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ABSTRACT
This thesis researches methods of traffic sign recognition using various approaches. Tech-
nique based on machine learning utilizing convolutional neural networks was selected for
further implementation. Influence of number of convolutional layers on neural network’s
performance is studied. The resulting network is tested on German Traffic Sign Recog-
nition Benchmark and author’s dataset.
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ABSTRAKT
Táto práca skúma metódy rozpoznávania dopravných značiek. Implementovaný prístup
využíval strojové učenie založené na konvolučných neurónových sieťach. V rámci tejto
práce bola zistená závislosť úspešnosti neurónovej siete od počtu konvolučných vrstiev.
Výsledná neurónová sieť bola testovaná na datasete GTSRB a na datasete vytvoreným
autorom.
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ROZŠÍRENÝ ABSTRAKT
Systém rozpoznávania dopravných značiek je dnes možné nájsť vo väčšine mo-

derných áut. Tento systém deteguje rýchlostné obmedzenia, zobrazuje ich vodičovi
na displeji a robí náš život bezpečnejším a komfortnejším. Existuje veľa potenciál-
nych odvetví, kde môže byť táto technológia využívaná, ako napríklad, robotika,
umelá inteligencia (AI) alebo vývoj autonómnych vozidiel.

Cieľom tejto práce bol návrh neurónovej siete, ktorá dokáže detegovať a klasifiko-
vať príkazové a zákazové dopravné značky v obraze. V prvej časti bola vytvorená
rešerš metód rozpoznávania. V nej sú prezentované rozdielne prístupy k riešeniu
tejto úlohy pomocou geometrických vlastností značiek alebo pomocou strojového
učenia. V tomto konkrétnom prípade bol zvolený koncept na základe strojového
učenia, keďže je to jedna z najvýkonnejších a najvšestrannejších metód počítačového
videnia.

Druhá kapitola je zameraná na základnú teóriu konvolučných neurónových sietí
(CNN), ich vrstvy a ďalej popisuje fungovanie detekčnej siete Faster R-CNN.

Tretia kapitola popisuje implementáciu niekoľkých detekčných sietí v záujme
určenia vplyvu počtu konvolučných vrstiev na úspešnosť neurónovej siete. Zvolená
konfigurácia siete bola trénovaná a verifikovaná na datasete GTSRB. Táto sieť bola
neskôr testovaná aj na datasete vytvoreným autorom.

V rámci rešerše boli spracované štyri rozdielne prístupy k rozpoznávaniu značiek.
Prvý na základe geometrických vlastností hľadaných dopravných značiek a zvyšné
metódy využívali strojové učenie, konkrétne dve použili podporné vektory (SVM)
a posledná konvolučné neurónové siete (CNN). Na základe tejto rešerše bolo zvolené
riešenie na báze konvolučných neurónových sietí, keďže táto metóda bola najrobust-
nejšia a dosahovala najlepšie výsledky.

Tento návrh bol vytvorený v prostredí MATLAB s využitím balíčkov pre neuró-
nové siete a paralelné výpočty. Na trénovanie bol využitý dataset GTSRB, ktorý je
tvorený 39 000 obrázkami, kde značka zaberá približne 60% plochy obrazu. Na jed-
nej vzorke je vždy iba jedna značka a jej veľkosť je v rozmedzí 15x15 až 256x256
pixelov. Na testovanie bol opäť použitý dataset GTSRB a taktiež dataset, ktorý
nafotil autor. Tento dataset bol vytvorený v Brne, značky boli orezané v štýle GT-
SRB, ale bolo na nich nechané viac pozadia. Značky väčšie ako 180x180 pixelov boli
zmenšené na pätinu ich veľkosti. Obrázky v tomto datasete môžu byť rozmazané,
zrnité a sú fotené v rozdielnych svetelných podmienkach. Všetky značky majú an-
otovanú iba ich triedu. Detektor bol založený na sieti typu Faster R-CNN, ktorý au-
tomaticky trénuje sieť potenciálnych návrhov výskytov hľadaného objektu (RPN),
v tomto prípade značiek. Prvá navrhnutá CNN využívala architektúru AlexNet
s upravenými hodnotami parametrov a zredukovaným počtom max pooling vrstiev.
Výsledky rozpoznávania boli veľmi zlé, preto bol tento návrh zavrhnutý. Namiesto



toho bola trénovaná sieť iba s dvoma konvolučnými vrstvami a tromi plne prepo-
jenými vrstvami, ktorá dosahovala lepšie výsledky ako upravený AlexNet, ktoré ale
stále neboli postačujúce. Preto boli navrhnuté ďalšie neurónové siete s inkrementu-
júcim sa počtom konvolučných vrstiev. Maximálne bolo použitých päť vrstiev. Tieto
detektory boli porovnané na základe 𝐹1 kritéria na testovacej množine z GTSRB.
V testoch mala najvyššie skóre sieť so štyrmi konvolučnými vrstvami s hodnotou
0,823. Táto konfigurácia siete bola preto zvolená na tréning s upravenou množi-
nou dát z GTSRB. Počet klasifikačných tried v tomto datasete bol znížený na 29,
vzorky zo zanedbaných tried boli presunuté do pozadia. Kvôli zbytočne veľkému
počtu obrázkov v pozadí bolo vyradených približne 8000 vzoriek. Celkový počet
dát v trénovacej množine bol cca 32 000 zákazových, príkazových značiek a značiek
upravujúcich prednosť mimo značky P 1 (Križovatka s vedľajšou pozemnou komu-
nikáciou). Trénovanie tejto siete zabralo 17 hodín na jednej grafickej karte EVGA
GeForce GTX 1080 SC. Následne bola táto sieť verifikovaná na testovacej množine
GTSRB. Čas detekcie značky v obraze je 50 ms a detekčná sieť je schopná rozpoznať
čiastočne prekryté dopravné značky a je invariantná k zmenám osvetlenia.

Tento Faster R-CNN detektor mal presnosť (precision) 86,76%, odvolanie (recall)
98,47% a hodnotu 𝐹1 kritéria 0,922. Následne bol otestovaný aj na datasete, ktorý
vytvoril autor, kde dosiahol presnosť 30,87%, odvolanie 95,12% a hodnota 𝐹1 kritéria
0,466. Tento rozdiel v presnosti je spôsobený tým, že podiel plochy značky k pozadiu
je v tomto datasete menší ako pri GTSRB a detekčná sieť je na to citlivá. Pri
vzorkách väčších ako 200x200 pixelov je generované veľa chýb typu I (false positives),
pretože RPN sieť nedokáže vytvoriť dostatočne veľký bounding box a preto hľadá
menšie oblasti, v ktorých sa môže vyskytovať značka. Do budúcnosti by som tento
návrh vylepšil tak, že by som sieť trénoval na dátach z reálnej premávky, čím by
tento detektor stal robustnejším.
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Introduction
Traffic sign recognition can be found in most of modern cars. It detects speed limit
signs and displays them for the driver to see, thus making our lives safer and more
comfortable. There are many potential fields where this technology can be further
utilized, such as robotics, AI and development of autonomous vehicles.

The goal of this thesis was to design a network which can detect and classify
mandatory and prohibitory traffic signs in image. In the first part, a research on
recognition methods is concluded. It presents various approaches to the problem
using geometrical properties or machine learning. In this particular approach, ML
concept for traffic sign recognition is applied, as it is one of the most powerful and
most versatile method of computer vision.

The second chapter focuses on basic theory of convolutional neural networks,
their layers and provides description of Faster R-CNN detection network operation.

The third chapter follows the implementation of multiple detection networks to
determine the influence of number of convolutional layers in CNN on their per-
formance. Selected network configuration is trained and verified on German Traffic
Sign Recognition Benchmark. The same network was later tested on dataset created
by the author.
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1 Research
This chapter describes a research I did for semestral thesis where I studied methods
of traffic sign recognition. I selected four methods which I found interesting, because
of their differences in approach to the problem. The first method does not utilize
machine learning, but it prepares weights for neural network from color segmenta-
tion. The other three methods use different types of machine learning methods to
achieve traffic sign recognition. These methods are described below.

1.1 Method Hassan Shojania
This method, based on [1], heavily relies on color information and geometrical prop-
erties of sign’s shape to distinguish traffic signs. The whole algorithm used consists
of four stages shown on 1.1.

Fig. 1.1: Block diagram of the algorithm [3]
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1.1.1 Color segmentation

As the signs of interest have certain characteristic color and its position, (e. g. red
circle), it is possible to color threshold the RGB color spaced input image resulting
in a binary image. This process saves computational time in the following steps of
the algorithm. The RGB color space is very sensitive to lightning changes. Due to
different weather conditions, the color range defined in equation would be unusable.
There are two possible solutions to this problem. One of them is image conversion
to HSI color space, which is computationally expensive, or use ratio of pixel’s red
component to its overall intensity to define range of red. It is possible to use one
range for red component and other ranges for ratio of blue and green components.

𝑔(𝑥, 𝑦) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
𝑘1, if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑅𝑚𝑖𝑛 ≤ 𝑓𝑟(𝑥, 𝑦) ≤ 𝑅𝑚𝑎𝑥

𝐺𝑚𝑖𝑛 ≤ 𝑓𝑔(𝑥, 𝑦) ≤ 𝐺𝑚𝑎𝑥

𝐵𝑚𝑖𝑛 ≤ 𝑓𝑏(𝑥, 𝑦) ≤ 𝐵𝑚𝑎𝑥

𝑘2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1.1)

where 𝑔(𝑥, 𝑦) is the thresholding output, 𝑘1 and 𝑘2 are the binary output values
and 𝑓(𝑥, 𝑦) are the color components of input image.

1.1.2 Corner detection

Canny edge detector [2] is used on the binary image, which resulted from color seg-
mentation. Its first step consists of convoluting the image with masks representing
first derivative of Gaussian. Similar masks can be derived for other shapes. Common
corner detectors use edge information or eigenvectors of gradient in pixel neighbor-
hood. Optimal corner detector is suitable for real-time detection, because it works
faster as aforementioned detectors. It convolves the image against defined masks
and can classify type of detected corner by angle and direction, reducing complex-
ity of shape recognition. Optimal corner detector models local grey level around a
corner and attempts to find the optimal function, a mask, which when convolved
with the image, yields a maximum at corner point. Noise is represented by additive
Gaussian noise and the corner has fixed angle and orientation.

A good corner detector should satisfy following qualitative objectives:
• Good detection
• Good localization
• Single response to an edge
• It should not delocalize corner
• Detected corner should be an edge point
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• The corner point should have at least two neighbors with different gradients
than the corner itself

Fig. 1.2: Corner model [3]

A large number of masks is needed to detect all corners in the image. It is possible
to reduce the number of masks and make the process computationally less expensive
using a class of detectors approximating most of the possible corners. Corners are
divided to groups based on which quadrants they occupy, and each group is assigned
one mask. The total number of masks is 12, which is a lot less than having a mask
for every corner possible. These masks work well, even though they do not have the
same high response as masks specially tailored to certain corner.

Yield sign masks

Yield sign forms an equilateral triangle. For the bottom corner, a Y1 mask (60°
angle mask) was applied. Upper corners were approximated by C2 and C3 masks
(90° angle mask), which are very similar to Y2 and Y3 masks and are needed for
detection of other shapes as well. This process is shown on figures 1.3 and 1.4.

Stop and circular sign masks

Stop sign is an octagonal traffic sign. Its corner points p1 and p8 are detected via
60° angle mask and lines L1 through L4 are detected by 90° angle masks. It is
not necessary to use 135° masks, because 90° masks approximate the corner well.
Circular signs are detected using four 90° corner masks. This process is shown on
figure 1.5.

Center of Mass (CoM) calculation

Single corner response is very rare because of errors encountered from multiple issues
such as imperfect corner in input image, corner detector not being perfect, noise,
approximating with a corner mask close to corner angle, etc. Therefore multiple
corners within corner area are detected. Center of mass is calculated for these corners
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Fig. 1.3: Yield sign upper corners: (a) approximating 60° corner with 90°; (b) 90°
mask for upper-left corner; (c) 90° mask for upper-right corner [3]

Fig. 1.4: Corner detector for bottom of the yield sign [3]

resulting in fewer corners and their location closer to the real corners. For each corner
point, all points within its neighborhood are considered.Using convolution output as
their weight, average point is calculated which represents center of mass. Equation
for center of mass is shown below.

𝑥𝑐𝑚 =
∑︀

𝑥𝑖

𝑛
𝑦𝑐𝑚 =

∑︀
𝑦𝑖

𝑛
(1.2)

where x and y are x, y corner coordinates and n represents number of corners.

1.1.3 Shape recognition

Recognition method used is based on geometry between detected corners and is sim-
ilar to Interpretation Tree, where many subtrees are eliminated because of geometri-
cal constraints. Number of corners in each class is also reduced due to classification
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(a) (b)

Fig. 1.5: (a) Corner detectors for stop sign; (b) Circular sign corner detectors [3]

of corners (Y1, C2, C3) and because of picking order of the corners, the number of
combinations is greatly reduced.

Yield sign recognition

Recognition process is very similar to approach in [1], but with added verification.
The algorithm consists of picking a point p1 from Y1 corner set. Finding points p2
and p3 from C2 and C3 corner set which satisfy following conditions:

• (−60− 𝜃𝑡) ≤ ̸ 𝑝3𝑝1 ≤ (−60 + 𝜃𝑡)
• (−120− 𝜃𝑡) ≤ ̸ 𝑝2𝑝1 ≤ (−120 + 𝜃𝑡)
• 𝑙𝑚𝑖𝑛 ≤ ‖𝑝3𝑝1‖ ≤ 𝑙𝑚𝑎𝑥

• 𝑙𝑚𝑖𝑛 ≤ ‖𝑝2𝑝1‖ ≤ 𝑙𝑚𝑎𝑥

where 𝜃𝑡, 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥 are configurable parameters.

Stop sign recognition

A pair of corners from Y1 corner set is picked. These corners are verified, if they
roughly form a horizontal line, (configurable parameter), and a distance d is calcu-
lated between them. Then a corner like p4, which is set above p1, is found. This
point has to be within certain angle range and its distance to p1 must be (1+

√
2𝑑).

A mirrored process is done for corner p5. Next, a corner p3 from C2 is picked, that
satisfies constraints from p4. The process is repeated for p6 comparing it with p5.
Corners p2 and p7 that satisfy constraints from p1 and p8 respectively. Lines p3p2
and p6p7 should be almost vertical.

19



Circular sign recognition

Two corners p1 and p4 are picked and it is verified, if they roughly form a horizontal
line, (configurable parameter), and a distance is calculated between them. Using
computed distance p1p4, a search range in vertical direction,(configurable parame-
ter), is set up to find p2 above p1. The last step is repeated for corner p3 above
p4. To verify it is a circle, Y1 corner set is used to detect points in the bottom of
the circle. There should be a few points. This verification is simple and inefficient
as there are frequent false positives. Very similar method can be used to detect
rectangles.

Fig. 1.6: (a) Yield sign recognition; (b) Stop sign recognition; (c) Circular sign
recognition [3]

1.1.4 Results of the method

Figure 1.7 shows how this method fails to detect signs and generates a lot of false
positives. This method is not very robust method and invariant to lightning changes.

Fig. 1.7: (a) Classification; (b) Detection; (c) Result of wrong color threshold ratio
[3]
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1.2 SVM for Traffic Signs Recognition
The study [4] analyzes use of Support Vector Machines (SVM) with different feature
representations, different kernels and SVM types, to identify and classify traffic signs.
System is based on Swedish traffic signs and does not recognize all traffic signs, for
instance rectangular informative signs. This study focused on recognition of seven
traffic sign categories and five speed limit signs, shown on figure 1.8. The dataset
consists of traffic signs in various conditions, e. g., damaged, faded or occluded
by snow, etc. Due to sign placement and camera location, traffic sign dimensions
can appear distorted. To solve this problem Zernike moments representation was
implemented alongside direct binary representation.

Fig. 1.8: Traffic and speed limits signs used [4]

Recognition system used is represented by figure 1.10. It consists of four main
blocks. In the first one, possible traffic signs are separated from the background
using color information. In the extraction process, signs are extracted from the
image, their dimension normalized and saved as binary files. The following block
represents features of every binary image, serving as an input to recognition step.

Traffic signs were extracted using a shadow and highlight invariant color algo-
rithm, which has shown high robustness in various lightning conditions Result of
the extraction can be seen on figure 1.9.

Fig. 1.9: Sign extraction example [4]
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Fig. 1.10: Block diagram of the system [4]

1.2.1 Feature representation

Each traffic sign is represented by an N dimensional feature vector. Two different
feature selection methods were tried in this study, direct binary representation and
Zernike moments.

Direct Binary Representation

Use of color segmentation described in [1] and [3], outputs a binary image where
black is represented by 0 and white by 1. Resulting image size is 36x36 pixels
resulting in 1296 attributes for one vector.

Zernike Moments

Image moment is a certain weighted average of pixel’s intensity or its function,
which has some attractive property. Moments extract a feature set. A collection of
these moments can be computed to capture global features of an image and used
as a feature vector for pattern recognition. Depending on type of pattern various
moments can be used. The authors of this study decided to use Zernike moments to
represent traffic signs. Zernike moments are made up by a sequence of polynomials
forming complete orthogonal set over the interior of the unit circle. These specific
moments were chosen because they are invariant to rotation and have high noise
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robustness. To determine Zernike moments of an image, a minimal circle containing
traffic sign had to be defined. Then pixel coordinates of the sign were mapped inside
the circle, which was regarded as a unit circle. Zernike moments are calculated from
generated coordinates.

Two-dimensional Zernike moments of order p with repetition q of an discrete
image, where 𝑓(𝑥, 𝑦) represents current pixel, are defined as,

𝑍𝑝𝑔 = 𝑝 + 1
𝜋

∑︁
𝑥

∑︁
𝑦

𝑓(𝑥, 𝑦)𝑉 *
𝑝𝑞(𝑥, 𝑦) (1.3)

where 𝑥2 + 𝑦2 ≤ 1, 𝑉 *
𝑝𝑞(𝑥, 𝑦) are the Zernike polynomials in a unit circle defined as,

𝑉𝑝𝑞(𝑥, 𝑦) = 𝑅𝑝𝑞(𝑟𝑥𝑦)𝑒𝑗𝑞Θ𝑥𝑦 (1.4)

where 𝑟𝑥𝑦 =
√

𝑥2 + 𝑦2, Θ𝑥𝑦 = arctan 𝑦
𝑥

and the real valued radial polynomial 𝑅𝑝𝑞(𝑟)
is,

𝑅𝑝𝑞(𝑟) =
(𝑝−|𝑞|/2)∑︁

𝑘=0
(−1)𝑘 (𝑝− 𝑘)!

𝑘!(𝑝+|𝑞|
2 )!(𝑝−|𝑞|

2 − 𝑘)!
(1.5)

where 0 ≤ |𝑞| ≤ 𝑝 and 𝑝− |𝑞| is even.

1.2.2 SVM classification

Signs in this study are recognized by SVM based on their shape only. Color prop-
erties do not play any role in the recognition process. Support Vector Machines
are machine learning methods based on statistical learning proposed by Vapnik [5].
They use hyperplane of linear functions in high or infinite dimensional feature space.
Pattern is found by building decision boundaries that optimally separate data in the
hypothesis space. The basic SVM training principle analyzes and searches for opti-
mal hyperplane that has a good generalization. The function describing hyperplane
is as follows.

𝑓(𝑥) =
𝑙∑︁

𝑖=1
𝑎𝑗𝑦𝑗𝐾(𝑥𝑖, 𝑥) + 𝑏 (1.6)

where x is the input vector, l is the number of training samples and K represents
kernel. Kernel is a function which implicitly maps input space to feature space. In
this study four different kernels were used:

• Linear: 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑇
𝑖 𝑥𝑗

• Polynomial: 𝐾(𝑥𝑖, 𝑥𝑗) = (𝛾𝑥𝑇
𝑖 𝑥𝑗 + 𝑟)𝑑, 𝛾 > 0

• Radial basis function (RBF): 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝(−𝛾‖𝑥𝑖 − 𝑥𝑗‖2), 𝛾 > 0
• Sigmoid: 𝐾(𝑥𝑖, 𝑥𝑗) = tanh (𝛾𝑥𝑇

𝑖 𝑥𝑗 + 𝑟)
where 𝛾,r and d are kernel parameters.
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Two different types of SVM classification were used because the optimal hyper-
plane was not able to separate input vectors completely. The first type was C-
support vector classification (C-SVC), which for given input vector 𝑥𝑖 ∈ 𝑅𝑛 solves
the primal problem 𝑦𝑖 ∈ −1, 1 following the next steps.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝜉,𝑤,𝑏
1
2⟨𝑤

𝑇 𝑤⟩+ 𝐶
𝑙∑︁

𝑖=1
𝜉𝑖

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤𝑇 Φ(𝑥𝑖) + 𝑏) + 𝜉𝑖 ≥ 1 (1.7)
𝜉𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑙

where 𝑤 is the optimal hyperplane, slack variable 𝜉𝑖 allows some misclassification and
𝐶 is an a priori constant giving trade-off between maximum margin and classification
error.

The other type of classification used in this study is 𝜈-SVC. Parameter 𝜈 controls
the number of support vectors and errors. It solves the primal problem according
to the following algorithm.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝜉,𝑤,𝑏
1
2⟨𝑤

𝑇 𝑤⟩ − 𝜈𝜌 + 1
𝑙

𝑙∑︁
𝑖=1

𝜉𝑖

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤𝑇 Φ(𝑥𝑖) + 𝑏) + 𝜉𝑖 ≥ 𝜌 (1.8)
𝜉𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑙, 𝜌 ≥ 0

where the parameter 𝜈 ∈ (0, 1] is an upper bound on the fraction of training errors
and a lower bound of the fraction support vectors.

SVM is a binary classification algorithm. Various strategies as one-against-one,
one-against-all, all-together and DAGSVM have been proposed to utilize it in a
multiclass problem. One-against-one approach was used for traffic sign classification
in this study. It constructs 𝑘(𝑘− 1)/2 binary classifiers, where 𝑘 represents number
of classes. Each classifier trains data from two different classes and then takes votes
on the data. Data is assigned to the class with the most votes and if two classes
get the same votes, data is assigned to class with smaller index. SVM overcome the
curse of dimension in computation and generalization, therefore, they are able to
perform pattern recognition without preprocessing.

1.2.3 Results of the method

The dataset consists of 600 samples, divided into 12 classes (7 sign shapes categories
and 5 speed limit sign types), each category had 50 samples randomly distributed
between 30 training and 20 testing samples. Experiments were divided into two
parts. The first part trained and tested SVM with different feature representation.
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The second part focused on use of various kernel and SVM types. Zernike moments
could detect six types of sign shapes, since they are invariant to rotation and could
not distinguish between upward and downward facing triangle. SVM models were
trained on the same training dataset with for aforementioned kernels and two SVM
types. Parameters of the SVMs were: 𝐶 = 1, 𝜈 = 0.5, 𝛾 = 1/𝑛, 𝑟 = 0, 𝑑 = 3, where
𝑛 is the number of input vector attributes.

Fig. 1.11: Comparison between binary representation and Zernike moments [4]

(a) (b)

Fig. 1.12: Results of the method for: (a) Binary representation; (b) Zernike moments
[4]
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This recognition method is robust and despite beneficial properties in pattern
recognition, binary representation outperformed Zernike moments. Four types of
kernel were tested, showing that linear kernel worked the best with both tested
SVM types. This method is able to recognize wide variety of traffic signs, which
include noise, damage, translation or rotation.

1.3 Evolutionary Adaboost Detection and F-ECOC
Classification

As I already mentioned, there are two main approaches to recognize a traffic sign,
color-based and gray-scale based. Color-based sign recognition reduces false-positive
results during recognition phase using color. Grayscale based recognition concen-
trates on geometrical shape of the object. At the time of study, more recent studies
have shown that combination of both methods improves detection rates. Many
objects can share color with traffic signs, thus creating false-alarm regions. It is pos-
sible to lower the number of these regions by filtering out areas which aspect ratio
is either smaller or larger than a specified ratio or ratio range. Region is normalized
to predefined size and a linear SVM is used to determine region in a possible shape.
The gathered color and shape data is used as a coarse classification, and an SVM
with Gaussian kernels performs the fine classification.

1.3.1 Detection

Detector in this method uses attentional cascade concept. Feature selection is done
by boosting and the image is represented by integral image. This method solves
restriction of the boosting-process computation on large feature sets. This evolu-
tionary boosting drastically reduces training time and allows use of huge feature
sets. Dissociated dipoles are used as a features. These can be calculated using an
integral image. In object detection, a large number of negative regions is discarded,
whereas only some regions represent looked up object. Attentional cascade architec-
ture allows discarding non-object regions at low computational cost and interesting
regions are deeply analyzed. One attentional cascade is made of a set of classifiers,
where input to each classifier corresponds to regions classified as object-regions by
previous stage. These regions classified by the last stage form output of the detector.

Dissociated dipoles

Based on a study by Lienhart and Maydt [6], accuracy of the detector increases
with the number of available features. Dissociated dipoles or sticks, shown on figure
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1.13, are more general type of features than Haar-like features, and are able to
deal with larger feature set. They are made of a pair of rectangular regions name
excitatory and inhibitory dipole. The mean value of all pixels in inhibitory dipole
is subtracted from the mean value of all pixels in excitatory dipole. Integral image
is used to calculate sum of pixels located inside the regions. This increases feature
set enormously and makes it computationally unfeasible for classical approach. To
solve this problem, this study defines an evolutionary Adaboost approach.

Fig. 1.13: Dissociated dipoles. Black represents inhibitory dipole and white the
excitatory dipole [7]

Evolutionary Adaboost

Boosting is a learning technique that combines performance of many simple classifi-
cation functions or Weak classifiers and produces a Strong classifier. The examples
are re-weighted at each learning round to emphasize the examples incorrectly clas-
sified by previous Weak Classifier. The final Strong Classifier is a decision stump
made of weighted combination of Weak Classifiers followed by a threshold. Classical
boosting uses exhaustive search to determine Weak Classifier, making it computa-
tionally unfeasible for larger feature sets. Therefore, authors of this study defined
evolutionary weak learner, which minimizes the weighted error function 𝜀 of the
Adaboost scheme as follows, 𝜀 = ∑︀

𝑖:ℎ(𝑥𝑖) ̸=𝑦𝑖
𝑤𝑖, where 𝑋 = {(𝑥𝑖, 𝑦𝑖)|𝑖 = 1 : 𝑚} are

the pairs of sample-label that compound the training set, 𝑊 = {𝑤1, 𝑤2, . . . , 𝑤𝑚} is
the Adaboost weights distribution over the training set and ℎ(𝑥𝑖) corresponds to the
label that the hypothesis ℎ predicted for training object 𝑥𝑖.

Weak learner can be considered as an optimization problem, where parameters
of the Weak Classifier minimizing the error function are needed to be found. This
function is full of discontinuities making classical approaches based on gradient de-
scent unusable. The solution to this problem is use of evolutionary strategy using
a genetic algorithm, which searches over the spaces of solutions using three basic
concepts of Darwin’s theory. Mutation, crossover, natural selection.

While working with evolutionary algorithm, two elements should be defined.
The individual, representing a point in solution space and the evaluation function,
which measures the function value at the point the individual represents. Weak
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Classifier based on dissociated dipoles is defined as ℎ(𝐼, 𝑇ℎ𝑟, 𝑥𝑖)→ {−1, +1}, where
𝐼 = (𝑅𝑒𝑥, 𝑅𝑒𝑦, 𝑅𝑒𝑤, 𝑅𝑒ℎ, 𝑅𝑖𝑥, 𝑅𝑖𝑦, 𝑅𝑖𝑤, 𝑅𝑖ℎ), with 𝑅𝑒 being the excitatory dipole,
and the type parameter 𝑇 is changed by the parameters of the inhibitory dipole
𝑅𝑖. To reduce evaluation time, regions are compared qualitatively, which eliminates
need for illuminance normalization and threshold learning process.

Learning algorithm

The algorithm is used to learn all the stages of the detection cascade using a set
⟨(𝑥1, 𝑦1) . . . (𝑥𝑚, 𝑦𝑚)⟩ of samples positively classified by previous stage. It iter-
atively uses genetic algorithm to minimize weighted error and to instantiate the
parameters of a new Weak classifier added to the final ensemble.

Algorithm 1: Evolutionary Discrete Adaboost.
Given: (𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚)

where 𝑥𝑖 ∈ 𝑋, 𝑦𝑖 ∈ 𝑌 = {−1, +1}
Initialize 𝑊1(𝑖) = 1/𝑚

for t = 1,. . . , T do
Use a genetic algorithm to minimize

𝜖𝑡 = 𝑃𝑟𝑖∼𝑊𝑡 [ℎ𝑡(𝑥𝑖) ̸= 𝑦𝑖]

The given solution is taken as the hypothesis ℎ𝑡.
Get the weak hypothesis ℎ𝑡 : 𝑋 ↦→ {−1, +1} with error ℎ𝑡.
Choose 𝛼𝑡 = (1/2) ln (1− 𝜖𝑡/𝜖𝑡)
Update

𝑊𝑡+1(𝑖) = 𝑊𝑡(𝑖)
𝑍𝑡

×

⎧⎪⎨⎪⎩𝑒−𝛼𝑡 , if ℎ𝑡(𝑥𝑖) = 𝑦𝑖

𝑒𝛼𝑡 , if ℎ𝑡(𝑥𝑖) ̸= 𝑦𝑖

= 𝑊𝑡(𝑖)𝑒𝑥𝑝(−𝛼𝑡𝑦𝑖ℎ𝑡(𝑥𝑖))
𝑍𝑡

where 𝑍𝑡 is a normalization factor (chosen so that 𝑊𝑡+1 will be a distribution).
end for
Output the final hypothesis:

𝐻(𝑥) = 𝑠𝑖𝑔𝑛

(︃
𝑇∑︁

𝑡=1
𝛼𝑡ℎ𝑡(𝑥)

)︃
.
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1.3.2 Classification

Once the object was located, it needs to be classified. The authors of this study
decided to use ECOC classification technique, which combines base classifiers to
address the multiclass problem.

ECOC

This design is based on coding and decoding. Coding assigns a codeword to each
of the 𝑁𝑐 classes and decoding aims to assign class label to new test codeword.
Codewords are arranged in a coding matrix 𝑀 ∈ {−1, 1}𝑁𝑐×𝑛, where 𝑛 is the length
of code, which from point of coding represents 𝑛 binary learning problems, (di-
chotomies), each corresponding to a column of ECOC matrix 𝑀 . Each dichotomy
defines sub-partition of classes coded by {+1, -1} according to their membership.
Code obtained from decoding of output of binary classifiers is compared with the
base codewords in matrix 𝑀 . Data points is assigned to the closest codeword.
Distances used for decoding are Hamming and Euclidean distances.

Fig. 1.14: Four-class ECOC designs: (a) One-vs-all; (b) One-vs-one [7]

F-ECOC

Most of discrete coding strategies are predesigned problem-independent codewords.
Pujol et al. proposed a method for embedding a tree in the ECOC framework. Root
contains all classes and nodes associated with the best mutual information partition
is found. This process is repeated until sets with single class are obtained. Based on
the mentioned approach, the authors embedded multiple trees forming an F-ECOC
(Forest – Error Correcting Output Code). Optimal tree, with highest classification
score at each node, and several sub-optimal trees, which are closer to the optimal
tree under certain conditions.
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Algorithm 2: Training algorithm for F-ECOC.
Given: 𝑁𝑐 classes: 𝑐1, . . . , 𝑐𝑁𝑐 and 𝑇 trees to be embedded
Ω0 ← 0
𝑖← 1
for t = 1,. . . , T do

Initialize the tree root with the set 𝑁𝑖 = {𝑐1, . . . , 𝑐𝑁𝑐}
Generate the best tree at iteration 𝑡:
for each node 𝑁𝑖 do

Train the best partition of its set of classes {𝑃1, 𝑃2}|𝑁𝑖 = 𝑃1 ∪ 𝑃2,

𝑁𝑖 /∈ Ω𝑡−1 using a classifier ℎ𝑖 so that the training error is minimal
According to the partition obtained at each node,
codify each column of the matrix 𝑀 as:

𝑀(𝑟, 𝑖) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if 𝑐𝑟 /∈ 𝑁𝑖

+1, if 𝑐𝑟 ∈ 𝑃1

−1, if 𝑐𝑟 ∈ 𝑃2

where 𝑟 is the index of the corresponding class 𝑐𝑟

Ω𝑡 ← Ω𝑡−1 ∪𝑁𝑖

𝑖← 𝑖 + 1
end for

end for

This technique provides sub-optimal solution due to robust classifier combina-
tion. The main advantage of this method is that trees share information between
classes. It is done by joint decoding step and each tree of 𝑁𝑐 classes introduces 𝑁𝑐−1
classifiers. At the time of study, it has been shown that zero symbols introduce errors
in decoding distances. Attenuated Euclidean decoding distance has been proposed
as solution to this problem. It is defined as follows. 𝑑𝑗 =

√︁∑︀𝑛
𝑖=1 |𝑦

𝑗
𝑖 |(𝑥𝑖 − 𝑦𝑗

𝑖 )2, where
𝑑𝑗 is distance to the row 𝑗, 𝑛 is the number of dichotomies, 𝑥𝑖 is the response of the
classifier ℎ𝑖 over test sample and |𝑦𝑗

𝑖 | is the value of coding matrix 𝑀 at the 𝑖-th
row and 𝑗-th column. Factor |𝑦𝑗

𝑖 | was introduced to avoid error of the zero symbol.

1.3.3 Sign Recognition Process

All data acquired is given to the detector. Detectors form an attentional cascade,
where at each stage almost all objects of interest are detected, while a certain fraction
of non-sign pattern is rejected. Signs are grouped based on similarity and for each
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Fig. 1.15: Model Fitting. (a) Detected lines. (b) Corrected line. (c) Intersections.
(d) Corner region. (e) Corner found [7]

group a different cascade was trained. Detector output consists of all detected
objects by cascades.

Region of interest is determined via Evolutionary Adaboost, and based on the
type of detected sign, a different model fitting is applied looking for affine trans-
formations performing spatial normalization. Fast radial symmetry is applied for
circular signs, which provides high robustness to noise and approximates the center
and the radius of the sign. Method based on Hough transform is used for triangular
signs. If a false line is detected, Hough procedure is iterated to detect next repre-
sentative line. When three lines are detected their intersections are calculated and
verified by corner detector.

Spatial normalization consists of four steps. Image transformation, to make
recognition invariant to small affine deformations. Resize the object to the signs
database size. Filter the image using Weickert anisotropic filter. Mask the image to
exclude background pixels at the classification step. To make classification invariant
to illumination conditions, histogram equalization is used to improve contrast and
yield a uniform histogram.

Signs are classified via F-ECOC, where optimal trees consider the best sub-
partitions of the classes to obtain robust classifiers based on grey-level pixel values.

1.3.4 Results of the method

Genetic Algorithm with a population of 100 individuals, Gaussian based mutation
probability and scattered crossover strategy with 0.8 fraction were used to perform
tests with Evolutionary Adaboost. As shown on the figure 1.16, both methods
converge with the same number of iterations, showing that even though Evolutionary
Adaboost has a random component, it still performs well. It has been able to
determine triangular sign with 90.87% probability and circular sign with 90.16%
probability.

31



Fig. 1.16: Error comparison between different Adaboost approaches [7]

1.4 Tsinghua-Tencent 100K
This method was concluded in China and uses traffic signs in realistic world condi-
tions with large variations in illumination, weather conditions and occlusion. The
dataset consists of 100 000 high resolution images cut from Tencent Street Views
(Chinese equivalent of Google Street View). Traffic signs take around 0.2% of an
image. Traffic signs were classified into three categories: warning, prohibition and
mandatory. Other traffic signs and signs resembling traffic signs were classified as
“other”.

Fig. 1.17: Traffic-like signs [8]

1.4.1 Traffic sign classification

Before common adoption of CNN, detection methods based on SVMs or sparse
representations were used. Sermanet et al. [9] observed that CNN are more efficient
when used in a sliding window fashion because many computations can be reused in
overlapping regions. Later on they demonstrated a CNN that can determine object’s
bounding box together with its label. There is also a different commonly used, but
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less efficient and slower method R-CNN, which as a first step calculates some generic
object proposals and then performs classification only on these candidates. Usage
of spatial pyramid pooling network (SPP-Net) improves efficiency of R-CNN and
speeds it up about 100 times. This approach calculates convolutional feature map
for the entire image and extracts feature vectors from the shared feature map for
each proposal. Another improvement of R-CNN called Fast R-CNN, uses softmax
layer above network and not a SVM classifier as R-CNN does. Region proposal
networks (RPN) were unveiled later, which share full-image convolutional features
with the detection network.

Based on knowledge that deep learning methods show superior performance in
image classification and speech recognition, study [8] used CNN to identify traffic
signs as they deem it the most suitable deep learning method for image classification,
localization and detection.

1.4.2 Data collection and annotation

Because of lack of real-world traffic sign images and will to mimic real world scenario,
authors decided to use Tencent Street Views as a source of images. In the time of
study Tencent Street Views covered about 300 Chinese cities and roads connecting
them. The dataset consisted of images with and without traffic signs to evaluate
if detector is working properly. Images collected were annotated by hand. During
annotation bounding box, boundary vertices and sign’s class label were recorded.
To determine sign’s pixel mask two modes were used: polygon which marks polygon
vertices, and ellipse which marks vertices alongside ellipse boundary. Vertices are
used to automatically fit the shape of the traffic sign. Circular signs appear as
ellipses unless occluded. Occluded signs are the most difficult thing to detect. In
this case bounding box boundary, polygon boundary, and if appropriate, ellipse
boundary is marked, and intersected.

Fig. 1.18: Annotation pipeline [8]
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Fig. 1.19: Occluded sign annotation [8]

1.4.3 Neural networks

Two neural networks were trained, one for detection only and the other for simul-
taneous detection and classification. The networks have 8 layers and branch after
layer 6. If the network was branched earlier, it would have a potential to perform
better but it would need more training time and would consume more memory. The
output layer is branched into three streams, bounding box layer, pixel layer and
label layer; which allows traffic sign classification as well as traffic sign detection.
As there were uneven numbers of examples of different classes, data augmentation
technique was used during training. Classes with fewer than 100 instances were
ignored. Classes with 100 – 1000 instances were augmented to have 1000 instances.
Classes that had more than 1000 were left unchanged. To extend the dataset, the
augmented classes were randomly rotated in [-20°, 20°] range, scaled in [20, 200]
range, and random amount of noise was added. Afterwards some images with no
traffic signs were manually added and distorted with random noise.

Fig. 1.20: Architecture of used CNN [8]

1.4.4 Results

Training and testing of the neural network was done on Linux based PC with Intel
Xeon and two NVIDIA Tesla GPU. 10 000 panoramas were divided in to the training
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and testing set in 2:1 ratio. The other 90 000 panoramas were included in testing.
Neural network used in traffic sign detection was compared with typical object
proposal methods as Selective Search, Edge Boxes and BING. Selective Search and
Edge Boxes do not need training data. BING was trained using the same data
as methods neural network. Tsinghua-Tencent 100K detection network achieved
84% accuracy and 91% recall. This network outperforms previously mentioned
object detection methods and was able to identify that, all of 90 000 panoramas
without traffic sign are considered background. Simultaneous traffic sign detection
and classification neural network was compared with Fast R-CNN. Overall Fast
R-CNN has shown better performance for larger objects. It has a 0.56 recall and
0.50 accuracy compared to Tsinghua-Tencent 100K’s 0.91 recall and 0.88 accuracy.
This method is slow, tested on a powerful hardware and not suitable for real-time
recognition.

Object size [0,32] [32,96] [96,400]
Fast R-CNN recall 0.24 0.74 0.86

Fast R-CNN accuracy 0.45 0.51 0.55
T-T 100K recall 0.87 0.94 0.88

T-T 100K accuracy 0.82 0.91 0.91

Tab. 1.1: Results of the comparison between Fast R-CNN and T-T 100K [8]
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2 Theory
Based on the research done in the previous chapter, the approach of Tsingua-Tencent
100K benchmark seemed to be the most robust recogniotion network, therefore,
a solution solution using convolutional neural networks was implemented. In the
following sections, basic theory of CNNs and Faster R-CNN is described.

2.1 Convolutional Neural Networks
Convolutional neural network is a type of neural network which use matrices as input
instead of vectors. They are a very powerful tool commonly used in deep learning
methods, in applications such as image and video recognition, natural speech pro-
cessing and recommender systems. Architecture of CNN varies and is dependent on
given problem. It consists of layers which can, but do not have to branch.

Fig. 2.1: CNN example [11]

2.1.1 Layers used in CNN

There are many types of layers which can be used when designing a neural network
architecture. This subsection explains the basic layers used in design.

Convolutional layer

This layer performs convolution on its input with defined kernel. Input to this
layer can be some data, such as image; or a feature map computed in previous
convolutional layer. Kernel, also called filter, is a square matrix and there may be
multiple filters in one layer. Because of the nature of convolution, output size is
different than size of the input. To further change the output size or preserve it,
parameters such as stride and zero padding are implemented. Stride defines a step
the kernel matrix makes on the input matrix. The bigger the stride, the smaller the
feature map gets. Default value for stride is 1. Zero padding puts zeros around the
borders of the input matrix, which can be useful in some scenarios.
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Fig. 2.2: Example of convolution [11]

Activation layer

There are many activation functions which present non-linearity to feature map, for
example sigmoid or hyperbolic tangent. In CNN typically a Rectified Linear Unit
(ReLU) is used or its versions, such as leaky ReLU.

Fig. 2.3: ReLU example [11]

Pooling layer

The most used type of pooling layer is max pooling layer, which downsamples the
feature map, while the most important information is preserved. Figure 2.4 illus-
trates operation of max pooling.

Fig. 2.4: Max pooling example [12]
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Dropout layer

Dropout layer simply sets some features to 0 with given probability. This greatly
prevents over-fitting of the network and makes it more redundant to error.

Fully connected layer

This layer represents Multi Layer Perceptron with softmax activation layer. As the
name suggests, every neuron in one layer is connected to every neuron in the next
layer.

2.2 Faster R-CNN
Faster R-CNN consists of two different networks. Region proposal network (RPN)
and network for object detection. RPN creates anchors, boxes, which are ranked and
only those with highest possibility to contain an object of interest are proposed. The
output of RPN is passed to classifier and regressor which verify if object is present or
not. This method is faster than its predecessors R-CNN and Fast R-CNN, because
it shares most of the features with object detection network.

Fig. 2.5: Faster R-CNN architecture [14]
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3 Experimental part
This chapter is divided into four sections. In the first one, datasets used and their
properties are discussed, the second part describes the reasons for the chosen hard-
ware and software configuration, section three follows the implementation of the
network and determining the number of layers and parameters. The last section
presents the obtained results from the network designed with the best performance.

3.1 Datasets
In the implementation two datasets have been used. One from German public source
called GTSRB, and the other one was created by the author.

3.1.1 German Traffic Sign Recognition Benchmark (GTSRB)

This dataset is publicly available and free to use. It is made up from cca 50 000
images in RGB color space, which vary in size between 15x15 pixels and 256x256
pixels. The images are taken in various lightning and weather conditions. There
are 43 sign classes and every class comes with file containing annotations in the
following format:

filename ;width;height;ROI.x1;ROI.y1;ROI.x2;ROI.y2;class

There is always only one traffic sign in the image. It takes around 60% of the im-
age, making it the major item. The dataset is divided into training and testing set
containing around 39 000 and 12 500 traffic signs respectively. As the objective of
this study is the recognition of mainly mandatory and prohibitory traffic signs, the
number of classes was reduced to 29. Priority signs as yield, stop and main road
sign were amongst the detected classes. There are no real background images in the
dataset, therefore, the undetected sign classes were used as background. Approx-
imately 8 000 background images were excluded from the dataset as there was no
need for so many samples and it reduced the training time by couple of hours.

3.1.2 Author’s dataset

Images in this dataset were taken in Brno, Czech Republic by iPhone 6 camera with
8 megapixel resolution and f/2.2 aperture. They were taken at a steady walking
pace approximately every 2 seconds. There are 262 RGB images in the dataset with
dimension varying between 21x21 and 787x940 pixels. Every image is annotated in
the following manner:

filename ;class
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Annotation of bounding boxes and any sort of data augmentation technique to
extend the dataset was not used due to lack of time. Images were cropped to make
traffic sign the major scene object, but with more background than GTSRB to
achieve viable results in detection and classification. Samples larger than 180x180
pixels were scaled down to one fifth of their size. Traffic signs in this dataset may
be occluded, blurred, grainy and with mediocre illuminance changes in the scene.
These images were not used during training, they are for testing purposes only.

3.2 Hardware and software
Training of neural networks is computationally very expensive. In terms of mathe-
matical operations used, it represents matrix multiplication. This process can show
some similarities to rendering of an image, for which graphic cards are used. GPUs
have more computational power than a CPU and are optimized for this kind of
operations. Based on this knowledge, a decision to use graphic card as main compu-
tational device in this study was made. Nvidia is the current market leader in the
best performing GPUs, therefore, a card from this company was chosen. Following
hardware configuration was used. Intel Core i7-6700K CPU clocked at 4.5 GHz
frequency, 16 GB of DDR4 3200 MHz RAM and one EVGA GeForce GTX 1080 SC
GPU.

The software chosen was MATLAB due to multiple reasons. It has many tool-
boxes available, including toolboxes for deep learning and parallel computing, which
is necessary to train the network on GPU. Another reason why MATLAB was cho-
sen over other platforms is that the author was already familiar with it. The version
used was R2018a because of its full CUDA support for Nvidia Pascal architecture
and deep learning functions availability, which previous versions available to the
author lack.

3.3 Implementation
As mentioned in the previous section, MATLAB was the chosen software platform for
NN training and Faster R-CNN as the default type of network utilized. MATLAB’s
Faster R-CNN detector does not support multi-gpu pool and can train on one GPU
only, which is no problem as there is only one graphic card available. To be able to
train the network, following data are needed:

• Truth table
• Layers
• Training options
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3.3.1 Truth table

Every image in the dataset along with its annotations has to be recorded in the
truth table, which has to correspond to format shown in table 3.1. Bounding box
is a 1x4 vector providing initial 𝑥 and 𝑦 coordinates of the rectangle in which the
traffic sign is located and its width and height. If traffic sign of certain class is not
located in the image, it is signified by an empty matrix.

FILEPATH CLASS 1 . . . CLASS N
full filepath bounding box/empty matrix . . . bounding box/empty matrix

Tab. 3.1: Truth table example

3.3.2 Layers

Network layers in MATLAB are described either by a column vector of independent
layers or by a Direct Acyclic Graph (DAG). In this thesis, the vector representation
was sufficient as there was no need for more complicated branching of the network.
Layers are defined as shown in the following sample code.

Listing 3.1: Definition of layer types in MATLAB
1 layers =[
2 imageInputLayer ( imageSize )
3 convolution2dLayer (kernelSize ,numKernels ,...
4 ’Stride ’,strideStep ,’Padding ’,padSize )
5 reluLayer ()
6 crossChannelNormalizationLayer ( numChannels )
7 dropoutLayer ( probability )
8 maxPooling2dLayer (poolSize ,’Stride ’,strideStep ,...
9 ’Padding ’,padSize )

10 fullyConnectedLayer ( numNeurons )
11 softmaxLayer ()
12 classificationLayer ()
13 ];

where imageSize are the dimensions of input image, kernelSize is the size of
the kernel, numKernels represents the number of kernels used, strideStep is the
number of pixels to step over, padSize is the number of zeros added around the ma-
trix, numChannels represents the number of channels used to perform normalization
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of element, probability is the probability of disabling the neuron, poolSize is the
size of pooling matrix and numNeurons is the number of neurons in fully connected
layer.

3.3.3 Training options

These options specify which minimization algorithm is used, what batch size and
learning rate to use, and how long should be the network trained.

Listing 3.2: Example of training options in MATLAB
1 options = trainingOptions (’sgdm ’, ...
2 ’MaxEpochs ’, 5, ...
3 ’MiniBatchSize ’, 1024 , ...
4 ’InitialLearnRate ’, 1e-3, ...
5 ’ExecutionEnvironment ’,’gpu ’ ,...
6 ’Shuffle ’,’every -epoch ’);

3.3.4 Training

Listing 3.3: Example of network training in MATLAB
1 net = trainFasterRCNNObjectDetector (truthTable ,...
2 layers , trainingOptions );

After using the command shown in listing 3.3, the training process has started.
The network is fitted four times with RPN trained after first and third repetition.
The region proposal network architecture is created by MATLAB by default.

3.3.5 Designs

In the first design AlexNet has been used as an architecture template, having modi-
fied the input layer size to 15x15x3 instead of the default 227x227x3, changing filter
size in convolutional layers, reducing the number of max pooling layers and setting
the number of neurons in fully connected layers to 1024. All these changes had to
be made in order to use this neural network on selected dataset. The network was
trained on 5 000 sample images to save training time. This network resulted in dis-
appointing performance with precision of 54%, 77% recall and 0.63 𝐹1 score. It has
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generated so many false positives that number of detected objects almost doubled
the number of images in testing set.

Because of this failure, new network with only two convolutional layers was used.
It had kernel size of 3 with stride of 1 and zero padding of 1, which did not reduce
the feature map size. Parameters as number of channels in LRN layer was reduced
to 3, stride of max pooling layer was changed as well. The number of filters remained
unchanged from AlexNet. The architecture used can be seen in table 3.2.

Layer Name Kernels/Neurons Kernel size Stride Padding Add. layers
1 Input — — — — —
2 Conv1 96 3x3 1 1 ReLU, LRN
3 Conv2 256 3x3 1 1 ReLU
4 MaxPool2 — 3x3 3 0 —
5 FCNN1 1024 — — — ReLU, Dropout
6 FCNN2 1024 — — — ReLU, Dropout
7 FCNN3 29 — — — Softmax

Tab. 3.2: Architecture of the second network

Training time of this network was greatly reduced compared to previous attempt.
It generated fewer false positives, as can be seen in its confusion matrix represented
by table 3.4 in columns 2 and 3, and generally performed better with 58% precision
and 86% recall.

The results were still unsatisfying, therefore multiple networks were trained with
increasing number of convolutional layers with ReLU activation functions. Every
new layer added 384 3x3 kernels with stride 1 and 1 zero padding. Another LRN
layer with 3 channel normalization was added to the second convolutional layer.
This increase in layers certainly improved performance as shown in tables 3.3 and
3.4.

Number of conv. layers Precision Recall 𝐹1 Score
2 58.19% 85.69% 0.693
3 67.91% 92.61% 0.784
4 75.00% 91.25% 0.823
5 72.66% 87.33% 0.793

Tab. 3.3: CNN result comparison

Each network was trained on 5 000 samples randomly chosen from the whole
dataset and then tested on 12 630 images. The training time was in average around
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2 layers 3 layers 4 layers 5 layers
+ - + - + - + -

+ 7808 5611 8440 3988 8386 2796 7820 2943
- 1304 1394 673 1956 804 2406 1135 2468

Tab. 3.4: CNN result confusion matrices

50 minutes with increase of approximately 2 minutes for every additional convolu-
tional layer. Based on results in table 3.3, neural network with four convolutional
layers performed better than other networks and was selected for final training de-
scribed in the next section.

3.4 Results
The final Faster R-CNN network was trained on the whole dataset with the ar-
chitecture shown in table 3.5, using stochastic gradient descent with momentum
(SGDM). Following parameters were used, batch size of 1024, 0.9 momentum value,
0.001 learning rate and trained 4 times for 5 epochs. Training set was shuffled every
epoch.

Layer Name Kernels/Neurons Kernel size Stride Padding Add. layers Output
1 Input — — — — — 15x15x3
2 Conv1 96 3x3 1 1 ReLU, LRN 15x15x96
3 Conv2 256 3x3 1 1 ReLU, LRN 15x15x256
4 Conv3 384 3x3 1 1 ReLU 15x15x384
5 Conv4 384 3x3 1 1 ReLU 15x15x384
6 MaxPool4 — 3x3 3 0 — 5x5x384
7 FCNN1 1024 — — — ReLU, Dropout 1x1024
8 FCNN2 1024 — — — ReLU, Dropout 1x1024
9 FCNN3 29 — — — Softmax 1x1

Tab. 3.5: Architecture of the final Faster R-CNN

Training of the network took approximately 17 hours on single GPU. These
additional samples helped to improve precision by 11% and recall by 7%. The
outcome has shown very good performance on GTSRB testing set but performed
poorly on the author’s dataset, which is presented in tables 3.6 and 3.7.
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GTSRB My dataset
Precision 86.76% 30.87%

Recall 98.47% 95.12%
𝐹1 0.922 0.466

Tab. 3.6: Result comparison of testing sets

GTSRB My Dataset
+ - + -

+ 9562 1459 117 262
- 149 2136 6 26

Tab. 3.7: Confusion matrices of testing sets

Bounding box of the sign is sometimes off due to mistakes in GTSRB annotations
on which the network was trained. Many false positives are generated on images
larger than 200 pixels in either dimension, due to RPN anchor scaling, which does not
provide large enough bounding box. The detection time for one sign is 50 millisec-
onds for the first testing set and 86 milliseconds for the second. This demonstrates
that the detection network requires very small amount of background in the image
and that it is very sensitive to its change. This could remedied by training the
detector on images taken directly in traffic. Labels used as classification output are
corresponding to the official labels defined by the traffic law. Figures 3.1 and 3.2
illustrate a small part of the recognition results. The network is able to correctly
classify occluded and blurred traffic signs. It is also almost invariant to lightning
changes and change of view angle. False positives are mainly generated by traffic
signs that are dependent on rotation or include similar part as other signs.
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l=P4; c=P4. l=B20a30; c=B20a30. l=B20a60; c=B20a60. l=B21a; c=B21a.

l=B20a30; c=B20a30. l=B20a50; c=B20a50. l=C2a; c=C2a. l=P2; c=P2.

l=C4a; c=C4a. l=P4; c=P4. l=C1; c=C1. l=BG; c=BG.

l=BG; c=BG. l=BG; c=BG. l=BG; c=BG. l=BG; c=BG.

Fig. 3.1: Correctly recognized signs; l – label given by detector, c – class of the sign,
BG – background
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l=B2; c=BG. l=B21a; c=BG. l=P4; c=BG. l=B20a80; c=BG.

l=B20a30; c=BG. l=B20a30; c=BG. l=B20a30; c=B20a50. l=B20a60; c=B21a.

l=B20a30; c=BG. l=B4; c=BG. l=B20a30; c=B20a50. l=P2; c=BG.

l=B20a30; c=BG. l=BG; c=B1. l=BG; c=P4. l=BG; c=P2.

Fig. 3.2: Incorrectly recognized signs; l – label given by detector, c – class of the
sign, BG – background
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4 Conclusion
Research of traffic sign recognition methods was concluded in this thesis, which
has shown that Convolutional Neural Networks provide superior performance in
detection.

Based on the results, multiple Faster R-CNN networks were trained to determine
the best layer configuration. The whole solution was implemented in MATLAB
R2018a and computed on a CUDA-accelerated Nvidia GeForce GTX 1080 SC GPU.
Network with four convolutional layers has outperformed all other networks.

It was trained and tested on GTSRB dataset with 86.76% precision, 98.47%
recall and 0.922 𝐹1 score. The network was further verified on the dataset created
by the author, which produced 𝐹1 score of 0.466. This drop in performance can be
explained by way higher content of background in the images to which the network
is very sensitive.

Future work would consist of creating a new dataset with images from actual
traffic situations and further improvement of the network’s architecture to make it
more robust.
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List of symbols, physical constants and abbre-
viations
AI Artificial Intelligence
CNN Convolutional Neural Network
CPU Central Processing Unit
DAG Direct Acyclic Graph
ECOC Error Correction Output Code
F-ECOC Forest Error Correction Output Code
GPU Graphical Processing Unit
GTSRB German Traffic Sign Recognition Benchmark
ML Machine Learning
RAM Random Access Memory
R-CNN Regional Convolutional Neural Network
ReLU Rectified Linear Unit
ROI Region of Interest
RPN Region Proposal Network
SC superclocked – providing higher level of overclocking by factory
SGDM Stochastic Gradient Descent with Momentum
SVC Support Vector Classification
SVM Support Vector Machine
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A Contents of the CD
The code on the CD was run in MATLAB R2018a. No other versions were tested.

/............................................................root folder of the CD
CNN...................................Folder with MATLAB code and datasets

Data.............................................Folder containing datasets
DatasetBrno ................................. Dataset created by author
GTSRB.......................German Traffic Sign Recognition Benchmark
annotationsDB.mat
annotationsGTSRBtest.mat
trainedDetector.mat
truthTable.mat

detectandVerify.m
generateSmallTrainSet.m
script.m ..................................................... Run this file

Zakarovsky,Traffic_Sign_Recognition.pdf ................. Bachelor’s thesis
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