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ABSTRACT 
This thesis researches methods of traff ic sign recognition using various approaches. Tech­

nique based on machine learning ut i l iz ing convolut ional neural networks was selected for 

fur ther implementat ion. Influence of number o f convolut ional layers on neural network's 

performance is studied. The resulting network is tested on German Traffic Sign Recog­

nit ion Benchmark and author 's dataset. 

KEYWORDS 
Traff ic Sign, Traff ic Sign Detect ion and Recognit ion, Machine Learning, Convolutional 

Neural Networks, CNN 

ABSTRAKT 
Táto práca skúma metódy rozpoznávania dopravných značiek. Implementovaný prístup 

využíval strojové učenie založené na konvolučných neurónových sieťach. V rámci te j to 

práce bola zistená závislosť úspešnosti neurónovej siete od počtu konvolučných vrstiev. 

Výsledná neurónová sieť bola testovaná na datasete GTSRB a na datasete vytvoreným 

autorom. 
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ROZŠÍRENÝ ABSTRAKT 
Systém rozpoznávania dopravných značiek je dnes možné nájsť vo väčšine mo­

derných áut. Tento systém deteguje rýchlostné obmedzenia, zobrazuje ich vodičovi 
na displeji a robí náš život bezpečnejším a komfortnejším. Existuje veľa potenciál­
nych odvetví, kde môže byť táto technológia využívaná, ako napríklad, robotika, 
umelá inteligencia (AI) alebo vývoj autonómnych vozidiel. 

Cieľom tejto práce bol návrh neurónovej siete, ktorá dokáže detegovať a klasifiko­
vať príkazové a zákazové dopravné značky v obraze. V prvej časti bola vytvorená 
rešerš metód rozpoznávania. V nej sú prezentované rozdielne prístupy k riešeniu 
tejto úlohy pomocou geometrických vlastností značiek alebo pomocou strojového 
učenia. V tomto konkrétnom prípade bol zvolený koncept na základe strojového 
učenia, keďže je to jedna z najvýkonnejších a najvšestrannejších metód počítačového 
videnia. 

Druhá kapitola je zameraná na základnú teóriu konvolučných neurónových sietí 
(CNN), ich vrstvy a ďalej popisuje fungovanie detekčnej siete Faster R - C N N . 

Tretia kapitola popisuje implementáciu niekoľkých detekčných sietí v záujme 
určenia vplyvu počtu konvolučných vrstiev na úspešnosť neurónovej siete. Zvolená 
konfigurácia siete bola trénovaná a verifikovaná na datasete G T S R B . Táto sieť bola 
neskôr testovaná aj na datasete vytvoreným autorom. 

V rámci rešerše boli spracované štyri rozdielne prístupy k rozpoznávaniu značiek. 
Prvý na základe geometrických vlastností hľadaných dopravných značiek a zvyšné 
metódy využívali strojové učenie, konkrétne dve použili podporné vektory (SVM) 
a posledná konvolučné neurónové siete (CNN). Na základe tejto rešerše bolo zvolené 
riešenie na báze konvolučných neurónových sietí, keďže táto metóda bola najrobust­
nejšia a dosahovala najlepšie výsledky. 

Tento návrh bol vytvorený v prostredí M A T L A B s využitím balíčkov pre neuró­
nové siete a paralelné výpočty. Na trénovanie bol využitý dataset G T S R B , ktorý je 
tvorený 39 000 obrázkami, kde značka zaberá približne 60% plochy obrazu. Na jed­
nej vzorke je vždy iba jedna značka a jej veľkosť je v rozmedzí 15x15 až 256x256 
pixelov. Na testovanie bol opäť použitý dataset G T S R B a taktiež dataset, ktorý 
nafotil autor. Tento dataset bol vytvorený v Brne, značky boli orezané v štýle GT­
SRB, ale bolo na nich nechané viac pozadia. Značky väčšie ako 180x180 pixelov boli 
zmenšené na pätinu ich veľkosti. Obrázky v tomto datasete môžu byť rozmazané, 
zrnité a sú fotené v rozdielnych svetelných podmienkach. Všetky značky majú an-
otovanú iba ich triedu. Detektor bol založený na sieti typu Faster R - C N N , ktorý au­
tomaticky trénuje sieť potenciálnych návrhov výskytov hľadaného objektu (RPN), 
v tomto prípade značiek. Prvá navrhnutá C N N využívala architektúru AlexNet 
s upravenými hodnotami parametrov a zredukovaným počtom max pooling vrstiev. 
Výsledky rozpoznávania boli veľmi zlé, preto bol tento návrh zavrhnutý. Namiesto 



toho bola trénovaná sieť iba s dvoma konvolučnými vrstvami a tromi plne prepo­
jenými vrstvami, ktorá dosahovala lepšie výsledky ako upravený AlexNet, ktoré ale 
stále neboli postačujúce. Preto boli navrhnuté ďalšie neurónové siete s inkrementu-
júcim sa počtom konvolučných vrstiev. Maximálne bolo použitých päť vrstiev. Tieto 
detektory boli porovnané na základe Fi kritéria na testovacej množine z G T S R B . 
V testoch mala najvyššie skóre sieť so štyrmi konvolučnými vrstvami s hodnotou 
0,823. Táto konfigurácia siete bola preto zvolená na tréning s upravenou množi­
nou dát z G T S R B . Počet klasifikačných tried v tomto datasete bol znížený na 29, 
vzorky zo zanedbaných tried boli presunuté do pozadia. Kvôli zbytočne veľkému 
počtu obrázkov v pozadí bolo vyradených približne 8000 vzoriek. Celkový počet 
dát v trénovacej množine bol cca 32 000 zákazových, príkazových značiek a značiek 
upravujúcich prednosť mimo značky P 1 (Križovatka s vedľajšou pozemnou komu­
nikáciou). Trénovanie tejto siete zabralo 17 hodín na jednej grafickej karte E V G A 
GeForce G T X 1080 SC. Následne bola táto sieť verifikovaná na testovacej množine 
G T S R B . Čas detekcie značky v obraze je 50 ms a detekčná sieť je schopná rozpoznať 
čiastočne prekryté dopravné značky a je invariantná k zmenám osvetlenia. 

Tento Faster R - C N N detektor mal presnosť (precision) 86,76%, odvolanie (recall) 
98,47% a hodnotu F\ kritéria 0,922. Následne bol otestovaný aj na datasete, ktorý 
vytvoril autor, kde dosiahol presnosť 30,87%, odvolanie 95,12% a hodnota F1 kritéria 
0,466. Tento rozdiel v presnosti je spôsobený tým, že podiel plochy značky k pozadiu 
je v tomto datasete menší ako pri G T S R B a detekčná sieť je na to citlivá. Pri 
vzorkách väčších ako 200x200 pixelov je generované veľa chýb typu I (false positives), 
pretože R P N sieť nedokáže vytvoriť dostatočne veľký bounding box a preto hľadá 
menšie oblasti, v ktorých sa môže vyskytovať značka. Do budúcnosti by som tento 
návrh vylepšil tak, že by som sieť trénoval na dátach z reálnej premávky, čím by 
tento detektor stal robustnejším. 
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Introduction 
Traffic sign recognition can be found in most of modern cars. It detects speed limit 
signs and displays them for the driver to see, thus making our lives safer and more 
comfortable. There are many potential fields where this technology can be further 
utilized, such as robotics, AI and development of autonomous vehicles. 

The goal of this thesis was to design a network which can detect and classify 
mandatory and prohibitory traffic signs in image. In the first part, a research on 
recognition methods is concluded. It presents various approaches to the problem 
using geometrical properties or machine learning. In this particular approach, M L 
concept for traffic sign recognition is applied, as it is one of the most powerful and 
most versatile method of computer vision. 

The second chapter focuses on basic theory of convolutional neural networks, 
their layers and provides description of Faster R - C N N detection network operation. 

The third chapter follows the implementation of multiple detection networks to 
determine the influence of number of convolutional layers in C N N on their per­
formance. Selected network configuration is trained and verified on German Traffic 
Sign Recognition Benchmark. The same network was later tested on dataset created 
by the author. 
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1 Research 
This chapter describes a research I did for semestral thesis where I studied methods 
of traffic sign recognition. I selected four methods which I found interesting, because 
of their differences in approach to the problem. The first method does not utilize 
machine learning, but it prepares weights for neural network from color segmenta­
tion. The other three methods use different types of machine learning methods to 
achieve traffic sign recognition. These methods are described below. 

1.1 Method Hassan Shojania 

This method, based on [1], heavily relies on color information and geometrical prop­
erties of sign's shape to distinguish traffic signs. The whole algorithm used consists 
of four stages shown on 1.1. 

Fig. 1.1: Block diagram of the algorithm [3] 
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1.1.1 Color segmentation 

As the signs of interest have certain characteristic color and its position, (e. g. red 
circle), it is possible to color threshold the R G B color spaced input image resulting 
in a binary image. This process saves computational time in the following steps of 
the algorithm. The R G B color space is very sensitive to lightning changes. Due to 
different weather conditions, the color range defined in equation would be unusable. 
There are two possible solutions to this problem. One of them is image conversion 
to HSI color space, which is computationally expensive, or use ratio of pixel's red 
component to its overall intensity to define range of red. It is possible to use one 
range for red component and other ranges for ratio of blue and green components. 

g(x,y) = < 
kl, if < 

R-min — fry^iV) — Ftraax 

Brain — fby^i U) — Bmax 

k2, otherwise 

where g(x, y) is the thresholding output, kl and k2 are the binary output values 
and f(x,y) are the color components of input image. 

1.1.2 Corner detection 

Canny edge detector [2] is used on the binary image, which resulted from color seg­
mentation. Its first step consists of convoluting the image with masks representing 
first derivative of Gaussian. Similar masks can be derived for other shapes. Common 
corner detectors use edge information or eigenvectors of gradient in pixel neighbor­
hood. Optimal corner detector is suitable for real-time detection, because it works 
faster as aforementioned detectors. It convolves the image against defined masks 
and can classify type of detected corner by angle and direction, reducing complex­
ity of shape recognition. Optimal corner detector models local grey level around a 
corner and attempts to find the optimal function, a mask, which when convolved 
with the image, yields a maximum at corner point. Noise is represented by additive 
Gaussian noise and the corner has fixed angle and orientation. 

A good corner detector should satisfy following qualitative objectives: 
• Good detection 
• Good localization 
• Single response to an edge 
• It should not delocalize corner 
• Detected corner should be an edge point 

16 



• The corner point should have at least two neighbors with different gradients 
than the corner itself 

A large number of masks is needed to detect all corners in the image. It is possible 
to reduce the number of masks and make the process computationally less expensive 
using a class of detectors approximating most of the possible corners. Corners are 
divided to groups based on which quadrants they occupy, and each group is assigned 
one mask. The total number of masks is 12, which is a lot less than having a mask 
for every corner possible. These masks work well, even though they do not have the 
same high response as masks specially tailored to certain corner. 

Yield sign masks 

Yield sign forms an equilateral triangle. For the bottom corner, a Y l mask (60° 
angle mask) was applied. Upper corners were approximated by C2 and C3 masks 
(90° angle mask), which are very similar to Y2 and Y3 masks and are needed for 
detection of other shapes as well. This process is shown on figures 1.3 and 1.4. 

Stop and circular sign masks 

Stop sign is an octagonal traffic sign. Its corner points p i and p8 are detected via 
60° angle mask and lines L I through L4 are detected by 90° angle masks. It is 
not necessary to use 135° masks, because 90° masks approximate the corner well. 
Circular signs are detected using four 90° corner masks. This process is shown on 
figure 1.5. 

Center of Mass (CoM) calculation 

Single corner response is very rare because of errors encountered from multiple issues 
such as imperfect corner in input image, corner detector not being perfect, noise, 
approximating with a corner mask close to corner angle, etc. Therefore multiple 
corners within corner area are detected. Center of mass is calculated for these corners 

Fig. 1.2: Corner model [3] 

17 
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Fig. 1.4: Corner detector for bottom of the yield sign [3] 

resulting in fewer corners and their location closer to the real corners. For each corner 
point, all points within its neighborhood are considered.Using convolution output as 
their weight, average point is calculated which represents center of mass. Equation 
for center of mass is shown below. 

X = HlHi v = l^li (i 2) 
•^cm ycm \ ) 

n n 

where x and y are x, y corner coordinates and n represents number of corners. 

1.1.3 Shape recognition 

Recognition method used is based on geometry between detected corners and is sim­
ilar to Interpretation Tree, where many subtrees are eliminated because of geometri­
cal constraints. Number of corners in each class is also reduced due to classification 
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(a) (b) 

Fig. 1.5: (a) Corner detectors for stop sign; (b) Circular sign corner detectors [3] 

of corners ( Y l , C2, C3) and because of picking order of the corners, the number of 
combinations is greatly reduced. 

Yield sign recognition 

Recognition process is very similar to approach in [1], but with added verification. 
The algorithm consists of picking a point pi from Y l corner set. Finding points p2 
and p3 from C2 and C3 corner set which satisfy following conditions: 

. (-60 - et) < ip3pi < (-60 + et) 

. ( -120-0*) < lp2pl < (-120 + 0*) 

• Imin ̂  11 p"ip 111 ^ Imax 

• Imin ̂  11 P^p 111 ^ Imax 
where 0*, lmin and lmax are configurable parameters. 

Stop sign recognition 

A pair of corners from Y l corner set is picked. These corners are verified, if they 
roughly form a horizontal line, (configurable parameter), and a distance d is calcu­
lated between them. Then a corner like p4, which is set above pi, is found. This 
point has to be within certain angle range and its distance to pi must be (1 + \/2d). 
A mirrored process is done for corner p5. Next, a corner p3 from C2 is picked, that 
satisfies constraints from p4. The process is repeated for p6 comparing it with p5. 
Corners p2 and p7 that satisfy constraints from p i and p8 respectively. Lines p3p2 
and p6p7 should be almost vertical. 
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Circular sign recognition 

Two corners pi and p4 are picked and it is verified, if they roughly form a horizontal 
line, (configurable parameter), and a distance is calculated between them. Using 
computed distance plp4, a search range in vertical direction,(configurable parame­
ter), is set up to find p2 above pi. The last step is repeated for corner p3 above 
p4- T o verify it is a circle, Y l corner set is used to detect points in the bottom of 
the circle. There should be a few points. This verification is simple and inefficient 
as there are frequent false positives. Very similar method can be used to detect 
rectangles. 

Fig. 1.6: (a) Yield sign recognition; (b) Stop sign recognition; (c) Circular sign 
recognition [3] 

1.1.4 Results of the method 

Figure 1.7 shows how this method fails to detect signs and generates a lot of false 
positives. This method is not very robust method and invariant to lightning changes. 

Fig. 1.7: (a) Classification; (b) Detection; (c) Result of wrong color threshold ratio 

[3] 
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1.2 S V M for Traffic Signs Recognition 

The study [4] analyzes use of Support Vector Machines (SVM) with different feature 
representations, different kernels and S V M types, to identify and classify traffic signs. 
System is based on Swedish traffic signs and does not recognize all traffic signs, for 
instance rectangular informative signs. This study focused on recognition of seven 
traffic sign categories and five speed limit signs, shown on figure 1.8. The dataset 
consists of traffic signs in various conditions, e. g., damaged, faded or occluded 
by snow, etc. Due to sign placement and camera location, traffic sign dimensions 
can appear distorted. To solve this problem Zernike moments representation was 
implemented alongside direct binary representation. 

A V i 
OQ<S>© 

Fig. 1.8: Traffic and speed limits signs used [4] 

Recognition system used is represented by figure 1.10. It consists of four main 
blocks. In the first one, possible traffic signs are separated from the background 
using color information. In the extraction process, signs are extracted from the 
image, their dimension normalized and saved as binary files. The following block 
represents features of every binary image, serving as an input to recognition step. 

Traffic signs were extracted using a shadow and highlight invariant color algo­
rithm, which has shown high robustness in various lightning conditions Result of 
the extraction can be seen on figure 1.9. 

\7 

Fig. 1.9: Sign extraction example [4] 
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Fig. 1.10: Block diagram of the system [4] 

1.2.1 Feature representation 

Each traffic sign is represented by an N dimensional feature vector. Two different 
feature selection methods were tried in this study, direct binary representation and 
Zernike moments. 

Direct Binary Representation 

Use of color segmentation described in [1] and [3], outputs a binary image where 
black is represented by 0 and white by 1. Resulting image size is 36x36 pixels 
resulting in 1296 attributes for one vector. 

Zernike Moments 

Image moment is a certain weighted average of pixel's intensity or its function, 
which has some attractive property. Moments extract a feature set. A collection of 
these moments can be computed to capture global features of an image and used 
as a feature vector for pattern recognition. Depending on type of pattern various 
moments can be used. The authors of this study decided to use Zernike moments to 
represent traffic signs. Zernike moments are made up by a sequence of polynomials 
forming complete orthogonal set over the interior of the unit circle. These specific 
moments were chosen because they are invariant to rotation and have high noise 
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robustness. To determine Zernike moments of an image, a minimal circle containing 
traffic sign had to be defined. Then pixel coordinates of the sign were mapped inside 
the circle, which was regarded as a unit circle. Zernike moments are calculated from 
generated coordinates. 

Two-dimensional Zernike moments of order p with repetition q of an discrete 
image, where f(x,y) represents current pixel, are defined as, 

" x y 

where x2 + y2 < 1, V*q(x,y) are the Zernike polynomials in a unit circle defined as, 

Vpq(x,y) = Rpq(rxy)e^ (1.4) 

where rxy = \/x2 + y2, Qxy = arctan - and the real valued radial polynomial Rpq(r 
is, 

, "- | " l / 2 * (p-fc) 
k\{^)\{^-k)\ 

where 0 < \q\ < p and p — \q\ is even. 

RPq(r)= £ ( - l ) \ , / e Z , ^ , , , (1-5) 

1.2.2 SVM classification 

Signs in this study are recognized by S V M based on their shape only. Color prop­
erties do not play any role in the recognition process. Support Vector Machines 
are machine learning methods based on statistical learning proposed by Vapnik [5]. 
They use hyperplane of linear functions in high or infinite dimensional feature space. 
Pattern is found by building decision boundaries that optimally separate data in the 
hypothesis space. The basic S V M training principle analyzes and searches for opti­
mal hyperplane that has a good generalization. The function describing hyperplane 
is as follows. 

i 

f(x) = J2 ajVjK(xi, x) + b (1.6) 

i=l 
where x is the input vector, I is the number of training samples and K represents 
kernel. Kernel is a function which implicitly maps input space to feature space. In 
this study four different kernels were used: 

• Linear: K ( x j , Xj) — xjXj 
• Polynomial: K(xi,Xj) = (•yxjxj +r)d,l > 0 
• Radial basis function (RBF): K(xi,Xj) = exp{—7||xj — X j | | 2 ) , 7 > 0 
• Sigmoid: K(xi, Xj) = tanh (•yxfxj + r) 

where 7,r and d are kernel parameters. 
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Two different types of S V M classification were used because the optimal hyper-
plane was not able to separate input vectors completely. The first type was C-
support vector classification (C-SVC), which for given input vector Xi G Rn solves 
the primal problem G —1,1 following the next steps. 

Minimize^wh 

Subject to 

& > 0 , i = l,...,l 

where w is the optimal hyperplane, slack variable allows some misclassification and 
C is an a priori constant giving trade-off between maximum margin and classification 
error. 

The other type of classification used in this study is I/-SVC. Parameter v controls 
the number of support vectors and errors. It solves the primal problem according 
to the following algorithm. 

1 1 ' 
Minimize^j6 - (wTw) - up + - ^ & 

1 1 i= i 

Subject to yi(wT$(xi) + &)+&> p (1.8) 
> o, i = i,...,i, P>o 

where the parameter v G (0,1] is an upper bound on the fraction of training errors 
and a lower bound of the fraction support vectors. 

S V M is a binary classification algorithm. Various strategies as one-against-one, 
one-against-all, all-together and D A G S V M have been proposed to utilize it in a 
multiclass problem. One-against-one approach was used for traffic sign classification 
in this study. It constructs k(k — l)/2 binary classifiers, where k represents number 
of classes. Each classifier trains data from two different classes and then takes votes 
on the data. Data is assigned to the class with the most votes and if two classes 
get the same votes, data is assigned to class with smaller index. S V M overcome the 
curse of dimension in computation and generalization, therefore, they are able to 
perform pattern recognition without preprocessing. 

1.2.3 Results of the method 

The dataset consists of 600 samples, divided into 12 classes (7 sign shapes categories 
and 5 speed limit sign types), each category had 50 samples randomly distributed 
between 30 training and 20 testing samples. Experiments were divided into two 
parts. The first part trained and tested S V M with different feature representation. 

1-(w

tw) + c y . ^ 
~ i=l 

yi{wT^{xi) + b)+^>l (1.7) 
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The second part focused on use of various kernel and S V M types. Zernike moments 
could detect six types of sign shapes, since they are invariant to rotation and could 
not distinguish between upward and downward facing triangle. S V M models were 
trained on the same training dataset with for aforementioned kernels and two S V M 
types. Parameters of the SVMs were: C — l,u — 0.5,7 — l/n,r — 0, d — 3, where 
n is the number of input vector attributes. 
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Fig. 1.11: Comparison between binary representation and Zernike moments [4] 
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Fig. 1.12: Results of the method for: (a) Binary representation; (b) Zernike moments 

[4] 
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This recognition method is robust and despite beneficial properties in pattern 
recognition, binary representation outperformed Zernike moments. Four types of 
kernel were tested, showing that linear kernel worked the best with both tested 
S V M types. This method is able to recognize wide variety of traffic signs, which 
include noise, damage, translation or rotation. 

1.3 Evolutionary Adaboost Detection and F-ECOC 

Classification 

As I already mentioned, there are two main approaches to recognize a traffic sign, 
color-based and gray-scale based. Color-based sign recognition reduces false-positive 
results during recognition phase using color. Grayscale based recognition concen­
trates on geometrical shape of the object. At the time of study, more recent studies 
have shown that combination of both methods improves detection rates. Many 
objects can share color with traffic signs, thus creating false-alarm regions. It is pos­
sible to lower the number of these regions by filtering out areas which aspect ratio 
is either smaller or larger than a specified ratio or ratio range. Region is normalized 
to predefined size and a linear S V M is used to determine region in a possible shape. 
The gathered color and shape data is used as a coarse classification, and an S V M 
with Gaussian kernels performs the fine classification. 

1.3.1 Detection 

Detector in this method uses attentional cascade concept. Feature selection is done 
by boosting and the image is represented by integral image. This method solves 
restriction of the boosting-process computation on large feature sets. This evolu­
tionary boosting drastically reduces training time and allows use of huge feature 
sets. Dissociated dipoles are used as a features. These can be calculated using an 
integral image. In object detection, a large number of negative regions is discarded, 
whereas only some regions represent looked up object. Attentional cascade architec­
ture allows discarding non-object regions at low computational cost and interesting 
regions are deeply analyzed. One attentional cascade is made of a set of classifiers, 
where input to each classifier corresponds to regions classified as object-regions by 
previous stage. These regions classified by the last stage form output of the detector. 

Dissociated dipoles 

Based on a study by Lienhart and Maydt [6], accuracy of the detector increases 
with the number of available features. Dissociated dipoles or sticks, shown on figure 
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1.13, are more general type of features than Haar-like features, and are able to 
deal with larger feature set. They are made of a pair of rectangular regions name 
excitatory and inhibitory dipole. The mean value of all pixels in inhibitory dipole 
is subtracted from the mean value of all pixels in excitatory dipole. Integral image 
is used to calculate sum of pixels located inside the regions. This increases feature 
set enormously and makes it computationally unfeasible for classical approach. To 
solve this problem, this study defines an evolutionary Adaboost approach. 

Fig. 1.13: Dissociated dipoles. Black represents inhibitory dipole and white the 
excitatory dipole [7] 

Evolutionary Adaboost 

Boosting is a learning technique that combines performance of many simple classifi­
cation functions or Weak classifiers and produces a Strong classifier. The examples 
are re-weighted at each learning round to emphasize the examples incorrectly clas­
sified by previous Weak Classifier. The final Strong Classifier is a decision stump 
made of weighted combination of Weak Classifiers followed by a threshold. Classical 
boosting uses exhaustive search to determine Weak Classifier, making it computa­
tionally unfeasible for larger feature sets. Therefore, authors of this study defined 
evolutionary weak learner, which minimizes the weighted error function e of the 
Adaboost scheme as follows, e = Yl,v.h{xi)+yiwii where X = {(xi,yi)\i = 1 : m} are 
the pairs of sample-label that compound the training set, W = {wi, w2, • • •, wm} is 
the Adaboost weights distribution over the training set and h(xi) corresponds to the 
label that the hypothesis h predicted for training object Xj. 

Weak learner can be considered as an optimization problem, where parameters 
of the Weak Classifier minimizing the error function are needed to be found. This 
function is full of discontinuities making classical approaches based on gradient de­
scent unusable. The solution to this problem is use of evolutionary strategy using 
a genetic algorithm, which searches over the spaces of solutions using three basic 
concepts of Darwin's theory. Mutation, crossover, natural selection. 

While working with evolutionary algorithm, two elements should be defined. 
The individual, representing a point in solution space and the evaluation function, 
which measures the function value at the point the individual represents. Weak 
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Classifier based on dissociated dipoles is defined as h(I, Thr, xi) —> {—1, +1}, where 
/ = (Rex, Rey, Rew, Ren, Rix, Riy, Riw, Rih), with Re being the excitatory dipole. 
and the type parameter T is changed by the parameters of the inhibitory dipole 
Ri. To reduce evaluation time, regions are compared qualitatively, which eliminates 
need for illuminance normalization and threshold learning process. 

Learning algorithm 

The algorithm is used to learn all the stages of the detection cascade using a set 
((xl, yl)... (xm, ym)) of samples positively classified by previous stage. It iter-
atively uses genetic algorithm to minimize weighted error and to instantiate the 
parameters of a new Weak classifier added to the final ensemble. 

Algorithm 1: Evolutionary Discrete Adaboost. 
Given: (xuyi),(xm,ym) 

where Xi G X, G Y = { — 1,-1-1} 
Initialize W\{i) = 1/m 
for t = 1,..., T d o 

Use a genetic algorithm to minimize 

et = Pri^Wt[ht(xi) ^ yt] 

The given solution is taken as the hypothesis ht. 
Get the weak hypothesis / i f : I 4 { - 1 , +1} with error ht. 
Choose at = (1/2) In (1 — et/et) 
Update 

Wt+1{i) = — ^ x { 
e a t , if ht(xi) = yt 

eat, if ht(xi)^yi 

Wt(i)exp(-atyiht(xi)) 
Zt 

where Zt is a normalization factor (chosen so that Wt+i will be a distribution), 
end for 
Output the final hypothesis: 

H{x) = sign atht(x)j 
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1.3.2 Classification 

Once the object was located, it needs to be classified. The authors of this study 
decided to use E C O C classification technique, which combines base classifiers to 
address the multiclass problem. 

ECOC 

This design is based on coding and decoding. Coding assigns a codeword to each 
of the Nc classes and decoding aims to assign class label to new test codeword. 
Codewords are arranged in a coding matrix M e { — 1, l}

A f c X n

, where n is the length 
of code, which from point of coding represents n binary learning problems, (di­
chotomies), each corresponding to a column of E C O C matrix M. Each dichotomy 
defines sub-partition of classes coded by {+1, -1} according to their membership. 
Code obtained from decoding of output of binary classifiers is compared with the 
base codewords in matrix M. Data points is assigned to the closest codeword. 
Distances used for decoding are Hamming and Euclidean distances. 

h1 h2 h3 h, h1 h2 h3 h4 h5 h6 

(a) (b) 

Fig. 1.14: Four-class E C O C designs: (a) One-vs-all; (b) One-vs-one [7] 

F-ECOC 

Most of discrete coding strategies are predesigned problem-independent codewords. 
Pujol et al. proposed a method for embedding a tree in the E C O C framework. Root 
contains all classes and nodes associated with the best mutual information partition 
is found. This process is repeated until sets with single class are obtained. Based on 
the mentioned approach, the authors embedded multiple trees forming an F - E C O C 
(Forest - Error Correcting Output Code). Optimal tree, with highest classification 
score at each node, and several sub-optimal trees, which are closer to the optimal 
tree under certain conditions. 
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Algorithm 2: Training algorithm for F - E C O C . 
Given: Nc classes: c i , . . . , cnc and T trees to be embedded 
tt0 <- 0 
i <- 1 
for t = 1,..., T d o 

Initialize the tree root with the set JVj = { c i , . . . , c a t c } 

Generate the best tree at iteration t: 
for each node iVj do 

Train the best partition of its set of classes {Pi , P2}\Ni = PI U P 2 , 

t _ i using a classifier /ij so that the training error is minimal 
According to the partition obtained at each node, 
codify each column of the matrix M as: 

M(r,i) 

0, if Cr £ Ni 

+l, if cr e Pi 

- 1 , if Cr e P2 

where r is the index of the corresponding class cr 

Qt <- a - i U Ni 

i<-z + l 
end for 

end for 

This technique provides sub-optimal solution due to robust classifier combina­
tion. The main advantage of this method is that trees share information between 
classes. It is done by joint decoding step and each tree of Nc classes introduces Nc — 1 
classifiers. At the time of study, it has been shown that zero symbols introduce errors 
in decoding distances. Attenuated Euclidean decoding distance has been proposed 
as solution to this problem. It is defined as follows, dj = \JY^=\ \y{\{xi ~ Vi)2-, where 
dj is distance to the row j, n is the number of dichotomies, Xi is the response of the 
classifier hi over test sample and \yf\ is the value of coding matrix M at the i-th 
row and j-th column. Factor \yf \ was introduced to avoid error of the zero symbol. 

1.3.3 Sign Recognition Process 

A l l data acquired is given to the detector. Detectors form an attentional cascade, 
where at each stage almost all objects of interest are detected, while a certain fraction 
of non-sign pattern is rejected. Signs are grouped based on similarity and for each 
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Fig. 1.15: Model Fitting, (a) Detected lines, (b) Corrected line, (c) Intersections, 
(d) Corner region, (e) Corner found [7] 

group a different cascade was trained. Detector output consists of all detected 
objects by cascades. 

Region of interest is determined via Evolutionary Adaboost, and based on the 
type of detected sign, a different model fitting is applied looking for afline trans­
formations performing spatial normalization. Fast radial symmetry is applied for 
circular signs, which provides high robustness to noise and approximates the center 
and the radius of the sign. Method based on Hough transform is used for triangular 
signs. If a false line is detected, Hough procedure is iterated to detect next repre­
sentative line. When three lines are detected their intersections are calculated and 
verified by corner detector. 

Spatial normalization consists of four steps. Image transformation, to make 
recognition invariant to small afline deformations. Resize the object to the signs 
database size. Filter the image using Weickert anisotropic filter. Mask the image to 
exclude background pixels at the classification step. To make classification invariant 
to illumination conditions, histogram equalization is used to improve contrast and 
yield a uniform histogram. 

Signs are classified via F - E C O C , where optimal trees consider the best sub­
partitions of the classes to obtain robust classifiers based on grey-level pixel values. 

1.3.4 Results of the method 

Genetic Algorithm with a population of 100 individuals, Gaussian based mutation 
probability and scattered crossover strategy with 0.8 fraction were used to perform 
tests with Evolutionary Adaboost. As shown on the figure 1.16, both methods 
converge with the same number of iterations, showing that even though Evolutionary 
Adaboost has a random component, it still performs well. It has been able to 
determine triangular sign with 90.87% probability and circular sign with 90.16% 
probability. 
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Fig. 1.16: Error comparison between different Adaboost approaches [7] 

1.4 Tsinghua-Tencent 100K 

This method was concluded in China and uses traffic signs in realistic world condi­
tions with large variations in illumination, weather conditions and occlusion. The 
dataset consists of 100 000 high resolution images cut from Tencent Street Views 
(Chinese equivalent of Google Street View). Traffic signs take around 0.2% of an 
image. Traffic signs were classified into three categories: warning, prohibition and 
mandatory. Other traffic signs and signs resembling traffic signs were classified as 
"other". 

Fig. 1.17: Traffic-like signs [8] 

1.4.1 Traffic sign classification 

Before common adoption of C N N , detection methods based on SVMs or sparse 
representations were used. Sermanet et al. [9] observed that C N N are more efficient 
when used in a sliding window fashion because many computations can be reused in 
overlapping regions. Later on they demonstrated a C N N that can determine object's 
bounding box together with its label. There is also a different commonly used, but 
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less efficient and slower method R - C N N , which as a first step calculates some generic 
object proposals and then performs classification only on these candidates. Usage 
of spatial pyramid pooling network (SPP-Net) improves efficiency of R - C N N and 
speeds it up about 100 times. This approach calculates convolutional feature map 
for the entire image and extracts feature vectors from the shared feature map for 
each proposal. Another improvement of R - C N N called Fast R - C N N , uses softmax 
layer above network and not a S V M classifier as R - C N N does. Region proposal 
networks (RPN) were unveiled later, which share full-image convolutional features 
with the detection network. 

Based on knowledge that deep learning methods show superior performance in 
image classification and speech recognition, study [8] used C N N to identify traffic 
signs as they deem it the most suitable deep learning method for image classification, 
localization and detection. 

1.4.2 Data collection and annotation 

Because of lack of real-world traffic sign images and will to mimic real world scenario, 
authors decided to use Tencent Street Views as a source of images. In the time of 
study Tencent Street Views covered about 300 Chinese cities and roads connecting 
them. The dataset consisted of images with and without traffic signs to evaluate 
if detector is working properly. Images collected were annotated by hand. During 
annotation bounding box, boundary vertices and sign's class label were recorded. 
To determine sign's pixel mask two modes were used: polygon which marks polygon 
vertices, and ellipse which marks vertices alongside ellipse boundary. Vertices are 
used to automatically fit the shape of the traffic sign. Circular signs appear as 
ellipses unless occluded. Occluded signs are the most difficult thing to detect. In 
this case bounding box boundary, polygon boundary, and if appropriate, ellipse 
boundary is marked, and intersected. 

Fig. 1.18: Annotation pipeline [8] 
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Fig. 1.19: Occluded sign annotation [8] 

1.4.3 Neural networks 

Two neural networks were trained, one for detection only and the other for simul­
taneous detection and classification. The networks have 8 layers and branch after 
layer 6. If the network was branched earlier, it would have a potential to perform 
better but it would need more training time and would consume more memory. The 
output layer is branched into three streams, bounding box layer, pixel layer and 
label layer; which allows traffic sign classification as well as traffic sign detection. 
As there were uneven numbers of examples of different classes, data augmentation 
technique was used during training. Classes with fewer than 100 instances were 
ignored. Classes with 100 - 1000 instances were augmented to have 1000 instances. 
Classes that had more than 1000 were left unchanged. To extend the dataset, the 
augmented classes were randomly rotated in [-20°, 20°] range, scaled in [20, 200] 
range, and random amount of noise was added. Afterwards some images with no 
traffic signs were manually added and distorted with random noise. 

input data 
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Fig. 1.20: Architecture of used C N N [8] 

1.4.4 Results 

Training and testing of the neural network was done on Linux based P C with Intel 
Xeon and two NVIDIA Tesla G P U . 10 000 panoramas were divided in to the training 
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and testing set in 2:1 ratio. The other 90 000 panoramas were included in testing. 
Neural network used in traffic sign detection was compared with typical object 
proposal methods as Selective Search, Edge Boxes and BING. Selective Search and 
Edge Boxes do not need training data. BING was trained using the same data 
as methods neural network. Tsinghua-Tencent 100K detection network achieved 
84% accuracy and 91% recall. This network outperforms previously mentioned 
object detection methods and was able to identify that, all of 90 000 panoramas 
without traffic sign are considered background. Simultaneous traffic sign detection 
and classification neural network was compared with Fast R - C N N . Overall Fast 
R - C N N has shown better performance for larger objects. It has a 0.56 recall and 
0.50 accuracy compared to Tsinghua-Tencent lOOK's 0.91 recall and 0.88 accuracy. 
This method is slow, tested on a powerful hardware and not suitable for real-time 
recognition. 

Object size [0,32] [32,96] [96,400] 
Fast R - C N N recall 0.24 0.74 0.86 

Fast R - C N N accuracy 0.45 0.51 0.55 
T-T 100K recall 0.87 0.94 0.88 

T-T 100K accuracy 0.82 0.91 0.91 

Tab. 1.1: Results of the comparison between Fast R - C N N and T-T 100K [8] 
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2 Theory 
Based on the research done in the previous chapter, the approach of Tsingua-Tencent 
100K benchmark seemed to be the most robust recogniotion network, therefore, 
a solution solution using convolutional neural networks was implemented. In the 
following sections, basic theory of CNNs and Faster R - C N N is described. 

2.1 Convolutional Neural Networks 

Convolutional neural network is a type of neural network which use matrices as input 
instead of vectors. They are a very powerful tool commonly used in deep learning 
methods, in applications such as image and video recognition, natural speech pro­
cessing and recommender systems. Architecture of C N N varies and is dependent on 
given problem. It consists of layers which can, but do not have to branch. 

ist 1st 2nd Iml 
Convolution Pooling Convolution Pooling fu l ly Fully Output Prediction* *"*u +WLU ConriKiM Connect*) 

Fig. 2.1: C N N example [11] 

2.1.1 Layers used in CNN 

There are many types of layers which can be used when designing a neural network 
architecture. This subsection explains the basic layers used in design. 

Convolutional layer 

This layer performs convolution on its input with defined kernel. Input to this 
layer can be some data, such as image; or a feature map computed in previous 
convolutional layer. Kernel, also called filter, is a square matrix and there may be 
multiple filters in one layer. Because of the nature of convolution, output size is 
different than size of the input. To further change the output size or preserve it, 
parameters such as stride and zero padding are implemented. Stride defines a step 
the kernel matrix makes on the input matrix. The bigger the stride, the smaller the 
feature map gets. Default value for stride is 1. Zero padding puts zeros around the 
borders of the input matrix, which can be useful in some scenarios. 
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Fig. 2.2: Example of convolution [11] 

Activation layer 

There are many activation functions which present non-linearity to feature map, for 
example sigmoid or hyperbolic tangent. In C N N typically a Rectified Linear Unit 
(ReLU) is used or its versions, such as leaky ReLU. 

Output = MaxCzero, Input) 

Fig. 2.3: ReLU example [11] 

Pooling layer 

The most used type of pooling layer is max pooling layer, which downsamples the 
feature map, while the most important information is preserved. Figure 2.4 illus­
trates operation of max pooling. 

\ 2  4 

6y h 8 

3 2 1 0 

1 2 3 4 

max pool with 2x2 filers 
and stride 2 6 8 

3 4 

Rectified Feature Map 

Fig. 2.4: Max pooling example [12] 
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Dropout layer 

Dropout layer simply sets some features to 0 with given probability. This greatly 
prevents over-fitting of the network and makes it more redundant to error. 

Fully connected layer 

This layer represents Multi Layer Perceptron with softmax activation layer. As the 
name suggests, every neuron in one layer is connected to every neuron in the next 
layer. 

Faster R - C N N consists of two different networks. Region proposal network (RPN) 
and network for object detection. R P N creates anchors, boxes, which are ranked and 
only those with highest possibility to contain an object of interest are proposed. The 
output of R P N is passed to classifier and regressor which verify if object is present or 
not. This method is faster than its predecessors R - C N N and Fast R - C N N , because 
it shares most of the features with object detection network. 

2.2 Faster R-CNN 

Fig. 2.5: Faster R - C N N architecture [14] 
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3 Experimental part 
This chapter is divided into four sections. In the first one, datasets used and their 
properties are discussed, the second part describes the reasons for the chosen hard­
ware and software configuration, section three follows the implementation of the 
network and determining the number of layers and parameters. The last section 
presents the obtained results from the network designed with the best performance. 

3.1 Datasets 

In the implementation two datasets have been used. One from German public source 
called G T S R B , and the other one was created by the author. 

3.1.1 German Traffic Sign Recognition Benchmark (GTSRB) 

This dataset is publicly available and free to use. It is made up from cca 50 000 
images in R G B color space, which vary in size between 15x15 pixels and 256x256 
pixels. The images are taken in various lightning and weather conditions. There 
are 43 sign classes and every class comes with file containing annotations in the 
following format: 

f ilename;width;height;ROI.xl;ROI.yl;ROI.x2;ROI . y2 ; class 

There is always only one traffic sign in the image. It takes around 60% of the im­
age, making it the major item. The dataset is divided into training and testing set 
containing around 39 000 and 12 500 traffic signs respectively. As the objective of 
this study is the recognition of mainly mandatory and prohibitory traffic signs, the 
number of classes was reduced to 29. Priority signs as yield, stop and main road 
sign were amongst the detected classes. There are no real background images in the 
dataset, therefore, the undetected sign classes were used as background. Approx­
imately 8 000 background images were excluded from the dataset as there was no 
need for so many samples and it reduced the training time by couple of hours. 

3.1.2 Author's dataset 

Images in this dataset were taken in Brno, Czech Republic by iPhone 6 camera with 
8 megapixel resolution and f/2.2 aperture. They were taken at a steady walking 
pace approximately every 2 seconds. There are 262 R G B images in the dataset with 
dimension varying between 21x21 and 787x940 pixels. Every image is annotated in 
the following manner: 

f ilename;class 
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Annotation of bounding boxes and any sort of data augmentation technique to 
extend the dataset was not used due to lack of time. Images were cropped to make 
traffic sign the major scene object, but with more background than G T S R B to 
achieve viable results in detection and classification. Samples larger than 180x180 
pixels were scaled down to one fifth of their size. Traffic signs in this dataset may 
be occluded, blurred, grainy and with mediocre illuminance changes in the scene. 
These images were not used during training, they are for testing purposes only. 

3.2 Hardware and software 

Training of neural networks is computationally very expensive. In terms of mathe­
matical operations used, it represents matrix multiplication. This process can show 
some similarities to rendering of an image, for which graphic cards are used. GPUs 
have more computational power than a C P U and are optimized for this kind of 
operations. Based on this knowledge, a decision to use graphic card as main compu­
tational device in this study was made. Nvidia is the current market leader in the 
best performing GPUs, therefore, a card from this company was chosen. Following 
hardware configuration was used. Intel Core i7-6700K C P U clocked at 4.5 GHz 
frequency, 16 G B of DDR4 3200 MHz R A M and one E V G A GeForce G T X 1080 SC 
G P U . 

The software chosen was M A T L A B due to multiple reasons. It has many tool­
boxes available, including toolboxes for deep learning and parallel computing, which 
is necessary to train the network on G P U . Another reason why M A T L A B was cho­
sen over other platforms is that the author was already familiar with it. The version 
used was R2018a because of its full C U D A support for Nvidia Pascal architecture 
and deep learning functions availability, which previous versions available to the 
author lack. 

3.3 Implementation 

As mentioned in the previous section, M A T L A B was the chosen software platform for 
N N training and Faster R - C N N as the default type of network utilized. M A T L A B ' s 
Faster R - C N N detector does not support multi-gpu pool and can train on one G P U 
only, which is no problem as there is only one graphic card available. To be able to 
train the network, following data are needed: 

• Truth table 
• Layers 
• Training options 
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3.3.1 Truth table 

Every image in the dataset along with its annotations has to be recorded in the 
truth table, which has to correspond to format shown in table 3.1. Bounding box 
is a 1x4 vector providing initial x and y coordinates of the rectangle in which the 
traffic sign is located and its width and height. If traffic sign of certain class is not 
located in the image, it is signified by an empty matrix. 

F I L E P A T H C L A S S 1 C L A S S N 
full filepath bounding box/empty matrix bounding box/empty matrix 

Tab. 3.1: Truth table example 

3.3.2 Layers 

Network layers in M A T L A B are described either by a column vector of independent 
layers or by a Direct Acyclic Graph (DAG). In this thesis, the vector representation 
was sufficient as there was no need for more complicated branching of the network. 
Layers are defined as shown in the following sample code. 

Listing 3.1: Definition of layer types in M A T L A B 

layers = [ 

imagelnputLayer(imageSize) 

convolution2dLayer(kernelSize,numKernels,... 

'Stride ' ,strideStep , 'Padding' ,padSize) 

reluLayer() 

crossChannelNormalizationLayer(numChannels) 

dropoutLayer(probability) 

maxPooling2dLayer(poolSize, 'Stride' ,strideStep , . . . 

'Padding',padSize) 

fullyConnectedLayer(numNeurons) 

softmaxLayer() 

c l a s s i f i c a t i o n L a y e r ( ) 

] ; 

where imageSize are the dimensions of input image, kernelSize is the size of 
the kernel, numKernels represents the number of kernels used, strideStep is the 
number of pixels to step over, padSize is the number of zeros added around the ma­
trix, numChannels represents the number of channels used to perform normalization 
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of element, probability is the probability of disabling the neuron, poolSize is the 
size of pooling matrix and numNeurons is the number of neurons in fully connected 
layer. 

3.3.3 Training options 

These options specify which minimization algorithm is used, what batch size and 
learning rate to use, and how long should be the network trained. 

Listing 3.2: Example of training options in M A T L A B 

options = trainingOptions( 'sgdm ' , ... 

'MaxEpochs', 5, ... 

'MiniBatchSize', 1024, 

'InitialLearnRate', le -3, ... 

'ExecutionEnvironment' , ' gpu ' , . . . 

'Shuffle','every-epoch ' ) ; 

3.3.4 Training 

Listing 3.3: Example of network training in M A T L A B 

net = trainFasterRCNNObjectDetector(truthTable , . . . 

layers,trainingOptions); 

After using the command shown in listing 3.3, the training process has started. 
The network is fitted four times with R P N trained after first and third repetition. 
The region proposal network architecture is created by M A T L A B by default. 

3.3.5 Designs 

In the first design AlexNet has been used as an architecture template, having modi­
fied the input layer size to 15x15x3 instead of the default 227x227x3, changing filter 
size in convolutional layers, reducing the number of max pooling layers and setting 
the number of neurons in fully connected layers to 1024. A l l these changes had to 
be made in order to use this neural network on selected dataset. The network was 
trained on 5 000 sample images to save training time. This network resulted in dis­
appointing performance with precision of 54%, 77% recall and 0.63 F\ score. It has 
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generated so many false positives that number of detected objects almost doubled 
the number of images in testing set. 

Because of this failure, new network with only two convolutional layers was used. 
It had kernel size of 3 with stride of 1 and zero padding of 1, which did not reduce 
the feature map size. Parameters as number of channels in L R N layer was reduced 
to 3, stride of max pooling layer was changed as well. The number of filters remained 
unchanged from AlexNet. The architecture used can be seen in table 3.2. 

Layer Name Kernels/Neurons Kernel size Stride Padding Add. layers 
1 Input — — — — — 

2 Convl 96 3x3 1 1 ReLU, LRN 
3 Conv2 256 3x3 1 1 ReLU 
4 MaxPool2 — 3x3 3 0 — 

5 FCNN1 1024 — — — ReLU, Dropout 
6 FCNN2 1024 — — — ReLU, Dropout 
7 FCNN3 29 — — — Softmax 

Tab. 3.2: Architecture of the second network 

Training time of this network was greatly reduced compared to previous attempt. 
It generated fewer false positives, as can be seen in its confusion matrix represented 
by table 3.4 in columns 2 and 3, and generally performed better with 58% precision 
and 86% recall. 

The results were still unsatisfying, therefore multiple networks were trained with 
increasing number of convolutional layers with ReLU activation functions. Every 
new layer added 384 3x3 kernels with stride 1 and 1 zero padding. Another L R N 
layer with 3 channel normalization was added to the second convolutional layer. 
This increase in layers certainly improved performance as shown in tables 3.3 and 
3.4. 

Number of conv. layers Precision Recall Fi Score 
2 58.19% 85.69% 0.693 
3 67.91% 92.61% 0.784 
4 75.00% 91.25% 0.823 
5 72.66% 87.33% 0.793 

Tab. 3.3: C N N result comparison 

Each network was trained on 5 000 samples randomly chosen from the whole 
dataset and then tested on 12 630 images. The training time was in average around 

43 



2 layers 3 layers 4 layers 5 layers 

+ - + - + - + -

+ 7808 5611 8440 3988 8386 2796 7820 2943 
- 1304 1394 673 1956 804 2406 1135 2468 

Tab. 3.4: C N N result confusion matrices 

50 minutes with increase of approximately 2 minutes for every additional convolu-
tional layer. Based on results in table 3.3, neural network with four convolutional 
layers performed better than other networks and was selected for final training de­
scribed in the next section. 

3.4 Results 

The final Faster R - C N N network was trained on the whole dataset with the ar­
chitecture shown in table 3.5, using stochastic gradient descent with momentum 
(SGDM). Following parameters were used, batch size of 1024, 0.9 momentum value, 
0.001 learning rate and trained 4 times for 5 epochs. Training set was shuffled every 
epoch. 

Layer Name Kernels/Neurons Kernel size Stride Padding Add. layers Output 
1 Input — — — — — 15x15x3 
2 Convl 96 3x3 1 1 ReLU, LRN 15x15x96 
3 Conv2 256 3x3 1 1 ReLU, LRN 15x15x256 
4 Conv3 384 3x3 1 1 ReLU 15x15x384 
5 Conv4 384 3x3 1 1 ReLU 15x15x384 
6 MaxPool4 — 3x3 3 0 — 5x5x384 
7 FCNN1 1024 — — — ReLU, Dropout 1x1024 
8 FCNN2 1024 — — — ReLU, Dropout 1x1024 
9 FCNN3 29 — — — Softmax l x l 

Tab. 3.5: Architecture of the final Faster R - C N N 

Training of the network took approximately 17 hours on single G P U . These 
additional samples helped to improve precision by 11% and recall by 7%. The 
outcome has shown very good performance on G T S R B testing set but performed 
poorly on the author's dataset, which is presented in tables 3.6 and 3.7. 
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G T S R B My dataset 
Precision 86.76% 30.87% 

Recall 98.47% 95.12% 
0.922 0.466 

Tab. 3.6: Result comparison of testing sets 

G T S R B My Dataset 

+ - + -

+ 9562 1459 117 262 
- 149 2136 6 26 

Tab. 3.7: Confusion matrices of testing sets 

Bounding box of the sign is sometimes off due to mistakes in G T S R B annotations 
on which the network was trained. Many false positives are generated on images 
larger than 200 pixels in either dimension, due to R P N anchor scaling, which does not 
provide large enough bounding box. The detection time for one sign is 50 millisec­
onds for the first testing set and 86 milliseconds for the second. This demonstrates 
that the detection network requires very small amount of background in the image 
and that it is very sensitive to its change. This could remedied by training the 
detector on images taken directly in traffic. Labels used as classification output are 
corresponding to the official labels defined by the traffic law. Figures 3.1 and 3.2 
illustrate a small part of the recognition results. The network is able to correctly 
classify occluded and blurred traffic signs. It is also almost invariant to lightning 
changes and change of view angle. False positives are mainly generated by traffic 
signs that are dependent on rotation or include similar part as other signs. 
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1=P4; c=P4. 
G20a30 I 

l=B20a30; c=B20a30. l=B20a60; c=B20a60. l=B21a; c=B21a. 

l=B20a30; c=B20a30. l=B20a50; c=B20a50 l=C2a; c=C2a. 1=P2; c=P2. 

l=C4a; c=C4a. 1=P4; c=P4. 1=C1; c=Cl. 1=BG; c=BG. 

— 

1=BG; c=BG. 1=BG; c=BG. 1=BG; c=BG. 

m 
1=BG; c=BG. 

Fig. 3.1: Correctly recognized signs; 1 - label given by detector, c - class of the sign, 

B G background 
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B20a80 

1=B2; c=BG. l=B21a; c=BG. 1=P4; c=BG. l=B20a80; c=BG. 

U II . a All 

l=B20a30; c=BG. l=B20a30; c=BG. l=B20a30; c=B20a50. l=B20a60; c=B21a. 

l=B20a30; c=BG. 1=B4; c=BG. l=B20a30; c=B20a50. 1=P2; c=BG. 

l=B20a30; c=BG. 1=BG; c=Bl. 1=BG; c=P4. 1=BG; c=P2. 

Fig. 3.2: Incorrectly recognized signs; 1 - label given by detector, c - class of the 

sign, B G - background 
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4 Conclusion 
Research of traffic sign recognition methods was concluded in this thesis, which 
has shown that Convolutional Neural Networks provide superior performance in 
detection. 

Based on the results, multiple Faster R - C N N networks were trained to determine 
the best layer configuration. The whole solution was implemented in M A T L A B 
R2018a and computed on a CUDA-accelerated Nvidia GeForce G T X 1080 SC G P U . 
Network with four convolutional layers has outperformed all other networks. 

It was trained and tested on G T S R B dataset with 86.76% precision, 98.47% 
recall and 0.922 F\ score. The network was further verified on the dataset created 
by the author, which produced F\ score of 0.466. This drop in performance can be 
explained by way higher content of background in the images to which the network 
is very sensitive. 

Future work would consist of creating a new dataset with images from actual 
traffic situations and further improvement of the network's architecture to make it 
more robust. 
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List of symbols, physical constants and abbre-
viations 
AI Artificial Intelligence 
C N N Convolutional Neural Network 
C P U Central Processing Unit 
D A G Direct Acyclic Graph 
E C O C Error Correction Output Code 
F - E C O C Forest Error Correction Output Code 
G P U Graphical Processing Unit 
G T S R B German Traffic Sign Recognition Benchmark 
M L Machine Learning 
R A M Random Access Memory 
R - C N N Regional Convolutional Neural Network 
ReLU Rectified Linear Unit 
ROI Region of Interest 
R P N Region Proposal Network 
SC superclocked - providing higher level of overclocking by factory 
S G D M Stochastic Gradient Descent with Momentum 
SVC Support Vector Classification 
S V M Support Vector Machine 
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List of appendices 

A Contents of the C D 



A Contents of the CD 
The code on the C D was run in M A T L A B R2018a. No other versions were tested. 

annotationsDB.mat 

annotationsGTSRBtest.mat 

trainedDetector.mat 

1 truthTable. mat 

detectandVerify.m 

generateSmallTrainSet.m 

1 script .m Run this file 
Zakarovsky,Traffic_Sign_Recognition.pdf Bachelor's thesis 

/ 
_CNN 

Data 

DatasetBrno 

GTSRB 

root folder of the C D 
. . . . Folder with M A T L A B code and datasets 

Folder containing datasets 
Dataset created by author 

German Traffic Sign Recognition Benchmark 
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