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Abstract

This thesis delves into the deployment of federated and split learning models for
forecasting power consumption within smart grids, with a focus on integrating renewable energy
sources and ensuring data privacy. Accurate predictions of power consumption are crucial for
managing energy exchanges effectively, especially with the variability introduced by renewables.
This need becomes even more critical when dealing with sensitive data from Prosumers
equipped with photovoltaic (PV) systems, highlighting the importance of maintaining privacy.

Our research applies both split learning and federated learning models to predict
Prosumer power consumption, aiming to enhance smart grid operations' efficiency and privacy.
The study addresses the challenge of forecasting power usage accurately, managing the
computational demands of advanced learning techniques, and handling sensitive data from
diverse Prosumers. A pivotal aspect of this research is the implementation of a split learning
model, focusing on the strategic division of the neural network layer between client and server,
which significantly impacts the model's performance, computational requirements, and privacy
protections.

Through a comparative analysis between federated and split learning experiments, split
learning has proven to be the more effective method for forecasting power consumption in smart
grids. Despite the privacy and decentralization benefits of federated learning, it struggled to
accurately capture the varied energy usage patterns across different Prosumers, resulting in a
mean absolute error (MAE) of 87 watts. This contrasted with the initial split learning experiment,
which established a strong baseline with a significantly lower mean MAE of 8.94 watts,
demonstrating its superior capability in balancing accuracy, computational efficiency, and
privacy.

The subsequent split learning experiments, which varied the client-side complexity,
further underscored split learning's advantages. Despite slight increases in MAE, split learning
consistently outperformed the federated model, affirming its suitability for smart grid energy
forecasting. The decision to focus on split learning was driven by its demonstrated flexibility in
task distribution and its ability to optimize model performance effectively.

This thesis concludes that split learning, with its adaptability, efficiency, and lower error
rate, stands as the optimal approach for forecasting power consumption in smart grids. It
navigates the complexities of renewable energy integration, offering a promising solution for
enhancing the sustainability and reliability of energy systems.
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Chapter 1: Introduction
The global shift towards renewable energy sources is a critical component of

contemporary energy policies, driven by an urgent need to foster sustainability and mitigate
environmental impacts. This transition is underscored by international commitments, such as the
Paris Agreement (UNFCCC, 2015), which aims to significantly reduce greenhouse gas emissions
and combat climate change. Among renewable technologies, wind and solar power are
particularly notable for their potential to replace traditional fossil fuel-based energy generation,
thanks to ongoing technological advancements that have improved efficiency, reduced costs, and
enhanced storage solutions. These developments not only contribute to the environmental
benefits of renewable energy but also spur economic growth through job creation in the
renewable sector and promote social equity by improving energy access. A vital part of
seamlessly combining renewable energy sources into the power grid is accurate forecasting of
production and consumption. Such forecasts designate grid operators to manage oscillations in
energy supply and demand effectively, optimizing grid operations, reducing imbalances, and
facilitating strategic decisions regarding the necessity for backup power solutions. This ability is
especially crucial as the energy sector moves towards a more distributed and renewable-centric
model, where the ability to predict power flows becomes integral to system reliability and
efficiency.

Ensuring data privacy is now just as crucial as accurate power forecasting. With the
widespread adoption of smart meters and sophisticated monitoring technologies, an extensive
amount of data is being gathered, exposing detailed insights into personal energy consumption
behaviors. Safeguarding this sensitive data against unauthorized access becomes a top priority, as
any compromise could result in privacy violations and significant security risks for individuals.
This intersection of data utility and privacy protection underscores a growing concern in the
energy sector, highlighting the need for solutions that can balance effective energy management
with the confidentiality of consumer information.

Innovative methodologies are essential to achieve reliable power forecasting while
preserving data privacy. These methods must harness the wealth of data generated by smart grid
technologies without exposing private information. One such innovative approach is the
exploration of split learning and federated learning models. These models represent a paradigm
shift in machine learning, offering a decentralized framework that allows for collaborative model
training across various data sources without necessitating the centralization of sensitive data. By
keeping data localized and preventing its direct sharing, these models not only enhance the
predictive capabilities of power forecasting systems but also introduce a robust mechanism for
protecting user privacy.
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1.1 Background

Navigating the evolving landscape of grid management and energy flow prediction, particularly
with the increasing integration of renewable energy sources like solar power and wind, highlights the
limitations of traditional machine learning (ML) techniques. Historically, methods such as support vector
machines, decision trees, and neural networks have been foundational in forecasting energy needs by
leveraging vast historical data and weather patterns. Alongside these, modern machine learning methods
like Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNNs) are
gaining traction. LSTMs, with their ability to capture temporal dependencies, and CNNs, known for
pattern recognition, offer advanced solutions to address the challenges posed by the variability and
unpredictability of renewable energy sources. However, despite the advancements brought by LSTMs and
CNNs, the efficiency of these methods is now being challenged by the evolving demands of energy
systems. These conventional models, once tailored for stable and predictable power sources, now face
hurdles with the unpredictability and variability of renewables. They struggle with scalability due to the
sheer growth in distributed energy resources (DERs) and the volume of data these resources generate.
Additionally, the heavy reliance on past data without adequately accounting for renewables' fluctuating
nature may render these models less adaptable to new scenarios

This reliance on historical data and centralized data processing not only limits the adaptability
and scalability of these forecasting models but also raises significant data privacy and security concerns.
Traditional energy management systems often consolidate extensive data from diverse sources, such as
consumer usage patterns and environmental conditions, centralizing it for processing. This centralization
not only introduces bottlenecks in data analysis but also increases the risk of cyber threats and privacy
breaches. It highlights the critical need for a shift towards more decentralized and privacy-conscious
approaches in energy forecasting and grid management.

In response to these dual challenges, the exploration of split learning and federated learning
represents a significant paradigm shift. These innovative approaches offer a decentralized framework that
allows for collaborative model training across various data sources without necessitating the
centralization of sensitive data. Keeping data localized and preventing its direct sharing, split learning,
and federated learning not only enhances the predictive capabilities of power forecasting systems but also
introduces a robust mechanism for protecting user privacy. This shift towards leveraging split learning
and federated learning models addresses the pressing challenges of scalability, adaptability, and privacy in
the context of renewable energy forecasting, marking a promising advancement in the field of energy
management.
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1.2 Research Problem and Motivation

In this thesis, the main challenge is to forecast power consumption in smart grids while
emphasizing data privacy and computational efficiency. The task of accurately predicting power
usage, especially when handling sensitive information from diverse Prosumers, poses a
considerable challenge. This is made by the necessity to navigate the significant computational
demands of advanced learning techniques required to analyze extensive and intricate datasets.
Moreover, the research highlights the critical need for precise power consumption forecasts to
ensure effective energy management and grid stability. The unpredictability of power usage
patterns demands a forecasting solution that not only meets these challenges but also aids smart
grid management in making well-informed decisions. Furthermore, this thesis seeks to explore
the optimal approach for designing a forecasting framework that can successfully predict power
consumption and provide a prediction range. This involves determining the most effective
technique to accurately forecast power usage, thereby facilitating strategic planning and
decision-making for smart grid operations. The motivation behind this thesis is driven by the
critical need for a transition towards more sustainable energy systems, essential for combating
climate change and ensuring energy security. With the increasing integration of unpredictable
renewable energy sources like solar power, this thesis seeks innovative solutions—particularly
federated and split learning models—that not only enhance energy consumption prediction
accuracy but also protect individual data privacy. By addressing these challenges, the research
contributes to the advancement of smart grids, facilitating a more effective integration of
renewable energy sources and paving the way for a reliable and sustainable energy future.

1.3 Research Questions

This section outlines key research questions targeting the evaluation of split and federated
learning models in smart grids. These questions aim to explore their effectiveness in energy
forecasting, critical design elements, and comparative advantages. The goal is to uncover
insights that improve energy management and address the challenges of renewable energy
integration, data privacy, and computational efficiency in smart grid technologies.

3



Effectiveness of Split Learning for Energy Prediction:

● How effectively does split learning predict Prosumer power consumption within smart
grids, and in what ways does it accommodate the dynamic nature of energy usage
patterns?

Designing Split Learning Systems:

● Which parameters are crucial in enhancing the accuracy and efficiency of split learning
models for energy consumption forecasting, and what strategies can be employed to
optimize these parameters?

Comparative Analysis of Split Learning and Federated Learning:

● How does split learning compare to federated learning in terms of model performance,
data privacy, and computational efficiency within the smart grid context?

1.4 Objective

This thesis aims to address the research question by considering the elements discussed earlier.
To achieve this, the study is organized into the following key tasks:

● Implement Federated Learning Architecture: Develop a comprehensive federated
learning framework tailored for energy consumption forecasting within smart grids. This
involves designing the architecture to facilitate decentralized learning without
compromising data privacy.

● Implement Split Learning Architecture with Varied Split Layer Positions: Construct a
split learning model for energy forecasting, experimenting with different positions for the
split layer. This task aims to identify how the layer's position affects the model's
performance, computational demand, and privacy implications.

● Analyze and Compare Results of Each Architecture: Conduct a thorough analysis of the
performance of both the federated and split learning architectures. This comparison will
focus on evaluating their predictive accuracy, efficiency, and ability to maintain data
privacy. The analysis will also explore the scalability of the models and their suitability
for real-world smart grid applications.

Through these objectives, the thesis intends to provide a detailed evaluation of federated and
split learning models, offering insights into their applicability and effectiveness in smart grid
energy forecasting.
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1.5 Methodology

1.5.1 Overview

This study evaluates split and federated learning models for smart grid power
consumption forecasting, focusing on accuracy, efficiency, and privacy. The methodology
involves setting up experiments, processing data, training and assessing models and conducting
comparative analyses.

1.5.2 Data Collection and Preprocessing

Data were collected from seven Swedish Households(Aupke, 2023), each equipped with
photovoltaic (PV) systems, encompassing a diverse range of power consumption patterns. Each
dataset included time-stamped records of power usage, alongside relevant meteorological data to
account for environmental influences on energy consumption. The preprocessing steps involved
data cleaning, normalization, and partitioning into training and test sets, ensuring a consistent
format across all datasets for fair comparison.

1.5.3 Model Development

Two primary models were developed for comparison:

1. Federated Learning Model: A multi-layered sequential neural network designed to
forecast upper, lower, and mean levels of power consumption. The model was trained
using a federated learning approach, allowing for decentralized model training across the
Prosumer datasets without data centralization.

2. Split Learning Models: Multiple configurations of split learning models were tested,
varying the distribution of neural network layers between the client and server sides.
Experiment 1 allocated one layer on the client side, Experiment 2 allocated two layers,
and Experiment 3 allocated three layers, to explore the impact of client-side complexity
on model performance.

1.5.4 Experimental Setup

Each experiment was conducted using a dedicated split learning and federated learning
framework (PySyft). The framework facilitated the training of models under different
configurations, ensuring that data privacy was maintained by minimizing data exchange between
clients and servers. The performance of each model was evaluated using several metrics,
including Mean Quantile Loss (MQL), Mean Prediction Interval Range (MPIR), and Mean
Absolute Error (MAE).
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1.5.5 Model Training and Evaluation

Models were carefully trained on datasets specific to each Prosumer, emphasizing the
reduction of loss metrics and enhancement of prediction accuracy. The evaluation of these
models was carried out on a held-out test set, which constituted 20% of the data from each
Prosumer, aimed at assessing the models' ability to generalize across unseen data. This
methodological approach ensured a comprehensive understanding of each model's predictive
performance and its applicability to real-world scenarios.

1.5.6 Comparative Analysis

The outcomes of the federated and split learning experiments underwent thorough
analysis to benchmark their performance against various metrics. This analysis aimed to discern
which learning approach—federated or split learning—excelled in terms of accuracy,
computational efficiency, and compliance with data privacy norms. Furthermore, the study
delved into the effects of augmenting client-side complexity within split learning models,
evaluating its influence on both prediction accuracy and the models' capacity for generalization.

1.5.7 Statistical Analysis

To validate the significance of observed differences in performance metrics between the
models, statistical methods were utilized. Specifically, paired t-tests were applied to compare
Mean Absolute Error (MAE) values across various experimental conditions. This approach
ensured the robustness and reliability of the findings, providing a solid statistical foundation for
evaluating the comparative effectiveness of the models under study.

1.6 Hypothesis
Below are the hypotheses formulated to guide our investigation into the performance of split and
federated learning models in smart grid power consumption forecasting. These hypotheses are
grounded in preliminary research and theoretical considerations, aiming to test the models'
effectiveness, efficiency, and privacy preservation capabilities within the context of smart grids.

● Hypothesis 1 suggests that split learning, due to its architecture enabling flexible
computational task distribution between client and server, will excel over federated
learning in power consumption forecasting. This is based on the belief that such a
structure will enhance prediction accuracy, computational efficiency, and data privacy.

● Hypothesis 2 posits that enhancing the number of layers processed by the client in a split
learning model will improve prediction performance. This hypothesis is rooted in the idea
that processing more complex features locally on client devices will allow for the
detection of subtler patterns in power consumption data, thus boosting the model's overall
predictive accuracy.
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These hypotheses are pivotal for investigating innovative smart grid management strategies,
focusing on refining energy forecasting methods amidst considerations for privacy and
computational limitations.

1.7 Outline
This thesis explores the shift towards renewable energy in smart grids and the importance of
accurate power consumption forecasting.

● Chapter 2 discusses time-series forecasting and machine learning in energy forecasting,
including Neural Networks, Distributed Learning Models, and Federated and Split
Learning.

● Chapter 3 discusses the selection and optimization of hyperparameters critical to model
performance. It also outlines the federated learning approach and the tri-model split
learning framework, including their design and training processes

● Chapter 4 provides a comprehensive comparison of the federated learning experiment
with the split learning experiments and highlights key takeaways.

● Chapter 5 analyzes the results, highlighting the advantages of federated and split learning
in smart grid forecasting.

● Chapter 6 concludes by summarizing key findings and suggesting future research
directions.

References are provided in the final section for further reading.

Chapter 2: Background and Related Work
This section lays the basis for our thesis, focusing on the domain of Time Series

Forecasting and its intersection with Machine Learning, particularly Neural Networks like
LSTMs. Time series forecasting is a pivotal element in predictive analytics, playing a crucial role
in making accurate projections across various sectors. We'll introduce Time Series forecasting,
tracing its historical evolution, and addressing its key challenges, thereby highlighting its critical
importance in the modern technological landscape. This section will also explore the concepts of
distributed learning, providing essential insights that contribute to a deeper understanding of
Time Series forecasting's role and potential in the broader context of advanced data analysis and
machine learning applications.

2.1 Time-Series Forecasting
Time-series forecasting is a vital statistical technique widely used across various

industries to guide decision-making through analyzing historical data patterns. This approach is
valuable in sectors such as finance, meteorology, and inventory control. Time series forecasting
employs a range of methodologies, from basic linear techniques like moving averages to more
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complex models like ARIMA and neural networks. These models are proficient at detecting
patterns in temporal data to forecast future occurrences or trends. While time series forecasting is
essential for deriving meaningful insights, it encounters obstacles like the non-stationarity of data
and the complications of choosing the right model. The field has seen significant enhancements
thanks to recent developments in machine learning and artificial intelligence, leading to
improved precision and forecasting capabilities. The success of these forecasting methods
heavily relies on the quality of the data and the appropriateness of the chosen model to the
inherent patterns in the data.

2.1.1 Time-Series Evolution

The historical evolution of time series forecasting reflects significant advancements in
statistical methods and computational power. The origins of time series analysis date back to the
early 20th century with Yule's pioneering work on autoregressive models (Yule, 1927), followed
by Wold's introduction of moving average models in the 1930s. A major milestone was the
development of the ARMA model by Box and Jenkins in the 1970s, which revolutionized time
series forecasting (Box, Jenkins, Reinsel, & Ljung, 2015). The late 20th century saw further
advancements with the advent of computers, leading to more complex models like ARIMA and
seasonal decomposition. Recently, the focus has shifted to machine learning techniques,
particularly neural networks, and deep learning, which excel in handling large and complex
datasets. Among these, Long Short-Term Memory (LSTM) networks (Hochreiter &
Schmidhuber, 1997), stand out. LSTMs, a recurrent neural network, are adept at recognizing
patterns in data sequences and are particularly effective in time series forecasting. Their ability to
remember long-term dependencies makes them well-suited for predicting complex temporal
sequences. These advancements have enhanced the accuracy of forecasting models and expanded
their applicability in various real-world scenarios.

2.1.2 Time-Series Key Challenges

Time-series forecasting is a complex field that faces several critical challenges across
different sectors, including economic and environmental sciences. An issue in this area is the
inherent unpredictability and variability of time-series data, often influenced by unforeseen
external factors. Forecasting models must manage uncertainty to ensure the accuracy of
predictions effectively. Another significant challenge is the non-stationary nature of time-series
data, where statistical properties can vary over time. This necessitates using advanced
techniques, such as differencing or transformation, to stabilize the data. Seasonality is another
crucial aspect, particularly in sales, weather, and energy consumption datasets, requiring models
that accurately identify and predict these seasonal trends. The exponential growth of data today
poses challenges for efficient computation and real-time processing. Integrating machine
learning with traditional time-series methods represents a modern solution to these challenges,
enhancing both accuracy and adaptability in forecasting models.
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2.1.3 Components of Time-Series

In Time Series analysis, understanding the complex patterns and behaviors embedded
within data is crucial for accurate forecasting and effective decision-making. Time series data is
rich with information that, when decoded, can reveal valuable insights. This data is particularly
prevalent in fields such as economics, finance, and environmental science, where it aids in
predicting future trends based on past patterns. There are three primary components central to the
analysis of time series data: Seasonal, Trend, and Random. Each of these components plays a
distinct role in shaping the overall characteristics of the data. Let's explore each of these
components in detail:

1. The Seasonal Component captures the regular, predictable patterns that recur at specific
intervals over time, known as seasonality. These patterns are often linked to calendar
events and can be observed in various forms, such as annual temperature cycles, quarterly
sales fluctuations in retail, or daily traffic patterns. Understanding and accurately
modeling the seasonal component is crucial for effective planning and forecasting in
industries where seasonal factors play a significant role. For instance, energy companies
depend on seasonal forecasts to predict demand fluctuations due to weather changes
(Luan et al., 2020; Shiwakoti et al., 2023). The ability to anticipate these seasonal
variations enables organizations to allocate resources efficiently, manage operational
costs, and maintain a competitive edge. Advanced statistical methods, including seasonal
decomposition of time series (STL) and seasonal ARIMA models, are commonly utilized
to separate and analyze these patterns, providing a clearer understanding of their impact
on the overall time series data (Dozie & Ibebuogu, 2023; Maksood & Achuthan, 2017).

2. The Trend Component in a time series represents the long-term movement of the data.
This trend can manifest as upward, downward, or even horizontal (stable) and is key to
understanding the overall direction of the data over time. In economic data, for example,
a consistent upward trend often signifies a period of economic growth, whereas a
downward trend might indicate a recession or economic downturn. Trends in time are
affected by multiple factors, including demographic shifts, economic policies, market
dynamics, and technological advancements(Hyndman & Athanasopoulos, 2018).
Moreover, the identification and analysis of trends enable forecasters and analysts to
make long-term predictions and strategic decisions. The methods used to identify and
analyze trends vary, ranging from simple visual inspection to sophisticated statistical
techniques like moving averages or linear regression models. These methods help in
short-term fluctuations, providing a clearer picture of the data's trajectory over time.

3. The Random Component, often termed 'noise', accounts for unpredictable fluctuations
that are not explained by Seasonal and Trend components. This element captures
variations resulting from unexpected or short-lived occurrences, like market shifts or
natural events. Its presence, although erratic, is critical in time series analysis for
constructing effective forecasting models. Analysts face the challenge of differentiating
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these random fluctuations from significant data trends, a crucial step for precise
forecasting and strategic decision-making.

In addition to these primary components, some time series analyses also consider a
Residual Component, which is what remains after accounting for the primary components like
trend and seasonality patterns. It represents the portion of the data not explained by the model,
essentially the error or noise in the series. Analyzing the residual component is crucial for
assessing the effectiveness of a time series model. If the residuals display random behavior
without any patterns, it suggests that the model has adequately captured the data's structure.
However, if there are discernible patterns in the residuals, it may indicate that the model has
missed some aspects of the data, necessitating further refinement.

To gain a comprehensive view of these components, utilizing statistical software such as
R, Python, or Excel is beneficial. These applications are capable of breaking down a time series
into its fundamental elements, thereby facilitating a more transparent comprehension of the
inherent patterns and trends. The figure below visualizes such components:

Figure 2.1: Components of Time-Series

1. Observed - Power Produced: Displays the actual monthly totals of power produced
since August 2020.

2. Trend - Power Produced: Shows the underlying trend in power production, independent
of seasonal effects or irregular fluctuations.

3. Seasonal - Power Produced: Highlights the regular, predictable seasonal patterns in
power production.
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4. Residual - Power Produced: Represents the unexplained variations or anomalies in the
production data.

2.1.4 Stationarity and Seasonality

Stationarity and Seasonality are two fundamental concepts of time series data that
significantly influence how the data should be analyzed and forecasted. Stationarity refers to a
time series whose statistical properties, such as mean, variance, and autocorrelation, are constant
over time. This is vital because many forecasting models assume or require the data to be
stationary. Non-stationary data often lead to unreliable and spurious results in models.
Techniques like differencing, transformation, or using models like ARIMA are employed to
achieve stationarity.

Seasonality, on the other hand, indicates the presence of variations that occur at specific
regular intervals less than a year, such as weekly, monthly, or quarterly. Seasonality can arise due
to various factors like weather, holidays, or business cycles and is crucial for understanding and
predicting patterns in time series data. Seasonal variations are typically handled by seasonal
adjustment methods or using models that explicitly account for seasonality, such as SARIMA
(Bawdekar et al., 2022).

2.2 Machine Learning in Time Series Forecasting

Machine learning has significantly advanced the field of time series forecasting, offering
powerful tools to handle complex and large datasets. Unlike traditional statistical methods,
machine learning models can capture non-linear relationships and interactions in time series data
without requiring explicit specification of the underlying data structure; this makes machine
learning particularly effective for forecasting in domains with complex dynamics. Recent
developments in machine learning, especially deep learning techniques like Long Short-Term
Memory (LSTM) networks, have further enhanced forecasting accuracy. These models are
capable of learning from and making predictions based on large volumes of historical data. The
integration of machine learning in time series forecasting represents a significant shift towards
more data-driven, adaptive, and accurate predictive modeling (Masini, Medeiros, & Mendes,
2020).

2.2.1 Neural Networks and Deep Learning

Neural networks, a cornerstone of modern computational technology, are designed to
mimic the human brain's complex processing capabilities. These networks comprise layers of
interconnected nodes, or 'neurons,' which work in unison to analyze and interpret vast amounts
of data. This structure allows neural networks to learn and adapt from experience, much like the
human brain, making them proficient in handling dynamic and nonlinear relationships inherent
in time series data. Deep learning, a more advanced branch of machine learning, builds upon this
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foundation by employing multi-layered neural networks. These deep networks, particularly
architectures like Long Short-Term Memory (LSTM) networks, capture temporal dependencies
and subtle nuances in sequential data, progressively extracting higher-level features from raw
input. Integrating neural networks and deep learning in time series forecasting marks a
significant evolution in predictive modeling. It represents a shift towards more adaptive,
data-driven, and precise methodologies, making these models more valuable for predicting future
events across various domains, from financial markets to environmental changes. This
advancement in neural networks and deep learning paves the way for more detailed insights and
informed decision-making in our rapidly evolving world.

2.2.2 Historical Evolution: From Perceptron to Advanced Models

Neural networks originated in the 1950s with the creation of the perceptron (refer to
figure 2.2) by Frank Rosenblatt at the Cornell Aeronautical Laboratory in the United States. This
early model was simplistic yet groundbreaking, laying the foundation for the expansive growth
in the field. Demonstrating the potential of machines to perform classification tasks, the
perceptron represented the first significant step towards developing more complex neural
network models.

Figure 2,2: Representation of a Single Layer Perceptron (Mundkur, 2018)

In the 21st century, neural network research advanced drastically due to the dramatic
increase in computational power and data availability. This progress enabled the development of
sophisticated and efficient models, particularly enhancing time series forecasting where complex
data analysis is crucial. Later, Deep learning, especially with the beginning of Long Short-Term
Memory (LSTM) networks, emerged as a significant advancement in this domain. These
networks excel in handling the intricacies of time series data, such as non-linear relationships
and temporal dependencies, by processing extensive historical data. The adaptability and
learning prowess of LSTM networks have made them instrumental in making accurate
predictions across various domains, from financial markets to environmental studies.
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As neural networks continue to evolve, they are becoming increasingly essential in
deciphering the growing volumes of data, driving forward the field of predictive modeling,
particularly in time series forecasting.

2.2.3 Neural Network Architecture: A Reflection of Biological Complexity

The architecture of a neural network is a testament to design precision, echoing the
complexity of its biological counterpart in the human brain. At its heart lies an interconnected
labyrinth of neurons or nodes, systematically organized into distinct layers, each playing a
pivotal role in the network's data processing and learning mechanisms.

Input Layer serves as the gateway for data entry, each neuron in this layer represents a
unique aspect of the input data. In scenarios like power production forecasting, these neurons
could correspond to variables such as historical power output, weather conditions, or temporal
factors(Sharma et al., 2023). Hidden Layers are positioned between the input and output layers,
these layers form the neural network's computational nucleus. Here, neurons intricately process
the input data through a series of mathematical transformations, defining the network's
complexity and depth (Zhang, Yu, & Xu, 2020). Output Layer: This layer culminates the
network's processing journey, delivering the final prediction or output, such as the forecasted
power output in energy forecasting models (Her et al., 2022; Hansda & Murmu, 2023).

Figure 2.2a: Neural Network architecture (Pramoditha, 2022)

2.2.4 Activation Functions: The Catalysts of Learning

Integral to neural networks are the activation functions - Sigmoid, ReLU, and Tanh.
These functions infuse non-linearity into the network, enabling it to learn and model complex
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● Sigmoid: Maps inputs to a range between 0 and 1, ideal for binary classification and
probabilistic outputs.

● ReLU (Rectified Linear Unit): A piecewise linear function that has become a staple in
neural networks for its efficiency in mitigating the vanishing gradient problem.

● Tanh (Hyperbolic Tangent): Similar to Sigmoid but maps inputs between -1 and 1,
suitable for modeling negative outcomes. data patterns.

These functions are pivotal in enabling neural networks to backpropagate errors and update
weights, a critical aspect of their learning and generalization capabilities.

Learning Process in Neural Networks: A Symphony of Algorithms and Mathematics

The learning process in neural networks is an intricate interplay of forward propagation and
backpropagation, augmented by loss functions and optimization algorithms.

● Forward Propagation: Involves data processing through the input layer, transformation in
hidden layers, and output generation in the output layer.

● Backpropagation: Starts with error calculation, followed by gradient descent to adjust
weights, thereby minimizing prediction errors.

● Loss Functions and Optimization Algorithms: Loss functions like MSE and
Cross-Entropy quantify prediction errors, while optimization algorithms such as Gradient
Descent and its variants fine-tune the network's weights. Among these, the Adam
optimizer has gained prominence for its efficiency in handling sparse gradients and
adapting the learning rate during training, making it a preferred choice in many neural
network applications.

This dynamic and iterative learning process is fundamental to a neural network's ability
to adapt, refine its understanding, and enhance predictive accuracy, making it an indispensable
tool in various predictive modeling tasks, including time series forecasting in power production.

2.3 Recurrent Neural Networks (RNNs): Specialized for Sequential
Data

Recurrent Neural Networks (RNNs) are specialized for sequential data analysis, ideal for
time series forecasting and natural language processing, where data points are interconnected and
time-sensitive. Unlike traditional neural networks with independent inputs and outputs, RNNs
use previous outputs as current inputs (as seen in Figure 2.3), crucial for tasks like sentence
completion. Their defining feature is the Hidden Layer or Memory State, which retains sequence
information, allowing consistent processing across inputs with simplified parameter complexity.
This memory aspect enables them to capture temporal dynamics in data effectively.
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Figure 2.3: Recurrent and Feedforward Networks (Eliasy & Przychodzen, 2020)

RNNs can accurately predict future power production or market trends by utilizing past
data. Their internal structure allows them to remember and learn from the historical patterns and
trends in the data. For instance, RNNs can analyze past electricity demand and supply data,
weather conditions, and other relevant temporal sequences to predict future power needs, making
them a valuable tool for making informed predictions about future events.

2.3.1 RNN Architecture: Embracing Temporal Dynamics

RNNs are specifically designed to process sequential data with high accuracy. As we
discussed earlier, these networks can effectively capture temporal dynamics, which means they
can learn from past data patterns. RNNs typically consist of three essential layers, each playing a
significant role in the network's overall performance and functionality, especially in tasks such as
time series forecasting and language processing. The input layer in a recurrent neural network
receives sequential data, where each neuron corresponds to a time step in the sequence. The data
then moves to the recurrent hidden layer, where neurons process current inputs while retaining
a memory of past information through their internal states. This allows the network to make
informed predictions by integrating both current and historical inputs, capturing the temporal
dynamics in the data. Finally, the output layer generates a final output, which could be a
prediction for the next time step in a sequence or a classification decision depending on the task.
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Figure 2.3.1: RNN Architecture (Ma et al., 2019)

2.3.2 Challenges with RNNs: Vanishing and Exploding Gradients

Despite their effectiveness in sequential data analysis, RNNs face challenges like
vanishing and exploding gradients, particularly in long sequences. Vanishing gradients occur
when the gradients become too small, hindering the network's ability to learn from earlier data
points, thus affecting its capacity to understand long-range dependencies (Rehmer & Kroll,
2022). Exploding gradients, on the other hand, involve massive gradients, leading to unstable
training and deviation. Solutions to these issues include using gated architectures like LSTMs
and GRUs, which introduce gates that regulate the flow of information through the network,
allowing them to retain important information over long sequences while discarding irrelevant
data (Krishnan et al., 2021). This design mitigates the vanishing gradient problem by maintaining
a more constant error flow across layers. Another approach to tackle these issues is gradient
clipping, a technique where gradients are artificially limited to a maximum value to prevent them
from exploding. This method ensures that the updates to the model weights remain within a
manageable range, promoting more stable and consistent training. Furthermore, advanced
optimization algorithms like Adam and RMSprop have been developed to adapt the learning rate
during training dynamically. These optimizers help in navigating the complex loss landscapes of
RNNs more effectively, reducing the impact of both vanishing and exploding gradients.

2.3.3 LSTM Networks in Time Series Forecasting: Overcoming RNN
Limitations with Advanced Memory Management

Long Short-Term Memory Networks (LSTMs), a specialized variant of Recurrent Neural
Networks (RNNs), are ingeniously designed to tackle the challenges of vanishing and exploding
gradients, which are common in traditional RNNs. This is achieved through a sophisticated
internal architecture that enables the sequential processing capabilities of RNNs while
significantly enhancing the ability to capture long-range dependencies within data (Kumar et al.,
2020).

16



Figure 2.3.2: A Long Short-Term Memory (LSTM) unit. (Greff et al., 2015)

LSTM Architecture: At the core of LSTMs are memory blocks containing several components
crucial for advanced memory management: input gates, output gates, and forget gates. These
elements work in harmony to regulate the flow of information, allowing the network to
selectively retain or discard data across time steps, thus providing a nuanced control over the
memory cell's state.

● Input Gate: Manages how much of the new information is allowed into the cell,
enabling the network to add to its memory.

● Forget Gate: Determines what information is no longer relevant to the task at hand and
thus should be removed, helping to prevent unnecessary clutter in the cell's memory.

● Output Gate: Decides what information is useful and should be output from the cell at
the current step, based on the input and the memory of the cell.
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Optimization Techniques: Beyond their architectural advancements, LSTMs also leverage
sophisticated optimization techniques like Adam. This optimizer enhances training efficiency
and convergence by adapting learning rates for different parameters, further refining the
network's learning process.

Application in Time Series Forecasting: LSTMs are particularly valuable in time series
forecasting, where understanding historical data and its temporal dependencies is crucial.
Whether predicting power production, financial market trends, or weather patterns, LSTMs, with
their enhanced memory management capabilities, offer a significant advantage. They excel in
modeling complex sequences and dependencies over time, making them a powerful tool for tasks
where the historical context is integral to accurate forecasting (Wang et al., 2023).

LSTMs represent a pivotal development in the field of deep learning for sequential data
analysis. Their unique ability to manage memory effectively, coupled with advanced
optimization techniques, allows them to overcome the limitations of traditional RNNs, making
them a cornerstone in the advancement of time series forecasting.

2.4 Distributed Deep Learning in Time Series Forecasting

Distributed Deep Learning (DDL) has become a pivotal tool in enhancing time series
forecasting, particularly in managing large-scale data and computational intensity. It allocates
deep learning tasks across multiple computing nodes, utilizing parallel processing to handle
complex time series data efficiently. This approach not only improves scalability but also boosts
computational efficiency, which is crucial for processing vast datasets that challenge traditional
single-node systems due to their limited computational and memory capacities. DDL is
especially effective in dealing with high-dimensional time series data, a common aspect of
forecasting tasks. Central to DDL's effectiveness are architectures like Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs), including LSTM variants, which
play a critical role in extracting detailed features from complex temporal sequences.
Furthermore, DDL enables the deployment of more intricate and deeper neural network models,
which might be too demanding for single-machine operations, potentially enhancing the
accuracy of forecasting results. A significant aspect of DDL in time series forecasting is its
support for collaborative learning while maintaining data privacy. Techniques such as Federated
Learning facilitate collaborative model training across various organizations or locations without
the need for actual data sharing, thus addressing privacy and regulatory concerns. With
increasing data volumes and rising computational demands, DDL stands as a robust and dynamic
framework, well-positioned to drive significant advancements in forecasting methodologies.

2.4.1 Data Parallelism

Parallelism in computing refers to the process of breaking down larger tasks into
multiple, smaller ones to be executed simultaneously by multiple processors. This concept is
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crucial in optimizing computational processes, especially in handling large and complex tasks.
Parallelism can be implemented in various ways, depending on the nature of the tasks and the
architecture of the system. In this section, we will go over Data and Model Parallelism. To begin
with, Data Parallelism involves dividing a substantial dataset into smaller segments and
processing these segments concurrently (parallel processing) across multiple processors or
computing nodes which allows for the simultaneous execution of tasks, significantly enhancing
efficiency and processing speed (Graser et al., 2023). When applied to time series data, Data
Parallelism is exceptionally beneficial as it enables the rapid processing of these large datasets, a
crucial factor in training deep learning models like Neural Networks (Tin et al., 2022). Each
processor in a Data Parallelism setup works on a different subset of the data, facilitating faster
model training by aggregating the learning from these subsets. This approach is particularly
advantageous for real-time analysis of time series data, such as in financial markets or IoT sensor
data, where swift processing is essential for timely insights and decision-making. Moreover, Data
Parallelism scales effectively with the growing volume of data, maintaining processing
efficiency even as data loads increase. Typically implemented in distributed computing
environments, such as cloud platforms, Data Parallelism allows for dynamic resource allocation,
adapting to the varying demands of time series data analysis. Thus, Data Parallelism is an
indispensable technique in modern time series forecasting, enabling the handling of large
datasets with increased speed and efficiency, and facilitating more effective real-time data
analysis.

2.4.2 Model Parallelism

Model Parallelism offers a distinctive computational strategy, different to Data
Parallelism, to manage large-scale machine learning challenges, such as those in time series
forecasting. Unlike Data Parallelism, which divides a dataset among multiple processors, Model
Parallelism involves partitioning the machine learning model itself. This technique distributes
different components or layers of a complex model across several computational units, making it
especially useful for extensive neural network models that exceed the memory capacity of a
single processor (Abbas et al., 2019). In time series forecasting, where deep neural networks are
often employed to decode complex temporal sequences, Model Parallelism facilitates the
processing of these sizable models. It allows for the division of computational tasks, where one
processor might compute the initial layers of a deep learning model, while others handle later
layers. This distribution of computational load is essential in time series analysis, particularly for
models with high computational requirements or those needing swift training and inference.
Model Parallelism thus enables the application of advanced models in time series forecasting,
which might be unfeasible in a single-processor setup due to computational limitations. By
utilizing multiple processors, Model Parallelism makes it possible to train and utilize complex
models, potentially enhancing the accuracy and depth of forecasting insights.
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Figure 2.4: Model and data parallelism (Polosukhi, n.d)

2.5 Federated Learning in Time Series Forecasting

Federated Learning (FL) represents a paradigm shift in time series forecasting by
enabling collaborative model training across multiple clients while ensuring data privacy and
reducing communication costs. Unlike traditional centralized data storage approaches, FL adopts
a decentralized framework where each client leverages its data locally to contribute to a
collective model, coordinated by a central server. This decentralized approach ensures that raw
data remains exclusively on the client side, effectively addressing privacy concerns. In FL,
clients compute model updates independently, and only these updates, rather than the raw data,
are communicated to the server. This methodology aligns with the principles of Data Parallelism,
as previously discussed, but with a crucial difference: FL naturally enables parallel processing of
data across clients without the need for explicit data partitioning, as it separates the training
process from direct data access..

Federated Learning (FL) is a useful technique when dealing with data distributed across
multiple devices, particularly in situations where data volume or privacy concerns are significant.
However, implementing FL in time series forecasting poses unique optimization challenges that
differ from typical distributed optimization problems. One such challenge is the heterogeneity in
data also known as the non-independent and identically distributed (non-IID) nature. This means
that each client's dataset may have distinct characteristics that do not necessarily mirror the
overall population's data distribution, potentially leading to skewed model training and impacting
the forecasted outcomes' accuracy and generalizability (Sun et al., 2023; Chen et al., 2023).
Additionally, there is often a significant discrepancy in the quantity of data available across
different clients. While some may have access to extensive datasets, others may have limited
data, creating disparities in each client's contribution to the model and potentially resulting in
biased or underfitting models (Qi et al., 2023). Another significant challenge is scalability and
distribution. FL involves potentially a vast number of clients contributing to the model training,

20



and managing as well as efficiently aggregating updates from such a large cohort, especially
when individual data contributions are small, poses a considerable scalability challenge (Qi et al.,
2023).

Lastly, communication constraints form a critical aspect of FL, relying on client-server
communication for model updates. However, clients often face limitations such as intermittent
connectivity, slow network speeds, or high communication costs that can hinder the timely and
efficient exchange of model updates and impact the overall effectiveness of the training process.
Addressing these challenges is crucial for leveraging the full potential of FL in time series
forecasting. Solutions need to be tailored to handle data heterogeneity, ensure balanced
contributions from diverse data sources, scale efficiently with the number of clients, and
optimize communication strategies to accommodate varying network conditions (Rosero et al.,
2023).

2.5.1 Split Learning (SL) in Time Series Forecasting

Split Learning (SL) offers a transformative approach in time series forecasting,
particularly in scenarios where data privacy is paramount and computational resources are
distributed. Unlike traditional centralized learning systems, SL allows for the training of a shared
model by splitting the learning process between the client and the server. In this setup, the raw
data remains on the client side, ensuring data privacy and reducing the need for extensive data
communication (Lyu et al. 2023). The learning task in SL is facilitated through a collaborative
effort between multiple clients and a central server. The clients perform part of the model
computation using their local data and send only the intermediate model outputs to the server.
The server then completes the remaining part of the computation. This process is somewhat
analogous to Data Parallelism, but with the crucial advantage that SL inherently maintains data
privacy by design, as the raw data never leaves the client's premises.

One of the main advantages of split learning is its computational and communication
efficiency, especially for clients. Since only the initial layers of the neural network are trained on
the client side, the computational burden is significantly reduced. However, to make SL
practically viable, several unique challenges within this framework need to be addressed:

1. Data Privacy and Security: Ensuring that the intermediate data shared between the client
and the server does not compromise the privacy of the raw data.

2. Computational Balance: Managing the computational workload between the client and
the server to optimize resource utilization and prevent bottlenecks (Chang et al., 2023).

3. Scalability: Effectively scaling the SL framework to accommodate a large number of
clients with varying computational capabilities.

4. Communication Efficiency: Minimizing the communication overhead between clients
and the server, is especially crucial for clients with limited or costly connectivity.

21



Addressing these challenges is key to leveraging the full potential of Split Learning in time series
forecasting. Solutions need to focus on enhancing data security, optimizing computational
workload distribution, improving scalability, and ensuring efficient communication protocols.

Figure 2.5.1 Split Learning Configuration (a) Simple Vanilla, (b) Extended Vanilla, (c) Without Label
Sharing, and (d) Vertically Partitioned Data (Thapa et al., 2020)

Split Learning (SL) offers a versatile framework for privacy-preserving machine learning,
demonstrated through various configurations each tailored to specific privacy and computational
requirements. In its simplest form, Vanilla Split Learning, a client trains a model on local data
and sends intermediate representations, known as "smashed data," along with labels to a server
for further processing. This configuration, depicted in Figure 2.5.1a, enables a straightforward
collaborative learning process without compromising raw data privacy (Yang et al., 2022). The
Extended Vanilla Split Learning approach, illustrated in Figure 2.5.1b, builds upon this by
permitting some processing of intermediate layers on the client side before transmission to the
server, thereby reducing the server's computational burden and introducing greater flexibility in
model training (Mugunthan et al., 2021). In scenarios where labels are sensitive, Split Learning
Without Label Sharing offers a solution by having the client share only the smashed data,
omitting labels. As shown in Figure 2.5.1c, the server processes this data up to a predetermined
layer and returns the activations to the client, which then completes the forward propagation and
initiates backpropagation, establishing a U-shaped information flow (Ezzeddine et al., 2023). For
situations involving Vertically Partitioned Data, as represented in Figure 2.5.1d, SL adapts to
cases where clients possess different features for the same samples. Each client processes its data
segment and forwards the smashed data to the server, which then amalgamates these inputs for
continued processing. This model is especially beneficial in multi-disciplinary studies involving
diverse data types across subjects (Liu et al., 2023). Collectively, these configurations underscore
SL's adaptability in meeting the diverse needs of distributed learning environments, allowing for
customized data splitting and training process flows to uphold both privacy and computational
efficiency.
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2.6 Predictive modeling: statistical techniques and metrics

We'll cover predictive modeling and performance metrics in our analytical framework.
Our approach is centered around the application of Quantile Regression, which enables us to
explore the conditional distribution of power consumption across various quantiles. To evaluate
the accuracy and reliability of our predictions, we utilize three metrics: Mean Quantile Loss
(MQL), Mean Absolute Error (MAE), and Mean Prediction Interval Analysis. Each of these
metrics provides a unique perspective on the performance of our models, allowing us to make a
comprehensive assessment of their predictive capabilities. This section aims to explain the
methodology and tools that form the basis of our analysis, paving the way for a detailed
exploration of our findings and their implications for power consumption forecasting.

Quantile regression

Quantile regression emerges as a critical analytical tool in our study, distinguishing itself
from traditional mean regression by estimating the conditional median and various other
quantiles of the response variable. This approach broadens our understanding of the entire
distribution of the dependent variable, which is particularly pertinent for forecasting power
consumption. Unlike ordinary least squares regression that targets the mean, quantile regression
excels in outlining the relationship between predictors and the response variable across the entire
distribution, from the lower to the upper quantiles. This capacity is invaluable for energy
consumption analysis, as it allows for the investigation of consumption patterns that span typical
usage to extreme conditions, such as surges in power demand. The strength of quantile
regression lies in its unique loss function,

where p represents the targeted quantile. This loss function is adept at minimizing discrepancies
across specified quantiles, thereby furnishing a detailed portrayal of energy consumption
patterns. By integrating this technique, we aim to delve into the complex interplay between
predictor variables and residential power consumption across the entire distribution, with a keen
focus on the tails where extreme values are prominent. This methodological approach not only
bolsters our neural network models with enhanced predictive accuracy but also provides a more
layered understanding of power consumption patterns. Ultimately, our use of quantile regression
aims to facilitate more effective energy management and informed policymaking by forecasting
energy demands with greater precision, accounting for both typical and atypical usage patterns.
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Mean Quantile Loss

The Mean Quantile Loss (MQL) is a metric in quantile regression analysis, designed to
evaluate the model's performance by averaging the quantile loss across all observations. This
metric captures the essence of quantile regression, which is to accurately predict conditional
quantiles of the response variable. The formulation of the Mean Quantile Loss is given by:

Where:
● N is the total number of observations,
● Yi represents the actual value of the ith observation
● ŷi is the predicted quantile value for the ith observation

Particularly valuable in energy consumption forecasting, MQL quantifies the discrepancy
between observed and predicted quantile values into a singular, interpretable figure. By
aggregating individual quantile losses, MQL offers a comprehensive measure that reflects the
model's capability to capture the distribution of the response variable across specified quantiles
accurately. Incorporating MQL into analytical frameworks not only enhances the accuracy of
quantile predictions but also serves as a guide for model refinement, highlighting divergences
between predictions and actual observations, especially in the distribution's tails where extreme
values are prevalent. Optimizing MQL ensures that predictive models accurately reflect both the
central tendency and the variability and extremities of the distribution, crucial for effective
decision-making and resource management in energy consumption forecasting. This nuanced
understanding of the distribution's full range and variability, facilitated by MQL, significantly
influences the reliability and utility of predictive models in practical applications.

Mean Prediction Interval Range (MPIR)

The Mean Prediction Interval Range (MPIR) is a statistical metric utilized to quantify the
average width of prediction intervals across a set of forecasts, it provides insights into the
uncertainty or variability associated with predictions. The MPIR captures the average range
between upper and lower quantile predictions across all observations to calculate the spread or
uncertainty of predictions. The MPIR is defined as follows:
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Where:
● N is the total number of observations,
● Ŷui represents the upper bound prediction for the ith observation
● Ŷli denotes the lower bound prediction for the ith observation

This metric ascribes the breadth of prediction intervals, where a smaller MPIR indicates
tighter intervals and higher confidence in predictions, and a larger MPIR signifies greater
uncertainty. Particularly in fields like energy consumption forecasting, MPIR proves invaluable
by enabling analysts and decision-makers to evaluate forecast reliability through the lens of
prediction uncertainty. For example, a narrower MPIR in future power demand forecasts
suggests a high confidence level, aiding in more accurate planning and resource allocation.
Furthermore, MPIR facilitates model refinement and selection by identifying models that achieve
an optimal balance between accuracy and reliability—narrow enough to ensure precision yet
wide enough to encompass actual outcomes. By integrating MPIR with other performance
metrics, modelers can fine-tune their predictive models to not only achieve accuracy but also
convey meaningful uncertainty estimates, essential for informed risk assessment and
decision-making across various sectors.

Mean Absolute Error (MAE)

Mean Absolute Error (MAE) evaluates the accuracy of predictive models by quantifying
the average magnitude of errors between predicted values and actual values, without considering
their direction. Renowned for its simplicity and interpretability, MAE directly reflects the
average error in the same units as the data, offering a straightforward measure of a model's
prediction accuracy. The formula for calculating MAE is given:
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A lower MAE signifies closer predictions to actual data, indicating higher accuracy,
while a higher MAE points to larger discrepancies and lower accuracy. Particularly useful in
applications like energy consumption forecasting, MAE provides stakeholders with a
straightforward metric to assess model effectiveness and compare various models or forecasting
methods. This aids in selecting the most accurate model for specific needs. Additionally, MAE's
robustness to outliers ensures a balanced performance assessment across different scenarios,
making it a versatile and essential metric in predictive modeling and analysis. In practical
applications, such as forecasting energy consumption, MAE offers a clear and immediate
understanding of the model's performance. For stakeholders, having a metric like MAE is
invaluable for assessing the model's practical utility in predicting real-world outcomes. It
facilitates the direct comparison of different models of forecasting techniques, enabling
decision-makers to choose the model that best meets their accuracy requirements.

2.7 Related Research

In the concluding section of this chapter, we explore related research and studies that
share similarities with this study. This overview serves to place our findings within the wider
field, showing how our research fits into the existing body of knowledge. By looking at these
related efforts, we aim to highlight the unique aspects of our study and understand the broader
implications of our results. This comparison not only recognizes the work of others but also
opens up possibilities for future research and collaboration.

Prediction of Solar Energy Yield Based on Artificial Intelligence Techniques for the Ha’il
Region, Saudi Arabia (Kolsi et al., 2023)
This research paper published in Sustainability Journal, conducts a detailed analysis of artificial
intelligence models to forecast solar energy yield. This study addresses the challenge posed by
solar energy's variability, which is influenced by unpredictable climatic and geographic
conditions, by utilizing daily data to assess the performance of seven AI models: Naïve (N),
Simple Average (SA), Simple Moving Average (SMA), Nonlinear Auto-Regressive (NAR),
Support Vector Machine (SVM), Gaussian Process Regression (GPR), and Neural Network
(NN). The evaluation of these models was conducted using Root Mean Square Error (RMSE)
and Mean Absolute Percentage Error (MAPE), with findings indicating a slight preference for
the Naïve and Simple Moving Average models due to their superior performance. The outcomes
of this research hold significant value for decision-makers and specialists in the solar energy
sector, offering crucial insights into solar system power yields and aiding in estimating the
photovoltaic project payback and efficiency. This study contributes to advancing renewable
energy research by enhancing the precision of solar energy predictions, thereby promoting the
efficient and sustainable utilization of solar resources.
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Hybrid Federated Learning Framework Based on XGBoost for Distributed Power
Prediction (Liu et al., 2022)

This study introduces a groundbreaking hybrid federated learning framework that
integrates XGBoost to tackle distributed power prediction challenges. This innovative model
merges the strengths of both horizontal and vertical federated learning to effectively address
issues related to data fragmentation. By employing boosted trees, the framework not only
enhances the accuracy and interpretability of power prediction models but also introduces a
dynamic task allocation scheme that ensures fairness and efficiency in the learning process. This
approach marks a notable advancement in the use of federated learning within power systems,
showcasing its potential to improve distributed power prediction through increased model
accuracy and transparent, equitable task distribution.

Privacy-preserving Power Load Prediction Using Federated Learning (Huang et al., 2022)

Kangqian Huang and collaborators present a novel approach to power load forecasting
that emphasizes privacy protection through federated learning combined with RSA-AES
encryption. This methodology is specifically designed to safeguard the confidentiality of data
gathered by smart meters, showcasing the capability of federated learning to facilitate
collaborative data analysis while maintaining the privacy of user information. The study
underscores the significance of federated learning in the energy sector, particularly for
applications where the protection of sensitive data is paramount. By integrating federated
learning with a robust encryption system, this research demonstrates a practical solution for
conducting joint data mining on smart meter data without exposing user privacy, highlighting the
method's relevance and applicability in ensuring data confidentiality in power load prediction.

Privacy-Preserving Power Consumption Prediction Based on Federated Learning with
Cross-Entity Data (Liu, Zhang, Shen, & Sun, 2022)

This paper introduces a systematic privacy-preserving federated learning framework for
the power system sector, facilitating collaborative learning of power consumption patterns with
an innovative use of horizontal and vertical federated learning and a Diffie-Hellman-based
encryption scheme for secure and efficient model training. Further explored, the framework
exemplifies federated learning's potential for cross-organizational collaboration in analyzing
power consumption trends while maintaining strict privacy standards. Highlighting the role of AI
and federated learning in advancing energy forecasting, these studies address predictive accuracy
and data privacy challenges, laying the groundwork for future research and applications in the
energy sector. Additionally, "LSTMSPLIT: Effective SPLIT Learning based LSTM on
Sequential Time-Series Data"(Jiang et al., 2022) presents a novel approach that combines Split
Learning and LSTM networks for privacy-preserving classification of time-series data,
employing Differential Privacy to enhance privacy assurance, showcasing promising avenues for
secure and accurate time-series data analysis.
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Chapter 3: Design, Data, and Implementation
In this chapter, we will expand upon the fundamentals of neural networks and delve into

their practical application for residential power consumption forecasting. We will emphasize the
effectiveness of neural networks in predicting energy usage For prosumers and provide insights
into the dataset used for this purpose. Our goal is to bridge theoretical knowledge with practical
application, offering a complete guide to understanding and applying neural network-based
predictions in residential power consumption.

3.1 Neural Network in Power Consumption
Neural networks have emerged as a powerful tool for predicting power consumption,

particularly in residential settings. A dataset encompassing various attributes such as energy
bought, produced, sold, total consumed, along with environmental factors like temperature, dew
point, humidity, precipitation, wind direction and speed, air pressure, and global radiation, is
adequate for neural networks to model and forecast total power consumption effectively. Because
neural networks can distinguish complex patterns and relationships within large datasets, they are
ideal for this application. Zhang et al. (2020) showcased the effectiveness of deep learning
models in predicting residential power consumption with similar datasets, emphasizing the
superior performance of neural networks in handling non-linear and high-dimensional energy
data compared to traditional statistical methods. Furthermore, the integration of environmental
variables into the neural network model is crucial, as these factors significantly influence energy
consumption patterns. Research done by Li (2019) showed that incorporating weather-related
variables like temperature and humidity improves the prediction accuracy of neural network
models in energy consumption forecasting. By analyzing a comprehensive set of variables,
including both energy usage and environmental factors, these models can provide valuable
insights for energy management and planning.

3.2 Dataset and Practical Findings
The practical work conducted in this study aims to investigate the efficacy of split

learning for power consumption prediction. This research utilizes a dataset derived from Aupke's
2023 study, focusing on seven distinct Prosumers in Uppsala, Sweden, as illustrated in Figure
3.3. Building upon Aupke's foundational work, this thesis aims to extend and apply the insights
gained to explore the efficacy of federated and split learning models in smart grid energy
forecasting (Aupke, 2023). This dataset was collected over 14 months and includes hourly
measurements.
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Figure 3.2a: Map of Uppsala where the houses inside our smart grid are located (Aupke, 2023)

Our forecasting algorithm is trained and evaluated using a dataset labeled D = (X, ȳ),
which comprises a feature matrix X̄ with dimensions N×k. Here, N indicates the frequency of
data collection, and k represents the total number of features within the dataset. Each feature
vector, denoted as xi = (xi,1, ..., xi,k)ᵀ, is a component of X̄. To augment the accuracy of our
machine learning model in predicting PV production and consumption, we also integrate hourly
weather data sourced from the Swedish Meteorological and Hydrological Institute (SMHI), as
detailed in Table 3.3a below. This inclusion of external weather data aims to provide a more
comprehensive basis for our algorithm's training and evaluation process.

Table 3.2a: Prosumer and Winter Features (Aupke, 2023)

For the machine learning models, the input features (X̄) undergo normalization. The
dependent variable, y = (y1, ..., yN), reflects the power either produced (PProduced) or
consumed (PConsumed) by each Prosumer. PConsumed is determined by adding the power
imported from the main energy grid to the power generated by the Prosumer's PV system, then
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subtracting the power exported back to the grid, formulated as PConsumed = PImport +
PProduced − PExport. Notably, PConsumed may occasionally be negative within the dataset,
indicating instances where a Prosumer's energy production or purchase is zero, and it solely sells
stored energy from its battery to the main grid. Visual representations of the data distribution for
both produced and consumed power are provided through histograms and Kernel Density
Estimations (KDE) in Figure 3.3b, offering a detailed view of the data characteristics.

Figure 3.3b shows histograms and Kernel Density Estimations (KDE) (Aupke, 2023)

Additionally, night times, during which PV cells do not generate electricity, are excluded from
the production data during training and evaluation. This dataset and its characteristics provide a
robust foundation for assessing the performance of split learning in power prediction.

3.3 Hyperparameters in Neural Network Modeling
Hyperparameters are vital in neural network modeling, particularly for applications like

power consumption prediction. These external configuration variables are predetermined, not
learned from the data, and significantly influence the learning process and model performance.
This section provides a comprehensive overview of various hyperparameters, their definitions,
significance, and impact. There are several hyperparameters, some of which include:-

1. Network Architecture Hyperparameters
Layers and Neurons:

○ Overview: The architecture of a neural network is defined by its layers and the
neurons within those layers. The configuration, in terms of depth (number of
layers) and width (number of neurons), is crucial in dictating the network's
learning capacity.

○ Implications: The chosen structure has a balance between complexity and
simplicity. While more layers and neurons can model more intricate patterns, they
also raise the possibility of overfitting. Contrarily, too few layers, and neurons
might lead to underfitting, where the network fails to capture essential data
characteristics.
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2. Activation Functions
ReLU, Sigmoid, and Tanh:

○ Overview: Activation functions like ReLU (defined as f(x) = max(0, x)), Sigmoid
(f(x) = 1 / (1 + e^(-x))), and Tanh (f(x) = tanh(x)) introduce non-linearity into
neural networks.

○ Implications: These functions enable the network to learn and represent complex
data relationships, each having specific advantages. ReLU is particularly efficient
for hidden layers, while Sigmoid and Tanh are better in output layers for binary
classification tasks.

3. Data Preprocessing Hyperparameters
Scaling Methods (StandardScaler, MinMaxScaler, RobustScaler):

○ Overview: Normalization and scaling methods adjust the input features to a
common scale, improving the stability and efficiency of the learning process.

○ Implications: Choosing a scaling method can profoundly impact the model's
performance, particularly in datasets with features of varying scales or significant
outliers. For example, the RobustScaler is particularly effective in datasets where
outliers might skew the feature scaling process. Additionally, the MinMaxScaler
is highly effective when the data needs to be scaled within a specific range, such
as between 0 and 1, which is useful for algorithms that are sensitive to the scale of
the data.

4. Training Hyperparameters
Optimizers (Adam, SGD, RMSprop):

○ Overview: The optimizer you choose, be it Adam, SGD, or RMSprop, plays a
critical role in updating the network's weights during training. Each optimizer has
its own set of characteristics and ways of functioning.

○ Implications: The efficiency of training and the quality of the model relies heavily
on the chosen optimizer. Adam, for instance, is recognized for its adaptability and
efficiency in handling sparse gradients, while SGD is simpler but may require
more nuanced tuning.

5. Learning Rate:
○ Overview: This parameter controls the step size at each iteration during the

optimization process.
○ Implications: An optimal learning rate is necessary for efficient training; it

ensures that the model converges to a solution without overshooting or
excessively prolonging the learning phase.

6. Loss Functions (MSELoss, CrossEntropyLoss):
○ Overview: Loss functions, such as MSELoss for regression and CrossEntropyLoss

for classification, measure the discrepancy between predicted and actual values.
○ Implications: They guide the model training, aiming to minimize this difference,

and are hence pivotal in shaping the model's accuracy and predictive ability.
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7. Epochs:
○ Overview: An epoch represents a complete pass through the entire training

dataset.
○ Implications: The number of epochs is a balancing act between ensuring sufficient

model training and avoiding overfitting.

Choosing and adjusting hyperparameters is essential in neural network modeling,
especially for complex tasks like predicting power consumption. Each hyperparameter plays a
distinct role in enhancing the model's learning efficiency and overall effectiveness. The ideal
setup of these parameters depends on the dataset's unique characteristics and the prediction task's
complexity. Therefore, a deep understanding of these parameters is key to creating powerful and
efficient neural network models.

Figure 3.3a: Three commonly used activation functions in neural networks

The graphs above (Figure 3.4a) provide a visual interpretation of how various activation
functions in neural networks process input values and generate corresponding outputs. This
visualization is essential for grasping their functional roles within neural network models.

1. ReLU (Rectified Linear Unit): This graph shows the ReLU function, which outputs the
input directly if it is positive; otherwise, it outputs zero. It's evident from the graph that
ReLU maintains positive values as is and turns negative values to zero.

2. Sigmoid: The Sigmoid function graph illustrates how it transforms the input into a value
between 0 and 1. This function is useful for binary classification problems.
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3. Tanh (Hyperbolic Tangent): The Tanh function graph demonstrates its output range from
-1 to 1. This characteristic makes Tanh a viable choice for situations where the model
needs to handle negative values more effectively than the Sigmoid function.

3.4 Hyperparameter Optimisation
Grid search is a commonly used technique for hyperparameter optimization in machine

learning models. This method methodically explores various combinations of hyperparameter
values to identify the most effective set for optimal model performance. The key advantage of
grid search lies in its exhaustive examination of the parameter space, which is vital for enhancing
both the accuracy and efficiency of the model. By adopting this approach, a thorough assessment
of different parameter configurations is conducted, leading to significant improvements in model
outcomes, particularly in complex situations like handling imbalanced data sets or applying
diverse machine learning algorithms.

In the research above (section 3.3) the grid search methodology was used to adjust the
hyperparameters of our neural network model. This process played a pivotal role in enhancing
our model's accuracy and overall performance. By carefully tuning the hyperparameters, we
could tailor the model to the specific requirements of our task, resulting in exceptional outcomes.
The following key hyperparameters were methodically varied and evaluated:

Hyperparameter Description

Learning Rate
In our trials, we tested learning rates from 0.1 to 0.0001 and found that
a rate of 0.001 was optimal. This learning rate provided a good balance
between quick convergence and stability throughout the learning phase.

Batch Size
Our experiments involved testing batch sizes of 32, 64, 128, and 256.
The optimal batch size was determined based on the memory capacity
of our system and the efficiency of the training process.

Number of Epochs
We considered various epoch numbers, including 100, 300, and 500.
The selected number allows effective learning from the training data
while avoiding overfitting (Kale et al., 2021).

Optimizer
Upon evaluating various optimizers including SGD and RMSprop, the
Adam optimizer was selected due to its quicker convergence and
greater overall efficiency.

Layer Sizes
The number of neurons in each hidden layer was adjusted, and the final
architecture was selected to offer a good compromise between model
complexity and computational efficiency.
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Activation Functions
We evaluated different functions, including Leaky ReLU and Sigmoid.
ReLU was ultimately selected for its ability to prevent the vanishing
gradient problem and to accelerate training.

Table 3.4: Evaluated Hyperparameters

We evaluated different hyperparameter combinations on our training data, assessing
model performance by the mean squared error (MSE) on a validation set. The combination with
the lowest MSE was chosen for our final model, effectively optimizing the neural network for
accurate and efficient power consumption predictions.

3.5 Federated learning
The design of the federated learning system in this thesis addresses one of the most

pressing issues in modern machine learning: data privacy. In traditional centralized learning
systems, all data must be aggregated on a central server, posing significant privacy risks and
logistical challenges (Li, Lin, Shang, & Wu, 2023). To avoid these concerns, each client in the
system trains a neural network model on their data and never shares this with the server or other
clients; this ensures that sensitive information remains within the confines of each client's local
environment, significantly enhancing data security and user privacy (Makhija, Han, Ho, &
Ghosh, 2022). Using neural networks in a federated context introduces unique challenges and
considerations. One of the primary concerns is ensuring that the model trained locally on each
client can generalize well when aggregated into the global model; here, choosing the neural
network architecture and hyperparameters becomes crucial. Each client's neural network must be
capable of capturing the underlying patterns in their local data while being flexible enough to
integrate insights from other clients' models during the aggregation phase.

Utilizing PySyft, a specialized open-source framework for Federated Learning and
ensuring data privacy, executes confidential Deep Learning operations. In this setup, each client's
neural network model begins with standardized parameters. During the training phase, these
models undergo local modifications based on the individual data of each client. Subsequently,
these adjusted parameters, which include the models' weights and biases, are transmitted to a
central server. This server is crucial in the learning mechanism, as it incorporates these updates.
It employs federated learning techniques such as FedAvg, which integrates the updated
parameters from each client's model into a collective, enhanced global model. This refined global
model is then redistributed back to the clients for subsequent rounds of training.
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At each client site, we implement three unique neural network models, each
independently trained on the client's data. These models are specifically designed to predict
distinct data aspects: the upper quantile, the lower quantile, and the mean.

1. Upper Quantile Model: Focuses on predicting the higher range of the data distribution.
It is particularly useful for identifying and understanding peak values or anomalies in the
dataset. By accurately predicting the upper quantile, this model provided crucial insights
into extreme conditions or outlier events (Klemm, Gabriel, & Sill Torres, 2023).

2. Lower Quantile Model: Specializes in predicting the lower end of the data distribution.
The model recognizes minimal or baseline levels in the dataset, offering valuable
information for understanding the lower bounds of normal behavior or usage patterns (Yu
et al., 2023).

3. Mean Quantile Model: Aim to predict the mean or average values of the dataset. This
model plays a pivotal role in providing a general overview and a central tendency
measure of the data, which are essential for routine analysis and forecasting (Gusev,
Chervyakov, Alexeenko, & Nikulchev, 2023).

By focusing each model on a specific data aspect, we ensure a thorough capture of the
unique characteristics and patterns in that segment. This approach leads to more accurate and
nuanced predictions, as each model brings its specialized insight to a different segment of the
data.

3.6 Tri-Model Split Learning for Energy Forecasting
Following a thorough exploration of the tri-model federated learning approach, we now

present tri-model split learning as another framework designed to advance residential power
consumption forecasting. This strategy deploys three distinct predictive models for each client,
meticulously targeting the upper quantile for peak usage insights, the lower quantile for dormant
consumption periods, and the mean for general usage trends. This tri-faceted methodology gives
a detailed and comprehensive portrayal of energy utilization across varied Prosumer scenarios.

By integrating this tri-model approach within a split learning model, we aspire to not only
chart the habitual energy consumption patterns but also to shed light on the outliers and
anomalies, thereby enabling a more informed energy management system. This framework also
utilizes the PySyft library, akin to our federated learning probe, this strategy is implemented
through three targeted models: the upper quantile, the lower quantile, and the mean. Each model
analyzes the spectrum of energy usage within a Prosumer, from peak demands to baseline
efficiency and average consumption.
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3.6.1 Detailed Design and Training Process
The training process for the tri-model split learning framework is a structured sequence

designed to leverage local computations and centralized server capabilities, creating a synergy
that maintains privacy while enhancing predictive performance. Here is an overview of the key
steps involved in this process:

1. Local Processing:
● Clients start by training three separate models locally. Each model focuses on a

different aspect of power consumption: one for high usage periods (upper
quantile), one for low usage periods (lower quantile), and one for the average
usage (mean) (Liu, Zhang, Shen, & Sun, 2022).

● After training, clients send their models' initial predictions to the server. This data
includes insights into various consumption levels but does not expose any raw
data, ensuring privacy is maintained.

2. Centralized Aggregation and Computation:
● In this stage, the server collects outputs from each client's models, categorizing

them into three types: upper quantile (high usage), lower quantile (low usage),
and mean (average usage). The server then performs forward propagation,
utilizing algorithms to process and interpret the gathered predictions.

● Finally, the server aggregates and analyzes this information, formulating final
predictions that encompass a comprehensive understanding of power usage across
different clients and timeframes.

3. Backpropagation and Update:
● The server calculates the loss for each model type using specific loss functions.

These functions are tailored to suit the unique characteristics of each quantile's
predictions.

● After calculating the loss, the server computes gradients, which highlights how
the models should be adjusted. These gradients are then sent back to each client.
This process is done securely, making sure that no sensitive data from the clients
is revealed.

4. Local Updates:
● When clients receive the gradients from the server, they use this information to

update the parameters of their respective models. This step involves adjusting the
models based on the feedback received.

● This process presents distributed learning, where each model is fine-tuned not just
based on the client's data, but also incorporating insights gained from the
collective analysis. This allows for a more comprehensive and informed learning
process, tailored to each client's unique energy usage profile.

5. Iterative Improvement:
● Training is a repetitive process, involving multiple rounds of refinement across

various epochs. Each update involves refining the models based on the server's
feedback.
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● Regular validation checks are performed to evaluate model accuracy and prevent
overfitting, ensuring reliable and generalizable predictions.

Figure 3.6.1: (Huang et al., 2020) A visual representation of the above Split Learning Training Process

Through its training process, the tri-model split learning framework achieves precise
power consumption predictions while fundamentally upholding the principle of data privacy. The
system's design ensures that clients' raw data remains local, safeguarding confidentiality and
privacy. This approach is crucial in protecting sensitive information. Additionally, by minimizing
the data exchanged between clients and the server, the architecture significantly reduces network
load, thus enhancing overall efficiency.

3.6.2 Evaluation and Insights

The Mean Absolute Error (MAE) assesses the accuracy of the mean model's predictions,
quantifying the average magnitude of prediction errors. For the upper and lower model
predictions, the evaluation employs the Mean Prediction Interval Range (MPIR) and Mean
Quantile Loss (MQL). MPIR measures the average range of the prediction intervals, providing
insights into the uncertainty or variability of these predictions. MQL, on the other hand, gauges
the accuracy of the predicted quantiles or intervals. This targeted approach in using MAE for the
mean model, and MPIR and MQL for the upper and lower models, ensures a comprehensive and
nuanced assessment, crucial for applications in fields like energy management, conservation
strategies, and routine consumption forecasting. By applying these metrics appropriately, the
tri-model framework facilitates an in-depth and accurate analysis, enhancing the
decision-making process in these essential sectors.

Chapter 4: Evaluation
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In the next chapter, we present the practical phase of our research, presenting the
experiments conducted to evaluate federated learning and split learning in power prediction. This
section outlines our experimental approach, from setup and data handling to the analysis of
results, aiming to empirically validate the theoretical insights discussed earlier. Through this
hands-on investigation, we seek to illustrate the practical advantages and limitations of each
learning methodology, contributing to the broader understanding of machine learning
applications in energy management.

4.1 Purpose of the Experiments:

This research aims to conduct a comparative analysis of federated learning and split
learning within the context of neural networks for power prediction, a field increasingly
dependent on advanced machine learning techniques for enhanced accuracy and efficiency. By
exploring the practical aspects and performance metrics of both methodologies in power
prediction, the study seeks to precisely evaluate their capabilities in managing large datasets and
their effectiveness in forecasting power consumption patterns. The comparison focuses on
determining which methodology, federated learning or split learning, provides a more effective
framework for power prediction tasks, considering model performance metrics such as prediction
accuracy, computational demands, and data privacy management.

Machine learning applications for power prediction are expected to make significant
contributions to both theoretical and practical knowledge. This research aims to highlight the
strengths and limitations of each approach. The goal is to pave the way for future advancements
in developing sophisticated, efficient, and privacy-aware models for power prediction, guiding
the evolution of methodologies to meet the sector's demands for high accuracy, data privacy, and
computational efficiency.

4.1.1 Rationale for Experimental Focus

The decision to conduct one experiment on federated learning and three on split learning
was driven by unique research objectives. Federated learning required only a single,
comprehensive experiment to illustrate its decentralized approach and essential performance
metrics. Contrarily, split learning necessitated a more thorough investigation due to its novel
characteristics and potential for enhancing efficiency and data privacy in power prediction. The
choice to vary the neural network's split layer in each of the three split learning experiments is
key to understanding how different configurations influence model performance, with a
particular focus on accuracy, computational load, and data privacy. This approach aims to
uncover the optimal balance between computational efficiency and prediction accuracy, a critical
consideration for the practical deployment of power prediction models. Additionally, these
experiments collectively seek to provide a detailed insight into how split learning can be
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fine-tuned for power prediction, a necessity in the face of the energy sector's increasing data
volumes and the urgent need for models that process data efficiently while safeguarding privacy
and security.

4.1.2 Analyzing the Impact of Split Layers in Neural Networks for Enhanced

Split Learning

Building on the comparative analysis between federated learning and split learning, this
research emphasizes the strategic focus on split learning's unique configurations, particularly the
variation of the split layer, to optimize neural network architectures for power prediction tasks.
This exploration, aligned with assessing the efficiency and effectiveness of these learning
paradigms, highlights the importance of nuanced considerations in advancing machine learning
within the energy sector. The concept of split layers, marking the division in the network
between client-side initial layers and subsequent server-side layers, plays a crucial role in this
architecture. It serves as a critical juncture for data processing, where information processed up
to this point is sent from the client to the server for further processing. The careful selection and
adjustment of the split layer directly contributes to our understanding of how split learning can
be tailored to meet computational efficiency and data privacy demands, essential for the practical
deployment of predictive models in energy management. This approach not only complements
the insights from the federated learning experiment but also provides a comprehensive view of
the potential and challenges in implementing advanced machine learning techniques for power
prediction, especially in scenarios where balancing computational load and privacy concerns are
paramount.

4.1.3 Impact of Different Split Layers on Model Performance

When it comes to power prediction tasks, the placement of the split layer within a neural
network plays an important role in determining computational efficiency, data privacy and
security, and model accuracy. By studying how the adjustment of the split layer impacts these
key performance metrics, we aim to highlight the necessary balance required to optimize models
for practical use in power prediction.

Performance in Power Prediction Tasks:

1) Computational Efficiency: The placement of the split layer significantly impacts the
computational load, with an earlier split reducing the computation required on the client
side—vital for devices with limited processing capabilities. Conversely, a later split shifts the
computational burden to the server, increasing demands on the client.

2) Data Privacy and Security: Given the sensitivity of data in power prediction, adjusting the
split layer allows for control over the data's granularity and sensitivity being transmitted. An
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earlier split results in more raw data being sent to the server, while a later split means that more
processed, abstract data is transmitted, potentially enhancing data privacy.

3) Accuracy and Learning Efficacy: The position of the split layer affects the network's learning
dynamics. A split too early may not provide the server with sufficient abstracted information,
possibly diminishing model accuracy. On the other hand, a later split could improve accuracy but
incur higher computational and data transmission costs.

4) Adaptability and Flexibility: Through experimentation with different split layers, the
adaptability and flexibility of the split learning model in various power prediction scenarios can
be assessed. This flexibility is essential for applications in the real world, where operational
conditions and data availability can significantly fluctuate.

Understanding how to effectively deploy machine learning models that meet the diverse
needs of real-world applications is crucial, from managing resources efficiently to safeguarding
sensitive information.

4.2 Dataset

The datasets (Aupke, 2023) utilized in the federated and split learning experiments contain
129,245 samples, demonstrated in Table 4.2 below, each representing the power consumption
data from seven unique Households over a specified period. This data collection is necessary for
accurately forecasting power usage.
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Table 4.2: An illustration of the Dataset used in the experiment

To conduct federated and split learning experiments, the datasets were divided into
training and test sets according to best practices in machine learning; that is, 80% of the data
from each Prosumer dataset was reserved for model training, while the remaining 20% was set
aside for testing. This strategic division ensures that the models are exposed to a significant
volume of data during the training phase, enabling them to learn and identify the underlying
patterns in power consumption accurately. The test sets, comprising data not encountered by the
models during training, provide an unbiased basis for assessing the models' predictive
performance and their ability to generalize to new, unseen data. This approach to dataset
segmentation supports the comparative analysis between federated learning and split learning,
ensuring a fair and realistic evaluation framework. The experiments' outcomes shed light on the
most suitable and efficient machine learning frameworks for power prediction, taking into
account factors such as prediction accuracy, operational efficiency, and the privacy and security
of the data involved.

4.3 Federated Learning Experiment

4.3.1 Experimental Setup

The experimental setup for the federated learning aspect of this study was meticulously
designed to explore power prediction across seven distinct Prosumers, each contributing a
dataset that spans two years of power usage intertwined with atmospheric conditions. This
comprehensive data compilation, which includes detailed power metrics alongside atmospheric
variables such as temperature, humidity, and solar radiation, lays a solid foundation for
predictive modeling. Utilizing a multi-layered sequential neural network architecture, the
experiment was tailored to discern complex patterns in energy consumption effectively. To
facilitate a nuanced analysis, three separate models were constructed to forecast the upper, lower,
and mean power consumption values, thereby offering an intricate view of Prosumer energy
utilization patterns.

The division of datasets into training and testing subsets, with an 80%-20% split, was a
strategic choice to ensure model validation on unseen data, a critical step for gauging the models'
predictive precision. The training phase leveraged the Adam optimizer, chosen for its efficiency
with a learning rate set at 0.01, and employed the Mean Squared Error Loss (MSELoss) function,
which is well-suited to the regression-oriented nature of this task, focusing on the accurate
prediction of total power consumption. This experimental framework was pivotal in assessing
the efficacy of federated learning in capturing and predicting diverse power usage patterns under
varying atmospheric influences.
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4.3.2 Implementation Details

Python and the PySyft library were used for our federated learning experiment
implementation due to their robust support for secure and privacy-focused machine learning. The
primary challenge encountered was ensuring effective training across diverse local datasets from
each client to enhance the global model while maintaining data privacy and synchronization. The
PySyft library facilitated this process by providing the necessary tools to handle the complexities
of federated learning, allowing for the integration of varied insights into a cohesive model
without compromising on security. This approach was key to navigating the intricacies of
decentralized data training and achieving a synchronized, privacy-preserving global model.

Figure 4.3.2: Federated Learning (Williams, 2018)

In our experiment involving seven clients, each with a distinct Prosumer dataset, the
Federated Averaging (FedAvg) algorithm played a pivotal role in training the global model. The
process was structured into iterative rounds, encompassing several key steps:

1. Initialization: The experiment commenced with the server dispatching the current global
model to all seven clients. This initial model acted as the baseline for subsequent local training
sessions.
2. Local Training: Each client, identified as Node 1 through Node 7 and managing their
respective datasets, proceeded to train the model locally. This phase was essential for processing
each Prosumer's sensitive power consumption data securely on the client's device, thereby
ensuring privacy protection.
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3. Local Updates: Post-training, clients generated updates reflecting the model's parameter
adjustments, informed by their unique data insights. These updates, embodying the local
learning, were prepared for transmission without revealing any underlying data.

4. Uploading Updates: Subsequently, clients transmitted their model parameter updates back to
the server. This phase maintained the federated learning model's integrity by sharing only the
parameter updates, not the raw data.

5. Aggregation: The server, upon collecting all local updates, proceeded to aggregate these
contributions to refine the global model. This aggregation process, typically through averaging
the parameter updates, is the essence of the 'Federated Averaging' approach.

6. Distribution: Finally, the server redistributes the enhanced global model to the clients, setting
the stage for another iteration of training.

This structured approach allowed for the collaborative yet private enhancement of the
global model, leveraging the FedAvg algorithm's capabilities to integrate diverse local learnings
into a unified predictive model. The iterative process, repeated across multiple rounds,
represented a complete cycle from the server distributing the model to receiving the updated
parameters, thereby incrementally improving the global model. It learned from various Prosumer
power consumption patterns without compromising data privacy. The rounds persisted until the
global model achieved a predefined accuracy level or after completing a set number of rounds,
culminating in a robust model adept at predicting total power consumption. This model, tested on
a 20% dataset holdout, demonstrated its ability to generalize well to new data. Through the
FedAvg algorithm, the experiment showcased a scalable machine learning approach, enabling
multiple clients to collaboratively train a global model while preserving the confidentiality of
their data, an essential feature for sensitive areas like power consumption prediction.

4.4 Split Learning Experiments

4.4.1 Overview

The decision to conduct three distinct split learning experiments was driven by the
objective of examining the effects of various neural network split configurations on the efficacy
of power consumption prediction models. By altering the split layer, the study aimed to delve
into the implications of distributing the computational workload between the client and server on
essential factors such as model accuracy, data privacy, and operational efficiency. This
exploration is pivotal in understanding the optimal balance required for effective power
prediction, ensuring that models are accurate, adhere to privacy standards, and are
computationally feasible.
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4.4.2 Experiment 1

Setup

In the first split learning experiment, the neural network was segmented into two distinct
parts: the initial portion situated on the client side and the subsequent portion on the server side,
a configuration applied uniformly across seven clients. Each client utilized datasets from
separate Prosumers, aiming to forecast total power consumption. On the client side, there is a
single layer responsible for preliminary data processing in the model. The more intricate
computational tasks were allocated to the layers on the server side, facilitating the completion of
the prediction model's complex computations. This section aims to investigate the impact of
distributing computational workload on model performance, specifically in terms of accuracy,
efficiency, and privacy.

Implementation

For the implementation phase of the first split learning experiment, preprocessing of each
client's dataset was crucial, employing robust scaling techniques to effectively manage outliers.
This ensured the data was optimally prepared for model training, with an 80/20 split between
training and testing sets to validate model performance on unseen data. The client-side models,
each containing the initial processing layer, were developed using PyTorch, a choice that
facilitated detailed model customization and efficient computation.

On the server side, the model architecture was designed to receive the intermediate
outputs from the client-side models, perform further processing, and generate the final power
consumption predictions. The training process was guided by the Adam optimizer, selected for
its efficiency, with a learning rate set at 0.01, and the Mean Squared Error Loss (MSELoss)
function, aligning with the experiment's focus on predictive accuracy.

A significant challenge encountered during implementation was ensuring seamless
communication between the clients and the server, particularly in transferring the intermediate
outputs with minimal latency. This was critical for maintaining the experiment's overall
efficiency and effectiveness. Moreover, the server's ability to accurately concatenate outputs
from all clients before making the final prediction was essential, requiring precise coordination
and robust data handling mechanisms to achieve the desired predictive performance.

Expected Outcomes

The anticipated results included assessing the model's prediction accuracy through
metrics like the mean absolute error (MAE). The configuration was expected to offer insights
into the trade-offs between the computational burden on the clients and the prediction
performance.
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The advantage of having only the initial layer on the client side in this first experiment
was to reduce the client's computational load, making the approach suitable for scenarios with
limited client-side resources. Moreover, this setup could potentially enhance data privacy, as only
intermediate representations of the data were transmitted to the server, not the raw data itself.
This experiment laid the groundwork for analyzing how such a split affects the overall system's
efficiency and the accuracy of power consumption predictions.

4.4.3 Experiment 2
Setup

In the second experiment of our split learning series, the setup evolved from the initial
configuration by assigning two layers of the neural network to the client side, with the rest of the
layers positioned on the server side. This adjustment was uniformly applied to all seven clients,
each utilizing a distinct Prosumer dataset to forecast power consumption. The rationale behind
allocating two layers to the client side was to investigate a balanced approach between
computational demand and model efficacy. This intermediate configuration was designed to
assess whether a slightly increased computational load on the client could lead to improved
model performance, without significantly taxing the client's resources. It aimed to find an
optimal compromise that might be well-suited for scenarios with moderate client-side
computational capabilities, exploring how this adjustment affects the overall dynamics of
prediction accuracy, efficiency, and data privacy within the split learning framework.

Implementation

In the implementation phase of the second split learning experiment, clients adhered to
the established preprocessing routine, employing robust scaling to their datasets and upholding
the 80/20 division for training and testing. This experiment expanded the client-side model to
include two initial layers dedicated to local data processing, to explore the effects of an increased
computational load at the client level. The remaining layers, situated on the server, were tasked
with finalizing the predictive analysis.

Following the procedural blueprint of the first experiment, this setup utilized the PyTorch
framework to construct the models, capitalizing on the Adam optimizer with a set learning rate
of 0.01 and the Mean Squared Error Loss (MSELoss) function to steer the training process. A
pivotal aspect of this experiment was the examination of how adding an extra layer to the
client-side model influences the overall system, particularly in terms of communication overhead
and the complexity of the data being transmitted to the server. This focus aimed to assess the
balance between enhancing local processing capabilities and managing the efficiency and
effectiveness of data exchange and model performance in the split learning context.
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Expected Outcomes

The expected outcomes for this experiment were twofold. First, it aimed to measure any
improvements or detriments in prediction accuracy as a result of the additional layer on the client
side. Second, it sought to evaluate the balance between data privacy and model performance,
hypothesizing that an extra layer could enable the client model to capture more nuanced features
locally, thereby reducing the need to transmit potentially sensitive information to the server. The
advantages of this two-layer client-side configuration could include improved data representation
before transmission and a potential reduction in server-side computational requirements. This
experiment was crucial for determining the optimal layer split for scenarios with specific
resource allocations between clients and servers, which is a common consideration in distributed
energy management systems. In conclusion, Experiment 2 was expected to contribute valuable
data to identify the most effective and efficient split learning architecture for power prediction
tasks, taking into account both the computational capabilities of clients and the privacy of the
data involved.

4.4.4 Experiment 3

Setup

Experiment 3 in our series of split learning trials ventured to further redistribute the
computational load, this time significantly towards the client side. This novel configuration
placed three layers of the neural network on the client side, leaving only the final layer on the
server side. Conducted across the same cohort of seven clients, each utilizing their unique dataset
for power consumption prediction, this setup aimed to thoroughly examine the implications of
increased client-side computation on the system's overall performance. The intent was to explore
how such a configuration affects prediction accuracy, data privacy, and computational efficiency,
providing insights into the scalability and practicality of split learning models in environments
with varying computational resources.

Implementation

In the implementation phase of Experiment 3, clients adhered to the previously
established preprocessing protocol, which included robust scaling and maintaining an 80/20 split
between training and testing data. The strategic increase to three layers on the client side was
designed to push the boundaries of client computational capacity and assess the enhanced ability
of the client-side model to process and extract more complex features directly from the data
before any transmission to the server.

Consistent with the methodologies applied in the earlier experiments, the PyTorch
framework was utilized for model development, leveraging the Adam optimizer and the Mean
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Squared Error Loss (MSELoss) function to guide the training process. A focal point of this
experiment was to scrutinize the impact of heightened computational demands on the clients,
examining how this redistribution of processing responsibilities influences the overall training
dynamics, prediction accuracy, and efficiency of the split learning model. This setup aimed to
provide deeper insights into the feasibility and effectiveness of allocating more complex
computational tasks to the client side within the split learning architecture.

Expected Outcomes

The primary outcomes of interest for Experiment 3 were to assess whether a more
substantial client-side computation would lead to higher accuracy in power consumption
predictions and to understand the impact on the server's role in the final prediction phase.

This configuration's advantages could lead to a lowered requirement for data transmission
between clients and the server, potentially enhancing data privacy and minimizing network
bandwidth consumption. Furthermore, it could empower clients to conduct more localized,
in-depth analyses, fully utilizing the unique patterns in their data before forwarding the outcomes
to the server for the ultimate prediction. This experiment was vital for assessing the viability of
deploying sophisticated models on the client side, especially in situations where protecting data
privacy is paramount, and clients possess significant computational resources. The insights
gained from this experiment are expected to play a crucial role in identifying the optimal
equilibrium between client-side processing and server-side aggregation in power prediction
endeavors, offering key understandings of the split learning model's scalability and applicability
within energy management frameworks.

Chapter 5: Analysis of Results and Discussion

5.1 Overview of Findings
This chapter provides an in-depth analysis of the results of the federated learning

experiment and the three split learning experiments. It aims to evaluate and compare the
performance of each model, focusing on its accuracy, computational efficiency, and compliance
with data privacy principles. The insights gathered are critical in determining the best learning
methods for predicting power consumption in residential environments. Through this
examination, we strive to highlight the strengths and limitations of each paradigm to guide future
research and practical applications in the field of home energy management.

5.2 Federated Learning Results
The outcomes of the federated learning experiment, which involved data from seven

distinct Prosumers, highlighted the need for investigating other learning approaches, particularly
split learning. Employing a multi-layered sequential model designed to forecast upper, lower, and
mean levels of power consumption, the experiment presented a range of performance results.
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These outcomes illuminated the varied efficacy of the model in different consumption scenarios,
suggesting that while federated learning holds promise, it may not fully capture the complexity
of power usage patterns across diverse Prosumer settings. Such insight prompted a shift in our
research focus, leading us to delve into the potential of split learning as a more fitting solution
for the intricacies of residential power prediction tasks.

In particular, the Lower Quantile Model's loss of 45.5770 on the test data highlighted
difficulties in accurately predicting lower ranges of power usage—a crucial aspect for
energy-saving strategies and demand-response initiatives. Accurate predictions in this range are
vital for optimizing energy consumption and reducing waste. The Upper Quantile Model
demonstrated somewhat improved performance, with a loss of 30.1327, suggesting a relatively
more accurate forecast of peak power usage. Despite this improvement, the need for further
refinement to enhance peak consumption forecasting accuracy was apparent.

The Mean Quantile Loss (MQL) for the combined model was recorded at 37.8548,
alongside a mean absolute error (MAE) of 87. While these metrics reflect the model's potential
to a certain degree, they did not meet the accuracy and efficiency benchmarks essential for
dependable power prediction. These figures pointed to a model that, despite leveraging the
privacy-preserving and decentralized attributes of federated learning, struggled to
comprehensively understand the nuances of varied Prosumer energy consumption patterns.

Given these outcomes, we found that although federated learning has its advantages in
maintaining data privacy and managing decentralized datasets, it did not meet our expectations in
terms of model performance and precision. This realization prompted a shift towards
investigating split learning in subsequent experiments. Split learning, characterized by its unique
method of dividing neural network processing between the client and server, promised a more
customized solution to the computational and accuracy challenges observed in the federated
learning experiment. This strategic pivot aimed to explore methods that could more adeptly
balance computational efficiency, data privacy, and predictive accuracy in power consumption
forecasting.

5.3 Evaluation of Split Learning Performance

5.3.1 Experiment 1

In the initial split learning experiment, the outcomes observed across the seven clients
showcased the model's nuanced performance, specifically designed to forecast power
consumption. This experiment employed a neural network architecture where one layer was
situated on the client's side, and the remaining layers were hosted on the server side. This
partitioning facilitated a diverse array of results that warrant detailed scrutiny. The arrangement
allowed for an exploration of how varying the computational load between client and server
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impacts the model's effectiveness in different Prosumer scenarios, highlighting the adaptability
and potential challenges of implementing split learning for energy management tasks. The
presented table shows different outcomes that require a thorough examination to understand the
model's performance nuances.

Table 5.3.1: Results of Experiment 1
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Key Takeaways

Mean Quantile Loss (MQL): The MQL for both upper and lower quantiles showcases
significant variability across different clients, underscoring the model's sensitivity to the unique
data characteristics of each Prosumer. For example, Client 1 exhibits a higher MQL for the upper
quantile than Client 2, suggesting variances in the predictability of peak power usage patterns
among different Prosumers.

Mean Prediction Interval Range (MPIR): MPIR values exhibit considerable variation
among clients, with Client 5 displaying an especially wide range. A broad MPIR indicates a
higher degree of uncertainty in the predictions, which may pose challenges for applications
necessitating accurate power management.

Mean Absolute Error (MAE): The MAE values reveal that the model achieves high
accuracy for certain clients (e.g., Client 4 with an MAE of 3.49) but is less accurate for others
(e.g., Client 5 with an MAE of 15.08). With an overall mean MAE of 8.94 across all clients, the
model generally performs well, though there is noticeable variability in accuracy among
individual clients.

Interpretation of Result

The results of the split learning experiments highlight the model's adeptness in handling
the complex dynamics of Prosumer power prediction scenarios, revealing a distinct difference in
power consumption patterns among various Prosumers. Based on the data in the table, our
analysis provides a comprehensive understanding of the split learning model's ability to
accurately forecast power consumption in diverse environments. Each client showcased unique
characteristics in their power usage, highlighting the model's capacity to capture these individual
patterns significantly. The variation in Mean Quantile Loss (MQL) for both upper and lower
quantiles, alongside the Mean Absolute Error (MAE), reflects the model's adaptability to
heterogeneous data.

By design, the split learning approach facilitates modeling by partitioning neural network
processing between the client and the server. This partitioning effectively localizes the learning
process, enabling the model to tailor its predictions to the specific power usage behaviors of each
Prosumer. Such customization is crucial for achieving accurate power prediction tasks, as it
moves beyond a one-size-fits-all solution to address the complexity of residential power
consumption directly.

The observed variation in MQL and MAE across clients not only underscores the model's
ability to navigate the complexity of residential power consumption but also demonstrates its
robustness in understanding and predicting distinct energy usage profiles. This adaptability is
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essential for models tasked with accurate power prediction, making split learning a potent tool
for managing the nuanced requirements of Prosumer power prediction tasks.

Comparison to Federated Learning

In comparing the outcomes of Split Learning Experiment 1 with Federated Learning, it becomes
evident that split learning significantly outperforms federated learning in terms of prediction accuracy for
residential power consumption. The split learning model, which requires the client to train only one layer
of the neural network, achieved a mean absolute error (MAE) of approximately 8.94 across all clients.
This contrasts sharply with the federated learning model, where clients are tasked with training the entire
model, resulting in a much higher MAE of 87. This stark difference in MAE underscores the superior
accuracy of the split learning approach, making it a more viable option for Prosumers equipped with
devices possessing limited computational power. Given that federated learning fell short of achieving the
desired benchmarks for accuracy and efficiency, the split learning model emerges as a more effective
solution for power prediction tasks in Prosumer scenarios. It offers a promising balance between
computational efficiency, data privacy, and predictive accuracy, highlighting its potential as an
advantageous approach for environments with constrained computational resources.

Visual Representation

Figure 5.3.1a: Scatter Plot of Clients 1 & 2
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Figure 5.3.1b: Scatter Plot of Clients 3 & 4

Figure 5.3.1c: Scatter Plot of Clients 5 & 6
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Figure 5.3.1d: Scatter Plot of Client 7

The scatter plots for Clients 1 through 7 represent the predictive performance of our split
learning model against the test data, which constitutes 20% of each client's dataset. This test data
is critical as it evaluates the model's ability to generalize to new data after the training phase.

In summary, the scatter plot analysis for seven clients in our split learning experiment
succinctly demonstrates the model's forecasting accuracy across different power consumption
scenarios, especially at higher consumption levels. These plots validate the model's ability to
generalize to new data, showcasing its effectiveness in capturing unique Prosumer energy
patterns. The analysis emphasizes the importance of tailoring models to specific Prosumer needs
for optimal performance. This evaluation confirms the model's suitability for real-world energy
management and conservation, underlining its potential to enhance energy efficiency efforts
significantly.

5.3.2 Experiment 2
In Experiment 2, where two layers of the neural network were allocated to the client side,

the results offer insightful data on split learning's performance in power consumption prediction
across seven clients. The mean absolute error (MAE) across all clients in this setup is
approximately 9.57, marking a slight increase from the mean MAE of 8.94 observed in
Experiment 1, which had only one layer on the client side.
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Table 5.3.2: Results of Experiment 2

54



Key Takeaways

The Mean Quantile Loss (MQL): Reflects variability for both upper and lower
quantiles, similar to Experiment 1, highlighting the model's performance dependency on the
unique data of each client.

The Combined MQL: Shows variation among clients, with Client 6 exhibiting improved
performance, contrasting with Client 5, which demonstrates less accuracy.

Mean Prediction Interval Range (MPIR): Indicates significant differences across
clients, suggesting variability in prediction confidence.

Mean Absolute Error (MAE): Ranges widely among clients, with Client 1 notably
experiencing a higher MAE in this experiment, pointing to the impact of allocating two neural
network layers to the client side on prediction accuracy across Prosumers.

Interpretation of Result

The increased MAE in Experiment 2 could indicate the model's complexity affecting its
generalization capability. This suggests that simply allocating additional layers to the client side
does not guarantee improved performance and might introduce new challenges. The variability
in Mean Prediction Interval Range (MPIR) across clients in Experiment 2 underscores that the
model's prediction confidence can significantly vary based on the specific client's dataset.
Consequently, Experiment 2 demonstrates that localizing more layers on the client side does not
uniformly enhance predictive performance. While some clients may benefit from this
configuration, it could result in diminished accuracy for others, as reflected by the overall rise in
Mean Absolute Error (MAE). This observation implies a need for a carefully balanced
distribution of neural network layers between the client and server, optimized individually for
each client to attain optimal outcomes. The split learning model's sensitivity to the distinct
energy usage patterns of each Prosumer is evident, emphasizing the critical need for customizing
the model's complexity according to the dataset at hand to effectively capture and predict power
consumption patterns.

Comparison to Experiment 1

Comparing Experiment 2 to Experiment 1 reveals that the overall mean MAE has risen,
indicating that adding a layer to the client side did not consistently enhance model performance
across all clients. Additionally, the performance across quantiles appears more balanced in
Experiment 2, with the MQL for lower and upper quantiles showing closer values in some
instances. This contrasts with Experiment 1, where lower quantiles typically experienced higher
losses, suggesting a nuanced shift in model efficacy when adjusting the neural network's
client-side complexity.
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5.3.3 Experiment 3
In Experiment 3, we delved deeper into the split learning architecture by shifting an

additional layer from the server side to the client side, leading to a configuration where three
layers were processed at the client level. This modification was designed to investigate how
increased complexity on the client side affects the model's precision in forecasting residential
power consumption. By reallocating one more neural network layer to the client side from the
server, as compared to Experiment 2, the experiment maintained the same overall architecture in
terms of layer count but altered the distribution between client and server, resulting in the server
processing fewer layers.

Table 5.3.3: Results of Experiment 3
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Interpretation of Result

The outcomes of Experiment 3 underscore a notable trend: as additional layers were
transitioned from the server to the client side, the Mean Absolute Error (MAE) across all clients
escalated to approximately 16.95, a significant increase from the mean MAE of 8.94 in
Experiment 1 (with one layer on the client side) and 9.57 in Experiment 2 (with two layers on the
client side). Similarly, the Mean Quantile Loss (MQL) for both upper and lower quantiles, along
with the Combined MQL, exhibited variability, with some clients witnessing a marked rise in
these metrics. The Mean Prediction Interval Range (MPIR) also showed extensive variation
among clients, reflecting diverse levels of prediction confidence.

This uptick in MAE and the variability in MQL and MPIR imply that augmenting the
client-side complexity, while simultaneously simplifying the server side, does not invariably
improve the model's predictive accuracy. Instead, it seems to compromise the model's
generalization ability across various Prosumers. A plausible reason for this pattern is that
allocating more layers to the client side leaves the server with less data to analyze, thereby
reducing its ability to discern and learn from more complex data patterns. This reduction in
server-side processing capability may limit the model's overall ability to generalize, considering
the server's integral role in synthesizing insights from multiple clients for broader predictions.

Furthermore, the heightened complexity on the client side might pose computational
challenges or inefficiencies, particularly in accurately capturing the data variability within
individual Prosumers, especially on client devices with constrained computational capacities.
These findings suggest that a more equitable distribution of model complexity, potentially with a
bias towards the server side, could be more conducive for tasks that demand generalization
across varied datasets.
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5.3.4 Conclusions

The three split learning experiments collectively highlight the nuanced balance required
in distributing computational complexity between client and server sides for optimal predictive
performance in residential power consumption forecasting. Experiment 1 established a baseline,
demonstrating the model's capability with minimal client-side complexity. Experiment 2
explored the effects of slightly increased complexity, showing a modest rise in Mean Absolute
Error (MAE) but suggesting the potential for more balanced quantile predictions. Experiment 3,
with further increased client-side complexity, revealed a significant increase in MAE, indicating
that additional complexity does not necessarily translate to improved performance and may
hinder the model's generalization ability. Across the experiments, the variability in Mean
Quantile Loss (MQL) and Mean Prediction Interval Range (MPIR) underscored the model's
sensitivity to individual Prosumer data characteristics. These findings suggest that while
leveraging client-side computation can enhance privacy and utilize local data features, there is a
critical threshold beyond which additional complexity may detract from the model's
effectiveness. The insights from these experiments emphasize the importance of carefully
calibrating the split learning model's architecture to strike the right balance between
computational efficiency, data privacy, and predictive accuracy, paving the way for tailored and
effective energy management solutions in diverse residential settings.

5.4 Evaluation of Predictive Performance Using Cumulative
Distribution Functions

Cumulative Distribution Functions (CDFs) provide a detailed perspective on model
performance by showcasing the entire range of prediction errors. In this section, we compare the
predictive capabilities of a Split Learning model against a traditional Neural Network (NN)
model, both customized for individual client datasets in power consumption forecasting.
Utilizing CDFs allows us to evaluate not only the average performance but also the full error
distribution, offering a complete view of the accuracy of each model. The evaluation extends
across multiple clients, each with distinct characteristics and consumption patterns. Through
CDFs, we capture the percentage of predictions that fall within specific error thresholds,
enabling us to visualize and quantify the probability of achieving a certain level of prediction
accuracy across different client scenarios. This client-specific analysis through CDFs provides a
holistic understanding of each model's accuracy, highlighting the nuanced performance across
the spectrum of prediction errors.
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5.4.1 CDF Interpretation

In the interpretation of Cumulative Distribution Functions (CDF) for each client, we
analyze two distinct CDF curves (as shown in the figures below): one representing the Split
Learning model and the other for the traditional Neural Network (NN) model. The shape and
trajectory of these curves provide critical insights into model performance. A curve that rises
sharply towards a cumulative probability of 1 (100%) suggests a greater proportion of
predictions are made with lower errors, indicating a model's superior performance. On the other
hand, a curve that aligns more closely with the diagonal suggests a higher probability of larger
errors, denoting a less accurate model. This comparative analysis of CDF curves allows us to
assess the precision of the Split Learning and NN models in forecasting power consumption
across various clients, highlighting the differences in their ability to minimize prediction errors.

Figure 5.4.1 a: CDF curves for Client 1

Figure 5.4.1 b: CDF curves for Client 2
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Figure 5.4.1 c: CDF curves for Client 3

Figure 5.4.1 d: CDF curves for Client 4
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Figure 5.4.1 d: CDF curves for Client 5

Figure 5.4.1 e: CDF curves for Client 6
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Figure 5.4.1 f: CDF curves for Client 7

5.4.2 Comparative Insights
Across the client datasets, we observe varying degrees of performance differentiation between
the Split Learning and NN models. In certain cases, the Split Learning model demonstrates a
clear advantage, rapidly approaching a cumulative probability of 1 at lower error percentages. In
other instances, the performance of both models converges, suggesting a more comparable
predictive capability. The steepness and the shape of the curves provide insights into the
consistency and reliability of each model. For example, a CDF that shows a rapid increase and a
plateau at a high cumulative probability suggests that the model is consistently accurate, with a
high percentage of predictions falling within a tight error margin.

Chapter 6: Conclusion and Synthesis of Experiments

Through our comprehensive investigation that involved federated learning and a series of
split learning experiments, we have thoroughly explored the complexities of predictive models in
the domain of Prosumer power consumption. Our journey has revealed crucial insights that not
only define the current state of predictive modeling but also open up possibilities for future
research and practical applications.

The federated learning approach, known for its privacy protection and decentralized
nature, has emerged as a new competitor. However, it has shown limitations in capturing the
complex energy usage patterns typical of diverse Prosumer environments. Despite its significant
privacy advantages, federated learning alone seems inadequate for the intricate task of
forecasting power consumption.
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Due to the federated learning approach not yielding the results we were hoping for, we
turned our attention to split learning experiments. These experiments inspired subtle
performances across various client-specific datasets. Experiment 1 established a strong
foundation, with the Split Learning model achieving an impressive mean Mean Absolute Error
(MAE) of 8.94, demonstrating its capability for precise power consumption modeling. However,
as we progressed with Experiments 2 and 3, which incrementally increased the model's
complexity on the client side, a more detailed picture of model efficacy emerged. Experiment 2
observed a slight increase in MAE, but Experiment 3 experienced a more significant jump to an
MAE of 16.95. This highlighted concerns regarding the drawbacks of adding too much
complexity on the client side, which could potentially impair the model's ability to generalize. A
notable advantage of split learning emphasized here, is its dual benefit of maintaining data
privacy while reducing the computational load on the client side. This is particularly crucial in
scenarios with limited client-side resources or where data privacy is paramount. By shifting a
significant portion of the computational workload to the server side, split learning models offer a
sustainable and privacy-conscious alternative for energy prediction tasks.

When directly comparing the federated learning and split learning outcomes, our analysis
reveals a distinct difference in their effectiveness for forecasting Prosumer power consumption.
Federated learning faced difficulties in accurately modeling the varied energy consumption
patterns across Prosumers, as indicated by a higher Mean Absolute Error (MAE) of 87. On the
other hand, split learning showed a significant improvement in predictive accuracy, starting with
Experiment 1, which achieved a considerably lower mean MAE of 8.94. This difference became
even more pronounced in later experiments, where, despite increasing computational complexity
on the client side, split learning continued to outperform federated learning, reaching an MAE of
16.95 in Experiment 3. This comparison not only highlights split learning's superior adaptability
and predictive capability across diverse datasets but also points to its potential as a more
effective and privacy-aware modeling approach in the energy sector. Additionally, the Mean
Quantile Loss (MQL) in the split learning experiments also surpassed that of the federated
learning approach, further affirming split learning's improved predictive accuracy at various
levels of power consumption.

The conclusion derived from these experimental findings underscores several crucial
aspects. Firstly, managing computational complexity in split learning models necessitates a
carefully calibrated balance, specifically adjusted to the unique requirements of each scenario to
enhance performance. Secondly, the split learning method, particularly when achieving a
balanced distribution of layers, proves to be more effective in capturing the diverse consumption
patterns observed in residential environments than federated learning. Lastly, the data
emphasizes the importance of customizing models to the specific power consumption behaviors
of individual Prosumers to achieve the best results. In conclusion, while split learning offers a
promising avenue for predictive modeling in residential power consumption, finding the optimal
balance between accuracy, computational efficiency, and data privacy continues to be a critical
challenge. The insights from these experiments not only affirm the potential of current models
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but also pave the way for future advancements in creating intelligent, privacy-conscious, and
efficient predictive models for the energy sector.

6.1 Section: Future Work

As we project forward from the conclusions drawn in this study, one area of significant
interest for future research is the exploration of model drift in the context of Prosumer power
consumption forecasting. Model drift, or the phenomenon where the model's predictive
performance degrades over time due to changes in the underlying data distribution, presents a
critical challenge in ensuring the long-term accuracy and reliability of predictive models.

6.1.1 Studying Model Drift in Client Data

The dynamic nature of Prosumer energy consumption, influenced by factors such as
seasonal changes, evolving consumer behaviors, and alterations in Prosumer composition,
necessitates a robust mechanism to detect and adapt to model drift. In the pursuit of maintaining
model efficacy, understanding the nuances of how and when these shifts occur becomes
paramount.

6.1.2 Advantage of Split Learning in Detecting Model Drift

Within this context, the split learning framework offers a promising avenue for more
effectively detecting model drift at the client level. Unlike federated learning, where model
updates are aggregated from multiple clients without direct access to individual data patterns,
split learning allows for a more granular observation of changes in data at the source. This
granularity provides a pivotal advantage: the ability to identify and respond to drift in a timely
and client-specific manner, ensuring that the model remains attuned to the evolving consumption
patterns of each Prosumer.

6.1.3 Proposed Methodology

Future work will focus on developing methodologies within the split learning framework
to systematically detect model drift. This will involve:

● Continuous Monitoring: Implementing mechanisms to continuously monitor prediction
accuracy and data distributions for signs of drift at the client level.

● Adaptive Learning: Designing adaptive learning algorithms that can automatically adjust
the model in response to detected drift, ensuring sustained accuracy over time.

● Client-Specific Adjustments: Exploring strategies for making client-specific model
adjustments, thereby personalizing the model's response to drift based on the unique
characteristics of each Prosumer's energy consumption.
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6.1.4 Implications and Goals

The ability to effectively manage model drift not only extends the lifespan of predictive
models but also enhances their practical utility in real-world applications. By ensuring that
models remain reflective of current data trends, we can improve decision-making processes for
energy management, optimize energy consumption, and contribute to overall energy efficiency.
The ultimate goal of this future work is to solidify the foundation of split learning as a resilient,
adaptable, and privacy-preserving methodology for predictive modeling in the energy sector and
beyond.

This focus on model drift within the split learning framework promises to unlock new
potentials for predictive accuracy, model longevity, and the personalization of energy forecasting
models, marking a critical step forward in our ongoing quest to harness the power of predictive
analytics in energy management.
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