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Abstrakt 
Tato diplomová práce se zabývá syntézou H D R obrazu (High Dynamic Range Imaging). 
HDRI technologie se stala v posledních letech velice populární. Běžný a nejvíce použí­
vaný způsob vytvoření H D R obrazu je spojení více snímků stejné scény pořízených pomocí 
různých expozičních časů. Tato technika funguje správně pouze v případě, že se jedná 
o statickou scénu. Pokud je však ve scéně nějaký pohyb ve chvíli, kdy se pořizují snímky 
dané scény, výsledný H D R obraz obsahuje artefakty zvané jako duchy. V této práci jsou 
prezentovány základní informace o H D R I se zaměřením na metody odstraňující artefakty 
z H D R obrazů. Práce shrnuje již existující metody a dvě z nich - tzv. bitmap movement de­
tection a histogram based ghost detection - představuje jako vhodné pro použití v real-time 
skládání H D R obrazu a pro implementaci na F P G A (Field-Programmable Gate Array) 
architektuře. Tyto metody jsou v práci implementovány v programovacím jazyce C++ 
jako prototypy. Navíc je zde navržena modifikace metody založené na výpočtu histogramu 
pro jednodušší a efektivnější implementaci na F P G A architektuře. 

Abstract 
This thesis deals with a synthesis of high dynamic range imaging (HDRI). H D R I technology 
is becoming increasingly popular in recent years. A standard and most common approach 
to obtain an H D R image is a multiple exposures fusion that consists of combining multiple 
images of the same scene captured with different exposure times. This technique works 
perfectly only on static scenes. However, if there is a motion in the scene during a sequence 
acquisition, a resultant H D R image contains ghosting artefacts due to moving objects in the 
captured scene. Basic information about H D R I are presented in this thesis. The main focus 
is given to de-ghosting methods that are reviewed and two of them - a bitmap movement 
detection based on a median threshold and a histogram based ghost detection - are presented 
as suitable techniques for a real-time video capturing and implementation on F P G A (Field-
Programmable Gate Array) architecture. These two methods are implemented in C++ 
programming language as prototypes. Moreover, a modification of histogram-based ghost 
detection is proposed, implemented and discussed to simplify its implementation on F P G A 
architecture. 
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Chapter 1 

Introduction 

When a photograph of a scene with a big range of brightness is taken, bright areas tend to 
be over-exposed while dark regions tend to be under-exposed. It is caused by a fact that 
common digital cameras can only capture a limited luminance dynamic range. The human 
visual system (HVS) can adapt to a dynamic range of up to 10,000:1 for parts of a scene 
and over 10 1 2 — 10 1 4 : 1 of magnitude in total. In contrast to HVS, digital cameras have 
a much lower dynamic range of typically less than 1000:1. Therefore, a very interesting 
and powerful technique has been developed during the last two decades to capture wider 
dynamic range by conventional cameras called high dynamic range imaging (HDRI). There 
is a special hardware which allows to take high dynamic range images directly. However, this 
specialized hardware is very expensive and for commercial use only. This fact encourages 
a lot of researches in the field of HDRI . 

The most common and widely used method to obtain H D R images is a multiple expo­
sures combination. The sequence of single-exposure low dynamic range (LDR) images of 
the same scene are captured at different exposure times by traditional camera technology 
and combined into a final H D R image. Each image in the sequence of multiple exposures 
will have different pixels properly exposed, under-exposed or over-exposed. However, in­
dividual parts of images in the sequence must overlap for the successful restoration of the 
dynamic range. Therefore, it is possible to ignore very dark and very bright pixels from 
computations of the resulting image. 

The biggest limitation of the multiple exposures combination is a requirement of a 
completely static scene when the sequence of images is being captured, because any object 
motion in the scene during capturing can cause ghosting artefacts in the final image. 

Various methods to detect and remove ghosting artifacts from H D R images have been 
developed during the last decade. These methods are called de-ghosting algorithms. The 
algorithms are from extremely elementary, logically understandable and easy to implement 
but often with poor results through more sophisticated to very complicated, hard to un­
derstand, computationally challenging and with time-consuming implementation but with 
excellent outputs on the other hand. 

This thesis discusses de-ghosting methods in HDRI . Moreover, this work is a part of a 
research project dealing with the real-time H D R F P G A (Field Programmable Gate Array) 
video camera. The de-ghosting methods described below will be evaluated based on the 
use in this project and the implementation included in this thesis will follow the F P G A 
architecture requirements. 
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The chapter following after this introduction (2) presents a theoretical basis about 
high dynamic range imaging. There are explanations of technical terms connected with 
HDRI . A pipeline of an H D R acquisition and its elements are presented in Chapter 2 as 
well. This chapter also includes a review of existing de-ghosting algorithms. Chapter 3 
describes a theoretical basis about F P G A which is necessary for a correct solution design. 
A reader can find an explanation of F P G A programming principles in this chapter as well. 
Chapter 4 focuses on a specification of thesis's goals. A realization and implementation 
of two selected algorithms and proposed algorithm are described in the fifth chapter (5). 
This chapter also includes results of the implemented methods. Finally, the last chapter 6 
summarizes acquired information and shows benefits of this master's thesis. 
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Chapter 2 

Acquisition of High Dynamic 
Range Images 

Camera sensors have a limitation in a dynamic range of luminance which can be captured 
since the first camera has been invented. In other words, it is impossible to make a pho­
tograph of a scene with a big range of brightness where bright as well as dark regions will 
be well exposed. The extreme areas will appear saturated in the image. There are a few 
very expensive specialized cameras which allow to take bigger range of brightness than 
common digital cameras. However, they are for commercial use only and they are still in a 
development phase more than in practice. These reasons have caused a lot of research that 
resulted in a creation of a method called high dynamic range imaging (HDRI). 

This chapter introduces a necessary background knowledge to understand high dynamic 
range imaging. It begins with an explanation of basic terms such as high dynamic range 
imaging, dynamic range, exposure value and radiance. Then the chapter continues with 
a brief description about light and color spaces. A simple high dynamic range pipeline is 
presented as well as a deeper explanation of some substantial parts of this pipeline. Cap­
turing, the first component of the pipeline, is a subject of Chapter 2.1. A ghost detection 
problem is closely connected with this part hence the following Chapter 2.2 focuses on 
de-ghosting algorithms. Storing, the second element of the pipeline, is presented in Chap­
ter 2.3 where a problem about encodings of high dynamic range images and its formats 
is discussed. Processing, the next component of the pipeline, includes image processing 
and much more but this part is not relevant for this thesis as well as H D R monitors. If a 
reader is interested in H D R monitors there is a whole chapter dealing with this topic in [33]. 
Finally, tone mapping which is connected with L D R monitors, is introduced in Chapter 2.4. 

Interesting books focus on an explanation of issues about H D R I are High Dynamic 
Range Imaging: Acquisition, Display, and Image-Based Lighting [ ], Advanced High Dy­
namic Range Imaging [ ], High-Dynamic-Range Vision [33] and The HDRI Handbook: High 
Dynamic Range Imaging for Photographers and CG Artists [8]. These books were used as 
basic sources of technical information for this chapter. 
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High Dynamic Range Imaging 

High Dynamic Range Imaging (HDRI) is a set of techniques which reproduces greater 
dynamic range of luminosity between the lightest and the darkest point of the image than 
it is possible by using standard digital imaging techniques. H D R images can represent 
greater range of luminance levels found in real-world scenes from direct sunlight to absolute 
darkness. This technology is used in photography, computer graphics and image processing. 
Non-HDR cameras may take photographs only with a limited exposure range which is a 
complication for a capture of H D R images. 

Dynamic Range 

Dynamic range (DR) is the biggest overall contrast which is possible to find in an image. 
The D R is defined as a logarithmic ratio called contrast ratio between the largest and the 
smallest readable signal. The dynamic range always depends on two factors - complete 
range of brightness and its smallest noticeable step. For a camera, the D R is a ratio of 
luminance that just saturates a sensor and a luminance that lifts a camera response to one 
standard deviation above a noise level. The dynamic range is also a unit of sound because 
the first use of the D R was in signal processing. The technical dynamic range is defined as 
logarithmic ratio between the biggest readable signal and noise in background. Its unit is 
a decibel. The D R is measured as a ratio, as a base-10 or base-2 logarithmic value. But 
photographers measure dynamic range using difference of exposure values in various parts 
of the image [ ]. 

Exposure Value 

Exposure value (EV) is a photographic measure which defines how much light gets through 
camera lens and strikes to a photosensitive layer of camera sensor. Amount of this light de­
pends on a speed of camera shutter and a size of camera aperture. The E V is a combination 
of both these numbers [8]. 

The exposure value and contrast ratio formulate the same thing. But contrast ratio 
has linear unit and the E V is in a logarithmic scale. Therefore a transfer equation is 
^exposure values _ c o n s f r a s f ratio. 

Radiance 

Radiance measures the amount of light passing through, emitted from, leaving, or arriv­
ing at a particular point in a given direction. For a digital camera, the radiance values 
correspond to a physical quantity of light incident on each element of a sensor array. The 
radiance, a radiometric quantity, is measured in watts per square meter per steradians [76]. 

HDRI is a new area where a lot of disciplines, such as photography, computer graphics, 
programming, sciences dealing with specific aspects of light and human vision, meet each 
other. The essence of all in H D R I is a light. H D R I is a finite digital representation of light. 
It may contain more light than any other earlier technique [8]. 

The biggest challenge for H D R I is to display more realistic images on a computer. This 
is connected with human vision because people are main consumers of resultant outputs. 
Therefore it is necessary to know about light perception to understand H D R I concept. 
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Light 

Light is very important in H D R I because a perception of a scene by human vision system 
depends on lighting conditions. Visible light is radiant energy measured in joules. Light 
travels in space, air and water, interacts with materials where can be refracted, reflected, 
transmitted or absorbed. Light can reach human eyes and stimulate them to produce visual 
sensations. It depends on a light wavelength [6, 76]. A n electromagnetic spectrum is in 
Figure 2.1. 

Gamma 
Rays X-Rays 

Ultraviolet 
Rays 

Infrared 
Rays Radar FM TV Shortwave AM • 

1 x lCr1 4 1 x 10"12 

Wavelength (in meters) 

1 x 10 j 1 x Id"4 1 x 10"2 1 x 102 1 x 10* 

Visible Light 

4 x 10"1 5xl0- 7 6xl0"7 

Wavelength (in meters) 
7 x id - 1 

High Energy Low Energy 

Figure 2.1: Electromagnetic spectrum 1. A visible light is approximately between 390 and 
790nm and a human eye sensitivity is between approximately 400 to 760nm. 

There are two possible expressions of light measures. Radiometric quantities are defined 
in Table 2.1 and main photometric units are presented in Table 2.2. 

Color Spaces 

Color spaces are mathematical descriptions for representing colors. Color spaces are rep­
resented by a set of formulas, that define a relationship between color vector, or they are 
standard CIE (Commission Internationale de l'Eclairage) X Y Z color spaces. A parameter Y 
in CIE X Y Z color space defines brightness. The brightness (illuminance) may be computed 
from R G B as Y = 0.2126i? + 0.7152G + 0.07225 [76]. The chromaticity is specified by 
two derived parameters x and y. The color space defined by x, y and Y is called CIE x y Y 
and it is represented by chromatic diagram in Figure 2.2. The parameters x and y may be 
computed from all trichromatic parts X , Y and Z as it is shown in Equation 2.1. 

X Y 
x X + Y + Z ,y X + Y + Z 

(2.1) 

1Source: http://www.pion.cz/en/article/electromagnetic-spectrum 
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Quantity Unit Definition Description 
Radiant energy J (joule) Qe The basic unit for light 

Radiant power W (watt) = J-s'1 p _ dQe 
C e — dt 

The amount of energy that 
flows per unit of time 

Radiant intensity W • sr-1 T _ dPe  
l e — dto 

The amount of Radiant Power 
per unit of direction 

Radiant exitance W • m~2 
1V1e - dAe 

The amount of Radiant Power 
per unit of area to all directions 
of the hemisphere from a point 

Irradiance W • m~2 TP — dPe 

^ e - dAe 

The amount of Radiant Power 
per unit of area from all direc­
tions of the hemisphere at a point 

Radiance W • sr-1 • m~2 L - d 2 P e 

e dAe cos 9du) 

The amount of Radiant Power 
arriving/leaving at a point 
in a particular direction 

Table 2.1: Main radiometric units [76, 6]. 

Quantity Unit Description 
Luminous power (Pv) Im (lumens) = cd • sr The weighted Radiant Power 
Luminous energy (Qv) Im • s _ 1 Analogous to the Radiant Energy 
Luminous intensity (Iv) cd (candela) = Im • sr-1 The Luminous Power per direction 
Luminous exitance (My) lux = Im • m~2 Analogous to Radiant exitance 
Illuminance (Ev) lux = Im • m~2 Analogous to Irradiance 
Luminance (Lv) cd • m~2 = Im • m~2 • s r - 1 The weighted Radiance 

Table 2.2: Main photometric units [76, 6]. 

X 

Figure 2.2: Chromatic diagram CIE x y Y 2 

2Source: http://es.wikipedia.org/wiki/CIE_XYZ 
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There are two classes of color spaces - device dependent and device independent. The 
color space CIE X Y Z is typical representative of device independent color spaces. A typical 
device dependent one is the R G B color space. This color space is represented by three 
additive primaries - Red, Green and Blue. The R G B color space is very popular in HDRI . 
However, many computations are also calculated in the luminance channel Y from X Y Z 
color space. This channel is often referred as L (luminance) in H D R I [6]. 

H D R Pipeline 

A procedure of H D R image acquisition from capture to displaying may be summarized by 
a basic H D R pipeline shown in Figure 2.3. 

Capturing 

Tone Mapping 

Figure 2.3: Basic H D R pipeline (taken from [6]) 

2.1 HDR Image Capture 

Currently the biggest problem in a capture of H D R images is a possibility to record a 
full spectral content and dynamic range from a real world scene. A n image sensor in a 
digital camera is exposed to a color and dynamic range of a scene and a lens is only a 
passive element which refocuses the incoming light onto the image plane. However, there 
are limitations in the image sensor design which prevent a camera to capture all of the 
information [76]. 

Therefore, there are a few ways to generate H D R images. Nowadays, the most com­
mon methods are multiple exposures composition, using of specialized hardware, expanding 
single-exposure L D R and computer rendering. 

2.1.1 Expanding Single-Exposure L D R 

A n L D R content can be partly transformed into an H D R content using operators com­
monly called expansion operators (EO). This software technique allows an L D R image to 
be enhanced for viewing on H D R monitors and for using in H D R applications such as 
image-based lighting. This technique is analogous to the colourisation of black and white 
images. A number of methods for expanding an L D R image has been already proposed. 
Common steps in an expansion operator are [6]: 
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1. Linearisation - Creates a linear relationship between real-world radiance values and 
recorded L D R pixels. 

2. Expansion of pixel values - Increases the dynamic range of the image. It means 
that low values are compressed, mid values are kept as they are and high values are 

3. Over/under-exposed reconstruction - Generates the missing content in the over-exposed 
and under-exposed areas in the L D R image. 

4. Artefacts reduction - Decreases artefacts resulting quantization or image compression, 
which can be visible after the expansion of pixel values. 

5. Color correction - Keeps colors as in the original L D R image because colors are 
desaturated during expansion of pixel values. 

2.1.2 Specialized Hardware 

In recent years, some companies, such as Canon, Nikon, Sony, Sigma, etc., provide H D R 
cameras based on automatic multiple exposure capturing using features such as multi-
exposure capturing or automatic exposure bracketing connected with automatic exposure 
merging. While others develop digital sensors that can natively record bigger dynamic 
range of a scene in a single shot. 

There are a few researches dealing with sensors for H D R capture. For example High 
Dynamic Range C M O S (HDRC) and a family of SuperCCD with SuperCCD H R (High 
Resolution), SuperCCD SR (Super Dynamic Range) and SuperCCD E X R [ ]. The sen­
sors can be based on either C M O S (Complementary Metal-Oxide-Semiconductor), such as 
H D R C , or C C D (Charge-Coupled Device) technology like SuperCCD. 

Numerous attempts have been tried to expand the dynamic range of C M O S image 
sensors. Generally, these methods can be divided into three categories [53]: 

Logarithmic response H D R C M O S image sensor 
These sensors use logarithmic response pixels or circuits to non-linearly extend the 
dynamic range which is possible because the photo-current flowing through a resistor 
with logarithmic current-volt age characteristic. Generally, this resistor can be im­
plemented by a M O S transistor operating in weak inversion mode. Figure 2.4 shows 
its structure. The most disappointed disadvantage of the logarithmic image sensor 
is due to its working theory, non-linear response, which is not preferred in most of 
applications [53]. 

expanded. 

VDD 

Column 
output 

Figure 2.4: Logarithmic response pixel structure (taken from [ ]) 
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Lateral overflow integration capacitor implemented H D R sensor 
These sensors apply a lateral overflow capacitor to improve the operation range. This 
type of H D R C M O S imager achieves from a lOOdB up to 180dB dynamic range. The 
biggest advantage of such types of H D R image sensors is their linear response which is 
preferred in developing the color processing for wide dynamic range imaging data. A 
basic structure of the lateral overflow integration capacitor implemented H D R sensor 
is shown in Figure 2.5. Disadvantages of this pixel are mainly situated around the 
transfer gate. A partially opened T X transistor during the exposure could introduce 
additional dark current source resulting in higher dark current shot noise. Besides, 
the complex drive circuits are also full of challenges [53]. 

Figure 2.5: Lateral overflow capacitor H D R pixel (taken from [ ]) 

Multiple exposure-time H D R sensor 

This type of H D R sensors adopts multiple exposure-times to expand the dynamic 
range. This approach is increasing the read out speed to realize multiple exposures 
within one frame period. This method can provide a linear response and over 120dB 
dynamic range at the expense of complexity of an external system and frame memo­
ries. In fact, compared to a normal C M O S image sensor, the extended dynamic range 
is contributed by the high-speed read out circuitry. Thus, any type of pixel can be 
used. The most undesired problem of such a method is the discontinuous signal to 
noise ratio (SNR) at the transition points between different integration times. It is 
because the photo-diode shot noise, which is depended on illumination level, becomes 
the dominated noise source with the increase of illumination level [53]. 

Some of these sensors have even being marketed, but only a few integrated solutions 
are commercially available and very expensive: 

High Dynamic Range C M O S (HDRC) [38] 
H D R C has been developed by the Institut fur Mikroelektronik Stuttgart (IMS CHIPS). 
This camera sensor pixel has a logarithmic response. The pixel value is digitalized 
into 10 bits. It means, the camera is able to capture a dynamic range of more than 
10 7 : 1. There is no need to change the exposure time or aperture settings with such 
large dynamic range. A disadvantage of this camera is a low resolution and more 
noise compared with L D R cameras. Figure 2.6 displays the dynamic range of H D R C 
and other sensors. 

Column 
.output 
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100A5A 

Figure 2.6: Dynamic range of H D R C and other sensors (taken from [38]) 

Silicon Vision Lars III [55] 

This camera works on a principle of local self-adaptation. Each pixel has its exposure 
time and the pixel value consists of the exposure value and time-stamp determining 
the length of exposure. Figure 2.7 shows structure of L A R S pixels. 

Figure 2.7: Block diagram of L A R S pixels (taken from [ ]) 

2.1.3 Mult iple Exposures Fusion 

Available consumer cameras are limited because they can record only a 12-bit linear or 
8-bit sRGB color space into R A W format which does not cover a full dynamic range used 
in the real world. Therefore, the H D R image is generated by combining multiple single-
exposure L D R images of the same scene which were captured at different exposure times 
by traditional camera technology. 

Each image in the sequence of multiple exposures will have different pixels properly 
exposed, under-exposed or over-exposed as it is displayed later on in Figure 2.13. However, 
individual parts of images in the sequence must overlap for the successful restoration of 
dynamic range. Therefore, it is possible to ignore very dark and very bright pixels from 
computations of the resultant image. 
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Figure 2.8: Comparison of L D R (on the left) and H D R (on the right) images3 

Taking an Image by Digital Camera 

scene 
radiance -

(L) 

sensor 
irradiance -(E) 

Shutter Sensor 

sensor 

A/D 
Converter 

Image 
Processing 

• exposure • (X) 
/ — a n a l o g 

voltages 
b digital 
" values 

final 
digital 
values (Z) 

RAW 

Figure 2.9: Image acquisition pipeline (inspired by [15]) 

Figure 2.9 shows a process of taking an image using a digital camera. The image is 
projected on the image sensor in the camera using the lens. The camera image sensor is 
formed by C C D or C M O S chip and has a linear response with a few exceptions: 

• Level of black - The level of black color has not be exactly zero. The level can be 
shifted upwards because of the chip design, charge amplifiers, A / D converter and its 
noise. It means the whole color scale in the image is shifted and the black color 
has a greater value than zero. To eliminate this effect, the level of black has to be 
determined and the found value has to be subtract from the image data. 

• Quantization - The quantization arises during the transfer of data from anolog to 
digital form. It causes bigger inaccuracies in the dark values of the image. The 
absolute error value can be reduced by using a converter with a larger number of bits. 

• Saturation - The image sensor has a level of saturation, i.e. the maximal value of 
output data, because the sensor photo-diodes have a limited capacity charge. It means 
the camera gives the same numerical response for all values of the input luminance 
above the level of saturation. Pixels with this same response are called saturated and 
can not be used for H D R image composition. Thus, they are eliminated in the fusion 
methods by different ways, e.g. by using a weighting function. 

The analog output data from the image sensor are converted to digital form using an A / D 
(analog-digital) converter which is also a linear process if the effects of quantization are 
ignored. The further processing follows in the camera. This further processing has the 
biggest effect on the camera response function. Some cameras support storing images in 
the R A W format which stores the output data directly from the sensor without an image 
processing. 

Source: http://en.wikipedia.org/wiki/Wikipedia:Featured_picture_candidates/Sunset_hdr 
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Multiple exposures fusion assumes that L D R images used to capture an H D R image 
are perfectly aligned, there is no movement in the scene, a noise of the C C D or C M O S 
sensor in the camera is not a problem and the camera is a device with the perfectly linear 
light measurement. These conditions are very rare in the real world [6, 76]. However, the 
mentioned problems with motion can be reduced by adapting alignment, ghost and noise 
removal algorithms from image processing which are mentioned in the next Section 2.2. To 
resolve the problem with a non-linear data from a camera, there is necessary to know and 
apply so-called a camera response curve. 

Camera Response Function 

Camera response function is a curve showing a relationship between amount of incoming 
light and image pixes values of a camera. Even if an optical sensor in a camera works 
quite linear, the resulting pixel values are non-linear. This may have several reasons such 
as the A / D (analog-digital) converter may not work linearly or there is a further processing 
on captured data in the camera. Common modifications are a gamma correction, white 
balance application and some corrections to make the image more visually appealing. The 
non-linear working A / D converter applies to all kinds of images but the other reasons 
apply only to non-RAW images. The camera response function is an important issue in 
the H D R I because the linear input data are necessary to compose a resultant H D R image. 
A n inverse camera response function is used to provide linear values. A badly estimated 
camera response curve (non-linear data) will result in banding in contrast gradients. It is 
possible to deduce this function from the image exposures sequence [18]. 

A basic method to determine a camera response function is to use a table composed of 
several fields in grayscale. The measurement is complicated because the table has to be 
uniformly illuminated. Any inequalities cause a deviation in an identified response from a 
real camera response. This method returns only a relative linear response. A n illustration 
of this method is shown in Figure 2.11. First, a photograph of the table is capture by a 
camera. Then, the camera response function is reconstructed based on known gray values 
in the table. This method is also used as a reference to test below mentioned methods. 

4Source: http://cybertron.eg.tu-berlin.de/eitz/hdr/ 

-2 

Figure 2.10: Camera response function of Canon EOS 350D 4 
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(b) Measured response 

Figure 2.11: Illustration of camera response function calibration 5 

There are also several methods to obtain a camera response function without a use 
of measuring tables. These methods use a collection of difference exposures and known 
relationship between them to reconstruct a camera response function. 

Debevec 
This algorithm was presented by Debevec et al. in [15]. The algorithm is based on 
exploiting a physical property of imaging systems, both photochemical and electronic, 
known as reciprocity. The reciprocity equation which defines the relationship between 
Ei, the film irradiance values, and Zij, the values of each pixel, is: 

Zii = f{Eitej), (2.2) 

where i is a one dimensional index specifying the position of the pixel in the image, j 
is an index across different exposure times Atj and / is an unknown camera response 
function. However, since we assume the camera response function / is monotonous, 
it is invertible, and we can define a function g as the nature logarithm inverse to the 
function / : 

9 = I n / " 1 . (2.3) 

Then, we get an equation in the form: 

g(Zij) = In Ei +Atj. (2.4) 

Unknown values are Ei and function g. Finding g implies recovering a finite number 
of values of g(z), where z =< zmin; z m a x > is a finite set of values that pixels can 
take. Then, the problem is reduced to a search of finite number of values of g{z) and 
iV values of In Ei, which minimizes the following quadratic objective function: 

N P Zmax—1 

O = 2>(2ij)- In E - In At j}2 + X ]T g"(z)2 (2.5) 

i=l j=l z=Z7nin-\-\ 

5Source: http: //www. imatest. com/docs/ 
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Robertson 
This method proposed by Robertson et al. [ 7] does not give any restrictions to the 
shape of the resulting camera response function. The method assumes the Gaussian 
weighting function to find a camera response function. The authors search for solu­
tions of an objective function using the Gauss-Siedel iteration. The objective function 
is defined by authors. 

Mitsunaga 
This method presented in [ ] approximates the camera response function by a poly-
nom of N-th degree. The authors define an error function and they minimize this 
function to find coefficients of the polynom. The advantage of this method is an 
ability to determine the exact ratios of exposures. 

Other methods 
There exist also other methods, such as a histogram-based method [ 7] and method 
based on an attempt to deduce the response function from a single image [52]. 

Once each image is processed by a camera response function and they are in the same 
unit of measurement, corresponding pixels may be averaged across exposures excluding 
under-exposed and over-exposed pixels into the resultant H D R image [76]. 

The fusion of multiple exposures is the most commonly used method until recently and 
uses software methods to capture an H D R image. The fusion can be done in a radiance 
domain or image domain (see Figure 2.12). 

• -i 
Fusion in t he 

imagedoma in } 

Input image 
sequence 

I 1 
Fusion in the 

I radiance domain 

Weight ing map 
est imat ion 

Camera response 
est imat ion 

Tonemapping 

Display 

Figure 2.12: H D R image generation process (taken from [82]) 

Fusion in the Radiance Domain 

This type of fusion was proposed by Debevec et al. [ ] and consists of three steps. First, 
the camera response function is recovered to bring the pixel brightness values into the 
radiance domain. Next, the radiance maps are combined into an H D R image encoded 
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specially to store the pixel values that span the entire tonal range of the scene. Finally, a 
tone mapping operator is used to make the H D R image to be able to display on common 
L D R monitors [82]. 

Methods that combine exposures in the radiance domain give a true H D R radiance 
map which might be useful for later processing or displaying applications. A precision of 
these methods highly depends on an accurate estimation of the camera response function, 
which is sensitive to image noise and misalignment. Moreover, these methods require tone 
mapping operators. 

Fusion in the Image Domain 

Second type of methods presented by Mertens et al. [61] combine multiple exposures directly 
without a knowledge of a camera response function. These methods take only the best parts 
of each exposure. The resultant H D R image is obtained as a weighted average of pixel values 
across exposures: 

N 

lg = J2w(Zuv)zL (2-6) 
fe=i 

where I is a composite image, Zk

av is a pixel value at the position (u,v) and w(Z^v) is a 
weight of a pixel at the position (u,v). 

Methods that combine exposures in the image domain are more efficient than the previ­
ously mentioned technique since they avoid the estimation of the camera response function 
and do not require tone mapping. These methods directly produce H D R images which can 
be displayed on L D R monitors. 

There have been already proposed several algorithms which implement the H D R image 
acquisition from multiple L D R images with different exposures in the radiance or image 
domain. The only assumption, pixels with a linear dependency to the light in the scene, 
was discussed above. 

Method by Mann 
Probably the first known algorithm was presented by Steve Mann in [57] in 1993 and 
this method was more explained by himself and Rosalind W. Picard in [59] in 1995. 
At first, the authors offer a procedure to find the camera response curve. Then they 
compute a weighted average of all input images. The weighting function is based 
on the certainty functions. This approach provides a gradual transition between the 
images, where the shadow detail comes primarily from the lighter image and the 
highlight detail comes primarily from the darker image [ ]. The paper does not 
present any specific equations. 

Method by Debevec 
This method was presented in [ ] in 1997 by Paul E . Debevec and Jitendra Malik. 
At first, they use an amount of exposures to recover the camera response function. 
Then the algorithm fuses these exposures into a single H D R radiance map whose 
pixel values are proportional to the true radiance values in the scene. The algorithm 
uses all the available exposures for better robustness. For this purpose, it applies the 
weighting function: 

Z Z m i n for Z ^ (^" i*" ^max) 

Zmax for Z ^ 2^Zfn^n ^ITLO,X) 
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where Zmin and Zmax are the least and greatest pixel values in the input images. The 
resultant pixel p in the H D R image is calculated from: 

T,j=iw(zij)(g(zij) - m A * j 

where Ei is the irradiance, P is the number of photographs and g is the camera 
response function. The algorithm assumes the exposure time Atj is known. 

A n advantageous secondary effect of the multiple exposures composition is a reducing 
of noise in the recovered radiance values. It also reduces the effects of imaging artifacts 
such as a film grain. 

Method by Robertson 
This method was discribed in [1 ] in 2003. This algorithm uses a probabilistic model 
and maximum likelihood method. The resultant pixels of H D R image are calculated 
as: 

Z ) i = i w{Zij)tig{Zk (2.9) 

where Xj is the resultant pixel value j in the H D R image, P is the number of pho­
tographs, g is the camera response function, w is the weighted function and t is the 
exposure time which is known for each exposure i. 

In this algorithm data from images with longer exposure times are weighted more 
heavily as indicated by U. It has an advantage of the reduction of noise. 

Longest Unsaturated Exposure 
This method selects resulting pixels from a single exposure which has the longest 
exposure time but still unsaturated pixel value at this exposure time. The resulting 
pixel value is calculated as: 

Lp = Zlongeslp/tl0ngeSt, (2.10) 

where Lp is the resulting pixel value p in the resultant H D R image, the pixel value 
Ziongestp is the value of the pixel from the image with the longest exposure time where 
pixel is not saturated and t i o n g e s t is the exposure time of this image. 

2.2 Ghost Detection and Removal Algorithms 

When the most common method for H D R acquisition, multiple exposures fusion, is used 
and there is some motion in the captured scene, ghost artefacts appear in the final image. 
There are already a lot of research studies dealing with a detection and removal of these 
motion artefacts in H D R images. A couple of these studies, such as [82, 28, 29, 86], make 
a review of the proposed methods in this area. These were used as basic research sources 
for this chapter. 

The most common technique to obtain an H D R image is a combination of multiple dif­
ferent exposures. However, this method has two main problems regarding motion artefacts 
in resultant image. First one is a global camera motion called as misalignment. This can 
be solved by placing a camera on a tripod or by using an image registration method. For 
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example, Greg Ward in [ ] proposed an efficient solution by using the median threshold 
bitmap technique. There is also a possibility to use methods based on key-points extraction 
and matching as well, such as Harris corners detector [ ] or SIFT features detection [54]. 
The main goal of this thesis is to focus on the second problem: moving objects in the scene 
while capturing the images called as ghost artefacts. Figure 2.13 shows multiple exposures 
images with motion and a resultant H D R image with a ghost artefact. 

( b ) 

Figure 2.13: (a) Six images with different exposures and (b) The resultant H D R image with 
ghost artefacts (both taken from [82]) 

Several methods which solving ghost artefacts in H D R images have been already devel­
oped. Most of them consists of two steps: a ghost detection, the detection of regions where 
ghosts appeared, and a ghost removal. 

2.2.1 Ghost Detection Methods 

Ghost detection methods detect motion in a sequence of exposures where a moving object 
can appear on a static background or on a moving background with static or dynamic 
objects. The following methods, mostly taken from [82], can detect both or only the first 
mentioned type of motion. 
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Variance-Based Ghost Detection 

Variance based ghost detection method published in [ ] by Reinhard et al. detects regions 
with moving objects based on weighted variance measure. First, the camera response 
function and the radiance maps for each L D R are computed. Then a Variance Image (VI) 
is generated by evaluating the variance of radiance values at each spatial location (u, v): 

V I Y . t M z l ) { E l ) V Y . t M z l ) 1 ( 2 1 1 ) 

where Z\v = pixel value at the position (u,v) in exposure E*v = estimated radiance 
value at the position (u, v) in exposure and the weighting function is defined as: 

w{Zk

av) = | ^ _ Zkv z z£ > 127 • ( 2 J 2 ) 

The resultant V I can be used as a likelihood measure for intra-image movements because 
regions inclusive motion exhibit high variance. Regions where the local variance measure 
is above a defined threshold, are detected as ghost regions: 

Q f 1 if VIuv > threshold _ , 
u v \ 0 otherwise 

This method has weak results and cannot be used if moving objects have similar colors 
as a background. Therefore, Jacobs et al. in [ ] proposed another measure derived from 
entropy. 

Entropy-Based Ghost Detection 

First, a local neighbourhood based entropy map is computed for each L D R image. For each 
pixel (u, v) in the entropy is calculated from a local histogram computed in the window 
of size r x r around (u, v), where r is an odd number bigger than 1: 

B-l 

Hi = -J2P(X = x) l o S ( P ( X = ( 2 - 1 4 ) 
x=0 

where B is the total number of bins of the histogram and the probability P{X = x) is 
obtained from the normalized histogram. Then, an Uncertainty Image (UI) is derived from 
the weighted difference of the precomputed entropy image as follows: 

N Kk M 

UIUV = Y , i : ^ N L<fc khkJv, (2-15) 
k=i i=i l^k=i 2^i=i v 

where h^v = \H^V — Hl

uv\ and vkl = mm(w(Zk

v),w(Zl

av)). The weighting function is defined 
as: 

i n ( 7 k , _ / (Zt x 0.9/127) + 0.05 if Z*v < 127 
W ( u v > \ ((255 - Z*v) x 0.9/127) + 0.05 if Z*v > 127 ' 1 1 

The resultant UI is used to find ghost regions based on thresholding: 

Q f 1 HUIUV> threshold _ . 
T " ' ] 0 otherwise 
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Prediction Based Ghost Detection 

Prediction based method proposed by Thorsten Grosch in [26] uses the deviation between 
the predicted intensity value of a pixel and the actual intensity as a measure to find ghost 
pixels. The deviation is calculated from two images Lk and L\ using the estimated camera 
response function: 

Zl

uv = f(^f-\Zk

uv)), (2.18) 

where / is the camera response function and At ; and Atk are the exposure times of Lk and 
Li, respectively. 

Pixels which show a significant difference between the predicted and the actual value 
for each pair of consecutive input L D R images, are marked as ghost pixels: 

T U V 
1 if \ZL ~zuv\> threshold _ 
0 otherwise 

Pixel Order Relation 

It is possible to relate pixel values to radiance values using the camera response function 
/() as published by Sidibe et al. in [80]: 

Zt = f{Ek

uvAtk). (2.20) 

A n increase in radiance values always produces an increased or equal recorded pixel 
values. The pixel order relation method uses this evidence to assume that /() is monotonic. 
Then, the intensity values for each pixel location {u, v) in different exposures must satisfy: 

Zt<Zl

uv, if Atk< Ath (2.21) 

The creation of ghost map ensues from the previous equation as: 

Q _ f 0 ^ Z\v < Z\v < ... < Z^v 2̂ 22) 
"' I 1 otherwise 

Bitmap Movement Detection 

This method uses the median threshold bitmap (MTB) algorithm which was introduced by 
Ward et al. in [88] for a purpose of image alignment and taken over by Pece and Kautz [69] to 
detect ghost artefacts in dynamic scenes. The M T B technique helps to compare images that 
are taken under different exposures by effectively removing most of illumination differences 
between images. This method relies on the fact that if a pixel is not affected by ghost, then 
its relation to the median intensity of the image must be the same in all taken L D R images. 

A binary bitmap Bk is computed by applying a threshold to the image Lk based on its 
median intensity pixels value. If the values in the image Lk are less than or equal to its 
median intensity pixels value, pixels of Bk are black. On the other hand white regions of 
Bk indicate the pixels whose values are greater than the median intensity pixels value. The 
obtained bitmap Bk reveals image features while removing intensity differences between 
different exposures (see Figure 2.14). 

23 



(a) Original Exposures: +2 and -2 stops respectively. 

(b) Bitmaps generated by M T B . 

Figure 2.14: Bitmap similarity using M T B technique (taken from [69]) 

By summing up all computed bitmaps into image M*, the pixels affected by movement 
are detected because each pixel preserves its bit value across all Bk in the static scene. The 
morphological operations (dilation and erosion) are applied on the image M* to reduce 
noise. Then, any pixel in the M* that is neither 0 nor iV (N is a number of exposures) is 
classified as a movement: 

M* 0 if Suv = 0 or Suv 

1 otherwise 
N 

where Suv is the sum of the bitmaps values at location (u, v): 

N 

Si, 

(2.23) 

(2.24) 
fc=i 

M* is converted into a cluster map M where each identified cluster has a different label 
which is computed using connected component labelling [ ]. A n overview of this technique 
is illustrated in Figure 2.15. 
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Figure 2.15: Overview of bitmap movement detection algorithm (taken from [69]) 

This method uses a fusion in an image domain but it is possible to integrate it also 
into a radiance domain fusion. The algorithm works well on a large variety of movement 
configurations. Moreover, the method is faster than other de-ghosting algorithms, relies 
only on simple binary operations and thus it can be easily implemented directly on a 
camera hardware [69]. 
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Histogram Based Ghost Detection 

This method proposed by M i n et al. [ ] calculates ghost maps based on multi-level thresh­
old maps which are extended from the M T B . It takes an advantage of a condition that grey 
levels at a particular pixel location must exhibit an increasing or equal property when the 
images are captured from lowest to highest exposures. 

First, each image Zj is divided into N levels which gives a set of N threshold values Tj^, 
where each level has the same number of pixels. Then, the multi-level threshold maps Lj 
are computed by classifying the intensity value of Zj into N levels using these thresholds. 
Figure 2.16b shows the multi-level threshold maps Lj, 1 < j < 3, N = 8, extracted from 
LDRIs in Figure 2.16a. 

(b) Multi-level threshold maps 

Figure 2.16: Motion detection by histogram based method (taken from [62]) 

Finally, the ghost maps are estimated using the computed multi-level threshold maps 
for each L D R I excluding the mid-exposure L D R which is taken as the reference image: 

G ( 1 i f | ^ e / - ^ | > l , j V r e / 
, J [ 0 otherwise 

Thus, the method produces j — 1 ghost maps, where j is a number of input exposures. 
This method generates the radiance map based on Debevec et al. [ ] and incorporates 
computed ghost maps into their weighting factor. 

Lee et al. proposed an improvement of this algorithm in the Improved Histogram 
Based Ghost Detection in [ ]. Later on Ahirwal et al. also built on this method with their 
Ghost-Free High Dynamic Range Imaging Using Histogram Separation and Edge Preserving 
Denoising in [1]. 
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Patch-Based Ghost Detection 

This algorithm was presented in [79] by Sen et al. This is a patch-based energy minimization 
formulation. The algorithm uses the reference image Lref which is an L D R image that 
contains most well exposed pixels. The resultant H D R image contains as much information 
as possible from this reference image Lref. In places, where the reference image Lref is not 
well exposed, every patch in the image H at a given exposure should have a similar patch 
in one of the L D R images after exposure adjustment (coherence). Also, every exposure 
adjusted patch in all images should be contained in H at exposure k (completeness). 
The iterative approach performs joint optimization of image alignment and H D R merge 
process until all the exposures are correctly aligned to the reference exposure and a good 
quality H D R result is produced [29]. 

Hu et al. [ ] present another patch-based method in 2013 based on an H D R generation 
from exposure stacks. This algorithm uses an iterative approach to register L D R images to 
a reference image. The algorithm produces a registered stack from a sequence of misaligned 
images of dynamic scenes. The algorithm propagates the intensity and gradient information 
during H D R reconstruction. This approach performs well even if the reference image has 
large saturated areas [29]. 

R A N S A C Based Ghost Detection 

This method [1 !] belongs to a group of patch-based methods. The method is base on the 
fact that the intensity values at any location (u, v) in any two input images and L/ 
satisfy the following condition: 

=m = (2.26) 
Atk Ati 

Besides saturated pixels, the above rule is broken only at locations affected by ghost. 
The processing is performed on a patch level in order to be robust to noise. At first, the 
least saturated image is selected as the reference Lref. Then, log intensities of an r x r 
patch in Lk are plotted against the log intensities of the corresponding patch in the reference 
image Lref in order to find patches of Lk affected by ghost. A best fit line through the 
plot is obtained by the R A N S A C procedure [21] and the percentage number of outliers is 
calculated using a distance threshold. If the percentage is greater than the threshold, the 
tested patch includes a ghost. 

Graph-Cuts Based Ghost Detection 

Heo et al. [ ] use joint probability density functions between exposure images to get global 
intensity transfer functions to roughly detect ghost regions. These regions are further 
refined using energy minimization based on graph-cuts methods [ ]. First, joint intensity 
histograms are constructed for the color channel c G R,G,B between the reference image 
Lref and another image Lk: 

U V 

prefMc = Y/Y/Gk

uvx T[(i,j) == (Zk

uv,ZrJ)}, (2.27) 
u=lv=l 
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where T is 1 if the argument is true and 0 otherwise, and k is a number of exposure. A 
ghost map is defined for each exposure by: 

IW 

,ref,k\c,yref\c 
ZUv) < threshold (2.28) 

Because the ghost regions estimated by the above equation are noisy, they are refined by 
an energy minimization approach using graph-cuts method. The minimize energy function 
is defined as: 

where the boolean label fkip) £ 0 , 1 represents whether the pixel p = (u, v) in the exposure 
Lfc is affected by ghost or not. N(u,v) represents the neighbourhood of the pixel p. More 
details about a data cost function D, a smoothness term V and more information generally 
about this method can be found in [32]. 

The optimized label map is used to update the ghost map G and the process is 
repeated iteratively until convergence. The authors of this method found that two or three 
iterations are sufficient for convergence. This algorithm does not require accurate ghost 
detection and not suffer from the color artefact problem. 

Optical-Flow Based Ghost Detection 

Optical flow algorithms are recognized as one of the most successful algorithms in aligning 
differently exposed L D R images by motion compensation. There are already a lot of optical 
flow algorithms for H D R image acquisition such as Kang et al. [ ], Mangiat and Gibson [56], 
Zimmer et al. [9 ]. Zimmer et al. use state-of-the-art optical flow approach to register L D R 
exposures before the merging process. They minimize their proposed energy function that 
uses a data term and smoothness term to reconstruct saturated and occluded areas. After 
alignment, the displacement fields obtained with subpixel precision are used to produce a 
super resolved H D R image [29]. Instead of energy-based function, there is possible to use 
gradient-based optical flow approach in this type of algorithms as well. 

Markov Random Field Detection 

Jinno and Okuda [41] use detection based on the Markov random field (MRF) model and 
estimate displacements, occlusion and saturated regions simultaneously by using Maximum 
a Posteriori (MAP) estimation instead of a ghost map creation. They do not estimate 
accurate motion vectors but compute displacement to the pixel with the closest irradiance. 

Singular Value Decomposition Based Ghost Detection 

This method [ ] uses singular value decomposition (SVD) to resolve the ghosting problem. 
The method is based on extracting local spatio-temporal neighbourhoods and using the 
second biggest singular value of the matrix formed by values within the neighbourhoods as 
a measure for ghost detection. 

(2.29) 
v P qeN(p) 
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2.2.2 Ghost Removal Methods 

Ghost removal methods can be divided into two main categories. The first type of methods 
remove ghost artefacts while keeping a single occurrence of the moving object. It means 
the ghost will disappear and the moving object will be at the fixed location in the resultant 
H D R image. Other methods completely remove the moving object from the final image. 

Keeping a single occurrence of the moving object 

The simplest approach to keep a single occurrence of moving object in the final H D R image, 
is to apply the standard multiple exposure fusion method in ghost-free regions while select­
ing a single reference exposure in ghost affected areas. This approach requires a computed 
ghost map. The reference exposure is typically the image which is least saturated [76, 40] or 
the image whose ghost regions are best kept in range [ ]. Another approach is to determine 
the correct number of exposures to use in different ghost affected areas [ ]. However, using 
a single reference exposure introduces new artefacts in the resultant H D R image. These 
new artefacts are created at ghost regions boundaries. For the better result without new 
ghost artefacts in the final image, it is possible to use a Laplacian pyramid blending frame­
work [69, 61], where the input images are decomposed into a Laplacian pyramid, which 
basically contains band-pass filtered versions at different scales and blending is performed 
for each level separately. Another possibility is to use a gradient domain approach [' I] to 
avoid all ghost artefacts in the resulting image. This method is based on estimating an 
image whose gradient is closest, in the mean squared error sense, to the gradient of the 
estimated radiance map. Zhang and Cham [92, 93] use gradient information to generate 
ghost-free H D R images directly without a ghost detection. 

Complete removing of the moving object 

Some methods completely remove all moving objects from the final H D R image. This can be 
desirable in some cases where the photographer is interested in the scene or the background 
itself. The most simple approach to achieve this goal, is to discard exposures effected by 
ghost regions during the combination step of H D R acquisition process. This idea is used 
by Sidibe et al [80]. Two sets of exposures, Auv and BUV: are classify for each pixel location 
(u,v), where the exposures in the set Auv contain ghosting at location (u,v), while the 
second set Buv represents exposures without ghosts. Therefore, a ghost-free H D R image is 
created by combining only exposures from the set Buv. A similar approach is used also by 
Gallo et al [22]. However, this algorithm is based on image patch processing rather than 
working with pixels individually. Methods proposed by Khan et al. [ ] and by Pedone 
and Heikkila [ ] directly remove ghost artefacts without a ghost detection by adjusting 
the weighting function w() when the combined radiance map is calculated. These methods 
do not need explicit ghost detection as they change pixels weights directly and iteratively 
to minimise the number of visible artefacts. 

These algorithms assume that moving objects appear in a small number of images at 
each pixel location. Moreover, these methods require a sufficiently large number of images 
and can be computationally expensive since they require a number of iterations to produce 
good results [82]. 
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2.3 HDRI Storing 

High dynamic range images record a much wider gamut than standard 24-bit R G B (8 bits 
for each channel). H D R images are assembled from 32-bits floating point numbers. It 
means a big amount of data and a different format of data than a common 24-bit color 
image. Moreover, colors in L D R images are usually associated with some target output 
device while H D R image pixels have a direct relation to radiance in a scene [76]. Therefore, 
some special data formats are needed to store H D R images. The following Table 2.3 taken 
from [8] and supplemented from [' S] provides a summary of existing H D R I data formats. 
Whole color gamut cover only TIFF, OpenEXR and J P E G - H D R . Besides the presented 
formats, there are few more so-called private formats which are not defined by a norm or 
they are not even documented. These formats are used only in specific software [8]. 

Channels 
Total Bits 

per Pixel 
Compression 

Precision 

(1-3) 

Dynamic 

Range (EV) 

T G A 
(8bit R G B ) 

R G B 
(+ Alfa) 

24 R L E 1 8 

Cineon, 
D P X 

R G B 32 - 2 12 

T I F F 
floating point 

R G B 
(+ Alfa + ...) 

96 ZIP, L Z W 3 253 

T I F F 
LogLuv 
24/32 

L+Index/Lu'v ' 24/32 - / R L E 2 16/126 

P F M R G B 96 - 3 253 
Radiance 

H D R 
R G B E 24 R L E 2 253 

OpenEXR 
R G B 

(+ Alpha + 
Depth + ...) 

48 
PIZ, ZIP, R L E , 

Wavelet, PXR24, 3 30 

J P E G - H D R Y C C variable J P E G 1 30 
Windows 

W D P 
R G B E variable Wavelet 1 

Table 2.3: H D R I data formats 

The most important thing in H D R I storing is a data compression because captured 
real-world lighting results in very large data sizes. Uncompressed, a single H D R pixel 
requires 12 bytes of memory to store the three single precision floating-point numbers for 
the R G B values. This becomes a lot of data in images and video. Therefore, researchers 
have been working on more sophisticated compression schemes to store H D R content. The 
main strategy is to modify and adapt current compression standards such as J P E G , M P E G 
and block truncation coding. The main goal of the compression is to significantly reduce 
the amount of data that needs storing and transmitting with minimal loss of visual quality. 
This is a major challenge as the increased luminance means that many artefacts, which may 
not be noticed in L D R content, will be easily distinguishable in H D R image [ ]. Table 2.4 
summarizes what has been already achieved for compressing H D R images, textures and 
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videos. More details about techniques from the table can be found in [6]. 

Name Description B P P Quality 
Backward 

Compat ibility 
I M A G E C O M P R E S S I O N 

J P E G - H D R backward compatible J P E G - H D R 0.6-3.75 M Q - H Q Yes 
HDR-JPEG2000 HDR-JPEG2000 0.48-4.8 HQ Yes 

T L C A H D R 
Two-Layer Coding Algorithm 
for High Dynamic Range Images 

1-8 HQ Partial 

T E X T U R E C O M P R E S S I O N 

H D R T G S 
H D R Textures Compression 
Using Geometry Shapes 8 HQ No 

H D R T B I O 
H D R Textures Compression Using 
Bit and Integer Operations 

8 HQ No 

H D R T S L 
H D R Textures Compression 
Encoding L D R and H D R Parts 16 M Q No 

H D R T T M I T M 
H D R Textures Compression 
with Tone Mapping and 
Its Analytic Inverse 

4-8 M Q - H Q Yes 

D H T C 
A n Effective DXTC-Based 
H D R Testure Compression Scheme 8 HQ No 

V I D E O C O M P R E S S I O N 

H D R V 
Perception-Motivated High 
Dynamic Range Video Encoding 

0.09-5 HQ No 

M P E G - H D R backward compatible H D R - M P E G 0.2-6 HQ Yes 

H.264-HDR 
Rate-Distortion Optimized 
Compression of High 
Dynamic Range Videos 

0.26-4 HQ Yes 

Table 2.4: Summary of various H D R content compression techniques (taken from [6]). B P P 
means a range in the case of varying quality, M Q means medium quality and HQ means 
high quality. 

2.4 Tone Mapping 

Tone mapping is a huge and important part of HDRI . Tone mapping is an operation which 
converts the dynamic range of world luminance to lower dynamic range display luminance. 
A n important requirement is that the perception of the real-world scene should match with 
the perception of the tone mapped image. Tone mapping is done by using tone mapping 
operator (TMO). There are a few groups of TMOs which differ in the function operator 
using for tone mapping or in the image processing techniques. The main groups are [6]: 

• Global operators - The tone mapping is applied to whole image with the same 
operator. 

• Local operators - Each pixel is mapped depending on its neighbours. These neigh­
bouring pixels are given as an input to the function operator. 
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• Segmentation operators - A different mapping is applied to regions in which the 
image is segmented. 

• Frequency/ Gradient operators - A tone mapping operator is applied only to the 
low frequencies in the image. 

Based on the design philosophy of the T M O s there is further classification [6]: 

• Perceptual operators - The function operator models some aspects of the human 
vision system. 

• Empirical operators - The function operator tries to create aesthetic-pleasing im­
ages without using the human vision system aspects. 

• Temporal operators - These operators are also suitable for H D R video and anima­
tions. 

The summary of T M O s is in the Table 2.5. 

Empirical Perceptual 
Global Linear Mapping Perceptual Brightness Reproduction 

Exponential Logarithmic Mapping Contrast Based Scale Factor 
Quantization Technique Visual Adaptation Model 

Histogram Adjustment 
Time Dependent Visual Adaptation 
Adaptive Logarithmic 

Local Spatially Variant Tone Reproduction Multi-Scale 
Photographic Tone Reproduction Tone Mapping Operator 

for High Contrast Images 
Local Model of Eye Adaptation 

Segmentation Interactive Manipulation Segmentation Approach 
Exposure Fusion Lightness Perception 

Frequency/ Low Curvature Image Simplifiers Trilateral Filtering 
Gradient Bilateral Filtering Image Color Appearance Model 

Gradient Domain Compression Retinex Methods 

Table 2.5: Taxonomy of tone mapping operators [ ] 

Only Perceptual Brightness Reproduction, Time Dependent Visual Adaptation and 
Local Model of Eye Adaptation are also temporal and suitable for H D R video content [6]. 

The detailed information about tone mapping can be found in the book High Dynamic 
Range Imaging: Acquisition, Display, and Image-Based Lighting written by Erik Reinhard 
et al. [ ] which contains very detailed information about this field of study. Books [6, 8, 3 ] 
also include some chapters dealing with tone mapping. 
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Chapter 3 

FPGA Programming Principles 

Nowadays, F P G A (Field Programmable Gate Array) circuits are used in a wide range of 
applications mainly due to its programmability, efficiency and flexibility A n advantage is 
its steadily declining power consumption as well as the prize of the chip itself. They are 
typically used in the area with smaller series of devices where it does not worth to make 
a design of the customer integrated circuit and on the other hand, the solution with the 
universal processor is not enough. Their further use is in the prototyping of complex cus­
tomer integrated circuits, where the designed circuits are implemented and tested before 
the actual manufacturing. 

This chapter describes a theoretical basis about F P G A and its programming princi­
ples which are necessary to know for a correct solution design. The information in this 
chapter was mainly taken from books Tree-based Heterogeneous FPGA Architectures: Ap­
plication Specific Exploration and Optimization written by U . Farooq et al. [19], Introduc­
tion to Reconfigurable Computing: Architectures, algorithms and applications written by C. 
Bobda [ ], The Designer's Guide to VHDL, Third Edition written by Peter J . Ashenden [5] 
and from the Xil inx web page [39]. 

3.1 Field Programmable Gate Array 

F P G A s are special programmable semiconductor devices based on a matrix of small pro­
grammable logic blocks called Configurable Logic Blocks (CLBs) which are connected 
through complex programmable interconnects (see Figure 3.1). F P G A can be programmed 
to the desired application or functionality requirements. F P G A s allow designers to change 
their designs very late in the design cycle, even after the end product has been manufac­
tured and deployed in the field [ ]. Programmability in F P G A is achieved through an 
underlying programming technology. 

Some parts of F P G A can be reconfigured while the rest is still running. Any future up­
dates in the final product can be easily update by downloading a new application bitstream. 
The programmable logic and routing interconnect of F P G A s makes them flexible and for 
a general purpose. Unfortunately, it makes them also larger, slower and more power con­
suming than standard Application Specific Integrated Circuits (ASICs). In spite of these 
weaknesses, FPGA-based products are basically very effective for low and medium volume 
productions because of their less cost and faster time to market in comparison with ASICs 
and because it is easy to program and debug them. 
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I n t e r c o n n e c t S w i t c h m a t r i x 

Figure 3.1: Core of F P G A architecture (taken from [9]) 

The progress in technology process greatly enhanced the logic capacity of F P G A s and 
made them successively an implementation alternative for larger and complex designs. Fur­
thermore, programmable principles of their logic and routing parts has a considerable effect 
on the quality of final device's area, speed, and power consumption [ ]. The base of F P G A 
architecture is a state machine and everything inside the architecture is parallel. 

The following part describes basic components of a common F P G A . 

Configurable Logic Block 

Configurable Logic Block (CLB) is a basic logic unit in F P G A . These programmable logic 
blocks implement logic functions and storage functionality for a target application design. 
The basic component can be either a transistor or an entire processor but these are two 
extreme cases. In the case of transistors, the basic component is very fine-grained and 
requires large amount of programmable interconnect which could result an area-inefficiency 
On the other hand, in the case of processor, the basic logic block is very coarse-grained 
which causes impossibility to implement small functions and it is a waste of resources. 
Between these two extremes there is a spectrum of basic logic blocks, such as N A N D gates, 
an interconnection of multiplexors, lookup tables (LUTs) and programmable array logics 
(PAL) style wide input gates. These basic logic blocks are also called function generators 
because they serve as basic computing units to dynamically implement and reimplement 
new functions in a reconfigurable hardware devices. Commercial vendors usually use L U T -
based CLBs which provide a good compromise between mentioned logic blocks [9]. 

Every C L B can comprise of a single Slice, or a cluster of locally interconnected Slices. 
Each slice consists of several basic logic elements (BLEs) (see Figure 3.2). B L E is a group 
name for LUTs , flip-flops and sometimes more complex units. This arrangement differs a 
lot in individual families of chips. 

Look-up table is a group of memory cells which contains all possible results of a 
given function for a given set of input values. In F P G A s , L U T physically consists of a 
set of SRAM-cells to store values and a decoder to access a specific S R A M location and 
retrieve a correct result for a combination of inputs [ ]. Flip-flop can serve as one bit 
register/memory [66]. 
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C L B can be also consisted only from one B L E . However, modern F P G A s contain typ­
ically 4 to 10 B L E s divided into few Slices in a single cluster. The exact number of C L B 
and their features vary from device to device [39, 19]. 

Switch 
Matrix 

GOUT 

t 
Slice 
X1Y1 

Slice 
X1V0 

coiir1 I I 
f I SHIFT • 
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Figure 3.2: Basic Configurable Logic Block Structure (left) and Slice (right) (taken 
from [39]) 

Interconnection Network 

Programmable routing interconnect of F P G A s comprises of almost 90% of total F P G A ' s 
area [9]. A flexible interconnect network routes signals between C L B s and to and from 
I/Os, while the C L B provides a logic capability. Routing comes in several ways. One is 
designed to interconnect between C L B s to fast horizontal and vertical long lines spanning 
the device. Other is global low-skew routing for clock and other global signals. The inter­
connect routing task is hidden to the user unless it is specified otherwise which importantly 
reducing design complexity [39]. The routing interconnect of F P G A are generally steered 
by small multiplexors [9]. 

Input/Output Blocks 

Today's F P G A s provide support for a lot of I /O standards. This provides a perfect interface 
bridge in a final system. I/Os in F P G A is grouped in banks and each bank is able to support 
different I /O standards independently. The best F P G A s provide over a dozen I /O banks, 
thus allowing flexibility in I /O support [39]. 

IP Cores 

Many modern F P G A s contain also some complex and frequently used circuits called Intellec­
tual Property (IP) cores. There are two types of IP cores. Hard IP cores are heterogeneous 
mixture of blocks which include memory, multipliers, DSP blocks and even whole proces­
sor cores. They are fabricated directly on chip and very efficient at implementing specific 
functions because they are designed optimally for these functions. However, they represent 
a waste of big amount of logic and routing resources if unused. Second type, soft IP cores, 
takes a form of library. They are written in Hardware Description Language (HDL). Two 
major HDLs are V H D L and Verilog. Both of them describes hardware circuits on register 
transfer level [66, 19]. 

34 



3.2 V H D L 

V H D L is designed to fill a number of needs in a design process and is commonly used to 
write text models that describe logic circuits. V H D L allows a description of a structure 
of a system and tells us how it is decomposed into subsystems and how those subsystems 
are interconnected. V H D L allows a specification of a function of a system using familiar 
programming language forms. As a result, it allows a design of a system to be simulated 
before being manufactured. It gives designers an opportunity to quickly compare alter­
natives and test for correctness without the delay and expense of hardware prototyping. 
V H D L also allows the detailed structure of a design to be synthesized from a more abstract 
specification which allows designers to concentrate on more strategic design decisions and 
reducing time to market [5]. 

V H D L has constructs to handle the parallelism in hardware designs. V H D L is strongly 
typed programming language and is not case sensitive. There are many features of V H D L 
which allow to directly represent operations commonly used in hardware, such as an ex­
tended set of boolean operators including N A N D and NOR. V H D L allows arrays to be 
indexed in either ascending or descending direction as well. 

V H D L has file input and output capabilities. These files are more commonly used by 
a simulation programs to stimulate or verify data than as a general-purpose language for 
text processing. It is relatively easy to produce code that simulates successfully but that 
can not be synthesized into a real device, or is too large to be practical. 

V H D L allows to describe and verify the behavior of the required system which is the 
biggest advantage of V H D L when it is used for systems design. Another benefit is that 
V H D L is a dataflow language which allows a description of a concurrent system. A V H D L 
project is multipurpose which means that once created calculation block can be used in 
many other projects. However, parameters of this functional block can be tuned. A V H D L 
project is also portable which means that if the project is created for one element base, a 
computing device project can be ported on another element base. 

A V H D L design consists at least of two components - entity, which describes the interface 
and an architecture, which contains the actual implementation. In addition, most designs 
import library modules and some designs contain multiple architectures and configurations. 

3.2.1 Basic Architecture Blocks 

In a hardware design, basic functional blocks called combinational logic circuits, are used 
to design whole systems. Typical representatives of these functional blocks are [42]: 

Decoder 
Decoders generate some code based on a combination of input parameters. The most 
commonly used type of decoder is a binary decoder. It transfers binary code into code 
1 to N , where only one output is active. The basic block of decoders is A N D gate or 
N A N D gate. A sample of decoder 3 to 8 is in Figure 3.3a. 

Multiplexer 
Multiplexer is a combinational logic circuit, which allows to transfer digital informa­
tion from one selected input channel to output. Multiplexer consists of N inputs and 
one output. A sample of multiplexer is in Figure 3.3b. 

Demult iplexer 
Demultiplexers have an opposite function than multiplexors. They have one input 
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channel and many outputs. The output channel for input data is selected by address 
in a binary code while the other output channels have zero state (they are inactive). 
A sample of demultiplexer is in Figure 3.3c. 

l-to-4 
D E M U X 

l-to-4 
D E M U X 

l-to-4 
D E M U X 

l-to-4 
D E M U X 

l-to-4 
D E M U X 

l-to-4 
D E M U X 

-Yu 

- Y , 

- Y ; 

- Y , 

(a) Decoder 3x8 (b) Multiplexer (c) Demultiplexer 

Figure 3.3: Sample of basic logic blocks 1 

Comparator 
Comparator compares two binary numbers and generates an output signal based on 
their equality or diversity. Comparators are often called as X O R . 

Adder 
Adder calculates an arithmetic sum of two numbers. There are many types of adders, 
such as one-bit adder, half adder, full adder or parallel adder. 

Subtractor 
Number subtraction in logic circuits is treated as an addition of this number with a 
reverse sign. 

Flip-flop 
Flip-flops are the simplest sequential components. Flip-flop is a circuit that has two 
stable states and can be used to store state information. Flip-flops are asynchronous 
or synchronous. Asynchronous flip-flops immediately react to a change of input signals 
while synchronous flip-flops always wait for a synchronous clock impulse. 

V H D L designs are based on a state machine. There are two common models of state 
machines - Moore and Mealy machine (see Figure 3.4). Both type of machine are triggered 
by a single clock and have an internal state that changes. The next state is determined by 
some combinational function of the inputs and the present state. The outputs are solely 
a function of the present state in the Moore machine. While in the Mealy machine, the 
outputs are a function of the present state and of the inputs [98]. 

Inputs 
Next State RESET— State Output 
Function CLOCK— > Register Function Outputs 

Only for Mealy Machine 

Figure 3.4: Moore and Mealy state machines2 

1Source: http://www.edwardbosworth.com  
2Source: http://www.csit-sun.pub.ro/ 
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Chapter 4 

Task Specification 

This chapter defines the detailed specification of the thesis task. It includes main goals 
which should be achieved in this thesis. The chapter specifies de-ghosting algorithms de­
scribed in Chapter 2.2 which are suitable for the given issue. A part of this chapter is also 
a description of the architecture and application specification. 

4.1 Objectives of the Thesis 

This thesis is a part of a research project dealing with the real-time H D R F P G A video 
camera. The F P G A video camera captures three different exposures and combines them 
together in a real-time processing to display a resulting H D R video on common L D R mon­
itors. The video camera captures 60 frames per second and produces 20 frames of the 
resulting H D R video per second. However, there can still appear relatively big and visible 
artefacts in the final video. The goal of this thesis is to find or propose a de-ghosting algo­
rithm to eliminate these ghosting artefacts. The proposed algorithm will be included into 
processing of the captured images on the F P G A video camera to prevent ghost artefacts in 
the final real-time H D R video. Fortunately, the camera using in the project stores raw data 
directly from the sensor into R A W format. Therefore, the output data are almost linear 
with a few exceptions - the level of black, quantization and saturation. 

Because F P G A architecture has some specifications, the proposed algorithm has to 
respect few requirements. The implementation has to consume small amount of memory. 
Therefore, there is a problem to go back for some old data or intermediate calculation 
results. If the results are in the previous run of the program, the data have to be saved in 
an external memory. On the other hand, if the results are in the current run of the program, 
the access to them is easy. Another problem is a random access memory and randomness in 
general that causes very complex logic. The proposed algorithm has to use elements which 
can be easily implemented in F P G A , such as look-up tables. F P G A architecture and its 
programming principles were specified in Chapter 3. Due to the real-time application, the 
implementation has to be efficient and non-iterative. Moreover, the selected algorithm has 
to remove as many ghosting artefacts as possible and keep a single occurrence of moving 
objects in a video. These requirements prevent to use a lot of already developed de-ghosting 
methods. De-ghosting algorithms that come into consideration, are discussed in Section 4.3. 
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Development Procedure 

In the beginning, this thesis will be about testing of existing de-ghosting algorithms. First, 
suitable algorithms for the given issue will be found. Then, they will be tested for the project 
requirements and quality of their results. The prototype in C++ programming language 
will be implemented for selected algorithms to be able to test their characteristics. After the 
testing of the most suitable algorithms, one of the implemented algorithms will be selected 
and its modification will be proposed for better use in F P G A architecture. As the last 
step of the thesis, the C++ implementation of the proposed algorithm will be created as 
a prototype and tested on images taken by the corresponding video camera. The review 
of the proposed algorithm and results from the final tests will be done at the end of this 
thesis. 

4.2 Architecture and Application Specification 

The implementation and programming on F P G A architecture is completely different com­
pared to other reconfigurable platforms where the code is executed sequentially on multiple 
threads. On F P G A everything runs implicitly in parallel. The programming is not aimed 
at generating a set of sequentially going instructions for processor. Unlike this process, in 
F P G A , programmers seek to generate a logical circuit which implements the specified func­
tion. The logical circuit is then derived from a verbal input, such as V H D L program. This 
procedure is called logic synthesis. The mapping of the application to the F P G A resources 
is a step of the logic synthesis called technology mapping. The technology mapping targets 
in F P G A are look-up tables rather than N A N D gate as it is in the case of many digital 
devices [9]. 

Based on the opportunity to create as many parallel computing units as needed, config­
urable hardware offers an excellent computing potential. There are no limits due to some 
existing instruction set compared to C P U or G P U . It can result in better performance and 
implementation of new methods which cannot be implemented on standard platforms. As 
a next benefit, there are not typically any unused logic functions as in fixed architectures 
where programmer usually use only small part of all device features. 

However, low level programming, such as programming for F P G A devices, has some 
disadvantages. Compared to standard programming on C P U , programmer has to make 
bigger effort to achieve the same functionality. The parallelism could complicate the design 
of the application in the case of bigger complexity [66]. 

F P G A s can be used in many applications such as pattern matching, signal processing, 
super computing, video streaming, image processing etc. In this case, our main interests 
are in image processing and video streaming. F P G A has limited resources, especially size 
of internal memory. Therefore the storage of whole image could be a problem. There are 
two solutions: a use of an external D D R (Double Data Rate) memory or a modification 
of the algorithm for stream processing. However, the problem with memory applies to all 
algorithms in general. It means that the memory space depending algorithms cannot be 
implemented on F P G A unless they are optimized or simplified [66]. 
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4.3 Summary of Existing De-Ghosting Methods 

The classification of the reviewed methods from Section 2.2 is shown in Figure 4.1. This 
classification is based on the following parameters: 

• Fusion domain - radiance or image 

• Number of exposures needed for good results of the algorithm 

• Ghost map detection - if ghost map detection is first computed and number of these 
ghost maps - one or more using some exposure as a reference image 

• Thresholds tuning - some input parameters such as a threshold value has to be set 
automatically or manually, respectively 

• Reference image selection - if one of the input images is used as a reference 

• Final result with an occurrence of moving object at fixed position or removal of all 
moving objects 

Fusion 
Radiance domain 

Fusion 
Image domain 

Number of exposures 
Small (< 3) 

Number of exposures 
Large (>5) 

Ghost map detection 

More ghost maps 

Thresholds tuning 
Manual 

Thresholds tuning 
Automatic 

Reference image selection 

Final result 
Keep moving object at fixed location 

Final result 
Remove all moving objects 

Method 

Variance -Reinhard et ai. [76] X X X X X X 

*Entropy - Jacobs et ai. [40] X X X X X X 

•Prediction - Groscft [26] X X X X X X X 

Pixel Order Relation -Sidibe et ai. [80] X X X X X 

•Bitmap - Pece and Kautz [69] X X X X X 

^Histogram - Min et a I. [62] X X X X X X X 

•Patch - Gallo et al. [22], etc. X X X X X X X X 

•Graph-Cuts-Heoetat. [32] X X X X X X X 

Optical Flow -Kang et ai. [44], etc. X X X X X X 

Markov Random Field -Jinno and Okuda [41] X X X X X 

SVD - Srikantha etal. [83] X X X X X X 

Density Estimation - Khan et al. [47] X X X X 

Constraint Propagation - Pedone and Heikkiiä [70] X X X X 

Gradient -Zhang and Cham [92, 93] X X X X X X 

Figure 4.1: Classification of ghost detection methods (inspired by [82]) 
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Tursun et al. [ 3] propose a more comprehensive and current summary which is shown 
in Table 4.1. The summary divides methods into five groups based on how approach the 
de-ghosting problem: 

• Global exposure registration methods - Their aim is to align individual expo­
sures globally. 

• Moving object removal methods - These methods remove the motion by estimat­
ing a static background. 

• Moving object selection methods - This type of methods detect motion in the 
scene by differences in the input pixel intensities and remove the ghosting artefacts 
by either locally using a single source image or combining a set of multiple sources 
which are consistent. 

• Moving object registration methods - They recover or reconstruct the ghost 
pixels by searching for the best matching region in other exposures or in the affected 
image. The matching regions are used to transfer information to the problematic 
region. These algorithms may find pixel-based or patch-based dense correspondences. 

• Video de-ghosting methods - They remove ghosting artefacts in H D R videos and 
make use of the temporal information of videos during processing for this purpose. 

Although, the taxonomy in Table 4.1 is valid for most cases, there are some hybrid 
methods which are difficult to classify. These algorithms are classified based on their most 
dominant characteristics [86]. 

H D R De-Ghosting Methods 
Global Moving Moving Object Moving Object Video 

Exposure Object Selection Registration De-Ghosting 
Registration Removal Single Mul t i Optical-Flow Patch 

Source Source Based Based 
[58] [47] [45] [62] [65] [10] [60] [44] 

[ ] [70] [ ] [ ] [83] [ ] [ ] [ ] 

[88] [25] [ ] [72] [93] [ ] [68] [ ] 

[ ] [ ] [ ] [50] [67] [ ] [ ] [ ] 

[17] [ ] [ ] [89] [ ] [ ] [ ] [ ] 

[ ] [ ] [ ] [32] [ ] [30] [ ] [43] 
[ ] [92] [ ] [4] [87] [ ] 

[71] [81] [73] [48] [ ] 

[ ] [63] [36] 
[3] [96] 
[90] 

Table 4.1: Taxonomy of H D R de-ghosting methods (inspired by [86]) 
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Based on Figure 4.1 and Table 4.1 the summary of methods which could be appropriate 
for the given issue can be done. This thesis does not deal with exposure registration because 
there is an expectation that input images are captured by a static camera on a tripod. Thus, 
the methods in the first column of Table 4.1 are unattractive for this thesis. The second 
column of the table is uninteresting for the thesis as well, because there is a requirement of 
keeping moving objects in the final H D R video. 

Principles of methods mentioned in Figure 4.1 are presented in Section 2.2. This section 
shows that variance-based ghost detection method is not appropriate due to its weak results. 
On the other hand, entropy based method and prediction based ghost detection seem to be 
applicable for the given issue. Pixel order removal belongs to the group of methods that 
completely remove moving objects. Hence, this algorithm is not suitable for the purpose 
of this thesis. Bitmap movement detection and histogram-based ghost detection calculate 
histograms of input images and use median threshold bitmaps to remove ghost artifacts. 
These two algorithms have a simple computational complexity and give reasonable results. 
Therefore, they are selected for implementation and testing in this thesis which is described 
in the next Chapter 5. 

Patch-based ghost detection is a big group of methods that could be suitable for the given 
issue. However, it depends a lot on circumstances of each method. It is impossible to use 
methods which have an iterative approach, methods which are computational challenging 
in the sense of F P G A architecture, such as R A N S A C based ghost detection, or methods 
that completely remove ghosting objects from the final H D R image. As well as patch-based 
ghost detection, graph-cuts based ghost detection is possibly suitable for the given issue. 

Unfortunately, the other methods from Section 2.2 are somehow inappropriate. Optical-
flow methods are computationally challenging as well as the singular value decomposition 
based ghost detection and the gradient based ghost removal. M R F model and M A P es­
timation in the Markov random field detection are not easily implementable techniques 
for F P G A architecture. Density estimation and constrain propagation completely remove 
moving objects from final H D R images thereby unsatisfying desired requirements. 

Based on above-mentioned reflections, the methods marked by an asterisk in Figure 4.1 
seem to follow all desired requirements for the given issue. 
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Chapter 5 

Realization of De-Ghosting 
Algorithms 

This chapter focuses on the description of the implementation of algorithms which were 
selected in the previous Chapter 4. Bitmap movement detection is described in Section 5.1. 
This section also includes illustrations of results from this implemented method. Section 5.2 
describes histogram-based ghost detection with its results as well. Based on the histogram-
based de-ghosting method, Section 5.3 defines a modification applied on this method to 
simplify its implementation on F P G A architecture. As a part of this section, an evaluation 
of the proposed modification is presented. 

Four different sequences were used to test implemented algorithms. A l l used images 
were captured by the F L A R E 2KSDI video camera and saved into the R A W format. The 
images of Scene 1, which can be found in Figure A . l in Appendix A , were used for this 
chapter. A l l the other input images are in Appendix A as well. The exposure times were 
set to 0.5ms, 2ms and 8.3ms. 

The implementation is in C++ programming language and the OpenCV library is used 
to simplify image processing. Because the image sensor in the video camera has Bayer 
filter [ ], the input images has to be converted by using cvtColor method before own image 
processing. Both implemented methods are tested on grayscale images. 

The easy tone mapping operator e('°sio(HDR)) f o r a i j c o m p u t e d H D R images is used to 
display the final H D R image on common L D R monitors. 

5.1 Bitmap Movement Detection 

The theoretical basis of this method were described in Section 2.2. This method uses fusion 
in an image domain. However, it can be easily integrated into radiance domain fusion as 
well. For better comparison with the other method, the radiance domain fusion is used 
in this thesis. Moreover, the project dealing with the real-time H D R F P G A video camera 
uses also the fusion in the radiance domain. 

First, histograms of input images are computed to find a median intensity pixels value 
in each exposure. The found median value serves to compute a median threshold bitmap. 
If the values in the input image are less than or equal to its median intensity pixels value, 
pixels of the binary bitmap are black. On the other hand white regions of the binary bitmap 
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indicate the pixels whose values are greater than the median intensity pixels value. The 
obtained binary bitmap reveals image features while removing intensity differences between 
different exposures. The binary bitmaps for input images of Scene 1 are shown in Figure 5.1. 
Note the similarity of computed bitmaps. 

(a) Bitmap for under-exposed image (b) Bitmap for mid-exposed image 

(c) Bitmap for over-exposed image 

Figure 5.1: Bitmaps for input images of Scene 1 generated by M T B technique 

Next, the ghost map is calculated by summing up all computed bitmaps into image 
M. The pixels affected by movement are detected because each pixel preserves its bit value 
across all binary bitmaps in the static scene. Any pixel in the image M that is neither 0 nor 
N , where N is a number of input exposures, is classified as a movement. The morphological 
operations, erosion and dilation, with the erosion kernel size se = 3 and dilation kernel size 
s<2 = 17, are applied on the ghost map to reduce noise. The se sets the sensibility of the 
algorithm to isolate and eliminate the outliers from the moving pixels and Sd is directly 
responsible for the enlarging of the moving clusters when moving pixels are missed. The 
kernel sizes were selected based on [69]. The final ghost map for input images of Scene 1 is 
shown in Figure 5.2. 

Figure 5.2: Detected ghost map for Scene 1 

The resulting H D R image is created by fusion in the radiance domain which means to 
apply Equations 2.7 and 2.8. To remove ghost artefacts from the final H D R image, the 
ghost map is used. The final H D R image has equal pixel values as the mid-exposed input 
image in the region where the ghost map has white pixels. In other words, the regions 
where the ghost artefacts were detected, are filled by pixels from the mid-exposed input 
image instead of the proper radiance domain image fusion. The final H D R image is shown 
in Figure 5.3b. To compare a quality of the de-ghosting method, the H D R image without 
the ghost removal is shown in Figure 5.3a. 
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(a) HDR image with ghost artefacts 

(b) HDR image with ghost removal 

Figure 5.3: Final H D R image for Scene 1 

The results of the other tested scenes are presented in Appendix B . Based on these 
results, we can see the quality of the bitmap movement detection depends a lot on the input 
data. The method produces excellent quality outputs in a scene where a motion appears 
on a dark background, how it is shown in Figures 5.3 and B.2. However, sometimes some 
additional artifacts can appear after the de-ghosting method is applied as it is in Figure B . l . 
These artifacts appear on boundaries of previously detected ghosting objects. It is caused 
by using only mid-exposed image in ghost regions instead of the proper fusion. This method 
has also problem with input images which contain too many dark pixels, too many bright 
pixels or too many pixels with same value. If the input image consists of dark or bright 
pixels only, the median threshold value is near zero or 255, respectively. This causes the 
computed median threshold bitmap is whole black and the rest of computations are affected 
by this fact. The same problem appears if most of the pixels in the input image are under 
or over the median threshold value as it occurs if most of the image pixels have same 
value. The results of the fusion where the over-exposed image produces a black bitmap, is 
presented in Figure B.3. Although a movement is removed, the available dynamic range is 
reduced. 

5.2 Histogram-Based Ghost Detection 

This method is based on the median threshold bitmap algorithm as well as the bitmap 
movement detection. However, this method improves the use of this algorithm. Instead 
of binary bitmaps, histogram-based ghost detection first calculates multi-level threshold 
maps for each input exposures. The multi-level threshold map is computed by classifying 
the intensity value of the input image into 8 levels based on thresholds. These thresholds 
are found by dividing the input image into 8 levels which gives a set of 8 threshold values, 
where each level has the same number of pixels. The multi-level threshold maps for the 
input images of Scene 1 are shown in Figure 5.4. 

44 



(c) Over-exposed image 

Figure 5.4: Multi-level threshold maps for input images of Scene 1 

The calculated multi-level threshold maps are used to compute object motion maps. 
The mid-exposure L D R image is selected as the reference image. Then the object motion 
map is computed using the absolute difference between multi-level threshold maps of the 
reference image and some other image. If the difference is bigger than one, the movement is 
detected and the pixel value in the object motion map is set to one. Then, the morphological 
operations, erosion and dilation, with kernel size s = 1, are applied on the found object 
motion maps to reduce noise. Histogram-based ghost detection method produces N — 1 
object motion maps where iV is a number of input exposures. Two final ghost maps for 
Scene 1 are shown in Figure 5.5. 

i 
Figure 5.5: Ghost maps for Scene 1 using the mid-exposed image as a reference 

Due to several causes, there are some false detections. Pixels having a similar intensity 
near the threshold values can be classified into different levels due to different exposures. 
To overcome this drawback, binary error maps are computed as: 

E, 
1 for T, 
0 otherwise 

1 < hi < Tjk + 1,1 < k < N 
(5.1) 

where h,j is the intensity at i th pixel in the j t h exposure and Tjjk is the kth threshold value 
used for extracting the multi-level threshold map of j t h exposure. 

The error maps with the object motion maps are used to compute a weighting factor 
ME for the radiance fusion as follows: 

1 for j = ref 

ME. 
1 for M , 
0 for Mr. i,3 

0, j + ref 
1, j + ref 

(5.2) 

0.2 for Eij\Eiiref = l,j ^ ref 
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where M j j is the object motion map and Eij is the binary error map. 
The final H D R image without ghost artefacts is obtained as: 

In Ei 
Ef=i wiZ^MEij)(ln Ztj - In A t , ) 

(5.3) 
h3/ 

where Ei is the irradiance, P is the number of input photographs, w is the weighting 
function from Equation 2.7, Zij is the input exposure pixel value and Atj is the known 
exposure time. Equation 5.3 does not include a camera response function because there is 
an assumption the camera response function is linear. 

The resulting H D R image of Scene 1 using the histogram-based ghost detection is in 
Figure 5.6. 

i— 
(a) HDR image with ghost artefacts «5? 
(b) HDR image with ghost removal 

Figure 5.6: Final H D R image for Scene 1 

The results of the other tested scenes are presented in Appendix C. Based on these 
results, we can see the histogram-based ghost detection has excellent quality outputs in 
a scene where a motion appears on a dark background as well as the previous bitmap 
movement detection. The good quality results of the histogram-based ghost detecting 
method are shown in Figures 5.6 and C.2. However, the method has weak results in scenes 
where the movement appears on a bright background. The ghost artifacts are eliminated 
but not all of them are completely removed in these cases. Examples of this situation are 
shown in Figures C . l and C.3. The results of the histogram-based ghost detection are 
depended on the input exposures as well, but not so much in comparison with the bitmap 
movement detection. 
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5.3 Proposed Algorithm 

Based on the complexity of implemented algorithms, the proposed algorithm is a modifica­
tion of histogram-based ghost detection for easier implementation on F P G A architecture. 
Histogram-based de-ghosting method needs to calculate histograms of all input images as 
a first step. However, a difficulty of the histogram calculation depends on the input image 
size. The tested images have resolution 768x256 pixels which is quite big to calculate the 
histogram for whole image on F P G A architecture. It led to the decision to split input data 
into smaller blocks. More precisely, the proposed algorithm processes the input images 
by parts. Therefore, the proposed algorithm needs to calculate local histograms instead 
of global histograms. Because the number of pixels in the image block is smaller, smaller 
adders are needed for computation on F P G A architecture. Moreover, if a number of bins 
in the histogram will be decreased, a number of adders needed for implementation will be 
reduced as well. In this modification, there is a potential to eliminate more ghosting arti­
facts because the block processing introduces a local access into the global method. The 
proposed algorithm tries to transfer the global method into a local one. Size of processing 
blocks is defined by input parameters. This modification causes less memory consumption. 
The block size depends on the size of ghost artifacts and affects the quality of results. Fig­
ure 5.7 shows the multi-level threshold maps by using proposed modification with size of 
the processing block 64x64 pixels. 

(c) Over-exposed image 

Figure 5.7: Multi-level threshold maps for input images of Scene 1 by using image processing 
on a block of 64x64 pixels 

Next modification of histogram-based method is an omission of morphological opera­
tions. The difference between results with the morphological operations and without them 
is not visible by human eyes which has been found by testing and comparing both cases. 
Besides the mentioned modifications, the proposed algorithm is consistent with histogram-
based ghost detection. The resultant H D R image by using proposed algorithm with size of 
the processing block 32x32 pixels is shown in Figure 5.8. 

Another modification, an omission of binary error map computation, was tried. How­
ever, the results without application of binary error maps were poor in most tested cases. 
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Figure 5.8: Resultant H D R image by using proposed algorithm with 32x32 size of processing 
block 

Evaluation of Proposed Algorithm 

The quality of resulting H D R images by using proposed modifications is comparable with 
the original histogram-based de-ghosting method. The resultant H D R image for Scene 1 
was presented in this section in Figure 5.8. More results for the other tested scenes are 
presented in Appendix D. 

The proposed algorithm has excellent quality outputs in a scene where a motion appears 
on a dark background as well as the original histogram-based ghost detection. However, 
this algorithm has the same problems as the previous method as well. Weak resulting H D R 
images of Scene 2 and 4 are shown in Figures D . l and D.3. 

The resulting output depends a little bit on the block size which is set for image process­
ing. As the tested sizes of blocks were selected 16x16, 32x32, 64x64, 128x128 and 256x256 
pixels. The results from these tests are shown in Figure D.4 in Appendix D. 
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Chapter 6 

Conclusion 

The main aim of this master's thesis was to propose a modified de-ghosting algorithm based 
on already existing methods which will be suitable for implementation on F P G A architec­
ture. Moreover, a prototype of the proposed algorithm had to be created by implementing 
it in C++ programming language. A l l the points set down in the task specification were 
accomplished in this thesis. The first point of the thesis was to study the relevant litera­
ture from the field of H D R image synthesis. The most important information about H D R I 
synthesis which were important to complete this thesis, were summarized in Chapter 2 as 
well as the information about ghost detection and removal in H D R images and existing 
de-ghosting algorithms that had to be studied to meet the second point of the task spec­
ification. The third point of the thesis was to propose a de-ghosting algorithm which will 
be suitable for implementation on F P G A architecture. To fulfil this point, the basic infor­
mation about F P G A architecture and programming principles had to be studied. These 
information were presented in Chapter 3. The rest points of the task specification were 
processed in Chapters 4 and 5. Chapter 4 includes the architecture and application spec­
ification, and summary of existing de-ghosting algorithms and reflection on the suitability 
for F P G A implementation. The own implementation of selected algorithms and proposed 
method as well as their testing and evaluation are shown in Chapter 5. 

The implementation of modified histogram-based algorithm gives the same results in 
comparison with the original histogram-based ghost removing method. Moreover, the im­
plementation is faster, more efficient and more suitable for F P G A architecture. However, 
the original histogram-based ghost removal has worst results in some scene where the move­
ment is on a bright background. The proposed algorithm has the same problem as well. 
Moreover, the set of testing data were quite small and only one setting of exposure times 
was used for capture input images. 

Because there are already more than fifty existing de-ghosting algorithms and the re­
search on this topic is very current, it was impossible to test each of existing algorithms 
during this thesis. Therefore, the possible continuation of this thesis could be to study, im­
plement and test more existing de-ghosting algorithms. Based on the experiences acquired 
during the time of studying de-ghosting problem in H D R images, I can see the potential 
in some patch-based algorithms. However, it is necessary to find the best one for F P G A 
implementation which will fit all desired requirements. 
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Appendix A 

Input Images 

Figure A . l : Input L D R exposures of Scene 1 from under-exposed to over-exposed 

Figure A.3: Input L D R exposures of Scene 3 

Figure A.4: Input L D R exposures of Scene 4 
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Appendix B 

Results of Bitmap Movement 
Detection 

(b) HDR image with ghost removal 

Figure B . l : Final H D R image for Scene 2 
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(a) HDR image with ghost artefacts 

(b) HDR image with ghost removal 

Figure B.2: Final H D R image for Scene 3 

(a) HDR image with ghost artefacts 

(b) HDR image with ghost removal 

Figure B.3: Final H D R image for Scene 4 
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Appendix C 

Results of Histogram-Based Ghost 
Detection 

(a) HDR image with ghost artefacts 

(b) HDR image with de-ghosting method 

Figure C . l : Resulting H D R image for Scene 2 using histogram-based ghost detection 
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(a) HDR image with ghost artefacts 

(b) HDR image with de-ghosting method 

Figure C.2: Resulting H D R image for Scene 3 using histogram-based ghost detection 

(a) HDR image with ghost artefacts 

(b) HDR image with de-ghosting method 

Figure C.3: Resulting H D R image for Scene 4 using histogram-based ghost detection 
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Appendix D 

Results of Proposed Algorithm 

Figure D . l : H D R image for Scene 2 using proposed algorithm with 32x32 size of block 

Figure D.2: H D R image for Scene 3 using proposed algorithm with 32x32 size of block 

Figure D.3: H D R image for Scene 4 using proposed algorithm with 32x32 size of block 
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(a) HDR image by using 16x16 block processing 

(b) HDR image by using 32x32 block processing 

r - r ~ ,1 
(c) HDR image by using 64x64 block processing 

(d) HDR image by using 128x128 block processing 

(e) HDR image by using 256x256 block processing 

Figure D.4 : Resul t ing H D R images for Scene 1 by using modification of histogram-based 
ghost detection 
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