to combine the information from both volcano graph axes, making the interpre-
tation of the plot more straightforward. Whilst there have been recently similar

attempts in case of the traditional volcano plot (e.g., in Kumar et al. (2018)) and

the �eld can still be explored more in the future, we suggest a very straightfor-
ward idea for the Bayesian counterpart. As was explained in the �rst part of this

chapter, the decision about a single metabolite (in terms of its clr representation)

is made through HDI (not) containing the µpat − µcon = 0 value, under the ini-

tial (prior) assumption that the null hypothesis is valid. One could then explore

this behavior further and, for those hypotheses that are rejected in the previous

step, take the distance of the lower or upper HDI boundary from zero (whichever

is in a closer proximity) akin to the measure of evidence against the presumed

equality of central behavior of the two groups of samples. The biomarker candi-
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dates could then be ordered in accord with these distances of HDI from zero. The
information on HDI distance levels is easy to incorporate to the �nal version of
the Bayesian volcano plot in a form of colored zones. The shape of the individual
HDI levels, which can be seen in Fig. 4 and Fig. 6, indeed con�rms that the idea
of the distance levels merges both aforementioned criteria for double-�ltering of
biomarkers.

3.3 Analysis of rare inherited metabolic disorders

Rare diseases are according to the European Medicines Agency (EMA) de-

�ned as medical conditions appearing in less than 5 cases per 10, 000. There are
over 1, 000 of such conditions varying in incidence where some of them are ex-

tremely rare (a few patients only described in the literature). Two rare inherited

metabolic disorders were analyzed here; organic aciduria caused by a de�ciency
of enzyme in leucine metabolism � HMGCLD, and a disorder in beta oxidation of
fatty acid metabolism � MCADD. While MCADD is one of the most frequent rare

diseases (with the incidence of 1 : 14, 600 (Rhead, 2006)) and it is globally part of

the newborn screening, HMGCLD has on the other hand incidence more typical

for the rare diseases (less than 1 : 100, 000 (Pié et al., 2007)) and is currently

impossible to screen in majority of the countries worldwide. Therefore, HMGCLD
represents the type of high-dimensional data that metabolomic experts on rare
diseases often have to deal with and so it could conceivably show whether the
results of Bayesian multiple hypotheses testing remain valid for a statistically
problematic low number of samples. The MCADD data set, on the other hand,
provides an opportunity to run at least some small simulations to ensure bet-
ter comparison of the proposed method with the traditional approach than if
evaluated just on the real data analysis itself.

3.3.1 3-Hydroxy-3-methylglutaryl-CoA lyase de�ciency

The HMGCLD data set is a result of a recent untargeted metabolomic

study (Václavík et al., 2020) performed on plasma samples of 5 patients in a range

of 4 days to 8 years of age and 21 age-matched controls. The samples were ana-
lyzed by reverse-phase liquid chromatography coupled to orbital ion-trap high-

resolution mass spectrometry in positive mode in the range of m/z 90 - 1,000.
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Figure 4: Bayesian volcano plot with colored HDI distance levels for the
HMGCLD data set. The dark red points stand for the insigni�cant compounds
where the null hypotheses about equality of the parameters µpat and µcon were
not rejected. The potential biomarkers are depicted in blue-green colors, located
in the upper right corner for patients and in the upper left corner for controls,
respectively. Metabolites with m/z of 290.1598 and 262.1649 represent previously
published biomarkers of the disease.
∗ � no metabolites detected in these HDI zones

Peak-picking was conducted with Compound Discoverer 3.0 including peak area
integration, gap-�lling and retention time alignment. Based on the previous steps,

a table with metabolomic features (characterized by unique m/z and retention

time) and corresponding peak areas of these features in all samples (relative

quantitative data) was generated. Peak-picking was followed by removal of ad-

ducts, isotopes and ion source fragments applying correlation networks (Kou°il

et al., 2020). Afterward, the data were pre-processed in R software (R Core Team,

2022) using a package Metabol (Gardlo et al., 2019). Employing calculations from

quality control samples, locally estimated smoothing signal (LOESS) correction

was applied (Sumner et al., 2007) and features with a coe�cient of variation

higher than 30% were excluded from following data curation. The total amount
of unique metabolites after data processing and �ltering was 808. The data were
then expressed in clr coe�cients for further statistical analysis.

There are two previously known diagnostically signi�cant plasma metabolites
of HMGCLD, 3-hydroxyisovalerylcarnitine and 3-methylglutarylcarnitine with
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Figure 5: Traditional volcano plot with Bonferroni corrected level of signi�-
cance resulting from parametric t-test for the clr represented HMGCLD data set.
Variables depicted in blue with labels are evaluated as signi�cant by employ-
ing the most frequent thresholds, abs(di�erence of means) = 1 and p-value =
(Bonferroni-corrected α), which are highlighted in orange.

m/z of 262.1649 and 290.1598 (Santarelli et al., 2013). However, by applying the

traditional parametric univariate analysis (i.e., parametric t-test) and the double-

�ltering in a volcano plot, only the second biomarker was identi�ed among signi-

�cant metabolites (Fig. 5). This might be connected to the crucially low number

of patients for the analysis involving such a big amount of variables in addition to
the fact that the feature 262.1649 was evaluated as important by the logarithm
of fold change, however, it did not pass the Bonferroni correction. With this re-
sult at hand, the biochemist could easily miss an important biomarker, focusing

instead on a group of other (possibly biologically non-signi�cant) metabolites in

further steps of the multivariate analysis and feature identi�cation.

When employing the Bayesian approach to the data analysis, both these
biomarkers were readily found in the biggest HDI distance levels whilst the com-

pound with m/z = 290.1598 was identi�ed even as the most signi�cant one of

the entire graph (Fig. 4). The other metabolites featuring in the �ve highest HDI

levels together with the discussed ones, namely 145.0495 and 303.2318 elevated in
patient samples, and 377.2685 elevated in controls, are also meaningful from the
biological point of view. Whilst the latter ones are a fatty acid and a monoacyl-
glycerol with a direct connection to pathobiochemistry of the disease, 145.0495
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is a novel plasma biomarker published in Václavík et al. (2020). It carries a po-

tential to eventually include HMGCLD in the newborn screening procedure. To
conclude, the proposed approach to the volcano plot construction proved to give
more accurate and meaningful results for the HMGCLD data in concordance with
the published research.

3.3.2 Medium-chain acyl-CoA dehydrogenase de�ciency

In a study published by Najdekr et al. (2015), 25 patient dry blood spots

and an equal number of control samples were analyzed by untargeted metabo-
lomics approach with reverse-phase liquid chromatography coupled to orbital
ion-trap high-resolution mass spectrometry in positive mode in the range of

m/z 70 − 1, 200. All experimental details are provided in the original article.

Data pre-processing was conducted in R software (R Core Team, 2022) with XCMS

(peak �nding, zero imputation; Smith et al. (2006); Tautenhahn et al. (2008);

Benton et al. (2010)) and CAMERA (isotopes and adducts removal; Kuhl et al.

(2011)) packages. Similarly to HMGCLD experiment, LOESS correction was ap-
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Figure 6: Bayesian volcano plot with HDI distance levels for the MCADD data
set. The dark red points stand for the insigni�cant compounds where the null
hypotheses about equality of the parameters µpat and µcon were not rejected. The
potential biomarkers are depicted in blue-green colors, located in the upper right
corner for patients and in the upper left corner for controls, respectively.
∗ � no metabolites detected in this HDI zone
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plied (Sumner et al., 2007) and features with a coe�cient of variation of quality

control samples higher than 30% were excluded from following data curation. The
resulting total amount of unique features was 273 where the low number is given
by the peak-picking method and by the limited size of dry blood spot samples

(analyzed sample corresponds to less than 2 µl of blood).

The analysis of HMGCLD has shown that the traditional and Bayesian ap-
proaches must not necessarily lead to similar results and provided some reasoning,
why the Bayesian t-test seems to be preferable. Therefore, for next data set, the

focus is on the Bayesian approach (Fig. 6; Table 2). Due to the nature of the

data, i.e., highly discriminated groups of patients and controls, the t-distributed
pdf�based b-values had to be used here. Interestingly, for the MCADD data,
solely the b-values provided quite similar results to those based on complex
multivariate analysis tools including an S-plot from the orthogonal partial le-

ast squares � discriminant analysis (Najdekr et al., 2015). The best biomarker

candidates identi�ed by b-values are shown in Table 2 (together with the out-

come yielded by MPD). Namely the four known biomarkers (octanoylcarnitine

with m/z = 288.2172, hexanoylcarnitine with m/z = 260.1859, decanoylcarni-

tine with m/z = 316.2484, and decenoylcarnitine with m/z = 314.2327) and

some oxidative lipids (PAzPC with m/z = 666.4354, PC(24:0(COOH)) with

m/z = 652.4194, and PC(23:0(COOH) with m/z = 638.4037) were identi�ed.

Table 2: Ten best biomarkers for patients su�ering from MCADD according to
MPD and b-value, respectively.

Markers according to m/z

MPD 260.1859 288.2172 610.3770 314.2327 652.4194
638.4037 596.3614 639.4089 666.4354 315.2361

b-value 288.2172 666.4354 791.5634 260.1859 316.2484
652.4194 772.5488 314.2327 829.6804 638.4037

For the �eld of rare metabolic diseases, the MCADD data set was processed
on a relatively high number of samples in two size-balanced groups. This allowed

to carry out simulations (at least up to a certain extent) by considering a loss of

samples and a systematic error during measurement. Both issues are discussed in
the Chapter 3.4.
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3.3.3 Practical aspects of analysis

From practical point of view, researcher should be aware that the proposed

method (i.e., compositional approach coupled with the Bayesian model) does

not improve the situation with zeros nor the non-linear behavior of analytes
above upper limit of quanti�cation and in this way it behaves the same as other
statistical tools commonly used for the purpose of metabolomic experiments.
Similarly to �standard� metabolomic approach, also here the initial raw data

should be pre-processed in order to deal with experimental drift (e.g., by LOESS)

and imputation of missing values.

There are generally two types of missing values that might occur in me-
tabolomic data, values under detection limit producing so called rounded zeros

and missing values in one statistical class resulting in left-censored data (e.g., for

a genetic knock out situation), respectively. In case any of these are present in

the measurements, they need to be handled before assigning the coordinate re-
presentation to the data. Several approaches to imputation of missing values and
rounded zeros in compositional data already exist, for details see e.g., Palarea-

Albaladejo and Martin-Fernandez (2015); Templ et al. (2016).

In biological samples di�ering widely in dilution (physiologically most do-

minantly observed in urine samples), ratio to a compound representing �concen-

tration� of urine by kidneys (e.g., creatinine) is used to make results clinically

comparable. In principle, creatinine could be seen as a substitute for total urinary

metabolic content (due to its stable production over time) and thus, the introdu-

ced tool seems to be analogous in such situations due to its compositional basis,

although it induces also some methodological caveats (the resulting coordinates

are oblique). Generally, clr coe�cients provide an elegant and due to isometry

with the Aitchison geometry also a theoretically reliable way to overcome the
problematics of normalization and scaling.

3.4 Simulations

Two simulations were performed to compare results of the proposed method
with traditional approaches in case of a loss of samples, where the analysis was
carried out on repeatedly randomly chosen half of the samples in both groups, and
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for a systematical error occurring during measurements. In the �rst simulation,
the Bayesian t-test was compared with the parametric t-test and the Wilcoxon
rank-sum test, whilst the latter simulation evaluated already just the Bayesian
method when using di�erent types of data normalization. Due to long compu-

tation time of a single run of the multiple hypotheses testing (approx. 4.5 hours

of parallel computing on a Windows 10 Home machine equipped with Intel Core

i5-7200U, 2.5GHz, 8GB RAM), both simulations were repeated just 20 times.

Since the proposed �nal evaluation by HDI distance intervals is not reasonably
comparable with the traditional methods and since for the MCADD data set the
b-values produced very good results just by themselves, we decided to use those
for the comparisons.

In each step of the simulation, top 20 candidates for biomarkers according to

b-value (or p-value for the traditional techniques) were chosen to be represented in

the �nal volcano plots. The �uctuation on both x- and y-axes was then captured
using boxplots. The aim of this procedure was to compare the stability of the
results for each particular method.

3.4.1 Loss of samples

Results of the �rst simulation are visualized in Fig. 7 and Fig. 8 with box-
plots displaying variation on y-axis and x-axis, respectively. Even though no
perspicuous di�erences are observed, the Bayesian approach �uctuates slightly
less with respect to both axes than the traditional parametric approach. For
Wilcoxon rank-sum tests, which may seem more stable regarding the y-axis, the
results are given by the range of possible p-values; in general, the problem is the
same as in the case of t-tests. What is maybe even more important than the
�uctuations, the Bayesian approach identi�es less di�erent biomarker candidates

during distinct simulation steps (chemically unknown compounds with m/z of

e.g., 364.2645, 677.5589, 524.3714, 785.6532, and 812.5479 were identi�ed only

by the traditional approaches). Overall, it can be concluded that the Bayesian

volcano plot is potentially able to preserve more stable results in a situation when
some samples are lost, e.g., due to contamination of biological samples.
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Figure 7: The �uctuation on y-axis during the simulation of loss of samples.
Only the candidates that were included among the top 20 candidates at least
once (i.e., in one run of the simulation) are depicted in the �gure with their total
counts in the left upper corners of the graphs. The results from the Bayesian
t-test, parametric t-test, and Wilcoxon rank-sum test, respectively, are plotted
on the top, in the middle, and at the bottom of the �gure, respectively. The four
known biomarkers of the disease are shown in red. For the traditional approaches,
signi�cance thresholds are depicted by dotted lines.
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Figure 8: The �uctuation on x-axis during the simulation of loss of samples.
Only the candidates that were included among the top 20 candidates at least
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3.4.2 Systematic error during measurement

The second simulation was constructed to mimic for all sources of technical
errors during measurement which are not possible to treat by running quality
control samples in order to show the importance of considering a proper data

transformation and (or) normalization. In each step of the simulation, the analysis

was conducted on samples with a randomly chosen 10 to 30 percent increment.
In detail, the original samples were randomly multiplied by 1.1 to 1.3 to re�ect
technical variability of the measurement, e.g., unstable injection of the samples.

The performance of the Bayesian method accompanied by clr coe�cients was
compared with the results based on other popular data representations, namely

probabilistic quotient normalization (PQN) (Dieterle et al., 2006) and a simple

transformation by decadic logarithm. These transformations were applied as su-
ggested in the literature, namely the PQN without any further scaling which is

recommended for all univariate methods (Di Guida et al., 2016).

The importance of a particular choice of transformation respecting the rela-
tive nature of spectrometric measurements can be seen already in Fig. 9 where

Figure 9: Comparison of a compositional and non-compositional approach. Di-
�erences between MCMC generated posteriors of µpat and µcon are depicted in
blue, where their respective parts in negative and positive values are given by the
percentages in red. The results of the Bayesian t-test performed on absolute (only
pre-processed) values of the metabolite and on the relative values expressed in
clr coe�cients, respectively, are depicted on the left and right side of the �gure,
respectively.
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Figure 10: The �uctuation on y-axis for the simulation of systematic error
occurrence. Only the candidates that were included among the top 20 candi-
dates at least once (i.e., in one run of the simulation) are depicted in the �gure
with their total counts in the left upper corners of the graphs. The results from
the Bayesian t-test using clr coe�cients, PQN transformation and a decadic lo-
garithm of the data, respectively, are plotted on the top, in the middle, and at
the bottom of the �gure, respectively. The four known biomarkers of the disease
are shown in red (where detected among signi�cant).
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a single hypothesis test is evaluated based on clr transformed data and raw data,
respectively. The conclusion can di�er not only in rejecting or not rejecting the

hypothesis but even in the direction of the evidence against the initial (null)

hypothesis when improper data transformation is used.

The results of the simulation (in Fig. 10 with boxplots illustrating the

�uctuations of b-values on y-axis of the Bayesian volcano plot) suggest just subtle

di�erences between clr coe�cients and logarithmization in terms of sensitivity to
systematic changes of raw data values. Nevertheless, there is quite a notable di-
sagreement when the results are compared with those coming from PQN. The
latter normalization is inconsistent, producing contrary to the other transformati-
ons substantially more distinct biomarker candidates in the individual steps of
the simulation. Moreover, none of these biomarker candidates are true biomar-

kers (i.e., medium-chain acylcarnitines); the majority of them belongs to lipids.

Besides that, this approach generates quite inconsistent b-values. On the other
hand, the compositional approach remains persistent and identi�es most biomar-

kers in accordance with published results (Najdekr et al., 2015) even with the

incremented data.
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4 PLS-DA predictive modeling on selective pivot

logratio coordinates and its application

in metabolomics

A common issue with metabolomic data in practice, and actually with any
omics data in general, is the existence of the so-called size e�ect. This is rela-

ted to unavoidable variation in volumes and/or concentrations of the biological

material that is processed from one sample to another (Filzmoser and Walczak,

2014) as already described also in the Chapter 3. To downplay such e�ect in the

multivariate tasks of biomarker identi�cation, it is desirable that each original

variable (compositional part) is processed in terms of (log)ratios, and preferably

so that it gets associated with one speci�c logratio coordinate. One option would
be to apply OPCs, however, previous literature has noted some drawbacks of
this strategy that particularly apply to the high-dimensional data case. Namely,
by considering the entire collection of pairwise logratios aggregated into a single
OPC, it is likely to mix information from completely di�erent processes which
leads to confusing insights. In the past, both OPCs and clr coe�cients have thus
been equally discouraged for classi�cation problems, where usually just some sub-

set(s) of pairwise logratios are responsible for the di�erences between groups in

a given component (Filzmoser and Walczak, 2014; Filzmoser et al., 2018). Con-

sequently, OPCs turned out to be a potential source of false positive (and equally

false negative) results. As an alternative to aggregate all pairwise logratios with

a component of interest, there have been some attempts to use more robust pro-
cedures to extract information from pairwise logratios in order to reveal possible

biomarkers. This is the case of Walach et al. (2017), Malyjurek et al. (2019),

or alternatively Dieterle et al. (2006), employing the PQN transformation. Ne-

vertheless, using the median of compositional parts in the PQN formulation leads
to quite substantial loss of information.

Since in Chapter 2.2 it was shown that the disadvantages of OPCs can be

lessened by implementing WPCs (Hron et al., 2017; �tefelová et al., 2021), a novel

approach called selective pivot coordinates (SPCs) will be introduced as a com-

promise solution in this chapter. SPCs can be seen as a variant of both the OPC
and WPC approaches targeted to binary classi�cation problems. Unlike OPCs,
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the new SPCs only aggregate some of the pairwise logratios associated to a given
part into the logratio coordinate. In general, the SPCs are designed to facilitate
the identi�cation of biomarkers that exhibit di�erent behavior in two groups of
samples, typically referring to diseased and control samples. The details of the
proposal are thoroughly discussed in Chapter 4.1 and the novel coordinate system

is embedded within a partial least squares � discriminant analysis (PLS-DA) mo-

del in Chapter 4.2. Chapter 4.3 presents a comparative study of its performance
using simulation, while Chapter 4.4 further illustrates the advantages of the new
approach using real-world metabolomic data.

4.1 Selective pivot coordinates

In the context of two-group classi�cation involving CoDa, the idea that mo-
tivates the development of SPCs is to have logratio coordinates that represent
relevant relative information about xl, but aggregate only informative pairwise
logratios including xl in the �rst coordinate. That is, given that each pairwise
logratio involves two distinct compositional parts, the aim is to include into an
SPC, denoted by (l)s, only those that agree with what the majority of logratios

with xl suggest about its ability to distinguish between the two groups of ob-

servations. Namely, in a biomedical setting, having two groups pat (patient) and

con (control), a compositional part should be identi�ed as a biomarker candi-

date if most pairwise logratios involving that part are signi�cantly higher in one
group than in the other. Let us discuss some possible scenarios in this setting
that contribute to outline the rationale underlying the de�nition of SPCs:

i) A part xi is a strongly positive biomarker in group pat and xj is some other

biomarker increased in this group but with a weaker discriminating e�ect.

Then for most logratios ln(xi/xd), d = 1, . . . , D, d ̸= i, it can be expected

that their values will be signi�cantly higher in group pat than in group con.
However, the behavior of logratios including xj will partially di�er. Thus,

values of ln(xj/xi) will be generally lower in group pat, and similar beha-

vior might be observed for some other logratios with xj in the numerator

whenever a stronger biomarker is placed in the denominator. Nevertheless,
they should be only a minority that deviates from the prevailing trend. By
excluding these from the aggregation in the SPC we expect to increase the
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sensitivity of the classi�er, since the chance of xj leading to a false nega-

tive in subsequent statistical analysis should be smaller when compared to
OPCs that aggregate all logratios. An analogous situation with biomarkers
decreased in group pat can be considered.

ii) A part xi is a strong biomarker increased in group pat and xj is a strong

biomarker decreased in group pat. Thus, it is likely that ln(xi/xj) will have

a strong discriminating e�ect, and similarly for other logratios involving
two biomarkers with discriminating e�ects in opposite directions. These
might be �agged as outliers among the logratios involving xi, respectively
xj, however these are deviating logratios that should be preserved.

iii) A part xi is not a biomarker. Therefore, it can be anticipated that the

logratios ln(xi/xd), d = 1, . . . , D, d ̸= i, will not exhibit a signi�cant di�e-

rence between groups, except for the case where xd be a potential biomar-
ker. In this case, excluding deviating logratios should reduce the chances
of xi leading to a false positive in subsequent statistical analysis, and thus
increase the speci�city of the classi�er.

Given a compositional data matrix consisting of N observations from two

di�erent groups, we propose to use the ordinary Welch's t-statistic (Welch,

1947) to determine the least relevant logratios. Denoting (l)T = ((l)T1, . . . ,

(l)Tl−1, (l)Tl+1, . . . , (l)TD) the set of such t-statistics corresponding to logratios
(
ln xl

x1
, . . . , ln xl

xl−1
, ln xl

xl+1
, . . . , ln xl

xD

)
, the criterion is to exclude those logratios for

which the statistic (l)Td, d = 1, . . . , D, d ̸= l lays outside the interval
[
(l)θ1; (l)θ2

]
.

These boundaries are computed as

(l)θ1 =

{
−∞, if q

(
(l)T ; 1− ξ

)
< tN−2(0.025)

med
(
(l)T

)
− 2Qn

(
(l)T

)
, otherwise,

and

(l)θ2 =

{
∞, if q

(
(l)T ; ξ

)
> tN−2(0.975)

med
(
(l)T

)
+ 2Qn

(
(l)T

)
, otherwise,

where q
(
(l)T ;α

)
is the α-quantile of (l)T , med

(
(l)T

)
= q

(
(l)T ; 0.5

)
and tN−2(α)

is the α-quantile of the Student's t-distribution with N − 2 degrees of freedom
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(the parameter ξ is set to 0.1 by default). Moreover, Qn stands for the robust scale

estimator of Rousseeuw and Croux (1993), i.e., Qn

(
(l)T

)
is given by about the

�rst quartile of the absolute di�erences {|(l)Tc −(l) Td|, 1 ≤ c < d ≤ D, c, d ̸= l}.
The interval for exclusion then results to be

[
med

(
(l)T

)
± 2Qn

(
(l)T

)]
, unless

more than 90% of the t-statistic values are roughly either lower than −2 or

higher than 2. Where this latter happens, only the upper (resp. lower) cut-o�

values are used. Note that this additional condition aims to ensure that logratios
involving two strong biomarkers with discriminating e�ects pulling in opposite

directions are not excluded from the aggregation (scenario ii) above). A higher

value of ξ can be chosen if this undesirable e�ect is still apparent (as can be seen

when visualizing the selected logratios in Chapter 4.4, Fig. 13 and 16).

For the following, let us denote the number of selected logratios inclu-
ding xl as (l)M , the parts in the denominator of the selected logratios as

(l)x
+
1 , . . . , (l)x

+
(l)M

, and the remaining parts as (l)x
−
1 , . . . , (l)x

−
D−1−(l)M

. To obtain

(l)s, l = 1, . . . , D, the original composition x needs to be rearranged as (l)x =
(
(l)x

−
1 , . . . , (l)x

−
D−1−(l)M

, xl, (l)x
+
1 , . . . , (l)x

+
(l)M

)
.

Then, an OPC system (l)z =
(
(l)z1, . . . , (l)zD−1

)
is set up for (l)x. To de-

�ne SPCs, the pivoting coordinate is no longer the �rst one but the one at the

(D − (l)M)-th position, denoted by (l)zD−(l)M . Accordingly, the SPC of interest,

(l)s, is obtained as

(l)s =(l) zD−(l)M =

√
(l)M

(l)M + 1
ln

xl

(l)M

√
(l)M∏
k=1

((l)x
+
k )

=
1√

((l)M + 1) · (l)M

(
ln

xl

(l)x
+
1

+ · · ·+ ln
xl

(l)x
+
(l)M

)
, l = 1, . . . , D. (21)

The proposed SPCs can also be linked to other alternatives such as WPCs

(Hron et al., 2017) given by the expression (11). Note that SPCs are a special case

of WPCs where weights of either 1 or 0 are assigned to each logratio involving
xl, depending on whether it is included in the aggregation or not, respectively.

57



Consequently, (l)s can be written as

(l)s =

√
(l)M

(l)M + 1
ln

xl

(l)M

√√√√
D∏
d=1
d̸=l

(xd)(l)
γd

, l = 1, . . . , D,

with weights given by

(l)γd =

{
1, if (l)Td ∈

[
(l)θ1; (l)θ2

]
0, otherwise.

Moreover, although WPCs with general non-negative weights as developed

for PLS regression (�tefelová et al., 2021) could be extended for the current

classi�cation case, the latter is actually more easily handled (no speci�c weighted

coordinate system is required) by reformulating the OPC approach as described

above.

4.2 PLS-DA on selective pivot coordinates

Building on the OPC�based approach introduced in Kalivodová et al. (2015),

partial least squares discriminant analysis (PLS-DA) through SPCs is used here

for the actual identi�cation of biomarker candidates. Thus, D models of the form

Y = β0 + (l)β1 · (l)z1 + . . .+ (l)βD−1 · (l)zD−1 + ε, l = 1, . . . , D, (22)

are considered, where Y is a binary response representing each of the two groups,
the explanatory variables (l)z1 . . . , (l)zD−1 are logratio coordinates from the l-th

SPC system, β0, (l)β1, . . . , (l)βD−1 are unknown model coe�cients and ε is the

usual random error term. Note that, unlike with PLS-DA based on OPCs where
the procedure can be computationally simpli�ed by �tting one model in clr co-

e�cients and then take advantage of their direct relationship with OPCs (see

expression (9) between z
(l)
1 and clr(x)l), SPCs require the successive models to

be �tted individually. Before �tting the PLS model, the data are mean centered
so that the intercept β0 can be excluded from further considerations. The optimal
number of PLS components is chosen here based on a randomization test appro-

ach (van der Voet, 1994). From each model �t, for l = 1, . . . , D, the estimate
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(l)β̂D−(l)M associated with the SPC (l)s is extracted, and statistical signi�cance

is determined by bootstrap-based signi�cance testing on the standardized PLS

model coe�cients (Kalivodová et al., 2015). The resulting p-values are adjusted

using the Benjamini and Hochberg's method (Benjamini and Hochberg, 1995) to

control for false discovery rate in multiple testing.

4.3 Comparative simulation study

The performance of PLS-DA applied on SPCs is assessed here by simulation
in comparison to previous alternative approaches. Namely, PLS-DA after lnPQN

data normalization as a popular reference method (i.e., PQN in combination

with log-transformation of the explanatory variables as advocated for multivari-

ate analysis in metabolomics by Di Guida et al. (2016)) and PLS-DA on OPCs

as another compositional approach previously proposed. The design of the simu-

lation study follows the setup of Filzmoser and Walczak (2014), aiming to mimic

typical high-throughput data sets a�ected by size e�ect. Accordingly, data mat-

rices X = (xnd) of size N×D are generated so that the �rst N/2 rows correspond

to samples from group pat while the remaining correspond to group con, with
the �rst R columns representing biomarkers. Each entry is obtained as

xnd = (1− kn) ·
(
ud
vd

+ and + fnd

)
· vd · egnd + hnd, n = 1, . . . , N, d = 1, . . . , D,

where kn represents the size e�ect sampled from a normal distribution N (0, 0.32)

and ud/vd represents a component concentration with signal abundance ud sam-

pled from a uniform distribution U(1, 100) and component absorptivity vd sam-

pled from a uniform distribution U(1, 10). Furthermore, and determines the higher

signal of biomarkers and is de�ned as

and =
{
A, if n ≤ N/2 and d ≤ R
0, otherwise,

and fnd, gnd, and hnd representing di�erent kinds of noise (biological, multipli-

cative, and background, respectively) are sampled from normal distributions

N (0, σ2
f ), N (0, σ2

g), and N (0, 0.052), respectively. Varying parameters A, σf , and

σg as indicated in Table 3 results in eight di�erent settings. Following the reference

design, the number of observations is set to N = 40 and the number of variables
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(components) to D = 500. More options are considered though for the ratio of

biomarkers R to the rest of metabolites (D −R), with R ∈ {20, 50, 100}. Hence,
24 di�erent simulated scenarios are examined in total, executing 100 simulation
runs within each con�guration.

As mentioned above, three approaches to PLS-DA�based biomarker identi-
�cation are compared:

1. lnPQN: PLS-DA is applied on data normalized by lnPQN transformation:

xlnPQN
nd = ln

xnd
ωn

, ωn = med

(
xn1

med (x11, . . . , xN1)
, . . . ,

xnD
med (x1D, . . . , xND)

)
,

where n = 1, . . . , N, d = 1, . . . , D.

2. OPC: PLS-DA is applied on data expressed in OPCs (equivalently in clr

coe�cients).

3. SPC: PLS-DA given by (22) is applied on data expressed in SPCs (21)

following the new proposal as detailed in Chapter 4.1.

The performance of these approaches is evaluated and compared in terms of

sensitivity (i.e., rate of true biomarkers identi�ed as biomarkers) and speci�city

(i.e., rate of non-biomarkers correctly identi�ed as non-biomarkers). The results

are shown graphically in Fig. 11.

It can be observed that generally PLS-DA based on SPCs outperforms its
competitors with regard to both sensitivity and speci�city. This superior perfor-

Table 3: Parameter settings for comparative simulation study.

Setting A σf σg

1 1.8 0.8 0.021

2 1.8 0.8 0.007

3 1.0 0.8 0.021

4 1.8 0.2 0.021

5 1.0 0.2 0.007

6 1.0 0.2 0.021

7 1.8 0.2 0.007

8 1.0 0.8 0.007
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Figure 11: Sensitivity (a) and speci�city (b) for di�erent simulation scenarios.

mance is particularly evident in the case with the higher ratio of biomarkers. Thus,

when comparing speci�city (Fig. 11b), PLS-DA based on OPCs tends to produce

too many false positives, which is expected given results from previous studies

(Filzmoser and Walczak, 2014). Moreover, when the number of biomarkers is set

to R = 100, it is apparent that lnPQN also exhibits a poorer performance than
SPCs in general, suggesting that PQN tends to oversimplify the data structure

here. As to sensitivity (Fig. 11a), the results are in�uenced by the chosen biomar-

ker ratio only partially; they rather depend on the parameter settings. Notably,

in scenarios combining poorer signal and more �uctuating biological noise (i.e.,

settings 3 and 8, see Table 3), PLS-DA coupled with SPCs clearly surpasses not

just the OPC but also the PQN approach.

61



4.4 Application to metabolomic data

The use of SPCs is illustrated in this section using two di�erent real data
sets corresponding to targeted and untargeted metabolomics analyses. Both data
sets contain metabolites with higher molecular weight and non-polar properties �

lipids, which are studied in the separate �eld of lipidomics (Gallart-Ayala et al.,

2020).

4.4.1 Transgenic rat models with induced tauopathy

The �rst application concerns data obtained from samples of cerebrospinal

�uid (CSF) of transgenic rat models with induced tauopathy. The �nal data set

consisted of N = 23 samples: 14 from the TG14 group (14-month-old transgenic

rats representing the patient group) and 9 from the TG4 group (4-month-old

transgenic rats representing the control group), and D = 394 lipids. The abbre-

viations of the distinguished lipid classes are listed in Table 4 together with their

expected (non)biomarker-like behavior based on the previous studies. Further de-

tails about data acquisition and pre-processing as well as a short description of
the relevant part of the pathobiochemistry of the disease are provided in Appen-
dix A.

Fig. 12 shows Welch's t-statistics for all the individual pairwise logratios,
where each row represents the lipid in the numerator. The strongest patient bio-
markers should be the ones corresponding to the darkest green color. Biologically,

lots of these belong to the classes of CERs, HCERs, LPC(O)s, PC(O)s and SMs as

expected. Contrarily, the rows showing mainly light to white color should corre-
spond to non-biomarkers. From the biochemical point of view, this holds for the
whole class of DGs, FAs and TGs. Among these, those in a darker brown color
are likely to correspond to other patient biomarker candidates that are present
in the denominators of the logratios.

Fig. 13 illustrates how our proposal based on SPCs works. Each row indicates
which pairwise logratios are and are not included when aggregating into the
corresponding SPC. Namely, black stars are used as symbols to indicate those
that are not included. It can be seen that the excluded logratios are largely those
having a biomarker candidate in the denominator, which is in agreement with the
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scenarios discussed in Chapter 4.1 in relation to problematic (deviating) logratios.

Furthermore, as done in the simulation study above, the results obtained by
PLS-DA based on SPCs are compared to PLS-DA based on OPCs and lnPQN re-
spectively. In all three cases, a model based on two PLS components was conside-

red adequate based on the randomized test approach. Cross-validated (CV) root

mean squared error of prediction (RMSEP) and coe�cient of determination (R2)

were comparable: CV RMSEP = 0.11 and CV R2 = 0.95 for the compositional

approaches and CV RMSEP = 0.10 and CV R2 = 0.96 when using lnPQN. A to-
tal of 108 lipids were identi�ed as biomarker candidates using SPCs, whereas they
were 156 and 112 using OPCs and lnPQN, respectively. Fig. 14 illustrates the

Table 4: Full names and abbreviations of di�erent classes of lipids present in the
transgenic rats data set. Indication of (+) and (0), respectively, is provided in
accord with the expectation for them to be detected as biomarkers increased in
the TG14 group or as non-biomarkers, respectively, based on the previous studies
(Sheikh and Nagai, 2011; Mielke et al., 2014; Ojo et al., 2018; Torretta et al., 2018;
Pedersen et al., 2019; Fonteh et al., 2020; Kao et al., 2020) (see Appendix A for
more details). Additionaly, (?) marks the cases when the behavior of the entire
class is not known.

Full name of the class Abbreviation Indication
ceramides CERs (+)

diacylglycerols DGs (0)

free fatty acids FAs (0)

hexosylceramides HCERs (+)

lysophosphatidylcholines LPCs (+)

plasmanyl/plasmenyl LPCs LPCOs (+)

lysophosphatidylethanolamines LPEs (0)

plasmanyl/plasmenyl LPEs LPEOs (0)

phosphatidylcholines PCs (+)

plasmanyl/plasmenyl PCs PCOs (+)

phosphatidylethanolamines PEs (?)

plasmanyl/plasmenyl PEs PEOs (?)

phosphatidylinositols PIs (+)

phosphatidylserines PSs (?)

sphingomyelins SMs (+)

triacylglycerols TGs (0)
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Figure 12: Heatmap of the Welch's t-statistics for pairwise logratios of lipids
from the transgenic rats data set. The y- (resp. x-) axis corresponds to the lipid
used in the numerator (resp. denominator) of the logratios. Labels on both axes
are provided according to clustered classes of lipids given in Table 4.

di�erence between the two compositional approaches (SPCs and OPCs), while

Fig. 15 compares the SPC and lnPQN approaches.

Regarding the comparison of the two compositional approaches, SPCs ver-
sus OPCs, all the 17 lipids �agged as biomarker candidates only with SPCs are
identi�ed as signi�cantly increased in TG14, whereas those 65 �agged only with
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OPCs are identi�ed as signi�cantly decreased in TG14. Fig. 14 con�rms that the

selective approach to pairwise logratio aggregation indeed helps to i) detect lipids

that could be biomarkers with a weaker discriminating e�ect (as suggested by the

Figure 13: Heatmap of the Welch's t-statistics for pairwise logratios of lipids
from the transgenic rats data set illustrating the patterns to choose the logratios
for the construction of SPCs. The y- (resp. x-) axis corresponds to the lipid used in
the numerator (resp. denominator). Rows and columns are reordered according
to their median value of the Welch's t-statistic. Black stars in each row mark
logratios not included in the aggregation when constructing the SPC related to
the corresponding lipid.
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Figure 14: Cut-out from Fig. 13 with the rows limited to the lipids (named at
the end of the rows) showing di�erent signi�cance results when using PLS-DA
based on either SPCs or OPCs. Biomarkers noted using SPCs and not so using
OPCs are colored in red (the opposite case is colored in blue). Lipids identi�ed
as biomarkers by both approaches are marked in violet (those identi�ed by none
are marked in black). The row labels also denote whether the respective lipid was
�agged by the indicated method as a biomarker increased (+) or decreased (−)
in the TG14 group.

Figure 15: Cut-out from Fig. 13 with rows limited to lipids (named at the end
of the rows) showing di�erent signi�cance results when using PLS-DA based on
either SPCs or lnPQN. Biomarkers noted using SPCs and not so using lnPQN
are colored in red (the opposite case is colored in yellow). Lipids identi�ed as
biomarkers by both approaches are marked in orange (those identi�ed by none
are marked in black). The row labels also denote whether the respective lipid was
�agged by the indicated method as a biomarker increased (+) or decreased (−)
in the TG14 group.
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pro�les in rows marked in red), and ii) to reduce the number of false positives (as

suggested by the pro�les in rows marked in blue). This �nding is consistent with

previous studies (see Appendix A), since the majority of the additional potential

biomarkers increased in TG14 that are identi�ed using SPCs belong to classes

known to be elevated in patients (i.e., CERs, PC(O)s, SMs). However, most of

those that were additionally identi�ed when using OPCs (as potential biomar-

kers decreased in TG14) belong to classes of assumed non-biomarkers (i.e., DGs,

LPE(O)s, TGs), or even to classes that have been associated with upregulation

in patients (i.e. LPC(O)s, PIs, PC(O)s, SMs).

As to SPCs versus lnPQN, both approaches produce similar results from this
data set. The one additional potential biomarker increased in TG14 identi�ed

using SPCs (belonging to the PCs class), as well as the three additional ones

identi�ed using lnPQN (belonging to PC(O)s and SMs classes), are supported

by �ndings in previous studies. Moreover, previous literature suggests that the

two additional lipids marked using lnPQN (TGs class) as potential biomarkers

decreased in TG14 are most likely false positives (see Appendix A).

4.4.2 SCADD

The second application concerns dry blood spot samples of patients with
a hereditary genetic disorder SCADD. The data set consists of N = 39 samples:
20 from the patient group and 19 from the control group, and D = 2011 features.
The abbreviations of some feature classes relevant to the purpose of this thesis

Table 5: Full names and abbreviations of some of the classes of features present in
the SCADD data set. Indication of (+), and (0), respectively, is provided in accord
with the expectation for them to be detected as potential patient biomarkers and
non-biomarkers, respectively, based on the previous studies (Gault et al., 2010;
Blom et al., 2011; Nochi et al., 2017) (see Appendix B for more details).

Full name of the class Abbreviation Indication
acylated carnitines and other acyl conjugates aCARs (+)

polyunsaturated glycerophospholipids PUFA-PCs (0)

phosphatidylinositol PIs (0)

long-chain sphingomyelin lipids LC-SMs (0)
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are listed in Table 5 together with their expected (non)biomarker-like behavior.

Like in the previous application, further details about the data as well as a short
description of the biochemical context are provided in Appendix B.

Figure 16: Heatmap of the Welch's t-statistics for pairwise logratios of features
from the SCADD data set illustrating the patterns to choose the logratios for
the construction of SPCs. The y- (resp. x-) axis corresponds to the feature used
in the numerator (resp. denominator). Rows and columns are reordered accor-
ding to their median value of Welch's t-statistic. Black stars in each row mark
logratios not included in the aggregation when constructing the SPC related to
the corresponding feature.
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Fig. 16 illustrates which logratios are and are not aggregated into the corre-
sponding SPC. Note that a larger value of the parameter ξ was chosen in this

case (ξ = 1/3) in order to lessen the undesirable e�ect depicted by scenario ii) in

Chapter 4.1.

Fig. 17 and Fig. 18 show the di�erences between PLS-DA-based biomarker
identi�cation using SPCs instead of OPCs or lnPQN respectively. The randomi-
zed test approach used to select the number of PLS components in the PLS-DA

model suggested to retain just the �rst one in all cases (CV RMSEP = 0.35 and

CV R2 = 0.51). Using SPCs, OPCs and lnPQN, 362, 361 and 351 features were

respectively �agged as biomarker candidates. PLS-DA based on SPCs and OPCs
di�ered by 48 features in classifying between groups, whereas such di�erence was
49 features between SPC and lnPQN. Comparing the results, we can observe

that in general the pro�les of the features identi�ed solely by using SPCs (rows

labeled in red) look more like biomarkers than those identi�ed only by the other

methods (rows labeled in blue and yellow respectively), i.e., the discriminating

e�ect is apparent in more logratios with the given part in the numerator.

Figure 17: Cut-out from Fig. 16 with the rows limited to the features showing
di�erent results in terms of signi�cance when carrying out PLS-DA based on
SPCs or OPCs. Features identi�ed as biomarkers by the SPC approach and not
by the OPC one are colored in red (the opposite case is colored in blue). Features
identi�ed as biomarkers by both approaches are marked in violet (those identi�ed
by none are marked in black). The row labels denote whether the respective
feature was �agged by the indicated method as a biomarker increased (+) or
decreased (−) in the patient group.
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Figure 18: Cut-out from Fig. 16 with the rows limited to the features showing
di�erent results in terms of signi�cance when carrying out PLS-DA based on SPCs
or lnPQN. Features identi�ed as biomarkers by the SPC approach and not by the
lnPQN one are colored in red (the opposite case is colored in yellow). Features
identi�ed as biomarkers by both approaches are marked in orange (those identi�ed
by none are marked in black). The row labels denote whether the respective
feature was �agged by the indicated method as a biomarker increased (+) or
decreased (−) in the patient group.

From a biochemical point of view, some interesting comparison can be made
in terms of classes that have been identi�ed as biomarkers or non-biomarkers
in previous studies (see Appendix B). CAR 18:3 was identi�ed as a signi�cant

biomarker solely with SPC-based PLS-DA. This �nding is in accord with the
previous research on the class of CARs. In contrast, PCs, PIs and SMs were only
identi�ed as biomarker candidates when using lnPQN and OPCs in PLS-DA.
Based on the literature, these classes of features are probably false positives.
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5 Robust principal component analysis

for compositional tables

A frequent primary task in multivariate statistics is to reduce the dimensio-

nality of the data at hand, done using principal component analysis (PCA). As

stated in Chapter 2, in case of CoDa, and consequently also compositional tables,
this needs to be done in a proper coordinate representation that maps the Aitchi-

son geometry of compositions to the standard Euclidean geometry (Pawlowsky-

Glahn and Egozcue, 2001). To eliminate the in�uence of outlying observations

in PCA, Filzmoser et al. (2009) proposed to estimate the covariance matrix for

robust PCA (rPCA) by the Minimum Covariance Determinant (MCD) estima-

tor (Maronna et al., 2006) which has the property of a�ne equivariance, advan-

tageous in the logratio context. Since clr coe�cients (5) lead to singularity and are

not appropriate for most robust methods including the MCD estimator, loadings

and scores of rPCA need to be computed from olr coordinates (Egozcue et al.,

2003) of the compositional data and then transformed back to clr coe�cients for

a better interpretation of the resulting compositional biplot.

Accordingly, the aim of this chapter is to generalize the previous considerati-
ons on dimension reduction of vector CoDa and to propose a robust approach
to principal component analysis of compositional tables. While it is obvious that

the work can be started from Fa£evicová et al. (2016) and Filzmoser et al. (2009),

it is on the other hand not immediate to see if there is a possibility to identify
a relationship between clr coe�cients and olr coordinates as it is done in the

case of vector compositions by the equation (7). The �rst issue here is posed by

the dimensionality of compositional tables which is much lower than the number
of clr coe�cients if computed directly for independence and interaction tables.
The second obstacle is formed by the decomposition where not all choices of
coordinates allow for a satisfactory interpretation of both the original and the

decomposed tables at the same time (i.e., providing also a way to capture the

relationships between them which is necessarily contributing to a better insight

into the structure of the tables). It will be shown that OPCs present a favorable

choice of olr coordinates in line with the previous thoughts and that they can
keep a good interpretability when properly linked to clr coe�cients.
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In Chapter 5.1, the dimension reduction of vector CoDa using rPCA is brie-
�y reviewed. Clr coe�cients of compositional tables together with a link to their
OPC representation allowing for a well-interpretable processing using rPCA are
introduced in Chapter 5.2. The new methodology is illustrated in Chapters 5.3
and 5.4 on real data sets from OECD Statistics using the statistical software
R, namely the robCompositions package. Data from several di�erent countries

containing unemployment information with gender distribution and age structure
are processed as a set of 2× 4 compositional tables. Therefore, a robust composi-
tional biplot is a possible tool to analyze the distribution of unemployment rates
in these countries as well as gender and age di�erences. Data from the area of
education, carrying relative information about �elds of study and the resulting
degree in given countries, are approached as larger 3 × 8 compositional tables,
and results for men and women are compared.

5.1 Robust principal component analysis for compositional

data

One of the widely used methods for the purpose of dimension reduction of
large-scale data sets in a compositional approach is PCA just like in the case
of standard multivariate data analysis. It converts possibly correlated original
variables from the data at hand into a smaller set of linearly uncorrelated variables

called principal components (PCs). Additionally, the �rst component accounts

for the largest variance of the given data, the second one for a maximum of
the remaining variance, etc., under the constraint of being orthogonal to all the

previous principal components (Johnson and Wichern, 2007).

The covariance matrix C estimated from a real data matrix X can be
spectrally decomposed into

C = GLGT ,

where G is a matrix of eigenvectors and L represents a diagonal matrix of eige-
nvalues of C. It is then possible to de�ne the PCA transformation as

X∗ = (X− 1T t)G,

where t is the (row) location estimator and 1 is a vector of ones with length n

(number of observations). The columns of the matrix X∗, the coordinates of the

principal components, are called scores and the columns of G, containing the
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respective basis vectors, are called loadings. Typically, only the �rst few principal
components are considered for further analysis. Taking into account only two
PCs, a graphical outcome called biplot can depict both loadings as arrows and
scores as points in one plot, where associations can be revealed.

It is common to take t as the arithmetic mean and C as the sample covari-
ance matrix. However, both are very sensitive to outlying observations. Robust
alternatives can be obtained by using the MCD estimators of location and covari-

ance (Maronna et al., 2006). This approach inquires working in olr coordinates to

obtain full rank data in order to get the MCD estimate of the covariance matrix
and the respective matrix of eigenvectors G. In addition, olr coordinates ensure
subcompositional coherence and enable to keep a�ne equivariance of the results
to the change of basis.

Accordingly, rPCA of CoDa based on the MCD estimator requires olr coor-
dinates zi as an input, and the scores z∗

i are given by

z∗
i = (zi − t)G.

Once PCA is performed, the loadings can be transformed back to clr coe�cients
as

Gclr = VG,

accounting for compositional biplot construction with meaningful interpretation,
whereas the scores remain identical and only a column of zeros is added to the
end. Clr coe�cients are also worth as such for their simple construction as an
amalgamation of pairwise logratios of a given part. Due to the zero-sum constraint
of clr coe�cients, their covariance structure is distorted, thus the interpretation

of the biplot in terms of the correlation between coe�cients (through angles be-

tween arrows) might be misleading. Instead, the focus is on links between vertices

of arrows as they stand for a proportionality between the original compositional

parts (Aitchison and Greenacre, 2002). On the other hand, due to the relation

with OPCs, the single clr variables (or the respective loadings) can be used to

identify observations with a high dominance of the respective parts in a composi-

tional vector (Kyn£lová et al., 2016).
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5.2 Centered logratio representation and its link to pivot

coordinates of compositional tables

As stated in the previous chapters, a coordinate representation which re-
spects the sample space dimensionality as well as the decomposition procedure
is needed to perform rPCA of compositional tables. Interestingly, the coordina-

tes of the entire compositional table given in (15) and (16) of Chapter 2.3 can

be divided into two groups according to the dimensionality of the independence
and interaction tables, respectively. This becomes the main advantage also when
using OPCs for rPCA since it allows for a comparison of the results from the
whole table and its decomposed parts.

Following the link (9) between the �rst OPC and the respective clr coe�cient

of vector CoDa, also the �rst coordinates of the three types from each system can

then be expressed as proportional (up to a constant) to respective clr coe�cients,

clr(xind)kl =

√
I − 1

IJ
z
r(k)
1 +

√
J − 1

IJ
z
c(l)
1 ,

clr(xint)kl =

√
(I − 1)(J − 1)

IJ
z
OR(kl)
11 ,

which is an important fact for the interpretation of the analysis.

The resulting clr coe�cients, computed originally from the elements of the

independence and interaction tables (14),

clr(xind)ij = ln
xindij

g(xind
•• )

, clr(xint)ij = ln
xintij

g(xint
•• )

,

can thus be expressed also in terms of cells of the input compositional table as

clr(xind)ij = ln
g(xi•)g(x•j)

g(x••)2
, clr(xint)ij = ln

xijg(x••)

g(xi•)g(x•j)
, (23)

where g(xi•), g(x•j) and g(x••) stand for the geometric mean of the i-th row

(i = 1, . . . , I), the j-th column (j = 1, . . . , J) and the whole compositional table

(and its independent and interactive counterparts for g(xind
•• ), g(xint

•• )), respecti-

vely. As a consequence, each clr(xind)ij expresses a dominance of a given com-

bination of factor values in case of independence. This dominance is then either
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ampli�ed or weakened according to the interaction table which depends on whe-
ther the interaction is shifted in a positive or a negative direction. The interaction
table refers also to sources of departures from independence, nevertheless, the

information obtained only from clr(xint)ij does not provide a complete picture

about the dominance of the respective cell to all other averaged cells.

Furthermore, note that each coordinate clr(xind)ij is formed by the sum of

clr coe�cients of the respective row and column marginals, 1/J
∑

j clr(xind)ij =

ln gi•/g•• and 1/I
∑

i clr(xind)ij = ln g•j/g••, which amount to zero. Thus, there

are only I+J−2 linearly independent clr coe�cients, re�ecting the dimensionality
of the sample space of independence tables again. A similar feature holds also
for clr coe�cients of interaction tables that sum up to zero across each row or
column. Consequently, in the case of an interaction table, the number of linearly

independent clr coe�cients reduces to (I − 1)(J − 1). Since this dependency

makes it impossible to use the clr coe�cients for the rPCA of independence and
interaction tables, the strategy to perform rPCA for compositional tables is the
same as in case of vector CoDa: PCA loadings and scores are computed in olr

coordinates (OPCs) and then back-transformed using relation (7) to the clr space,

where the loadings can be interpreted in terms of dominance of single cells. Here,

clr coe�cients of basis vectors for rows er, columns ec and interactions eOR,
forming the columns of the matrix V, are de�ned as follows,

clr(er) =





√
I−i

(I−i+1)J
for the elements in pivot row i,

−
√

1
(I−i+1)J(I−i)

for the elements in rows i+ 1, . . . , I,

0 otherwise,

(24)

clr(ec) =





√
J−j

(J−j+1)I
for the elements in pivot column j,

−
√

1
(I−i+1)J(I−i)

for the elements in columns j + 1, . . . , J,

0 otherwise,

(25)

and
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clr(eOR) =





√
1

rs(r−1)(s−1)
for the elements on positions i = r + 1, . . . , I,

j = s+ 1, . . . , J√
(r−1)(s−1)

rs
for the pivot elements rs

−
√

r−1
rs(s−1)

for the elements in pivot row r,

j = s+ 1, . . . , J,

−
√

s−1
rs(r−1)

for the elements in pivot column s,
i = r + 1, . . . , I,

0 otherwise,

(26)

reinterpreting the expressions from Fa£evicová et al. (2016). As a result of (7),

row-wise clr coe�cients of the whole table are obtained for the IJ−1 columns of
the matrix V. Alternatively, if the matrix V has just I + J − 2 columns formed
by clr coe�cients of basis vectors corresponding to the OPC representation of

the independence table (15), its respective clr coe�cients are derived (and simi-

larly for the interaction table with its coordinates (16)). Finally, the transformed

loadings and scores can be used to construct a biplot in order to reveal the mul-
tivariate structure of the sample of compositional tables and relations between
both factors.

5.3 Unemployment data analysis

In the following, the methodological results are applied to two real-world
data sets from the �eld of economy in order to illustrate the main features and
possible limitations of the approach. However, it is important to acknowledge
here the potential of the proposed methodology also across other research areas

since compositional tables (eventually in form of their count counterparts, i.e,

contingency tables) occur in many applications and sciences. For example, in envi-

ronmental management, the presence of two-factor CoDa was recognized already

by Aitchison (1986) where areal compositions given by simpli�ed 2× 2 tables of

vegetation (thick and thin) and animals (dense, sparse) abundance in di�erent re-

gions were provided as an example of CoDa with more complex structures. From
rather up-to-date environmental management problems, analyses of e.g., 5 × 4

tables of material resources (OECD Statistics, 2017) given by the extraction type
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(domestic extraction, import, export, direct material input, and domestic ma-

terial consumption) and group of the resources (biomass, fossil energy carriers,

non-metallic minerals, and metals); 2 × 7 tables of protected areas (OECD Sta-

tistics, 2018) characterized by the domain of biodiversity (terrestrial or marine)

and designation of the protected area (e.g., nature reserve, wilderness, protected

landscape etc.); or 34 × 4 tables of carbon emissions embodied in trade (OECD

Statistics, 2011) diversi�ed by sector (e.g., agriculture, mining, food products

etc.) and measure (imported, exported, consumption-based and production-based

emissions), available always for the vast majority of OECD member states, could

be mentioned as more relevant representatives.

The �rst analyzed data set, the Unemployed data set, is coming again
from OECD Statistics and contains aggregated data from more than 150 million

unemployed people from 42 di�erent countries in 2010 (OECD Statistics, 2010b).

It is analyzed using the statistical software environment R (R Core Team, 2022).

The data contain the numbers of unemployed people together with their
gender and age category for the following countries: Australia, Austria, Belgium,
Canada, Chile, Czech Republic, Denmark, Estonia, Finland, France, Germany,
Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Mexico, Nether-
lands, New Zealand, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden,
Switzerland, Turkey, United Kingdom, United States, Colombia, Costa Rica, La-
tvia, Lithuania, China, India, Indonesia, Russian Federation and South Africa.

An example of (transposed) raw data from the �rst four countries is shown in

Table 6. The numbers in the tables are basically counts of unemployed people
according to two factors. As the population size varies among the countries, the
interest here is not in the absolute values of the counts in the single countries,
but rather the relative structure of unemployment. Particularly, ratios of men
and women and ratios among age groups 15 − 24, 25 − 39, 40 − 54 and 55+, as
well as proportionality among countries will be analyzed. Since outliers can be
anticipated due to completely di�erent economics, education levels, gender ba-
lance and also traditions of the listed countries, the analysis will be carried out
in a robust manner.

All compositional tables in this example have 2 rows and 4 columns, i.e.,
gender is the row factor and age structure is the column factor. The sample space
of tables thus has dimension 7 out of which independence tables account for

77



Table 6: Unemployed people in thousands partitioned according to their gender
and age groups (OECD Statistics, 2010b).

Australia Austria Belgium Canada
Age group Men Women Men Women Men Women Men Women
15-24 129 111 29 25 53 43 250 178
25-39 90 85 40 35 86 83 241 192
40-54 66 68 36 27 65 52 242 188
55+ 37 19 7 3 13 11 121 75

a dimension of 4 with OPCs zr1, z
c
1, z

c
2 and zc3, while the remaining coordinates

zOR
11 , zOR

12 and zOR
13 correspond to the interaction tables with a dimension of 3.

To point out the di�erences between the classical and robust PCA, both are
performed and compared through the resulting covariance compositional biplots.
Recall that classical PCA can directly be applied on clr coe�cients. Nevertheless,
since for this data set rPCA may be more relevant because of potential outlying
tables, OPCs are used in both cases, and the results are transformed to clr for
the biplot construction. This can only yield a di�erent rotation of the classical
biplot, however, it obviously does not alter the results.

In order to perform PCA in olr coordinates, the standard function princomp

in R can be used, where the parameter covmat is set to covMcd (MCD estimator

of covariance) in case of rPCA. Thereafter, loadings need to be transformed to

clr coe�cients as described in Chapter 2.2 using the matrix V with columns

de�ned by (24) - (26) for the entire compositional table, and by (24) and (25),

or by (26) for its independent and interactive part, respectively. The resulting

classical biplots are depicted on the right-hand side of Fig. 19, while the rPCA
output is on the left.

Assessing Fig. 19, it can be noticed that in all three cases, rPCA performs
better in terms of explained variability by the �rst two PCs. As mentioned above,
some outliers might be present in the data, and even from the classical biplot

of the whole compositional tables (upper right corner of Fig. 19), at least two

outlying tables (Turkey � TUR and South Africa � ZAF) could be expected,

and so the robust approach should provide more meaningful results. An outlier
detection is performed additionally in order to con�rm these expectations. In the

R package robCompositions (Templ et al., 2011), there is a function outCoDa
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Figure 19: Robust (left column) and classical (right column) covariance biplots
of the Unemployment compositional (upper row), independence (middle row) and
interaction tables (lower row).
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de�ned for this purpose, based on robust Mahalanobis distances computed from

olr transformed data (Filzmoser and Hron, 2008). Using the OPCs and applying

the 0.975 quantile of the chi-squared distribution as the common cut-o� value, 15
out of all 42 countries are identi�ed as outlying observations, clearly supporting
the choice of robust analysis. Note that similarly, 10 observations from the set of
independence tables and 6 from the interaction tables were detected as potential
outliers.

Additionally, from the same part of Fig. 19, it is easy to identify from the
direction of the arrows which countries tend to have relatively higher unemploy-
ment among younger people and which ones have a rather higher rate in the
opposite situation. Although no clear compact clusters are visible, it seems that
most European countries together with the USA and Canada tend to have more
likely problems with employing older people, say 40+, while for Central and
South America together with China, India, and Indonesia the unemployment de-
pending on age structure has rather opposite tendencies. In the latter case, this
generalized �nding corresponds to the values of the youth unemployment rate

(i.e., YUR = unemployed between 15 and 24 years

all unemployed
) in di�erent countries reported by the

United Nations in 2011 (UNdata, 2011). Nevertheless, there are still big di�eren-

ces between European countries, even more apparent in the robust analysis. Some
gender di�erences can be observed as well, except for the youngest generation.

The structure in the classical biplot (upper right plot of Fig. 19) is similar but

driven by the identi�ed outlying observations.

The left plot in the middle part of Fig. 19 shows the �ideal� situation in case
the relationships between gender and age factors would be �ltered out. While the
positions of the countries are not apparently changed compared to the previously

discussed covariance biplot (upper left corner), the general relationships between

the factors are remarkably illustrative. In case of independence, nearly gender
equity would be achieved, while on the contrary, relationships among the age
levels would be disproportionally weaker. Also, a bigger di�erence between results
provided by robust and classical PCA is present here. One can easily understand
how the classical approach does not handle outliers and how those can a�ect the
output; the biplot on the right side is quite far away from picturing the same
ideal situation.

As demonstrated in Chapter 5.2, the independence table captures the hypo-
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thetical balanced state with each clr interpreted in terms of dominance of a given
combination of factors in case of independence. However, this dominance is then
either ampli�ed, or weakened according to the interaction table; in terms of clr
coe�cients, it depends on whether the logratio dominance is shifted in a positive,
or in a negative direction. Note that information obtained solely from the inter-
action table does not provide a complete picture about the dominance of single

cells in the table. For example, in the lower left graph of Fig. 19 (robust biplot of

interaction tables), Costa Rica (CRI) is placed towards the loading �male 55+�,

but this does not necessarily lead to a conclusion that unemployment in this group
is higher in general in this country; it simply marks the cell whose dominance
causes imbalance for Costa Rica, although the actual proportion of unemploy-
ment for this age group might be lower than its average dominance. Therefore, the
conclusion about the higher dominance of unemployed men in the oldest group
than expected in the hypothetical case of independence can be stated only after
looking at the biplot of the independence tables. For the compositional tables

with dimension 2× J (or alternatively I × 2), this feature is nicely illustrated by

the depicted loadings themselves, placed along a line corresponding to increasing
dominance of one factor value at the expense of the latter value of the same fac-
tor. The opposite relation between the respective clr coe�cients is clearly visible

from both the biplots and the form of clr(xint)ij in (23): as it was already discus-

sed in Chapter 5.2, clr coe�cients of the interaction table sum up to zero across

each row and column which results in the identity clr(xint)1j = −clr(xint)2j, hol-

ding for each j when I = 2 (and similarly for J = 2). While in case of higher

data dimension the property is no longer visible in the graphs, in this example
it can be seen that the two possible values of the gender factor lead to precisely
contradictory loadings for any chosen value of the age factor. Thus they might
only carry the information about the origin of the dominance shift, but no longer
about the direction of the shift for which the di�erence from the independence
table has to be consulted.

5.4 Education data analysis

It was illustrated in the previous example how outliers can a�ect results
of classical PCA. Especially the gender equity achieved in the robust biplot of
the independence tables would not be present in the classical one. Hence, in this
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second example, only robust analysis outputs are discussed. The data set contains
information about more than 7 million female and nearly 6 million male students,
divided according to 8 di�erent �elds of study, being Education, Humanities and
arts, Social sciences, business and law, Science, mathematics and computing,
Engineering, manufacturing and construction, Agriculture and veterinary, Health

and welfare, and Services (OECD Statistics, 2010a). The information about the

achieved degree (bachelor, master, or doctoral) is recorded as well for about 30

di�erent countries.

Compositional tables are analyzed for both genders separately in order to
allow for a comparison of possible di�erences between them later on. Biplots as
graphical rPCA outcomes of the whole compositional table as well as indepen-
dence and interaction tables are collected in Fig. 20. Due to a larger dimensio-

nality of compositional tables than in previous case (3 × 8), the biplots contain

three times more variables and an objective interpretation becomes more di�cult.
An additional aspect is that since it is necessary to go many dimensions down to
achieve the PCA projection using the �rst two PCs, it is expected to obtain more
approximative picture of the multivariate data structure in the biplot. However,
for data of similar or even bigger size, the proposed methods still o�er an ex-
tremely useful rank-two approximation capturing the relationships between both

factors. The performance of rPCA is still good enough (at least 54.08%) for this

particular case in terms of cumulative variability explained by the �rst two PCs.

Despite the previous interpretational doubts, it can be seen that the e�ect
of the chosen �nal degree is possibly stronger than the e�ect of the study �eld
since the loadings tend to create a quite clear division of bachelors, masters, and
doctors for most of the biplots. This property is more obvious for men while
for women the di�erence between bachelors and masters is partially wiped out,
maybe also due to a less compact data structure. Finally, employing the outCoDa

function (Templ et al., 2011; Filzmoser and Hron, 2008) again, some outliers for

the data set of the whole compositional tables are detected: Austria, Norway and
Spain for men, and United Kingdom, Turkey and United States for women.

From the second row of Fig. 20, some overall idea about the hypothetical
state of independence between degree and study �eld factors might be obtained.
A stronger e�ect of the chosen degree and a weaker e�ect of the study �eld would
still be apparent for men, and one new feature could be observed: there would
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Figure 20: Robust covariance biplots of the Education compositional (upper
row), independence (middle row) and interaction tables (lower row) for men (left
column) and women (right column), respectively. Study �elds are marked as
follows: 1 = Education, 2 = Humanities and arts, 3 = Social sciences, business
and law, 4 = Science, mathematics and computing, 5 = Engineering, manufactu-
ring and construction, 6 = Agriculture and veterinary, 7 = Health and Welfare,
and 8 = Services. 83



be a strong relation between Education and Humanities and arts study �elds
for each degree. For women, e.g., a similarity of educational systems in Sweden,
Finland, Belgium and Switzerland is re�ected. Also, in the case of independence,
higher occurrence of outliers would be present for both men and women.

When looking at the biplot for the interaction tables for women (lower right

�gure), two of the mentioned countries are shifted away from the �elds of study

that would dominate if independence was achieved, being especially Agriculture
and veterinary, Science, mathematics and computing, and Services. These coun-
tries are Sweden and Belgium, while Finland would correspond approximately to
the independence between the factors, and Switzerland actually accounts for even

stronger dominance of those �elds (particularly master and doctoral studies in

Services). For both men and women, it could be stated that the actual relation-

ships between the factors are quite distant from the relative dominance given in
the independence state. Stronger patterns concerning both factors are generally
observed for men.
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6 Final remarks

As suggested by the name of this thesis, it contributes advanced novel me-
thods in the analysis of so-called compositions, i.e., data carrying relative in-
formation. Since the nature of CoDa endowed with Aitchison geometry entails
fundamentally di�erent approach to their statistical treatment, logratio metho-
dology is used as a sound and necessary basis for the statistical analysis. The
newly introduced tools are applied in the �elds of science where high-dimensional
data are a daily bread, namely metabolomics and econometrics. Additionally, the
work conducted during my Ph.D. study has resulted in a contribution of new
scienti�c insights through several interdisciplinary research collaborations in the
�eld of metabolomics.

Chapter 1 outlined the topics presented in the thesis and their interconnec-
tedness through the complexity and the compositional nature of the related data
sets resulting in the need for pivot coordinates. Therefore, in Chapter 2, next
to some basic principles of the logratio methodology, the entire genesis of pivot
coordinates was provided. Speci�cally, all the di�erent types of these olr coordi-
nates including the case of compositional tables were summarized together with
di�erent real-world data driven examples motivating their origin. Since each of
the methods introduced in this thesis at some point relies on the semi�automated
choice of coordinates while needing to keep an easy interpretation, a special em-
phasis was put on the link between clr coe�cients and pivot coordinates arising
from the form of the respective logcontrasts. The limitations of the clr represen-
tation were described together with some fundamental properties of both OPCs
and clr coe�cients, providing always also a pairwise logratio point of view.

A new approach to univariate statistical analysis of (untargeted) metabolo-

mic data, introducing a Bayesian version of a popular double-�ltering graphical
tool called volcano plot coupled with logratio data representation was proposed
in Chapter 3. Although interpretability of clr coe�cients would be fully satis-
factory there, the univariate analysis is geometrically only reasonable when �rst
pivot coordinates are used instead. Further, it was explained that the Bayesian
counterpart to the multiple hypotheses testing might solve some of the problems
occurring in frequentist analysis of high-dimensional data such as the inappropri-
ateness of the routinely used p-value corrections for multiple testing or sensitivity
of the traditional methods to outlying observations. Also, even if all limitations
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of the frequentist approach were over-passed, the poverty of the information pro-
vided as a result of each hypothesis test is notable in the contrast to Bayesian
approach producing the whole posterior distribution. Decision made on behalf of
Bayesian inference is, therefore, always more competent, because it is based on
much richer information compared to a single number from the traditional hy-
pothesis testing. Consequently, the complex information hidden in the posterior
distributions was exploited in the construction of the Bayesian version of volcano
plot when deriving b-values for the y-axis and simplifying the posteriors to MPD
representation for x-axis. Moreover, an additional feature combining information
from both axes was provided in the form of HDI distance levels which could
generally be used for the �nal choice of biomarker candidates.

Classi�cation problems with CoDa have led to duly justi�ed criticism of
the OPC approach, commonly resulting in poorer sensitivity and speci�city than
competitors based on data normalization. In the �eld of metabolomics, this lat-
ter group is led by the widely used PQN which represents a more sophisticated

alternative to simply using one element for normalization (approach popular e.g.,

in geochemistry or microbiome data analysis). A new type of pivot coordinates,

SPCs, were thus proposed in Chapter 4. They exclude from the aggregation such
pairwise logratios that are determined by Welch's t-statistic�based intervals as
deviating from the main pattern. Hence, SPCs demonstrate the value in consi-
dering more complex logratios involving the compositional part of interest, while

still retaining the intuitive idea of aggregating relative information into one (pi-

voting) logratio coordinate. Moreover, they further stress how the �exibility of

the logratio approach built on well-founded geometrical grounds can outperform
ad hoc solutions. Also, as shown, the method is connected as a particular zero-
one weighting case with the broader framework of WPCs, which is able to deal
with the drawbacks of OPCs in regression tasks. That is why the SPC approach
presented here somehow closes the circle, having now the concept of pivot coordi-
nates covering most common CoDa analysis and modeling situations met in the
metabolomics context and beyond. Finally, aiming to enhance the identi�cation
of biomarkers in the context of binary classi�cation problems, the novel coor-
dinate system was embedded within a PLS-DA including Benjamini-Hochberg
multiple testing adjustment for the bootstrap�based signi�cance testing on the
standardized PLS model coe�cients.
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In Chapter 5, rPCA of compositional tables as a two-factorial generalization
of vector CoDa was studied. Given that compositional tables can be decomposed
onto their independence and interaction parts, a statistical analysis of both is
recommended to get insight into the ideal situation when relationships amid
factors are �ltered away, as well as into interactions between factors forming
the original compositional table. As most practical data sets contain outlying
observations, robust methods requiring an orthonormal coordinate representation
have been considered. To reduce the dimension of data at hand, rPCA using
the MCD estimator can be applied to pivot coordinates of compositional tables
according to their decomposition into independence and interaction tables. The
necessity of respecting dimensionality of the independent and interactive parts

presents the main di�erence to (vector) CoDa where such feature does not occur.

It was precisely this need of speci�c choice of olr coordinates where coordinates
of independence and interaction tables form together coordinates of the entire
compositional tables which allowed here for the additional bene�t brought by the
linkage of OPCs to clr coe�cients constructed in the same manner. Thereafter,
loadings obtained in OPCs for the rPCA were transformed back to clr coe�cients
where they were used for the construction of compositional biplots and their

meaningful analysis. In case of (2 × J) table dimensions, an additional feature

could be observed in the graphical output of interaction tables, which was traced
back to the interpretation of the clr coe�cients as well.

The good performance of the novel methods was always shown on the analy-

ses of two di�erent dimension�relatable data sets (from the �eld of rare metabolic

diseases and economy, respectively). For Chapters 3 and 4, simulation studies were

also provided to compare the stability and/or performance of the proposed tools

with the traditional approaches to the presented tasks. In both cases, the results
of the simulations highlighted the potential of the new methods.

All computations in this thesis were performed using the environment of

the statistical software R (R Core Team, 2022). The related codes are available

online at https://github.com/sousaju/BayesVolcano for Chapter 3, https:

//github.com/sousaju/SPC for Chapter 4, and https://github.com/sousaju/

rPCA-CoDaTables for Chapter 5 under GNU GPL.
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I truly hope that also thanks to a certain aspect of robustness and high-
dimensionality that was present in all three introduced tasks and that is an
indispensable part of an ample amount of data sets in practice, will the novel
tools have the potential to quickly incorporate alongside the well-established me-
thods from the CoDa analysis. I strongly believe that my dissertation thesis will
also render one of the �nal touches to the research around pivot coordinates by
providing the last piece currently missing in the area of weighting techniques.
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A Transgenic rat models with induced tauopathy:

biological background

The �rst application concerns transgenic rat models with induced tauopathy.

Tauopathies are neurodegenerative disorders, with Alzheimer's disease (AD) be-

ing one of the most prevalent tauopathies in humans (Karlíková et al., 2017).

Data obtained from samples CSF collected from transgenic rats at the age
of 4 and 14 months were acquired by a targeted lipidomic approach using high-

performance liquid chromatography coupled with mass spectrometry (UHPLC-

MS). The data set is available at the MassIVE database (Center for Compu-

tational Mass Spectrometry, 2023) and it was pre-processed using the Metabol

package (Gardlo et al., 2019) on the R system for statistical computing (R Core

Team, 2022). Based on a mixed sample for quality control (QC; analyzed periodi-

cally every 6th sample), locally estimated smoothing signal (LOESS) correction

was applied to the data. Lipids whose coe�cient of variation calculated from QC

aliquots was higher than 30% were excluded from further data processing.

Several previous studies have provided �ndings about biochemically relevant
biomarkers and their role in tauopathic neurodegeneration and AD. In addition
to the pathological aggregation of tau protein in tauopathy, amyloid beta plaque
formation occurs in AD patients. The whole class of phosphatidylcholines has
been detected as upregulated in CSF of cognitively healthy humans with abnor-

mal or pathological tau protein or amyloid beta peptide 42 (Aβ42) levels (Fonteh

et al., 2020). Their close metabolic intermediates, the lysophosphatidylcholines,

have been positively associated with the formation of Aβ(1-42) �brils (Sheikh and

Nagai, 2011; Pedersen et al., 2019). Next, elevated sphingomyelin concentrations

have been linked to membrane breakdown, demyelination, and progressive loss of
neuronal cells in brain tissue during the progression of neuro�brillary pathology

(Kao et al., 2020). Moreover, no signi�cant alteration in lipids from the class of

plasmanyl/plasmenyl lysophosphatidylethanolamines or triacylglycerols has been

revealed in patients with AD (Kao et al., 2020) so far.
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B SCADD: biological background

The second application concerns dry blood spot samples of patients with
a hereditary genetic disorder in β-oxidation of short-chain fatty acids. These
patients su�er from enzyme de�ciency in short-chain acyl-coenzyme A dehydro-

genase (SCAD, EC 1.3.8.1). Owing to the disruption of this pathway, the disease

is manifested by increased concentrations of butyric acid residues in the form
of butyryl-carnitine, butyryl-coenzyme A, and butyryl-glycine conjugates in the

patient's bio�uids (Gallant et al., 2012).

As with the previous case study, the data were obtained using UHPLC-MS,
and only untargeted lipidomics was applied. Therefore, instead of proper lipids,
the variables in the original raw data set refer generically to features. These
features also represent adducts, source fragments, multimers, and isotopes of as-

yet-unidenti�ed molecules (Graça et al., 2022). From the total of 2011 features

present in the data set, 761 were fully identi�ed, 693 just partially identi�ed, and
the remaining 557 were unknown.

Octadecatrienyl-carnitine (CAR 18:3) was found to be a potential biomar-

ker which is of particular interest because acylated carnitines and other acyl
conjugates are related to accumulated intermediates of disrupted beta-oxidation

(Nochi et al., 2017). A cascading accumulation of long-chain fatty acids may have

occurred due to SCAD de�ciency. In contrast, polyunsaturated glycerophospho-
lipids and phosphatidylinositols were also identi�ed as biomarkers by some of the
approaches. Because of the failed beta-oxidation in SCAD de�cient patients, it
can be assumed that many other metabolic pathways taking place in the mito-
chondria have been a�ected. However, glycerophospholipids are as such formed

in a di�erent compartment of the cell, the endoplasmic reticulum (Blom et al.,

2011). Therefore, these lipids are probably false positive �ndings. Among these

potential false positives were long-chain SM lipids, which are also synthesised

extra-mitochondrially (Gault et al., 2010).
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Abstract

An abundance of scienti�c �elds produces data where their relative structure,
which is inherently contained in ratios among variables, is of the main interest.

Due to the speci�c geometrical properties of such (compositional) data, a pro-

per choice of real coordinates within the logratio framework is crucial for any
sensible statistical analysis. In this thesis, novel methods related particularly to
the use of so-called pivot logratio coordinates are presented within di�erent re-
search areas generating data sets of higher dimensionality or complexity. One of
the essential tasks in omics sciences is to �nd statistically signi�cant di�erences
between patient and control groups to detect biomarkers of particular diseases
using both univariate and multivariate statistical methods. A concept of b-values
is introduced together with a Bayesian version of a widespread tool based on mul-
tiple hypotheses testing, the so-called volcano plot, incorporating also distance
levels of the posterior highest density intervals from zero. Next, a new type of
coordinate representation aiming to enhance the identi�cation of biomarkers is
proposed. They are constructed so that the �pivoting� coordinate representing
a certain compositional part aggregates all but the deviating pairwise logratios
of that part to the remaining ones, in accord with the name selective pivot coor-
dinates. They are further coupled with partial least squares discriminant analysis
as a gold standard in the multivariate analysis of omics data. Finally, a data
table arranged according to two factors can often be considered a compositional
table. Hence, a special choice of pivot coordinates re�ecting a decomposition pro-
cess into independent and interactive parts is presented for compositional data
comprising the two-factorial complexity. A robust principal component analysis

(PCA) is then performed for dimension reduction, allowing for investigation of

the relationships between the given factors through a direct relation of the pro-
posed coordinates to centered logratio coe�cients, used traditionally in context
of PCA with compositional data.

Key words: compositional data, logratio methodology, centered logratio coe�-
cients, pivot coordinates, weighted pivot coordinates, selective pivot coordinates,
compositional tables, Bayesian statistics, robust principal component analysis,
volcano plot, partial least squares discriminant analysis, compositional biplot,
metabolomic data, economic data
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Abstrakt v £eském jazyce

Celá ²kála v¥deckých obor· produkuje data, u kterých je hlavním zájmem jejich
relativní struktura, obsaºená ze své podstaty v podílech mezi prom¥nnými. Vzhle-

dem ke speci�ckým geometrickým vlastnostem takových (kompozi£ních) dat je

pro jejich relevantní statistickou analýzu nezbytná správná volba reálných sou-
°adnic v rámci logpodílové metodiky. V této práci jsou p°edstaveny nové metody
související zejména s vyuºitím tzv. pivotových sou°adnic v r·zných oblastech vý-
zkumu generujících datové soubory s vy²²í dimenzionalitou nebo komplexností.
Jedním z nejzásadn¥j²ích úkol· v tzv. -omických v¥dách je nalezení statisticky
významných rozdíl· mezi skupinami pacient· a kontrol, které slouºí k detekci bi-
omarker· r·zných onemocn¥ní s vyuºitím jednorozm¥rných i mnohorozm¥rných
statistických metod. Je zde p°edstaven koncept b-hodnot spolu s bayesovskou
verzí populárního nástroje zaloºeného na mnohonásobném testování hypotéz, na-
zývaného vulkánový graf. Díky bayesovské modi�kaci lze do grafu zahrnout rovn¥º

zóny vzdálenosti interval· nejvy²²í hustoty (HDI) od nuly. Dále je navrºen nový

typ sou°adnicové reprezentace kompozi£ních dat, jehoº cílem je zlep²it identi�-
kaci biomarker·. V souladu se svým názvem jsou tyto tzv. selektivní pivotové
sou°adnice konstruovány tak, ºe �vodící� sou°adnice agreguje v²echny párové log-
podíly odpovídající kompozi£ní sloºky s ostatními komponentami, s výjimkou
aberantních logpodíl·. Na sou°adnice je následn¥ jako zlatý standard mnohoroz-
m¥rné analýzy -omických dat aplikována diskrimina£ní analýza metodou £áste£-
ných nejmen²ích £tverc·. A kone£n¥, sloºit¥j²í strukturu kompozi£ních dat uspo-
°ádaných podle dvou faktor· lze £asto povaºovat za kompozi£ní tabulku. Pro tato
data je v práci uvedena speciální volba pivotových sou°adnic re�ektující moºný
rozklad tabulky na její nezávislou a interak£ní £ást. Za ú£elem redukce dimenze je

pak pouºita robustní metoda hlavních komponent (PCA), která prost°ednictvím

p°ímého vztahu p°edstavených sou°adnic s centrovanými logpodílovými koe�ci-
enty, jenº jsou v kontextu PCA s kompozi£ními daty tradi£n¥ uºívány, umoº¬uje
získat lep²í vhled do vztah· mezi danými faktory.

Klí£ová slova: kompozi£ní data, logpodílová metodika, centrované logpodílové
koe�cienty, pivotové sou°adnice, váºené pivotové sou°adnice, selektivní pivotové
sou°adnice, kompozi£ní tabulky, bayesovská statistika, robustní metoda hlavních
komponent, vulkánový graf, metoda £áste£ných nejmen²ích £tverc· � diskrimi-
na£ní analýza, kompozi£ní biplot, metabolomická data, ekonomická data
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1 Introduction

Compositional data (CoDa) are present in many applications from nume-

rous scienti�c �elds (e.g., economy, sociology, psychology, biology, geochemistry,

environmental studies or so-called omics sciences covering metabolomics, geno-
mics, proteomics, transcriptomics, and other branches producing high-throughput

data). Logratio methodology based on the Aitchison geometry on simplex (Ait-

chison, 1986; Pawlowsky-Glahn et al., 2015; Filzmoser et al., 2018) can and should

be used as a cornerstone every time the statistician works with strictly positive
data carrying relative information. At the same time not only vectors but also
more complex structures with the interest lying in several factors can be seen as
CoDa.

The main bottleneck of the statistical analysis and its interpretation in all

omics sciences is probably the high-dimensionality of their (compositional) data

sets. Another speci�c of these sciences is the need for a thorough and substantial
data pre-processing before any statistical methods can be even applied. This step

includes also data transformation and/or normalization for which mainly (natural

logarithm of) so-called probability quotient normalization (PQN) is used (Dieterle

et al., 2006). Here the original data are expressed in terms of ratios to a median of

components normalized with respect to some reference sample (usually composed

from component-wise medians). The PQN representation is successfully seconded

by logratio coordinates where the posed challenge is to �nd an appropriate coun-
terpart within the logratio methodology to better re�ect geometric properties of
the relative omics data.

After data pre-processing, tools from both univariate and multivariate sta-
tistics are usually used for the analysis in metabolomic experiments aimed at

discovering metabolites discriminating the group(s) of patients from healthy con-

trols. In the article de Sousa et al. (2020), we presented a novel Bayesian appro-

ach to a univariate statistical analysis of untargeted metabolomic data expressed

in �rst pivot coordinates (or clr coe�cients which are up to a scaling constant

equal to them) for a multiple hypotheses testing problem. One of the most wi-

despread tools for biomarker identi�cation in omics sciences is the so-called vol-

cano plot (Cui and Churchill, 2003) functioning as a double �lter: the size of e�ect

given as a ratio of medians of the patient vs. control data (i.e., a fold-change)
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is depicted against statistical signi�cance represented by a negative decadic lo-

garithm from p-values obtained in t-tests of all variables (metabolites). Unlike

the traditional frequentist way of volcano plot construction, the proposed Baye-
sian approach does not need to rely on any p-value corrections to the number
of multiple tests performed; the decision about a hypothesis is build on highest

density intervals (HDI) working with the entire posterior distributions (Kruschke,

2013; Thulin, 2014). Another advantage is the robustness of the method (in Ba-

yesian context) achieved through the prior assumption of the data distribution

(Kruschke, 2013). For the construction of the volcano plot itself, we suggested to

work with the mean values of posterior distributions as a measure of the size of
the e�ect and with newly introduced b-values substituting the statistical signi�-
cance. Furthermore, it was shown that a combination of the measures from both
axes of the Bayesian volcano plot can be conveniently used in the �nal assess-
ment of the potential biomarkers. As such, we proposed to construct so-called
HDI zones, i.e., distances of the borders of HDI from zero.

The results of multivariate statistical methods in metabolomics (or generally

also in other omics as well as for example in geochemistry) often su�er from the

in�uence of a handful strong biomarkers on the other variables. An endeavor
to eliminate this phenomenon led to a development of selective pivot coordina-

tes (SPCs) presented in the article �tefelová et al. (2023). Pivot coordinates, here

termed for better clarity as ordinary pivot coordinates (OPCs), follow a principle

where the �rst (�pivoting�) coordinate aggregates all logratios with the composi-

tional part of interest, keeping an easy interpretation just like in the case of clr

coe�cients (Fi²erová and Hron, 2011). At the same time, it is possible to cre-

ate more systems of pivot coordinates (usually the same number as the number

of compositional parts) which can be converted to each other by an orthogonal

transformation (Filzmoser et al., 2018) and where the part of interest in the �rst

coordinate is permuted. As a weighting technique for classi�cation problems of
high-dimensional CoDa, we suggested zero-one weights allowing to fully eliminate
aberrant pairwise logratios of the compositional part of interest in its �rst SPC.
The big advantage of such weighting is that SPCs results in OPC systems with
just one di�erence � the pivoting coordinate of each system is generally no longer
the �rst one. Therefore, SPCs can be seen as a certain orthogonal rotation of
the original pivot coordinates. As for the particular choice of strategy to assign
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the weights to the individual compositional parts, we chose Welch's t-statistics
to determine individual logratios which should be eliminated from the pivoting

coordinate of each set of SPCs (i.e., by assigning zero weights to the respective

pairwise logratios). After constructing Welch-based SPCs, partial least squares �

discriminant analysis was applied on the data as a well-established method for
classi�cation tasks in omics sciences. A comparison of sensitivity and speci�city
among logarithmized PQN, OPCs and SPCs was provided in a simulation with
the newly proposed coordinates outperforming the others in both true positive
and true negative rate, making them a very versatile transformation option.

More complex CoDa structures where the observations are carrying inhe-

rently relative information about data distribution on the basis of two (or even

more) factors are not yet common in omics, geochemistry or biology. Neverthe-

less, to model for example a relative structure of unemployed people depending on
their gender and age group, or a relative structure of university students among
di�erent study subjects with relation to the obtained university degree, could
not be done otherwise. From the mathematical point of view, we talk about two-

factorial extension of vector CoDa, called compositional tables (Egozcue et al.,

2008, 2015). Using the logratio methodology, each compositional table can be

decomposed into an independent and an interactive part and olr coordinates as-

signed to all of them (Fa£evicová et al., 2016) enabling further statistical proces-

sing of compositional tables using popular multivariate methods. The comparison
of independence and interaction tables is what allows for a better understanding

of the original data which is why in the article de Sousa et al. (2021) we proposed

a particular choice of pivot coordinates for all three compositional tables (i.e.,

the original table and its decomposed parts) with a direct link to clr coe�cients

including their explicit formulas and interpretation. This is a key step for an ap-
plication of robust multivariate methods on two-factorial CoDa and since one of
the most common tasks in statistics is a dimension reduction, we applied on the
data expressed in the presented coordinates a robust principal component analy-
sis. It requires to carry out the computations of loadings and scores using OPCs
of vectorized compositional tables, as clr representation leads to singularity, and
transform them to clr coe�cients only afterward for the purpose of compositional
biplots construction.
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2 Summary of the state of the art

2.1 Logratio methodology of compositional data

A positive (row) vector x = (x1, x2, . . . , xD) is de�ned to be a D-part com-

position if it carries relative information, i.e., the ratios between the components

are informative (Aitchison, 1986; Pawlowsky-Glahn et al., 2015). Any compositi-

onal vectors with equal number of parts are considered to be representatives of
the same equivalence class if one vector is obtained from another by a positive

scalar multiplication (Pawlowsky-Glahn et al., 2015). This is an important point

e.g., for some omics sciences where the total often might not be known. Accor-
dingly, equivalence classes of compositional data are represented without loss of
information in a D-part simplex,

SD =

{
x = (x1, . . . , xD)|xi > 0, i = 1, . . . , D,

D∑

i=1

xi = κ

}

for any κ > 0. The choice of κ (being 1 for proportions and 100 for percentages)

is irrelevant for the analysis and can also vary throughout the compositional

data set. The D-part simplex is thus a (D − 1)-dimensional sample space of

(representatives of equivalence classes of) compositions.

A closure operation C can be applied to rescale the data to a given con-
stant sum representation. Therefore, the results of statistical processing should
not depend on the sum κ of compositional parts and instead of the standard

Euclidean distances which rely on absolute (squared) di�erences between com-

ponents, relative di�erences are used to express distances between observations.
This principle called scale invariance is the �rst of three basic compositional

principles (Pawlowsky-Glahn et al., 2015). Moreover, the original data often con-

tain some non-informative part(s) in the compositional vector that are not of

interest. Hence, we do not expect any change of results concerning the respective
subcomposition when these parts are removed from the data. Subcompositional

coherence is a principle declaring that results obtained from a d -part subcom-
position, d < D, are not in contradiction with results obtained by an analysis
of the original D-part composition. Finally, permutation invariance states that
the results are independent from a chosen order of parts within the composi-
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tion, an anticipative premise for any reasonable statistical processing and one of
the key assumptions for the idea behind the construction of pivot coordinates

(Section 2.2).

The above principles and the relative scale of CoDa should be captured
by a meaningful geometric structure, preferably following the properties of the

Euclidean vector space. This is provided by the Aitchison geometry (Pawlowsky-

Glahn and Egozcue, 2001; Egozcue et al., 2003). Instead of adapting the standard

statistical methods to this speci�c geometry, it is rather preferred to �rstly express
CoDa in meaningful real coordinates and then proceed with further statistical

processing; i.e., employing the working on coordinates principle (Mateu-Figueras

et al., 2011).

Generally, there are three types of logratio coordinate representations re-
specting the Aitchison geometry with interpretation in terms of log-ratios or

their aggregations, centered logratio coe�cients (clr), additive logratio coordina-

tes (alr) (Aitchison, 1986) and orthonormal logratio coordinates (olr) (Egozcue

et al., 2003) de�ned as

alr(x) =

(
ln
x1
xD

, ln
x2
xD

, . . . , ln
xD−1

xD

)
, (1)

clr(x) =

(
ln

x1
g(x)

, ln
x2
g(x)

, . . . , ln
xD
g(x)

)
, (2)

z = olr(x) =
(〈
x, e1

〉
A
,
〈
x, e2

〉
A
, . . . ,

〈
x, eD−1

〉
A

)
, (3)

where g(x) stands for the geometrical mean of the whole composition and D-part

compositions ei = C(ei1, ei2, . . . , eiD), i = 1, . . . , D − 1, form an orthonormal basis

on the simplex.

Clr representation keeps the metric properties of CoDa and enables for a sim-
ple and meaningful interpretation in terms of dominance of a given compositional
part with respect to the other parts on average. Consequently, clr coe�cients are
useful for a graphical interpretation of compositional data including compositi-

onal biplots as a result of a dimension reduction through PCA (Aitchison and

Greenacre, 2002) or a multiple hypotheses testing based Bayesian volcano plot (de

Sousa et al., 2020). However, it is worth noting that clr coe�cients sum up to zero

which leads to a singular covariance matrix. This re�ects dimensionality of com-
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positions, which is just D− 1 for D-part compositional data. Given the zero-sum
condition, it is generally not desirable to analyze any clr part separately without
considering the others nor to use clr coe�cients with common robust statistical

methods (Filzmoser et al., 2009; Filzmoser and Hron, 2013; de Sousa et al., 2021).

There is a linear transformation between olr coordinates and clr coe�cients,

done through a D × (D − 1) matrix V of clr representations of the olr basis

vectors (i.e., logcontrast coe�cients de�ned generally as a linear combination of

logarithmized parts with zero-sum constraint on the respective coe�cients),

clr(x) = Vz = [clr(e1)T , clr(e2)T , . . . , clr(eD−1)T ] · olr(x)T . (4)

2.2 Pivot coordinates

To enable a link to clr coe�cients within an olr coordinate system, (ordinary)

pivot coordinates (OPCs), z(l) = (z
(l)
1 , . . . , z

(l)
D−1), with z

(l)
i , i = 1, . . . , D−1, given

as

z
(l)
i =

√
D − i

D − i+ 1
ln

x
(l)
i

D−i

√∏D
j=i+1 x

(l)
j

, (5)

were introduced as a special case of olr coordinates (Fi²erová and Hron,

2011; Hron et al., 2017). Here, x
(l)
i refers to the i -th part of the re-

ordered composition (xl, x1, . . . , xl−1, xl+1, . . . , xD) which can be rewritten as

(x
(l)
1 , x

(l)
2 , . . . , x

(l)
l , x

(l)
l+1, . . . , x

(l)
D ). This indicates that in each of the D coordinate

systems, a permutation of compositional parts needs to be performed, so that the

l -th part (l = 1, . . . , D) of x stands at the �rst (�pivoting�) position. It ensures

that for each part of the original composition, the desired interpretation can be

reached in one of the coordinate systems. The �rst OPC in each system, z(l)1 ,

then clearly explains all relative information about part xl and, additionally, it

is proportional to the respective clr coe�cient from the expression (2) as

z
(l)
1 =

√
D

D − 1
clr(x)l, (6)

being an extra asset in case of the univariate statistical analysis. Because OPCs
are constructed �semi-automatically�, they are certainly advantageous for high-
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dimensional data and/or multifactorial CoDa structures.

OPCs can be rewritten in terms of pairwise logratios yielding

z
(l)
i =

1√
(D − i+ 1)(D − i)

[
ln

(
x
(l)
i

x
(l)
i+1

)
+ · · ·+ ln

(
x
(l)
i

x
(l)
D

)]
. (7)

As an alternative to this situation where all pairwise logratios in z
(l)
1 are trea-

ted with the same relevance, weighted pivot coordinates (WPCs) were proposed

in Hron et al. (2017) with the objective to provide a possibility to enhance or

mitigate the e�ect of some pairwise logratios with the compositional part of in-

terest. If we rewrite the �rst OPC in the form of the expression (7) with weights

α
(l)
j , j = 2, . . . , D as

α
(l)
2 ln

x
(l)
1

x
(l)
2

+ . . .+ α
(l)
D ln

x
(l)
1

x
(l)
D

, α
(l)
2 , . . . α

(l)
D ≥ 0, α

(l)
2 + . . .+ α

(l)
D = 1,

the �rst WPC can be then obtained from here as follows

w
(l)
1 =

1√
1 +

∑D
j=2

(
α
(l)
j

)2 ln
x
(l)
1

∏D
j=2

(
x
(l)
j

)α(l)
j

. (8)

A toll for the non-equal handling of the pairwise logratios with the pivoting com-

positional part is another coordinate involving x(l)1 where its remaining (relative)

information not included in (8) gets stored, i.e., a residual coordinate w(l)
D−1. While

the general formulas for WPC w
(l)
2 , . . . , w

(l)
D−1 are computationally laborious to de-

rive, the way to obtain them is to sequentially apply the orthonormal property

of the corresponding logcontrast coe�cients and the identity clr(ei(l))1T = 0.

So far, there are two di�erent weighting techniques presented in the litera-
ture, both arising from the limitations of OPCs in di�erent practical applications.
The �rst approach published together with the general WPCs formulation in Hron

et al. (2017) re�ects the need to �lter some background noise in geochemical map-

ping where the calculated concentrations often su�er from measurement errors
and imputed rounded zeros. Although this could be relatable also for some omics
sciences, the chosen weight function based on the variation matrix would gene-
rally not work there, as in a majority of situations a certain response variable
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needs to be considered together with the omics compositional data set. For re-
gression tasks with high-dimensional compositional explanatory variables, where
the response variable is continuous, a weighting approach taking into account the

correlation structure of the data was proposed in �tefelová et al. (2021). Both

these weighting schemes downplay the parts of the original composition which
have some sort of a poor association with either the pivoting part or the re-
sponse variable. However, they are not suitable for classi�cation tasks. For the
purpose of a categorical response variable coupled with high-dimensional CoDa
from metabolomics, another weighting strategy, that can hopefully be seen as the
�last piece missing� within the approach where pivot coordinates sophistically ag-

gregate (some) information from all possible pairwise logratios, is presented in

Section 4.2.

The geosciences where the usage of pairwise logratios still prevails motivate

also the origin of backwards pivot coordinates published in Hron et al. (2021).

Employing some kind of �reverse order� in the construction of pivot-like coordi-
nates leads to a possibility of working with the desirable e�ects of simple logratios
without sacri�cing the orthonormality of olr coordinates required by many mul-
tivariate statistical methods. Starting with a choice of interpretable pairwise lo-

gratios (e.g., alr coordinates (1) with xD as a normalizing geochemical element

or any other reference role), an entire set of olr coordinates is built around each

of them. This results in systems of D − 1 backwards pivot coordinates

b
(l′)
i =

√
i

i+ 1
ln

i

√∏i
j=1 x

(l′)
j

x
(l′)
i+1

, i, l′ = 1, . . . , D − 1,

which are just orthogonal rotations of each other like in the case of OPCs. The

l′-th reordering of the parts of the original composition is chosen in such a way
that the pivoting compositional part occupies the �rst position and the denomi-

nator xD the second one, x(l′) = (xl′ , xD, . . . , xl′−1, xl′+1, . . . , xD−1).

2.3 Compositional tables

Two-factorial extension of vector CoDa (Aitchison, 1986; Pawlowsky-Glahn

et al., 2015) carrying information about a relationship between and within row
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and column factors is called a compositional table x,

x =

(
x11 · · · x1J
... . . . ...
xI1 · · · xIJ

)
, xij > 0, i = 1, . . . , I, j = 1, . . . , J. (9)

Since compositional tables form a direct extension of vector CoDa, all the prin-
ciples introduced in Section 2.1 apply, up to some minor modi�cations due to
the two-factorial structure of the tables. It is straightforward to derive that the

dimension of the simplex SIJ is IJ − 1, corresponding to the dimensionality of

(I × J)-compositional tables.

To analyze compositional tables, it is bene�cial to work also with the so-
called independence and interaction tables where their separate analysis can be
advantageous for further interpretation concerning both factors and their relation-
ships. These independent and interactive parts can be obtained from the original

table (9) through an orthogonal decomposition x = xind ⊕ xint (Egozcue et al.,

2008). Here, the independence table is constructed to extract all the relative in-

formation about row and column factors under the assumption that the original
compositional table is a product of its row and column geometric marginals, and
the interaction table contains information about the relationships between the
row and column factors.

It is crucial to realize that the dimensions of xind and xint lower to I +J − 2

and to (I − 1)(J − 1), respectively. Hence, similarly to vector CoDa, an appro-

priate real coordinate representation of compositional tables, which in addition
follows the decomposition into independent and interactive parts, needs to be es-
tablished with respect to the the sample space dimensionality and the Aitchison

geometry (Fa£evicová et al., 2016).

Generally, there are three types of OPCs corresponding to the row, column

and �odds ratio� partitioning of the compositional table (Fa£evicová et al., 2016).

The �rst two types jointly form a coordinate representation of the independence
table, the third one is used for the interaction table. Altogether, they provide
a coordinate representation of the original compositional table. In case of row
and column types of coordinates, the entire �rst row or column, respectively,
is taken as the pivoting element and separated from the rest. In the next step,
this pivot is not considered anymore and the following row or column is taken

as the new (reduced) pivoting element, and so on, until the following I + J − 2
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coordinates are obtained,

zri =

√
(I − i)J

1 + I − i
ln

g(xi•)

[g(xi+1•), . . . , g(xI•)]1/(I−i)
, i = 1, . . . , I − 1,

zcj =

√
I(J − j)

1 + J − j
ln

g(x•j)

[g(x•j+1), . . . , g(x•J)]1/(J−j)
, j = 1, . . . , J − 1, (10)

where g(xi•) and g(x•j) stand for the geometric mean of the i-th row and j-th

column, respectively.

The process of obtaining the remaining (I − 1)(J − 1) coordinates is based

on a division of the original compositional table into four blocks, say upper left
A, upper right B, lower left C and lower right D, where A contains always just

one (pivot) cell indexed by rs. The odds ratio interpretation should be now easily

seen from the following formula, where the elements of blocks A and D are in
the numerator, and the elements of blocks B and C in the denominator of the
logratio,

zOR
rs =

√
1

(I − r)(J − s)(I − r + 1)(J − s+ 1)
ln

I∏

i=r+1

J∏

j=s+1

xijxrs
xisxrj

. (11)

To obtain all OPCs of the odds ratio type in a proper order corresponding to the

zr and zc coordinates (10), the position of the pivoting cell is moving �rstly by

rows with �xed �rst column, r = 1, . . . , I − 1, then by columns with �xed last
row, s = 1, . . . , J−1, and afterward the row position is always leveled back down
by one and the column position moves again from 1 to J − 1 for the given row
until all sizes of the r × s table are covered.

Finally, permutations of the entire rows or columns following the same prin-
ciple as stated in Section 2.2 could be performed. Hereby for all combinations

of rows and columns, di�erent OPC systems consisting of zr(k)i , zc(l)j and zOR(kl)
rs ,

where (kl), k = 1, . . . , I, l = 1, . . . , J, de�nes row and column permuted to the

pivoting position within the whole table, would be gained (Fa£evicová et al.,

2016).
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2.4 Robust principal component analysis for compositional

data

One of the widely used methods for the purpose of dimension reduction of
large-scale data sets in a compositional approach is PCA just like in the case
of standard multivariate data analysis. It converts possibly correlated original
variables from the data at hand into a smaller set of linearly uncorrelated variables

called principal components (PCs). Additionally, the �rst component accounts

for the largest variance of the given data, the second one for a maximum of
the remaining variance, etc., under the constraint of being orthogonal to all the

previous PCs (Johnson and Wichern, 2007).

The covariance matrix C estimated from a real data matrix X can be
spectrally decomposed into C = GLGT , where G is a matrix of eigenvectors
and L represents a diagonal matrix of eigenvalues of C. It is then possible to de-

�ne the PCA transformation as X∗ = (X− 1T t)G, where t is the (row) location

estimator and 1 is a vector of ones with length n (number of observations). The

columns of the matrix X∗, the coordinates of the PCs, are called scores and the
columns of G, containing the respective basis vectors, are called loadings.

It is common to take t as the arithmetic mean and C as the sample covari-
ance matrix. However, both are very sensitive to outlying observations. Robust
alternatives can be obtained by using the MCD estimators of location and cova-

riance (Maronna et al., 2006). Accordingly, robust principal component analysis

(rPCA) of CoDa based on the MCD approach requires olr coordinates zi as an

input to obtain full rank data in order to get the MCD estimate of the covariance
matrix and the respective matrix of eigenvectors G. The scores z∗

i are then given

by z∗
i = (zi − t)G. Once rPCA is performed, the loadings can be transformed

back to clr coe�cients as Gclr = VG, accounting for compositional biplot con-
struction with meaningful interpretation, whereas the scores remain identical and
only a column of zeros is added to the end. For the interpretation, the focus is
on links between vertices of arrows as they stand for a proportionality between

the original compositional parts (Aitchison and Greenacre, 2002). Due to the

relation with OPCs, the single clr variables (or the respective loadings) can be

used to identify observations with a high dominance of the respective parts in

a compositional vector (Kyn£lová et al., 2016).
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3 Thesis objectives

In this dissertation thesis, the aim is to demonstrate the wide potential of
the logratio methodology for statistical analysis of compositional data in various
contexts under the common umbrella of complexity, resp. high-dimensionality of

the relevant data sets using pivot logratio coordinates (Fi²erová and Hron, 2011;

Filzmoser et al., 2018) or their modi�cations. Depending on the type of task,

�rst pivot coordinates can even be pragmatically replaced (especially in high

dimensions) by clr coe�cients sharing the same interpretation. Conversely, pivot

coordinates can also be tuned by weighting to �lter out aberrant pairwise logratios
in classi�cation tasks, or they can be generalized to the setting of compositional

tables (i.e., two-factorial CoDa) and their orthogonal decomposition.

Accordingly, the developments presented in the thesis touch upon subjects
such as Bayesian approach to the multiple hypotheses testing of CoDa in metabo-
lomics using �rst OPCs, construction of a new type of pivot logratio coordinates
using zero-one weighting technique for the improvement of biomarker identi�-
cation, or a particular choice of OPCs for compositional tables complying with
the decomposition process of two-factorial CoDa and providing a direct link to the
respective clr coe�cients in context of dimension reduction using robust principal
component analysis. All theoretical developments are accompanied with both si-
mulated data studies and empirical data sets to demonstrate bene�ts of the new

approaches (not included in this summary).

4 Theoretical framework and applied methods

4.1 Bayesian multiple hypotheses testing in compositional

analysis of high-dimensional data

We suggest here a Bayesian counterpart to the popular univariate statisti-
cal analysis of omics data sets using multiple hypotheses testing. Classical t-test
assumes a normal distribution of each of the two groups of samples which is,
however, not appropriate for a description of any data containing outliers. Because

t-distribution can be much heavier tailed (depending on degrees of freedom ν,

called a normality parameter in Bayesian statistics (Kruschke, 2013)), it seems
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to be more convenient. It turns out that it is a suitable choice also for the logratio

representation of metabolomic data (please note that the original measurements,

i.e., strictly positive data, could hardly be characterized by a t-distribution whose

domain is the whole real line). Given the linear transformation (4) between olr

coordinates and clr coe�cients, speci�cally the relation (6) in the univariate con-

text, it is su�cient to work with the clr representation instead of OPCs when the
intepretation in terms of dominance of a compositional part with respect to ave-
raged contributions of the others is preferable. However, the mental step leading
to considering �rst pivot coordinates in place of the respective clr coe�cients is
still recommendable as univariate analysis with clr coe�cients is inappropriate
due to their zero-sum constraint which distorts the covariance structure.

In Bayesian t-test, each of the two groups of samples, i.e., clr represented
patients and controls, has its own mean µpat and µcon, respectively, whose di�e-

rence is of the main interest, and its own standard deviation σpat and σcon. The

normality parameter is shared by both groups (Kruschke, 2013). To make a qua-

li�ed decision about the null hypothesis stating no di�erence in means among the
tested samples, all �ve model parameters need to be inferred.

Prior distributions of the parameters are taken as non-informative to allow
already a moderate amount of data to de�ect the original setting into the direction

driven by the evidence (Kruschke, 2014). This is in line with the situation of

untargeted metabolomics where it is prevailing not to have any well-founded
prior knowledge for a vast majority of the measured features.

The inference is driven by the Bayes' rule stating the posterior to be propor-

tional (up to an integration constant) to the likelihood times prior,

f(µpat, σpat, µcon, σcon, ν|X) ∝ f(X|µpat, σpat, µcon, σcon, ν)

× f(µpat, σpat, µcon, σcon, ν), (12)

where the joint prior distribution density f(µpat, σpat, µcon, σcon, ν) can be, assu-

ming independent parameters, rewritten as a product of marginal densities of
the single parameters. This assumption permits to take the posterior density
simply as a product of prior parameter distribution densities, and t-distributed
probability density re�ecting the data evidence X, making this an important step
simplifying the computations.

In practice, posterior density is numerically approximated by a class of Mar-
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kov chain Monte Carlo methods (MCMC) (Gelman et al., 2013) which generates

samples from the (non-normalized) posteriors (12), corresponding to both the

data and the priors.

The �nal decision concerning the null hypothesis is very intuitive in Bayesian

hypothesis testing with the use of credible sets (Thulin, 2014); for example highest

density interval (HDI), which can be formally de�ned by inequality P(µpat−µcon ∈
ΘHDI|X) ≥ 1−α, is constructed to contain 95 % of the most frequented posterior

values ΘHDI. Since the resulting MCMC chain of di�erences between means of clr
representation of both original groups of samples can be plotted into a histogram,
it may easily be computed where those ΘHDI values are allocated. If this interval
does not contain zero, the hypothesis about equality of parameters µpat and µcon is

rejected and the posterior distributions are accepted to be signi�cantly di�erent.
Moreover, the sign of the majority of HDI values further reveals the direction of
this di�erence.

Multiple testing complicates the situation since, except for the hypotheses
rejection, we also seek some importance order of metabolites based on the results
of the analysis. This can be done simply according to means of posterior distri-

bution (MPD) criterion which is a mean of a di�erence of posteriors of given

parameters µpat, µcon. However, it would lead to a serious loss of information if

the complex posterior distribution was reduced just to its MPD value. In ad-
dition, empirical probabilities that the di�erences in µpat and µcon would have

an opposite sign than indicated by posterior distributions can be considered.
Even though it is inappropriate to sort the metabolites using just p-values ob-

tained from classical t-tests (Wasserstein and Lazar, 2016), some ordering based

on the above-mentioned probabilities, which we suggest to call b-values, can be
performed. Formally, we propose to de�ne

b -value = min {P(µpat − µcon > 0),P(µpat − µcon < 0)} , (13)

where the probabilities are computed from the MCMC posterior distribution.
An analogous procedure was proposed to quantify the evidence against the rejec-
ted hypothesis when computing the largest credible set which does not contain
those values of the tested parameter θ that are valid just under the assumption
of the null hypothesis; say credible set ΘT without values θ0. Then a probability

P(θ /∈ ΘT |X) = αmin, where αmin is the smallest α ensuring that the credible set
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ΘT does not contain θ0, has a very similar meaning to the p-value from a traditio-
nal t-test whilst considering the entire posterior distribution, in particular also its

tails (De Bragança Pereira and Stern, 1999; Thulin, 2014). The above-suggested

b-value (13) could be seen as a certain variation to this idea, using the smaller

part of HDI divided into two intervals by θ0 = µpat − µcon = 0 as an empirical

probability of a realization of the posterior on the other side of the zero value.

Both MPD values and b-values are at disposal for the �nal choice of potential
biomarkers from all original metabolites.

4.2 Selective pivot logratio coordinates for PLS-DA mode-

ling

In the context of binary classi�cation problems involving CoDa, the idea that

motivates the development of selective pivot coordinates (SPCs) is to have logratio

coordinates that represent relevant relative information about xl, but aggregate
only informative pairwise logratios including xl in the �rst coordinate. That is,
given that each pairwise logratio involves two distinct compositional parts, the
aim is to include into an SPC, denoted by (l)s, only those that agree with what the

majority of logratios with xl suggest about its ability to distinguish between the
two groups of observations. Namely, in a biomedical setting, having two groups

(patient and control), a compositional part should be identi�ed as a biomarker

candidate if most pairwise logratios involving that part are signi�cantly higher
in one group than in the other.

Given a CoDa matrix consisting of N observations from two di�e-

rent groups, we propose to use the ordinary Welch's t-statistic (Welch,

1947) to determine the least relevant logratios. Denoting (l)T = ((l)T1, . . . ,

(l)Tl−1, (l)Tl+1, . . . , (l)TD) the set of such t-statistics corresponding to logratios
(
ln xl

x1
, . . . , ln xl

xl−1
, ln xl

xl+1
, . . . , ln xl

xD

)
, the criterion is to exclude those logratios for

which the statistic (l)Td, d = 1, . . . , D, d ̸= l lays outside the interval
[
(l)θ1; (l)θ2

]
.

These boundaries are computed as
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(l)θ1 =

{
−∞, if q

(
(l)T ; 1− ξ

)
< tN−2(0.025)

med
(
(l)T

)
− 2Qn

(
(l)T

)
, otherwise,

and

(l)θ2 =

{
∞, if q

(
(l)T ; ξ

)
> tN−2(0.975)

med
(
(l)T

)
+ 2Qn

(
(l)T

)
, otherwise,

where q
(
(l)T ;α

)
is the α-quantile of (l)T , med

(
(l)T

)
= q

(
(l)T ; 0.5

)
and tN−2(α)

is the α-quantile of the Student's t-distribution with N − 2 degrees of freedom

(the parameter ξ is set to 0.1 by default). Moreover, Qn stands for the robust scale

estimator of Rousseeuw and Croux (1993), i.e. Qn

(
(l)T

)
is given by about the �rst

quartile of the absolute di�erences {|(l)Tc −(l) Td|, 1 ≤ c < d ≤ D, c, d ̸= l}. The
interval for exclusion then results to be

[
med

(
(l)T

)
± 2Qn

(
(l)T

)]
, unless more

than 90% of the t-statistic values are roughly either lower than −2 or higher

than 2. Where this latter happens, only the upper (resp. lower) cut-o� values are

used.

Note that this additional condition aims to ensure that logratios involving

two strong biomarkers with discriminating e�ect in opposite directions (i.e., incre-

ased and decreased in the group of patients, respectively) are not excluded from

the aggregation. Pairwise logratios of such compositional parts would likely have
a good discriminating e�ect in the consequent statistical analysis, nonetheless,
they might be �agged as outliers among all the logratios with one of the com-
ponents in the numerator. Therefore, these are deviating logratios that should
be preserved in the respective SPC. A higher value of ξ can be chosen if this

undesirable e�ect is still apparent (for example in data sets with higher ratio of

potential biomarkers of the opposite directions).

For the following, let us denote the number of selected logratios inclu-
ding xl as (l)M , the parts in the denominator of the selected logratios as

(l)x
+
1 , . . . , (l)x

+
(l)M

, and the remaining parts as (l)x
−
1 , . . . , (l)x

−
D−1−(l)M

. To obtain

(l)s, l = 1, . . . , D, the original composition x needs to be rearranged as (l)x =
(
(l)x

−
1 , . . . , (l)x

−
D−1−(l)M

, xl, (l)x
+
1 , . . . , (l)x

+
(l)M

)
.

Then, an OPC system (l)z =
(
(l)z1, . . . , (l)zD−1

)
is set up for (l)x. To de-
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�ne SPCs, the pivoting coordinate is no longer the �rst one but the one at the

(D − (l)M)-th position, denoted by (l)zD−(l)M . Accordingly, the SPC of interest is

obtained as

(l)s =(l) zD−(l)M =

√
(l)M

(l)M + 1
ln

xl

(l)M

√
(l)M∏
k=1

((l)x
+
k )

=
1√

((l)M + 1) · (l)M

(
ln

xl

(l)x
+
1

+ · · ·+ ln
xl

(l)x
+
(l)M

)
, l = 1, . . . , D. (14)

The proposed SPCs can also be seen as a special case of WPCs (Hron et al.,

2017) introduced in Section 2.2 where weights of either 1 or 0 are assigned to each

logratio involving xl, depending on whether it is included in the aggregation or

not, respectively. Consequently, (l)s can be written in the form of expression (8)
as

(l)s =

√
(l)M

(l)M + 1
ln

xl

(l)M

√√√√
D∏
d=1
d̸=l

(xd)(l)
γd

, l = 1, . . . , D,

with weights given by

(l)γd =

{
1, if (l)Td ∈

[
(l)θ1; (l)θ2

]
0, otherwise.

Building on the OPC-based approach introduced in Kalivodová et al. (2015),

partial least squares discriminant analysis (PLS-DA) through SPCs given as (14)

is used here for the actual identi�cation of biomarker candidates. Thus, D models
of the form

Y = β0 + (l)β1 · (l)z1 + . . .+ (l)βD−1 · (l)zD−1 + ε, l = 1, . . . , D,

are considered, where Y is a binary response representing each of the two groups,
the explanatory variables (l)z1 . . . , (l)zD−1 are logratio coordinates from the l-th

SPC system, β0, (l)β1, . . . , (l)βD−1 are unknown model coe�cients and ε is the

usual random error term. Note that, unlike with PLS-DA based on OPCs where
the procedure can be computationally simpli�ed by �tting one model in clr coef-

22



�cients and then take advantage of their direct relationship with OPCs in form

of the equation (6), SPCs require the successive models to be �tted individually.

Before �tting the PLS model, the data are mean centred so that the intercept β0
can be excluded from further considerations. The optimal number of PLS com-

ponents is chosen here based on a randomization test approach (van der Voet,

1994). From each model �t, for l = 1, . . . , D, the estimate (l)β̂D−(l)M associa-

ted with the SPC (l)s is extracted, and statistical signi�cance is determined by

bootstrap-based signi�cance testing on the standardized PLS model coe�cients

(Kalivodová et al., 2015). The resulting p-values are adjusted using the Benja-

mini and Hochberg's method (Benjamini and Hochberg, 1995) to control for false

discovery rate in multiple testing.

4.3 Robust principal component analysis for compositional

tables

As stated in the Sections 2.3 and 2.4, such a coordinate representation which
respects the sample space dimensionality as well as the decomposition procedure
is needed to perform rPCA of compositional tables. Interestingly, the coordinates

of the entire compositional table given in (10) and (11) can be divided into

two groups according to the dimensionality of the independence and interaction
tables, respectively. This becomes the main advantage also when using OPCs for
rPCA since it allows for a comparison of the results from the whole table and its
decomposed parts.

Following the link (6) between the �rst OPC and the respective clr coe�cient

of vector CoDa, also the �rst coordinates of the three types from each system can

then be expressed as proportional (up to a constant) to respective clr coe�cients,

clr(xind)kl =

√
I − 1

IJ
z
r(k)
1 +

√
J − 1

IJ
z
c(l)
1 ,

clr(xint)kl =

√
(I − 1)(J − 1)

IJ
z
OR(kl)
11 ,

which is an important fact for the interpretation of the analysis.

The resulting clr coe�cients, computed originally from the elements of the
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independence and interaction tables,

clr(xind)ij = ln
xindij

g(xind
•• )

, clr(xint)ij = ln
xintij

g(xint
•• )

,

can be expressed also in terms of cells of the input compositional table as

clr(xind)ij = ln
g(xi•)g(x•j)

g(x••)2
, clr(xint)ij = ln

xijg(x••)

g(xi•)g(x•j)
, (15)

where g(xi•), g(x•j) and g(x••) stand for the geometric mean of the i-th row

(i = 1, . . . , I), the j-th column (j = 1, . . . , J) and the whole compositional table

(and its independent and interactive counterparts for g(xind
•• ), g(xint

•• )), respecti-

vely. As a consequence, each clr(xind)ij expresses a dominance of a given com-

bination of factor values in case of independence. This dominance is then either
ampli�ed or weakened according to the interaction table which depends on whe-
ther the interaction is shifted in a positive or a negative direction. The interaction
table refers also to sources of departures from independence, nevertheless, the

information obtained only from clr(xint)ij does not provide a complete picture

about the dominance of the respective cell to all other averaged cells.

There are only I + J − 2 and (I − 1)(J − 1) linearly independent clr coe�-

cients in the case of independence and interaction tables, respectively, re�ecting
the dimensionality of their sample spaces. Since this dependency makes it im-
possible to use the clr coe�cients for the rPCA of the decomposed tables, the
strategy to perform rPCA for compositional tables is the same as in case of vec-

tor CoDa: PCA loadings and scores are computed in olr coordinates (OPCs) and

then back-transformed using relation (4) to the clr space, where the loadings can

be interpreted in terms of dominance of single cells. Here, clr coe�cients of basis

vectors for rows er, columns ec and interactions eOR, forming the columns of the
matrix V, are de�ned as follows,

clr(er) =





√
I−i

(I−i+1)J
for the elements in pivot row i,

−
√

1
(I−i+1)J(I−i)

for the elements in rows i+ 1, . . . , I,

0 otherwise,

(16)

24



clr(ec) =





√
J−j

(J−j+1)I
for the elements in pivot column j,

−
√

1
(I−i+1)J(I−i)

for the elements in columns j + 1, . . . , J,

0 otherwise,

(17)

and

clr(eOR) =





√
1

rs(r−1)(s−1)
for the elements on positions i = r + 1, . . . , I,

j = s+ 1, . . . , J√
(r−1)(s−1)

rs
for the pivot elements rs

−
√

r−1
rs(s−1)

for the elements in pivot row r,

j = s+ 1, . . . , J,

−
√

s−1
rs(r−1)

for the elements in pivot column s,
i = r + 1, . . . , I,

0 otherwise,

(18)

reinterpreting the expressions from Fa£evicová et al. (2016). As a result of (4),

row-wise clr coe�cients of the whole table are obtained for the IJ−1 columns of
the matrix V. Alternatively, if the matrix V has just I + J − 2 columns formed
by clr coe�cients of basis vectors corresponding to the OPC representation of

the independence table (10), its respective clr coe�cients are derived (and simi-

larly for the interaction table with its coordinates (11)). Finally, the transformed

loadings and scores can be used to construct a biplot in order to reveal the mul-
tivariate structure of the sample of compositional tables and relations between
both factors.

5 Original results and summary

As suggested by the name of this thesis, it contributes advanced novel me-
thods in the analysis of so-called compositions, i.e., data carrying relative in-
formation. Since the nature of CoDa endowed with Aitchison geometry entails
fundamentally di�erent approach to their statistical treatment, logratio metho-
dology is used as a sound and necessary basis for the statistical analysis. The
newly introduced tools are applied in the �elds of science where high-dimensional
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data are a daily bread, namely metabolomics and econometrics.

First, a new approach to univariate statistical analysis of (untargeted) meta-

bolomic data, introducing a Bayesian version of a popular double-�ltering graphi-

cal tool called volcano plot (not included in this summary) coupled with logratio

data representation was proposed. Although interpretability of clr coe�cients
would be fully satisfactory there, the univariate analysis is geometrically only

reasonable when �rst OPCs are used instead. Further, it was explained (not

included in this summary) that the Bayesian counterpart to the multiple hypo-

theses testing might solve some of the problems occurring in frequentist analysis
of high-dimensional data such as the inappropriateness of the routinely used
p-value corrections for multiple testing or sensitivity of the traditional methods
to outlying observations. Also, even if all limitations of the frequentist approach
were over-passed, the poverty of the information provided as a result of each
hypothesis test is notable in the contrast to Bayesian approach producing the
whole posterior distribution. Decision made on behalf of Bayesian inference is,
therefore, always more competent, because it is based on much richer information
compared to a single number from the traditional hypothesis testing.

Next, since classi�cation problems with CoDa have led to duly justi�ed cri-
ticism of the OPC approach, commonly resulting in poorer sensitivity and speci-

�city than competitors based on data normalization (such as PQN in the meta-

bolomic �eld), a new type of pivot coordinates was proposed in the thesis. These

so-called selective pivot coordinates exclude from the aggregation such pairwise
logratios that are determined by Welch's t-statistic�based intervals as deviating
from the main pattern. Hence, SPCs demonstrate the value in considering more
complex logratios involving the compositional part of interest, while still retaining

the intuitive idea of aggregating relative information into one (pivoting) logratio

coordinate. Moreover, they further stress how the �exibility of the logratio appro-
ach built on well-founded geometrical grounds can outperform ad hoc solutions.
Also, as shown, the method is connected as a particular zero-one weighting case
with the broader framework of WPCs, which is able to deal with the drawbacks
of OPCs in regression tasks. That is why the SPC approach presented here for
classi�cation problems somehow closes the circle, having now covered most com-
mon CoDa analysis and modeling situations met in the metabolomics context
and beyond.

26



Finally, rPCA of compositional tables as a two-factorial generalization of
vector CoDa was studied. Given that compositional tables can be decomposed
onto their independence and interaction parts, a statistical analysis of both is
recommended to get insight into the ideal situation when relationships amid fac-
tors are �ltered away, as well as into interactions between factors forming the
original compositional table. As most practical data sets contain outlying ob-
servations, robust methods requiring an orthonormal coordinate representation
have been considered. To reduce the dimension of data at hand, rPCA using
the MCD estimator can be applied to pivot coordinates of compositional tables
according to their decomposition into independence and interaction tables. The
necessity of respecting dimensionality of the independent and interactive parts

presents the main di�erence to (vector) CoDa where such feature does not occur.

It was precisely this need of speci�c choice of olr coordinates where coordinates
of independence and interaction tables form together coordinates of the entire
compositional tables which allowed here for the additional bene�t brought by the
linkage of OPCs to clr coe�cients constructed in the same manner. Thereafter,
loadings obtained in OPCs for the rPCA were transformed back to clr coe�ci-
ents where they were used for the construction of compositional biplots and their

meaningful analysis. In case of (2 × J) table dimensions (not included in this

summary), an additional feature could be observed in the graphical output of in-

teraction tables, which was traced back to the interpretation of the clr coe�cients
as well.

The good performance of the novel methods was always shown on the analy-

ses of two di�erent dimension�relatable data sets (from the �eld of rare metabolic

diseases and economy, respectively; not included in this summary). For the Ba-

yesian volcano plot and SPCs, simulation studies (not included in this summary)

were also provided to compare the stability and sensitivity and speci�city, re-
spectively, of the proposed tools with the traditional approaches to the presented
tasks. In both cases, the results of the simulations highlighted the potential of
the new methods.

All computations in the thesis were performed using the environment of

the statistical software R (R Core Team, 2022). The related codes are available

online at https://github.com/sousaju/BayesVolcano, https://github.com/

sousaju/SPC, and https://github.com/sousaju/rPCA-CoDaTables.
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