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Abstrakt
Tato diplomová práce se zabývá syntézou HDR obrazu (High Dynamic Range Imaging).
HDRI technologie se stala v posledních letech velice populární. Běžný a nejvíce použí-
vaný způsob vytvoření HDR obrazu je spojení více snímků stejné scény pořízených pomocí
různých expozičních časů. Tato technika funguje správně pouze v případě, že se jedná
o statickou scénu. Pokud je však ve scéně nějaký pohyb ve chvíli, kdy se pořizují snímky
dané scény, výsledný HDR obraz obsahuje artefakty zvané jako duchy. V této práci jsou
prezentovány základní informace o HDRI se zaměřením na metody odstraňující artefakty
z HDR obrazů. Práce shrnuje již existující metody a dvě z nich - tzv. bitmap movement de-
tection a histogram based ghost detection - představuje jako vhodné pro použití v real-time
skládání HDR obrazu a pro implementaci na FPGA (Field-Programmable Gate Array)
architektuře. Tyto metody jsou v práci implementovány v programovacím jazyce C++
jako prototypy. Navíc je zde navržena modifikace metody založené na výpočtu histogramu
pro jednodušší a efektivnější implementaci na FPGA architektuře.

Abstract
This thesis deals with a synthesis of high dynamic range imaging (HDRI). HDRI technology
is becoming increasingly popular in recent years. A standard and most common approach
to obtain an HDR image is a multiple exposures fusion that consists of combining multiple
images of the same scene captured with different exposure times. This technique works
perfectly only on static scenes. However, if there is a motion in the scene during a sequence
acquisition, a resultant HDR image contains ghosting artefacts due to moving objects in the
captured scene. Basic information about HDRI are presented in this thesis. The main focus
is given to de-ghosting methods that are reviewed and two of them - a bitmap movement
detection based on a median threshold and a histogram based ghost detection - are presented
as suitable techniques for a real-time video capturing and implementation on FPGA (Field-
Programmable Gate Array) architecture. These two methods are implemented in C++
programming language as prototypes. Moreover, a modification of histogram-based ghost
detection is proposed, implemented and discussed to simplify its implementation on FPGA
architecture.
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Chapter 1

Introduction

When a photograph of a scene with a big range of brightness is taken, bright areas tend to
be over-exposed while dark regions tend to be under-exposed. It is caused by a fact that
common digital cameras can only capture a limited luminance dynamic range. The human
visual system (HVS) can adapt to a dynamic range of up to 10,000:1 for parts of a scene
and over 1012 − 1014 : 1 of magnitude in total. In contrast to HVS, digital cameras have
a much lower dynamic range of typically less than 1000:1. Therefore, a very interesting
and powerful technique has been developed during the last two decades to capture wider
dynamic range by conventional cameras called high dynamic range imaging (HDRI). There
is a special hardware which allows to take high dynamic range images directly. However, this
specialized hardware is very expensive and for commercial use only. This fact encourages
a lot of researches in the field of HDRI.

The most common and widely used method to obtain HDR images is a multiple expo-
sures combination. The sequence of single-exposure low dynamic range (LDR) images of
the same scene are captured at different exposure times by traditional camera technology
and combined into a final HDR image. Each image in the sequence of multiple exposures
will have different pixels properly exposed, under-exposed or over-exposed. However, in-
dividual parts of images in the sequence must overlap for the successful restoration of the
dynamic range. Therefore, it is possible to ignore very dark and very bright pixels from
computations of the resulting image.

The biggest limitation of the multiple exposures combination is a requirement of a
completely static scene when the sequence of images is being captured, because any object
motion in the scene during capturing can cause ghosting artefacts in the final image.

Various methods to detect and remove ghosting artifacts from HDR images have been
developed during the last decade. These methods are called de-ghosting algorithms. The
algorithms are from extremely elementary, logically understandable and easy to implement
but often with poor results through more sophisticated to very complicated, hard to un-
derstand, computationally challenging and with time-consuming implementation but with
excellent outputs on the other hand.

This thesis discusses de-ghosting methods in HDRI. Moreover, this work is a part of a
research project dealing with the real-time HDR FPGA (Field Programmable Gate Array)
video camera. The de-ghosting methods described below will be evaluated based on the
use in this project and the implementation included in this thesis will follow the FPGA
architecture requirements.
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The chapter following after this introduction (2) presents a theoretical basis about
high dynamic range imaging. There are explanations of technical terms connected with
HDRI. A pipeline of an HDR acquisition and its elements are presented in Chapter 2 as
well. This chapter also includes a review of existing de-ghosting algorithms. Chapter 3
describes a theoretical basis about FPGA which is necessary for a correct solution design.
A reader can find an explanation of FPGA programming principles in this chapter as well.
Chapter 4 focuses on a specification of thesis’s goals. A realization and implementation
of two selected algorithms and proposed algorithm are described in the fifth chapter (5).
This chapter also includes results of the implemented methods. Finally, the last chapter 6
summarizes acquired information and shows benefits of this master’s thesis.
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Chapter 2

Acquisition of High Dynamic
Range Images

Camera sensors have a limitation in a dynamic range of luminance which can be captured
since the first camera has been invented. In other words, it is impossible to make a pho-
tograph of a scene with a big range of brightness where bright as well as dark regions will
be well exposed. The extreme areas will appear saturated in the image. There are a few
very expensive specialized cameras which allow to take bigger range of brightness than
common digital cameras. However, they are for commercial use only and they are still in a
development phase more than in practice. These reasons have caused a lot of research that
resulted in a creation of a method called high dynamic range imaging (HDRI).

This chapter introduces a necessary background knowledge to understand high dynamic
range imaging. It begins with an explanation of basic terms such as high dynamic range
imaging, dynamic range, exposure value and radiance. Then the chapter continues with
a brief description about light and color spaces. A simple high dynamic range pipeline is
presented as well as a deeper explanation of some substantial parts of this pipeline. Cap-
turing, the first component of the pipeline, is a subject of Chapter 2.1. A ghost detection
problem is closely connected with this part hence the following Chapter 2.2 focuses on
de-ghosting algorithms. Storing, the second element of the pipeline, is presented in Chap-
ter 2.3 where a problem about encodings of high dynamic range images and its formats
is discussed. Processing, the next component of the pipeline, includes image processing
and much more but this part is not relevant for this thesis as well as HDR monitors. If a
reader is interested in HDR monitors there is a whole chapter dealing with this topic in [33].
Finally, tone mapping which is connected with LDR monitors, is introduced in Chapter 2.4.

Interesting books focus on an explanation of issues about HDRI are High Dynamic
Range Imaging: Acquisition, Display, and Image-Based Lighting [76], Advanced High Dy-
namic Range Imaging [6], High-Dynamic-Range Vision [33] and The HDRI Handbook: High
Dynamic Range Imaging for Photographers and CG Artists [8]. These books were used as
basic sources of technical information for this chapter.
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High Dynamic Range Imaging

High Dynamic Range Imaging (HDRI) is a set of techniques which reproduces greater
dynamic range of luminosity between the lightest and the darkest point of the image than
it is possible by using standard digital imaging techniques. HDR images can represent
greater range of luminance levels found in real-world scenes from direct sunlight to absolute
darkness. This technology is used in photography, computer graphics and image processing.
Non-HDR cameras may take photographs only with a limited exposure range which is a
complication for a capture of HDR images.

Dynamic Range

Dynamic range (DR) is the biggest overall contrast which is possible to find in an image.
The DR is defined as a logarithmic ratio called contrast ratio between the largest and the
smallest readable signal. The dynamic range always depends on two factors - complete
range of brightness and its smallest noticeable step. For a camera, the DR is a ratio of
luminance that just saturates a sensor and a luminance that lifts a camera response to one
standard deviation above a noise level. The dynamic range is also a unit of sound because
the first use of the DR was in signal processing. The technical dynamic range is defined as
logarithmic ratio between the biggest readable signal and noise in background. Its unit is
a decibel. The DR is measured as a ratio, as a base-10 or base-2 logarithmic value. But
photographers measure dynamic range using difference of exposure values in various parts
of the image [8].

Exposure Value

Exposure value (EV) is a photographic measure which defines how much light gets through
camera lens and strikes to a photosensitive layer of camera sensor. Amount of this light de-
pends on a speed of camera shutter and a size of camera aperture. The EV is a combination
of both these numbers [8].

The exposure value and contrast ratio formulate the same thing. But contrast ratio
has linear unit and the EV is in a logarithmic scale. Therefore a transfer equation is
2exposure values = constrast ratio.

Radiance

Radiance measures the amount of light passing through, emitted from, leaving, or arriv-
ing at a particular point in a given direction. For a digital camera, the radiance values
correspond to a physical quantity of light incident on each element of a sensor array. The
radiance, a radiometric quantity, is measured in watts per square meter per steradians [76].

HDRI is a new area where a lot of disciplines, such as photography, computer graphics,
programming, sciences dealing with specific aspects of light and human vision, meet each
other. The essence of all in HDRI is a light. HDRI is a finite digital representation of light.
It may contain more light than any other earlier technique [8].

The biggest challenge for HDRI is to display more realistic images on a computer. This
is connected with human vision because people are main consumers of resultant outputs.
Therefore it is necessary to know about light perception to understand HDRI concept.
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Light

Light is very important in HDRI because a perception of a scene by human vision system
depends on lighting conditions. Visible light is radiant energy measured in joules. Light
travels in space, air and water, interacts with materials where can be refracted, reflected,
transmitted or absorbed. Light can reach human eyes and stimulate them to produce visual
sensations. It depends on a light wavelength [6, 76]. An electromagnetic spectrum is in
Figure 2.1.

Figure 2.1: Electromagnetic spectrum1. A visible light is approximately between 390 and
790nm and a human eye sensitivity is between approximately 400 to 760nm.

There are two possible expressions of light measures. Radiometric quantities are defined
in Table 2.1 and main photometric units are presented in Table 2.2.

Color Spaces

Color spaces are mathematical descriptions for representing colors. Color spaces are rep-
resented by a set of formulas, that define a relationship between color vector, or they are
standard CIE (Commission Internationale de l’Éclairage) XYZ color spaces. A parameter Y
in CIE XYZ color space defines brightness. The brightness (illuminance) may be computed
from RGB as Y = 0.2126R + 0.7152G + 0.0722B [76]. The chromaticity is specified by
two derived parameters x and y. The color space defined by x, y and Y is called CIE xyY
and it is represented by chromatic diagram in Figure 2.2. The parameters x and y may be
computed from all trichromatic parts X, Y and Z as it is shown in Equation 2.1.

x =
X

X + Y + Z
, y =

Y

X + Y + Z
(2.1)

1Source: http://www.pion.cz/en/article/electromagnetic-spectrum
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Quantity Unit Definition Description

Radiant energy J (joule) Qe The basic unit for light

Radiant power W (watt) = J · s−1 Pe = dQe

dt

The amount of energy that
flows per unit of time

Radiant intensity W · sr−1 Ie = dPe
dω

The amount of Radiant Power
per unit of direction

Radiant exitance W ·m−2 Me = dPe
dAe

The amount of Radiant Power
per unit of area to all directions
of the hemisphere from a point

Irradiance W ·m−2 Ee = dPe
dAe

The amount of Radiant Power
per unit of area from all direc-
tions of the hemisphere at a point

Radiance W · sr−1 ·m−2 Le = d2Pe
dAe cos θdω

The amount of Radiant Power
arriving/leaving at a point
in a particular direction

Table 2.1: Main radiometric units [76, 6].

Quantity Unit Description

Luminous power (Pv) lm (lumens) = cd · sr The weighted Radiant Power
Luminous energy (Qv) lm · s−1 Analogous to the Radiant Energy
Luminous intensity (Iv) cd (candela) = lm · sr−1 The Luminous Power per direction
Luminous exitance (Mv) lux = lm ·m−2 Analogous to Radiant exitance
Illuminance (Ev) lux = lm ·m−2 Analogous to Irradiance
Luminance (Lv) cd ·m−2 = lm ·m−2 · sr−1 The weighted Radiance

Table 2.2: Main photometric units [76, 6].

Figure 2.2: Chromatic diagram CIE xyY2

2Source: http://cs.wikipedia.org/wiki/CIE_XYZ
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There are two classes of color spaces - device dependent and device independent. The
color space CIE XYZ is typical representative of device independent color spaces. A typical
device dependent one is the RGB color space. This color space is represented by three
additive primaries - Red, Green and Blue. The RGB color space is very popular in HDRI.
However, many computations are also calculated in the luminance channel Y from XYZ
color space. This channel is often referred as L (luminance) in HDRI [6].

HDR Pipeline

A procedure of HDR image acquisition from capture to displaying may be summarized by
a basic HDR pipeline shown in Figure 2.3.

Figure 2.3: Basic HDR pipeline (taken from [6])

2.1 HDR Image Capture

Currently the biggest problem in a capture of HDR images is a possibility to record a
full spectral content and dynamic range from a real world scene. An image sensor in a
digital camera is exposed to a color and dynamic range of a scene and a lens is only a
passive element which refocuses the incoming light onto the image plane. However, there
are limitations in the image sensor design which prevent a camera to capture all of the
information [76].

Therefore, there are a few ways to generate HDR images. Nowadays, the most com-
mon methods are multiple exposures composition, using of specialized hardware, expanding
single-exposure LDR and computer rendering.

2.1.1 Expanding Single-Exposure LDR

An LDR content can be partly transformed into an HDR content using operators com-
monly called expansion operators (EO). This software technique allows an LDR image to
be enhanced for viewing on HDR monitors and for using in HDR applications such as
image-based lighting. This technique is analogous to the colourisation of black and white
images. A number of methods for expanding an LDR image has been already proposed.
Common steps in an expansion operator are [6]:
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1. Linearisation - Creates a linear relationship between real-world radiance values and
recorded LDR pixels.

2. Expansion of pixel values - Increases the dynamic range of the image. It means
that low values are compressed, mid values are kept as they are and high values are
expanded.

3. Over/under-exposed reconstruction - Generates the missing content in the over-exposed
and under-exposed areas in the LDR image.

4. Artefacts reduction - Decreases artefacts resulting quantization or image compression,
which can be visible after the expansion of pixel values.

5. Color correction - Keeps colors as in the original LDR image because colors are
desaturated during expansion of pixel values.

2.1.2 Specialized Hardware

In recent years, some companies, such as Canon, Nikon, Sony, Sigma, etc., provide HDR
cameras based on automatic multiple exposure capturing using features such as multi-
exposure capturing or automatic exposure bracketing connected with automatic exposure
merging. While others develop digital sensors that can natively record bigger dynamic
range of a scene in a single shot.

There are a few researches dealing with sensors for HDR capture. For example High
Dynamic Range CMOS (HDRC) and a family of SuperCCD with SuperCCD HR (High
Resolution), SuperCCD SR (Super Dynamic Range) and SuperCCD EXR [8]. The sen-
sors can be based on either CMOS (Complementary Metal-Oxide-Semiconductor), such as
HDRC, or CCD (Charge-Coupled Device) technology like SuperCCD.

Numerous attempts have been tried to expand the dynamic range of CMOS image
sensors. Generally, these methods can be divided into three categories [53]:

Logarithmic response HDR CMOS image sensor
These sensors use logarithmic response pixels or circuits to non-linearly extend the
dynamic range which is possible because the photo-current flowing through a resistor
with logarithmic current-voltage characteristic. Generally, this resistor can be im-
plemented by a MOS transistor operating in weak inversion mode. Figure 2.4 shows
its structure. The most disappointed disadvantage of the logarithmic image sensor
is due to its working theory, non-linear response, which is not preferred in most of
applications [53].

Figure 2.4: Logarithmic response pixel structure (taken from [46])
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Lateral overflow integration capacitor implemented HDR sensor
These sensors apply a lateral overflow capacitor to improve the operation range. This
type of HDR CMOS imager achieves from a 100dB up to 180dB dynamic range. The
biggest advantage of such types of HDR image sensors is their linear response which is
preferred in developing the color processing for wide dynamic range imaging data. A
basic structure of the lateral overflow integration capacitor implemented HDR sensor
is shown in Figure 2.5. Disadvantages of this pixel are mainly situated around the
transfer gate. A partially opened TX transistor during the exposure could introduce
additional dark current source resulting in higher dark current shot noise. Besides,
the complex drive circuits are also full of challenges [53].

Figure 2.5: Lateral overflow capacitor HDR pixel (taken from [2])

Multiple exposure-time HDR sensor
This type of HDR sensors adopts multiple exposure-times to expand the dynamic
range. This approach is increasing the read out speed to realize multiple exposures
within one frame period. This method can provide a linear response and over 120dB
dynamic range at the expense of complexity of an external system and frame memo-
ries. In fact, compared to a normal CMOS image sensor, the extended dynamic range
is contributed by the high-speed read out circuitry. Thus, any type of pixel can be
used. The most undesired problem of such a method is the discontinuous signal to
noise ratio (SNR) at the transition points between different integration times. It is
because the photo-diode shot noise, which is depended on illumination level, becomes
the dominated noise source with the increase of illumination level [53].

Some of these sensors have even being marketed, but only a few integrated solutions
are commercially available and very expensive:

High Dynamic Range CMOS (HDRC) [38]
HDRC has been developed by the Institut für Mikroelektronik Stuttgart (IMS CHIPS).
This camera sensor pixel has a logarithmic response. The pixel value is digitalized
into 10 bits. It means, the camera is able to capture a dynamic range of more than
107 : 1. There is no need to change the exposure time or aperture settings with such
large dynamic range. A disadvantage of this camera is a low resolution and more
noise compared with LDR cameras. Figure 2.6 displays the dynamic range of HDRC
and other sensors.
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Figure 2.6: Dynamic range of HDRC and other sensors (taken from [38])

Silicon Vision Lars III [55]
This camera works on a principle of local self-adaptation. Each pixel has its exposure
time and the pixel value consists of the exposure value and time-stamp determining
the length of exposure. Figure 2.7 shows structure of LARS pixels.

Figure 2.7: Block diagram of LARS pixels (taken from [55])

2.1.3 Multiple Exposures Fusion

Available consumer cameras are limited because they can record only a 12-bit linear or
8-bit sRGB color space into RAW format which does not cover a full dynamic range used
in the real world. Therefore, the HDR image is generated by combining multiple single-
exposure LDR images of the same scene which were captured at different exposure times
by traditional camera technology.

Each image in the sequence of multiple exposures will have different pixels properly
exposed, under-exposed or over-exposed as it is displayed later on in Figure 2.13. However,
individual parts of images in the sequence must overlap for the successful restoration of
dynamic range. Therefore, it is possible to ignore very dark and very bright pixels from
computations of the resultant image.
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Figure 2.8: Comparison of LDR (on the left) and HDR (on the right) images3

Taking an Image by Digital Camera

Figure 2.9: Image acquisition pipeline (inspired by [15])

Figure 2.9 shows a process of taking an image using a digital camera. The image is
projected on the image sensor in the camera using the lens. The camera image sensor is
formed by CCD or CMOS chip and has a linear response with a few exceptions:

• Level of black - The level of black color has not be exactly zero. The level can be
shifted upwards because of the chip design, charge amplifiers, A/D converter and its
noise. It means the whole color scale in the image is shifted and the black color
has a greater value than zero. To eliminate this effect, the level of black has to be
determined and the found value has to be subtract from the image data.

• Quantization - The quantization arises during the transfer of data from anolog to
digital form. It causes bigger inaccuracies in the dark values of the image. The
absolute error value can be reduced by using a converter with a larger number of bits.

• Saturation - The image sensor has a level of saturation, i.e. the maximal value of
output data, because the sensor photo-diodes have a limited capacity charge. It means
the camera gives the same numerical response for all values of the input luminance
above the level of saturation. Pixels with this same response are called saturated and
can not be used for HDR image composition. Thus, they are eliminated in the fusion
methods by different ways, e.g. by using a weighting function.

The analog output data from the image sensor are converted to digital form using an A/D
(analog-digital) converter which is also a linear process if the effects of quantization are
ignored. The further processing follows in the camera. This further processing has the
biggest effect on the camera response function. Some cameras support storing images in
the RAW format which stores the output data directly from the sensor without an image
processing.

3Source: http://en.wikipedia.org/wiki/Wikipedia:Featured_picture_candidates/Sunset_hdr
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Multiple exposures fusion assumes that LDR images used to capture an HDR image
are perfectly aligned, there is no movement in the scene, a noise of the CCD or CMOS
sensor in the camera is not a problem and the camera is a device with the perfectly linear
light measurement. These conditions are very rare in the real world [6, 76]. However, the
mentioned problems with motion can be reduced by adapting alignment, ghost and noise
removal algorithms from image processing which are mentioned in the next Section 2.2. To
resolve the problem with a non-linear data from a camera, there is necessary to know and
apply so-called a camera response curve.

Camera Response Function

Camera response function is a curve showing a relationship between amount of incoming
light and image pixes values of a camera. Even if an optical sensor in a camera works
quite linear, the resulting pixel values are non-linear. This may have several reasons such
as the A/D (analog-digital) converter may not work linearly or there is a further processing
on captured data in the camera. Common modifications are a gamma correction, white
balance application and some corrections to make the image more visually appealing. The
non-linear working A/D converter applies to all kinds of images but the other reasons
apply only to non-RAW images. The camera response function is an important issue in
the HDRI because the linear input data are necessary to compose a resultant HDR image.
An inverse camera response function is used to provide linear values. A badly estimated
camera response curve (non-linear data) will result in banding in contrast gradients. It is
possible to deduce this function from the image exposures sequence [18].

Figure 2.10: Camera response function of Canon EOS 350D4

A basic method to determine a camera response function is to use a table composed of
several fields in grayscale. The measurement is complicated because the table has to be
uniformly illuminated. Any inequalities cause a deviation in an identified response from a
real camera response. This method returns only a relative linear response. An illustration
of this method is shown in Figure 2.11. First, a photograph of the table is capture by a
camera. Then, the camera response function is reconstructed based on known gray values
in the table. This method is also used as a reference to test below mentioned methods.

4Source: http://cybertron.cg.tu-berlin.de/eitz/hdr/
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(a) Table of gray scale Kodak Q13

(b) Measured response

Figure 2.11: Illustration of camera response function calibration5

There are also several methods to obtain a camera response function without a use
of measuring tables. These methods use a collection of difference exposures and known
relationship between them to reconstruct a camera response function.

Debevec
This algorithm was presented by Debevec et al. in [15]. The algorithm is based on
exploiting a physical property of imaging systems, both photochemical and electronic,
known as reciprocity. The reciprocity equation which defines the relationship between
Ei, the film irradiance values, and Zij , the values of each pixel, is:

Zij = f(Ei∆tj), (2.2)

where i is a one dimensional index specifying the position of the pixel in the image, j
is an index across different exposure times ∆tj and f is an unknown camera response
function. However, since we assume the camera response function f is monotonous,
it is invertible, and we can define a function g as the nature logarithm inverse to the
function f :

g = ln f−1. (2.3)

Then, we get an equation in the form:

g(Zij) = lnEi + ∆tj . (2.4)

Unknown values are Ei and function g. Finding g implies recovering a finite number
of values of g(z), where z =< zmin; zmax > is a finite set of values that pixels can
take. Then, the problem is reduced to a search of finite number of values of g(z) and
N values of lnEi, which minimizes the following quadratic objective function:

O =
N∑
i=1

P∑
j=1

[g(Zij)− lnEi − ln ∆tj ]
2 + λ

Zmax−1∑
z=Zmin+1

g′′(z)2 (2.5)

5Source: http://www.imatest.com/docs/
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Robertson
This method proposed by Robertson et al. [77] does not give any restrictions to the
shape of the resulting camera response function. The method assumes the Gaussian
weighting function to find a camera response function. The authors search for solu-
tions of an objective function using the Gauss-Siedel iteration. The objective function
is defined by authors.

Mitsunaga
This method presented in [64] approximates the camera response function by a poly-
nom of N-th degree. The authors define an error function and they minimize this
function to find coefficients of the polynom. The advantage of this method is an
ability to determine the exact ratios of exposures.

Other methods
There exist also other methods, such as a histogram-based method [27] and method
based on an attempt to deduce the response function from a single image [52].

Once each image is processed by a camera response function and they are in the same
unit of measurement, corresponding pixels may be averaged across exposures excluding
under-exposed and over-exposed pixels into the resultant HDR image [76].

The fusion of multiple exposures is the most commonly used method until recently and
uses software methods to capture an HDR image. The fusion can be done in a radiance
domain or image domain (see Figure 2.12).

Figure 2.12: HDR image generation process (taken from [82])

Fusion in the Radiance Domain

This type of fusion was proposed by Debevec et al. [15] and consists of three steps. First,
the camera response function is recovered to bring the pixel brightness values into the
radiance domain. Next, the radiance maps are combined into an HDR image encoded
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specially to store the pixel values that span the entire tonal range of the scene. Finally, a
tone mapping operator is used to make the HDR image to be able to display on common
LDR monitors [82].

Methods that combine exposures in the radiance domain give a true HDR radiance
map which might be useful for later processing or displaying applications. A precision of
these methods highly depends on an accurate estimation of the camera response function,
which is sensitive to image noise and misalignment. Moreover, these methods require tone
mapping operators.

Fusion in the Image Domain

Second type of methods presented by Mertens et al. [61] combine multiple exposures directly
without a knowledge of a camera response function. These methods take only the best parts
of each exposure. The resultant HDR image is obtained as a weighted average of pixel values
across exposures:

ICuv =

N∑
k=1

w(Zkuv)Z
k
uv, (2.6)

where IC is a composite image, Zkuv is a pixel value at the position (u, v) and w(Zkuv) is a
weight of a pixel at the position (u, v).

Methods that combine exposures in the image domain are more efficient than the previ-
ously mentioned technique since they avoid the estimation of the camera response function
and do not require tone mapping. These methods directly produce HDR images which can
be displayed on LDR monitors.

There have been already proposed several algorithms which implement the HDR image
acquisition from multiple LDR images with different exposures in the radiance or image
domain. The only assumption, pixels with a linear dependency to the light in the scene,
was discussed above.

Method by Mann
Probably the first known algorithm was presented by Steve Mann in [57] in 1993 and
this method was more explained by himself and Rosalind W. Picard in [59] in 1995.
At first, the authors offer a procedure to find the camera response curve. Then they
compute a weighted average of all input images. The weighting function is based
on the certainty functions. This approach provides a gradual transition between the
images, where the shadow detail comes primarily from the lighter image and the
highlight detail comes primarily from the darker image [59]. The paper does not
present any specific equations.

Method by Debevec
This method was presented in [15] in 1997 by Paul E. Debevec and Jitendra Malik.
At first, they use an amount of exposures to recover the camera response function.
Then the algorithm fuses these exposures into a single HDR radiance map whose
pixel values are proportional to the true radiance values in the scene. The algorithm
uses all the available exposures for better robustness. For this purpose, it applies the
weighting function:

w(z) =

{
z − Zmin for z ≤ 1

2(Zmin + Zmax)
Zmax for z > 1

2(Zmin + Zmax)
, (2.7)
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where Zmin and Zmax are the least and greatest pixel values in the input images. The
resultant pixel p in the HDR image is calculated from:

lnEi =

∑P
j=1w(Zij)(g(Zij)− ln ∆tj)∑P

j=1w(Zij)
, (2.8)

where Ei is the irradiance, P is the number of photographs and g is the camera
response function. The algorithm assumes the exposure time ∆tj is known.

An advantageous secondary effect of the multiple exposures composition is a reducing
of noise in the recovered radiance values. It also reduces the effects of imaging artifacts
such as a film grain.

Method by Robertson
This method was discribed in [77] in 2003. This algorithm uses a probabilistic model
and maximum likelihood method. The resultant pixels of HDR image are calculated
as:

xj =

∑P
i=1w(Zij)tig(Zij)∑P

i=1w(Zij)t2i
, (2.9)

where xj is the resultant pixel value j in the HDR image, P is the number of pho-
tographs, g is the camera response function, w is the weighted function and t is the
exposure time which is known for each exposure i.

In this algorithm data from images with longer exposure times are weighted more
heavily as indicated by ti. It has an advantage of the reduction of noise.

Longest Unsaturated Exposure
This method selects resulting pixels from a single exposure which has the longest
exposure time but still unsaturated pixel value at this exposure time. The resulting
pixel value is calculated as:

Lp = Zlongestp/tlongest, (2.10)

where Lp is the resulting pixel value p in the resultant HDR image, the pixel value
Zlongestp is the value of the pixel from the image with the longest exposure time where
pixel is not saturated and tlongest is the exposure time of this image.

2.2 Ghost Detection and Removal Algorithms

When the most common method for HDR acquisition, multiple exposures fusion, is used
and there is some motion in the captured scene, ghost artefacts appear in the final image.
There are already a lot of research studies dealing with a detection and removal of these
motion artefacts in HDR images. A couple of these studies, such as [82, 28, 29, 86], make
a review of the proposed methods in this area. These were used as basic research sources
for this chapter.

The most common technique to obtain an HDR image is a combination of multiple dif-
ferent exposures. However, this method has two main problems regarding motion artefacts
in resultant image. First one is a global camera motion called as misalignment. This can
be solved by placing a camera on a tripod or by using an image registration method. For
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example, Greg Ward in [88] proposed an efficient solution by using the median threshold
bitmap technique. There is also a possibility to use methods based on key-points extraction
and matching as well, such as Harris corners detector [31] or SIFT features detection [54].
The main goal of this thesis is to focus on the second problem: moving objects in the scene
while capturing the images called as ghost artefacts. Figure 2.13 shows multiple exposures
images with motion and a resultant HDR image with a ghost artefact.

Figure 2.13: (a) Six images with different exposures and (b) The resultant HDR image with
ghost artefacts (both taken from [82])

Several methods which solving ghost artefacts in HDR images have been already devel-
oped. Most of them consists of two steps: a ghost detection, the detection of regions where
ghosts appeared, and a ghost removal.

2.2.1 Ghost Detection Methods

Ghost detection methods detect motion in a sequence of exposures where a moving object
can appear on a static background or on a moving background with static or dynamic
objects. The following methods, mostly taken from [82], can detect both or only the first
mentioned type of motion.
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Variance-Based Ghost Detection

Variance based ghost detection method published in [76] by Reinhard et al. detects regions
with moving objects based on weighted variance measure. First, the camera response
function and the radiance maps for each LDR are computed. Then a Variance Image (VI)
is generated by evaluating the variance of radiance values at each spatial location (u, v):

V Iuv =

∑N
k=1w(Zkuv)(E

k
uv)

2/
∑N

k=1w(Zkuv)

(
∑N

k=1w(Zkuv)E
k
uv)

2/(
∑N

k=1w(Zkuv))
2
− 1, (2.11)

where Zkuv = pixel value at the position (u, v) in exposure Lk, Ekuv = estimated radiance
value at the position (u, v) in exposure Lk and the weighting function is defined as:

w(Zkuv) =

{
Zkuv if Zkuv ≤ 127
255− Zkuv if Zkuv > 127

. (2.12)

The resultant VI can be used as a likelihood measure for intra-image movements because
regions inclusive motion exhibit high variance. Regions where the local variance measure
is above a defined threshold, are detected as ghost regions:

Guv =

{
1 if V Iuv ≥ threshold
0 otherwise

. (2.13)

This method has weak results and cannot be used if moving objects have similar colors
as a background. Therefore, Jacobs et al. in [40] proposed another measure derived from
entropy.

Entropy-Based Ghost Detection

First, a local neighbourhood based entropy map is computed for each LDR image. For each
pixel (u, v) in Lk, the entropy is calculated from a local histogram computed in the window
of size r × r around (u, v), where r is an odd number bigger than 1:

Hk
uv = −

B−1∑
x=0

P (X = x) log (P (X = x)), (2.14)

where B is the total number of bins of the histogram and the probability P (X = x) is
obtained from the normalized histogram. Then, an Uncertainty Image (UI) is derived from
the weighted difference of the precomputed entropy image as follows:

UIuv =

N∑
k=1

l<k∑
l=1

vkl∑N
k=1

∑l<k
l=1 v

kl
hkluv, (2.15)

where hkluv = |Hk
uv−H l

uv| and vkl = min(w(Zkuv), w(Z luv)). The weighting function is defined
as:

w(Zkuv) =

{
(Zkuv × 0.9/127) + 0.05 if Zkuv ≤ 127
((255− Zkuv)× 0.9/127) + 0.05 if Zkuv > 127

. (2.16)

The resultant UI is used to find ghost regions based on thresholding:

Guv =

{
1 if UIuv ≥ threshold
0 otherwise

. (2.17)
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Prediction Based Ghost Detection

Prediction based method proposed by Thorsten Grosch in [26] uses the deviation between
the predicted intensity value of a pixel and the actual intensity as a measure to find ghost
pixels. The deviation is calculated from two images Lk and Ll using the estimated camera
response function:

Z luv = f(
∆tl
∆tk

f−1(Zkuv)), (2.18)

where f is the camera response function and ∆tl and ∆tk are the exposure times of Lk and
Ll, respectively.

Pixels which show a significant difference between the predicted and the actual value
for each pair of consecutive input LDR images, are marked as ghost pixels:

Guv =

{
1 if |Z luv − Zkuv| ≥ threshold
0 otherwise

. (2.19)

Pixel Order Relation

It is possible to relate pixel values to radiance values using the camera response function
f() as published by Sidibé et al. in [80]:

Zkuv = f(Ekuv∆tk). (2.20)

An increase in radiance values always produces an increased or equal recorded pixel
values. The pixel order relation method uses this evidence to assume that f() is monotonic.
Then, the intensity values for each pixel location (u, v) in different exposures must satisfy:

Zkuv ≤ Z luv, if ∆tk < ∆tl. (2.21)

The creation of ghost map ensues from the previous equation as:

Guv =

{
0 if Z1

uv ≤ Z2
uv ≤ . . . ≤ ZNuv

1 otherwise
. (2.22)

Bitmap Movement Detection

This method uses the median threshold bitmap (MTB) algorithm which was introduced by
Ward et al. in [88] for a purpose of image alignment and taken over by Pece and Kautz [69] to
detect ghost artefacts in dynamic scenes. The MTB technique helps to compare images that
are taken under different exposures by effectively removing most of illumination differences
between images. This method relies on the fact that if a pixel is not affected by ghost, then
its relation to the median intensity of the image must be the same in all taken LDR images.

A binary bitmap Bk is computed by applying a threshold to the image Lk based on its
median intensity pixels value. If the values in the image Lk are less than or equal to its
median intensity pixels value, pixels of Bk are black. On the other hand white regions of
Bk indicate the pixels whose values are greater than the median intensity pixels value. The
obtained bitmap Bk reveals image features while removing intensity differences between
different exposures (see Figure 2.14).
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Figure 2.14: Bitmap similarity using MTB technique (taken from [69])

By summing up all computed bitmaps into image M∗, the pixels affected by movement
are detected because each pixel preserves its bit value across all Bk in the static scene. The
morphological operations (dilation and erosion) are applied on the image M∗ to reduce
noise. Then, any pixel in the M∗ that is neither 0 nor N (N is a number of exposures) is
classified as a movement:

M∗uv =

{
0 if Suv = 0 or Suv = N
1 otherwise

, (2.23)

where Suv is the sum of the bitmaps values at location (u, v):

Suv =

N∑
k=1

Bk
uv. (2.24)

M∗ is converted into a cluster map M where each identified cluster has a different label
which is computed using connected component labelling [16]. An overview of this technique
is illustrated in Figure 2.15.

Figure 2.15: Overview of bitmap movement detection algorithm (taken from [69])

This method uses a fusion in an image domain but it is possible to integrate it also
into a radiance domain fusion. The algorithm works well on a large variety of movement
configurations. Moreover, the method is faster than other de-ghosting algorithms, relies
only on simple binary operations and thus it can be easily implemented directly on a
camera hardware [69].
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Histogram Based Ghost Detection

This method proposed by Min et al. [62] calculates ghost maps based on multi-level thresh-
old maps which are extended from the MTB. It takes an advantage of a condition that grey
levels at a particular pixel location must exhibit an increasing or equal property when the
images are captured from lowest to highest exposures.

First, each image zj is divided into N levels which gives a set of N threshold values Tj,k,
where each level has the same number of pixels. Then, the multi-level threshold maps Lj
are computed by classifying the intensity value of zj into N levels using these thresholds.
Figure 2.16b shows the multi-level threshold maps Lj , 1 ≤ j ≤ 3, N = 8, extracted from
LDRIs in Figure 2.16a.

(a) LDRI sequence with three different exposures

(b) Multi-level threshold maps

Figure 2.16: Motion detection by histogram based method (taken from [62])

Finally, the ghost maps are estimated using the computed multi-level threshold maps
for each LDRI excluding the mid-exposure LDR which is taken as the reference image:

Gi,j =

{
1 if |Li,ref − Li,j | ≥ 1, j 6= ref
0 otherwise

. (2.25)

Thus, the method produces j − 1 ghost maps, where j is a number of input exposures.
This method generates the radiance map based on Debevec et al. [15] and incorporates
computed ghost maps into their weighting factor.

Lee et al. proposed an improvement of this algorithm in the Improved Histogram
Based Ghost Detection in [49]. Later on Ahirwal et al. also built on this method with their
Ghost-Free High Dynamic Range Imaging Using Histogram Separation and Edge Preserving
Denoising in [1].
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Patch-Based Ghost Detection

This algorithm was presented in [79] by Sen et al. This is a patch-based energy minimization
formulation. The algorithm uses the reference image Lref which is an LDR image that
contains most well exposed pixels. The resultant HDR image contains as much information
as possible from this reference image Lref . In places, where the reference image Lref is not
well exposed, every patch in the image H at a given exposure should have a similar patch
in one of the LDR images after exposure adjustment (coherence). Also, every exposure
adjusted patch in all Lk images should be contained in H at exposure k (completeness).
The iterative approach performs joint optimization of image alignment and HDR merge
process until all the exposures are correctly aligned to the reference exposure and a good
quality HDR result is produced [29].

Hu et al. [36] present another patch-based method in 2013 based on an HDR generation
from exposure stacks. This algorithm uses an iterative approach to register LDR images to
a reference image. The algorithm produces a registered stack from a sequence of misaligned
images of dynamic scenes. The algorithm propagates the intensity and gradient information
during HDR reconstruction. This approach performs well even if the reference image has
large saturated areas [29].

RANSAC Based Ghost Detection

This method [22] belongs to a group of patch-based methods. The method is base on the
fact that the intensity values at any location (u, v) in any two input images Lk and Ll
satisfy the following condition:

Zkuv
∆tk

=
Z luv
∆tl

. (2.26)

Besides saturated pixels, the above rule is broken only at locations affected by ghost.
The processing is performed on a patch level in order to be robust to noise. At first, the
least saturated image is selected as the reference Lref . Then, log intensities of an r × r
patch in Lk are plotted against the log intensities of the corresponding patch in the reference
image Lref in order to find patches of Lk affected by ghost. A best fit line through the
plot is obtained by the RANSAC procedure [21] and the percentage number of outliers is
calculated using a distance threshold. If the percentage is greater than the threshold, the
tested patch includes a ghost.

Graph-Cuts Based Ghost Detection

Heo et al. [32] use joint probability density functions between exposure images to get global
intensity transfer functions to roughly detect ghost regions. These regions are further
refined using energy minimization based on graph-cuts methods [11]. First, joint intensity
histograms are constructed for the color channel c ∈ R,G,B between the reference image
Lref and another image Lk:

P
ref,k|c
ij =

U∑
u=1

V∑
v=1

Gkuv × T [(i, j) == (Zkuv, Z
ref
uv )], (2.27)
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where T is 1 if the argument is true and 0 otherwise, and k is a number of exposure. A
ghost map is defined for each exposure by:

Gkuv =

{
1 if P ref,k|cij (Z

ref |c
uv , Z

k|c
uv ) ≤ threshold

0 otherwise
. (2.28)

Because the ghost regions estimated by the above equation are noisy, they are refined by
an energy minimization approach using graph-cuts method. The minimize energy function
is defined as:

E(fk) =
∑
p

Dp(fk(p)) +
∑
p

∑
q∈N(p)

Vpq(fk(p), fk(q)), (2.29)

where the boolean label fk(p) ∈ 0, 1 represents whether the pixel p = (u, v) in the exposure
Lk is affected by ghost or not. N(u, v) represents the neighbourhood of the pixel p. More
details about a data cost function D, a smoothness term V and more information generally
about this method can be found in [32].

The optimized label map fk is used to update the ghost map G and the process is
repeated iteratively until convergence. The authors of this method found that two or three
iterations are sufficient for convergence. This algorithm does not require accurate ghost
detection and not suffer from the color artefact problem.

Optical-Flow Based Ghost Detection

Optical flow algorithms are recognized as one of the most successful algorithms in aligning
differently exposed LDR images by motion compensation. There are already a lot of optical
flow algorithms for HDR image acquisition such as Kang et al. [44], Mangiat and Gibson [56],
Zimmer et al. [97]. Zimmer et al. use state-of-the-art optical flow approach to register LDR
exposures before the merging process. They minimize their proposed energy function that
uses a data term and smoothness term to reconstruct saturated and occluded areas. After
alignment, the displacement fields obtained with subpixel precision are used to produce a
super resolved HDR image [29]. Instead of energy-based function, there is possible to use
gradient-based optical flow approach in this type of algorithms as well.

Markov Random Field Detection

Jinno and Okuda [41] use detection based on the Markov random field (MRF) model and
estimate displacements, occlusion and saturated regions simultaneously by using Maximum
a Posteriori (MAP) estimation instead of a ghost map creation. They do not estimate
accurate motion vectors but compute displacement to the pixel with the closest irradiance.

Singular Value Decomposition Based Ghost Detection

This method [83] uses singular value decomposition (SVD) to resolve the ghosting problem.
The method is based on extracting local spatio-temporal neighbourhoods and using the
second biggest singular value of the matrix formed by values within the neighbourhoods as
a measure for ghost detection.
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2.2.2 Ghost Removal Methods

Ghost removal methods can be divided into two main categories. The first type of methods
remove ghost artefacts while keeping a single occurrence of the moving object. It means
the ghost will disappear and the moving object will be at the fixed location in the resultant
HDR image. Other methods completely remove the moving object from the final image.

Keeping a single occurrence of the moving object

The simplest approach to keep a single occurrence of moving object in the final HDR image,
is to apply the standard multiple exposure fusion method in ghost-free regions while select-
ing a single reference exposure in ghost affected areas. This approach requires a computed
ghost map. The reference exposure is typically the image which is least saturated [76, 40] or
the image whose ghost regions are best kept in range [26]. Another approach is to determine
the correct number of exposures to use in different ghost affected areas [22]. However, using
a single reference exposure introduces new artefacts in the resultant HDR image. These
new artefacts are created at ghost regions boundaries. For the better result without new
ghost artefacts in the final image, it is possible to use a Laplacian pyramid blending frame-
work [69, 61], where the input images are decomposed into a Laplacian pyramid, which
basically contains band-pass filtered versions at different scales and blending is performed
for each level separately. Another possibility is to use a gradient domain approach [22] to
avoid all ghost artefacts in the resulting image. This method is based on estimating an
image whose gradient is closest, in the mean squared error sense, to the gradient of the
estimated radiance map. Zhang and Cham [92, 93] use gradient information to generate
ghost-free HDR images directly without a ghost detection.

Complete removing of the moving object

Some methods completely remove all moving objects from the final HDR image. This can be
desirable in some cases where the photographer is interested in the scene or the background
itself. The most simple approach to achieve this goal, is to discard exposures effected by
ghost regions during the combination step of HDR acquisition process. This idea is used
by Sidibe et al [80]. Two sets of exposures, Auv and Buv, are classify for each pixel location
(u, v), where the exposures in the set Auv contain ghosting at location (u, v), while the
second set Buv represents exposures without ghosts. Therefore, a ghost-free HDR image is
created by combining only exposures from the set Buv. A similar approach is used also by
Gallo et al [22]. However, this algorithm is based on image patch processing rather than
working with pixels individually. Methods proposed by Khan et al. [47] and by Pedone
and Heikkilä [70] directly remove ghost artefacts without a ghost detection by adjusting
the weighting function w() when the combined radiance map is calculated. These methods
do not need explicit ghost detection as they change pixels weights directly and iteratively
to minimise the number of visible artefacts.

These algorithms assume that moving objects appear in a small number of images at
each pixel location. Moreover, these methods require a sufficiently large number of images
and can be computationally expensive since they require a number of iterations to produce
good results [82].
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2.3 HDRI Storing

High dynamic range images record a much wider gamut than standard 24-bit RGB (8 bits
for each channel). HDR images are assembled from 32-bits floating point numbers. It
means a big amount of data and a different format of data than a common 24-bit color
image. Moreover, colors in LDR images are usually associated with some target output
device while HDR image pixels have a direct relation to radiance in a scene [76]. Therefore,
some special data formats are needed to store HDR images. The following Table 2.3 taken
from [8] and supplemented from [76] provides a summary of existing HDRI data formats.
Whole color gamut cover only TIFF, OpenEXR and JPEG-HDR. Besides the presented
formats, there are few more so-called private formats which are not defined by a norm or
they are not even documented. These formats are used only in specific software [8].

Channels
Total Bits

Compression
Precision Dynamic

per Pixel (1-3) Range (EV)

TGA RGB
24 RLE 1 8

(8bit RGB) (+ Alfa)
Cineon,

RGB 32
-

2 12
DPX
TIFF RGB

96 ZIP, LZW 3 253
floating point (+ Alfa + . . .)

TIFF
L+Index/Lu’v’ 24/32 -/RLE 2 16/126LogLuv

24/32
PFM RGB 96 - 3 253

Radiance
RGBE 24 RLE 2 253

HDR

OpenEXR
RGB

48
PIZ, ZIP, RLE,

3 30(+ Alpha + Wavelet, PXR24,
Depth + . . .) . . .

JPEG-HDR YCC variable JPEG 1 30
Windows

RGBE variable Wavelet 1
WDP

Table 2.3: HDRI data formats

The most important thing in HDRI storing is a data compression because captured
real-world lighting results in very large data sizes. Uncompressed, a single HDR pixel
requires 12 bytes of memory to store the three single precision floating-point numbers for
the RGB values. This becomes a lot of data in images and video. Therefore, researchers
have been working on more sophisticated compression schemes to store HDR content. The
main strategy is to modify and adapt current compression standards such as JPEG, MPEG
and block truncation coding. The main goal of the compression is to significantly reduce
the amount of data that needs storing and transmitting with minimal loss of visual quality.
This is a major challenge as the increased luminance means that many artefacts, which may
not be noticed in LDR content, will be easily distinguishable in HDR image [6]. Table 2.4
summarizes what has been already achieved for compressing HDR images, textures and
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videos. More details about techniques from the table can be found in [6].

Name Description BPP Quality
Backward

Compatibility

IMAGE COMPRESSION
JPEG-HDR backward compatible JPEG-HDR 0.6-3.75 MQ-HQ Yes
HDR-JPEG2000 HDR-JPEG2000 0.48-4.8 HQ Yes

TLCAHDR
Two-Layer Coding Algorithm

1-8 HQ Partial
for High Dynamic Range Images

TEXTURE COMPRESSION

HDRTGS
HDR Textures Compression

8 HQ No
Using Geometry Shapes

HDRTBIO
HDR Textures Compression Using

8 HQ No
Bit and Integer Operations

HDRTSL
HDR Textures Compression

16 MQ No
Encoding LDR and HDR Parts

HDRTTMITM
HDR Textures Compression

4-8 MQ-HQ Yeswith Tone Mapping and
Its Analytic Inverse

DHTC
An Effective DXTC-Based

8 HQ No
HDR Testure Compression Scheme

VIDEO COMPRESSION

HDRV
Perception-Motivated High

0.09-5 HQ No
Dynamic Range Video Encoding

MPEG-HDR backward compatible HDR-MPEG 0.2-6 HQ Yes

H.264-HDR
Rate-Distortion Optimized

0.26-4 HQ YesCompression of High
Dynamic Range Videos

Table 2.4: Summary of various HDR content compression techniques (taken from [6]). BPP
means a range in the case of varying quality, MQ means medium quality and HQ means
high quality.

2.4 Tone Mapping

Tone mapping is a huge and important part of HDRI. Tone mapping is an operation which
converts the dynamic range of world luminance to lower dynamic range display luminance.
An important requirement is that the perception of the real-world scene should match with
the perception of the tone mapped image. Tone mapping is done by using tone mapping
operator (TMO). There are a few groups of TMOs which differ in the function operator
using for tone mapping or in the image processing techniques. The main groups are [6]:

• Global operators - The tone mapping is applied to whole image with the same
operator.

• Local operators - Each pixel is mapped depending on its neighbours. These neigh-
bouring pixels are given as an input to the function operator.
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• Segmentation operators - A different mapping is applied to regions in which the
image is segmented.

• Frequency/Gradient operators - A tone mapping operator is applied only to the
low frequencies in the image.

Based on the design philosophy of the TMOs there is further classification [6]:

• Perceptual operators - The function operator models some aspects of the human
vision system.

• Empirical operators - The function operator tries to create aesthetic-pleasing im-
ages without using the human vision system aspects.

• Temporal operators - These operators are also suitable for HDR video and anima-
tions.

The summary of TMOs is in the Table 2.5.

Empirical Perceptual

Global Linear Mapping Perceptual Brightness Reproduction
Exponential Logarithmic Mapping Contrast Based Scale Factor
Quantization Technique Visual Adaptation Model

Histogram Adjustment
Time Dependent Visual Adaptation
Adaptive Logarithmic

Local Spatially Variant Tone Reproduction Multi-Scale
Photographic Tone Reproduction Tone Mapping Operator

for High Contrast Images
Local Model of Eye Adaptation

Segmentation Interactive Manipulation Segmentation Approach
Exposure Fusion Lightness Perception

Frequency/ Low Curvature Image Simplifiers Trilateral Filtering
Gradient Bilateral Filtering Image Color Appearance Model

Gradient Domain Compression Retinex Methods

Table 2.5: Taxonomy of tone mapping operators [6]

Only Perceptual Brightness Reproduction, Time Dependent Visual Adaptation and
Local Model of Eye Adaptation are also temporal and suitable for HDR video content [6].

The detailed information about tone mapping can be found in the book High Dynamic
Range Imaging: Acquisition, Display, and Image-Based Lighting written by Erik Reinhard
et al. [76] which contains very detailed information about this field of study. Books [6, 8, 33]
also include some chapters dealing with tone mapping.
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Chapter 3

FPGA Programming Principles

Nowadays, FPGA (Field Programmable Gate Array) circuits are used in a wide range of
applications mainly due to its programmability, efficiency and flexibility. An advantage is
its steadily declining power consumption as well as the prize of the chip itself. They are
typically used in the area with smaller series of devices where it does not worth to make
a design of the customer integrated circuit and on the other hand, the solution with the
universal processor is not enough. Their further use is in the prototyping of complex cus-
tomer integrated circuits, where the designed circuits are implemented and tested before
the actual manufacturing.

This chapter describes a theoretical basis about FPGA and its programming princi-
ples which are necessary to know for a correct solution design. The information in this
chapter was mainly taken from books Tree-based Heterogeneous FPGA Architectures: Ap-
plication Specific Exploration and Optimization written by U. Farooq et al. [19], Introduc-
tion to Reconfigurable Computing: Architectures, algorithms and applications written by C.
Bobda [9], The Designer’s Guide to VHDL, Third Edition written by Peter J. Ashenden [5]
and from the Xilinx web page [39].

3.1 Field Programmable Gate Array

FPGAs are special programmable semiconductor devices based on a matrix of small pro-
grammable logic blocks called Configurable Logic Blocks (CLBs) which are connected
through complex programmable interconnects (see Figure 3.1). FPGA can be programmed
to the desired application or functionality requirements. FPGAs allow designers to change
their designs very late in the design cycle, even after the end product has been manufac-
tured and deployed in the field [39]. Programmability in FPGA is achieved through an
underlying programming technology.

Some parts of FPGA can be reconfigured while the rest is still running. Any future up-
dates in the final product can be easily update by downloading a new application bitstream.
The programmable logic and routing interconnect of FPGAs makes them flexible and for
a general purpose. Unfortunately, it makes them also larger, slower and more power con-
suming than standard Application Specific Integrated Circuits (ASICs). In spite of these
weaknesses, FPGA-based products are basically very effective for low and medium volume
productions because of their less cost and faster time to market in comparison with ASICs
and because it is easy to program and debug them.
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Figure 3.1: Core of FPGA architecture (taken from [9])

The progress in technology process greatly enhanced the logic capacity of FPGAs and
made them successively an implementation alternative for larger and complex designs. Fur-
thermore, programmable principles of their logic and routing parts has a considerable effect
on the quality of final device’s area, speed, and power consumption [19]. The base of FPGA
architecture is a state machine and everything inside the architecture is parallel.

The following part describes basic components of a common FPGA.

Configurable Logic Block

Configurable Logic Block (CLB) is a basic logic unit in FPGA. These programmable logic
blocks implement logic functions and storage functionality for a target application design.
The basic component can be either a transistor or an entire processor but these are two
extreme cases. In the case of transistors, the basic component is very fine-grained and
requires large amount of programmable interconnect which could result an area-inefficiency.
On the other hand, in the case of processor, the basic logic block is very coarse-grained
which causes impossibility to implement small functions and it is a waste of resources.
Between these two extremes there is a spectrum of basic logic blocks, such as NAND gates,
an interconnection of multiplexors, lookup tables (LUTs) and programmable array logics
(PAL) style wide input gates. These basic logic blocks are also called function generators
because they serve as basic computing units to dynamically implement and reimplement
new functions in a reconfigurable hardware devices. Commercial vendors usually use LUT-
based CLBs which provide a good compromise between mentioned logic blocks [9].

Every CLB can comprise of a single Slice, or a cluster of locally interconnected Slices.
Each slice consists of several basic logic elements (BLEs) (see Figure 3.2). BLE is a group
name for LUTs, flip-flops and sometimes more complex units. This arrangement differs a
lot in individual families of chips.

Look-up table is a group of memory cells which contains all possible results of a
given function for a given set of input values. In FPGAs, LUT physically consists of a
set of SRAM-cells to store values and a decoder to access a specific SRAM location and
retrieve a correct result for a combination of inputs [9]. Flip-flop can serve as one bit
register/memory [66].
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CLB can be also consisted only from one BLE. However, modern FPGAs contain typ-
ically 4 to 10 BLEs divided into few Slices in a single cluster. The exact number of CLB
and their features vary from device to device [39, 19].

Figure 3.2: Basic Configurable Logic Block Structure (left) and Slice (right) (taken
from [39])

Interconnection Network

Programmable routing interconnect of FPGAs comprises of almost 90% of total FPGA’s
area [9]. A flexible interconnect network routes signals between CLBs and to and from
I/Os, while the CLB provides a logic capability. Routing comes in several ways. One is
designed to interconnect between CLBs to fast horizontal and vertical long lines spanning
the device. Other is global low-skew routing for clock and other global signals. The inter-
connect routing task is hidden to the user unless it is specified otherwise which importantly
reducing design complexity [39]. The routing interconnect of FPGA are generally steered
by small multiplexors [9].

Input/Output Blocks

Today’s FPGAs provide support for a lot of I/O standards. This provides a perfect interface
bridge in a final system. I/Os in FPGA is grouped in banks and each bank is able to support
different I/O standards independently. The best FPGAs provide over a dozen I/O banks,
thus allowing flexibility in I/O support [39].

IP Cores

Many modern FPGAs contain also some complex and frequently used circuits called Intellec-
tual Property (IP) cores. There are two types of IP cores. Hard IP cores are heterogeneous
mixture of blocks which include memory, multipliers, DSP blocks and even whole proces-
sor cores. They are fabricated directly on chip and very efficient at implementing specific
functions because they are designed optimally for these functions. However, they represent
a waste of big amount of logic and routing resources if unused. Second type, soft IP cores,
takes a form of library. They are written in Hardware Description Language (HDL). Two
major HDLs are VHDL and Verilog. Both of them describes hardware circuits on register
transfer level [66, 19].
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3.2 VHDL

VHDL is designed to fill a number of needs in a design process and is commonly used to
write text models that describe logic circuits. VHDL allows a description of a structure
of a system and tells us how it is decomposed into subsystems and how those subsystems
are interconnected. VHDL allows a specification of a function of a system using familiar
programming language forms. As a result, it allows a design of a system to be simulated
before being manufactured. It gives designers an opportunity to quickly compare alter-
natives and test for correctness without the delay and expense of hardware prototyping.
VHDL also allows the detailed structure of a design to be synthesized from a more abstract
specification which allows designers to concentrate on more strategic design decisions and
reducing time to market [5].

VHDL has constructs to handle the parallelism in hardware designs. VHDL is strongly
typed programming language and is not case sensitive. There are many features of VHDL
which allow to directly represent operations commonly used in hardware, such as an ex-
tended set of boolean operators including NAND and NOR. VHDL allows arrays to be
indexed in either ascending or descending direction as well.

VHDL has file input and output capabilities. These files are more commonly used by
a simulation programs to stimulate or verify data than as a general-purpose language for
text processing. It is relatively easy to produce code that simulates successfully but that
can not be synthesized into a real device, or is too large to be practical.

VHDL allows to describe and verify the behavior of the required system which is the
biggest advantage of VHDL when it is used for systems design. Another benefit is that
VHDL is a dataflow language which allows a description of a concurrent system. A VHDL
project is multipurpose which means that once created calculation block can be used in
many other projects. However, parameters of this functional block can be tuned. A VHDL
project is also portable which means that if the project is created for one element base, a
computing device project can be ported on another element base.

A VHDL design consists at least of two components - entity, which describes the interface
and an architecture, which contains the actual implementation. In addition, most designs
import library modules and some designs contain multiple architectures and configurations.

3.2.1 Basic Architecture Blocks

In a hardware design, basic functional blocks called combinational logic circuits, are used
to design whole systems. Typical representatives of these functional blocks are [42]:

Decoder
Decoders generate some code based on a combination of input parameters. The most
commonly used type of decoder is a binary decoder. It transfers binary code into code
1 to N, where only one output is active. The basic block of decoders is AND gate or
NAND gate. A sample of decoder 3 to 8 is in Figure 3.3a.

Multiplexer
Multiplexer is a combinational logic circuit, which allows to transfer digital informa-
tion from one selected input channel to output. Multiplexer consists of N inputs and
one output. A sample of multiplexer is in Figure 3.3b.

Demultiplexer
Demultiplexers have an opposite function than multiplexors. They have one input
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channel and many outputs. The output channel for input data is selected by address
in a binary code while the other output channels have zero state (they are inactive).
A sample of demultiplexer is in Figure 3.3c.

(a) Decoder 3x8 (b) Multiplexer (c) Demultiplexer

Figure 3.3: Sample of basic logic blocks1

Comparator
Comparator compares two binary numbers and generates an output signal based on
their equality or diversity. Comparators are often called as XOR.

Adder
Adder calculates an arithmetic sum of two numbers. There are many types of adders,
such as one-bit adder, half adder, full adder or parallel adder.

Subtractor
Number subtraction in logic circuits is treated as an addition of this number with a
reverse sign.

Flip-flop
Flip-flops are the simplest sequential components. Flip-flop is a circuit that has two
stable states and can be used to store state information. Flip-flops are asynchronous
or synchronous. Asynchronous flip-flops immediately react to a change of input signals
while synchronous flip-flops always wait for a synchronous clock impulse.

VHDL designs are based on a state machine. There are two common models of state
machines - Moore and Mealy machine (see Figure 3.4). Both type of machine are triggered
by a single clock and have an internal state that changes. The next state is determined by
some combinational function of the inputs and the present state. The outputs are solely
a function of the present state in the Moore machine. While in the Mealy machine, the
outputs are a function of the present state and of the inputs [98].

Figure 3.4: Moore and Mealy state machines2

1Source: http://www.edwardbosworth.com
2Source: http://www.csit-sun.pub.ro/
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Chapter 4

Task Specification

This chapter defines the detailed specification of the thesis task. It includes main goals
which should be achieved in this thesis. The chapter specifies de-ghosting algorithms de-
scribed in Chapter 2.2 which are suitable for the given issue. A part of this chapter is also
a description of the architecture and application specification.

4.1 Objectives of the Thesis

This thesis is a part of a research project dealing with the real-time HDR FPGA video
camera. The FPGA video camera captures three different exposures and combines them
together in a real-time processing to display a resulting HDR video on common LDR mon-
itors. The video camera captures 60 frames per second and produces 20 frames of the
resulting HDR video per second. However, there can still appear relatively big and visible
artefacts in the final video. The goal of this thesis is to find or propose a de-ghosting algo-
rithm to eliminate these ghosting artefacts. The proposed algorithm will be included into
processing of the captured images on the FPGA video camera to prevent ghost artefacts in
the final real-time HDR video. Fortunately, the camera using in the project stores raw data
directly from the sensor into RAW format. Therefore, the output data are almost linear
with a few exceptions - the level of black, quantization and saturation.

Because FPGA architecture has some specifications, the proposed algorithm has to
respect few requirements. The implementation has to consume small amount of memory.
Therefore, there is a problem to go back for some old data or intermediate calculation
results. If the results are in the previous run of the program, the data have to be saved in
an external memory. On the other hand, if the results are in the current run of the program,
the access to them is easy. Another problem is a random access memory and randomness in
general that causes very complex logic. The proposed algorithm has to use elements which
can be easily implemented in FPGA, such as look-up tables. FPGA architecture and its
programming principles were specified in Chapter 3. Due to the real-time application, the
implementation has to be efficient and non-iterative. Moreover, the selected algorithm has
to remove as many ghosting artefacts as possible and keep a single occurrence of moving
objects in a video. These requirements prevent to use a lot of already developed de-ghosting
methods. De-ghosting algorithms that come into consideration, are discussed in Section 4.3.
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Development Procedure

In the beginning, this thesis will be about testing of existing de-ghosting algorithms. First,
suitable algorithms for the given issue will be found. Then, they will be tested for the project
requirements and quality of their results. The prototype in C++ programming language
will be implemented for selected algorithms to be able to test their characteristics. After the
testing of the most suitable algorithms, one of the implemented algorithms will be selected
and its modification will be proposed for better use in FPGA architecture. As the last
step of the thesis, the C++ implementation of the proposed algorithm will be created as
a prototype and tested on images taken by the corresponding video camera. The review
of the proposed algorithm and results from the final tests will be done at the end of this
thesis.

4.2 Architecture and Application Specification

The implementation and programming on FPGA architecture is completely different com-
pared to other reconfigurable platforms where the code is executed sequentially on multiple
threads. On FPGA everything runs implicitly in parallel. The programming is not aimed
at generating a set of sequentially going instructions for processor. Unlike this process, in
FPGA, programmers seek to generate a logical circuit which implements the specified func-
tion. The logical circuit is then derived from a verbal input, such as VHDL program. This
procedure is called logic synthesis. The mapping of the application to the FPGA resources
is a step of the logic synthesis called technology mapping. The technology mapping targets
in FPGA are look-up tables rather than NAND gate as it is in the case of many digital
devices [9].

Based on the opportunity to create as many parallel computing units as needed, config-
urable hardware offers an excellent computing potential. There are no limits due to some
existing instruction set compared to CPU or GPU. It can result in better performance and
implementation of new methods which cannot be implemented on standard platforms. As
a next benefit, there are not typically any unused logic functions as in fixed architectures
where programmer usually use only small part of all device features.

However, low level programming, such as programming for FPGA devices, has some
disadvantages. Compared to standard programming on CPU, programmer has to make
bigger effort to achieve the same functionality. The parallelism could complicate the design
of the application in the case of bigger complexity [66].

FPGAs can be used in many applications such as pattern matching, signal processing,
super computing, video streaming, image processing etc. In this case, our main interests
are in image processing and video streaming. FPGA has limited resources, especially size
of internal memory. Therefore the storage of whole image could be a problem. There are
two solutions: a use of an external DDR (Double Data Rate) memory or a modification
of the algorithm for stream processing. However, the problem with memory applies to all
algorithms in general. It means that the memory space depending algorithms cannot be
implemented on FPGA unless they are optimized or simplified [66].
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4.3 Summary of Existing De-Ghosting Methods

The classification of the reviewed methods from Section 2.2 is shown in Figure 4.1. This
classification is based on the following parameters:

• Fusion domain - radiance or image

• Number of exposures needed for good results of the algorithm

• Ghost map detection - if ghost map detection is first computed and number of these
ghost maps - one or more using some exposure as a reference image

• Thresholds tuning - some input parameters such as a threshold value has to be set
automatically or manually, respectively

• Reference image selection - if one of the input images is used as a reference

• Final result with an occurrence of moving object at fixed position or removal of all
moving objects

Figure 4.1: Classification of ghost detection methods (inspired by [82])
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Tursun et al. [86] propose a more comprehensive and current summary which is shown
in Table 4.1. The summary divides methods into five groups based on how approach the
de-ghosting problem:

• Global exposure registration methods - Their aim is to align individual expo-
sures globally.

• Moving object removal methods - These methods remove the motion by estimat-
ing a static background.

• Moving object selection methods - This type of methods detect motion in the
scene by differences in the input pixel intensities and remove the ghosting artefacts
by either locally using a single source image or combining a set of multiple sources
which are consistent.

• Moving object registration methods - They recover or reconstruct the ghost
pixels by searching for the best matching region in other exposures or in the affected
image. The matching regions are used to transfer information to the problematic
region. These algorithms may find pixel-based or patch-based dense correspondences.

• Video de-ghosting methods - They remove ghosting artefacts in HDR videos and
make use of the temporal information of videos during processing for this purpose.

Although, the taxonomy in Table 4.1 is valid for most cases, there are some hybrid
methods which are difficult to classify. These algorithms are classified based on their most
dominant characteristics [86].

HDR De-Ghosting Methods

Global Moving Moving Object Moving Object Video
Exposure Object Selection Registration De-Ghosting

Registration Removal Single Multi Optical-Flow Patch
Source Source Based Based

[58] [47] [45] [62] [65] [10] [60] [44]
[12] [70] [26] [74] [83] [34] [22] [78]
[88] [25] [40] [72] [93] [97] [68] [56]
[99] [80] [51] [50] [67] [20] [94] [13]
[17] [81] [76] [89] [84] [41] [75] [14]
[23] [91] [69] [32] [24] [30] [35] [43]
[85] [92] [49] [4] [87] [79]
[71] [81] [73] [48] [95]
[37] [63] [36]
[3] [96]
[90]

Table 4.1: Taxonomy of HDR de-ghosting methods (inspired by [86])
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Based on Figure 4.1 and Table 4.1 the summary of methods which could be appropriate
for the given issue can be done. This thesis does not deal with exposure registration because
there is an expectation that input images are captured by a static camera on a tripod. Thus,
the methods in the first column of Table 4.1 are unattractive for this thesis. The second
column of the table is uninteresting for the thesis as well, because there is a requirement of
keeping moving objects in the final HDR video.

Principles of methods mentioned in Figure 4.1 are presented in Section 2.2. This section
shows that variance-based ghost detection method is not appropriate due to its weak results.
On the other hand, entropy based method and prediction based ghost detection seem to be
applicable for the given issue. Pixel order removal belongs to the group of methods that
completely remove moving objects. Hence, this algorithm is not suitable for the purpose
of this thesis. Bitmap movement detection and histogram-based ghost detection calculate
histograms of input images and use median threshold bitmaps to remove ghost artifacts.
These two algorithms have a simple computational complexity and give reasonable results.
Therefore, they are selected for implementation and testing in this thesis which is described
in the next Chapter 5.

Patch-based ghost detection is a big group of methods that could be suitable for the given
issue. However, it depends a lot on circumstances of each method. It is impossible to use
methods which have an iterative approach, methods which are computational challenging
in the sense of FPGA architecture, such as RANSAC based ghost detection, or methods
that completely remove ghosting objects from the final HDR image. As well as patch-based
ghost detection, graph-cuts based ghost detection is possibly suitable for the given issue.

Unfortunately, the other methods from Section 2.2 are somehow inappropriate. Optical-
flow methods are computationally challenging as well as the singular value decomposition
based ghost detection and the gradient based ghost removal. MRF model and MAP es-
timation in the Markov random field detection are not easily implementable techniques
for FPGA architecture. Density estimation and constrain propagation completely remove
moving objects from final HDR images thereby unsatisfying desired requirements.

Based on above-mentioned reflections, the methods marked by an asterisk in Figure 4.1
seem to follow all desired requirements for the given issue.
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Chapter 5

Realization of De-Ghosting
Algorithms

This chapter focuses on the description of the implementation of algorithms which were
selected in the previous Chapter 4. Bitmap movement detection is described in Section 5.1.
This section also includes illustrations of results from this implemented method. Section 5.2
describes histogram-based ghost detection with its results as well. Based on the histogram-
based de-ghosting method, Section 5.3 defines a modification applied on this method to
simplify its implementation on FPGA architecture. As a part of this section, an evaluation
of the proposed modification is presented.

Four different sequences were used to test implemented algorithms. All used images
were captured by the FLARE 2KSDI video camera and saved into the RAW format. The
images of Scene 1, which can be found in Figure A.1 in Appendix A, were used for this
chapter. All the other input images are in Appendix A as well. The exposure times were
set to 0.5ms, 2ms and 8.3ms.

The implementation is in C++ programming language and the OpenCV library is used
to simplify image processing. Because the image sensor in the video camera has Bayer
filter [7], the input images has to be converted by using cvtColor method before own image
processing. Both implemented methods are tested on grayscale images.

The easy tone mapping operator e(log10(HDR)) for all computed HDR images is used to
display the final HDR image on common LDR monitors.

5.1 Bitmap Movement Detection

The theoretical basis of this method were described in Section 2.2. This method uses fusion
in an image domain. However, it can be easily integrated into radiance domain fusion as
well. For better comparison with the other method, the radiance domain fusion is used
in this thesis. Moreover, the project dealing with the real-time HDR FPGA video camera
uses also the fusion in the radiance domain.

First, histograms of input images are computed to find a median intensity pixels value
in each exposure. The found median value serves to compute a median threshold bitmap.
If the values in the input image are less than or equal to its median intensity pixels value,
pixels of the binary bitmap are black. On the other hand white regions of the binary bitmap
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indicate the pixels whose values are greater than the median intensity pixels value. The
obtained binary bitmap reveals image features while removing intensity differences between
different exposures. The binary bitmaps for input images of Scene 1 are shown in Figure 5.1.
Note the similarity of computed bitmaps.

(a) Bitmap for under-exposed image (b) Bitmap for mid-exposed image

(c) Bitmap for over-exposed image

Figure 5.1: Bitmaps for input images of Scene 1 generated by MTB technique

Next, the ghost map is calculated by summing up all computed bitmaps into image
M . The pixels affected by movement are detected because each pixel preserves its bit value
across all binary bitmaps in the static scene. Any pixel in the image M that is neither 0 nor
N, where N is a number of input exposures, is classified as a movement. The morphological
operations, erosion and dilation, with the erosion kernel size se = 3 and dilation kernel size
sd = 17, are applied on the ghost map to reduce noise. The se sets the sensibility of the
algorithm to isolate and eliminate the outliers from the moving pixels and sd is directly
responsible for the enlarging of the moving clusters when moving pixels are missed. The
kernel sizes were selected based on [69]. The final ghost map for input images of Scene 1 is
shown in Figure 5.2.

Figure 5.2: Detected ghost map for Scene 1

The resulting HDR image is created by fusion in the radiance domain which means to
apply Equations 2.7 and 2.8. To remove ghost artefacts from the final HDR image, the
ghost map is used. The final HDR image has equal pixel values as the mid-exposed input
image in the region where the ghost map has white pixels. In other words, the regions
where the ghost artefacts were detected, are filled by pixels from the mid-exposed input
image instead of the proper radiance domain image fusion. The final HDR image is shown
in Figure 5.3b. To compare a quality of the de-ghosting method, the HDR image without
the ghost removal is shown in Figure 5.3a.
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(a) HDR image with ghost artefacts

(b) HDR image with ghost removal

Figure 5.3: Final HDR image for Scene 1

The results of the other tested scenes are presented in Appendix B. Based on these
results, we can see the quality of the bitmap movement detection depends a lot on the input
data. The method produces excellent quality outputs in a scene where a motion appears
on a dark background, how it is shown in Figures 5.3 and B.2. However, sometimes some
additional artifacts can appear after the de-ghosting method is applied as it is in Figure B.1.
These artifacts appear on boundaries of previously detected ghosting objects. It is caused
by using only mid-exposed image in ghost regions instead of the proper fusion. This method
has also problem with input images which contain too many dark pixels, too many bright
pixels or too many pixels with same value. If the input image consists of dark or bright
pixels only, the median threshold value is near zero or 255, respectively. This causes the
computed median threshold bitmap is whole black and the rest of computations are affected
by this fact. The same problem appears if most of the pixels in the input image are under
or over the median threshold value as it occurs if most of the image pixels have same
value. The results of the fusion where the over-exposed image produces a black bitmap, is
presented in Figure B.3. Although a movement is removed, the available dynamic range is
reduced.

5.2 Histogram-Based Ghost Detection

This method is based on the median threshold bitmap algorithm as well as the bitmap
movement detection. However, this method improves the use of this algorithm. Instead
of binary bitmaps, histogram-based ghost detection first calculates multi-level threshold
maps for each input exposures. The multi-level threshold map is computed by classifying
the intensity value of the input image into 8 levels based on thresholds. These thresholds
are found by dividing the input image into 8 levels which gives a set of 8 threshold values,
where each level has the same number of pixels. The multi-level threshold maps for the
input images of Scene 1 are shown in Figure 5.4.
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(a) Under-exposed image (b) Mid-exposed image

(c) Over-exposed image

Figure 5.4: Multi-level threshold maps for input images of Scene 1

The calculated multi-level threshold maps are used to compute object motion maps.
The mid-exposure LDR image is selected as the reference image. Then the object motion
map is computed using the absolute difference between multi-level threshold maps of the
reference image and some other image. If the difference is bigger than one, the movement is
detected and the pixel value in the object motion map is set to one. Then, the morphological
operations, erosion and dilation, with kernel size s = 1, are applied on the found object
motion maps to reduce noise. Histogram-based ghost detection method produces N − 1
object motion maps where N is a number of input exposures. Two final ghost maps for
Scene 1 are shown in Figure 5.5.

Figure 5.5: Ghost maps for Scene 1 using the mid-exposed image as a reference

Due to several causes, there are some false detections. Pixels having a similar intensity
near the threshold values can be classified into different levels due to different exposures.
To overcome this drawback, binary error maps are computed as:

Ei,j =

{
1 for Tj,k − 1 ≤ Ii,j ≤ Tj,k + 1, 1 ≤ k < N
0 otherwise

, (5.1)

where Ii,j is the intensity at ith pixel in the jth exposure and Tj,k is the kth threshold value
used for extracting the multi-level threshold map of jth exposure.

The error maps with the object motion maps are used to compute a weighting factor
ME for the radiance fusion as follows:

MEi,j =


1 for j = ref
1 for Mi,j = 0, j 6= ref
0 for Mi,j = 1, j 6= ref

0.2 for Ei,j |Ei,ref = 1, j 6= ref

, (5.2)
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where Mi,j is the object motion map and Ei,j is the binary error map.
The final HDR image without ghost artefacts is obtained as:

lnEi =

∑P
j=1w(Zij)(MEi,j)(lnZij − ln ∆tj)∑P

j=1w(Zij)(MEi,j)
, (5.3)

where Ei is the irradiance, P is the number of input photographs, w is the weighting
function from Equation 2.7, Zij is the input exposure pixel value and ∆tj is the known
exposure time. Equation 5.3 does not include a camera response function because there is
an assumption the camera response function is linear.

The resulting HDR image of Scene 1 using the histogram-based ghost detection is in
Figure 5.6.

(a) HDR image with ghost artefacts

(b) HDR image with ghost removal

Figure 5.6: Final HDR image for Scene 1

The results of the other tested scenes are presented in Appendix C. Based on these
results, we can see the histogram-based ghost detection has excellent quality outputs in
a scene where a motion appears on a dark background as well as the previous bitmap
movement detection. The good quality results of the histogram-based ghost detecting
method are shown in Figures 5.6 and C.2. However, the method has weak results in scenes
where the movement appears on a bright background. The ghost artifacts are eliminated
but not all of them are completely removed in these cases. Examples of this situation are
shown in Figures C.1 and C.3. The results of the histogram-based ghost detection are
depended on the input exposures as well, but not so much in comparison with the bitmap
movement detection.
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5.3 Proposed Algorithm

Based on the complexity of implemented algorithms, the proposed algorithm is a modifica-
tion of histogram-based ghost detection for easier implementation on FPGA architecture.
Histogram-based de-ghosting method needs to calculate histograms of all input images as
a first step. However, a difficulty of the histogram calculation depends on the input image
size. The tested images have resolution 768x256 pixels which is quite big to calculate the
histogram for whole image on FPGA architecture. It led to the decision to split input data
into smaller blocks. More precisely, the proposed algorithm processes the input images
by parts. Therefore, the proposed algorithm needs to calculate local histograms instead
of global histograms. Because the number of pixels in the image block is smaller, smaller
adders are needed for computation on FPGA architecture. Moreover, if a number of bins
in the histogram will be decreased, a number of adders needed for implementation will be
reduced as well. In this modification, there is a potential to eliminate more ghosting arti-
facts because the block processing introduces a local access into the global method. The
proposed algorithm tries to transfer the global method into a local one. Size of processing
blocks is defined by input parameters. This modification causes less memory consumption.
The block size depends on the size of ghost artifacts and affects the quality of results. Fig-
ure 5.7 shows the multi-level threshold maps by using proposed modification with size of
the processing block 64x64 pixels.

(a) Under-exposed image (b) Mid-exposed image

(c) Over-exposed image

Figure 5.7: Multi-level threshold maps for input images of Scene 1 by using image processing
on a block of 64x64 pixels

Next modification of histogram-based method is an omission of morphological opera-
tions. The difference between results with the morphological operations and without them
is not visible by human eyes which has been found by testing and comparing both cases.
Besides the mentioned modifications, the proposed algorithm is consistent with histogram-
based ghost detection. The resultant HDR image by using proposed algorithm with size of
the processing block 32x32 pixels is shown in Figure 5.8.

Another modification, an omission of binary error map computation, was tried. How-
ever, the results without application of binary error maps were poor in most tested cases.
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Figure 5.8: Resultant HDR image by using proposed algorithm with 32x32 size of processing
block

Evaluation of Proposed Algorithm

The quality of resulting HDR images by using proposed modifications is comparable with
the original histogram-based de-ghosting method. The resultant HDR image for Scene 1
was presented in this section in Figure 5.8. More results for the other tested scenes are
presented in Appendix D.

The proposed algorithm has excellent quality outputs in a scene where a motion appears
on a dark background as well as the original histogram-based ghost detection. However,
this algorithm has the same problems as the previous method as well. Weak resulting HDR
images of Scene 2 and 4 are shown in Figures D.1 and D.3.

The resulting output depends a little bit on the block size which is set for image process-
ing. As the tested sizes of blocks were selected 16x16, 32x32, 64x64, 128x128 and 256x256
pixels. The results from these tests are shown in Figure D.4 in Appendix D.
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Chapter 6

Conclusion

The main aim of this master’s thesis was to propose a modified de-ghosting algorithm based
on already existing methods which will be suitable for implementation on FPGA architec-
ture. Moreover, a prototype of the proposed algorithm had to be created by implementing
it in C++ programming language. All the points set down in the task specification were
accomplished in this thesis. The first point of the thesis was to study the relevant litera-
ture from the field of HDR image synthesis. The most important information about HDRI
synthesis which were important to complete this thesis, were summarized in Chapter 2 as
well as the information about ghost detection and removal in HDR images and existing
de-ghosting algorithms that had to be studied to meet the second point of the task spec-
ification. The third point of the thesis was to propose a de-ghosting algorithm which will
be suitable for implementation on FPGA architecture. To fulfil this point, the basic infor-
mation about FPGA architecture and programming principles had to be studied. These
information were presented in Chapter 3. The rest points of the task specification were
processed in Chapters 4 and 5. Chapter 4 includes the architecture and application spec-
ification, and summary of existing de-ghosting algorithms and reflection on the suitability
for FPGA implementation. The own implementation of selected algorithms and proposed
method as well as their testing and evaluation are shown in Chapter 5.

The implementation of modified histogram-based algorithm gives the same results in
comparison with the original histogram-based ghost removing method. Moreover, the im-
plementation is faster, more efficient and more suitable for FPGA architecture. However,
the original histogram-based ghost removal has worst results in some scene where the move-
ment is on a bright background. The proposed algorithm has the same problem as well.
Moreover, the set of testing data were quite small and only one setting of exposure times
was used for capture input images.

Because there are already more than fifty existing de-ghosting algorithms and the re-
search on this topic is very current, it was impossible to test each of existing algorithms
during this thesis. Therefore, the possible continuation of this thesis could be to study, im-
plement and test more existing de-ghosting algorithms. Based on the experiences acquired
during the time of studying de-ghosting problem in HDR images, I can see the potential
in some patch-based algorithms. However, it is necessary to find the best one for FPGA
implementation which will fit all desired requirements.
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Appendix A

Input Images

Figure A.1: Input LDR exposures of Scene 1 from under-exposed to over-exposed

Figure A.2: Input LDR exposures of Scene 2

Figure A.3: Input LDR exposures of Scene 3

Figure A.4: Input LDR exposures of Scene 4
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Appendix B

Results of Bitmap Movement
Detection

(a) HDR image with ghost artefacts

(b) HDR image with ghost removal

Figure B.1: Final HDR image for Scene 2
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(a) HDR image with ghost artefacts

(b) HDR image with ghost removal

Figure B.2: Final HDR image for Scene 3

(a) HDR image with ghost artefacts

(b) HDR image with ghost removal

Figure B.3: Final HDR image for Scene 4
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Appendix C

Results of Histogram-Based Ghost
Detection

(a) HDR image with ghost artefacts

(b) HDR image with de-ghosting method

Figure C.1: Resulting HDR image for Scene 2 using histogram-based ghost detection

61



(a) HDR image with ghost artefacts

(b) HDR image with de-ghosting method

Figure C.2: Resulting HDR image for Scene 3 using histogram-based ghost detection

(a) HDR image with ghost artefacts

(b) HDR image with de-ghosting method

Figure C.3: Resulting HDR image for Scene 4 using histogram-based ghost detection
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Appendix D

Results of Proposed Algorithm

Figure D.1: HDR image for Scene 2 using proposed algorithm with 32x32 size of block

Figure D.2: HDR image for Scene 3 using proposed algorithm with 32x32 size of block

Figure D.3: HDR image for Scene 4 using proposed algorithm with 32x32 size of block
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(a) HDR image by using 16x16 block processing

(b) HDR image by using 32x32 block processing

(c) HDR image by using 64x64 block processing

(d) HDR image by using 128x128 block processing

(e) HDR image by using 256x256 block processing

Figure D.4: Resulting HDR images for Scene 1 by using modification of histogram-based
ghost detection

64


	Introduction
	Acquisition of High Dynamic Range Images
	HDR Image Capture
	Ghost Detection and Removal Algorithms
	HDRI Storing
	Tone Mapping

	FPGA Programming Principles
	Field Programmable Gate Array
	VHDL

	Task Specification
	Objectives of the Thesis
	Architecture and Application Specification
	Summary of Existing De-Ghosting Methods

	Realization of De-Ghosting Algorithms
	Bitmap Movement Detection
	Histogram-Based Ghost Detection
	Proposed Algorithm

	Conclusion
	Input Images
	Results of Bitmap Movement Detection
	Results of Histogram-Based Ghost Detection
	Results of Proposed Algorithm

