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1 Introduction 

Compositional data (CoDa) are present in many applications from nume
rous scientific fields (e.g., economy, sociology, psychology, biology, geochemistry, 
environmental studies or so-called omics sciences covering metabolomics, geno
mics, proteomics, transcriptomics, and other branches producing high-throughput 
data). Logratio methodology based on the Aitchison geometry on simplex (Ait-
chison, 1986; Pawlowsky-Glahn et al., 2015; Filzmoser et al., 2018) can and should 
be used as a cornerstone every time the statistician works with strictly positive 
data carrying relative information. At the same time not only vectors but also 
more complex structures with the interest lying in several factors can be seen 
as CoDa. In this dissertation thesis I would like to show the wide potential of 
the logratio methodology using various different tasks interconnected by a high-
dimensionality (or the need for its reduction, respectively) of the relevant data 
sets using pivot coordinates (Fišerová and Hron, 2011; Filzmoser et al., 2018) or 
their modifications. Because, to answer any questions about CoDa requires to as
sign them "appropriate" real coordinates before applying any statistical method 
(both frequentist and Bayesian) in order to transform the problem from simplex 
to the real space. Those are, depending on the type of task, especially cente
red logratio (clr) coefficients allowing for an intuitive interpretation even when 
dealing with the high-dimensionality and isometric logratio (ilr) coordinates (re
cently renamed to orthonormal logratio (olr) coordinates to better reflect their 
geometric properties) - with the special emphasis precisely on pivot coordinates 
and their weighted counterpart (Hron et al., 2017; Stefelová et al., 2021). The 
latter are a necessity particularly when some processes in data need to be filtered 
out in order to obtain better interpretable outputs of the analysis. An overview of 
logratio methodology for CoDa with the entire development of pivot coordinates, 
their benefits, and disadvantages is provided in Chapter 2 of this thesis. 

The main bottleneck of the statistical analysis and its interpretation in all 
omics sciences is probably the (ultra) high-dimensionality of their data sets; there 
are usually hundreds to thousands variables involved with only lower tens (or even 
less in case of very rare diseases) observations. Another specific of these sciences 
is the need for a thorough and substantial data pre-processing before any sta
tistical methods can be even applied. This step includes methods used for the 
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conversion of the original measurements (i.e., chemometric signals) to the data 
chart, detection of noise variables, and inevitably also data transformation and/or 
normalization. Naturally, the quality of pre-processing can easily influence the re
sults of the subsequent statistical analysis. For example in the field of untargeted 
metabolomics or lipidomics where the analysis of clinical patient samples presents 
a promising way of novel biomarker detection further allowing for a better under
standing of pathobiochemical mechanisms and a prediction of various diseases, 
most of the current publications greatly focus also on the prepocessing steps. 
For the data transformation, mainly (natural logarithm of) so-called probability 
quotient normalization (PQN) is used (Dieterle et al., 2006). Here the original 
data are expressed in terms of ratios to a median of components normalized with 
respect to some reference sample (usually composed from component-wise me
dians). The P Q N representation is successfully seconded by logratio coordinates 
where the posed challenge is to find an appropriate counterpart within the lo
gratio methodology to better reflect geometric properties of the relative omics 
data. 

After data pre-processing, tools from both univariate and multivariate sta
tistics are usually used for the analysis in metabolomic experiments aimed at 
discovering metabolites discriminating the group(s) of patients from healthy con
trols. In the article 

• de Sousa J*. Vencálek O, Hron K, Václavík J, Friedecký D, Adam T (2020) 
Bayesian Multiple Hypotheses Testing in Compositional Analysis of Un
targeted Metabolomic Data. Analytica Chimica Acta 1097: 49-61. DOI: 
10.1016/j.aca.2019.11.006. 
* Corresponding author 

(Chapter 3 of this thesis) we presented a novel Bayesian approach to a univari
ate statistical analysis of metabolomic data expressed in first pivot coordinates 
(or clr coefficients which are up to a scaling constant equal to them) for a mul
tiple hypotheses testing problem. One of the most widespread tools for biomarker 
identification in omics sciences is the so-called volcano plot (Cui and Churchill, 
2003) functioning as a double filter: the size of effect given as a ratio of medians 
of the patient vs. control data (i.e., a fold-change) is depicted against statistical 
significance represented by a negative decadic logarithm from p-values obtained 
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in t-tests of all variables (metabolites). The traditional frequentist way of volcano 
plot construction, however, suffers from limitations posed by multiple testing of 
high-dimensional data (Wasserstein and Lazar, 2016) which can result, depending 
on the choice of the p-value corrections, in a high number of false positives or 
false negatives leading to a loss of potential biomarkers. On the other hand, the 
proposed Bayesian approach does not need to rely on any corrections to the num
ber of multiple tests performed from its nature; the decision about a hypothesis 
is build on highest density intervals (HDI) working with the entire posterior dis
tributions (Kruschke, 2013; Thulin, 2014). Another advantage is the robustness 
of the method (in Bayesian context) achieved through the prior assumption of 
the data distribution where a student t-distribution with a possibility of hea
vier tails is favored over the Gaussian outlier-sensitive option (Kruschke, 2013). 
For the construction of the volcano plot itself, we suggested to work with the 
mean values of posterior distributions as a measure of the size of the effect and 
with newly introduced b-values. The latter provide quite a complex information 
by taking into account entire posterior distributions and representing them by 
a singe value substituting the statistical significance. Furthermore, it was shown 
that a combination of the measures from both axes of the Bayesian volcano plot 
can be conveniently used in the final assessment of the potential biomarkers. As 
such, we proposed to construct so-called HDI zones, i.e., distances of the borders 
of HDI from zero. The entire concept was applied to the analysis of two different 
inherited rare metabolic diseases, each of them with a bit different specifics and 
thanks to that also dimensionality, and two simulations. The first one compared 
the stability of the introduced method and traditional multiple t-testing in case of 
a loss of samples, while the other scenario considered the influence of the chosen 
data transformation to a resulting Bayesian volcano plot in case of a systematic 
error occurring during data measurement. 

The results of multivariate statistical methods in metabolomics (or generally 
also in other omics as well as for example in geochemistry) often suffer from the 
influence of a handful strong biomarkers on the other variables. This happens 
regardless to the chosen data transformation due to the nature of mathematical 
expressions of clr coefficients, pivot coordinates, P Q N etc. where such biomarkers 
impact the coordinates of other components through the (geometric) mean or 
reference variable, respectively, in the denominator of the coordinate formulas. 
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An endeavor to eliminate this phenomenon led to a development of selective pivot 
coordinates (SPCs) presented in the article 

• Stefelová N, de Sousa J*, Hron K, Palarea-Albaladejo J, Dobešová D, Kvas-
nička A, Friedecký D (2023) Selective Pivot Logratio Coordinates for PLS-
DA Modelling with Applications in Metabolomics. Under review. 
* Corresponding author 

(Chapter 4 of this thesis). Pivot coordinates, here termed for better clarity as 
ordinary pivot coordinates (OPCs), follow a principle where the first ("pivoting") 
coordinate aggregates all logratios with the compositional part of interest, kee
ping an easy interpretation just like in the case of clr coefficients (Fišerová and 
Hron, 2011) (i.e., a dominance of a certain metabolite over the entire metabo-
lome represented by a geometrical mean of all/the rest of metabolites). At the 
same time, it is possible to create more systems of pivot coordinates (usually 
the same number as the number of compositional parts) which can be conver
ted to each other by an orthogonal transformation (Filzmoser et al., 2018) and 
where the part of interest in the first coordinate is permuted. In case of weighted 
pivot coordinates, the first coordinate from each coordinate system aggregates 
a relative weighted information about the compositional part of interest (Hron 

et al., 2017; Stefelová et al., 2021). The atonement for capturing only the rele
vant and, in other words, more immaculate information in the first coordinate, 
is generation of a remainder, i.e., another coordinate involving the part of in
terest where its redundant information is stored. As a weighting technique for 
classification problems of high-dimensional CoDa, we suggested zero-one weights 
allowing to fully eliminate aberrant pairwise logratios of the compositional part 
of interest in its first SPC. The big advantage of such weighting is that there 
is no specific residual coordinate for the part of interest since the creation of 
SPCs results in OPC systems with just one difference - the pivoting coordinate 
of each system is generally no longer the first one. Therefore, SPCs can be seen as 
a certain orthogonal rotation of the original pivot coordinates which means that 
the quality of binary classification tasks using multivariate statistical methods 
on data sets expressed in SPCs does not get deteriorated. As for the particular 
choice of strategy to assign the weights to the individual compositional parts, we 
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chose Welch t-statistics with Q n estimator-based (Rousseeuw and Croux, 1993) 
confidence intervals to determine individual logratios which should be eliminated 
from the pivoting coordinate of each set of SPCs (i.e., by assigning zero weights to 
the respective pairwise logratios). After constructing Welch-based SPCs, partial 
least squares - discriminant analysis was applied on the data as a well-established 
method for classification tasks in omics sciences. The estimated regression para
meters were further standardized using a bootstrap-based significance test with 
Benjamini-Hochberg corrections for multiple testing. A comparison of sensitivity 
and specificity among logarithmized PQN, OPCs and SPCs was provided in a si
mulation based on the biochemical equation from Filzmoser and Walczak (2014). 
Especially in case of a higher ratio of potential biomarkers in the total number of 
metabolites, the newly proposed coordinates outperform the others in both true 
positive and true negative rate which makes them a very versatile transformation 
option. The effect of the introduced weighting technique was illustrated on two 
data sets from targeted lipidomics and untargeted metabolomics, respectively. 

More complex CoDa structures where the observations are carrying inhe
rently relative information about data distribution on the basis of two (or even 
more) factors are not yet common in omics, geochemistry or biology. Neverthe
less, to model for example a relative structure of unemployed people depending on 
their gender and age group, or a relative structure of university students among 
different study subjects with relation to the obtained university degree, could 
not be done otherwise. Next to these examples from socioeconomics, other cases 
of two-factorial compositions might be found e.g., in the field of environmental 
management, such as mineral resources divided into groups based on their re-
newability and the type of extraction, or the size of protected areas on land and 
in the ocean further characterized by the degree of the territorial protection. If we 
had such data at hand from different countries, the measurements would probably 
considerably differ depending e.g., on the population size and so the relevant in
formation would be more likely captured by the ratios than absolute values. From 
the mathematical point of view, we talk about two-factorial extension of vector 
CoDa, called compositional tables (Egozcue et al., 2008, 2015). Using the logratio 
methodology, each compositional table can be decomposed into an independent 
and an interactive part and oh coordinates assigned to each of them (Fačevicová 
et al., 2016) enabling further statistical processing of compositional tables using 
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popular multivariate methods. However, the construction of aforesaid coordina
tes generally requires prior knowledge of the data and it is rather complicated 
to contemplate the connections among the independence table, interaction table 
and the entire compositional table where the latter two are influenced by relati
onships between the two factors. At the same time, it is precisely the connectivity 
of the individual coordinate systems that should pose as the crucial point in the 
choice of the coordinates. After all, the comparison of independence and inter
action tables is what allows for a better understanding of the original data. For 
this purpose, in the article 

• de Sousa J*, Facevicova K, Hron K, Filzmoser P (2021) Robust Principal 
Component Analysis for Compositional Tables. Journal of Applied Statis
tics 48(2):l-20. DOI: 10.1080/02664763.2020.1722078. 
* Corresponding author 

(Chapter 5 of the thesis) we proposed a particular choice of pivot coordinates 
for all three compositional tables (i.e., the original table and its decomposed 
parts) with a direct link to clr coefficients including their explicit formulas and 
interpretation. This is a key step for an application of robust multivariate methods 
on two-factorial CoDa as well as for a generalization of the entire situation for 
more than two factors (i.e., multifactorial compositional cubes (Facevicova et al., 
2022)). Regarding the former, we applied on the data expressed in the presented 
coordinates a robust principal component analysis (rPCA) since one of the most 
common tasks in statistics is a dimension reduction. To estimate covariation 
matrix for rPCA, a so-called M C D estimator (Maronna et al., 2006) was used. 
This approach requires to carry out the computations of loadings and scores using 
pivot coordinates of vectorized compositional tables, as clr representation leads to 
singularity, and transform them to clr coefficients only afterward for the purpose 
of compositional biplots construction. The entire process was illustrated on the 
two economical data sets mentioned at the beginning of this paragraph. 

In addition to the previously mentioned methodological papers, below are 
listed further papers from an interdisciplinary work in metabolomics, where the 
focus was primarily 
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• to improve pre-processing of the measurements by removing data multipli
cities using correlation networks: 

Kouřil Š*, de Sousa J*. Václavík J, Friedecký D, Adam T (2020) CROP: 
Correlation-based Reduction of Feature Multiplicities in Untargeted Meta-
bolomic Data. Bioinformatics 36(9):2941-2942. DOI: 10.1093/bioinforma-
tics/btaa012. 
* Joint first authors 

• to identify novel biomarkers in order to help with the description of un
derlying pathobiochemistry of the studied diseases using the logratio me
thodology as well as previously mentioned CROP and Bayesian volcano 
plot: 

Václavík J, Mádrová L, Kouřil S, de Sousa J, Brumarová R, Janečková H. 
Jáčová J, Friedecký D, Knapková M , Kluijtmans L A J , Grúnert S C, Vaz 
F M , Janzen N , Wanders R J A, Wevers R A, Adam T (2020) A newborn 
screening approach to diagnose 3-hydroxy-3-methylglutaryl-CoA lyase de
ficiency. JIMD Reports 54(l):79-86. DOI: 10.1002/jmd2.12118. 

Mádrová L, Součková O, Brumarová R, Dobešová D, Václavík J, Kouřil S, 
de Sousa J, Friedecká J, Friedecký D, Barešová V, Zikánová M , Adam T 
(2022) Combined Targeted and Untargeted Profiling of HeLa Cells Defici
ent in Purine De Novo Synthesis. Metabolites 12(3):241. DOI: 10.3390/me-
tabol2030241. 

• to enhance the decision process in the newborn screening program of inborn 
errors of metabolism using a machine learning method coupled with CoDa 
approach: 

Kouřil S, de Sousa J, Fačevicová K, Gardlo A, Muehlmann C, Nordhausen 
K, Friedecký D, Adam T (2023) Multivariate Independent Component Ana
lysis Identifies Patients in Newborn Screening Equally to Adjusted Refe
rence Ranges. Under review. 
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2 Logratio methodology of compositional data 

As discussed in the previous chapter, the relative structure of the observati
ons may be more interesting than the absolute values of their components in many 
real-world applications. For example, when considering numbers of students at
tending bachelor, master and doctoral studies at different universities, the ratios 
among these three groups can be more relevant for a statistical analysis than just 
the empirical values, which might not be comparable because of different total 
student numbers. In other words, the actual total number of students (sufficiently 
high so that the impact of a measurement error with small sample sizes can be 
neglected) might be considered as not informative for the purpose of the analysis. 
An important point connected to this is the invariance to the change of scale. 
Suppose that the student numbers are multiplied by a scalar which does not es
sentially change the information contained in the data. That means, both the 
original and e.g., percentage representations carry the same information when 
the relative structure of student degrees is of primary interest. Of course, the 
challenge is then to process such kind of information in a statistically coherent 
way. Moreover, if only for example undergraduate student numbers were to en
ter the analysis, the analysis could be misleading if not conducted carefully to 
assure results consistent with the findings emerging from the entire composition. 
Therefore, to work with quantitatively described contributions of a given whole 
in a concise and meaningful manner, some concepts need to be introduced first. 

A positive (row) vector x = (xi,X2, • • • ,XD) is defined to be a D-part com
position if it carries relative information, i.e., the ratios between the components 
are informative (Aitchison, 1986; Pawlowsky-Glahn et al., 2015). Any compositio
nal vectors with equal number of parts are considered to be representatives of the 
same equivalence class if one vector is obtained from another by a positive scalar 
multiplication (Pawlowsky-Glahn et al., 2015). This is an important point e.g., 
for some omics sciences where the total often might not be known (i.e., when only 
peak intensities but not real concentrations are measured). Accordingly, equiva
lence classes of compositional data are represented without loss of information in 
a Z)-part simplex, 
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for any K > 0. The choice of K (being 1 for proportions and 100 for percentages) 
is irrelevant for the analysis and can also vary throughout the compositional data 
set. Formally, the closure operation 

. . / K • X \ K • X2 K • XN 

can be applied to rescale the data to a given constant sum (K) representation. 
Accordingly, the D-part simplex is a sample space of (representatives of equi
valence classes of) compositions. As an interesting consequence of the constant 
sum representation, possibly outlying observations from the main data cloud are 
characterized by aberrant ratios rather than by significantly deviating absolute 
values of components (Filzmoser and Hron, 2013). 

Therefore, results of statistical processing should not depend on the sum K of 
compositional parts and instead of the standard Euclidean distances which rely 
on absolute (squared) differences between components, relative differences are 
used to express distances between observations. This principle called scale inva-
riance is the first of three basic compositional principles (Pawlowsky-Glahn et al., 
2015). Moreover, the original data often contain some non-informative part(s) in 
the compositional vector that are not of interest. Hence, we do not expect any 
change of results concerning the respective subcomposition when these parts are 
removed from the data. Subcompositional coherence is a principle declaring that 
results obtained from a d-part subcomposition, d < D, are not in contradiction 
with results obtained by an analysis of the original £>-part composition. Finally, 
permutation invariance states that the results are independent from a chosen 
order of parts within the composition, an anticipative premise for any reasona
ble statistical processing and one of the key assumptions for the idea behind the 
construction of pivot coordinates (Chapter 2.2). 

The importance of the compositional principles and possible impacts on the 
discrepancy of the subsequent analysis are illustrated on a toy example of spuri
ous correlation in Table 1. Let us imagine a metabolomic study where groups of 
amino acids, organic acids, nucleotides, lipids and other metabolites are measured 
on samples from 3 healthy controls. Two approaches to the metabolomic analysis 
are considered and the resulting values are always closed to aliquots; approach A 
where the mass spectrometry is done with all the metabolites (Table la) and ap-
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proach B where metabolomics and lipidomics are measured separately, thus lipids 
are excluded from the metabolomic data set (Table lb). It is a well expectable 
assumption for the correlation structure of the groups of metabolites to hold re
gardless of the chosen analytical approach, however, it is not the case here. It can 
be seen that the pairwise correlations between amino acids and organic acids, 
and amino acids and nucleotides, respectively, change when a subcomposition of 
samples without lipids (after closure operation) is examined (Table Id). While 
the former suddenly presents with a positive Pearson correlation coefficient, the 
latter changes to the negative value; both originally starting with the same zero 
correlation (Table lc). Also, correlation coefficient of amino acids with the group 
of "others" increases from moderate to a very strong between approaches A and 
B. The reason for this behavior is the choice of the Pearson correlation coefficient 
for assessing the strength of relationship between compositional parts which is 
based on Euclidean geometry where the key compositional assumptions generally 
do not hold. 

Table 1: A toy example on spurious correlation of metabolomic data (a whole 
composition; approach A) and their subcomposition (measurements without 
lipids; approach B). Closed samples from 3 healthy controls are considered 
following the distribution of 15 % of amino acids (AA), 18 % of organic acids 
(OA), 16 % of nucleotides (N), and 13 % of lipids (L) detectable in a human 
metabolome (Sana et al., 2013) together with the remainder of other metabolites 
(O). 

samples A A OA N 0 L 
1 0.15 0.18 0.16 0.39 0.12 
2 0.16 0.19 0.15 0.37 0.13 
3 0.16 0.17 0.17 0.39 0.11 

(a) closed data acquired by approach A 

A A OA N O L 
A A 1 0 0 -0.5 0 
OA 1 -1 -0.87 1 
N 1 0.87 -1 
0 1 -0.87 
L 1 

samples A A OA N O 
1 0.17 0.21 0.18 0.44 
2 0.18 0.22 0.17 0.43 
3 0.18 0.19 0.19 0.44 

(b) closed data acquired by approach B 

A A OA N O 
A A 1 0.31-0.31-0.89 
OA 1 -1 -0.7 
N 1 0.7 
O 1 

(c) correlation matrix for approach A (d) correlation matrix for approach B 
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Therefore, the above principles and the relative scale of CoDa should be 
captured by a meaningful geometric structure, preferably following the proper
ties of the Euclidean vector space. This is provided by the Aitchison geome
try (Pawlowsky-Glahn and Egozcue, 2001; Egozcue et al., 2003). Operations of 
perturbation and power transformation, being analogous to a sum of two vectors 
and a multiplication of a vector by a scalar in the real Euclidean geometry, are 
defined as 

x®y=(x1y1,...,xDyD) and a 0 x = (x",..., x%), (1) 

where x and y are Z>-part compositions, and a is a real constant. Accordingly, 

operations of perturbation and power transformation form a (D — l)-dimensional 

vector space (<S D ,©,0) (Pawlowsky-Glahn et al., 2015). 

To obtain Euclidean vector space structure, the Aitchison inner product, 
norm and distance are defined for Z)-part compositions x and y as 

respectively, where x Q y = x (& [(—1) 0 y]-

Given the introduced specifics of compositional data endowed with the Ait
chison geometry, standard statistical methods cannot be applied directly on raw 
data. Instead of adapting the methods to this specific geometry, it is rather pre
ferred to firstly express compositional data in meaningful real coordinates and 
then proceed with further statistical processing; i.e., employing the working on 
coordinates principle (Mateu-Figueras et al., 2011). 

2.1 Centered logratio coefficients 

Generally, there are three types of logratio coordinate representations re
specting the Aitchison geometry with interpretation in terms of logratios or 
their aggregations, centered logratio coefficients (clr), additive logratio coordina
tes (air) (Aitchison, 1986) and isometric logratio coordinates (ilr) (Egozcue et al., 
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2003). The former two are defined as 

alr(cc) = (In — , l n — , . . . , In Xd~1 ) (4) 
V xD xD xD J 

and 

clr(a?) = ( l n - ^ - , l n - ^ - , . . . , l n - ^ - J , (5) 
V 9(x) g(x) g(x)J 

where g(x) stands for the geometrical mean of the whole composition. While air 
coordinates could be potentially used in some omics sciences with xD representing 
an "anchoring" or "reference" feature, they are only generated with respect to an 
oblique basis of the simplex (i.e., they form an oblique coordinate system) and do 
not map the Aitchison inner product (2), norm and distance (3) to the real space 
resulting also in a violation of the subcompositional coherence (Pawlowsky-Glahn 
et al., 2015). Since their usage with standard statistical methods thus has some 
limitations and also represents another streamline in CoDa analysis, they will not 
be further described for the purpose of this thesis. 

On the other hand, clr representation keeps the metric properties of CoDa 
and enables for a simple and meaningful interpretation in terms of dominance 
of a given compositional part with respect to the other parts on average. Con
sequently, clr coefficients are useful for a graphical interpretation of compositi
onal data including compositional biplots as a result of a dimension reduction 
through P C A (Aitchison and Greenacre, 2002) or a multiple hypotheses testing 
based Bayesian volcano plot (de Sousa et al., 2020). The effect of clr represen
tation is illustrated by another toy metabolomic example (Fig. 1). Imagine the 
statistical analysis is started with two samples of three metabolites, M i , M 2 , M 3 

and M ' i , M ' 2 , M ' 3 , respectively. The measured values vary between these sam
ples (e.g., a situation with differently diluted urine samples), however, the ratios 
among metabolites are preserved (i.e, 1:16:4). Thus, when the single metabolites 
are expressed relative to all metabolites (represented by a geometric mean of the 
entire respective metabolome), the same "absolute" values are achieved for both 
samples. After applying natural logarithm, the ratios change so the differences 
in small peaks are exhibited (de Sousa et al., 2020). The logarithmization of the 
ratios is also a source of some further advantages since it brings symmetry to 
the data. The values shift from strictly positive onto the entire real space and 

18 



M2 

M', 
c l r ( M ) = c l r ( M ' ) = l n ( l / 4 , 4, 1) = ( -1 .38 , 1.38, 0) 

metabolome representation o o 
Q. g(M) = ^ 1 / 2 - 8 - 2 - 2 o 
55 g(W) = ^ 1 / 4 - 4 - 1 - 1 1.38 

Mi 
metabolites as parts of the whole 

M _ M ' 

A(M) "stM7; 
: (1/4, 4, 1) 

5 6 7 
retention time 

M 2 = M'2 

M 3 = M' 3 

5 6 7 
retention time 

-4M] = M'] 

Figure 1: Illustration of the effect of clr coefficients to the (metabolomic) data. 
Two steps of the workflow can be seen: i) metabolites represented relative to 
the whole metabolome allow to reveal relative information hidden in the data, 
ii) application of the natural logarithm provides a way to exhibit differences in 
smaller peaks. 

changing the role of numerator and denominator does not change the information 

provided by the logratio except for its sign (i.e., \a(xi/xj) = — \n(xj/xi), with 

i,j = l,...,D). 

Another possibility how to understand clr transformed data is through a row
wise centering of logarithmized data, 

clr(x) 1 l nx i — — (lnxi + • • • + Inxo 1 In xD — — (In X\ H + In xD] 

It means that compositional parts after logarithmization are represented in every 
sample by their arithmetic mean and this mean is subtracted from the logarithmi
zed parts. More importantly, one can see that pairwise logratios to all individual 
compositional parts are involved in each clr coefficient, 

clr (a?) In 
.Xl 

In XD 

y U i = i x i 

I n ^ + . - . + l n ^ -
X2 XD . X\ XD-1 

where 1/D plays the role of a scaling constant. This is convenient because it 
guarantees that no information is lost when considering relative contribution of 
Xi within a given composition. However, it may also lead to biased results caused 
by presence of either strongly discriminating or "noise" variables (e.g., powerful 
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biomarkers and values close to detection limit, respectively, in metabolomics) 
which can heavily influence logratios aggregated into the clr coefficient. Fortuna
tely, while this is quite significant for lower-dimensional data and may even lead 
to some controversies (Filzmoser and Walczak, 2014), for increasing number of 
parts the different effects predominantly cancel out for any kind of compositional 
data (Gardlo et al., 2016; Mert et al., 2016). Moreover, our newly proposed wei
ghting technique used in the construction of SPCs (Stefelova et al., 2023) has the 
potential to improve the results of the consecutive statistical analysis in terms of 
both false positive and false negative ratios in such cases. 

It is worth noting that clr coefficients sum up to zero which leads to a singular 
covariance matrix. This reflects dimensionality of compositions, which is just D—1 
for .D-part compositional data. Given the zero-sum condition, it is generally not 
desirable to analyze any clr part separately without considering the others nor 
to use clr coefficients with common robust statistical methods (Filzmoser et al., 
2009; Filzmoser and Hron, 2013; de Sousa et al., 2021). 

2.2 Pivot coordinates 

To avoid disadvantages of clr coefficients, ilr coordinates can be used for the 
mapping of CoDa from simplex to the real space. These orthonormal coordina
tes (therefore recently proposed to be called rather orthonormal logratio (olr) 
coordinates (Martin-Fernandez, 2019)) with respect to the Aitchison geometry, 
z G R D _ 1 , can be derived as 

z = o\v(x) = ((x, el)A , (x, e2)A ,...,{x, e D _ 1 ) J , (6) 

where D-part compositions e1 = C(e\, ez

2,..., el

D), i = 1,..., D — 1, form an ortho-
normal basis on the simplex. 

Obviously, the interpretation of olr coordinates might be more intricate than 
in the case of clr coefficients as there are infinitely many possibilities of their 
construction depending on the choice of basis vectors e\ Sequential binary parti
tioning (SBP) of compositional parts is one possibility for providing a meaningful 
choice of el for the practitioner which is corresponding to the prior knowledge 
about compositions and resulting in coordinates called balances (Egozcue and 
Pawlowsky-Glahn, 2005). Those can be described as normalized ratios or con-
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trasts formed always between two groups of compositional parts which do not 
overlap until there is nothing left to be further divided anymore. 

There is a linear transformation between olr coordinates and clr coefficients, 
done through a D x (D — 1) matrix V of clr representations of the olr basis 
vectors (i.e., logcontrast coefficients defined generally as a linear combination of 
logarithmized parts with zero-sum constraint on the respective coefficients), 

To enable a link to clr coefficients within an olr coordinate system, (ordinary) 

pivot coordinates (OPCs), = (zf , . . . , ^ _ i ) , with zf \ i = 1,..., D — 1, given 
as 

were introduced as a special case of olr coordinates (Fišerová and Hron, 2011; 
Hron et al., 2017). They are appropriate especially in situations where no prior 
knowledge about how to perform SBP is available (e.g., in Bruno et al. (2015); 
Buccianti et al. (2014); Dumuid et al. (2018); Kalivodová et al. (2015)), because 
they are constructed "semi-automatically". This is certainly an advantage for 
high-dimensional data and/or multifactorial CoDa structures. 

Here, xp refers to the «-th part of the re-ordered composition ( x / , x i , . . . , 

xi-i, xi+i, which can be rewritten as (x[, x\,..., x\ , xf)v ..., x]j). This 

indicates that in each of the D coordinate systems, a permutation of compositio

nal parts needs to be performed, so that the /-th part (I = 1,..., D) of x stands 

at the first ("pivoting") position. It ensures that for each part of the original 

composition, the desired interpretation can be reached in one of the coordinate 

systems. 

Accordingly, the first OPC in each system, z[l\ then clearly explains all 
relative information about part xi and, additionally, it is proportional to the 
respective clr coefficient from the expression (5) as 

clr(cc) = Vz = [clr(e 1)T,clr(e 2) (7) 

(9) 
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being an extra asset in case of the univariate statistical analysis. The linear 
transformation between clr coefficients and olr coordinates (7) naturally holds 
also for pivot coordinates with logcontrast coefficients 

clr(el D-i 
D-i + 1 

\ 
0, . . . ,0 ,1 , 

D-i " ' D — i 

V i-l 
D-i J 

i = l,...,D-l. 

Just as clr coefficients could be rewritten in terms of pairwise logratios, the 
same can be done with OPCs yielding 

1 
y/(D-i + l)(D 

' / J ) \ / r ( 0 ' 

x i+l. X D 

(10) 

As an alternative to the situation where all pairwise logratios in zf1 are tre
ated with the same relevance, weighted pivot coordinates (WPCs) were proposed 
in Hron et al. (2017) with the objective to provide a possibility to enhance or 
mitigate the effect of some pairwise logratios with the compositional part of inte
rest. If we rewrite the first OPC in the form of the expression (10) with weights 

(!) x • 
3 

a)', J = 2, ...,D as 

a f In X l 

(0 

x 0) 

(0 

x 
(t 

(I) 
2 -

. . . a g > 0 , (t 
(0 

+ (!) 1, 

the first W P C can be then obtained from here as follows 

w 
(0 In x 

(0 

i + e jL 2 (4 " ) njL2(4") 
(0 (11) 

A toll for the non-equal handling of the pairwise logratios with the pivoting 

compositional part is another coordinate involving x( where its remaining (re

lative) information not included in (11) gets stored, i.e., a residual coordinate 
W D - V While the general formulas for W P C • • • ,WD-I a r e n ° t provided in 
the thesis because they are computationally laborious to derive, the way to ob
tain them is to sequentially apply the orthonormal property of the corresponding 
logcontrast coefficients, i.e., clr(e l (^)clr(e l^)T = 1 and clr(e l^)clr(e f e^)T = 0, 
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i,k = 1,... ,D — l,i k, and the identity c l r (e*^)l T = 0, starting with 

1 
clr(e ( l , - a j m , . . . , - a g ) , / = ! , . . 

So far, there are two different weighting techniques presented in the litera
ture, both arising from the limitations of OPCs in different practical applications. 
The first approach published together with the general WPCs formulation in Hron 
et al. (2017) reflects the need to filter some background noise in geochemical map
ping where the calculated concentrations often suffer from measurement errors 
and imputed rounded zeros. While this could be relatable also for some omics 
sciences, the chosen weight function 

a • 
3 

l^k=2 a 
(0 

with (0 1 
..(0 

j = 2,... ,D; p > 0 

based on the variation matrix 

T (i) 
D 

m,n—l 

D 

would generally not work there, as in a majority of situations a certain response 
variable needs to be considered together with the omics compositional data set. 

For regression tasks with high-dimensional compositional explanatory vari

ables, where the response variable is continuous, a weighting approach taking 

into account the correlation structure of the data was proposed in Stefelovä et al. 

(2021). The weights before normalization, öq , are defined based on a vector of 

correlations 

( JD\ ( T W N 

C o r r l n # ) ' - - - ' C o r r l n ^ 

computed between the response variable Y and data expressed in pairwise lo-
gratios which are subsequently smoothed by a kernel density estimation and fi-

D. nally integrated from zero to the correlation given by ', j 

Both these weighting schemes downplay the parts of the original composition 
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which have some sort of a poor association with either the pivoting part or the 
response variable. However, they are not suitable for classification tasks. For the 
purpose of a categorical response variable coupled with high-dimensional CoDa 
from metabolomics, another weighting strategy, that can hopefully be seen as 
the "last piece missing" within the approach where pivot coordinates sophistically 
aggregate (some) information from all possible pairwise logratios, is presented in 
Chapter 4. 

The geosciences where the usage of pairwise logratios still prevails motivate 
also the origin of backwards pivot coordinates published in Hron et al. (2021a). 
Employing some kind of "reverse order" in the construction of pivot-like coordi
nates (i.e., starting with a simple balance of two compositional parts as a scaled 
pairwise logratio and adding others one by one in an SBP procedure) leads to 
a possibility of working with the desirable effects of simple logratios without 
sacrificing the orthonormality of olr coordinates required by many multivariate 
statistical methods. Starting with a choice of interpretable pairwise logratios (e.g., 
air coordinates (4) with XD as a normalizing geochemical element or any other 
reference role), an entire set of olr coordinates is built around each of them. This 
results in systems of D — 1 backwards pivot coordinates 

(I') 
b\> = ]/ — l n — ^ — , x,l =1,...,D-1, 

which are just orthogonal rotations of each other like in the case of OPCs. The 
l'-th reordering of the parts of the original composition is chosen in such a way 
that the pivoting compositional part occupies the first position and the deno
minator XD the second one, x^ = (xi>, XD, • • •, xv-x, %i'+i, • • • ,%D-I)- With this 
particular order, a direct link between the first backwards pivot coordinate and 
the respective l'-th. air coordinate can be expressed similarly to the relationship (9) 
established between the first OPC and l-th clr coefficient as 

1 ( z ) 1 1 

For the sake of completeness in the state of the art of the pivot coordinates 
family, symmetric pivot coordinates (Kynclova et al., 2017) and their weighted 
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counterpart (Hron et al., 2021b) should be listed here. As the name suggests, 

they capture dominance of a compositional part x\ and x\, respectively, over 

the (weighted) rest of the parts of x"> in a symmetric way. Their simplified 

formulas expressed in terms of pairwise logratios are as follows 

\ X 2 X3 

\ x l X 3 X D / 

/ (0 (0 (0N 

•«,?> = i V f A« In ^ + # In + • • • + 1 $ In % 

10 

/ ~(0 „(0 „ e r 
m^jv j f l A o ) l n f | 5 + 4 ' ) i n f | y + . . . + 5 g ' i ] 1 % 

D 

where n[1),N^,nP > 0, and A^2 1/2 are normalizing constants and 

> 0,ip^ ,... ,ipjji ^3 > • • • >^D a r e weights, all explicitly defined in Kynclova 
et al. (2017) and Hron et al. (2021b) together with the strategies to complete 

the olr coordinate systems sz^ and stt/ z), respectively. The need for the symme
trical property of logratio coordinates arises from essentially bivariate statistical 
methods such as correlation analysis (see e.g., the toy example in Table 1 of 
Chapter 2) and negative correlation bias of clr coefficients. 

2.3 Compositional tables 

A considerable amount of practical data sets, such as in econometrics (Fa-
cevicovä et al., 2014, 2016), biology (Herder et a l , 2008; Dickhaus et al., 2012), 
or sociology (Egozcue et al., 2008; Ortego and Egozcue, 2016), consist of ob
servations carrying intrinsically relative information about the distribution ac
cording to two factors (i.e., two random variables in case of distributional data). 
From a mathematical perspective, this leads to a two-factorial extension of vec
tor CoDa (Aitchison, 1986; Pawlowsky-Glahn et al., 2015) carrying information 
about a relationship between and within these (row and column) factors. 

25 



Such a structure, called a compositional table x, 

A n • • • xu\ 
x=\ : •.. : , Xij > 0,i = 1,... ,I,j = 1,..., J, (12) 

• • • XJJJ 

thus can be represented, e.g., either as a contingency table (with sufficiently high 
numbers of counts in the cells) or as a table of the same order with maximum 
likelihood estimates of the respective probabilities - due to scale invariance, the 
relative information (contained in the ratios between the cells) is the same in both 
cases (Egozcue et al., 2008, 2015). Hence, the concept of compositional tables co
vers both the discrete case of contingency tables and its continuous counterpart 
(e.g., input-output tables in Facevicova et al. (2014)). Nevertheless, in the com
positional context, a particular table represents usually just one realization in 
a sample from a multivariate continuous distribution. Due to the decision to 
treat such two-factor data compositionally, the possible order of the factor ca
tegories (for example age or education levels) is ignored, making this a relevant 
subject for future research. 

Since compositional tables form a direct extension of vector CoDa, all the 
principles and operations introduced in Chapter 2 apply, up to some minor mo
difications due to the two-factorial (row and column) structure of the tables. 

Accordingly, the closure operation 

KXJl KXJJ 

is used to represent a compositional table x in an /J-part simplex SIJ of vec
torized tables vec(cc) = ( i n , . . . , xn,..., xu). Perturbation, powering (1), and 
the Aitchison inner product (2) of two tables x, y and a real number a can be 
defined analogously (Egozcue et al., 2008, 2015), 

/xnyn • • • xuyu\ 
x© y= : • •. : , aOx = 

\xiiyn • • • xjjyuj 

i,j k,l y 

C(x) = 
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while the Aitchison norm and distance are obtained in the same way as in (3). 

It is straightforward to derive that the dimension of the simplex SIJ is IJ — 1, 

corresponding to the dimensionality of (/ x J)-compositional tables. 

Permutation invariance and subcompositional coherence are valid with re
spect to the two factors of the compositional tables, allowing to permute and 
discard entire rows or columns only. 

To analyze compositional tables, it is beneficial to work also with the so-
called independence and interaction tables where their separate analysis can be 
advantageous for further interpretation concerning both factors and their relation
ships. These independent and interactive parts can be obtained from the original 
table (12) through an orthogonal decomposition (Egozcue et al., 2008) 

Here, the independence table is constructed to extract all the relative information 
about row and column factors under the assumption that the original composi
tional table is a product of its row and column geometric marginals, and the 
interaction table contains information about the relationships between the row 
and column factors. Therefore, in case of actual independence in the data at hand 
(in the above sense but also in the standard probabilistic sense), all the entries 
of the interaction table are the same, since there is no remaining information 
left in the data after the construction of the independence table; the interaction 
table thus forms a neutral element with respect to the Aitchison geometry of 
compositional tables. Otherwise, the interactive part describes the nature of the 
deviation from an independent situation. 

It turns out that the introduced decomposition can be easily derived from 
row and column projections of the compositional table onto marginal subspaces 
(for further details, see Egozcue et al. (2008)), 

(13) 

/g(xn,... ,xu) • • • g(xn 

row (a?) 

\g{xn,... ,xu) • • • g(xn, ,xu)J 
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/ g(xn, xn) : g(xu, xuj\ 
colMx) 

\g(xn, xn) : g(xu, xu)J 

where g(.) denotes the geometric mean of the cells in the argument and _L stands 

for orthogonality of the projections. 

Recalling the case of independence in probability tables, it is instant to 
get the independence table simply by perturbing both these projections, x^ = 
row±(cc) ©cor 1 (a;). From (13) it follows that the interaction table is just a decom
position remainder in Xint = x 0 X M - For practical calculations, the following 
formulas are used to obtain the single entries of these tables, 

-ind nil** 
Kk=i 1=1 

It is crucial to realize that the dimensions of Xind and Xint lower to /+J—2 for the 
independence tables, which follows immediately from the dimensions of the row 
and column projections being, respectively, I — 1 and J —I, and to (/ — 1)(J — 1) 
for the interaction tables, which is easily obtained from the orthogonality of the 
decomposition. 

Hence, similarly to vector CoDa, an appropriate real coordinate represen
tation of compositional tables, which in addition follows the decomposition into 
independent and interactive parts, needs to be established with respect to the 
the sample space dimensionality and the Aitchison geometry (Facevicova et al., 
2016). 

In case of compositional tables (and particularly their decomposed parts), 
a generalization of balance coordinates needs to consider two SBPs according 
to each factor (Facevicova et al., 2018). However, even for moderate numbers of 
rows and columns, the interpretation of such coordinate representation gets rather 
complex without a deeper expert knowledge. Therefore, only a two-factorial al
ternative to pivot coordinates is appealing for practice (Facevicova et al., 2016, 
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2018). 

Generally, there are three types of OPCs corresponding to the row, column 
and "odds ratio" partitioning of the compositional table (Facevicova et al., 2016). 
The first two types jointly form a coordinate representation of the independence 
table, the third one is used for the interaction table. Altogether, they provide 
a coordinate representation of the original compositional table. In case of row 
and column types of coordinates, the entire first row or column, respectively, 
is taken as the pivoting element and separated from the rest. In the next step, 
this pivot is not considered anymore and the following row or column is taken 
as the new (reduced) pivoting element, and so on, until the following I + J — 2 
coordinates are obtained, 

l + I-im{g(Xi+l.),...,g(Xl.)]W-i)> 

'^XTTT^^U ,  9 { Xi y i i / ( J , r J = l , - - - ^ - l , (15) 

where g(xi9) and g(x,j) stand for the geometric mean of the i-th row and j-th 

column, respectively. 

The process of obtaining the remaining (/ — 1)(J — 1) coordinates is based 
on a division of the original compositional table into four blocks, say upper left 
A, upper right B, lower left C and lower right D, where A contains always just 
one (pivot) cell indexed by rs. The odds ratio interpretation should be now easily 
seen from the following formula, where the elements of blocks A and D are in 
the numerator, and the elements of blocks B and C in the denominator of the 
logratio, 

zOR 
(/ - r ) (J - s)(I - r + 1)(J - a + 1) ̂ J l ^ xj'n' ( 1 6 ) 

To obtain all OPCs of the odds ratio type in a proper order corresponding to the 
zr and zc coordinates (15), the position of the pivoting cell is moving firstly by 
rows with fixed first column, r = 1,..., I — 1, then by columns with fixed last 
row, s = 1,..., J — 1, and afterward the row position is always leveled back down 
by one and the column position moves again from 1 to J — 1 for the given row 
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until all sizes of the r x s table are covered. 

Finally, permutations of the entire rows or columns following the same prin
ciple as stated in Chapter 2.2 could be performed. Hereby for all combinations 

of rows and columns, different OPC systems consisting of z\ , Zj and z°R , 

where (kl), k = I,... ,1,1 = 1,..., J, defines row and column permuted to the 

pivoting position within the whole table, would be gained (Facevicova et al., 

2016). 
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3 Bayesian multiple hypotheses testing 
in compositional analysis of untargeted 
metabolomic data 

Targeted as well as untargeted metabolomic analyses of clinical samples form 
a promising way to discover new biomarkers allowing better prediction of some 
diseases. Application of both basic univariate and advanced multivariate statisti
cal methods is a necessary part of all metabolomic experiments aiming to find the 
most discriminating metabolites between groups of healthy and ill people. After 
pre-processing the raw untargeted or targeted metabolomic data, respectively, 
into uniquely characterized features or metabolites, respectively, the differences 
between patients and controls are often evaluated using t-test or, assuming nor
mality of metabolites is rejected in many cases, its nonparametric alternative 
- Wilcoxon rank-sum test. The results from multiple testing are compared me
rely by p-values and fold-changes using a so-called volcano plot. Nevertheless, 
this approach suffers from the usual frequentist problems, specifically, the high-
dimensional character of metabolomic data induces that the multiple simultane
ous testing (when used in the correct way, i.e., with p-value corrections) is too 
strict and tends to produce false negative outputs. 

This chapter aims to provide a Bayesian counterpart to the traditional 
(frequentist) approach. Generally, the methods of Bayesian inference modify prior 
probabilities of all possible hypotheses or parameter values based on the evidence 
in the data, until a posterior distribution is obtained (Kruschke, 2014; Gelman 
et al., 2013). Given fixed parameters, Bayesian t-test assumes t-distributed vari
ables which, since t-distribution is characterized by heavier tails than the normal 
distribution, results in a robust method in the Bayesian context (Kruschke, 2013). 
Moreover, it is not needed to consider p-value corrections in Bayesian statistics 
when running more tests simultaneously since decisions are not based on p-values: 
Bayesian inference rather relies on the properties of posterior distributions (Gel-
man et al., 2013; Kruschke and Liddell, 2018). To compare results from multiple 
hypotheses testing of metabolites and evaluate biomarker candidates, a volcano
like graph using means of posterior distributions together with more sophisticated 
information provided by the entire posteriors (called b-values) is proposed here. 
Finally, we suggest incorporating distance levels of the posterior highest density 
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intervals from zero as an additional feature into the Bayesian version of the vol
cano plot. 

Since a metabolome in an arbitrary biological material can be seen as a com
plex collection made of ample amount of small molecules (i.e., metabolites), it is 
rather straightforward to see metabolomic data as compositional in their nature. 
Also, given that a mass spectrometric response to individual metabolites differs 
based on their diverse physicochemical properties, signals measured in a metabo
lomic experiment do not reflect actual concentrations of metabolites. The molar 
quantification is difficult, laborious, time consuming, and rarely done in current 
metabolomic experiments since it requires appropriate calibration together with 
use of suitable internal standards for all metabolites. Hence, the relevant infor
mation in metabolomic data is naturally contained not in absolute levels but in 
ratios/parts of the whole, although the output is anticipated to be interpretable in 
sense of (groups of) the original metabolites. That is why their analysis needs to 
be based on the relative structure rather than on absolute values of mass spectro
metric measurements even in case of PQN, which have become one of traditio
nal competitors of logratio techniques in omics context (Filzmoser and Walczak, 
2014), or other normalizations. The logratio methodology for CoDa introduced 
in Chapter 2 should be, therefore, an essential step in any statistical treatment 
of such data including Bayesian analysis. Given the linear transformation (7) be
tween olr coordinates and clr coefficients which gets reduced to the relation (9) 
for the univariate case, it is sufficient to work with the clr representation of the 
data in what follows, bearing the respective first OPC in mind instead. Although 
like in many omics data analyses, also here the interpretability of clr coefficients 
is satisfactory, the above described mental step leading to pivot coordinates is 
still needed as univariate analysis with clr coefficients is otherwise inappropriate 
due to their zero-sum constraint which distorts the covariance structure. 

Restrictions of both t-test and its nonparametric version in a multiple hy
potheses testing, as well as the limited information they provide, are reminisced 
in Chapter 3.1. In Chapter 3.2, a Bayesian counterpart to a (non)parametric 
t-test and its evaluation in the case of multiple testing are provided. Theoretical 
developments are illustrated in Chapter 3.3 on real data analyses comparing, re
spectively, plasma samples and dry blood spots of healthy controls and patients 
suffering from inherited metabolic disorders of 3-hydroxy-3-methylglutaryl-CoA 
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lyase deficiency (HMGCLD) and medium-chain acyl-CoA dehydrogenase defici
ency (MCADD). Lastly, two simulations designed to mimic a loss of samples and 
a systematical measurement error are used to compare the performance of the 
traditional methods with the newly proposed approach in Chapter 3 . 4 . 

3.1 Limitations of traditional hypothesis testing 

Prior to the introduction of the Bayesian approach to hypothesis testing, the 
procedure of the frequentist approach is recalled, i.e., the case of a parametric 
two-sample t-test. The null hypothesis suggests that there is no difference between 
central tendencies of two compared groups, whose observations are described by 
normal distributions with parameters o i , and y u 2 , a 2 , respectively. A p-value of 
such a test is a probability to, assuming the null hypothesis is true, obtain the data 
we have or even more extreme results towards the alternative hypothesis. If this 
probability is very low, it suggests that the observations are in contradiction with 
the null hypothesis and therefore the hypothesis should be rejected in favor of the 
alternative; there is a statistically significant difference between the groups. The 
threshold of a p-value for rejection is usually set to a significance level a = 0.05. 

Running more tests simultaneously (under the assumption of indepen
dence), say D t-tests for D measured metabolites, results in an unacceptable 
(1 — (1 — a)D) • 100% probability of getting at least one false positive result 
and, therefore, the significance level needs to be appropriately lowered. There is 
a number of approaches to do so; a well-known concept is a simple Bonferroni 
correction, setting a = 0.05/D for each of the multiple comparisons. However, 
with increasing D this results in a close-to-zero significance level and the Bon
ferroni correction becomes useless because it tends to produce false negative re
sults; the procedure is not able to detect true biomarkers. Furthermore, in the 
case of nonparametric testing, i.e., when using the well-known Wilcoxon rank-
sum test, the newly set significance level might not be even feasible to overcome. 
Thus it might be impossible to reject the null hypothesis if only a small number 
of observations was available; this is anyway a frequent case in metabolomics of 
rare diseases. A less conservative way, appropriate in particular when dealing with 
high-dimensional data, is to use some corrections derived from a so-called false 
discovery rate (FDR), e.g., Benjamini-Hochberg (Benjamini and Hochberg, 1995) 
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or Benjamini-Yekutieli corrections (Benjamini and Yekutieli, 2001). FDR-based 
corrections, which are frequently used in the last years, weaken the negative ef
fects of the crude Bonferroni correction but are not fully able to overcome them 
(i.e., corrected p-values still may not exceed the significance level in case of hun
dreds of metabolites). Unfortunately, even today numerous publications build the 
final conclusions only on completely uncorrected results of multiple tests despite 
the opposite general consensus published in Wasserstein and Lazar (2016). 

In addition, (parametric) t-tests are not designed to handle outliers which 
can easily occur in metabolomic analysis and lead to a distortion of classical sta
tistical procedures including hypothesis testing. Their robust counterparts exist 
but may become numerically unstable with small sample sizes which are typi
cal for metabolomic data of rare diseases. Hence it is an advantage of Bayesian 
counterpart to a t-test, introduced in the next chapter, to be a "naturally robust 
method" due to a proper choice of the prior distribution. In compositional data, 
moreover, the outlying observations are characterized by deviating logratios, while 
in standard data sets the same is caused by deviating (absolute) values of the 
original components. This needs to be taken into account when clr coefficients or 
OPCs are processed. 

Another problem raising from performing multiple t-tests is the absence of 
a statistically sound decision criterion for an order of the results according to 
the magnitude of differences between the tested groups (e.g., some criterion orde
ring the metabolites in consonance with the importance of differences separating 
patients and healthy controls) and, consequently, identifying the possible bio-
markers. Although p-values are still too frequently misinterpreted as a tool for 
doing so, they do not provide any means of comparability among the rejected 
hypotheses (Wasserstein and Lazar, 2016). That is why the choice of potential 
biomarkers should never be done only based on p-values arrangement. On the 
other hand, volcano plot (Cui and Churchill, 2003; L i , 2012), which is a type 
of a scatter plot used to identify significant changes in large data sets (Fig. 2), 
already grants a certain way to compare the results of multiple tests thanks to 
its double-filtering (i.e., by an effect size and a statistical significance). Volcano 
plot is usually depicting a log 2 fold change of means (medians) of the two groups 
on x-axis and a — log 1 0 of the t-test (Wilcoxon rank-sum test, ANOVA) p-values 
on y-axis for every metabolite. Size of the negative logarithm of p-value tends 
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to increase with an absolute value of the logarithm of the fold change (Cui and 
Churchill, 2003) and thus all the points in this graph form a "V" shape while 
potential biomarkers can be found in both upper corners (on one side for healthy 
controls and on the other one for patients). Yet, the decision based on a volcano 
graph is to a large extent subjective as there is no general consensus regarding the 
interpretation of the plot (i.e., importance of the axes and their thresholds) (Li, 
2012). We suggest here a Bayesian counterpart that will not suffer from this 
limitation. 
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Figure 2: An example of a traditional volcano plot with an effect size ex
pressed by log 2 (fold-change) on x-axis and a statistical significance given as 
—log10(p-value) on y-axis. Variables depicted in blue are evaluated as signifi
cant by employing the most frequent thresholds, abs(log2(fold-change)) = 1 and 
p-value = (Bonferroni-corrected a ) , which are highlighted in orange. 

3.2 Bayesian counterpart to a t-test 

Methods of Bayesian inference basically reallocate some prior credibility 
across the space of all possible hypotheses or values of parameters consistently 
with the data evidence (Kruschke, 2014; Gelman et al., 2013). For the con
struction of the Bayesian counterpart to the t-test, several steps are needed. 

First, as mentioned above, classical t-test assumes a normal distribution 
of each of the two samples. The normal distribution has light tails and, con
sequently, it is not appropriate for a description of any data containing outliers. 
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Here, t-distribution seems to be more convenient because it can be much hea
vier tailed, depending on degrees of freedom v. Higher the value of v is, closer 
the tails are to those of the normal distribution which is also why v is called 
a normality parameter in Bayesian statistics (Kruschke, 2013). It turns out that 
t-distribution is a suitable choice also for the logratio representation (specifically 
clr coefficients as a workhorse for OPCs) of metabolomic data. Please note that 
the original measurements (strictly positive data) could hardly be characterized 
by a t-distribution whose domain is the whole real line. In Bayesian t-test, each 
of the two groups of samples, i.e., clr represented patients and controls, has its 
own mean y u p a t and y U c o n , respectively, whose difference is of the main interest, 
and its own standard deviation a p a t and a c o n . The normality parameter is shared 
by both groups (Kruschke, 2013). To make a qualified decision about the null hy
pothesis stating no difference in means among the tested samples, all five model 
parameters need to be inferred. 

When choosing prior distributions of the parameters, it is always beneficial to 
have at least some knowledge about the behavior of the variables (and therefore 
the parameters), i.e., central tendencies in groups of controls and patients for 
mass to charge ratios (m/z) of all metabolites, because the initial belief should 
be ideally reflected in the choice of priors. Conversely, when there are no relevant 
historical data or expert assumptions, it is generally advised to select as vague 
priors as possible, named non-informative priors, to allow already a moderate 
amount of data to deflect the original setting into the direction driven by the 
evidence (Kruschke, 2014). Additionally, the usage of non-informative priors is 
supported by utilization of so-called credible sets (Thulin, 2014) which will be 
defined later. Here, the case of vague priors allowing for their reduced importance 
during the inference is almost inevitable to follow as in untargeted metabolomics 
it is prevailing not to have any well-founded prior knowledge for a vast majority 
of the measured features. 

In line with the previous thoughts, priors of the mean value parameters 
are taken as normally distributed, /i, ~ J\f(x,, 10002s2), where x . and si are 
group sample means and variances from the clr representation of the data at 
hand with • denoting the group of patients and controls, respectively. In accor
dance with the non-informative priors philosophy, they are scaled relative to 
the observations and wide enough not to be confining. The initiatory distri-
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bution of the standard deviation is assumed to be uniform on a large enough 
interval, a, ~ W(l/1000s., 1000s.), and finally, the prior of the shared pa
rameter v is exponential with expectation equal to 30 to accommodate the 
initial credibility evenly between light-tailed data and data with outliers, i.e., 
v - 1 ~ Exp(l/29) (Kruschke, 2013). 

Once the prior assumptions are assigned, the distributions of parameters 
/U.,(T#, and v can be continuously modified with gradually coming observations 
in terms of conditional "probabilities" of these data X, given the values of the 
parameters (likelihood). Eventually, this process of credibility reallocation leads 
towards the posterior distribution. The inference is driven by the Bayes' rule 
stating the posterior to be proportional (up to an integration constant) to the 
likelihood times prior, 

/(/^pat) Cpatj ̂ con, Cconj v > 0~pat, con i 0~Con i v) 
x /(/^pat) Cpatj ̂ conj Cconj (17) 

where the joint prior distribution density / ( y u p a t , a p at, y U c o n , (Tcon, z/) can be, assu
ming independent parameters, rewritten as a product of marginal densities of 
the single parameters. This assumption permits to take the posterior density 
simply as a product of prior parameter distribution densities, and t-distributed 
probability density reflecting the data evidence, making this an important step 
simplifying the computations. 

In practice, posterior density is numerically approximated by a class of Mar
kov chain Monte Carlo methods (MCMC) (Gelman et al., 2013) which generates 
samples from the (non-normalized) posteriors (17), 

< P̂at, O ât. /4>n, CTcon> V°) , 3 = 1, • • • , N , N l a r g e > 

corresponding to both the data and the priors. The only disadvantage of this ap
proach is a possible presence of autocorrelations in the generated sample since for 

each j, k = 1,..., N, k ^ j, the parameter combinations ([J?paij, c p a t , ^{on, aJ

con, z/J) 

and 
' '-'pat) l^coni '-'con) V 

) are no longer independent. Thankfully, it can be 
observed that for a long enough M C M C sample, say iV = 100,000, the autocorre
lation is effectively lowered just by the chosen chain length and the estimation of 
the posterior distribution remains credible (Kruschke, 2014). 
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The final decision concerning the null hypothesis is very intuitive in Bayesian 
hypothesis testing with the use of credible sets (Thulin, 2014), for example highest 
density interval (HDI), which can be formally defined by the following inequality 

POpat - /"con e © H D I > 1 ~ <*, (18) 

is constructed to contain 95 % of the most frequented posterior values ©HDI- Since 
the resulting M C M C chain of differences between means of clr representation of 
both original groups of samples can be plotted into a histogram, it may easily be 
computed where those ©HDI values are allocated. If this interval does not contain 
zero, the hypothesis about equality of parameters y u p a t and y U c o n is rejected and 
the posterior distributions are accepted to be significantly different. Moreover, as 
can be seen in Fig. 3, the sign of the majority of HDI values further reveals the 
direction of this difference. 

In the same manner as (18), HDI can be constructed also for the difference 

MPD =5.15 MPD =-1 .69 

0%<0< 100% 

9 5 | I | D I 
4.74 5.56 

M-pat " Mcon 

100%<0<0% 

95% HDI 
-1-94 H b 43 

-2 .0 -1.5 -1 .0 -0 .5 

M- pat " Hcon 

0.0 

Figure 3: Examples of null hypotheses rejection based on highest density inter
vals (HDI) where MPDs stand for means of posterior distributions. Differences 
between Monte Carlo Markov Chain generated posteriors of y u p a t and y U c o n are 
depicted in blue, where their respective parts in negative and positive values 
are given by the percentages in red. In both examples, there is strong evidence 
against the equality of means of the clr represented groups and thus biomarker 
candidates are detected. On the left, the significant difference is caused by unex
pectedly high levels of the metabolite in a group of patients with respect to an 
average behavior of the whole metabolome; on the right, the opposite tendencies 
with a relatively high concentration of the depicted metabolite in a metabolome 
of healthy controls can be observed. 
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of standard deviations a p a t — a c o n instead of central parameters, which produces 

a very similar output (up to the type of the probability distribution) as in Fig. 3, 

allowing for a further Bayesian analysis of variance. 

An interesting property of the Bayesian t-test is that the null hypothesis 
can be also accepted. To do so, a concept of a region of practical equivalence 
(ROPE) (Kruschke, 2013) needs to be introduced. Researchers might specify an 
interval of values being interchangeable with zero for all practical purposes. For 
example, the difference of 0.5 between groups of patients and controls for a certain 
metabolite can be determined to be equivalent with no difference at all due to 
some measurement tolerance. Then it is natural to set the ROPE = [—0.5,0.5] 
for such a metabolite. Every time HDI of the posterior distribution happens to 
be located entirely inside its ROPE and to contain the zero value at the same 
time, it is a strong enough evidence for accepting the null hypothesis. However, 
this particularity is impossible to achieve with small ROPE and a small number 
of observations at the same time, or in other words in untargeted metabolomics 
of rare diseases. 

3.2.1 Multiple Bayesian hypotheses testing 

While it was quite immediate, how a decision is made in a single Bayesian 
t-test, multiple testing complicates the situation a bit. Naturally, except for the 
hypotheses rejection, we also seek some importance order of metabolites based on 
the results of the analysis. This can be done simply according to means of poste
rior distribution (MPD) criterion which is a mean of a difference of posteriors of 
given parameters y u p a t , y ( i c o n . However, it would lead to a serious loss of information 
if the complex posterior distribution was reduced just to its M P D value. In addi
tion, empirical probabilities that the differences in /x p a t and y ( i c o n would have an 
opposite sign than indicated by posterior distributions can be considered. Even 
though it is inappropriate to sort the metabolites using just p-values obtained 
from classical t-tests, some ordering based on the above-mentioned probabilities, 
which we suggest to call b-values, can be performed. Formally, we propose to 
define 

6-value = min { P ( ^ p a t - yU C On > 0), P ( / / p a t - y ( i c o n < 0)} , (19) 
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where the probabilities are computed from the M C M C posterior distribution. The 
idea of b-values comes from the concept of discrepancies for posterior predictive 
assessment of model fitness described in Gelman et al. (1996). Here, instead of 
judging the fit of some model to the analyzed data, compatibility with the null 
hypothesis is evaluated by a b-value. 

An analogous procedure was proposed to quantify the evidence against the 
rejected hypothesis when computing the largest credible set which does not con
tain those values of the tested parameter 9 that are valid just under the as
sumption of the null hypothesis; say credible set QT without values # 0 Then 
a probability 

P(0 i QT\X) = a m i n , (20) 

where a m i n is the smallest a ensuring that the credible set QT does not contain 
6>o, has a very similar meaning to the p-value from a traditional t-test whilst 
considering the entire posterior distribution, in particular also its tails (De Bra-
ganga Pereira and Stern, 1999; Thulin, 2014). The above-suggested b-value (19) 
could be seen as a certain variation to the idea described by the expression (20), 
using the smaller part of HDI divided into two intervals by #0 = //pat — y U c o n = 0 
as an empirical probability of a realization of the posterior on the other side of 
the zero value. 

The b-values are hardly computable when the data from both groups are 
strongly discriminated. As a consequence, the posterior distributions obtai
ned from the difference of central tendencies of both groups of samples, i.e., 
Mpat — /"con, are far from zero. They can be even so far from zero that the empiri
cal probabilities of them having opposite signs naturally equal zero (as is also the 
case of both the examples given in Fig. 3), which may happen for a considera
ble number of metabolites. Recall that the posterior distributions are acquired by 
M C M C and as such, the tails are cut at a certain point. Since this can often occur 
when dealing with real metabolomic data sets (see Chapter 3.3.2), b-values might 
be alternatively computed using a fitted theoretical distribution to the posterior 
histograms. 

Although a difference of two or more t-distributed probability density functi
ons (pdf) is generally a Behrens-Fisher pdf (i.e., a linear combination of Student's 
pdf with coefficients formed by sine and cosine of a certain constant which is re-
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fleeting different population variances), it can be approximated under reasonable 
conditions by a t-distribution (Patil, 1965; Davis and Scott, 1973). This is also the 
case of the Bayesian t-test posteriors and so we propose a pooled t-distribution 
to be fitted on the posterior difference of y u p a t — y U c o n resulting from each of the 
multiple tests. Due to the tails of this fit going already to the infinity as opposed 
to the M C M C result, required b-values are no longer of a zero value albeit they 
can be fairly small. Subsequently, a version of b-values (empirical or t-distributed 
pdf-based) which can be used to order the metabolites according to their ability 
for discrimination is always available. 

Both M P D values and b-values are at disposal for the final choice of potential 
biomarkers from all original metabolites. At this point, some kind of a Bayesian 
version of the volcano plot may be just the convenient tool for a graphic represen
tation of the results from multiple hypotheses testing, depicting the M P D values 
on x-axis and — log 1 0 of the b-values on y-axis. Nonetheless, it still remains to 
a subjective decision which axis should contribute more to the final decision; it 
is advisable to consider both statistical and metabolomic background. Generally, 
whenever the variances of posteriors tend to significantly differ among metabo
lites (e.g., in the analysis of cells), we suggest to rather rely on M P D criterion 
since the influence of the variance fluctuation affecting the b-values could be even 
more inflated by the logarithm. In other cases, given some variance stability, the 
complex information of posterior distributions reflected on the y-axis is favorable. 

Another advantage of the Bayesian approach can be seen in the possibility 
to combine the information from both volcano graph axes, making the interpre
tation of the plot more straightforward. Whilst there have been recently similar 
attempts in case of the traditional volcano plot (e.g., in Kumar et al. (2018)) and 
the field can still be explored more in the future, we suggest a very straightfor
ward idea for the Bayesian counterpart. As was explained in the first part of this 
chapter, the decision about a single metabolite (in terms of its clr representation) 
is made through HDI (not) containing the y u p a t — y U c o n = 0 value, under the ini
tial (prior) assumption that the null hypothesis is valid. One could then explore 
this behavior further and, for those hypotheses that are rejected in the previous 
step, take the distance of the lower or upper HDI boundary from zero (whichever 
is in a closer proximity) akin to the measure of evidence against the presumed 
equality of central behavior of the two groups of samples. The biomarker candi-
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dates could then be ordered in accord with these distances of HDI from zero. The 
information on HDI distance levels is easy to incorporate to the final version of 
the Bayesian volcano plot in a form of colored zones. The shape of the individual 
HDI levels, which can be seen in Fig. 4 and Fig. 6, indeed confirms that the idea 
of the distance levels merges both aforementioned criteria for double-filtering of 
biomarkers. 

3.3 Analysis of rare inherited metabolic disorders 

Rare diseases are according to the European Medicines Agency (EMA) de
fined as medical conditions appearing in less than 5 cases per 10,000. There are 
over 1,000 of such conditions varying in incidence where some of them are ex
tremely rare (a few patients only described in the literature). Two rare inherited 
metabolic disorders were analyzed here; organic aciduria caused by a deficiency 
of enzyme in leucine metabolism - H M G C L D , and a disorder in beta oxidation of 
fatty acid metabolism - M C A D D . While M C A D D is one of the most frequent rare 
diseases (with the incidence of 1 : 14, 600 (Rhead, 2006)) and it is globally part of 
the newborn screening, H M G C L D has on the other hand incidence more typical 
for the rare diseases (less than 1 : 100,000 (Pié et al., 2007)) and is currently 
impossible to screen in majority of the countries worldwide. Therefore, H M G C L D 
represents the type of high-dimensional data that metabolomic experts on rare 
diseases often have to deal with and so it could conceivably show whether the 
results of Bayesian multiple hypotheses testing remain valid for a statistically 
problematic low number of samples. The M C A D D data set, on the other hand, 
provides an opportunity to run at least some small simulations to ensure bet
ter comparison of the proposed method with the traditional approach than if 
evaluated just on the real data analysis itself. 

3.3.1 3-Hydroxy-3-methylglutaryl-CoA lyase deficiency 

The H M G C L D data set is a result of a recent untargeted metabolomic 
study (Václavík et al., 2020) performed on plasma samples of 5 patients in a range 
of 4 days to 8 years of age and 21 age-matched controls. The samples were ana
lyzed by reverse-phase liquid chromatography coupled to orbital ion-trap high-
resolution mass spectrometry in positive mode in the range of m/z 90 - 1,000. 
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Figure 4: Bayesian volcano plot with colored HDI distance levels for the 
H M G C L D data set. The dark red points stand for the insignificant compounds 
where the null hypotheses about equality of the parameters y u p a t and y U c o n were 
not rejected. The potential biomarkers are depicted in blue-green colors, located 
in the upper right corner for patients and in the upper left corner for controls, 
respectively. Metabolites with m/z of 290.1598 and 262.1649 represent previously 
published biomarkers of the disease. 
* - no metabolites detected i n these H D I zones 

Peak-picking was conducted with Compound Discoverer 3.0 including peak area 
integration, gap-filling and retention time alignment. Based on the previous steps, 
a table with metabolomic features (characterized by unique m/z and retention 
time) and corresponding peak areas of these features in all samples (relative 
quantitative data) was generated. Peak-picking was followed by removal of ad-
ducts, isotopes and ion source fragments applying correlation networks (Kouřil 
et al., 2020). Afterward, the data were pre-processed in R software (R Core Team, 
2022) using a package Metabol (Gardlo et al., 2019). Employing calculations from 
quality control samples, locally estimated smoothing signal (LOESS) correction 
was applied (Sumner et al., 2007) and features with a coefficient of variation 
higher than 30% were excluded from following data curation. The total amount 
of unique metabolites after data processing and filtering was 808. The data were 
then expressed in clr coefficients for further statistical analysis. 

There are two previously known diagnostically significant plasma metabolites 
of H M G C L D , 3-hydroxyisovalerylcarnitine and 3-methylglutarylcarnitine with 
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Figure 5: Traditional volcano plot with Bonferroni corrected level of signifi
cance resulting from parametric t-test for the clr represented H M G C L D data set. 
Variables depicted in blue with labels are evaluated as significant by employ
ing the most frequent thresholds, abs(difference of means) = 1 and p-value = 
(Bonferroni-corrected a ) , which are highlighted in orange. 

m/z of 262.1649 and 290.1598 (Santarelli et a l , 2013). However, by applying the 
traditional parametric univariate analysis (i.e., parametric t-test) and the double-
filtering in a volcano plot, only the second biomarker was identified among signi
ficant metabolites (Fig. 5). This might be connected to the crucially low number 
of patients for the analysis involving such a big amount of variables in addition to 
the fact that the feature 262.1649 was evaluated as important by the logarithm 
of fold change, however, it did not pass the Bonferroni correction. With this re
sult at hand, the biochemist could easily miss an important biomarker, focusing 
instead on a group of other (possibly biologically non-significant) metabolites in 
further steps of the multivariate analysis and feature identification. 

When employing the Bayesian approach to the data analysis, both these 
biomarkers were readily found in the biggest HDI distance levels whilst the com
pound with m/z = 290.1598 was identified even as the most significant one of 
the entire graph (Fig. 4). The other metabolites featuring in the five highest HDI 
levels together with the discussed ones, namely 145.0495 and 303.2318 elevated in 
patient samples, and 377.2685 elevated in controls, are also meaningful from the 
biological point of view. Whilst the latter ones are a fatty acid and a monoacyl-
glycerol with a direct connection to pathobiochemistry of the disease, 145.0495 
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is a novel plasma biomarker published in Václavík et al. (2020). It carries a po
tential to eventually include H M G C L D in the newborn screening procedure. To 
conclude, the proposed approach to the volcano plot construction proved to give 
more accurate and meaningful results for the H M G C L D data in concordance with 
the published research. 

3.3.2 Medium-chain acyl-CoA dehydrogenase deficiency 

In a study published by Najdekr et al. (2015), 25 patient dry blood spots 
and an equal number of control samples were analyzed by untargeted metabo-
lomics approach with reverse-phase liquid chromatography coupled to orbital 
ion-trap high-resolution mass spectrometry in positive mode in the range of 
m/z 70 — 1,200. A l l experimental details are provided in the original article. 
Data pre-processing was conducted in R software (R Core Team, 2022) with XCMS 
(peak finding, zero imputation; Smith et al. (2006); Tautenhahn et al. (2008); 
Benton et al. (2010)) and CAMERA (isotopes and adducts removal; Kuhl et al. 
(2011)) packages. Similarly to H M G C L D experiment, LOESS correction was ap-
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Figure 6: Bayesian volcano plot with HDI distance levels for the M C A D D data 
set. The dark red points stand for the insignificant compounds where the null 
hypotheses about equality of the parameters y u p a t and / / c o n were not rejected. The 
potential biomarkers are depicted in blue-green colors, located in the upper right 
corner for patients and in the upper left corner for controls, respectively. 
* - no metabolites detected i n this H D I zone 
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plied (Sumner et al., 2007) and features with a coefficient of variation of quality 
control samples higher than 30% were excluded from following data curation. The 
resulting total amount of unique features was 273 where the low number is given 
by the peak-picking method and by the limited size of dry blood spot samples 
(analyzed sample corresponds to less than 2 (A of blood). 

The analysis of H M G C L D has shown that the traditional and Bayesian ap
proaches must not necessarily lead to similar results and provided some reasoning, 
why the Bayesian t-test seems to be preferable. Therefore, for next data set, the 
focus is on the Bayesian approach (Fig. 6; Table 2). Due to the nature of the 
data, i.e., highly discriminated groups of patients and controls, the t-distributed 
pdf-based b-values had to be used here. Interestingly, for the M C A D D data, 
solely the b-values provided quite similar results to those based on complex 
multivariate analysis tools including an S-plot from the orthogonal partial le
ast squares - discriminant analysis (Najdekr et al., 2015). The best biomarker 
candidates identified by b-values are shown in Table 2 (together with the out
come yielded by MPD). Namely the four known biomarkers (octanoylcarnitine 
with m/z = 288.2172, hexanoylcarnitine with m/z = 260.1859, decanoylcarni-
tine with m/z = 316.2484, and decenoylcarnitine with m/z = 314.2327) and 
some oxidative lipids (PAzPC with m/z = 666.4354, PC(24:0(COOH)) with 
m/z = 652.4194, and PC(23:0(COOH) with m/z = 638.4037) were identified. 

Table 2: Ten best biomarkers for patients suffering from M C A D D according to 
M P D and b-value, respectively. 

Markers according to m/z 
M P D 260.1859 288.2172 610.3770 314.2327 652.4194 

638.4037 596.3614 639.4089 666.4354 315.2361 
b-value 288.2172 666.4354 791.5634 260.1859 316.2484 

652.4194 772.5488 314.2327 829.6804 638.4037 

For the field of rare metabolic diseases, the M C A D D data set was processed 
on a relatively high number of samples in two size-balanced groups. This allowed 
to carry out simulations (at least up to a certain extent) by considering a loss of 
samples and a systematic error during measurement. Both issues are discussed in 
the Chapter 3.4. 
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3.3.3 Practical aspects of analysis 

From practical point of view, researcher should be aware that the proposed 
method (i.e., compositional approach coupled with the Bayesian model) does 
not improve the situation with zeros nor the non-linear behavior of analytes 
above upper limit of quantification and in this way it behaves the same as other 
statistical tools commonly used for the purpose of metabolomic experiments. 
Similarly to "standard" metabolomic approach, also here the initial raw data 
should be pre-processed in order to deal with experimental drift (e.g., by LOESS) 
and imputation of missing values. 

There are generally two types of missing values that might occur in me
tabolomic data, values under detection limit producing so called rounded zeros 
and missing values in one statistical class resulting in left-censored data (e.g., for 
a genetic knock out situation), respectively. In case any of these are present in 
the measurements, they need to be handled before assigning the coordinate re
presentation to the data. Several approaches to imputation of missing values and 
rounded zeros in compositional data already exist, for details see e.g., Palarea-
Albaladejo and Martin-Fernandez (2015); Tempi et al. (2016). 

In biological samples differing widely in dilution (physiologically most do-
minantly observed in urine samples), ratio to a compound representing "concen
tration" of urine by kidneys (e.g., creatinine) is used to make results clinically 
comparable. In principle, creatinine could be seen as a substitute for total urinary 
metabolic content (due to its stable production over time) and thus, the introdu
ced tool seems to be analogous in such situations due to its compositional basis, 
although it induces also some methodological caveats (the resulting coordinates 
are oblique). Generally, clr coefficients provide an elegant and due to isometry 
with the Aitchison geometry also a theoretically reliable way to overcome the 
problematics of normalization and scaling. 

3.4 Simulations 

Two simulations were performed to compare results of the proposed method 
with traditional approaches in case of a loss of samples, where the analysis was 
carried out on repeatedly randomly chosen half of the samples in both groups, and 
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for a systematical error occurring during measurements. In the first simulation, 
the Bayesian t-test was compared with the parametric t-test and the Wilcoxon 
rank-sum test, whilst the latter simulation evaluated already just the Bayesian 
method when using different types of data normalization. Due to long compu
tation time of a single run of the multiple hypotheses testing (approx. 4.5 hours 
of parallel computing on a Windows 10 Home machine equipped with Intel Core 
i5-7200U, 2.5GHz, 8GB RAM) , both simulations were repeated just 20 times. 
Since the proposed final evaluation by HDI distance intervals is not reasonably 
comparable with the traditional methods and since for the M C A D D data set the 
b-values produced very good results just by themselves, we decided to use those 
for the comparisons. 

In each step of the simulation, top 20 candidates for biomarkers according to 
b-value (or p-value for the traditional techniques) were chosen to be represented in 
the final volcano plots. The fluctuation on both x- and y-axes was then captured 
using boxplots. The aim of this procedure was to compare the stability of the 
results for each particular method. 

3.4.1 Loss of samples 

Results of the first simulation are visualized in Fig. 7 and Fig. 8 with box-
plots displaying variation on y-axis and x-axis, respectively. Even though no 
perspicuous differences are observed, the Bayesian approach fluctuates slightly 
less with respect to both axes than the traditional parametric approach. For 
Wilcoxon rank-sum tests, which may seem more stable regarding the y-axis, the 
results are given by the range of possible p-values; in general, the problem is the 
same as in the case of t-tests. What is maybe even more important than the 
fluctuations, the Bayesian approach identifies less different biomarker candidates 
during distinct simulation steps (chemically unknown compounds with m/z of 
e.g., 364.2645, 677.5589, 524.3714, 785.6532, and 812.5479 were identified only 
by the traditional approaches). Overall, it can be concluded that the Bayesian 
volcano plot is potentially able to preserve more stable results in a situation when 
some samples are lost, e.g., due to contamination of biological samples. 
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Figure 7: The fluctuation on y-axis during the simulation of loss of samples. 
Only the candidates that were included among the top 20 candidates at least 
once (i.e., in one run of the simulation) are depicted in the figure with their total 
counts in the left upper corners of the graphs. The results from the Bayesian 
t-test, parametric t-test, and Wilcoxon rank-sum test, respectively, are plotted 
on the top, in the middle, and at the bottom of the figure, respectively. The four 
known biomarkers of the disease are shown in red. For the traditional approaches, 
significance thresholds are depicted by dotted lines. 
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Figure 8: The fluctuation on x-axis during the simulation of loss of samples. 
Only the candidates that were included among the top 20 candidates at least 
once (i.e., in one run of the simulation) are depicted in the figure with their total 
counts in the left upper corners of the graphs. The results from the Bayesian 
t-test, parametric t-test, and Wilcoxon rank-sum test, respectively, are plotted 
on the top, in the middle, and at the bottom of the figure, respectively. The four 
known biomarkers of the disease are shown in red. For the traditional approaches, 
significance thresholds are depicted by dotted lines. 
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3.4.2 Systematic error during measurement 

The second simulation was constructed to mimic for all sources of technical 
errors during measurement which are not possible to treat by running quality 
control samples in order to show the importance of considering a proper data 
transformation and (or) normalization. In each step of the simulation, the analysis 
was conducted on samples with a randomly chosen 10 to 30 percent increment. 
In detail, the original samples were randomly multiplied by 1.1 to 1.3 to reflect 
technical variability of the measurement, e.g., unstable injection of the samples. 

The performance of the Bayesian method accompanied by clr coefficients was 
compared with the results based on other popular data representations, namely 
probabilistic quotient normalization (PQN) (Dieterle et al., 2006) and a simple 
transformation by decadic logarithm. These transformations were applied as su
ggested in the literature, namely the P Q N without any further scaling which is 
recommended for all univariate methods (Di Guida et al., 2016). 

The importance of a particular choice of transformation respecting the rela
tive nature of spectrometric measurements can be seen already in Fig. 9 where 

Figure 9: Comparison of a compositional and non-compositional approach. Di
fferences between M C M C generated posteriors of yup a t and yUcon are depicted in 
blue, where their respective parts in negative and positive values are given by the 
percentages in red. The results of the Bayesian t-test performed on absolute (only 
pre-processed) values of the metabolite and on the relative values expressed in 
clr coefficients, respectively, are depicted on the left and right side of the figure, 
respectively. 
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Figure 10: The fluctuation on y-axis for the simulation of systematic error 
occurrence. Only the candidates that were included among the top 20 candi
dates at least once (i.e., in one run of the simulation) are depicted in the figure 
with their total counts in the left upper corners of the graphs. The results from 
the Bayesian t-test using clr coefficients, PQN transformation and a decadic lo
garithm of the data, respectively, are plotted on the top, in the middle, and at 
the bottom of the figure, respectively. The four known biomarkers of the disease 
are shown in red (where detected among significant). 
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a single hypothesis test is evaluated based on clr transformed data and raw data, 
respectively. The conclusion can differ not only in rejecting or not rejecting the 
hypothesis but even in the direction of the evidence against the initial (null) 
hypothesis when improper data transformation is used. 

The results of the simulation (in Fig. 10 with boxplots illustrating the 
fluctuations of b-values on y-axis of the Bayesian volcano plot) suggest just subtle 
differences between clr coefficients and logarithmization in terms of sensitivity to 
systematic changes of raw data values. Nevertheless, there is quite a notable di
sagreement when the results are compared with those coming from PQN. The 
latter normalization is inconsistent, producing contrary to the other transformati
ons substantially more distinct biomarker candidates in the individual steps of 
the simulation. Moreover, none of these biomarker candidates are true biomar-
kers (i.e., medium-chain acylcarnitines); the majority of them belongs to lipids. 
Besides that, this approach generates quite inconsistent b-values. On the other 
hand, the compositional approach remains persistent and identifies most biomar-
kers in accordance with published results (Najdekr et al., 2015) even with the 
incremented data. 
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4 PLS-DA predictive modeling on selective pivot 
logratio coordinates and its application 
in metabolomics 

A common issue with metabolomic data in practice, and actually with any 
omics data in general, is the existence of the so-called size effect. This is rela
ted to unavoidable variation in volumes and/or concentrations of the biological 
material that is processed from one sample to another (Filzmoser and Walczak, 
2014) as already described also in the Chapter 3. To downplay such effect in the 
multivariate tasks of biomarker identification, it is desirable that each original 
variable (compositional part) is processed in terms of (log)ratios, and preferably 
so that it gets associated with one specific logratio coordinate. One option would 
be to apply OPCs, however, previous literature has noted some drawbacks of 
this strategy that particularly apply to the high-dimensional data case. Namely, 
by considering the entire collection of pairwise logratios aggregated into a single 
OPC, it is likely to mix information from completely different processes which 
leads to confusing insights. In the past, both OPCs and clr coefficients have thus 
been equally discouraged for classification problems, where usually just some sub
set (s) of pairwise logratios are responsible for the differences between groups in 
a given component (Filzmoser and Walczak, 2014; Filzmoser et al., 2018). Con
sequently, OPCs turned out to be a potential source of false positive (and equally 
false negative) results. As an alternative to aggregate all pairwise logratios with 
a component of interest, there have been some attempts to use more robust pro
cedures to extract information from pairwise logratios in order to reveal possible 
biomarkers. This is the case of Walach et al. (2017), Malyjurek et al. (2019), 
or alternatively Dieterle et al. (2006), employing the P Q N transformation. Ne
vertheless, using the median of compositional parts in the P Q N formulation leads 
to quite substantial loss of information. 

Since in Chapter 2.2 it was shown that the disadvantages of OPCs can be 
lessened by implementing WPCs (Hron et al., 2017; Stefelova et al., 2021), a novel 
approach called selective pivot coordinates (SPCs) will be introduced as a com
promise solution in this chapter. SPCs can be seen as a variant of both the OPC 
and W P C approaches targeted to binary classification problems. Unlike OPCs, 
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the new SPCs only aggregate some of the pairwise logratios associated to a given 
part into the logratio coordinate. In general, the SPCs are designed to facilitate 
the identification of biomarkers that exhibit different behavior in two groups of 
samples, typically referring to diseased and control samples. The details of the 
proposal are thoroughly discussed in Chapter 4.1 and the novel coordinate system 
is embedded within a partial least squares - discriminant analysis (PLS-DA) mo
del in Chapter 4.2. Chapter 4.3 presents a comparative study of its performance 
using simulation, while Chapter 4.4 further illustrates the advantages of the new 
approach using real-world metabolomic data. 

4.1 Selective pivot coordinates 

In the context of two-group classification involving CoDa, the idea that mo
tivates the development of SPCs is to have logratio coordinates that represent 
relevant relative information about xi, but aggregate only informative pairwise 
logratios including x\ in the first coordinate. That is, given that each pairwise 
logratio involves two distinct compositional parts, the aim is to include into an 
SPC, denoted by ^s, only those that agree with what the majority of logratios 
with xi suggest about its ability to distinguish between the two groups of ob
servations. Namely, in a biomedical setting, having two groups pat (patient) and 
con (control), a compositional part should be identified as a biomarker candi
date if most pairwise logratios involving that part are significantly higher in one 
group than in the other. Let us discuss some possible scenarios in this setting 
that contribute to outline the rationale underlying the definition of SPCs: 

i) A part Xi is a strongly positive biomarker in group pat and Xj is some other 
biomarker increased in this group but with a weaker discriminating effect. 
Then for most logratios \n(xi/xd), d = 1,..., D, d ^ i, it can be expected 
that their values will be significantly higher in group pat than in group con. 
However, the behavior of logratios including Xj will partially differ. Thus, 
values of \i\{xj/xi) will be generally lower in group pat, and similar beha
vior might be observed for some other logratios with Xj in the numerator 
whenever a stronger biomarker is placed in the denominator. Nevertheless, 
they should be only a minority that deviates from the prevailing trend. By 
excluding these from the aggregation in the SPC we expect to increase the 
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sensitivity of the classifier, since the chance of Xj leading to a false nega
tive in subsequent statistical analysis should be smaller when compared to 
OPCs that aggregate all logratios. An analogous situation with biomarkers 
decreased in group pat can be considered. 

ii) A part Xi is a strong biomarker increased in group pat and Xj is a strong 
biomarker decreased in group pat. Thus, it is likely that \a(xi/xj) will have 
a strong discriminating effect, and similarly for other logratios involving 
two biomarkers with discriminating effects in opposite directions. These 
might be flagged as outliers among the logratios involving Xi, respectively 
Xj, however these are deviating logratios that should be preserved. 

iii) A part Xi is not a biomarker. Therefore, it can be anticipated that the 
logratios \n(xi/xd), d = 1 , . . . , D, d i, will not exhibit a significant diffe
rence between groups, except for the case where Xd be a potential biomar
ker. In this case, excluding deviating logratios should reduce the chances 
of Xi leading to a false positive in subsequent statistical analysis, and thus 
increase the specificity of the classifier. 

Given a compositional data matrix consisting of N observations from two 

different groups, we propose to use the ordinary Welch's t-statistic (Welch, 

1947) to determine the least relevant logratios. Denoting = ( ^ T i , . . . , 

(z)T/_i, (i)Ti+i,..., (i)TD) the set of such t-statistics corresponding to logratios 

(In In - s - , In - s - , . . . , In - 2 L ), the criterion is to exclude those logratios for 
\ XI1 ' Xl-l ' Xl+l ' X£t J ° 

which the statistic (i)Td, d = 1 , . . . , D, d I lays outside the interval [(i)0i, (i)^] • 

These boundaries are computed as 

Q = f -oo , if q ( ( 0 T ; 1 - 0 < tw_2(0.025) 
{ l ) 1 \med ( ( 0 T ) - 2Q„ ( ( 0 T ) , otherwise, 

and 

= Too, if g ( ( 0 T ; f ) >tw_ 2(0.975) 
w 2 \med ( ( 0 T ) + 2Q„ ( ( I ) T) , otherwise, 

where ((Z)T1; a) is the a-quantile of (/)T, med ((i)T) = q ((i)T; 0.5) and tjv-2(a) 

is the a-quantile of the Student's t-distribution with N — 2 degrees of freedom 

56 



(the parameter £ is set to 0.1 by default). Moreover, Q n stands for the robust scale 

estimator of Rousseeuw and Croux (1993), i.e., Q n ((z)T) is given by about the 

first quartile of the absolute differences {|(z)Tc — (z) Ta\, 1 < c < d < D, c,d=£l}. 

The interval for exclusion then results to be [med ((z)T) ±2Q n((/)T)], unless 

more than 90% of the t-statistic values are roughly either lower than — 2 or 

higher than 2 . Where this latter happens, only the upper (resp. lower) cut-off 

values are used. Note that this additional condition aims to ensure that logratios 

involving two strong biomarkers with discriminating effects pulling in opposite 

directions are not excluded from the aggregation (scenario ii) above). A higher 

value of £ can be chosen if this undesirable effect is still apparent (as can be seen 

when visualizing the selected logratios in Chapter 4.4, Fig. 13 and 16). 

For the following, let us denote the number of selected logratios inclu
ding xi as (i)M, the parts in the denominator of the selected logratios as 

( z ) X ^ , . . . , ( z ) X + M , and the remaining parts as mx±,..., (z)a?B-i- ( I )M- To obtain 

(Z)S, I = 1,... ,D, the original composition x needs to be rearranged as ^x = 

{(l)xl > • • • > ( l ) X D - \ - { l ) M i
 Xh (i)xt, • • i ( 0 x ^ M ) • 

Then, an OPC system = {{i)Z\,..., (Z)2D-I) is set up for (^aj. To de

fine SPCs, the pivoting coordinate is no longer the first one but the one at the 

(D — (z)M)-th position, denoted by ^ Z D - ( 1 ) M - Accordingly, the SPC of interest, 

(Z)S, is obtained as 

(Z)S =(Z) Z D - { L ) M 
ii)M ^ 

(0 M + l •V)M 

n (1)4 
k=l 

y/{{i)M + 1 ) • (z)M \ (z)x+ (z) 
l n ^ + . - . + l n ^ — , 1 = 1,.. .,D. ( 2 1 ) 

x m M 

The proposed SPCs can also be linked to other alternatives such as WPCs 
(Hron et al., 2017) given by the expression ( 1 1 ) . Note that SPCs are a special case 
of WPCs where weights of either 1 or 0 are assigned to each logratio involving 
xi, depending on whether it is included in the aggregation or not, respectively. 
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Consequently, y)S can be written as 

(0 ' 
(0 

" » M In , - / = ! , . . . , £> , 
M + 1 D 

\ 
with weights given by 

(i)ld 1 , if (/)Td G (i)92] 
0, otherwise. 

Moreover, although WPCs with general non-negative weights as developed 

for PLS regression (Stefelova et al., 2021) could be extended for the current 

classification case, the latter is actually more easily handled (no specific weighted 

coordinate system is required) by reformulating the OPC approach as described 

above. 

4.2 PLS-DA on selective pivot coordinates 

Building on the OPC-based approach introduced in Kalivodova et al. (2015), 
partial least squares discriminant analysis (PLS-DA) through SPCs is used here 
for the actual identification of biomarker candidates. Thus, D models of the form 

Y = ft + (i)Pi • (i)Zi + ... + • (l)zD-i +e, l = l,...,D, ( 2 2 ) 

are considered, where Y is a binary response representing each of the two groups, 
the explanatory variables (^z\... ,(I)ZD-I are logratio coordinates from the l-th 

SPC system, /30, (i)/3i, • • • , (I)PD-I are unknown model coefficients and e is the 

usual random error term. Note that, unlike with PLS-DA based on OPCs where 
the procedure can be computationally simplified by fitting one model in clr co
efficients and then take advantage of their direct relationship with OPCs (see 

expression (9) between zf and clr (a;)/), SPCs require the successive models to 
be fitted individually. Before fitting the PLS model, the data are mean centered 
so that the intercept fio can be excluded from further considerations. The optimal 
number of PLS components is chosen here based on a randomization test appro
ach (van der Voet, 1994). From each model fit, for I = 1,..., D, the estimate 
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(I)J3D-(1)M associated with the SPC (/)S is extracted, and statistical significance 

is determined by bootstrap-based significance testing on the standardized PLS 

model coefficients (Kalivodovä et al., 2015). The resulting p-values are adjusted 

using the Benjamini and Hochberg's method (Benjamini and Hochberg, 1995) to 

control for false discovery rate in multiple testing. 

4.3 Comparative simulation study 

The performance of PLS-DA applied on SPCs is assessed here by simulation 
in comparison to previous alternative approaches. Namely, PLS-DA after InPQN 
data normalization as a popular reference method (i.e., P Q N in combination 
with log-transformation of the explanatory variables as advocated for multivari
ate analysis in metabolomics by Di Guida et al. (2016)) and PLS-DA on OPCs 
as another compositional approach previously proposed. The design of the simu
lation study follows the setup of Filzmoser and Walczak (2011), aiming to mimic 
typical high-throughput data sets affected by size effect. Accordingly, data mat
rices X = (xnd) of size N x D are generated so that the first N/2 rows correspond 
to samples from group pat while the remaining correspond to group con, with 
the first R columns representing biomarkers. Each entry is obtained as 

xnd = ( 1 - kn) • ( — + and + fnd ) • vd • e9nd + hnd, n = l,...,N, d=l,...,D, 

where kn represents the size effect sampled from a normal distribution M(0, 0.32) 

and Ud/vd represents a component concentration with signal abundance Ud sam

pled from a uniform distribution U(l, 100) and component absorptivity Vd sam

pled from a uniform distribution U(l, 10). Furthermore, and determines the higher 

signal of biomarkers and is defined as 

= f A, if n < N/2 and d < R 
n d 10, otherwise, 

and fnd, gnd, and hnd representing different kinds of noise (biological, multipli

cative, and background, respectively) are sampled from normal distributions 

J\f(0,aj), J\f(0,<jg), and A^(0,0.052), respectively. Varying parameters A, Of, and 

og as indicated in Table 3 results in eight different settings. Following the reference 

design, the number of observations is set to = 40 and the number of variables 
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(components) to D = 500. More options are considered though for the ratio of 
biomarkers R to the rest of metabolites (D — R), with R e {20, 50,100}. Hence, 
24 different simulated scenarios are examined in total, executing 100 simulation 
runs within each configuration. 

As mentioned above, three approaches to PLS-DA-based biomarker identi
fication are compared: 

1. InPQN: PLS-DA is applied on data normalized by InPQN transformation: 

InPQN i xnd , / Xnl x n D \ 
Xnd =

 m 1 Wn = m e d J 7 v • • • ' 17 \ 

un \med ( x n , . . . ,xNÍ) med (xiD,..., xND) J 

where n = 1,..., N, d = 1,..., D. 

2. OPC: PLS-DA is applied on data expressed in OPCs (equivalently in clr 

coefficients). 

3. SPC: PLS-DA given by (22) is applied on data expressed in SPCs (21) 
following the new proposal as detailed in Chapter 4.1. 

The performance of these approaches is evaluated and compared in terms of 
sensitivity (i.e., rate of true biomarkers identified as biomarkers) and specificity 
(i.e., rate of non-biomarkers correctly identified as non-biomarkers). The results 
are shown graphically in Fig. 11. 

It can be observed that generally PLS-DA based on SPCs outperforms its 
competitors with regard to both sensitivity and specificity. This superior perfor-

Table 3: Parameter settings for comparative simulation study. 

Setting A ®9 
1 1.8 0.8 0.021 
2 1.8 0.8 0.007 
3 1.0 0.8 0.021 
4 1.8 0.2 0.021 
5 1.0 0.2 0.007 
6 1.0 0.2 0.021 
7 1.8 0.2 0.007 
8 1.0 0.8 0.007 
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Figure 11: Sensitivity (a) and specificity (b) for different simulation scenarios. 

mance is particularly evident in the case with the higher ratio of biomarkers. Thus, 
when comparing specificity (Fig. l i b ) , PLS-DA based on OPCs tends to produce 
too many false positives, which is expected given results from previous studies 
(Filzmoser and Walczak, 2014). Moreover, when the number of biomarkers is set 
to R = 100, it is apparent that InPQN also exhibits a poorer performance than 
SPCs in general, suggesting that P Q N tends to oversimplify the data structure 
here. As to sensitivity (Fig. 11a), the results are influenced by the chosen biomar-
ker ratio only partially; they rather depend on the parameter settings. Notably, 
in scenarios combining poorer signal and more fluctuating biological noise (i.e., 
settings 3 and 8, see Table 3), PLS-DA coupled with SPCs clearly surpasses not 
just the OPC but also the P Q N approach. 
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4.4 Application to metabolomic data 

The use of SPCs is illustrated in this section using two different real data 
sets corresponding to targeted and untargeted metabolomics analyses. Both data 
sets contain metabolites with higher molecular weight and non-polar properties -
lipids, which are studied in the separate field of lipidomics (Gallart-Ayala et al., 
2 0 2 0 ) . 

4.4.1 Transgenic rat models with induced tauopathy 

The first application concerns data obtained from samples of cerebrospinal 
fluid (CSF) of transgenic rat models with induced tauopathy. The final data set 
consisted of = 23 samples: 14 from the TG14 group (14-month-old transgenic 
rats representing the patient group) and 9 from the TG4 group (4-month-old 
transgenic rats representing the control group), and D = 394 lipids. The abbre
viations of the distinguished lipid classes are listed in Table 4 together with their 
expected (non)biomarker-like behavior based on the previous studies. Further de
tails about data acquisition and pre-processing as well as a short description of 
the relevant part of the pathobiochemistry of the disease are provided in Appen
dix A. 

Fig. 12 shows Welch's t-statistics for all the individual pairwise logratios, 
where each row represents the lipid in the numerator. The strongest patient bio-
markers should be the ones corresponding to the darkest green color. Biologically, 
lots of these belong to the classes of CERs, HCERs, LPC(0)s, PC(0)s and SMs as 
expected. Contrarily, the rows showing mainly light to white color should corre
spond to non-biomarkers. From the biochemical point of view, this holds for the 
whole class of DGs, FAs and TGs. Among these, those in a darker brown color 
are likely to correspond to other patient biomarker candidates that are present 
in the denominators of the logratios. 

Fig. 13 illustrates how our proposal based on SPCs works. Each row indicates 
which pairwise logratios are and are not included when aggregating into the 
corresponding SPC. Namely, black stars are used as symbols to indicate those 
that are not included. It can be seen that the excluded logratios are largely those 
having a biomarker candidate in the denominator, which is in agreement with the 
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scenarios discussed in Chapter 4.1 in relation to problematic (deviating) logratios. 

Furthermore, as done in the simulation study above, the results obtained by 
PLS-DA based on SPCs are compared to PLS-DA based on OPCs and InPQN re
spectively. In all three model based on two PLS components was conside
red adequate based on the randomized test approach. Cross-validated (CV) root 
mean squared error of prediction (RMSEP) and coefficient of determination (R 2) 
were comparable: C V RMSEP = 0.11 and C V R 2 = 0.95 for the compositional 
approaches and C V RMSEP = 0.10 and C V R 2 = 0.96 when using InPQN. A to
tal of 108 lipids were identified as biomarker candidates using SPCs, whereas they 
were 156 and 112 using OPCs and InPQN, respectively. Fig. 14 illustrates the 

Table 4: Full names and abbreviations of different classes of lipids present in the 
transgenic rats data set. Indication of (+) and (0), respectively, is provided in 
accord with the expectation for them to be detected as biomarkers increased in 
the TG14 group or as non-biomarkers, respectively, based on the previous studies 
(Sheikh and Nagai, 2011; Mielke et al., 2014; Ojo et al., 2018; Torretta et al., 2018; 
Pedersen et al., 2019; Fonteh et al., 2020; Kao et al., 2020) (see Appendix A for 
more details). Additionaly, (?) marks the cases when the behavior of the entire 
class is not known. 

Full name of the class Abbreviation Indication 
ceramides CERs (+) 
diacylglycerols DGs (0) 
free fatty acids FAs (0) 
hexosylceramides HCERs (+) 
lysophosphatidylcholines LPCs (+) 
plasmanyl/plasmenyl LPCs LPCOs (+) 
lysophosphatidylethanolamines LPEs (0) 
plasmanyl/plasmenyl LPEs LPEOs (0) 
phosphatidylcholines PCs (+) 
plasmanyl/plasmenyl PCs PCOs (+) 
phosphatidylethanolamines PEs (?) 
plasmanyl/plasmenyl PEs PEOs (?) 
phosphatidylinositols Pis (+) 
phosphatidylserines PSs (?) 
sphingomyelins SMs (+) 
triacylglycerols TGs (0) 
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Figure 12: Heatmap of the Welch's t-statistics for pairwise logratios of lipids 
from the transgenic rats data set. The y- (resp. x-) axis corresponds to the lipid 
used in the numerator (resp. denominator) of the logratios. Labels on both axes 
are provided according to clustered classes of lipids given in Table 4. 

difference between the two compositional approaches (SPCs and OPCs), while 
Fig. 15 compares the SPC and InPQN approaches. 

Regarding the comparison of the two compositional approaches, SPCs ver
sus OPCs, all the 17 lipids flagged as biomarker candidates only with SPCs are 
identified as significantly increased in TG14, whereas those 65 flagged only with 
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OPCs are identified as significantly decreased in TG14. Fig. 14 confirms that the 
selective approach to pairwise logratio aggregation indeed helps to i) detect lipids 
that could be biomarkers with a weaker discriminating effect (as suggested by the 

Figure 13: Heatmap of the Welch's t-statistics for pairwise logratios of lipids 
from the transgenic rats data set illustrating the patterns to choose the logratios 
for the construction of SPCs. The y- (resp. x-) axis corresponds to the lipid used in 
the numerator (resp. denominator). Rows and columns are reordered according 
to their median value of the Welch's t-statistic. Black stars in each row mark 
logratios not included in the aggregation when constructing the SPC related to 
the corresponding lipid. 
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Figure 14: Cut-out from Fig. 13 with the rows limited to the lipids (named at 
the end of the rows) showing different significance results when using PLS-DA 
based on either SPCs or OPCs. Biomarkers noted using SPCs and not so using 
OPCs are colored in red (the opposite case is colored in blue). Lipids identified 
as biomarkers by both approaches are marked in violet (those identified by none 
are marked in black). The row labels also denote whether the respective lipid was 
flagged by the indicated method as a biomarker increased (+) or decreased (—) 
in the TG14 group. 

i:!":[ni"f1 nivinnTnnnn 
Figure 15: Cut-out from Fig. 13 with rows limited to lipids (named at the end 
of the rows) showing different significance results when using PLS-DA based on 
either SPCs or InPQN. Biomarkers noted using SPCs and not so using InPQN 
are colored in red (the opposite case is colored in yellow). Lipids identified as 
biomarkers by both approaches are marked in orange (those identified by none 
are marked in black). The row labels also denote whether the respective lipid was 
flagged by the indicated method as a biomarker increased (+) or decreased (—) 
in the TG14 group. 

66 



profiles in rows marked in red), and ii) to reduce the number of false positives (as 

suggested by the profiles in rows marked in blue). This finding is consistent with 

previous studies (see Appendix A), since the majority of the additional potential 

biomarkers increased in TG14 that are identified using SPCs belong to classes 

known to be elevated in patients (i.e., CERs, PC(0)s, SMs). However, most of 

those that were additionally identified when using OPCs (as potential biomar

kers decreased in TG14) belong to classes of assumed non-biomarkers (i.e., DGs, 

LPE(0)s, TGs), or even to classes that have been associated with upregulation 

in patients (i.e. LPC(0)s, Pis, PC(0)s, SMs). 

As to SPCs versus InPQN, both approaches produce similar results from this 
data set. The one additional potential biomarker increased in TGI4 identified 
using SPCs (belonging to the PCs class), as well as the three additional ones 
identified using InPQN (belonging to PC(0)s and SMs classes), are supported 
by findings in previous studies. Moreover, previous literature suggests that the 
two additional lipids marked using InPQN (TGs class) as potential biomarkers 
decreased in TG14 are most likely false positives (see Appendix A). 

4.4.2 SCADD 

The second application concerns dry blood spot samples of patients with 
a hereditary genetic disorder SCADD. The data set consists of N = 39 samples: 
20 from the patient group and 19 from the control group, and D = 2011 features. 
The abbreviations of some feature classes relevant to the purpose of this thesis 

Table 5: Full names and abbreviations of some of the classes of features present in 
the SCADD data set. Indication of (+), and (0), respectively, is provided in accord 
with the expectation for them to be detected as potential patient biomarkers and 
non-biomarkers, respectively, based on the previous studies (Gault et al., 2 0 1 0 ; 
Blom et al., 2 0 1 1 ; Nochi et al., 2 0 1 7 ) (see Appendix B for more details). 

Full name of the class Abbreviation Indication 
acylated carnitines and other acyl conjugates 

polyunsaturated glycerophospholipids 
phosphatidylinositol 

long-chain sphingomyelin lipids 

aCARs (+) 
PUFA-PCs (0) 

Pis (0) 
LC-SMs (0) 
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are listed in Table 5 together with their expected (non)biomarker-like behavior. 
Like in the previous application, further details about the data as well as a short 
description of the biochemical context are provided in Appendix B. 

Figure 16: Heatmap of the Welch's t-statistics for pairwise logratios of features 
from the SCADD data set illustrating the patterns to choose the logratios for 
the construction of SPCs. The y- (resp. x-) axis corresponds to the feature used 
in the numerator (resp. denominator). Rows and columns are reordered accor
ding to their median value of Welch's t-statistic. Black stars in each row mark 
logratios not included in the aggregation when constructing the SPC related to 
the corresponding feature. 
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Fig. 16 illustrates which logratios are and are not aggregated into the corre
sponding SPC. Note that a larger value of the parameter £ was chosen in this 
case (£ = 1/3) in order to lessen the undesirable effect depicted by scenario ii) in 
Chapter 4.1. 

Fig. 17 and Fig. 18 show the differences between PLS-DA-based biomarker 
identification using SPCs instead of OPCs or InPQN respectively. The randomi
zed test approach used to select the number of PLS components in the PLS-DA 
model suggested to retain just the first one in all cases (CV RMSEP = 0.35 and 
C V R 2 = 0.51). Using SPCs, OPCs and InPQN, 362, 361 and 351 features were 
respectively flagged as biomarker candidates. PLS-DA based on SPCs and OPCs 
differed by 48 features in classifying between groups, whereas such difference was 
49 features between SPC and InPQN. Comparing the results, we can observe 
that in general the profiles of the features identified solely by using SPCs (rows 
labeled in red) look more like biomarkers than those identified only by the other 
methods (rows labeled in blue and yellow respectively), i.e., the discriminating 
effect is apparent in more logratios with the given part in the numerator. 

inn 

Figure 17: Cut-out from Fig. 16 with the rows limited to the features showing 
different results in terms of significance when carrying out PLS-DA based on 
SPCs or OPCs. Features identified as biomarkers by the SPC approach and not 
by the OPC one are colored in red (the opposite case is colored in blue). Features 
identified as biomarkers by both approaches are marked in violet (those identified 
by none are marked in black). The row labels denote whether the respective 
feature was flagged by the indicated method as a biomarker increased (+) or 
decreased (—) in the patient group. 
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Figure 18: Cut-out from Fig. 16 with the rows limited to the features showing 
different results in terms of significance when carrying out PLS-DA based on SPCs 
or InPQN. Features identified as biomarkers by the SPC approach and not by the 
InPQN one are colored in red (the opposite case is colored in yellow). Features 
identified as biomarkers by both approaches are marked in orange (those identified 
by none are marked in black). The row labels denote whether the respective 
feature was flagged by the indicated method as a biomarker increased (+) or 
decreased (—) in the patient group. 

From a biochemical point of view, some interesting comparison can be made 
in terms of classes that have been identified as biomarkers or non-biomarkers 
in previous studies (see Appendix B). C A R 18:3 was identified as a significant 
biomarker solely with SPC-based PLS-DA. This finding is in accord with the 
previous research on the class of CARs. In contrast, PCs, Pis and SMs were only 
identified as biomarker candidates when using InPQN and OPCs in PLS-DA. 
Based on the literature, these classes of features are probably false positives. 
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5 Robust principal component analysis 
for compositional tables 

A frequent primary task in multivariate statistics is to reduce the dimensio
nality of the data at hand, done using principal component analysis (PCA). As 
stated in Chapter 2, in case of CoDa, and consequently also compositional tables, 
this needs to be done in a proper coordinate representation that maps the Aitchi-
son geometry of compositions to the standard Euclidean geometry (Pawlowsky-
Glahn and Egozcue, 2001). To eliminate the influence of outlying observations 
in P C A , Filzmoser et al. (2009) proposed to estimate the covariance matrix for 
robust P C A (rPCA) by the Minimum Covariance Determinant (MCD) estima
tor (Maronna et al., 2006) which has the property of affine equivariance, advan
tageous in the logratio context. Since clr coefficients (5) lead to singularity and are 
not appropriate for most robust methods including the M C D estimator, loadings 
and scores of rPCA need to be computed from olr coordinates (Egozcue et al., 
2003) of the compositional data and then transformed back to clr coefficients for 
a better interpretation of the resulting compositional biplot. 

Accordingly, the aim of this chapter is to generalize the previous considerati
ons on dimension reduction of vector CoDa and to propose a robust approach 
to principal component analysis of compositional tables. While it is obvious that 
the work can be started from Facevicova et al. (2016) and Filzmoser et al. (2009), 
it is on the other hand not immediate to see if there is a possibility to identify 
a relationship between clr coefficients and olr coordinates as it is done in the 
case of vector compositions by the equation (7). The first issue here is posed by 
the dimensionality of compositional tables which is much lower than the number 
of clr coefficients if computed directly for independence and interaction tables. 
The second obstacle is formed by the decomposition where not all choices of 
coordinates allow for a satisfactory interpretation of both the original and the 
decomposed tables at the same time (i.e., providing also a way to capture the 
relationships between them which is necessarily contributing to a better insight 
into the structure of the tables). It will be shown that OPCs present a favorable 
choice of olr coordinates in line with the previous thoughts and that they can 
keep a good interpretability when properly linked to clr coefficients. 
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In Chapter 5.1, the dimension reduction of vector CoDa using rPCA is brie
fly reviewed. Clr coefficients of compositional tables together with a link to their 
OPC representation allowing for a well-interpretable processing using rPCA are 
introduced in Chapter 5.2. The new methodology is illustrated in Chapters 5.3 
and 5.4 on real data sets from OECD Statistics using the statistical software 
R, namely the robCompositions package. Data from several different countries 
containing unemployment information with gender distribution and age structure 
are processed as a set of 2 x 4 compositional tables. Therefore, a robust composi
tional biplot is a possible tool to analyze the distribution of unemployment rates 
in these countries as well as gender and age differences. Data from the area of 
education, carrying relative information about fields of study and the resulting 
degree in given countries, are approached as larger 3 x 8 compositional tables, 
and results for men and women are compared. 

5.1 Robust principal component analysis for compositional 
data 

One of the widely used methods for the purpose of dimension reduction of 
large-scale data sets in a compositional approach is P C A just like in the case 
of standard multivariate data analysis. It converts possibly correlated original 
variables from the data at hand into a smaller set of linearly uncorrelated variables 
called principal components (PCs). Additionally, the first component accounts 
for the largest variance of the given data, the second one for a maximum of 
the remaining variance, etc., under the constraint of being orthogonal to all the 
previous principal components (Johnson and Wichern, 2007). 

The covariance matrix C estimated from a real data matrix X can be 
spectrally decomposed into 

C = G L G T , 

where G is a matrix of eigenvectors and L represents a diagonal matrix of eige
nvalues of C. It is then possible to define the P C A transformation as 

X* = (X - l T t )G, 

where t is the (row) location estimator and 1 is a vector of ones with length n 
(number of observations). The columns of the matrix X*, the coordinates of the 

principal components, are called scores and the columns of G, containing the 
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respective basis vectors, are called loadings. Typically, only the first few principal 
components are considered for further analysis. Taking into account only two 
PCs, a graphical outcome called biplot can depict both loadings as arrows and 
scores as points in one plot, where associations can be revealed. 

It is common to take t as the arithmetic mean and C as the sample covari-
ance matrix. However, both are very sensitive to outlying observations. Robust 
alternatives can be obtained by using the M C D estimators of location and covari-
ance (Maronna et al., 2006). This approach inquires working in olr coordinates to 
obtain full rank data in order to get the M C D estimate of the covariance matrix 
and the respective matrix of eigenvectors G. In addition, olr coordinates ensure 
subcompositional coherence and enable to keep affine equivariance of the results 
to the change of basis. 

Accordingly, rPCA of CoDa based on the M C D estimator requires olr coor
dinates Zi as an input, and the scores z* are given by 

z* = (Zi-t)G. 

Once P C A is performed, the loadings can be transformed back to clr coefficients 
as 

G c l r = V G , 

accounting for compositional biplot construction with meaningful interpretation, 
whereas the scores remain identical and only a column of zeros is added to the 
end. Clr coefficients are also worth as such for their simple construction as an 
amalgamation of pairwise logratios of a given part. Due to the zero-sum constraint 
of clr coefficients, their covariance structure is distorted, thus the interpretation 
of the biplot in terms of the correlation between coefficients (through angles be
tween arrows) might be misleading. Instead, the focus is on links between vertices 
of arrows as they stand for a proportionality between the original compositional 
parts (Aitchison and Greenacre, 2002). On the other hand, due to the relation 
with OPCs, the single clr variables (or the respective loadings) can be used to 
identify observations with a high dominance of the respective parts in a composi
tional vector (Kynclova et al., 2016). 
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5.2 Centered logratio representation and its link to pivot 
coordinates of compositional tables 

As stated in the previous chapters, a coordinate representation which re
spects the sample space dimensionality as well as the decomposition procedure 
is needed to perform rPCA of compositional tables. Interestingly, the coordina
tes of the entire compositional table given in (15) and (16) of Chapter 2.3 can 
be divided into two groups according to the dimensionality of the independence 
and interaction tables, respectively. This becomes the main advantage also when 
using OPCs for rPCA since it allows for a comparison of the results from the 
whole table and its decomposed parts. 

Following the link (9) between the first OPC and the respective clr coefficient 
of vector CoDa, also the first coordinates of the three types from each system can 
then be expressed as proportional (up to a constant) to respective clr coefficients, 

r l r (i> \ - * 1
 - 1 S(k)

 + 4 / J ~ l 

c[r{xind)ki - \l —j-j~zi + Y —fj~ zi ' 

c\r(xint)ki = W — — y j - — — z ° ^ k l ) , 

which is an important fact for the interpretation of the analysis. 

The resulting clr coefficients, computed originally from the elements of the 

independence and interaction tables (14), 

ck(xind)ij = In -. , , c h ( x i n t ) i j = In 
g [ x i n d y - v ~ . « / « -g(x*2*)' 

can thus be expressed also in terms of cells of the input compositional table as 

clr(£c i l l d) i j = In — c h ( x i n t ) i j = In -, (23) 

where g{xi,)1 g(x,j) and g(x„) stand for the geometric mean of the i-th row 

(i = 1,..., I), the j-th column (j = 1,..., J) and the whole compositional table 

(and its independent and interactive counterparts for g{x™f), g{x™f)), respecti

vely. As a consequence, each c\r(xind)ij expresses a dominance of a given com

bination of factor values in case of independence. This dominance is then either 
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amplified or weakened according to the interaction table which depends on whe
ther the interaction is shifted in a positive or a negative direction. The interaction 
table refers also to sources of departures from independence, nevertheless, the 
information obtained only from c\r(xint)ij does not provide a complete picture 
about the dominance of the respective cell to all other averaged cells. 

Furthermore, note that each coordinate c\r(xinai)ij is formed by the sum of 
clr coefficients of the respective row and column marginals, 1/JJ2jc^T(xind)ij = 

\ngi,/g„ and l/IJ2ic^r{xind)ij = ^g»j/g»», which amount to zero. Thus, there 
are only I+J—2 linearly independent clr coefficients, reflecting the dimensionality 
of the sample space of independence tables again. A similar feature holds also 
for clr coefficients of interaction tables that sum up to zero across each row or 
column. Consequently, in the case of an interaction table, the number of linearly 
independent clr coefficients reduces to (/ — 1 ) ( J — 1 ) . Since this dependency 
makes it impossible to use the clr coefficients for the rPCA of independence and 
interaction tables, the strategy to perform rPCA for compositional tables is the 
same as in case of vector CoDa: P C A loadings and scores are computed in olr 
coordinates (OPCs) and then back-transformed using relation (7) to the clr space, 
where the loadings can be interpreted in terms of dominance of single cells. Here, 
clr coefficients of basis vectors for rows er, columns e c and interactions eOR. 
forming the columns of the matrix V , are defined as follows, 

for the elements in pivot row i, 

for the elements in rows i + 1 , . . . , / , 

otherwise, 

(24) 

for the elements in pivot column j, 

for the elements in columns j + 1 , . . . , J, 
otherwise, 

(25) 

and 
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clr(e OR\ 

i 
rs(r—l)(s— 1) 

( r - l ) ( * - l ) 

-1 
rs(s —1) 

rs(r—1) 

lo 

for the elements on positions i = r + 1,... ,1, 
j = s + l,..., J 
for the pivot elements rs 

for the elements in pivot row r, 
j = s + l,...,J, 
for the elements in pivot column s, 
i = r + l,...,I, 
otherwise, 

(26) 

reinterpreting the expressions from Facevicova et al. (2016). As a result of (7), 
row-wise clr coefficients of the whole table are obtained for the IJ — 1 columns of 
the matrix V . Alternatively, if the matrix V has just I + J — 2 columns formed 
by clr coefficients of basis vectors corresponding to the OPC representation of 
the independence table (15), its respective clr coefficients are derived (and simi
larly for the interaction table with its coordinates (16)). Finally, the transformed 
loadings and scores can be used to construct a biplot in order to reveal the mul
tivariate structure of the sample of compositional tables and relations between 
both factors. 

5.3 Unemployment data analysis 

In the following, the methodological results are applied to two real-world 
data sets from the field of economy in order to illustrate the main features and 
possible limitations of the approach. However, it is important to acknowledge 
here the potential of the proposed methodology also across other research areas 
since compositional tables (eventually in form of their count counterparts, i.e, 
contingency tables) occur in many applications and sciences. For example, in envi
ronmental management, the presence of two-factor CoDa was recognized already 
by Aitchison (1986) where areal compositions given by simplified 2 x 2 tables of 
vegetation (thick and thin) and animals (dense, sparse) abundance in different re
gions were provided as an example of CoDa with more complex structures. From 
rather up-to-date environmental management problems, analyses of e.g., 5 x 4 
tables of material resources (OECD Statistics, 2017) given by the extraction type 
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(domestic extraction, import, export, direct material input, and domestic ma

terial consumption) and group of the resources (biomass, fossil energy carriers, 

non-metallic minerals, and metals); 2 x 7 tables of protected areas (OECD Sta

tistics, 2018) characterized by the domain of biodiversity (terrestrial or marine) 

and designation of the protected area (e.g., nature reserve, wilderness, protected 

landscape etc.); or 34 x 4 tables of carbon emissions embodied in trade (OECD 

Statistics, 2011) diversified by sector (e.g., agriculture, mining, food products 

etc.) and measure (imported, exported, consumption-based and production-based 

emissions), available always for the vast majority of OECD member states, could 

be mentioned as more relevant representatives. 

The first analyzed data set, the Unemployed data set, is coming again 
from OECD Statistics and contains aggregated data from more than 150 million 
unemployed people from 42 different countries in 2010 (OECD Statistics, 2010b). 
It is analyzed using the statistical software environment R (R Core Team, 2022). 

The data contain the numbers of unemployed people together with their 
gender and age category for the following countries: Australia, Austria, Belgium, 
Canada, Chile, Czech Republic, Denmark, Estonia, Finland, France, Germany, 
Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Mexico, Nether
lands, New Zealand, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, 
Switzerland, Turkey, United Kingdom, United States, Colombia, Costa Rica, La
tvia, Lithuania, China, India, Indonesia, Russian Federation and South Africa. 
An example of (transposed) raw data from the first four countries is shown in 
Table 6. The numbers in the tables are basically counts of unemployed people 
according to two factors. As the population size varies among the countries, the 
interest here is not in the absolute values of the counts in the single countries, 
but rather the relative structure of unemployment. Particularly, ratios of men 
and women and ratios among age groups 15 — 24, 25 — 39, 40 — 54 and 55+, as 
well as proportionality among countries will be analyzed. Since outliers can be 
anticipated due to completely different economics, education levels, gender ba
lance and also traditions of the listed countries, the analysis will be carried out 
in a robust manner. 

A l l compositional tables in this example have 2 rows and 4 columns, i.e., 
gender is the row factor and age structure is the column factor. The sample space 
of tables thus has dimension 7 out of which independence tables account for 
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Table 6: Unemployed people in thousands partitioned according to their gender 
and age groups (OECD Statistics, 2010b). 

Australia Austria Belgium Canada 
Age group Men Women Men Women Men Women Men Women 
15-24 129 111 29 25 53 43 250 178 
25-39 90 85 40 35 86 83 241 192 
40-54 66 68 36 27 65 52 242 188 
55+ 37 19 7 3 13 11 121 75 

a dimension of 4 with OPCs z[, z\, z% and Zg, while the remaining coordinates 
z?iRi ^12^

 a n d Zi3

R correspond to the interaction tables with a dimension of 3. 

To point out the differences between the classical and robust P C A , both are 
performed and compared through the resulting covariance compositional biplots. 
Recall that classical P C A can directly be applied on clr coefficients. Nevertheless, 
since for this data set rPCA may be more relevant because of potential outlying 
tables, OPCs are used in both cases, and the results are transformed to clr for 
the biplot construction. This can only yield a different rotation of the classical 
biplot, however, it obviously does not alter the results. 

In order to perform P C A in olr coordinates, the standard function princomp 
in R can be used, where the parameter covmat is set to covMcd (MCD estimator 
of covariance) in case of rPCA. Thereafter, loadings need to be transformed to 
clr coefficients as described in Chapter 2.2 using the matrix V with columns 
defined by (24) - (26) for the entire compositional table, and by (24) and (25), 
or by (26) for its independent and interactive part, respectively. The resulting 
classical biplots are depicted on the right-hand side of Fig. 19, while the rPCA 
output is on the left. 

Assessing Fig. 19, it can be noticed that in all three cases, rPCA performs 
better in terms of explained variability by the first two PCs. As mentioned above, 
some outliers might be present in the data, and even from the classical biplot 
of the whole compositional tables (upper right corner of Fig. 19), at least two 
outlying tables (Turkey - T U R and South Africa - ZAF) could be expected, 
and so the robust approach should provide more meaningful results. An outlier 
detection is performed additionally in order to confirm these expectations. In the 
R package robCompositions (Tempi et al., 2011), there is a function outCoDa 
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Figure 19: Robust (left column) and classical (right column) covariance biplots 
of the Unemployment compositional (upper row), independence (middle row) and 
interaction tables (lower row). 
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defined for this purpose, based on robust Mahalanobis distances computed from 
oh transformed data (Filzmoser and Hron, 2008). Using the OPCs and applying 
the 0.975 quantile of the chi-squared distribution as the common cut-off value, 15 
out of all 42 countries are identified as outlying observations, clearly supporting 
the choice of robust analysis. Note that similarly, 10 observations from the set of 
independence tables and 6 from the interaction tables were detected as potential 
outliers. 

Additionally, from the same part of Fig. 19, it is easy to identify from the 
direction of the arrows which countries tend to have relatively higher unemploy
ment among younger people and which ones have a rather higher rate in the 
opposite situation. Although no clear compact clusters are visible, it seems that 
most European countries together with the USA and Canada tend to have more 
likely problems with employing older people, say 40+, while for Central and 
South America together with China, India, and Indonesia the unemployment de
pending on age structure has rather opposite tendencies. In the latter case, this 
generalized finding corresponds to the values of the youth unemployment rate 
(i.e., Y U R = employed between 15 and 24 years) . d i f f e r e n t countries reported by the 
v ' all unemployed > 1 J 

United Nations in 2011 (UNdata, 2011). Nevertheless, there are still big differen
ces between European countries, even more apparent in the robust analysis. Some 
gender differences can be observed as well, except for the youngest generation. 
The structure in the classical biplot (upper right plot of Fig. 19) is similar but 
driven by the identified outlying observations. 

The left plot in the middle part of Fig. 19 shows the "ideal" situation in case 
the relationships between gender and age factors would be filtered out. While the 
positions of the countries are not apparently changed compared to the previously 
discussed covariance biplot (upper left corner), the general relationships between 
the factors are remarkably illustrative. In case of independence, nearly gender 
equity would be achieved, while on the contrary, relationships among the age 
levels would be disproportionally weaker. Also, a bigger difference between results 
provided by robust and classical P C A is present here. One can easily understand 
how the classical approach does not handle outliers and how those can affect the 
output; the biplot on the right side is quite far away from picturing the same 
ideal situation. 

As demonstrated in Chapter 5.2, the independence table captures the hypo-
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thetical balanced state with each clr interpreted in terms of dominance of a given 
combination of factors in case of independence. However, this dominance is then 
either amplified, or weakened according to the interaction table; in terms of clr 
coefficients, it depends on whether the logratio dominance is shifted in a positive, 
or in a negative direction. Note that information obtained solely from the inter
action table does not provide a complete picture about the dominance of single 
cells in the table. For example, in the lower left graph of Fig. 19 (robust biplot of 
interaction tables), Costa Rica (CRI) is placed towards the loading "male 55+", 
but this does not necessarily lead to a conclusion that unemployment in this group 
is higher in general in this country; it simply marks the cell whose dominance 
causes imbalance for Costa Rica, although the actual proportion of unemploy
ment for this age group might be lower than its average dominance. Therefore, the 
conclusion about the higher dominance of unemployed men in the oldest group 
than expected in the hypothetical case of independence can be stated only after 
looking at the biplot of the independence tables. For the compositional tables 
with dimension 2 x J (or alternatively 1x2), this feature is nicely illustrated by 
the depicted loadings themselves, placed along a line corresponding to increasing 
dominance of one factor value at the expense of the latter value of the same fac
tor. The opposite relation between the respective clr coefficients is clearly visible 
from both the biplots and the form of cli(xint)ij in (23): as it was already discus
sed in Chapter 5.2, clr coefficients of the interaction table sum up to zero across 
each row and column which results in the identity cli(xint)ij = —clr(xint)2j, hol
ding for each j when 1 = 2 (and similarly for J = 2). While in case of higher 
data dimension the property is no longer visible in the graphs, in this example 
it can be seen that the two possible values of the gender factor lead to precisely 
contradictory loadings for any chosen value of the age factor. Thus they might 
only carry the information about the origin of the dominance shift, but no longer 
about the direction of the shift for which the difference from the independence 
table has to be consulted. 

5.4 Education data analysis 

It was illustrated in the previous example how outliers can affect results 
of classical P C A . Especially the gender equity achieved in the robust biplot of 
the independence tables would not be present in the classical one. Hence, in this 
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second example, only robust analysis outputs are discussed. The data set contains 
information about more than 7 million female and nearly 6 million male students, 
divided according to 8 different fields of study, being Education, Humanities and 
arts, Social sciences, business and law, Science, mathematics and computing, 
Engineering, manufacturing and construction, Agriculture and veterinary, Health 
and welfare, and Services (OECD Statistics, 2010a). The information about the 
achieved degree (bachelor, master, or doctoral) is recorded as well for about 30 
different countries. 

Compositional tables are analyzed for both genders separately in order to 
allow for a comparison of possible differences between them later on. Biplots as 
graphical rPCA outcomes of the whole compositional table as well as indepen
dence and interaction tables are collected in Fig. 20. Due to a larger dimensio
nality of compositional tables than in previous case (3x8 ) , the biplots contain 
three times more variables and an objective interpretation becomes more difficult. 
An additional aspect is that since it is necessary to go many dimensions down to 
achieve the P C A projection using the first two PCs, it is expected to obtain more 
approximative picture of the multivariate data structure in the biplot. However, 
for data of similar or even bigger size, the proposed methods still offer an ex
tremely useful rank-two approximation capturing the relationships between both 
factors. The performance of rPCA is still good enough (at least 54.08%) for this 
particular case in terms of cumulative variability explained by the first two PCs. 

Despite the previous interpretational doubts, it can be seen that the effect 
of the chosen final degree is possibly stronger than the effect of the study field 
since the loadings tend to create a quite clear division of bachelors, masters, and 
doctors for most of the biplots. This property is more obvious for men while 
for women the difference between bachelors and masters is partially wiped out, 
maybe also due to a less compact data structure. Finally, employing the outCoDa 
function (Tempi et al., 2011; Filzmoser and Hron, 2008) again, some outliers for 
the data set of the whole compositional tables are detected: Austria, Norway and 
Spain for men, and United Kingdom, Turkey and United States for women. 

From the second row of Fig. 20, some overall idea about the hypothetical 
state of independence between degree and study field factors might be obtained. 
A stronger effect of the chosen degree and a weaker effect of the study field would 
still be apparent for men, and one new feature could be observed: there would 
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Figure 20: Robust covariance biplots of the Education compositional (upper 
row), independence (middle row) and interaction tables (lower row) for men (left 
column) and women (right column), respectively. Study fields are marked as 
follows: 1 = Education, 2 = Humanities and arts, 3 = Social sciences, business 
and law, 4 = Science, mathematics and computing, 5 = Engineering, manufactu
ring and construction, 6 = Agriculture and veterinary, 7 = Health and Welfare, 
and 8 = Services. o n 



be a strong relation between Education and Humanities and arts study fields 
for each degree. For women, e.g., a similarity of educational systems in Sweden, 
Finland, Belgium and Switzerland is reflected. Also, in the case of independence, 
higher occurrence of outliers would be present for both men and women. 

When looking at the biplot for the interaction tables for women (lower right 
figure), two of the mentioned countries are shifted away from the fields of study 
that would dominate if independence was achieved, being especially Agriculture 
and veterinary, Science, mathematics and computing, and Services. These coun
tries are Sweden and Belgium, while Finland would correspond approximately to 
the independence between the factors, and Switzerland actually accounts for even 
stronger dominance of those fields (particularly master and doctoral studies in 
Services). For both men and women, it could be stated that the actual relation
ships between the factors are quite distant from the relative dominance given in 
the independence state. Stronger patterns concerning both factors are generally 
observed for men. 
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6 Final remarks 

As suggested by the name of this thesis, it contributes advanced novel me
thods in the analysis of so-called compositions, i.e., data carrying relative in
formation. Since the nature of CoDa endowed with Aitchison geometry entails 
fundamentally different approach to their statistical treatment, logratio metho
dology is used as a sound and necessary basis for the statistical analysis. The 
newly introduced tools are applied in the fields of science where high-dimensional 
data are a daily bread, namely metabolomics and econometrics. Additionally, the 
work conducted during my Ph.D. study has resulted in a contribution of new 
scientific insights through several interdisciplinary research collaborations in the 
field of metabolomics. 

Chapter 1 outlined the topics presented in the thesis and their interconnec-
tedness through the complexity and the compositional nature of the related data 
sets resulting in the need for pivot coordinates. Therefore, in Chapter 2, next 
to some basic principles of the logratio methodology, the entire genesis of pivot 
coordinates was provided. Specifically, all the different types of these olr coordi
nates including the case of compositional tables were summarized together with 
different real-world data driven examples motivating their origin. Since each of 
the methods introduced in this thesis at some point relies on the semi-automated 
choice of coordinates while needing to keep an easy interpretation, a special em
phasis was put on the link between clr coefficients and pivot coordinates arising 
from the form of the respective logcontrasts. The limitations of the clr represen
tation were described together with some fundamental properties of both OPCs 
and clr coefficients, providing always also a pairwise logratio point of view. 

A new approach to univariate statistical analysis of (untargeted) metabolo-
mic data, introducing a Bayesian version of a popular double-filtering graphical 
tool called volcano plot coupled with logratio data representation was proposed 
in Chapter 3 . Although interpretability of clr coefficients would be fully satis
factory there, the univariate analysis is geometrically only reasonable when first 
pivot coordinates are used instead. Further, it was explained that the Bayesian 
counterpart to the multiple hypotheses testing might solve some of the problems 
occurring in frequentist analysis of high-dimensional data such as the inappropri-
ateness of the routinely used p-value corrections for multiple testing or sensitivity 
of the traditional methods to outlying observations. Also, even if all limitations 
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of the frequentist approach were over-passed, the poverty of the information pro
vided as a result of each hypothesis test is notable in the contrast to Bayesian 
approach producing the whole posterior distribution. Decision made on behalf of 
Bayesian inference is, therefore, always more competent, because it is based on 
much richer information compared to a single number from the traditional hy
pothesis testing. Consequently, the complex information hidden in the posterior 
distributions was exploited in the construction of the Bayesian version of volcano 
plot when deriving b-values for the y-axis and simplifying the posteriors to MPD 
representation for x-axis. Moreover, an additional feature combining information 
from both axes was provided in the form of HDI distance levels which could 
generally be used for the final choice of biomarker candidates. 

Classification problems with CoDa have led to duly justified criticism of 
the OPC approach, commonly resulting in poorer sensitivity and specificity than 
competitors based on data normalization. In the field of metabolomics, this lat
ter group is led by the widely used P Q N which represents a more sophisticated 
alternative to simply using one element for normalization (approach popular e.g., 
in geochemistry or microbiome data analysis). A new type of pivot coordinates, 
SPCs, were thus proposed in Chapter 4. They exclude from the aggregation such 
pairwise logratios that are determined by Welch's t-statistic-based intervals as 
deviating from the main pattern. Hence, SPCs demonstrate the value in consi
dering more complex logratios involving the compositional part of interest, while 
still retaining the intuitive idea of aggregating relative information into one (pi
voting) logratio coordinate. Moreover, they further stress how the flexibility of 
the logratio approach built on well-founded geometrical grounds can outperform 
ad hoc solutions. Also, as shown, the method is connected as a particular zero-
one weighting case with the broader framework of WPCs, which is able to deal 
with the drawbacks of OPCs in regression tasks. That is why the SPC approach 
presented here somehow closes the circle, having now the concept of pivot coordi
nates covering most common CoDa analysis and modeling situations met in the 
metabolomics context and beyond. Finally, aiming to enhance the identification 
of biomarkers in the context of binary classification problems, the novel coor
dinate system was embedded within a PLS-DA including Benjamini-Hochberg 
multiple testing adjustment for the bootstrap-based significance testing on the 
standardized PLS model coefficients. 
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In Chapter 5, rPCA of compositional tables as a two-factorial generalization 
of vector CoDa was studied. Given that compositional tables can be decomposed 
onto their independence and interaction parts, a statistical analysis of both is 
recommended to get insight into the ideal situation when relationships amid 
factors are filtered away, as well as into interactions between factors forming 
the original compositional table. As most practical data sets contain outlying 
observations, robust methods requiring an orthonormal coordinate representation 
have been considered. To reduce the dimension of data at hand, rPCA using 
the M C D estimator can be applied to pivot coordinates of compositional tables 
according to their decomposition into independence and interaction tables. The 
necessity of respecting dimensionality of the independent and interactive parts 
presents the main difference to (vector) CoDa where such feature does not occur. 
It was precisely this need of specific choice of olr coordinates where coordinates 
of independence and interaction tables form together coordinates of the entire 
compositional tables which allowed here for the additional benefit brought by the 
linkage of OPCs to clr coefficients constructed in the same manner. Thereafter, 
loadings obtained in OPCs for the rPCA were transformed back to clr coefficients 
where they were used for the construction of compositional biplots and their 
meaningful analysis. In case of (2 x J) table dimensions, an additional feature 
could be observed in the graphical output of interaction tables, which was traced 
back to the interpretation of the clr coefficients as well. 

The good performance of the novel methods was always shown on the analy
ses of two different dimension-relatable data sets (from the field of rare metabolic 
diseases and economy, respectively). For Chapters 3 and 4, simulation studies were 
also provided to compare the stability and/or performance of the proposed tools 
with the traditional approaches to the presented tasks. In both cases, the results 
of the simulations highlighted the potential of the new methods. 

A l l computations in this thesis were performed using the environment of 
the statistical software R (R Core Team, 2 0 2 2 ) . The related codes are available 
online at https://github.com/sousaju/BayesVolcano for Chapter 3, https: 
//github. com/sousaju/SPC for Chapter 4, and https: //github. com/sousaju/ 
rPCA-CoDaTables for Chapter 5 under G N U GPL. 
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I truly hope that also thanks to a certain aspect of robustness and high-
dimensionality that was present in all three introduced tasks and that is an 
indispensable part of an ample amount of data sets in practice, will the novel 
tools have the potential to quickly incorporate alongside the well-established me
thods from the CoDa analysis. I strongly believe that my dissertation thesis will 
also render one of the final touches to the research around pivot coordinates by 
providing the last piece currently missing in the area of weighting techniques. 
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A Transgenic rat models with induced tauopathy: 
biological background 

The first application concerns transgenic rat models with induced tauopathy. 
Tauopathies are neurodegenerative disorders, with Alzheimer's disease (AD) be
ing one of the most prevalent tauopathies in humans (Karlíkova et al., 2017). 

Data obtained from samples CSF collected from transgenic rats at the age 
of 4 and 14 months were acquired by a targeted lipidomic approach using high-
performance liquid chromatography coupled with mass spectrometry (UHPLC-
MS). The data set is available at the MassIVE database (Center for Compu
tational Mass Spectrometry, 2023) and it was pre-processed using the Metabol 
package (Gardlo et al., 2019) on the R system for statistical computing (R Core 
Team, 2022). Based on a mixed sample for quality control (QC; analyzed periodi
cally every 6th sample), locally estimated smoothing signal (LOESS) correction 
was applied to the data. Lipids whose coefficient of variation calculated from QC 
aliquots was higher than 30% were excluded from further data processing. 

Several previous studies have provided findings about biochemically relevant 
biomarkers and their role in tauopathic neurodegeneration and AD. In addition 
to the pathological aggregation of tau protein in tauopathy, amyloid beta plaque 
formation occurs in A D patients. The whole class of phosphatidylcholines has 
been detected as upregulated in CSF of cognitively healthy humans with abnor
mal or pathological tau protein or amyloid beta peptide 42 (A/342) levels (Fonteh 
et al., 2020). Their close metabolic intermediates, the lysophosphatidylcholines, 
have been positively associated with the formation of A/?(l-42) fibrils (Sheikh and 
Nagai, 2011; Pedersen et al., 2019). Next, elevated sphingomyelin concentrations 
have been linked to membrane breakdown, demyelination, and progressive loss of 
neuronal cells in brain tissue during the progression of neurofibrillary pathology 
(Kao et al., 2020). Moreover, no significant alteration in lipids from the class of 
plasmanyl/plasmenyl lysophosphatidylethanolamines or triacylglycerols has been 
revealed in patients with A D (Kao et al., 2020) so far. 
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B SCADD: biological background 

The second application concerns dry blood spot samples of patients with 
a hereditary genetic disorder in /3-oxidation of short-chain fatty acids. These 
patients suffer from enzyme deficiency in short-chain acyl-coenzyme A dehydro
genase (SCAD, EC 1.3.8.1). Owing to the disruption of this pathway, the disease 
is manifested by increased concentrations of butyric acid residues in the form 
of butyryl-carnitine, butyryl-coenzyme A, and butyryl-glycine conjugates in the 
patient's biofluids (Gallant et al., 2 0 1 2 ) . 

As with the previous case study, the data were obtained using UHPLC-MS, 
and only untargeted lipidomics was applied. Therefore, instead of proper lipids, 
the variables in the original raw data set refer generically to features. These 
features also represent adducts, source fragments, multimers, and isotopes of as-
yet-unidentified molecules (Graga et al., 2 0 2 2 ) . From the total of 2011 features 
present in the data set, 761 were fully identified, 693 just partially identified, and 
the remaining 557 were unknown. 

Octadecatrienyl-carnitine (CAR 18:3) was found to be a potential biomar-
ker which is of particular interest because acylated carnitines and other acyl 
conjugates are related to accumulated intermediates of disrupted beta-oxidation 
(Nochi et al., 2 0 1 7 ) . A cascading accumulation of long-chain fatty acids may have 
occurred due to SCAD deficiency. In contrast, polyunsaturated glycerophospho-
lipids and phosphatidylinositols were also identified as biomarkers by some of the 
approaches. Because of the failed beta-oxidation in SCAD deficient patients, it 
can be assumed that many other metabolic pathways taking place in the mito
chondria have been affected. However, glycerophospholipids are as such formed 
in a different compartment of the cell, the endoplasmic reticulum (Blom et al., 
2 0 1 1 ) . Therefore, these lipids are probably false positive findings. Among these 
potential false positives were long-chain SM lipids, which are also synthesised 
extra-mitochondrially (Gault et al., 2 0 1 0 ) . 
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Abstract 

An abundance of scientific fields produces data where their relative structure, 
which is inherently contained in ratios among variables, is of the main interest. 
Due to the specific geometrical properties of such (compositional) data, a pro
per choice of real coordinates within the logratio framework is crucial for any 
sensible statistical analysis. In this thesis, novel methods related particularly to 
the use of so-called pivot logratio coordinates are presented within different re
search areas generating data sets of higher dimensionality or complexity. One of 
the essential tasks in omics sciences is to find statistically significant differences 
between patient and control groups to detect biomarkers of particular diseases 
using both univariate and multivariate statistical methods. A concept of b-values 
is introduced together with a Bayesian version of a widespread tool based on mul
tiple hypotheses testing, the so-called volcano plot, incorporating also distance 
levels of the posterior highest density intervals from zero. Next, a new type of 
coordinate representation aiming to enhance the identification of biomarkers is 
proposed. They are constructed so that the "pivoting" coordinate representing 
a certain compositional part aggregates all but the deviating pairwise logratios 
of that part to the remaining ones, in accord with the name selective pivot coor
dinates. They are further coupled with partial least squares discriminant analysis 
as a gold standard in the multivariate analysis of omics data. Finally, a data 
table arranged according to two factors can often be considered a compositional 
table. Hence, a special choice of pivot coordinates reflecting a decomposition pro
cess into independent and interactive parts is presented for compositional data 
comprising the two-factorial complexity. A robust principal component analysis 
(PCA) is then performed for dimension reduction, allowing for investigation of 
the relationships between the given factors through a direct relation of the pro
posed coordinates to centered logratio coefficients, used traditionally in context 
of P C A with compositional data. 

Key words: compositional data, logratio methodology, centered logratio coeffi
cients, pivot coordinates, weighted pivot coordinates, selective pivot coordinates, 
compositional tables, Bayesian statistics, robust principal component analysis, 
volcano plot, partial least squares discriminant analysis, compositional biplot, 
metabolomic data, economic data 
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Abstrakt v českém jazyce 

Celá škála vědeckých oborů produkuje data, u kterých je hlavním zájmem jejich 
relativní struktura, obsažená ze své podstaty v podílech mezi proměnnými. Vzhle
dem ke specifickým geometrickým vlastnostem takových (kompozičních) dat je 
pro jejich relevantní statistickou analýzu nezbytná správná volba reálných sou
řadnic v rámci logpodílové metodiky. V této práci jsou představeny nové metody 
související zejména s využitím tzv. pivotových souřadnic v různých oblastech vý
zkumu generujících datové soubory s vyšší dimenzionalitou nebo komplexností. 
Jedním z nejzásadnějších úkolů v tzv. -omických vědách je nalezení statisticky 
významných rozdílů mezi skupinami pacientů a kontrol, které slouží k detekci bi-
omarkerů různých onemocnění s využitím jednorozměrných i mnohorozměrných 
statistických metod. Je zde představen koncept b-hodnot spolu s bayesovskou 
verzí populárního nástroje založeného na mnohonásobném testování hypotéz, na
zývaného vulkánový graf. Díky bayesovské modifikaci lze do grafu zahrnout rovněž 
zóny vzdálenosti intervalů nejvyšší hustoty (HDI) od nuly. Dále je navržen nový 
typ souřadnicové reprezentace kompozičních dat, jehož cílem je zlepšit identifi
kaci biomarkerů. V souladu se svým názvem jsou tyto tzv. selektivní pivotové 
souřadnice konstruovány tak, že „vodící" souřadnice agreguje všechny párové log-
podíly odpovídající kompoziční složky s ostatními komponentami, s výjimkou 
aberantních logpodílů. Na souřadnice je následně jako zlatý standard mnohoroz
měrné analýzy -omických dat aplikována diskriminační analýza metodou částeč
ných nejmenších čtverců. A konečně, složitější strukturu kompozičních dat uspo
řádaných podle dvou faktorů lze často považovat za kompoziční tabulku. Pro tato 
data je v práci uvedena speciální volba pivotových souřadnic reflektující možný 
rozklad tabulky na její nezávislou a interakční část. Za účelem redukce dimenze je 
pak použita robustní metoda hlavních komponent (PCA), která prostřednictvím 
přímého vztahu představených souřadnic s centrovanými logpodílovými koefici
enty, jenž jsou v kontextu P C A s kompozičními daty tradičně užívány, umožňuje 
získat lepší vhled do vztahů mezi danými faktory. 

Klíčová slova: kompoziční data, logpodílová metodika, centrované logpodílové 
koeficienty, pivotové souřadnice, vážené pivotové souřadnice, selektivní pivotové 
souřadnice, kompoziční tabulky, bayesovská statistika, robustní metoda hlavních 
komponent, vulkánový graf, metoda částečných nejmenších čtverců - diskrimi
nační analýza, kompoziční biplot, metabolomická data, ekonomická data 
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1 Introduction 

Compositional data (CoDa) are present in many applications from nume
rous scientific fields (e.g., economy, sociology, psychology, biology, geochemistry, 
environmental studies or so-called omics sciences covering metabolomics, geno
mics, proteomics, transcriptomics, and other branches producing high-throughput 
data). Logratio methodology based on the Aitchison geometry on simplex (Ait-
chison, 1986; Pawlowsky-Glahn et al., 2015; Filzmoser et al., 2018) can and should 
be used as a cornerstone every time the statistician works with strictly positive 
data carrying relative information. At the same time not only vectors but also 
more complex structures with the interest lying in several factors can be seen as 
CoDa. 

The main bottleneck of the statistical analysis and its interpretation in all 
omics sciences is probably the high-dimensionality of their (compositional) data 
sets. Another specific of these sciences is the need for a thorough and substantial 
data pre-processing before any statistical methods can be even applied. This step 
includes also data transformation and/or normalization for which mainly (natural 
logarithm of) so-called probability quotient normalization (PQN) is used (Dieterle 
et al., 2006). Here the original data are expressed in terms of ratios to a median of 
components normalized with respect to some reference sample (usually composed 
from component-wise medians). The P Q N representation is successfully seconded 
by logratio coordinates where the posed challenge is to find an appropriate coun
terpart within the logratio methodology to better reflect geometric properties of 
the relative omics data. 

After data pre-processing, tools from both univariate and multivariate sta
tistics are usually used for the analysis in metabolomic experiments aimed at 
discovering metabolites discriminating the group(s) of patients from healthy con
trols. In the article de Sousa et al. (2020), we presented a novel Bayesian appro
ach to a univariate statistical analysis of untargeted metabolomic data expressed 
in first pivot coordinates (or clr coefficients which are up to a scaling constant 
equal to them) for a multiple hypotheses testing problem. One of the most wi
despread tools for biomarker identification in omics sciences is the so-called vol
cano plot (Cui and Churchill, 2003) functioning as a double filter: the size of effect 
given as a ratio of medians of the patient vs. control data (i.e., a fold-change) 
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is depicted against statistical significance represented by a negative decadic lo
garithm from p-values obtained in t-tests of all variables (metabolites). Unlike 
the traditional frequentist way of volcano plot construction, the proposed Baye-
sian approach does not need to rely on any p-value corrections to the number 
of multiple tests performed; the decision about a hypothesis is build on highest 
density intervals (HDI) working with the entire posterior distributions (Kruschke, 
2013; Thulin, 2011). Another advantage is the robustness of the method (in Ba-
yesian context) achieved through the prior assumption of the data distribution 
(Kruschke, 2013). For the construction of the volcano plot itself, we suggested to 
work with the mean values of posterior distributions as a measure of the size of 
the effect and with newly introduced b-values substituting the statistical signifi
cance. Furthermore, it was shown that a combination of the measures from both 
axes of the Bayesian volcano plot can be conveniently used in the final assess
ment of the potential biomarkers. As such, we proposed to construct so-called 
HDI zones, i.e., distances of the borders of HDI from zero. 

The results of multivariate statistical methods in metabolomics (or generally 
also in other omics as well as for example in geochemistry) often suffer from the 
influence of a handful strong biomarkers on the other variables. An endeavor 
to eliminate this phenomenon led to a development of selective pivot coordina
tes (SPCs) presented in the article Stefelová et al. (2023). Pivot coordinates, here 
termed for better clarity as ordinary pivot coordinates (OPCs), follow a principle 
where the first ("pivoting") coordinate aggregates all logratios with the composi
tional part of interest, keeping an easy interpretation just like in the case of clr 
coefficients (Fišerová and Hron, 2011). At the same time, it is possible to cre
ate more systems of pivot coordinates (usually the same number as the number 
of compositional parts) which can be converted to each other by an orthogonal 
transformation (Filzmoser et al., 2018) and where the part of interest in the first 
coordinate is permuted. As a weighting technique for classification problems of 
high-dimensional CoDa, we suggested zero-one weights allowing to fully eliminate 
aberrant pairwise logratios of the compositional part of interest in its first SPC. 
The big advantage of such weighting is that SPCs results in OPC systems with 
just one difference - the pivoting coordinate of each system is generally no longer 
the first one. Therefore, SPCs can be seen as a certain orthogonal rotation of 
the original pivot coordinates. As for the particular choice of strategy to assign 
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the weights to the individual compositional parts, we chose Welch's t-statistics 
to determine individual logratios which should be eliminated from the pivoting 
coordinate of each set of SPCs (i.e., by assigning zero weights to the respective 
pairwise logratios). After constructing Welch-based SPCs, partial least squares -
discriminant analysis was applied on the data as a well-established method for 
classification tasks in omics sciences. A comparison of sensitivity and specificity 
among logarithmized PQN, OPCs and SPCs was provided in a simulation with 
the newly proposed coordinates outperforming the others in both true positive 
and true negative rate, making them a very versatile transformation option. 

More complex CoDa structures where the observations are carrying inhe
rently relative information about data distribution on the basis of two (or even 
more) factors are not yet common in omics, geochemistry or biology. Neverthe
less, to model for example a relative structure of unemployed people depending on 
their gender and age group, or a relative structure of university students among 
different study subjects with relation to the obtained university degree, could 
not be done otherwise. From the mathematical point of view, we talk about two-
factorial extension of vector CoDa, called compositional tables (Egozcue et al., 
2008, 2015). Using the logratio methodology, each compositional table can be 
decomposed into an independent and an interactive part and oh coordinates as
signed to all of them (Facevicova et al., 2016) enabling further statistical proces
sing of compositional tables using popular multivariate methods. The comparison 
of independence and interaction tables is what allows for a better understanding 
of the original data which is why in the article de Sousa et al. (2021) we proposed 
a particular choice of pivot coordinates for all three compositional tables (i.e., 
the original table and its decomposed parts) with a direct link to clr coefficients 
including their explicit formulas and interpretation. This is a key step for an ap
plication of robust multivariate methods on two-factorial CoDa and since one of 
the most common tasks in statistics is a dimension reduction, we applied on the 
data expressed in the presented coordinates a robust principal component analy
sis. It requires to carry out the computations of loadings and scores using OPCs 
of vectorized compositional tables, as clr representation leads to singularity, and 
transform them to clr coefficients only afterward for the purpose of compositional 
biplots construction. 
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2 Summary of the state of the art 

2.1 Logratio methodology of compositional data 

A positive (row) vector x = (xi,X2, • • • ,XD) is denned to be a D-part com
position if it carries relative information, i.e., the ratios between the components 
are informative (Aitchison, 1986; Pawlowsky-Glahn et al., 2015). Any compositi
onal vectors with equal number of parts are considered to be representatives of 
the same equivalence class if one vector is obtained from another by a positive 
scalar multiplication (Pawlowsky-Glahn et al., 2015). This is an important point 
e.g., for some omics sciences where the total often might not be known. Accor
dingly, equivalence classes of compositional data are represented without loss of 
information in a Z>-part simplex, 

for any K > 0. The choice of K (being 1 for proportions and 100 for percentages) 
is irrelevant for the analysis and can also vary throughout the compositional 
data set. The D-part simplex is thus a (D — l)-dimensional sample space of 
(representatives of equivalence classes of) compositions. 

A closure operation C can be applied to rescale the data to a given con
stant sum representation. Therefore, the results of statistical processing should 
not depend on the sum K of compositional parts and instead of the standard 
Euclidean distances which rely on absolute (squared) differences between com
ponents, relative differences are used to express distances between observations. 
This principle called scale invariance is the first of three basic compositional 
principles (Pawlowsky-Glahn et al., 2015). Moreover, the original data often con
tain some non-informative part(s) in the compositional vector that are not of 
interest. Hence, we do not expect any change of results concerning the respective 
subcomposition when these parts are removed from the data. Subcompositional 
coherence is a principle declaring that results obtained from a <i-part subcom
position, d < D, are not in contradiction with results obtained by an analysis 
of the original £>-part composition. Finally, permutation invariance states that 
the results are independent from a chosen order of parts within the composi-
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tion, an anticipative premise for any reasonable statistical processing and one of 
the key assumptions for the idea behind the construction of pivot coordinates 
(Section 2.2). 

The above principles and the relative scale of CoDa should be captured 
by a meaningful geometric structure, preferably following the properties of the 
Euclidean vector space. This is provided by the Aitchison geometry (Pawlowsky-
Glahn and Egozcue, 2001; Egozcue et al., 2003). Instead of adapting the standard 
statistical methods to this specific geometry, it is rather preferred to firstly express 
CoDa in meaningful real coordinates and then proceed with further statistical 
processing; i.e., employing the working on coordinates principle (Mateu-Figueras 
et al., 2011). 

Generally, there are three types of logratio coordinate representations re
specting the Aitchison geometry with interpretation in terms of log-ratios or 
their aggregations, centered logratio coefficients (clr), additive logratio coordina
tes (air) (Aitchison, 1986) and orthonormal logratio coordinates (olr) (Egozcue 
et al., 2003) defined as 

(1) 
X\ 

,ln x2 - . . I n 3 * - 1 ] 
xD xD XD J 

X\ 
.In x2 • In ——-

z = ok(a;) = ((x, el)A , (x, e2)A ,...,{x, e D _ 1 ) J , (3) 

where g(x) stands for the geometrical mean of the whole composition and D-part 

compositions el = C(e\, ez

2,..., ez

D), i = 1,..., D — 1, form an orthonormal basis 

on the simplex. 

Clr representation keeps the metric properties of CoDa and enables for a sim
ple and meaningful interpretation in terms of dominance of a given compositional 
part with respect to the other parts on average. Consequently, clr coefficients are 
useful for a graphical interpretation of compositional data including compositi
onal biplots as a result of a dimension reduction through P C A (Aitchison and 
Greenacre, 2002) or a multiple hypotheses testing based Bayesian volcano plot (de 
Sousa et al., 2020). However, it is worth noting that clr coefficients sum up to zero 
which leads to a singular covariance matrix. This reflects dimensionality of com-
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positions, which is just D — 1 for D-part compositional data. Given the zero-sum 
condition, it is generally not desirable to analyze any clr part separately without 
considering the others nor to use clr coefficients with common robust statistical 
methods (Filzmoser et al., 2009; Filzmoser and Hron, 2013; de Sousa et al., 2021). 

There is a linear transformation between olr coordinates and clr coefficients, 

done through a D x (D — 1) matrix V of clr representations of the olr basis 

vectors (i.e., logcontrast coefficients defined generally as a linear combination of 

logarithmized parts with zero-sum constraint on the respective coefficients), 

clr(jc) = V z = [clr(e1)T, c l r ( e 2 ) T , . . . , c l r(e D - 1 ) T ] • olr(a;) r. (4) 

2.2 Pivot coordinates 

To enable a link to clr coefficients within an olr coordinate system, (ordinary) 

pivot coordinates (OPCs), = (zf , . . . , ^ _ i ) , with zf \ i = 1,..., D — 1, given 
as 

y l l j = i + i x j 

were introduced as a special case of olr coordinates (Fišerová and Hron, 

2011; Hron et al., 2017). Here, xf refers to the i-ih part of the re

ordered composition (xi,xi,..., xi-i, xi+i,..., XD) which can be rewritten as 

(x[ ,x\ ,...,x\ ,xf)v ...,xD). This indicates that in each of the D coordinate 

systems, a permutation of compositional parts needs to be performed, so that the 

l-t\\ part (/ = 1,... ,D) of x stands at the first ("pivoting") position. It ensures 

that for each part of the original composition, the desired interpretation can be 

reached in one of the coordinate systems. The first OPC in each system, z®, 
then clearly explains all relative information about part xi and, additionally, it 
is proportional to the respective clr coefficient from the expression (2) as 

.(O / D 

D - 1 
c\r(x)i, (6) 

being an extra asset in case of the univariate statistical analysis. Because OPCs 
are constructed "semi-automatically", they are certainly advantageous for high-
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dimensional data and/or multifactorial CoDa structures. 

OPCs can be rewritten in terms of pairwise logratios yielding 

.(0 _ 1 

y/(D-i + l)(D 

/ T ( 0 \ / T (0 
h ' i S r + - + • " \ ± (7) 

As an alternative to this situation where all pairwise logratios in zf1 are trea
ted with the same relevance, weighted pivot coordinates (WPCs) were proposed 
in Hron et al. (2017) with the objective to provide a possibility to enhance or 
mitigate the effect of some pairwise logratios with the compositional part of in
terest. If we rewrite the first OPC in the form of the expression (7) with weights 

af, j = 2 , . . . ,D as 

(!) (!) 
a ? ) l n \ + . . . + a i ? l n \ , a « , . . . a « > 0 , af + . . . + a g = 1, 

the first W P C can be then obtained from here as follows 

Si) 
w® = , In H ^. (8) 

A toll for the non-equal handling of the pairwise logratios with the pivoting com

positional part is another coordinate involving x\ where its remaining (relative) 

information not included in (8) gets stored, i.e., a residual coordinate wD_v While 

the general formulas for W P C wf, • • •, WD-\ a r e computationally laborious to de

rive, the way to obtain them is to sequentially apply the orthonormal property 

of the corresponding logcontrast coefficients and the identity c l r (e J ( ^) l T = 0. 

So far, there are two different weighting techniques presented in the litera
ture, both arising from the limitations of OPCs in different practical applications. 
The first approach published together with the general WPCs formulation in Hron 
et al. (2017) reflects the need to filter some background noise in geochemical map
ping where the calculated concentrations often suffer from measurement errors 
and imputed rounded zeros. Although this could be relatable also for some omics 
sciences, the chosen weight function based on the variation matrix would gene
rally not work there, as in a majority of situations a certain response variable 
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needs to be considered together with the omics compositional data set. For re
gression tasks with high-dimensional compositional explanatory variables, where 
the response variable is continuous, a weighting approach taking into account the 

these weighting schemes downplay the parts of the original composition which 
have some sort of a poor association with either the pivoting part or the re
sponse variable. However, they are not suitable for classification tasks. For the 
purpose of a categorical response variable coupled with high-dimensional CoDa 
from metabolomics, another weighting strategy, that can hopefully be seen as the 
"last piece missing" within the approach where pivot coordinates sophistically ag
gregate (some) information from all possible pairwise logratios, is presented in 
Section 4.2. 

The geosciences where the usage of pairwise logratios still prevails motivate 
also the origin of backwards pivot coordinates published in Hron et al. (2021). 
Employing some kind of "reverse order" in the construction of pivot-like coordi
nates leads to a possibility of working with the desirable effects of simple logratios 
without sacrificing the orthonormality of olr coordinates required by many mul
tivariate statistical methods. Starting with a choice of interpretable pairwise lo
gratios (e.g., air coordinates (1) with XD as a normalizing geochemical element 
or any other reference role), an entire set of olr coordinates is built around each 
of them. This results in systems of D — 1 backwards pivot coordinates 

which are just orthogonal rotations of each other like in the case of OPCs. The 
I'-th. reordering of the parts of the original composition is chosen in such a way 
that the pivoting compositional part occupies the first position and the denomi-

2.3 Compositional tables 

Two-factorial extension of vector CoDa (Aitchison, 1986; Pawlowsky-Glahn 

et al., 2015) carrying information about a relationship between and within row 

correlation structure of the data was proposed in Stefelova et al. (2021). Both 

nator XD the second one, = ( S ^ X D , . . . ,xy- i , xy+i , . . . ,XD-I)-
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and column factors is called a compositional table x, 

x = 
XlJ 

XlJ ) j = 1,... J. (9) 

Since compositional tables form a direct extension of vector CoDa, all the prin
ciples introduced in Section 2.1 apply, up to some minor modifications due to 
the two-factorial structure of the tables. It is straightforward to derive that the 
dimension of the simplex SIJ is IJ — 1, corresponding to the dimensionality of 
(7 x J)-compositional tables. 

To analyze compositional tables, it is beneficial to work also with the so-
called independence and interaction tables where their separate analysis can be 
advantageous for further interpretation concerning both factors and their relation
ships. These independent and interactive parts can be obtained from the original 
table (9) through an orthogonal decomposition x = Xind © X i n t (Egozcue et al., 
2008). Here, the independence table is constructed to extract all the relative in
formation about row and column factors under the assumption that the original 
compositional table is a product of its row and column geometric marginals, and 
the interaction table contains information about the relationships between the 
row and column factors. 

It is crucial to realize that the dimensions of xin<i and xint lower to / + J — 2 
and to (7 — 1)(J — 1), respectively. Hence, similarly to vector CoDa, an appro
priate real coordinate representation of compositional tables, which in addition 
follows the decomposition into independent and interactive parts, needs to be es
tablished with respect to the the sample space dimensionality and the Aitchison 
geometry (Facevicova et al., 2016). 

Generally, there are three types of OPCs corresponding to the row, column 
and "odds ratio" partitioning of the compositional table (Facevicova et al., 2016). 
The first two types jointly form a coordinate representation of the independence 
table, the third one is used for the interaction table. Altogether, they provide 
a coordinate representation of the original compositional table. In case of row 
and column types of coordinates, the entire first row or column, respectively, 
is taken as the pivoting element and separated from the rest. In the next step, 
this pivot is not considered anymore and the following row or column is taken 
as the new (reduced) pivoting element, and so on, until the following I + J — 2 
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coordinates are obtained, 

l + n [ ^ + 1 . ) , . . . , ^ / . ) ] 1 / ( / - i ) ' 

^ / tY t ^ 1 " ^ , 9 i X ' 3 / SnTU TV 3 = l,~-,J-l, (10) 
V 1 + J - j [g(x,j+1),gix.j)]1/^ J) 

where g(xi.) and g(x,j) stand for the geometric mean of the i-th row and j-th 
column, respectively. 

The process of obtaining the remaining (/ — 1)(J — 1) coordinates is based 
on a division of the original compositional table into four blocks, say upper left 
A, upper right B, lower left C and lower right D, where A contains always just 
one (pivot) cell indexed by rs. The odds ratio interpretation should be now easily 
seen from the following formula, where the elements of blocks A and D are in 
the numerator, and the elements of blocks B and C in the denominator of the 
logratio, 

zOR 
(I - r ) (J - s)(I - r + 1)(J - 8 + 1) ̂ J I J ^ ZZ' 

To obtain all OPCs of the odds ratio type in a proper order corresponding to the 
zr and zc coordinates (10), the position of the pivoting cell is moving firstly by 
rows with fixed first column, r = 1,..., I — 1, then by columns with fixed last 
row, s = 1,..., J — 1, and afterward the row position is always leveled back down 
by one and the column position moves again from 1 to J — 1 for the given row 
until all sizes of the r x s table are covered. 

Finally, permutations of the entire rows or columns following the same prin
ciple as stated in Section 2.2 could be performed. Hereby for all combinations 

of rows and columns, different OPC systems consisting of z\ , Zj and z ° R , 

where (kl), k = I,... ,1,1 = 1,..., J, defines row and column permuted to the 

pivoting position within the whole table, would be gained (Facevicova et al., 

2016). 
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2.4 Robust principal component analysis for compositional 
data 

One of the widely used methods for the purpose of dimension reduction of 
large-scale data sets in a compositional approach is P C A just like in the case 
of standard multivariate data analysis. It converts possibly correlated original 
variables from the data at hand into a smaller set of linearly uncorrelated variables 
called principal components (PCs). Additionally, the first component accounts 
for the largest variance of the given data, the second one for a maximum of 
the remaining variance, etc., under the constraint of being orthogonal to all the 
previous PCs (Johnson and Wichern, 2007). 

The covariance matrix C estimated from a real data matrix X can be 
spectrally decomposed into C = G L G T , where G is a matrix of eigenvectors 
and L represents a diagonal matrix of eigenvalues of C. It is then possible to de
fine the P C A transformation as X* = (X — l T t ) G , where t is the (row) location 
estimator and 1 is a vector of ones with length n (number of observations). The 
columns of the matrix X*, the coordinates of the PCs, are called scores and the 
columns of G, containing the respective basis vectors, are called loadings. 

It is common to take t as the arithmetic mean and C as the sample covari
ance matrix. However, both are very sensitive to outlying observations. Robust 
alternatives can be obtained by using the M C D estimators of location and cova
riance (Maronna et al., 2006). Accordingly, robust principal component analysis 
(rPCA) of CoDa based on the M C D approach requires olr coordinates Z{ as an 
input to obtain full rank data in order to get the M C D estimate of the covariance 
matrix and the respective matrix of eigenvectors G. The scores z* are then given 
by z* = [zi — t)G. Once rPCA is performed, the loadings can be transformed 
back to clr coefficients as G c i r = V G , accounting for compositional biplot con
struction with meaningful interpretation, whereas the scores remain identical and 
only a column of zeros is added to the end. For the interpretation, the focus is 
on links between vertices of arrows as they stand for a proportionality between 
the original compositional parts (Aitchison and Greenacre, 2002). Due to the 
relation with OPCs, the single clr variables (or the respective loadings) can be 
used to identify observations with a high dominance of the respective parts in 
a compositional vector (Kynclova et al., 2016). 
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3 Thesis objectives 

In this dissertation thesis, the aim is to demonstrate the wide potential of 
the logratio methodology for statistical analysis of compositional data in various 
contexts under the common umbrella of complexity, resp. high-dimensionality of 
the relevant data sets using pivot logratio coordinates (Fišerová and Hron, 2011; 
Filzmoser et al., 2018) or their modifications. Depending on the type of task, 
first pivot coordinates can even be pragmatically replaced (especially in high 
dimensions) by clr coefficients sharing the same interpretation. Conversely, pivot 
coordinates can also be tuned by weighting to filter out aberrant pairwise logratios 
in classification tasks, or they can be generalized to the setting of compositional 
tables (i.e., two-factorial CoDa) and their orthogonal decomposition. 

Accordingly, the developments presented in the thesis touch upon subjects 
such as Bayesian approach to the multiple hypotheses testing of CoDa in metabo-
lomics using first OPCs, construction of a new type of pivot logratio coordinates 
using zero-one weighting technique for the improvement of biomarker identifi
cation, or a particular choice of OPCs for compositional tables complying with 
the decomposition process of two-factorial CoDa and providing a direct link to the 
respective clr coefficients in context of dimension reduction using robust principal 
component analysis. A l l theoretical developments are accompanied with both si
mulated data studies and empirical data sets to demonstrate benefits of the new 
approaches (not included in this summary). 

4 Theoretical framework and applied methods 

4.1 Bayesian multiple hypotheses testing in compositional 
analysis of high-dimensional data 

We suggest here a Bayesian counterpart to the popular univariate statisti
cal analysis of omics data sets using multiple hypotheses testing. Classical t-test 
assumes a normal distribution of each of the two groups of samples which is, 
however, not appropriate for a description of any data containing outliers. Because 
t-distribution can be much heavier tailed (depending on degrees of freedom v. 
called a normality parameter in Bayesian statistics (Kruschke, 2013)), it seems 
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to be more convenient. It turns out that it is a suitable choice also for the logratio 
representation of metabolomic data (please note that the original measurements, 
i.e., strictly positive data, could hardly be characterized by a t-distribution whose 
domain is the whole real line). Given the linear transformation (4) between olr 
coordinates and clr coefficients, specifically the relation (6) in the univariate con
text, it is sufficient to work with the clr representation instead of OPCs when the 
intepretation in terms of dominance of a compositional part with respect to ave
raged contributions of the others is preferable. However, the mental step leading 
to considering first pivot coordinates in place of the respective clr coefficients is 
still recommendable as univariate analysis with clr coefficients is inappropriate 
due to their zero-sum constraint which distorts the covariance structure. 

In Bayesian t-test, each of the two groups of samples, i.e., clr represented 
patients and controls, has its own mean y u p a t and y U c o n , respectively, whose diffe
rence is of the main interest, and its own standard deviation a p a t and a c o n . The 
normality parameter is shared by both groups (Kruschke, 2013). To make a qua
lified decision about the null hypothesis stating no difference in means among the 
tested samples, all five model parameters need to be inferred. 

Prior distributions of the parameters are taken as non-informative to allow 
already a moderate amount of data to deflect the original setting into the direction 
driven by the evidence (Kruschke, 2014). This is in line with the situation of 
untargeted metabolomics where it is prevailing not to have any well-founded 
prior knowledge for a vast majority of the measured features. 

The inference is driven by the Bayes' rule stating the posterior to be propor
tional (up to an integration constant) to the likelihood times prior, 

> 0~pat, con i 0~Con i v) 

x /(/^pat) CTpatj ̂ con, Cconj (12) 

where the joint prior distribution density / G u p a t , a p a t , / U c o n , < 7 c o n , z/) can be, assu
ming independent parameters, rewritten as a product of marginal densities of 
the single parameters. This assumption permits to take the posterior density 
simply as a product of prior parameter distribution densities, and t-distributed 
probability density reflecting the data evidence X, making this an important step 
simplifying the computations. 

In practice, posterior density is numerically approximated by a class of Mar
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kov chain Monte Carlo methods (MCMC) (Gelman et al., 2013) which generates 
samples from the (non-normalized) posteriors (12), corresponding to both the 
data and the priors. 

The final decision concerning the null hypothesis is very intuitive in Bayesian 
hypothesis testing with the use of credible sets (Thulin, 2014); for example highest 
density interval (HDI), which can be formally defined by inequality P ( y u p a t — y U c o n e 
©HDI|A) > 1 — a, is constructed to contain 95 % of the most frequented posterior 
values GHDI- Since the resulting M C M C chain of differences between means of clr 
representation of both original groups of samples can be plotted into a histogram, 
it may easily be computed where those GHDI values are allocated. If this interval 
does not contain zero, the hypothesis about equality of parameters y u p a t and y U c o n is 
rejected and the posterior distributions are accepted to be significantly different. 
Moreover, the sign of the majority of HDI values further reveals the direction of 
this difference. 

Multiple testing complicates the situation since, except for the hypotheses 
rejection, we also seek some importance order of metabolites based on the results 
of the analysis. This can be done simply according to means of posterior distri
bution (MPD) criterion which is a mean of a difference of posteriors of given 
parameters y U p a t , y U c o n . However, it would lead to a serious loss of information if 
the complex posterior distribution was reduced just to its M P D value. In ad
dition, empirical probabilities that the differences in y u p a t and y U c o n would have 
an opposite sign than indicated by posterior distributions can be considered. 
Even though it is inappropriate to sort the metabolites using just p-values ob
tained from classical t-tests (Wasserstein and Lazar, 2016), some ordering based 
on the above-mentioned probabilities, which we suggest to call b-values, can be 
performed. Formally, we propose to define 

b-value = min { P ( y U p a t - y U c o n > 0), P ( y U p a t - y U c o n < 0)} , (13) 

where the probabilities are computed from the M C M C posterior distribution. 
An analogous procedure was proposed to quantify the evidence against the rejec
ted hypothesis when computing the largest credible set which does not contain 
those values of the tested parameter 9 that are valid just under the assumption 
of the null hypothesis; say credible set QT without values 6>0. Then a probability 
P(9 £ G T | X ) = a m i n , where a m i n is the smallest a ensuring that the credible set 
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0 T does not contain 6>o, has a very similar meaning to the p-value from a traditio
nal t-test whilst considering the entire posterior distribution, in particular also its 
tails (De Braganca Pereira and Stern, 1999; Thulin, 2014). The above-suggested 
b-value (13) could be seen as a certain variation to this idea, using the smaller 
part of HDI divided into two intervals by 6>0 = yup a t — y(icon = 0 as an empirical 
probability of a realization of the posterior on the other side of the zero value. 

Both M P D values and b-values are at disposal for the final choice of potential 
biomarkers from all original metabolites. 

4.2 Selective pivot logratio coordinates for PLS-DA mode
ling 

In the context of binary classification problems involving CoDa, the idea that 
motivates the development of selective pivot coordinates (SPCs) is to have logratio 
coordinates that represent relevant relative information about xi, but aggregate 
only informative pairwise logratios including xi in the first coordinate. That is, 
given that each pairwise logratio involves two distinct compositional parts, the 
aim is to include into an SPC, denoted by ^s, only those that agree with what the 
majority of logratios with xi suggest about its ability to distinguish between the 
two groups of observations. Namely, in a biomedical setting, having two groups 
(patient and control), a compositional part should be identified as a biomarker 
candidate if most pairwise logratios involving that part are significantly higher 
in one group than in the other. 

Given a CoDa matrix consisting of iV observations from two diffe

rent groups, we propose to use the ordinary Welch's t-statistic (Welch, 

1947) to determine the least relevant logratios. Denoting Q^T = ( ^ T i , . . . , 

(z)T/_i, (z)T/ + i , . . . , (I)TD) the set of such t-statistics corresponding to logratios 

(In In - s - , In - s - , . . . , In — ), the criterion is to exclude those logratios for 

which the statistic (i)Td, d = 1,..., D, d I lays outside the interval [(i)0i, (i)^] • 

These boundaries are computed as 
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0 f - o o , if q ( ( 0 T ; 1 - f ) < ^_ 2(0.025) 
( z ) 1 \ med ( ( 0 T ) - 2Q„ ( ( I ) T ) , otherwise, 

and 
f oo, if g ( ( 0 T ; f ) >t w_ 2(0.975) 

( z ) 2 \ med ( ( 0 T ) + 2Q„ ( ( 0 T ) , otherwise, 

where q ((i)T; a) is the a-quantile of ̂ T, med ((/)T) = q ((/)T; 0.5) and £ -̂-2(01) 

is the a-quantile of the Student's t-distribution with N — 2 degrees of freedom 

(the parameter £ is set to 0.1 by default). Moreover, Q n stands for the robust scale 

estimator of Rousseeuw and Croux (1993), i.e. Q n ((/)T) is given by about the first 

quartile of the absolute differences {\^Tc—^Td\, 1 < c < d < D, c,d=£l}. The 

interval for exclusion then results to be [med ((z)T) ± 2Q„ (^)T)], unless more 

than 90% of the t-statistic values are roughly either lower than —2 or higher 

than 2. Where this latter happens, only the upper (resp. lower) cut-off values are 

used. 

Note that this additional condition aims to ensure that logratios involving 
two strong biomarkers with discriminating effect in opposite directions (i.e., incre
ased and decreased in the group of patients, respectively) are not excluded from 
the aggregation. Pairwise logratios of such compositional parts would likely have 
a good discriminating effect in the consequent statistical analysis, nonetheless, 
they might be flagged as outliers among all the logratios with one of the com
ponents in the numerator. Therefore, these are deviating logratios that should 
be preserved in the respective SPC. A higher value of £ can be chosen if this 
undesirable effect is still apparent (for example in data sets with higher ratio of 
potential biomarkers of the opposite directions). 

For the following, let us denote the number of selected logratios inclu
ding xi as (i)M, the parts in the denominator of the selected logratios as 

{i)xf, • • •, (i)X^M, and the remaining parts as mx±,..., ( o ^ D - I - W M - T o obtain 

(i)S, I = 1,... ,D, the original composition x needs to be rearranged as ^x = 

([i)X±,..., (i)XD_1_mM, Xl, (i)xf,. . . , (l)X^i)M^ . 

Then, an OPC system = ((i)Zi,..., (I)ZD-I) is set up for Q^X. T O de-
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fine SPCs, the pivoting coordinate is no longer the first one but the one at the 

(D — (/)M)-th position, denoted by (I)ZD-WM- Accordingly, the SPC of interest is 

obtained as 

(l)S =(l) ZD_(l)M 

(0 M + l 1 
n 

k=l 

= , In - \ + • • • + ln - ^ j — , 1 = 1,...,D. (14) 
^{{l)M + l)-{l)M \ {i)xt (i)X+M) 

The proposed SPCs can also be seen as a special case of WPCs (Hron et al., 

2017) introduced in Section 2.2 where weights of either 1 or 0 are assigned to each 

logratio involving x\, depending on whether it is included in the aggregation or 

not, respectively. Consequently, can be written in the form of expression (8) 
as 

(0 ' 
(0 M 

(0 M + l 
In Xl 

D 

A 

1 = 1,...,D, 

with weights given by 

(1)1 d 1) if (i)Td £ [(1)01\ (ifa] 
0, otherwise. 

Building on the OPC-based approach introduced in Kalivodova et al. (2015), 
partial least squares discriminant analysis (PLS-DA) through SPCs given as (14) 
is used here for the actual identification of biomarker candidates. Thus, D models 
of the form 

Y = /30 + {V)l3i • (i)Zi + . . . + (I)PD-I • (I)ZD-\ +e, l = l,...,D, 

are considered, where Y is a binary response representing each of the two groups, 
the explanatory variables (^z\... ,(I)ZD-I are logratio coordinates from the l-th 

SPC system, /30, (i)/3i, • • •, (I)PD-I are unknown model coefficients and e is the 

usual random error term. Note that, unlike with PLS-DA based on OPCs where 
the procedure can be computationally simplified by fitting one model in clr coef-
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ficients and then take advantage of their direct relationship with OPCs in form 
of the equation (6), SPCs require the successive models to be fitted individually. 
Before fitting the PLS model, the data are mean centred so that the intercept ßo 
can be excluded from further considerations. The optimal number of PLS com
ponents is chosen here based on a randomization test approach (van der Voet, 

1994). From each model fit, for I = 1,...,D, the estimate (I)J3D-(1)M associa

ted with the SPC (z)S is extracted, and statistical significance is determined by 

bootstrap-based significance testing on the standardized PLS model coefficients 

(Kalivodová et al., 2015). The resulting p-values are adjusted using the Benja-

mini and Hochberg's method (Benjamini and Hochberg, 1995) to control for false 

discovery rate in multiple testing. 

4.3 Robust principal component analysis for compositional 
tables 

As stated in the Sections 2.3 and 2.4, such a coordinate representation which 
respects the sample space dimensionality as well as the decomposition procedure 
is needed to perform rPCA of compositional tables. Interestingly, the coordinates 
of the entire compositional table given in (10) and (11) can be divided into 
two groups according to the dimensionality of the independence and interaction 
tables, respectively. This becomes the main advantage also when using OPCs for 
rPCA since it allows for a comparison of the results from the whole table and its 
decomposed parts. 

Following the link (6) between the first OPC and the respective clr coefficient 
of vector CoDa, also the first coordinates of the three types from each system can 
then be expressed as proportional (up to a constant) to respective clr coefficients, 

c\v(xind)ki = \l ~JJ~zi V II 
1 r(k) . J — 1 c(l) 

clr (a; int) kl 
( i - W - i ) OR(kl) 

IJ 1 1 ' 
which is an important fact for the interpretation of the analysis. 

The resulting clr coefficients, computed originally from the elements of the 
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independence and interaction tables, 

c]x(xind)ij = In - . , , clr(aj i nt)jj = In 
g[Kndy y ^ ) ' 

can be expressed also in terms of cells of the input compositional table as 

clr(a?jnd)j j = In ? — c k ( a j i n t ) y = In -, (15) 
g{x„)2 g{xi.)g{x.j) 

where g(xi,), g(x,j) and g(x„) stand for the geometric mean of the i-ih row 

(i = 1,..., I), the j-th column (j = 1,..., J) and the whole compositional table 

(and its independent and interactive counterparts for g(x™d), g(x1^)), respecti

vely. As a consequence, each c\r(xind)ij expresses a dominance of a given com

bination of factor values in case of independence. This dominance is then either 

amplified or weakened according to the interaction table which depends on whe

ther the interaction is shifted in a positive or a negative direction. The interaction 

table refers also to sources of departures from independence, nevertheless, the 

information obtained only from c\r(xint)ij does not provide a complete picture 

about the dominance of the respective cell to all other averaged cells. 

There are only I + J — 2 and (/ — 1)(J — 1) linearly independent clr coeffi
cients in the case of independence and interaction tables, respectively, reflecting 
the dimensionality of their sample spaces. Since this dependency makes it im
possible to use the clr coefficients for the rPCA of the decomposed tables, the 
strategy to perform rPCA for compositional tables is the same as in case of vec
tor CoDa: P C A loadings and scores are computed in olr coordinates (OPCs) and 
then back-transformed using relation (4) to the clr space, where the loadings can 
be interpreted in terms of dominance of single cells. Here, clr coefficients of basis 
vectors for rows e r, columns e c and interactions eOR, forming the columns of the 
matrix V , are defined as follows, 

1 ' for the elements in pivot row i, 

for the eler 
otherwise, 

(I-i+l)J 

(I-i+l)J(I /) 
clr(e r) — •{ _ / _ i _ _ f o r elements in rows i + 1,... ,1, 

(16) 
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—L— for the elements in pivot column j, 

for the ele 
otherwise, 

( J - j + i ) J 
] clr(e ) { _ / 1 : — f o r the elements in columns j + 1,..., J, 

and 

clr(e 

I 
rs(r—l)(s— 1) 

( r - l ) ( « - l ) 

r - 1 
rs(s —1) 

s -1 
rs(r—1) 

lo 

for the elements on positions i = r + 1,..., / , 
j = s + l,..., J 
for the pivot elements rs 

for the elements in pivot row r, 
j = s + l,...,J, 
for the elements in pivot column s, 
i = r + l,...,I, 
otherwise, 

(18) 

reinterpreting the expressions from Facevicova et al. (2016). As a result of (4), 
row-wise clr coefficients of the whole table are obtained for the IJ — 1 columns of 
the matrix V . Alternatively, if the matrix V has just I + J — 2 columns formed 
by clr coefficients of basis vectors corresponding to the OPC representation of 
the independence table (10), its respective clr coefficients are derived (and simi
larly for the interaction table with its coordinates (11)). Finally, the transformed 
loadings and scores can be used to construct a biplot in order to reveal the mul
tivariate structure of the sample of compositional tables and relations between 
both factors. 

5 Original results and summary 

As suggested by the name of this thesis, it contributes advanced novel me
thods in the analysis of so-called compositions, i.e., data carrying relative in
formation. Since the nature of CoDa endowed with Aitchison geometry entails 
fundamentally different approach to their statistical treatment, logratio metho
dology is used as a sound and necessary basis for the statistical analysis. The 
newly introduced tools are applied in the fields of science where high-dimensional 
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data are a daily bread, namely metabolomics and econometrics. 

First, a new approach to univariate statistical analysis of (untargeted) meta-
bolomic data, introducing a Bayesian version of a popular double-filtering graphi
cal tool called volcano plot (not included in this summary) coupled with logratio 
data representation was proposed. Although interpretability of clr coefficients 
would be fully satisfactory there, the univariate analysis is geometrically only 
reasonable when first OPCs are used instead. Further, it was explained (not 
included in this summary) that the Bayesian counterpart to the multiple hypo
theses testing might solve some of the problems occurring in frequentist analysis 
of high-dimensional data such as the inappropriateness of the routinely used 
p-value corrections for multiple testing or sensitivity of the traditional methods 
to outlying observations. Also, even if all limitations of the frequentist approach 
were over-passed, the poverty of the information provided as a result of each 
hypothesis test is notable in the contrast to Bayesian approach producing the 
whole posterior distribution. Decision made on behalf of Bayesian inference is, 
therefore, always more competent, because it is based on much richer information 
compared to a single number from the traditional hypothesis testing. 

Next, since classification problems with CoDa have led to duly justified cri
ticism of the OPC approach, commonly resulting in poorer sensitivity and speci
ficity than competitors based on data normalization (such as P Q N in the meta-
bolomic field), a new type of pivot coordinates was proposed in the thesis. These 
so-called selective pivot coordinates exclude from the aggregation such pairwise 
logratios that are determined by Welch's t-statistic-based intervals as deviating 
from the main pattern. Hence, SPCs demonstrate the value in considering more 
complex logratios involving the compositional part of interest, while still retaining 
the intuitive idea of aggregating relative information into one (pivoting) logratio 
coordinate. Moreover, they further stress how the flexibility of the logratio appro
ach built on well-founded geometrical grounds can outperform ad hoc solutions. 
Also, as shown, the method is connected as a particular zero-one weighting case 
with the broader framework of WPCs, which is able to deal with the drawbacks 
of OPCs in regression tasks. That is why the SPC approach presented here for 
classification problems somehow closes the circle, having now covered most com
mon CoDa analysis and modeling situations met in the metabolomics context 
and beyond. 
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Finally, rPCA of compositional tables as a two-factorial generalization of 
vector CoDa was studied. Given that compositional tables can be decomposed 
onto their independence and interaction parts, a statistical analysis of both is 
recommended to get insight into the ideal situation when relationships amid fac
tors are filtered away, as well as into interactions between factors forming the 
original compositional table. As most practical data sets contain outlying ob
servations, robust methods requiring an orthonormal coordinate representation 
have been considered. To reduce the dimension of data at hand, rPCA using 
the MOD estimator can be applied to pivot coordinates of compositional tables 
according to their decomposition into independence and interaction tables. The 
necessity of respecting dimensionality of the independent and interactive parts 
presents the main difference to (vector) CoDa where such feature does not occur. 
It was precisely this need of specific choice of olr coordinates where coordinates 
of independence and interaction tables form together coordinates of the entire 
compositional tables which allowed here for the additional benefit brought by the 
linkage of OPCs to clr coefficients constructed in the same manner. Thereafter, 
loadings obtained in OPCs for the rPCA were transformed back to clr coeffici
ents where they were used for the construction of compositional biplots and their 
meaningful analysis. In case of (2 x J) table dimensions (not included in this 
summary), an additional feature could be observed in the graphical output of in
teraction tables, which was traced back to the interpretation of the clr coefficients 
as well. 

The good performance of the novel methods was always shown on the analy
ses of two different dimension-relatable data sets (from the field of rare metabolic 
diseases and economy, respectively; not included in this summary). For the Ba-
yesian volcano plot and SPCs, simulation studies (not included in this summary) 
were also provided to compare the stability and sensitivity and specificity, re
spectively, of the proposed tools with the traditional approaches to the presented 
tasks. In both cases, the results of the simulations highlighted the potential of 
the new methods. 

A l l computations in the thesis were performed using the environment of 
the statistical software R (R Core Team, 2022). The related codes are available 
online at https://github.com/sousaju/BayesVolcano, https://github.com/ 
sousaju/SPC, and https://github.com/sousaju/rPCA-CoDaTables. 
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