
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

STATIC ANALYSIS USING FACEBOOK INFER FOCUSED
ON PERFORMANCE ANALYSIS
STATICKÁ ANALÝZA V NÁSTROJI FACEBOOK INFER ZAMĚŘENÁ NA ANALÝZU VÝKONNOSTI

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ONDŘEJ PAVELA
AUTOR PRÁCE

SUPERVISOR Doc. Mgr. ADAM ROGALEWICZ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2019

Vysoké učení technické v Brně
Fakulta informačních technologií

Ústav inteligentních systémů (UITS) Akademický rok 2018/2019

Zadání bakalářské práce lllllllllllllllllllllllll
21919

Student: Pavela Ondřej
Program: Informační technologie
Název: Statická analýza v nástroji Facebook Infer zaměřená na analýzu výkonnosti

Static Analysis Using Facebook Infer Focused on Performance Analysis
Kategorie: Analýza a testování softwaru
Zadání:

1. Prostudujte principy statické analýzy založené na abstraktní interpretaci. Zvláštní pozornost věnujte
přístupům zaměřeným na analýzu výkonnosti a výkonnostních chyb.

2. Seznamte se s nástrojem Facebook Infer, jeho podporou pro abstraktní interpretaci a s existujícími
analyzátory vytvořenými v prostředí Faceboook Infer.

3. Navrhněte a implementujte analyzátor v prostředí Facebook Infer zaměřující se na analýzu výkonnosti.
4. Experimentálně ověřte funkčnost vytvořeného analyzátoru na vhodně zvolených netriviálních programech.
5. Shrňte dosažené výsledky a diskutujte možnosti jejich dalšího rozvoje v budoucnu.

Literatura:
• Moritz Sinn, Florian Zuleger, Helmut Veith: Complexity and Resource Bound Analysis of Imperative

Programs Using Difference Constraints
• Oswaldo Olivo, Isil Dillig, Calvin Lin: Static detection of asymptotic performance bugs in collection

traversals
• Oficiální stránky projektu Facebook Infer: http://fbinfer.com/

Pro udělení zápočtu za první semestr je požadováno:
• Body 1 a 2

Podrobné závazné pokyny pro vypracování práce viz http://www.fit.vutbr.cz/info/szz/
Vedoucí práce: Rogalewicz Adam, doc. Mgr., Ph.D.
Vedoucí ústavu: Hanáček Petr, doc. Dr. Ing.
Datum zadání: 1. listopadu 2018
Datum odevzdání: 15. května 2019
Datum schválení: 1. listopadu 2018

Zadání bakalářské práce/21919/2018/xpavel34 Strana 1 z 1

http://fbinfer.com/
http://www.fit.vutbr.cz/info/szz/

A b s t r a c t
Static analysis has nowadays become one of the most popular ways of catching bugs early
in the modern software. However, reasonably precise static analysis tools s t i l l often struggle
to scale well on large and quickly changing codebases. Efficient static analysers, such as
C O V E R I T Y or C O D E S O N A R , are usually proprietary and difficult to openly evaluate or
extend. O n the contrary, Facebook I N F E R offers an open source static analysis framework
wi th the emphasis on compositional, incremental and consequently highly scalable inter-
procedural analysis. Th is thesis presents Looper — a new performance oriented resource
bounds analyser which extends the capabilities of Facebook I N F E R . We have based our
implementation on an existing resource bounds analyser Loopus and evaluated it on two
different test suites, showing encouraging results i n comparison w i t h the existing C O S T

analyser developed by the I N F E R team.

A b s t r a k t
Statická analýza se v současnos t i dos t ává do p o p ř e d í v oblasti technik pro odha lován í chyb
v m o d e r n í m software. N e d o s t a t e č n á šká lova te lnos t — p ř e d e v š í m v kombinaci se zachován ím
p o t ř e b n é p ř e s n o s t i — j e však pře t rvávaj íc í p r o b l é m u vě tš iny současných n á s t r o j ů pro stat
ickou ana lýzu , což je činí n e p o u ž i t e l n ý m i v p ř í p a d ě rozsáh lého a ča s to se měn íc ího kódu .
Efek t ivn í s t a t i cké ana lyzá to ry , jako n a p ř í k l a d C O V E R I T Y nebo C O D E S O N A R , jsou navíc
čas to propr ie tami a nen í tedy m o ž n é je j e d n o d u š e rozšíř i t nebo s rovnáva t jejich výsledky.
Opro t i tomu Facebook I N F E R nab íz í open source r á m e c s d ů r a z e m na kompoziční, inkre
mentální, a v d ů s l e d k u i škálovatelnou i n t e r - p r o c e d u r á l n í statickou ana lýzu . Tato p ráce
p ř eds t avu j e Looper — nový a n a l y z á t o r zaměřuj íc í se na a n a l ý z u výkonnos t i , přesněj i na
a n a l ý z u mezí , rozšiřující r á m e c n á s t r o j e Facebook I N F E R . Implementace na šeho ana lyzá
toru je za ložena na exis tu j íc ím nás t ro j i Loopus, k t e r ý se zaměřu je na p ř e s n o u a n a l ý z u
mezí . Výs ledný prototyp jsme otestovali na dvou různých tes tovac ích s a d á c h a povzbud ivé
výs ledky srovnali s exis tu j íc ím a n a l y z á t o r e m C O S T , k t e r ý je vyví jen I N F E R t ý m e m .

K e y w o r d s
Facebook Infer, static analysis, abstract interpretation, performance analysis, resource
bounds analysis, amortized complexity, Loopus, O C a m l

K l í č o v á s l o v a
Facebook Infer, s t a t i c k á ana lýza , a b s t r a k t n í interpretace, v ý k o n n o s t n í ana lýza , a n a l ý z a
mezí , a m o r t i z o v a n á s loži tost , Loopus, O C a m l

R e f e r e n c e
P A V E L A , O n d ř e j . Static Analysis Using Facebook Lnfer Focused on Performance Analysis.
Brno , 2019. Bachelor's thesis. B rno Universi ty of Technology, Facul ty of Information
Technology. Supervisor Doc . M g r . A d a m Rogalewicz, P h . D .

R o z š í ř e n ý a b s t r a k t
Zákeřné chyby ukrývaj íc í se na nečekaných mís t ech a způsobuj íc í závažné škody jsou bo

hužel neodmyslitelnou součás t í vývoje softwaru již od n e p a m ě t i . V reakci na tento p r o b l é m
se v ý z k u m n í c i v někol ika pos ledn ích dese t i le t ích zabýval i vývo jem nových ná s t ro jů , k t e ré
by — když už ne eliminovali — tak a l e spoň omezily vznik nových chyb v k r i t i ckém softwaru.
V ě t š i n a pozornosti se ovšem v minulost i u p í n a l a ze jména k vývoji n á s t r o j ů pro odha lován í
tzv. funkčních chyb, k t e r é mohou p ř í m o ovlivni t schopnost programu vykonáva t jeho za
mýš lenou funkci.

Výkonnostní chyby by ly až d o n e d á v n a v n í m á n y jako m é n ě kr i t ické a o b d o b n é nás t ro j e
pro odha lován í t ě c h t o chyb byly proto rozví jeny pomaleji . To vedlo k nedostatku spo
lehl ivých n á s t r o j ů ve chvíli, kdy se zača lo ukazovat, že závažnos t v ý k o n n o s t n í c h chyb je
s r o v n a t e l n á s chybami funkčními . V e x t r é m n í c h p ř í p a d e c h mohou tyto chyby vést prakt icky
k nepouž i t e lnos t i p r o g r a m ů , ze jména př i p rác i s vě t š ím objemem (a nebo j i n ý m typem) dat,
než bylo očekáváno . Takové chování je nepř i j a te lné , ze jména dnes, kdy se klade velký d ů r a z
na dobrou už iva te l skou zkušenos t .

P ro odha lován í t ě ch to chyb v r a n ý c h fázích vývoje se dnes nejčastěj i používa j í rozsáhlé
a u t o m a t i c k é testy a n á s t r o j e pro dynamickou analýzu — n a p ř í k l a d profilaci. P ř e s jejich
nespornou už i t ečnos t se úspěšnos t a u t o m a t i c k ý c h t e s t ů p ř í m o odvíj í od kval i ty a p o č t u
m a n u á l n ě t vo řených tes tovac ích p ř í p a d ů , p ř i čemž n á s t r o j e pro profilaci jsou schopny poskyt
nout v ý k o n n o s t n í charakterist iky pouze pro k o n k r é t n í p o u ž i t á v s t u p n í data. V ý k o n n o s t n í
chyby se ovšem dle [7] nejčastěj i projevuj í až v pozdějš ích fázích vývoje , p ř í p a d n ě až př i
nasazován í f inálního produktu , n a p ř . kvůl i r ozd í lům mezi očekávanou a s k u t e č n o u zá těž í .
P ř í s t u p y za ložené na d y n a m i c k é ana lýze jsou tedy ve výs ledku v mnoha p ř í p a d e c h dos t aču
jící, ale s tá le je zde riziko, že mnoho chyb z ů s t a n e neodha l ených . Zároveň pak tyto techniky
neposky tu j í z á r u k y o jakýchkol iv vlastnostech ana lyzovaného programu.

Statická analýza p ř e d s t a v u j e odl išný p ř í s t u p , k t e r ý ve vě t š ině p ř í p a d ů nevyžadu je žád
nou d o d a t e č n o u m a n u á l n í obsluhu a m ů ž e bý t použ i t i v počá t c í ch vývoje , jelikož nezávis í
na tom, zda je program spus t i te lný . N i c m é n ě i s t a t i ck á a n a l ý z a m á své problémy, jako
n a p ř í k l a d t r a d i č n í vysokou m í r u falešných pozi t iv a ze jména pře t rvávaj íc í p r o b l é m se škálo-
va te lnos t í , k t e r ý sužuje vě t š inu současných n á s t r o j ů a činí je n e p o u ž i t e l n ý m i v p ř í p a d ě
rozsáh lého a ča s to se měn íc ího kódu .

V reakci na tento p r o b l é m Facebook n e d á v n o p ředs t av i l v l a s tn í n á s t r o j pro efekt ivní
odha lován í chyb a verifikaci p r o g r a m ů , n a z v a n ý Facebook Infer — kompoz ičn í , inkremen
t á ln í a v důs l edku tedy i vysoce šká lova te lný r á m e c pro abstraktní interpretaci [15], k t e r ý je
u z p ů s o b e n pro rychlou integraci nových inter-procedurálních a n a l y z á t o r ů . Z m í n ě n ý n á s t r o j
by l j iž nasazen a a k t i v n ě se použ ívá ve společnos t i Facebook (a v někol ika dalš ích, jako
n a p ř í k l a d Spotify, Uber nebo Moz i l l a) , p ře s tože se s tá le nacház í ve fázi rych lého vývoje .
V současnos t i j iž disponuje rozmanitou ř a d o u ana lýz , n a p ř í k l a d pro verifikaci p ře t ečen í
zásobn íku , bezpečnos t i u v ícev láknových p r o g r a m ů nebo ú n i k u zdro jů .

Infer bohuže l v současnos t i s t á le zaos t ává v oblasti v ý k o n n o s t n í c h chyb. J e d i n ý výkon
n o s t n ě z a m ě ř e n ý a n a l y z á t o r C O S T (p ř eds t aven Infer t ý m e m v p r ů b ě h u naš í p ráce) imple
mentuje pouze upravenou verzi tzv. worst-case execution Ume (W C E T) ana lýzy . Tento
typ ana lýzy ovšem poskytuje pouze těžko interpretovatelnou a č a s t o (v p ř í p a d ě složitějších
a lgo r i tmů zahrnuj íc ích amortizovanou složitost) p o m ě r n ě n e p ř e s n o u numerickou mez na čas
p o t ř e b n ý k v y k o n á n í programu.

Loopus [12] je a n a l y z á t o r mezí , k t e r ý je schopen — dle n a š e h o nej lepšího v ě d o m í —
jako j ed iný analyzovat amortizovanou složi tost u široké šká ly p r o g r a m ů . Loopus n i cméně
p rovád í pouze intra-procedurální a n a l ý z u a s a m o t n ý n á s t r o j (bez i n k r e m e n t á l n í h o r á m c e)

není v h o d n ý pro rozsáh lý a rychle se měníc í kód . Tato p r á c e proto p ř eds t avu j e Looper —
a n a l y z á t o r mez í r e implementu j í c í Loopus v r á m c i n á s t r o j e Infer, což o t ev í r á nové m o ž n o s t i
pro j e š t ě efektivnější ana lýzu .

S těže jn ím konceptem n á s t r o j e Loopus je použ i t í a b s t r a k t n í h o modelu n a z v a n é h o dif
ference constraint program (D C P) . J e d n á se o graf, j ehož hrany jsou p o p s á n y p o m o c í
ne rovnos t í tvaru x < y + c, kde x a y jsou celočíselné v ý r a z y ses tavené nad p r o m ě n n ý m i
programu a c G Z je n u m e r i c k á konstanta. T y t o nerovnosti, n a z ý v a n é jako difference con
straints (D C) , jsou schopny modelovat velkou čás t i m p e r a t i v n í c h p r o g r a m ů s celočíselnými
p o č í t a d l y cyklů . Loopus je schopen na zák l adě t é t o reprezentace analyzovat meze po
moc í v z á j e m n é rekurze dvou procedur TB{T) a V B (a.). Procedura TB(T) slouží k v ý p o č t u
ho rn í meze p o č t u p roveden í k o n k r é t n í h o D C P p ř e c h o d u r s ledováním kolikrát a o kolik se
m ů ž e zvýši t hodnota celočíselného vý razu , k t e r ý p ř í m o limituje p o č e t souvis lých p roveden í
p ř e c h o d u r . Procedura V B (a.) aplikuje p o d o b n ý princip na v ý p o č e t h o r n í meze hodnoty
k o n k r é t n í D C P p r o m ě n n é a. V z á j e m n ý m p r o p o j e n í m t ěch to dvou procedur je m o ž n é ses
tavit algoritmus pro v ý p o č e t ho rn ích mez í celkového p o č t u p roveden í l ibovolného p ř e c h o d u
r . V n a š e m p ř í p a d ě sledujeme tzv. zpětné hrany, k t e r é navrace j í tok programu zpě t k hlav
ičce cyk lu po ukončen í iterace. Seč t en ím horn ích mezí j edno t l i vých p roveden í všech zpě t
ných hran programu z í skáváme celkovou cenu, k t e r á p ř í m o reflektuje jeho asymptotickou
složitost.

Výsledný prototyp jsme otestovali na dvou r ů z n ý c h tes tovac ích s a d á c h a s p o v z b u d i v ý m i
výs ledky srovnali s exis tu j íc ím a n a l y z á t o r e m C O S T , k t e r ý je vyví jen Infer t ý m e m . Navazu
jící p r á c e se bude z a m ě ř o v a t ze jména na rozš í ření p ů v o d n í h o intra-procedurálniho konceptu
s m ě r e m ke šká lova te lné inter-procedurální ana lýze př i zachování r o z u m n é p řesnos t i . Da l š ím
cí lem je implementace zbývajících rozš í ření p rezen tovaných v [12], či n á v r h s y s t é m u , k t e r ý
by by l schopen monitorovat z m ě n y v ý k o n n o s t n í c h charakteristik j edno t l i vých funkcí mezi
r ů z n ý m i revizemi programu.

Static Analysis Us ing Facebook Infer Focused on
Performance Analysis

D e c l a r a t i o n
I declare that I have prepared this Bachelor's thesis independently, under the supervision
of Doc . M g r . A d a m Rogalewicz, P h . D . . Ing. Tomas Fiedor and Prof. Ing. Tomas
Vojnar, P h . D . provided me w i t h further information. I l isted a l l of the l i terary sources and
publications that I have used.

Ondfej Pavela
M a y 15, 2019

A c k n o w l e d g e m e n t s
I would like to thank Doc . M g r . A d a m Rogalewicz, P h . D . and Prof. Ing. Tomas Vojnar,
P h . D . for their supervision, consultations, and their expert advice over the course of this
work. A special thanks goes to Ing. Tomas Fiedor for his expert advice, helpful consul
tations regarding the Loopus tool , and, especially, for his invaluable wr i t ing advice and
immense help wi th proofreading of this work. Further, I would like to thank Sam Blacks-
hear and Nikos Gorogiannis from Infer team at Facebook for helpful discussions regarding
the development of this analyser. A n d finally, last but not least, a special gratitude goes
to my family, who had to put up wi th my rants, for their support and everlasting patience
during the period I invested a l l my t ime and energy into this work.

Contents

1 Introduction 3

2 Abstract Interpretation 5
2.1 Components of the Abst rac t Interpretation 5
2.2 Formal Defini t ion 6
2.3 F ixpo in t Approx ima t ion 7

3 Facebook Infer 8
3.1 Infer. A I 8

3.1.1 Framework Archi tecture 9
3.2 Intraprocedural Analys is 10
3.3 Interprocedural Analysis 11
3.4 Cost analyser 13

3.4.1 Execut ion Count Funct ion 13
3.4.2 Parametr ic Calcu la t ion Funct ion 14

4 Loopus 16
4.1 Program Representation 17

4.1.1 Labeled Transi t ion Systems 17
4.1.2 Difference Constraint Programs 18

4.2 Abst rac t ion A l g o r i t h m 19
4.2.1 Abs t rac t ion to Guarded D C P 19
4.2.2 Abs t rac t ion to D C P over Na tu ra l Numbers 20

4.3 B o u n d A l g o r i t h m 21
4.3.1 L o c a l Bounds 21
4.3.2 The Basic A l g o r i t h m 21
4.3.3 Ex tend ing the Procedure w i th Constant Resets 22
4.3.4 Ex tend ing the Procedure w i th Non-Constant Resets 23
4.3.5 Improving the Bounds w i t h Reset Chains 24
4.3.6 Improving the Bounds w i t h Flow-Sensi t ivi ty 26

5 Implementation 28
5.1 Construct ion of Labeled Transi t ion System 28

5.1.1 Structure Const ruct ion 28
5.1.2 Const ruct ion of Edge Formulas 34
5.1.3 Ini t ia l Set of Norms 35

5.2 Implementation of the Abs t rac t ion A l g o r i t h m 36
5.2.1 Abs t rac t ion of Transitions 36

1

5.2.2 G u a r d Inference A l g o r i t h m 38
5.2.3 G u a r d Propagat ion A l g o r i t h m 38

5.3 Implementation of the B o u n d A l g o r i t h m 39
5.3.1 Implementation of the TB(T) and VB(a) Procedures 41

5.4 Construct ion of Reset Chains 42
5.5 Flow-sensi t ivi ty Transformation 45

6 Evaluat ion 48
6.1 Evalua t ion on the Cost Analyser Test Set 48

6.2 Evalua t ion on the Loopus Test Set 49

7 Conclusion 51

Bibl iography 52

A Addi t iona l algorithms 54

2

Chapter 1

Introduction

Subtle bugs hiding i n unexpected places and causing significant damage when triggered
are an inherent part of software ever since the inception of the programming discipline.
In response to this problem, researchers in the last few decades focused their attention on
developing new tools w i th the pr imary goal of reducing the number of bugs or even proving
their absence i n cr i t ica l software. However, most of the attention was drawn towards the
field of the so called functional bugs which can direct ly affect the abi l i ty of a program to
perform the intended function.

U n t i l recently, performance bugs were not regarded as cr i t ica l and remained at the
sidelines of research, resulting i n a lack of reliable tools when it became apparent that the
severity of performance bugs is comparable to the severity of functional ones. In extreme
cases, these bugs can tu rn otherwise correct programs into unusable pieces of software
when met w i t h an unexpected amount and/or pattern of input data. Th is behaviour is
unacceptable especially wi th today's emphasis on great user experience.

The current widespread approach is to employ extensive automated testing and leverage
dynamic analysis tools such as profilers in order to catch bugs early in the development
process. However, despite their undisputed usefulness, the capabilities of automated testing
are directly t ied to the quali ty of manual ly wri t ten tests and profilers are able to provide
performance characteristics related to a specific input data only. Unfortunately, according
to [7], performance bugs tend to manifest i n later development stages or upon deployment
due to previously unanticipated workload. In conclusion, approaches based on dynamic
analysis are sufficient in many cases but can sometimes s t i l l miss too many errors and
cannot provide any conclusive claims about certain properties of a program.

Static analysis offers an alternative solution which usually does not require any addi
t ional user input and can be easily employed i n early development stages as it does not rely
on the executability of a program. However, even static analysis has its own shortcomings
such as a t radi t ional high rate of false positives, and, most notably, a prevailing problem
wi th scalability which plagues most of the current tools and renders them unusable for large
and quickly changing codebases.

In response, Facebook has recently proposed its own solution for efficient bug finding and
program verification called Facebook Infer — a compositional, incremental [9], and conse
quently highly scalable abstract interpretation [15] framework suitable for quick integration
of new inter-procedural analyses. A l t h o u g h s t i l l rapidly developing, it is already deployed
in Facebook (and several other companies, such as Spotify, Uber , or Mozi l la) and offers
a wide range of analyses, e.g., for verification of buffer overflow, thread safety, or resource
leakage.

3

Unfortunately, Infer currently lacks analyses focused on the mentioned performance-
based bugs. The only performance-based C O S T analyser (introduced by Infer in the course
of our work) implements a modified worst-case execution time (WCET) analysis only. How
ever, this analysis provides a numerical bound on the t ime required for the execution of
a program only, which can be hard to interpret, and, above a l l , it is quite imprecise for
more complex algorithms, e.g., requiring amortized reasoning.

Loopus [12] is a powerful resource bounds analyser, which, to the best of our knowledge,
is the only one that can handle the amortized complexity for a broad range of programs.
However, it is l imi ted to intra-procedural analysis only, and the tool itself (without an
incremental framework) is not suitable for large and quickly changing codebases. Hence,
in this work we propose Looper — a resource bounds analyser that recasts the powerful
Loopus wi th in Infer, enabling the possibil i ty for a more efficient analysis. The experimental
evaluation shows encouraging results, when even our immature implementat ion inferred
precise bounds for selected benchmarks.

This work was supported by H2020 E C S E L project Aquas; we hereby thank for the
received support.

Structure of this work. The rest of this work is structured as follows: Chapter 2
introduces the theory of abstract interpretation technique i n static analysis and demon
strates its key concepts on a simple example. Chapter 3 provides a general overview of
the Facebook Infer tool w i th an emphasis on how Infer achieves the scalabili ty w i th its com
posit ional inter-procedural analysis. Chapter 4 introduces the existing Loopus tool and
provides a high level overview of the key concepts and ideas without any formal definitions
or proofs of soundness. The follow-up Chapter 5 discusses the current state of imple
mentation which is based on the key concepts from previous chapter. Further, Chapter 6
presents the encouraging results of our experimental evaluation conducted on two different
test suites. F ina l ly , Chapter 7 discusses the possibilities for future work and concludes
this thesis.

4

Chapter 2

Abstract Interpretation

Abstract interpretation (AI) was originally formalized by a French computer scientist
Patr ick Cousot and his wife R a d h i a Cousot in the 1970s [4]. The theory of A I provides
a general framework which can be ut i l ized in the process of creating specific static analyses.
New analyses can be obtained by instantiat ing of the necessary components to the general
framework.

Even though the A I technique falls into the domain of static analysis of programs it
actually executes instructions of analyzed program i n a sense. However, the key difference
is how we interpret those executed instructions. We basically assign abstract semantics
over an abstract domain to each concrete instruct ion and tailor the domain for the specific
needs of our analysis based on its Ml CB. of focus.

Abstract semantics of an instruct ion are then applied to the abstract context which is
used to represent a program state at a certain location. The actual physical execution of the
program instructions is thus completely avoided which means that the A I preserves a l l the
advantageous properties of static analysis. A state space of a program can subsequently be
reduced significantly just by choosing the appropriate level of abstraction for the problem
at hand and devising corresponding abstract domain and abstract transformers.

The Facebook Infer tool provides a scalable framework for static analysis based on
A I (Infer.AI). The scalabili ty is achieved by following the principles of composit ionali ty
allowing Infer to perform incremental analysis which can be run on ind iv idua l code changes.

2.1 Components of the Abstract Interpretation

Each new type of analysis has to define few essential components required by the general
abstract interpretation framework. These components create the semantics of our analysis:

• Abstract domain: a set of abstract states. A n abstract state represents a program
state at a certain program location. The content of an abstract state varies depending
on a specific type of analysis. A t r i v i a l example might be an interval domain tracking
safe lower and upper bounds of integer program variables, i.e., [a,b] where a £ Z U
{—oo}, b £ Z U {oo}, T = (— 0 0 , 00) and _L = (a, 6) for a = b. The T symbol denotes
the top element of the underlying lattice as a l l existing intervals are contained in
the (— 0 0 , 0 0) interval. The _L symbol denotes the bo t tom element of the underlying
lattice which is an empty interval. The integer sets for lower and upper bounds are
extended by infinities because it is not always possible to determine precise bounds
and interval over-approximation is necessary i f we a im for a sound static analysis.

5

• Abstract transformers: each instruction from program's source code has assigned
transformer which transforms the original semantics of an instruction to abstract
semantics which can be applied on an abstract state. For example, we would need
to transform the integer ari thmetic of a concrete program to the interval ari thmetic
applicable in our previously introduced interval domain. E . g . , increment to variable
i represented by the [a, b] interval would lead to new interval [a + 1, b + 1] and the
assignment i = 0 would lead to [0, 0].

• Jo in operator: combines mult iple abstract states into a new one. Joins are used
at program junctions where several program branches merge together. Jo in i n the
interval domain can be defined as: [a, b] o [c, d] = [min(a, c), max(6, d)].

• Widening: applied on a sequence of abstract contexts at a certain program location
(for example loop headers) in order to accelerate fixpoint calculat ion. However, accel
erated fixpoint computat ion by means of widening usually has a trade-off in a form of
precision loss. Widen ing in the interval domain can be defined as: [ao, &o]v"[ai, b\] =
[if o i < oo then —oo else ao, i f b\ > bo then oo else bo], where both intervals
collide at the same loop header after two consecutive iterations of a loop.

• Narrowing: can be used in order to refine the result of widening operation. Some
analyses do not require to define the narrowing operation. Narrowing in the interval
domain can be defined as: [ao,&o] A [ai,&i] = [if ao = —oo then a\ else ao, i f
bo = oo then b\ else bo].

2.2 Formal Definition

The abstract interpretation is based on notion of a mathematical structure called semilat
tice [14], which is defined as follows:

• Par t i a l ly ordered set (A, <A) is a semilattice if each non-empty, finite subset B of A
has a least upper bound i n A.

• Par t i a l ly ordered set (A, is a complete semilattice i f each subset B of A has a least
upper bound in A.

The abstract interpretation / of a program P w i t h the instruct ion set Instr is a tuple:

/ = (Q , o , C , T , i _ , r) ,

where

• Q is a abstract domain, i.e., domain of abstract states,

• T G Q is the least upper bound of Q,

• _L £ Q is the greatest lower bound of Q,

• o : Q x Q —>• Q is the binary jo in operator,

• (E) Q Q x Q is an ordering defined as x C y <̂ =̂ x o y = y i n (Q, o, T) which is
a complete semilattice.

• V : Q x Q —>• Q is the binary widening operator w i th following properties:

G

- V C , D G Q : (C o D) C (C V / J) ,

— For a l l infinite sequences (C o , . . . , Cn,...) G it holds that the infinite se
quence (so,..., sn,...) defined recursively as:

so = Co, s n = sn-\VC„

is not s t r ic t ly increasing,

• A : C; x C; —?• Q is the binary narrowing operator w i th following properties:

- V C , D G Q : D C C (L> C (C A £>) C C) ,

— For a l l infinite sequences (C o , . . . , C „ , . . .) G it holds that the infinite se
quence (so, • • •, sn,...) defined recursively as:

So = Co, Sn = Sn-1 A C „
is not s t r ic t ly decreasing.

2.3 Fixpoint Approximation

Abstract interpretation is based on the principle of program execution i n the abstract
domain which substantially reduces the number of possible program states. However, the
underlying theory is based on the notion of lattices and computing of fixpoints, i.e., we
gradually apply abstract transformers on states, un t i l we do not produce any new ones.
F ixpo in t is an element a G A of a function / :—> A over a semilattice (^4, <A) w i th a function
value equal to a itself, e.g., f{a) = a holds.

Comput ing of precise fixpoints is generally not guaranteed to terminate i n acceptable
or even finite t ime. Those cases mostly comprise of loops where it is usually impossible to
avoid some k ind of fixpoint approximation in order to guarantee the termination. Widen ing
provides solution to this problem as it can be used to over-approximate the fixpoint and thus
guarantee the terminat ion i n finite t ime at the expense of precision. It can also be followed
by a subsequent narrowing operation which might provide more precise approximation.
B o t h operations are opt ional and general abstract interpretation framework does not require
their presence but at least widening is convenient i f we a i m for efficient analysis focused on
real world code. The following example w i th a loop demonstrates a l l introduced concepts:

h : x = 0;
I2 : while (x < n) {
£3 : *++;

k : >

h: xi = [0,0] l 3 : x2 = [1,1] 12: x3 = X!Q x2 = [0,1]

I3: £4 = [1, 2] l2: £5 = x\ o £4 = [0, 2] l2 : xq = x\ V x s = [0, 00)

I3: £7 = [1, 00) l2 • xs = x\ o x 7 = [0, 00) I2 • Xq = xs = FP

U • Xend = X8 A Xfaise = [0, Oo] A (-OO, n] = [0, Tl]

Table 2.1: A calculation of the [0, oo) fixpoint requiring the widening operation and sub
sequent refinement w i t h the narrowing operation. Variable Xi corresponds to the i t h step
of the fixpoint computat ion. Each step is listed wi th location of instruct ion which was
abstractly executed.

7

Chapter 3

Facebook Infer

Infer is an open-source static analysis framework developed by the Facebook Infer team
and implemented mainly i n OCaml. Its main advantage over the most of the other existing
tools is the abi l i ty to discover interprocedural bugs in a scalable manner through the use
of the so called function summaries.

Infer was originally a standalone analyser focused on finding of memory safety violations
such as the dereferencing of nu l l pointers or memory leaks. It has made its breakthrough
thanks to the influential paper [3] presenting logical concept called bi- abduction which
composes the static analysis in a scalable manner. Bi -abduct ion is a form of logical inference
mainly for separation logic which is a novel k ind of mathematical logic. Separation logic
itself made a huge impact on a way how one can reason about computer memory and was
one of the key reasons why the original shape analysis could scale.

Since then, Infer has evolved into a general abstract interpretation framework that can
be used to quickly develop new kinds of modular interprocedural analyses. A t the core of
each interprocedural analysis stands an intraprocedural analysis that computes a summary
for a single procedure. Abst rac t interpretation framework can then leverage those sum
maries at the cal l sites of previously analysed functions and use them to lift the analysis to
the interprocedural and composit ional level. A s a consequence of composit ionali ty it is also
incremental which means that it can be run only on code changes instead of entire codebase.
This property is especially cr i t ica l for analyses that w i l l be run on large codebases where
complete re-analysis on each code change would be unfeasible for real world applicat ion
which is what Infer aims for.

Infer currently consists of three ma in parts: AI, AL and SL. The A I refers to the
aforementioned abstract interpretation framework, A L is a framework for basic syntax
linters and S L refers to the original separation logic based analysis. The A I framework
currently supports analysis of C , C + + , Object ive-C and Java programs and provides a wide
range of analyses each focusing on different bug types. L i s t of more matured analyses
includes for example Inferbo (buffer overrun checker), RacerD (data races) or Starvation
(concurrency starvation and some types of deadlocks).

3.1 Infer.AI

Infer.AI is an abstract interpretation framework implemented inside the Infer tool . It
provides basic infrastructure as well as great number of facilities that simplify the develop
ment process of new analysers such as automatic H T M L logging and formatting or various

8

O C a m l modules for easier expression parsing and pattern matching. Infer.AI can be used
to implement simple intraprocedural analyses which can be converted to interprocedural
analyses just by adding some boilerplate code that enables usage of function summaries.

3.1.1 F r a m e w o r k A r c h i t e c t u r e

Figure 3.1 presents a simplified block diagram of the framework architecture consisting of
three main components. The first main component is the frontend. Its job is to leverage
the underlying LLVM compiler infrastructure to compile analysed program from its source
language to so called Smallfoot Intermediate Language (SIL) : the low-level intermediate
language used by Infer.AI framework during the analysis.

1 Scheduler + r e s u l t s database

Procedure summary

Figure 3.1: Archi tecture components

Frontend provides an output i n form of a Con t ro l F low G r a p h (C F G) for each analysed
procedure and also another higher level interprocedural C F G for each source file, i.e., a file
specific call graph. Frontend is able to generate variety of different procedure C F G types
such as normal, exceptional w i th exceptional flow for languages w i th exceptions or backward
(reversed direction). Th is approach is more flexible and gives the developer more options
to choose from based on the needs of specific analysis.

Each node of the procedure C F G contains a list of S I L instructions that w i l l be in
terpreted by abstract interpreter implemented i n the framework. We can list four main
instructions:

• LOAD — loads value from an address denoted by an expression into a temporary iden
tifier. Address expression can be either a program variable or, e.g., more complex
expression that includes array indexing,

• STORE — stores value of an expression into a place denoted by an address expression
(same as w i th LOAD instruction). Value expression consists of constants and temporary
identifiers created by previous LOAD instructions,

• CALL — represents a function cal l . Creates a new temporary identifier for a possible
return value and provides information about return type, types of parameters and

9

call flags. Note, that indirect function calls are handled by a combinat ion of LOAD

and CALL instructions,

• PRUNE — splits the control flow into two new branches based on possible results of
a boolean expression. This instruction is interpreted after the split which means it is
interpreted twice, once for the true branch and once for the false branch.

Infer also supports analysis over another higher level intermediate language called HIL which
is bui l t on top of S I L . E v e n though HIL is simpler than S I L and has only three instructions
it is sufficient for the needs of the most of the analyses. However it is not suitable for
analyses that focus on memory bugs and work w i t h pointers on regular basis, contrary to
S I L which is more appropriate.

The frontend module and the use of the intermediate language allows us to write new
analyses wi th min ima l language specific logic and i n tu rn we can run one analysis on
programs wri t ten i n mult iple programming languages.

The second main component of the architecture is scheduler which determines the suit
able order of analysis of each procedure based on a call graph. Scheduler is especially
important for interprocedural analysis where order in which procedures are analysed really
matters. We w i l l explain this problem i n more detai l i n the Section 3.3. A procedure
is analysed once it is chosen by the scheduler and returns a summary which is stored in
the results database. This way, a procedure summary can be retrieved from a database
and instantiated repeatedly at different cal l sites. Moreover, the use of a database storage
allows Infer to be incremental. Scheduler is also able to determine which procedures are
independent and, hence, can be analysed concurrently. Infer can then be run i n a heavily
parallelized manner — one of the reasons for its high scalability.

The last main component is the parameterized abstract interpreter which must be in
stantiated by every analyser and performs the actual analysis of each procedure. New
instance of abstract interpreter must be provided w i t h an aforementioned type of proce
dure C F G and a module implementing custom transfer functions for each S I L instruction.
Effect of these transfer functions is applied to abstract states for a custom abstract do
main . Infer does not impose any restrictions on the contents of an abstract domain and the
only requirement is that it must provide implementat ion for jo in and widen operations and
a comparator for abstract states which creates an ordering. In addi t ion it must also define
a data structure representing abstract state.

3.2 Intraprocedural Analysis

Intraprocedural analysis is an analysis that ignores the nested calls of other procedures.
It focuses on a single procedure at a t ime and out of context of its ca l l sites. A s a result
it has quite l imi ted abi l i ty to reason about the program as a whole and can only provide
a knowledge about its procedures l imi ted to their scope. For example, it is not possible to
provide addi t ional preconditions based on the context of specific cal l site and at the other
end postconditions are of no value to the caller.

Figure 3.2 describes the process of the intraprocedural analysis in Infer. The abstract in
terpreter analyses a single procedure using two main components: the command interpreter
and the control interpreter. The command interpreter interprets S I L or HIL instructions
over input abstract states and produces new output states. The interpretation is a process
of applying the corresponding transfer function to the input state which produces a new
output state. The control interpreter receives this updated state and continues wi th next

10

DOMAIN

0181001
0000001
1111011
0010000 v J
S t a t e I N Command interpreter

DOMAIN

0101001
0000001
1111011
0010000

StateouT

Command

CFG Control interpretei •

Figure 3.2: The process of intraprocedural analysis in Infer. The command interpreter
applies transfer functions to input abstract states and produces output states. The control
interpreter chooses the inputs based on a C F G .

instruction based on the procedure C F G . B o t h components together form the main analysis
loop which repeats un t i l it processes a l l instructions or finds a fixpoint i n case of a program
loop. These parts of the abstract interpreter have access to transfer functions and a valid
domain implementing necessary operations and defining abstract state.

Modu la r i t y of the A I framework is ensured by the parametric command interpreter
which changes behaviour based on the currently plugged set of transfer functions. This
approach makes the process of creating new analyses easy as there is no need to change
command interpreter every t ime we decide to add new analysis. Hence, we can create
new intraprocedural analysis i n three steps: (1) we choose type of procedure C F G , (2) we
design abstract domain, and finally (3) we implement transfer functions. Individual parts
are passed to the new abstract interpreter instance that stitches everything together and
exposes various functions that perform different tasks related to the analysis.

3.3 Interprocedural Analysis

Unlike intraprocedural analysis, interprocedural analysis can discover bugs caused by inter
actions between procedures and does take ca l l site context into account. Postcondi t ion of
a called procedure changes based on its preconditions w.r.t . the current state of a program
at specific cal l site. B u t i n interprocedural analysis postconditions can also affect state of
the caller v ia return value or pointer parameters.

Infer uses two different approaches to achieve interprocedurality. The first is based
on bi-abduction theory and is employed i n the original separation-logic based analyser.
Bi-abduction allows Infer to break one large memory analysis of a whole program into
smaller independent analyses of ind iv idua l procedures. In general, it is a technique that
allows Infer to automatical ly deduce preconditions and postconditions for a procedure by
symbolic execution of its code. It is one of the reasons why the original analyser scales so
well.

11

The second approach to interprocedural analysis is based on the notion of summaries
and is employed i n the A I framework. Summary as a general concept is a data structure
that stores relevant information about the analysed procedure. In most cases, it contains
collection of conditions over the formal parameters of a procedure. Subsequent violat ion
of those conditions at specific cal l site w i th concrete arguments can then be considered
as a bug. However, summary does not necessarily have to be a collection of conditions.
Instead it can contain general context-independent postcondit ion for each formal parameter
or a formula describing relation between argument values and return value. Addi t ional ly ,
it can also contain information about side effects of the procedure.

The A I framework does not impose any restrictions i n regards to the content of a sum
mary. A s a result, it can contain any type of data and it is solely on the programmer which
data he chooses to store and how he leverages them at cal l sites. The summary concept
allows Infer to analyse each procedure only once and then reuse stored procedure sum
maries as many times as needed by instantiat ing them at ca l l sites. Summary instantiat ion
is basically a substi tut ion of general parts of a summary for concrete values at a cal l site.

Conversion of intraprocedural analysis into modular interprocedural analysis i n the A I
framework is straightforward. F i rs t we define the summary data type along wi th boilerplate
code implementing interface exposed to the framework so that it can store and read the
summary. F ina l ly , we add logic that uses summaries i n the transfer functions.

Order in which procedures are analysed during interprocedural analysis does matter,
because the analyser needs to have a val id summary for each function that is called by
the currently analysed procedure. The scheduler implemented i n the A I framework uses
a call graph to handle this issue and ensures that procedures are analysed in suitable order.
C a l l graph is an oriented graph describing dependencies between procedures, i.e. which
procedures can be called by a one specific procedure. Example of one such cal l graph can
be seen in Figure 3.3.

PMAIN

PI P2

P3 • P4

P5 P 6 4

Figure 3.3: A cal l graph describing ca l l dependencies of each procedure represented by
a node. Outgoing edge signifies the possibil i ty of a ca l l to other procedure.

In the example, Infer would first analyse procedures P5 and P6 as they are sink vertices,
i.e., vertices that have no outgoing edges. These procedures do not cal l any other user
defined procedures but they might s t i l l cal l bu i l t - in or l ibrary procedures wi th defined
models that do not need to be analysed. Infer would then continue i n similar fashion
towards source vertices w i th no incoming edges, i.e., P m a i n i n this case. A s stated before,
Infer can also analyse mult iple procedures concurrently and uses ca l l graphs to ensure that

12

no dependencies are violated when it selects a set of procedures that could be analysed
simultaneously.

This example also illustrates the incremental property of Infer that allows it to scale
extremely well especially i n rapidly changing code bases where conventional batch analysis
is unfeasible. Incremental analysis only needs to re-analyse procedures directly affected by
a code change and a l l procedures up the cal l chain as the summaries must have changed
and therefore their updated versions should be propagated to a l l cal l sites. For example i f
procedure P5 was changed, Infer would also have to re-analyse procedures P3, P I and Pmain'
However, if P2 was changed, only P m a i n would have to be re-analysed on top of it.

3.4 Cost analyser

Over the course of our work, Infer introduced a new performance oriented analyser called
C O S T — a worst-case execution cost analyser based on ideas of parametric worst-case ex
ecution time (W C E T) analysis presented i n [2]. The basic idea of the original tool is to
generate a so called execution count function (E C F p) and a so called parametric calcula
tion function (P C F p) for a program P and obtain the final parametric W C E T (P W C E T p)
function as a functional composit ion of E C F p and P C F p :

P W C E T p : z ' X p ' — > N = P C F P o E C F p . (3.1)

This composite function takes an integer vector of instantiated input parameters of a pro
gram P (l)Xp\) and returns a single natural number (N) representing the final W C E T . This
approach takes advantage of the fact that it is often possible to obtain tighter upper bounds
on the W C E T i f the values of program input variables are known beforehand which is often
the case when deploying software for embedded systems.

3.4.1 E x e c u t i o n C o u n t F u n c t i o n

The purpose of Execut ion Count Funct ion is to calculate an upper bound on the number
of possible executions for each program point q G Qp where Qp is a set of a l l points in
a program P. It is defined as follows:

E C F p : l)Xp\ —> N | S p | . (3.2)

It takes the same input as the composite P W C E T p function and returns a vector of upper
bounds (N '® p ') on the number of executions for each program point. Note that the notion
of a program point is not formally defined as it depends on the underlying program model,
and thus it can for example be a node or an edge of a C F G . The original tool leverages
abstract interpretation and generates the E C F p based on flow constraints inferred v i a flow
analysis and counting the elements in the abstract state.

The idea of counting the elements is used to find loop bounds and is based on the
following observation: "the number of environments associated wi th a program point is an
upper bound of the number times the program point can be visi ted i n any execution" [2].
A n environment maps tracked program variables to specific integer values, e.g., [rz i—^ 2, ^ i—>•
0] is an environment which maps the variable n to 2 and the variable i to 0. Thus, i f we
count a l l associated environments, i.e., a l l possible combinations of assignments to tracked
variables, we get an upper bound on the number of times a program point can be visited.

13

However, the number of environments grows wi th the number of tracked variables (num
ber of possible combinations increases) and it is thus desirable to track only relevant vari
ables i f we a im for a reasonably precise analysis. The original tool tracks only so called
control variables which directly or indirect ly affect the control flow of a program, i.e., vari
ables which affect the values of condit ional expressions in C F G control nodes (similar to
the not ion of loop counter variables that w i l l be introduced i n Section 4.2). Addi t ional ly ,
to further reduce the set of tracked variables, an invariant analysis is employed in order to
find and remove variables that are invariant i n the body of a specific loop.

Final ly , the abstract interpretation is used to construct countable environments for
each program point. The basic idea is to perform a value analysis for each tracked variable
wi th an abstract domain of choice and subsequently count a l l discrete points i n the concrete
domain. E .g . , w i th an interval domain the counting is t r iv i a l as the total number of elements
i n the interval [a, b] is computed as:

[a, 6]| = |7([a,6])| = \{n G Z | a < n < b}\ = b - a + 1, (3.3)

where 7 is the concretization function which maps abstract interval to concrete values it
represents. Computa t ion for empty and infinite intervals is t r i v i a l and the results are 0 and
00, respectively. However, depending on the chosen abstract domain, the counting process
might be quite difficult, especially for relational domains (such as polyhedral) which are
useful as it is often desirable to express the range of possible values symbolical ly i n terms
of input parameters of a program. This way, we can count the number of associated
environments for a single tracked variable and the tota l number of environments \a\ for a l l
variables combined can be computed as follows:

|a | = n i ^) h (3-4)

where |cr(w)| is the calculation for a single variable v from the set of tracked variables V .
The result is the desired upper bound on the number of executions of a single program
point. Please refer to [2] for more details.

The C O S T analyser leverages the existing I N F E R B O analyser and its relational symbolic
interval domain [8] to perform the value analysis, count the elements, and obtain symbolic
upper bounds i n terms of function parameters for each program point of a function. These
symbolic upper bounds can be used to calculate the final numerical execution bound when
a set of in i t i a l values for the input parameters is given. Addi t ional ly , the C O S T analyser
assigns the bound of one to a l l program points w i th empty set of tracked variables, i.e.,
program points outside of loops.

3.4.2 P a r a m e t r i c C a l c u l a t i o n F u n c t i o n

The purpose of this function is to transform a vector of upper bounds (N l S p l) calculated
by the E C F p function into a single number (N) representing the final W C E T . It is defined
as follows:

P C F P : N | S p | — > N . (3.5)

The original tool uses parametric calculat ion and the Implicit Path Enumeration Tech
nique [11] (I P E T) to obtain the P C F p function for a program P. The basic idea of I P E T
is to obtain an estimate of the W C E T by maximis ing the following objective function:

c i x i ' (3-6)
geQp

14

where q is a program point, cq is an atomic worst-case cost for a program point q obtained
through a low-level analysis. The xq represent an upper bound on the executions of a pro
gram point q which is unknown but subject to a set of flow constraints obtained through
the flow analysis and also addi t ional symbolic upper bound constraints calculated by the
E C F p function. I.e., it formulates the problem of finding the W C E T as an Integer Linear
Programming (ILP) problem of maximis ing the objective function given a set of constraints.
Th is problem can be solved by any I L P solver which finds a solution for each unknown vari
able xq. Addi t ional ly , to get a bounded problem which can be solved, structural constraints
have to be introduced. E .g . , the upper bounds Xi and xe for the in i t i a l and the exit node
are equal to one or the upper bound Xj for a jo in node is equal to the sum of upper bounds
of bo th incoming edges xq and xp, i.e., Xj = xq + xp. Note that the atomic cost cq for
a program point q can refer to clock cycles, milliseconds, or any other measurement unit
provided by the low-level analysis. Please refer to [2] for more details.

The C O S T analyser adopts similar approach and estimates the worst-case execution cost
w i th Equa t ion 3.6 where the cq factor refers to statically assigned atomic cost of Infer S I L
instruction, e.g., the LOAD instruct ion has atomic cost of one. However, it does not employ
an I L P solver and instead constructs equations based on generated structural constraints
and the symbolic upper bounds from the E C F p function. It applies various heuristics on
these equations to subsequently pick the tightest upper bound from a set of possible bounds
for each program point.

15

Chapter 4

Loopus

Loopus [12] is a scalable tool for automated complexity and resource bound analysis of
integer programs. It was implemented by M o r i t z Sinn from Forsyte team i n T U W i e n .

Loopus mainly focuses on so called tight upper bounds on the worst-case cost. It uses the
back-edge metric — an uniform cost model that assigns the cost of one to each back jump
instruction (i.e., the instruct ion that is executed at the end of each loop iteration, causing
the return of control flow to the loop header) and the cost of zero to a l l others. The back-
edge metric is especially interesting in relation wi th the asymptotic time complexity where
it specifies how many times can a specific instruct ion be executed dur ing a program run.
Moreover, the back-edge metric gives us the cost of executing concrete implementations
contrary to general asymptotic complexity.

Loopus is buil t upon the L L V M intermediate representation. The input C program
is first parsed into a so called labeled transition system (LTS) — an in i t i a l representation
of the program. L T S is further transformed into a difference constraint program (D C P) ,
which models difference constraints between program parameters and variables. F ina l ly ,
Loopus performs intraprocedural analysis and computes symbolic po lynomia l bounds over
program parameters for loops and consequently the complexity of non-recursive functions.
Because the intraprocedural analysis is quite restrictive and could lead to imprecise results
in most cases, Loopus uses function in l in ing. More specifically, it inlines calls to a l l non-
recursive functions that do not contain loops. Th is is crucial for precision because even
simple functions without loops might s t i l l modify loop counter variables through pointers
or return values and thus affect the to ta l number of loop iterations.

Loopus has certain l imitat ions [12], but authors c la im that most of them are due to tech
nical reasons rather than due to general l imitat ions of the adopted approach. Loopus also
currently supports experimental heuristics that allow it to handle some cases of non-integer
code including typica l loop i teration patterns over recursive data structures. Moreover,
recently a sound technique [5] was proposed and implemented i n the Ranger tool [6], which
transforms input heap-manipulating programs into integer representation and uses Loopus

backend.
In this chapter we w i l l provide a high level overview of the approach used by Loopus

as well as the process of program abstraction or bound calculat ion. This chapter is based
on [12, 6, 5].

16

4 .1 Program Representation

The core concept behind the program abstraction i n Loopus is the use of so called difference
constraints: a natural abstraction for typica l operations wi th counters i n imperative pro
grams. Difference constraints have been previously used for terminat ion analysis [1] which
is, to some degree, related to bound analysis and Loopus has extended their potential in
this field.

Difference constraint (D C) is a relational inequality of the form x' < y + c where x and y
are expressions over program variables and c £ Z is a constant. D C s are expressive enough
to be able to model large por t ion of real world imperative integer programs, i n part icular
their complexity aspects. Especial ly convenient is their abi l i ty to model problems related
to amortized complexity which is the ma in reason Loopus is able to obtain tighter upper
bounds more often than most of the existing tools. Rea l world examples that demonstrate
the need of amortized complexity analysis can be found, e.g., i n parsing and string matching
procedures [13].

The x' < y + c inequality can model counter increments, decrements and resets. The
main advantage of this representation is the fact that it is easy to dist inguish between
increments and resets w i th just a syntactic check. For example i f x = y then we get
x' < x + c which is clearly an increment for c > 0 and decrement for c < 0. Otherwise
if x 7̂ y then we get the standard inequality x' < y + c where c can be zero which
leads to the simplest case of reset x' < y. Loopus takes advantage of this in its bound
calculation a lgori thm and distinguishes between counter increments and resets to achieve
better precision.

The semantics of D C s is that the value of x i n the current state cannot be greater than
the value of y from the previous state possibly increased by some constant value c. So
x' < x + 1 inequality can be interpreted i n the following way: the value of variable x in
the current state cannot be greater than the value of the same variable from previous state
plus one. In other words, the value of x in the next program state w i l l not increase by more
than one compared to the previous state.

D C P is then an abstract program model which is represented by a directed labeled
graph wi th transitions denoted by sets of D C s . The bound algori thm uses this model to
calculate the back j ump cost of programs.

4.1.1 L a b e l e d T r a n s i t i o n Systems

The frontend of Loopus represents programs by labeled transi t ion systems (LTS) that are
defined as tuples of set of program locations, set of transitions, single entry locat ion and sin
gle exit location. L T S is an oriented graph wi th program locations as nodes and transitions
as edges where each edge is labeled by a formula that encodes a transi t ion relation specified
by each transi t ion in a program. Figure 4.1 shows an example of simple integer program
on the left w i t h its corresponding L T S representation on the right. E a c h branching point
is regarded as a program locat ion which means we get two program locations, one for each
while loop. L T S contains one edge for each possible program path, where the semantics of
edge formulas is straightforward. For example, the formula i > 0 A i' = i — 1 A j' = j + 1 la
beling the edge T\ i n Figure 4.1 contains one condit ion i > 0 and two assignments: i! = i — 1,
j' = j + 1. Condi t ions restrict the possibil i ty of t ransi t ion execution and assignments spec
ify values of assigned variables after the execution. Assignments such as i' = i represent
that the value of variable i was not changed on a transit ion. The asterisk symbol used in

17

11 : v o i d t a r j a n (i n t n) {
i n t i = n ; (p r o c e s s e d e lements)
i n t j = 0; (c u r r e n t s t a c k s i z e)

h : w h i l e (i > 0) {
i — ;

(push)
12 : w h i l e (j > 0 && *)

j — ; (pop)
I, : }

TO

h -

3 < 0 A
i' = i A

W 3 =3 W
T-2 U

= n A
= 0

i < 0

3 > 0 A
i A

i - l

Figure 4.1: Example t a r j a n [12] models a stack which processes the tota l number of n ele
ments. I.e., there are n pushes and possibly n pops due to non-determinism. Corresponding
L T S representation is on the right.

program conditions denotes the non-determinism that models conditions not supported in
the analysis. Consequently, these conditions are not part of edge formulas.

4.1.2 Difference C o n s t r a i n t P r o g r a m s

D C P is an abstract program model that uses difference constraints instead of concrete
assignments and conditions to specify its transi t ion relations. It can be represented by an
oriented graph, where its edge formulas consist solely of difference constraints. Example of
a D C P obtained from the previous L T S graph can be seen i n Figure 4.2. We w i l l discuss
the abstraction algori thm for transformation of a L T S into a D C P i n the next chapter.
Each edge is labeled by a set of D C s of form [x]' < [y] + c where [•] denotes a max(-,0)

h

h

j < 0 A
i = i A
i> i ' 3 =3

h

i = n A
j' = 0

i < 0

T-2 u i > 0 A

i A

3 ~ 1

TO
[j]' < [o]

[*]' < [*] [T l \ [*]' < W - 1
L7']'<b1 T 3 b '] '<b '] + i

T 2 t J [*]' < M
b l ' < b l - 1

Figure 4.2: Compar ison of the L T S graph and its D C P abstraction obtained from the
previous t a r j a n example.

function. Resource bounds algorithms are mostly based on finding so called numerical
measures (norms): an integer valued expressions over the program state. In this case,

18

elements x and y are norms and the m a x i m u m function restricts their values to the natural
numbers. B u t there are other restrictions for val id D C P s regarding sets of D C s on edges.
Fi rs t , there must not be any edges containing more than one D C wi th the same norm on
the left-hand side. Second, norms that are purely buil t over program parameters at the
left-hand side of D C s are forbidden. For example the D C [n]' < [i] — 1 is forbidden as it has
norm n consisting solely of program parameters at the left-hand side. O n the other hand,
even though norm (i — n) contains the formal parameter n, it is not purely buil t over formal
parameters, thus it can be used as left-hand side. The in tui t ion behind the first restriction
is obvious: we cannot assign mult iple values to one norm on a single edge. The second one
stems from the fact that program parameters are regarded as constants, and thus a l l norms
buil t purely over parameters are constant as well, i.e., it is not possible to assign a new
value to a constant.

4.2 Abstraction Algori thm

The abstraction algori thm used i n Loopus is a two step procedure that converts a program
represented by a L T S to a D C P . The algori thm first converts a program to a so called
guarded D C P over integers and then abstracts the guarded D C P to a D C P over natural
numbers. The first step utilizes the concept of guards to extend the natural numbers domain
of standard D C P s to the non-well founded domain of integers. The notion of guards is
related to transitions and similar to program conditions as they also l imi t the possibil i ty
of t ransi t ion execution. Transitions i n a guarded D C P can only be executed i f values of
al l associated guards are greater than zero. In other words, guards are s imply norms that
must have value greater than zero on execution of transitions that are guarded by them.
For example the norm i would be the only guard of transi t ion n from Figure 4.2 because
of the condit ion i > 0 of the outer while loop.

4.2.1 A b s t r a c t i o n to G u a r d e d D C P

This abstraction process consists of three steps. F i rs t , we heuristically construct the in i
t i a l set of tracked norms, then we abstract transitions, and finally infer guards for each
transit ion.

1. Initial norm selection: The idea is based on so called loop counters, i.e., the vari
ables that are incremented or decremented inside the loop. We search for a l l loop
headers and branching locations on loop paths and extract conditions of form a > b
or a > b that involve loop counter variables. These extracted conditions are then
converted to integer expressions, i.e. norms, in the following manner: conditions of
form a > b are transformed to a — b and conditions a > b are transformed to a — b + 1 .

2. Abstract ing Transitions: A l l transitions in i t ia l ly start w i th an empty set of D C s
which is extended as follows: for each norm e from the set of norms iV and each
transitions r we check i f associated D C set already contains a D C wi th e at the left-
hand side and derive a new D C if not. Note, that we t ry to derive new D C only i f
a l l variables used i n the norm e are defined on the according edge. In order to derive
new D C we symbolical ly execute r and observe how the value of the norm e changes.
So for example, given norm e = (len — i) and r w i th the assignment i = end we would
infer norm (len — end) as well as new D C (len — i)' < (len — end).

19

We t ry to avoid generating new norms as much as possible because every new norm
is added to the set of norms iV and the abstraction cycle has to repeat un t i l the
set stabilizes. For this reason, we first check if it is possible to derive new D C from
tracked norms and generate new ones only i f we fail. For example, given the same
norm as i n the previous example and an assignment i = i + 1, we can use the same
norm to generate D C (len — i)' < (len — i) — 1.

3. Inferring Guards: Each transi t ion in i t ia l ly has an empty set of guards and we
iterate over each norm e from the final set of tracked norms iV and each transi t ion r
to determine if e is a guard of t ransi t ion r . Loopus uses the Z3 S M T solver to prove
that the value of e must be greater than zero i n order to be able to execute transi t ion
r . For example, i f r is guarded by the condit ion len > i, then it can easily prove
validi ty of formula len > i (len — i) > 0 which means norm (len — i) is a guard
of r .

The precision of abstraction can be further improved by means of so called guard prop
agation. If a l l incoming edges of a locat ion I share common subset of guards, then we can
propagate this subset to a l l outgoing edges from locat ion I, provided that none of these
guards are decreased on any of the incoming edges. A n example of a guarded D C P can be
seen in Figure 4.3.

Figure 4.3: A guarded D C P obtained after the first abstraction step. Norms i and j are
guards of the respective transitions T\ and T2.

4.2.2 A b s t r a c t i o n to D C P over N a t u r a l N u m b e r s

The final abstraction step is straightforward. We simply remove the guards and use the
previously introduced max function to ensure the natural number valuation range of a l l
norms. We also have to modify the constant parts of D C s to make sure that they remain
invariant over natural numbers.

Every D C e'x < ei + c w i th norms e\ and ei is transformed based on the value of c

depending on i f ei is a guard or not. For c > Owe infer [ei]' < [ei] + c which is guaranteed
to remain invariant over natural numbers. For negative values of c we first check i f ei is
a guard and infer [ei]' < [ei] — 1 if it is. In other case we infer [ei]' < [e-2\ + 0. The reasoning
is simple: i f e2 is a guard, i.e., e2 > 0 before execution of a transi t ion and c < 0 then

20

[ei]' < [e2\ — 1 remains invariant over natural numbers. However, if e2 is not a guard, then
the inequality [ei]' < [e2\ + c does not hold and is not invariant for [e2\ = 0 and c < 0.

4.3 Bound Algori thm

In this section we first present the basic version of the bound algori thm and subsequently
extend it w i th optimizations and heuristics, eventually obtaining the version used in Loopus.

4.3.1 L o c a l B o u n d s

The notion of local bounds is one of the core concepts underlying the bound calculation.
L o c a l bound is a norm e that l imits the number of executions of some transi t ion r as long
as some other transitions that might increase the value of e are not executed. For example,
i n function tarjan i n Figure 4.3, we can conclude that the norm j l imits the number of
consecutive executions of t ransi t ion T2- I.e., it does not l imi t the total number of iterations
of the inner while loop. Thus, we cal l it a local bound instead of (total) bound as it does
not take into account that the value of norm j might increase on some other transitions.

The a lgori thm that determines the local bound for each transi t ion uses the concept of
strongly connected components (S C C) :

1. F i r s t , we compute S C C for given D C P and eliminate transitions that do not belong
to any S C C , i.e., transitions that are not part of any cycle. Obviously, these can be
executed only once and hence the local bound is equal to 1.

2. We construct the set £(v) of transitions for each norm v that is not purely buil t over
constants or program parameters. We search for transitions that decrease the value
of norm v, i.e., transitions that contain D C of form v < v + c, where c < 0. Then ,
each transi t ion from set £(v) is assigned a local bound of v.

3. The last step is performed only for remaining transitions without assigned local bound.
For each £(v) we t ry to remove one of its transitions from the original D C P graph,
recalculate S C C s and check i f there are some transitions without a local bound that
are no longer part of any S C C . Such transitions are then assigned wi th a local bound
of v and we repeat the process w i t h remaining sets £(v) un t i l a l l transitions have
either local bound or bound assigned.

There is also a possibil i ty that two different sets £(vi) and £(v 2) w i l l share some
transitions that w i l l consequently have more than one possible local bound. In those
cases we can either choose one local bound non-deterministically or perform separate
bound calculat ion for each possible local bound and choose the one that leads to the
min ima l (most precise) overall bound.

4.3.2 T h e Bas i c A l g o r i t h m

In this section we present the basic bound algori thm, where we l imi t ourselves to a syntactic
subclass of D C P s that allows use of standard D C s only on the single in i t i a l t ransi t ion and
use of monotone D C s of form x' < x + c everywhere else. In other words, we allow resets
of norms only on the single in i t i a l t ransi t ion and a l l subsequent updates must be either
increments or decrements.

21

The core idea behind this a lgori thm is to reason how often and by how much might the
local bound of a single transi t ion increase during program execution. Loopus describes the
result as a transition bound (T B) , i.e., the total bound on the number of times a certain
transi t ion might be executed. The tota l execution cost of a program is then equal to the
sum of T B s of a l l its back-edges. The transi t ion bound TB{T) of a transit ion r is defined
as follows,

{ TV, i f Tv £ V

(4.1)
IncrementSum(r ?)) + ResetSum(T„) , else

where TV is the local bound of the transi t ion r. The first case returns the local bound itself
if it is a constant. In the second case, the IncrementSum(r t ,) procedure captures how often
and by how much might the local bound be increased. It is defined as follows:

IncrementSum(r„) = V] TB(t) x c (4.2)
(t ,c)eX(T„)

The I(TV) is a set of transitions which increase the value of local bound TV by the constant c,

i.e., those that contain a D C of form TV < TV + C, where c > 0. The IncrementSum procedure
iterates over a l l these transitions, recursively calls the TB procedure, and multiplies the
computed transi t ion bound by the constant c. The resulting sum gives us the tota l amount
by which might the local bound TV increase or 0 if I(TV) is empty.

However, to get a precise bound we need to incorporate the in i t i a l value of the local
bound TV into the equation. The ResetSum procedure is defined as:

ResetSum(r t)) = m a x (a + c , 0) (4-3)
(t , a , c) £ K (T v)

Similar ly to the IncrementSum, the set TZ(TV) contains transitions t that reset the value of
local bound TV to a w i th constant increment or decrement c, i.e., transitions that contain
a D C of form TV < a + c. Note that i n the basic version the only transitions that can reset
the values of local bounds are the in i t i a l ones. Thus, the TZ(TV) sets might only contain
the in i t i a l t ransi t ion of a program because it is the only transi t ion that can contain non-
monotone D C s . I.e., it can contain up to one max(& + c, 0) element which represents the
in i t i a l value of the local bound TV.

The combination of IncrementSum and ResetSum procedures gives us the final TB{T)

procedure. However, the obtained transi t ion bound is precise only i f we assume that a l l
counter decrements i n the concrete program are by 1 as the D C P abstraction algori thm
without extensions does not model arbi trary decrements. The only th ing left is to apply
this procedure to a l l back-edges of a program to obtain the final worst-case cost.

4.3.3 E x t e n d i n g the P r o c e d u r e w i t h C o n s t a n t Resets

We can improve the basic procedure to support D C P s wi th constant resets. In this case,
we allow resets of local bounds anywhere and not only on the in i t i a l edge. However, the
right-hand side norm of a reset D C has to be purely buil t over symbolic constants (program
parameters), hence constant resets. For example, the norm e2 of [ei]' < [e2} + c reset D C
would have to be purely buil t over program parameters. The bound algori thm for such
D C P s differs only i n the definition of ResetSum procedure which is now defined i n the

22

following way:

ResetSum(r„) = V] TB(t) x max (a + c, 0) (4.4)
(t , a , c) £ W (r v)

A s we can see, the only difference is that we addit ional ly mul t ip ly each reset value by
the bound of the transi t ion t where the reset occurs. The reasoning behind this change
is simple: as constant resets might now happen on any transit ion, we need to take into
account the fact that it might be executed mult iple times. Thus, the total amount by
which the value of local bound TV might increase is also affected by the number of times
the reset happens. Example of such case can be seen in Figure 4.4. In this example we

v o i d f o o (i n t n) {

i n t j = n ;

i n t c n t = 0;
w h i l e (j > 0) {

j — ;

f o r (i n t i = n - 1 ; i > 0; i —)

cnt++;

}

}

Figure 4.4: A D C P wi th the [i]' < [n] — 1 constant reset on the non-ini t ia l t ransi t ion T\.

reset the value of local bound i of the transi t ion n to the value of [n] — 1 in each i teration
of outer loop. Thus, the tota l cost of function f o o is [n] + [n] x max([n] — 1,0) because
we have n back-jumps of the outer loop and n — 1 back-jumps of the inner loop for each
iteration of the outer loop.

UY < N

h

[j]' < [j]
TA [i]' < [n] - 1

\T3 J [j]' < b l " 1

h

r a U [;] '< [7]

4.3.4 E x t e n d i n g the P r o c e d u r e w i t h N o n - C o n s t a n t Resets

We further extend the basic a lgori thm wi th a concept of variable bounds. Variable bounds
are expressions over program parameters that over-approximate the value of non-constant
resets. Th is way, Loopus reduces the problem of reasoning about non-constant resets to
the problem of reasoning about constant resets. For example, i f we had the x = y reset
assignment i n a concrete program, we would transform the variable y into an expression
expr (pa rams) over program parameters. Loopus calls this expression an upper bound in
variant for y because the inequality y < expr (pa rams) has to be invariant. I.e., the
expz(params) bounds the value of y in terms of program parameters. The variable bound
is just a special case of an upper bound invariant which is used in D C P s .

The variable bound concept is used to extend the bound algori thm wi th a procedure
VB which is similar to the TB procedure and is defined as:

fe , i f e £ V
VB(e) = I (4.5)

IncrementSum(e) + max (VB(a.) + c), else
I, (t,a,c)G7£(e)

The VB returns the input norm e itself it it is buil t purely over program parameters, i.e., it
is a constant. The Increment Sum procedure from the second case leads to mutual recursion

23

of procedures TB and VB. The max function picks the m a x i m u m value of a l l possible resets
and adds the to ta l amount by which it might increase.

The TB procedure also needs to be modified by over-approximating the value of a reset
of each element from the ResetSum by the VB procedure:

ResetSum(r„) = ^ TB(t) x max(VB(&) + c, 0) (4.6)
(t,a,c)£K(T„)

This leads to aforementioned mutua l recursion between both procedures. Figure 4.5 presents
such D C P :

v o i d t w o S C C s (i n t n , i n t m l , i n t m2) {
i n t y = n ;

i n t x ;

i f (*)

x = m l ;

e l s e

x = m2;
w h i l e (y > 0) {

y — ;

x = x + 2 ;
}

i n t z = x ;

w h i l e (z > 0)
z — ;

W < [y]
[x\ < [m2]

[y\ < N

[x\ < [ml]

2 ^ [x]' <[x}+2

Tl [z]' < [x]

i t) [z]' < [z] - 1 V T5

Figure 4.5: A D C P wi th the [z]' < [x] non-constant reset on the t ransi t ion T4

The key part of this example is the reset of the norm [z] to the value of norm [x] on
the t ransi t ion T4. Because the norm [x] is not constant, we employ the newly introduced
VB procedure to over-approximate its value by a constant expression. This way we obtain
the variable bound of max([ml], [m2]) + 2 x [n] for the norm [x] which in tu rn becomes the
transi t ion bound for transi t ion T5. Arguments for the max function are determined by the
two possible resets of [x] to norm [ml] or [m2] and the increment of 2 x [n] is caused by the
n iterations of the first while loop. The full computat ion process is described i n Table 4.1.

Even though this version of bound algori thm can solve D C P s wi th non-constant resets,
it s t i l l has many shortcomings. Mos t notable one is the fact that it is flow-insensitive and
consequently path-insensitive which leads to a coarse over-approximations even i n simple
cases.

4.3.5 I m p r o v i n g the B o u n d s w i t h Reset C h a i n s

The introduced a lgor i thm can be opt imized by several techniques that improve the inferred
resource bounds. F i r s t , we w i l l improve the bounds wi th the notion of reset chains. The
basic a lgori thm was based on the assumption that resets to the values over-approximated by
the VB{T) procedure are val id i n a l l iterations of a loop and it d id not consider the possibil i ty
that some reset values are reachable through program paths which can be executed only
once.

24

VB([x])

TB(T3)

IncrQz]) + TB(TA) X max(ViB([s]) + 0, 0)

0 + 1 x max(2 x [n] + m a x Q m l] , [m2]) + 0, 0)

2 x [n] + m a x ([m l] , [m2])

Inc rQz]) + m a x (V i B ([m l]) + 0, VB([m2]) + 0)

2 x [n] + m a x ([m l] , [m2])

IncrQx]) -) • T £ (T 3) x 2 = [n] x 2

-)• Incr([y]) +TB(T0) X m a x (V £ ([n]) + 0,0)

4 0 + l x [n] = [n]

Table 4.1: Computa t ion of the transi t ion bound for the T5 t ransi t ion from the twoSCCs 4.5
example. Note that Z([z]) = X([y]) = 0 , and consequently IncrQz]) = IncrQy]) = 0.

Reset chains allow reasoning about sequences of resets which might occur during exe
cution and introduces a program path context for each reset. Loopus uses so called reset
chain graphs which allow for systematical reasoning about the context of each reset and
consequently provide an easy way how to find a l l the possible reset chains. Figure 4.6
presents a D C P (a) wi th the corresponding reset graph (b):

r\ < [r]
n [p]' < [p] - 1

(a) A D C P requiring reset chain reasoning in order
to obtain the precise linear complexity of In.

T-2

[P]

(b) Corresponding reset chain graph with

two reset chains: K\
1 r o > ° .

[0]
T2,0

T 4 ,0 J r i T2> u r i

-> [r] • [p]
and « 2 = [n] '"'"'> [r] T 2 ' u> [p]. Reset chain
« 2 is valid only in the first iteration of the
loop l\ due to the TQ transition.

Figure 4.6

The semantics of this oriented reset graph are simple: each labeled edge corresponds to
a t ransi t ion of a D C P wi th the same label where the reset [x]' < [y] + c occurs. For example,
the edge from node [0] to node [r] represents a reset [r]' < [0] which occurs on the transi t ion
T4 in the original D C P . We can also intui t ively find a l l the maximal reset chains ending
in [p] by looking at the graph: K\ = [0] — [r] —^> [p] and K2 = [n] - ^ A [r] [p].

25

These two reset chains allow Loopus to infer the linear bound n instead of n 2 for the loop
Ž3. The basic idea is to use a set of reset chains instead of a set of simple resets i n the
TB procedure and then, in case of our example, apply following reasoning: [p] is the local
bound for T3 which is reset on T2. If we execute T2 under context of TO, [p] gets reset to
the value of [n]. However, T2 can be executed under context of To only once because To is
the in i t i a l t ransit ion. Thus, the reset chain K2 is val id only for the first i teration of the
outer loop l\, which means [p] can be reset to [n] through [r] only once, leading to the
aforementioned linear bound of n for the loop I3. The reset chain n\ is, unlike K2, val id
in a l l of the iterations of l\ as the transi t ion T4 is part of the loop. However, it does not
increase the tota l number of iterations of I3 because it resets [p] to [0] through [r]. Please
refer to [12] for details on the modified bound algori thm incorporat ing reset chains.

4.3.6 I m p r o v i n g the B o u n d s w i t h F l o w - S e n s i t i v i t y

The basic a lgor i thm is flow-insensitive which can lead to coarse over-approximations such
as the one i n Figure 4.7a. Here, we infer bound 2n for the transi t ion T\ because the in i t i a l
value n of the local bound [z] increases by one in each of n iterations of the loop h- However,
this bound is imprecise because the increments to [z] at the location I2 can never flow back
to the locat ion l\ and thus cannot affect the local bound of T\. The correct bound for n is
just n.

h

[z]' < [n
M < [n

[z]' <[z]-l
[y]' < [y]

TO

Tl

[Z]' < [Z]

IvY < [y]

[z]'<[z] + l ^ .
[vY < [y] -1 T 3 2

(a) Flow-insensitive D C P

0
z, h

z, h

U

0
y,h

U

h

(b) Variable Flow Graph

[ziY < [n]
[yiY < [n]

[ziY < [zi] - 1
[yiY < [yi\

TO

Tl

[Z2Y < [Zl]

[»]' < [yi]

M < [y2] -1 ^- 1 2

T3 (c) Flow-sensitive D C P

Figure 4.7: D C P s constructed by the abstraction algori thm from Section 4.2 are flow-
insensitive by default. We construct a variable flow graph and rename the program variables
to obtain a flow-sensitive D C P .

Loopus can support flow-sensitivity by a pre-processing which renames the norms of
a D C P based on a variable flow graph (V F G) . A s the name suggests, a V F G shows how
the values of program variables (not symbolic constants) flow from one locat ion to another.
Figure 4.7b shows the V F G obtained from the D C P i n Figure 4.7a. The basic idea is that
we find a l l the S C C s i n a V F G and then choose a fresh art if icial variable v for each S C C
£ which we assign to a l l program variables at program locations that are part of After
that, we just rename the original left-hand side variables of D C s to v on a l l edges that are
incoming to some locat ion included i n £ and also rename a l l r ight-hand side variables of D C s
to v on a l l outgoing edges from some location i n £. For example, the V F G on Figure 4.7b
contains four S C C s : Ci = {(z,h)}, C2 = {(z,h)}, (3 = {(y,h)} and C4 = {(y,h)}- We

26

thus create four fresh variables and assign them to original program variables at certain
locations: (z, l\) = z\, (z, h) = Z2, (y, h) = y\ and (y, h) = y2- The only thing left to do is
to rename the original variables in the flow-insensitive D C P based on those assignments and
renaming rules which leads us to the flow-sensitive D C P in Figure 4.7c. For more details
please refer to [12].

27

Chapter 5

Implementation

In this chapter we describe the implementat ion of Looper - the new performance oriented
analyzer for Infer based on the original Loopus tool . Due to the scope of this work, we l i m
ited ourselves to the core abstraction and bound algorithms without addi t ional extensions
presented i n [12]. However, even without the extensions, our analyzer is able to handle
some challenging code examples as we w i l l show in our experimental evaluation. There are
three main parts of the implementat ion which we w i l l discuss i n detail in separate sections:
conversion of the native Infer C F G to the L T S representation, abstraction algori thm for
transformation of a L T S to a D C P , and the bound algori thm itself.

5.1 Construction of Labeled Transition System

The first implementat ion task was to devise an algori thm for construction of the labeled
transition system representation. The native control flow graph used by Infer is overly
complex due to its low-level nature as it builds upon the Smallfoot Intermediate Language.
Thus, it contains a l l the details regarding the manipulat ion wi th internal temporary vari
ables by Load and S t o r e instructions as well as the details about their lifetime. However,
Loopus works wi th a much higher-level of representation. Moreover, the abstraction algo
r i thm discussed in Section 4.2 transforms a L T S to a D C P . Figure 5.1 shows an example of
the native C F G generated by Infer.

We leverage the A I framework and construct a L T S after the symbolic execution of the
program. D u r i n g the symbolic execution we also gather addi t ional information which is
needed i n the abstraction process, e.g., the in i t i a l set of norms. We use the abstract state
defined by the domain to store a l l the necessary data, then construct the L T S and perform
the bound analysis after we receive the post-condition state from the abstract interpreter.

5.1.1 S t r u c t u r e C o n s t r u c t i o n

The first construction task was to implement the transfer functions and the jo in operator
in such a way that we would obtain a set of nodes and a set of edges at the end of the inter
pretation. The construction of a graph from those two sets is handled by the OCamlgraph
l ibrary which also implements many useful graph algorithms such as the computat ion of
S C C s . However, i n order to use the parametric Graph l ibrary module, we had to provide
an implementat ion for the signature node and edge data modules.

Firs t , we introduce the necessary Node module used for unique identification of each
relevant program point i n a L T S graph. It has the following inner variant type:

28

S t a r t t a r j a n

I
VARIABLE_DECLARED(i:unsigned i n t) ;

n$7=*&n:unsigned i n t
*&i:unsigned int=n$7

NULLIFY(&n);
EXIT_SC0PE(n$7,n);

1
VARIABLE_DECLARED(j:unsigned i n t) ;

*&j:unsigned int=(unsigned int)Q
APPLY_ABSTRACTION;

PRUNE(!(n$0 > (unsigned i n t
NULLIFY(&i
NULLIFY(&]

EXIT_SCOPE(n$0,l,])
APPLY_ABSTRACTION;

E x i t t a r j a n
n$5=*&i:unsigned i n t

*&i:unsigned int=(n$5 -
EXIT_SC0PE(n$5);

n$4=*&j:unsigned i n t
&j:unsigned int=(n$4 + 1)

EXIT_SC0PE(n$4);
APPLY ABSTRACTION;

&j:unsigned i n t

PRUNE((n$l > (unsigned i n t) 0)
EXIT_SCOPE(n$l);

PRUNE(!(n$l > (unsigned i n t) 0)
EXIT_SCOPE(n$l);

APPLY ABSTRACTION;

f a l s e)

n$2=*&j:unsigned i n t
*&j:unsigned int=(n$2 - 1)

EXIT_SC0PE(n$2);
APPLY ABSTRACTION;

Figure 5.1: Nat ive Con t ro l F l o w G r a p h generated by Infer from the tarjan (4.1) example.

type t = | Start of Locat ion. t
I Prune of (S i l . i f _ k i n d * Locat ion. t)
I Join of (t * t)
I Exi t

This type basically extends the Location module provided by Infer which is used to repre
sent physical (file, line and column) code locations only. However, i n a L T S , we also need
to be able to represent abstract jo in and exit locations that do not have a counterpart in
the code. We thus use the Node module to model both physical and abstract locations.
The Prune (naming adopted by Infer) case models control flow splits that occur for exam
ple w i th loops or condit ional statements and is defined by the specific prune type (while
loop, for loop, switch, etc.) and a program location. The Start case is an entry point of
a procedure defined by the locat ion of its header. The Join case represents an abstract
location uniquely specified by the last visi ted locations of the two joined branches as Infer
supports only binary jo in operator. The final Exi t case represents an abstract exit point
of a procedure which does not need to be uniquely specified by any addi t ional data as we
only have a single L T S exit node per procedure.

29

Next we introduce the EdgeData module which implements various methods used during
the abstraction process and stores necessary data for both the L T S and D C P graphs. The
inner record data type is defined as:

type t = {
backedge: bool;
conditions: Exp.Set . t ;
assignments: Exp.t PvarMap.t;

}

We expl ic i t ly store the information if the edge is a back-edge in the backedge boolean field
so we can easily detect it dur ing the interpretation process i f we encounter a prune location
and the last known locat ion stored in the abstract state is the same or w i th a higher line
number. The conditions field stores a l l the condit ional expressions from the Prune S IL
instructions, e.g., i f we have a loop header w i th a i > 0 terminat ion condit ion, we add
it to the expression set on the true edge and then add the negated i < 0 expression to
the set on the false edge. This information is necessary for the derivation of guards. The
assignments map stores a l l the assignment expressions that occur between two program
points connected by an edge. We use the existing Pvar (program variable) module as the
key type of the map for easier look-ups when we need to check if a variable is modified on
an edge and the existing Exp (expression) module as the type for the associated values. We
use these assignment expressions during the abstraction process to check how the value of
our in i t i a l norms changes in order to derive new ones along w i t h the creation of the set of
D C s for each transit ion.

W i t h both the Node and EdgeData modules covered, we can now introduce some of the
fields from the abstract state record:

type t = {
last_node: DCP.Node.t;
edge_data: DCP.EdgeData.t;
graph_nodes: DCP.NodeSet.t;
graph_edges: DCP.EdgeSet.t;

}

The last_node field stores a Node instance corresponding to the last visi ted program lo
cation. Once we need to create a new node, we s imply add the (last_node, edge_data,
new_node) tuple to the graph_edges set and replace the value stored in the last_node
field w i th the new_node instance. E a c h new node is also added to the graph_nodes set and
every t ime we add a new tuple to the graph_edges set we also create a new empty instance
of the EdgeData module and store it i n the edge_data field. In other words, we create a
new edge that connects two subsequently visi ted program locations (nodes) and repeat this
process un t i l we obtain complete sets of nodes and edges.

However, this basic approach leads to a L T S w i t h some unwanted nodes and edges
due to the way abstract interpretation works and due to specifics of Infer implementation.
These unwanted graph elements could break the bound analysis and we thus improved the
basic concept i n order to obtain a simplified graph which would resemble the L T S presented
i n [12] as close as possible. Figure 5.2 shows the structural comparison between the in i t i a l
and final L T S graphs obtained from the previously featured t ar j an (4.1) example.

30

(a) Initial LTS
(b) Final LTS

Figure 5.2: St ructura l comparison between the in i t i a l and final L T S graphs obtained from
the tar jan 4.1 example.

A s we can see, the in i t i a l version has two addi t ional jo in nodes and consequently four
more edges which is caused by the fact that the basic approach exactly follows the inter
pretation process. For example, when the interpreter reaches the end of the inner while
loop, it has to perform a jo in between the abstract state inside the loop and the state right
before the header of the inner loop which has the header of the outer loop stored as the last
known location. Thus, we create a new jo in node and two new edges from the last known
locations of both abstract states point ing to i t . The interpreter then needs to analyze the
inner loop again wi th the joined state to check if we have reached a fixpoint and executes
the header Prune instruction again. A s that happens, we create a new back-edge from the
last known jo in node to the inner loop node.

The first issue wi th direct back-edges such as the one at the inner loop is solved as
follows: we store the locations of both abstract states on a jo in and check if one of them
matches the locat ion of the next encountered Prune after the jo in . If it does, we delete the
jo in node along wi th the edge from the outer scope and redirect the correct edge to create
a loop-back as seen i n the final L T S i n Figure 5.2b.

The second issue is the jo in node between the false branch of the inner loop and the
abstract state from right before the the first prune which basically joins the final state
from the end of the outer loop body wi th the outside scope. Our goal is thus to ignore a l l
the edges from outer scopes which is a generalization of the first issue. However, unlike
wi th the first issue we cannot easily detect which edge is from the outer scope because
the locations do not match, i.e., we do not have a loop-back to the same location. To
solve this, we introduce a new concept of branching path which is a stack of the following
tuples: (S i l . i f _ k i n d * bool * Locat ion . t) . The S i l . i f _ k i n d element describes the
type of prune, i.e., the specific k ind of loop or condit ional statement. The boolean value
tells us if it is the true or false branch and the last element is the location of a prune.
We use the branching_path field in the abstract state record to store the current path
for each abstract state and whenever we encounter a Prune instruction we push a newly

31

constructed tuple to the top of the stack. Th i s way we can track our current nesting level
along wi th the information about each scope and also uniquely identify each branch of the
program. We leverage this to detect edges from the outer scopes as follows: we compute
a common prefix of both paths on a jo in and i f this prefix exactly matches the path from
one of the states, we ignore the edge coming from it as it must be the outer scope state.
We can demonstrate this method on our t ar jan example w i t h two paths: 7Ti = [] and
7T2 = [(while, true, 51 : 9), (while, false, 54 : 10)]. The common prefix is obviously vr = []
and it exactly matches the first pa th TTI. Thus, the state wi th this path must be the outer
scope state and we can ignore the edge. However, we s t i l l have the jo in node wi th one
incoming edge, so on the next visit of the loop header we detect a jo in node wi th a single
incoming edge which we redirect to the loop header and delete the useless jo in node.

These two adjustments lead to a val id but s t i l l more complex L T S i n most cases. We can
further reduce the amount of nodes and edges and consequently simplify our graphs without
any alterations to the original semantics. We w i l l demonstrate some of these techniques
on Figure 5.3. We can remove the useless Join 1 node that merges both branches of the

void xnu(int len) {
int beg, end, i = 0;
whi le (i < len) {

i++;
i f (*)

end = i ;
i f (*) {

int k = beg;
while (k < end)

k++;
end = i ;
beg = end;

} else i f (*) {
end = i ;
beg = end;

}

}

}

(a) Example xnu from [12]

(b) Initial LTS obtained from xnu 5.3a example

Figure 5.3

first i f statement together. Every t ime we encounter the Prune instruct ion we check the
last_node field of the abstract state. If it is a Jo in(lhs , rhs), where the lhs and rhs
nodes match and the edge_data field of the abstract state is currently empty, we delete
the node and redirect incoming edges of both branches to the current Prune node.

The graph can be further simplified by merging the consecutive Join 2, Join 4,

32

. . . , , , -^Backedge while [35:11] J)

and Join 5 nodes together to create one N-a ry jo in
node. We first detect if a jo in is consecutive. The naive
approach is to check i f the last_node field of one of
the joined states is already a jo in node and declare the
current jo in as consecutive if it is. If this happens, we
do not create a new jo in node and instead store the
previous one i n the last_node field of the new joined
state. We also create a new edge from the last node of
the other state and add it to the incoming_edges set
field i n the joined abstract state. In reality, on every
jo in we always first store a l l of the new edges i n the
incoming_edges set. T h i s way we can easily redirect
new edges i f need be when we encounter a next Prune
instruction and then move them to the graph_edges set
after that. The simplification process i n this case might
look like this: we first perform the jo in of both branches
of the i f [41:7] statement, create the Join 2 node, and
add two new edges in the incoming_edges set. Next we
perform the jo in which would normal ly create the Join
4 node and identify it as consecutive. We thus create
a new edge from the while [35:11] node and add it to

the incoming_edges set instead. T h e n we perform the second and last consecutive jo in
represented by the Join 5 node. However, i n this case we do not create a new edge as it
would be an edge from an outer scope. F ina l ly , we execute the Prune instruct ion at the
while [28:8] location, create a new back-edge, and move a l l of the edges stored i n the
incoming_edges set to the graph_edges set. The final L T S obtained wi th this approach
can be seen i n Figure 5.4.

However, the naive approach to the detection of consecutive joins can fail in some cases
such as the one in Figure 5.5. The reason why it fails in this case is the fact that we have

Figure 5.4: F i n a l L T S

void foo(int n, int m)
{

int x;
i f (*)

x = 0;
else

x = m;
int y = x + n;
while(y > 0) {

y—;
}

}

Begin [78:1] Begin [78:1]

if [80:5] if [81):5]

iTrueFalse L (:alsc

Join 1 Join 1

u i ro= oi —^Backedge while [85:8] . [n r

s

(a) Example f oo (b) Initial LTS

Figure 5.5

(c) Final LTS

33

a jo in node right before the first while loop. Thus, when we jo in the loop branch wi th
the outer scope branch which has a jo in node stored i n the last_node field, we detect
a consecutive jo in even though we do not consider it as one. This would lead to a L T S
wi th semantics different from the original program and i n order to fix this, we leverage
the previously introduced branching_path field i n a s imilar way once again. We compute
a common prefix of both paths and check i f it matches the path from the state wi th a jo in
node. If it does, we do not consider it as a consecutive jo in because the jo in node must have
been from an outer scope. For example, the Join 2 node joins branches w i t h following
paths: 7Ti = [] and 7T2 = [(while, true, 85 : 8)] w i th the common prefix TT = [] which
matches the 7Ti path of the outer scope state. We thus consider it as a normal jo in and
create the Join 2 node which is subsequently deleted because it has only one incoming edge
from the while [85:8] node (outer edge is ignored). The single edge is then redirected and
we get a direct back-edge in the final graph seen in Figure 5.5c.

We have now covered the basic principle behind our construction algori thm. It is neither
perfect nor final but it is not even meant to be as we are gradually improving it every t ime we
encounter a new problem wi th the construction. We also d id not cover some implementat ion
details or minor hacks that were necessary due to some Infer specific alterations of the basic
interpretation algori thm. It would be useless considering the rapid development of Infer
which frequently renders some of our solutions obsolete or, better yet, unnecessary due to
some core changes.

5.1.2 C o n s t r u c t i o n of E d g e F o r m u l a s

Apar t from the structure, we s t i l l need to construct assignment and condit ional formulas
for each graph edge to get a complete L T S such as the one in Figure 5.2b. T h e process
is quite straightforward and involves implementation of transfer functions for S IL Load
and Store instructions. Infer always first loads a l l the addressable values into temporary
identifiers represented by the Ident module wi th the Load instruct ion and then uses the
Store instruction to store a new value into a program variable. The stored value is given by
an expression buil t over those temporary identifiers. Constant values can be stored directly
without previous Load instructions.

However, L T S edges are labeled by simple assignment or condit ional expressions buil t
purely over program variables and not temporary identifiers. We thus use the ident_map
field in our abstract state to store the ident —>• pvar mapping, i.e., the field is just a map
wi th Ident instances as keys and Pvar instances as values. The Load instruct ion is im
plemented in a simple way: we create a new i d —>• pvar association and add it to the
ident_map field i f the loaded value is just a program variable. However, Infer might load
one temporary identifier into another i n some cases such as when it encounters a pointer
dereference, i.e., we get a load assignment i d 2 = i d i which we cannot store in the map. To
fix this, we find the existing i d i —> pvar association in the map and add a new transitive
i d 2 —> pvar association based on the complete i d 2 —> i d i pvar load chain to i t .

Our implementat ion of the Store instruct ion then uses the ident_map field to substitute
al l identifiers w i th program variables i n the right hand side expression of the pvar = expr
store assignment. We use a simple recursive function that traverses the expression tree
and performs the substi tut ion whenever it encounters an identifier. Then we traverse the
updated expression once again and check i f there already is an assignment stored i n the
edge_data field for each pvar. If there is, we substitute it w i t h the right hand side of the
stored assignment, e.g., if we had x = z + 1 and then y = x, we would get y = z + 1. Th is

34

step is not necessary but Loopus performs it to simplify the subsequent abstraction process.
Then we take the final expression and store it in the edge_data field i n our abstract state.

Simi lar ly to Store, we also substitute a l l identifiers in condit ional expressions of each
Prune instruct ion to get conditions buil t purely over program variables. T h e n we simplify
the false branch condit ion because Infer wraps the true branch condit ion w i t h the unary
logical not operator, i.e., we transform expressions such as —>(x > 0) to simpler x < 0
normalized form which saves us some pattern matching later on. A t the end, we store the
result in the edge_data field.

Apar t from that, we also need to generate missing constant assignments such as i ' =
i on each Prune for a l l local function variables that were not modified on the current
edge and are defined at its target program location. However, there is a slight problem
wi th local variables because Infer in its current state exposes only the list of a l l local
variables used throughout a function without the information about their scope. This might
decrease the precision of the bound algori thm as we get more constant assignments and
consequently derive more norms during the abstraction process. Fortunately, we are able to
detect variable declarations during the interpretation wi th the Var iab leLi f etimeBegins
metadata SIL instruct ion or even through the Store instruct ion i f it is part of a C F G node
wi th the DeclStmt (Declaration Statement) type. However, even this approach has a flaw
as it works only i f the declared variable is also ini t ia l ized at the same time, otherwise Infer
neither generates the Var iab leLi f etimeBegins instruct ion nor sets the type of the node
as DeclStmt. We opted for this approach in spite of that because it currently is the only
possible way how to reduce the precision loss w i t h a smal l trade-off.

The complete generation process is quite simple. F i rs t we determine active local vari
ables for each relevant program location, then we keep track of a l l variables that were
modified on the current edge and finally we add new pvar —> pvar association to the
assignments map in the edge_data field for each unmodified variable which we obtain
through loca ls \ edge_modif ied set difference. The loca ls set of Pvar elements is stored
in our abstract state and we add a new Pvar every t ime we detect a declaration. The jo in
is defined as the l o c a l s a n l o c a l s b set intersection which models variables going out of
scope. Similarly, the edge_modif ied set keeps track of a l l the local variables that were
modified on the current edge by Store instructions and we empty the set on each join .

These generated constant assignments are abstracted to constant D C s which are neces
sary for the correct functionality of the bound algori thm. For example, the flow-sensitivity
transformation would not work properly without constant D C s which create the flow of
variable values from one locat ion to another. We should now have complete edge formulas
including both conditions and assignments on each edge of a L T S and wi th that we can
conclude our construction discussion.

5.1.3 Ini t ia l Set of N o r m s

The collection process of in i t i a l norms is discussed under the construction section even
though it technically falls under the abstraction algori thm because we are collecting the
norms during the interpretation as we construct a L T S graph. The basic norm deriva
t ion concept described i n Section 4.2.1 is followed by our implementation: we parse each
BinOp (op, lhs , rhs) b inary expression condit ion represented by the Exp module and then
rearrange it based on the specific op operator to obtain a new norm wi th the same Exp type.

However, the selection of relevant conditions to derive norms from is based purely on
heuristics introduced i n [12]: we look for conditions of form x > y or x > y found in

35

loop headers or condit ional statements inside the loop if they involve variables increment
ed/decremented on any loop path. The solution for loop header conditions is straightfor
ward because we know that their values and consequently the values of involved variables
must change if the loop terminates. Thus, we only need to derive a new norm and then
immediately save it in the init ial_norms set of Exp expressions i n our abstract state.

The si tuation w i t h condit ional statements on loop paths is more complicated. F i rs t we
need to track a l l variables that were modified i n a loop s imilar ly to variables modified on
a single edge. We add a new Pvar to the loop_modif ied field i n our abstract state every
t ime we modify a variable inside a loop and we use the stored branching path to check
if the current state is indeed in a loop. We also check the common prefix of branching
paths on each jo in and empty the set i f we detect that we are no longer in any loop
after the jo in . Otherwise we union both sets. F ina l ly , we add a new norm derived from
each non-loop Prune to the auxi l iary potential_norms set i n our abstract state if we are
currently in a loop and the variables consti tut ing the derived norm are not present i n the
loop_modif ied set. The potential_norms set basically contains norms that first have to
be confirmed by Store increment or decrement in the current loop. Potent ia l norms are
moved to the ini t ia l_norms set upon confirmation.

5.2 Implementation of the Abstraction Algori thm

Our implementat ion conceptually follows the abstraction algori thm as presented i n Sec
t ion 4.2. However, there are differences between the concept and the implementat ion and
the mere concept does not cover the derivation of D C s in much detai l . Th is chapter covers
the implementat ion of each abstraction step described i n Section 4.2.

5.2.1 A b s t r a c t i o n of Trans i t i ons

We have decided to implement the main abstraction loop in the imperative paradigm be
cause it proved to be much easier to write and the final a lgori thm is more concise and
readable than it would have been in the functional style. The basic idea which we have
buil t upon is to iterate over a l l graph edges repeatedly, t ry ing to construct new D C s and
consequently derive new norms un t i l the set of a l l norms becomes stable. A l g o r i t h m 1
presents a pseudocode of the main abstraction loop.

A l g o r i t h m 1: Abs t rac t ion loop for inference of norms and derivation of D C s .
Input : In i t ia l set of norms InitialNorms and a set of LTS edges wi th assignments
Output: A final set of norms and a set of edges wi th derived difference constraints

1 Unprocessed = Ini t ia lNorms:
2 Processed = 0 ;

3 while Unprocessed ^ 0 do
N o r m = Unprocessed.pop():
Processed.insert(Norm):
foreach Edge € LTS do

N e w N o r m = Edge.deriveConstraint (Norm):
if NewNorm ^ Processed then

Unprocessed.insert (NewNorm);

36

We start w i th the Unprocessed set of in i t i a l norms and empty Processed set which
w i l l contain a l l norms at the end. We basically pick a random norm from the Unprocessed
set in each i teration and then move it to the Processed set. Then we iterate over a l l edges
of a L T S and t ry to construct a new D C for each edge based on the previously selected
norm. However, this might lead to derivation of a norm which needs to be added to the
Unprocessed set i f it is new i n which case we have to repeat the whole process w i t h the
new norm un t i l the Unprocessed set gets empty.

The entire derivation algori thm is implemented by the derive_constraint function of
our EdgeData module. It creates a new D C for an edge based on the input variable norm
and also forms a new norm if it is not possible to construct a new D C only by reusing the
input one. We symbolical ly execute assignments stored in the assignments field of the
current edge and observe how the value of the input norm changes i n order to construct
new D C . The whole process is t r iv i a l for Pvar norms: first we check if there even is an
assignment for the Pvar and immediately return i f not, otherwise we further check i f the
assignment is constant in which case we just construct a constant D C and return. We
currently support only few but common forms of non-constant assignments for Pvar norms:

1. x' = y or x = c: construct x' < y/c D C and derive variable y or constant c norm.

2. x' = x ± c: construct x' < x ± c D C and do not derive any new norm.

3. x' = y ± c: construct x' < y ± c D C and derive variable y norm.

We also currently support norms of form x — y w i th considerably more complicated process
ing. F i r s t we have to check if bo th involved variables are defined at the destination location,
i.e., they are assigned at the current edge. Note that formal parameters are defined at a l l
program locations and have imaginary constant assignments on each edge as a consequence.
Aga in , the function immediately returns i f one of the variables is not defined, otherwise it
checks for constant assignments and constructs a constant D C if none of them is modified.
Now there are three remaining options:

1. Variable x is modified:

• x' = x ± c: the value of x — y norm increases/decreases, do not derive any new
norm and construct (x — y)' < (x — y) ± c D C .

• x' = y: the value of x — y norm is set to 0, derive constant norm 0 and construct
(x - y)' < 0 D C .

• x' = z: derive new norm z and construct (x — y)' < (z — y) D C .

2. Variable y is modified:

• y' = V + c : t n e overall value of x — y norm decreases (interval shrinks), do not
derive any new norm and construct (x — y)' < (x — y) — c D C .

• y' = y ~ c : t n e overall value of x — y norm increases (interval expands), do not
derive any new norm and construct {x — y)' < (x — y) + c D C .

The remaining possibilities are symmetric to the previous option.

3. B o t h variables are modified:

37

• x' = z A y' = z: the value of x — y norm is set to 0, derive constant norm 0 and
construct (x — y)' < 0 D C .

We focused on the most frequent types of norm expressions as wr i t ing processing code for
al l of the possibilities at once would be unfeasible in the scope of this work but we p lan to
gradually extend it i n the future.

5.2.2 G u a r d Inference A l g o r i t h m

The next step is to infer guards for each transit ion, i.e., determine which norms from the
final set of norms are guaranteed to have positive value upon execution of a transit ion. We
employ the Z3 S M T solver to prove that a norm is also a guard on a transi t ion based on the
Prune conditions obtained during the L T S construction. We process each graph edge wi th
the derive_guards function of the EdgeData module. The main purpose of this function
is to parse and transform native expressions from the Exp module format to the Z3 .Expr
module format used by the Z3 solver. It transforms a l l of the conditions on the input edge
and constructs following Z3 formula for each norm: ^(conditions norm > 0), where
conditions denotes logical conjunction of a l l transformed edge conditions. B y checking
the satisfiability of such formula, we are able to prove that a norm is also a guard i f it
is unsatisfiable as it means that formula conditions norm > 0 is valid. A l l proved
guards are stored i n the guards field of the EdgeData module.

A l g o r i t h m 2: G u a r d inference algori thm
Input : Set of norms NormSet and a set of LTS edges wi th conditions
Output: A set of D C P edges wi th guards and difference constraints
foreach Edge G LTS do

Condi t ionsZ3 = TransformZ3(Edge.conditions):
foreach Norm G NormSet do

N o r m Z 3 = TransformZ3(Norm):
Formula = ^(Conditions Z3 NormZ3 > 0):
if ZS.Check(Formula) = UNSATISFIABLE then

Edge.guards.insert(Norm):

5.2.3 G u a r d P r o p a g a t i o n A l g o r i t h m

The algori thm for propagation of guards as presented in Section 4.2.1 has one major flaw.
It does not propagate guards to false branches at loop headers correctly because the loop
back-edge is also an incoming edge and the basic recursive a lgori thm does not priorit ize
the propagation through loop body before it processes the false branch. It is necessary to
first propagate guards through the loop body, recalculate the set of shared guards from a l l
incoming edges including the back-edge, and finally propagate guards to the false branch.
The modified version is presented in A l g o r i t h m 3.

Firs t , we iterate over a l l D C P edges and construct a set of nodes which have at least
one guarded incoming edge. This set is passed to the PropagateGuards recursive function
which implements the propagation algori thm. The auxi l iary GetSharedGuards function
constructs a set of non-decreased guards shared among a l l incoming edges excluding back-
edges. Similar ly, the activeGuards method of the EdgeData module returns only non-

38

decreased guards of an edge. The p a r t i t i o n method separates the set of outgoing edges
into a true and false edges based on the stored tuple from the top of the branching_path
stack. Reca l l that the tuple contains a boolean value which specifies the type of branch.

A l g o r i t h m 3: Modif ied guard propagation algori thm which prioritises propagation
through true branches at loop headers

Input : In i t ia l set of guarded D C P nodes GuardedNodes
Output: A D C P w i th propagated guards
Function PropagateGuards (GuardedNodes):

if GuardedNodes / 0 then
Node = GuardedNodes.pop():
OutgoingEdges = Node.outgoingEdges:
Guards = GetSharedGuards (Node.incomingEdges):
if Node is LOOP_HEADER then

TrueEdge, FalseEdge = OutgoingEdges.part i t ion():
TrueEdge.guards.add(Guards):
if -^TrueEdge.backedge then

PropagateGuards (GuardedNodes U TrueEdge.dstNode):
Backedge = Node.incomingEdges.findBackedge():

else
Backedge = TrueEdge:

Guards = Guards n Backedge.activeGuards():
OutgoingEdges.remove(TrueEdge):

if Guards ^ 0 then
foreach Edge G OutgoingEdges do

Edge.guards .add(Guards):
if ^Edge.backedge then

GuardedNodes.add(Edge.dstNode):

return PropagateGuards (GuardedNodes):

else return:

5.3 Implementation of the Bound Algori thm

The implementat ion of the bound algori thm relatively closely resembles the formulas pre
sented i n Section 4.3 due to the functional paradigm of the OCaval language. Th is chapter
covers some of the more technical but nevertheless important details which were not men
tioned i n the previous chapters focusing on the approach used in Loopus. For example, one
such detai l is caching of results which might seem irrelevant but is in fact crucial i f we want
to preserve the polynomia l t ime complexity of the bound algori thm.

A l g o r i t h m 4 presents the main bound computat ion loop. We iterate over a l l D C P edges
and compute a bound for each back-edge wi th the TransitionBound procedure which also
returns updated cache. If the bound computat ion does not terminate due to cyclic mutual
recursion, we break the main loop and return the oo bound. This occurs i f the input

39

A l g o r i t h m 4: M a i n loop of the bound algori thm
Input : DCP over natural numbers without guards
Output: A sum of a l l back-edge cost bounds reflecting the worst-case asymptotic

complexity of a function
1 Cache = EmptyCache() :
2 B o u n d S u m = 0:
3 foreach Edge G DCP do
4 if Edge.backedge then
5 EdgeBound , Cache = TransitionBouncKE 'dge, Cache):
6 if EdgeBound = oo then
7 B o u n d S u m = oo:

8 break:

B o u n d S u m = B o u n d S u m + EdgeBound:

program does not terminate or i f the precise bound is not polynomial . Otherwise we add
the edge bound to the final sum and simplify the expression i n the process.

We use a custom Bound module which extends the Exp module provided by Infer to
represent bound expressions. The inner recursive variant type is defined as follows:

type t = | BinOp of Binop.t * t * t
Value of Exp.t
Max of t l i s t
Min of t l i s t
Inf

The first BinOp case allows us to model complex bound expressions wi th binary operators.
The Value case represents ind iv idua l terms, i.e., constants or formal parameters. The
Max and Min cases model the max and min functions respectively and the Max case covers
both the max(x, 0) and max(x,...) variants determined based on the size of the t l i s t
argument list. The min function is used i n a modified bound algori thm which leverages
reset chains introduced in Section 4.3.5. The last Inf case models previously discussed oc
bound.

The previously mentioned caching mainly concerns the results of the TransitionBound
and VariableBound procedures. However, we also cache constructed I(TV) and 1Z(TV) sets
and reset chains to avoid repeated computations. We use the following record data type to
store the results:

type cache = {
updates: (Increments.t * Resets.t) Exp.Map.t;
variable_bounds: Bound.t Exp.Map.t;
reset_chains: RG.Chain.Set . t Exp.Map.t;

}

The updates field is a map which associates local bound norms rv to the X{rv) and 1Z(TV)

sets represented by the Increments and Resets modules. The Increments set contains
following tuples: (DCP.E.t * I n t L i t . t) , where the DCP.E.t element is a D C P edge which
increments the local bound TV by an integer constant represented by the I n t L i t . t Infer
module, i.e., edge wi th rv < rv + c D C . Similarly, the Resets set contains (DCP.E.t *

40

Exp.t * I n t L i t . t) tuples which correspond to edges w i t h TV < a + c reset D C s . The
variable_bounds map stores computed variable bounds and the reset_chains map stores
al l reset chains for each local bound norm TV used i n a TB(r) computat ion. The transi t ion
bound cache is stored directly i n the mutable bound_cache field of the EdgeData module.

5.3.1 I m p l e m e n t a t i o n of the TB(r) a n d VB(a) P r o c e d u r e s

The TB(T) implementat ion is based on the modified version which incorporates reset chains
discussed in Section 4.3.5. F i r s t , we w i l l describe the generalised IncrementSum procedure
intended for sets of norms:

IncrementSum(^l) = V V] TB(t) x c (5.1)
a e y l (t,c)ex(a)

where A = \JK ^ SJJ/T \ atoms\(n). S imi lar to the 1Z{TV) set, the 31(TV) is a set of a l l max ima l

reset chains for a local bound TV. The atomsi(n) is a set of variable norm nodes along a reset
chain K that have at most one path to the local bound
TV in a reset graph. Consider the reset graph in F i g -

70,0 |

ure 5.6 and assume we have two max ima l reset chains

K l = [0] ^ [x] [y] ^ [TV] and ^ = [0] ^ %

[x] —[z] [TV]. In this case, we have atoms\(n{) = T2,5
{[y], [TV]} and atoms\(K2) = {[z], [TV]} as there is at most [x] *• [y]

one pa th between those nodes and the [TV] node in the
reset graph. The atoms i (re) set has a atoms2(n) set com- n , l T4,0
plement which contains remaining nodes wi th more than "
one path, i.e., atoms2{n\) = atoms2{n2) = {f 3 3]}- We [z] • [TV]

consider only variable norms, i.e., non-source nodes, be- R 3 5 2
cause constants and formal parameters cannot be incre
mented. Note, that A is a set of unique elements, hence F L S U R E 5 - 6 : A reset graph w i t h
\J«*t* * xatomsAK) = {[z],[y],hv]}. We can rewrite mult iple paths between two

K fc t ^ i ' re2/ nodes
the generalised IncrementSum procedure wi th the use of
the original one defined i n Equa t ion 4.2 as follows:

IncrementSum(^l) = IncrementSum(a) (5-2)

The modified ResetSum procedure is defined as follows:

ResetSum(r„) = V] TB(trn(n)) x max(VB(in(K)) + C(K) ,0)

K € $1(TV) _)_ lncrementSum(aioms2(/«)) (5.3)

where TB({TI,T2, • • • , T „ }) = m i n TB{ji) is a generalisation of the TB procedure for sets
l<i<n

of transitions. The trn(n) is a set of a l l transitions of the K reset chain, the in{n) refers
to the first norm of the K reset chain, and finally the C(K) is a sum of a l l integer constants
along the K reset chain.

A l g o r i t h m 5 presents the transi t ion bound procedure without any error or cache han
dl ing i n order to remain concise. The GetResetChains procedure constructs a set of reset
chains for the local bound norm based on a reset graph and a D C P . We discuss this pro
cedure in more detai l i n Section 5.4. The rest is straightforward: we compute and add
together both the IncrementSum and the ResetSum and return the final transit ion bound.

41

A l g o r i t h m 5: Simplified transi t ion bound procedure without error handling and
cache manipulat ion. The IncrementSum and ResetSum procedures follow Equa t ion 5.1
and Equa t ion 5.3, respectively.

Input : D C P edge Edge w i th determined local bound norm
Output: A transi t ion bound for the input edge and updated cache
Data: A t o m s l — a set of reset chain nodes (norms) wi th at most one path to the

node representing the local bound norm i n the corresponding reset graph
Function TransitionBound(£7ige ; Cache):

if Edge.localBound G V then
ResetChains = GetResetChains{Edge.localBound, ResetGraph, DCP):
A t o m s l = 0 ;

foreach Chain G ResetChains do
A t o m s l = A t o m s l U C h a i n . a t o m s l Q :

return IncrementSumCilfomsi) + ResetSum (Reset Chains):

else return Edge.localBound:

The implementat ion of these two procedures as well as the VB(&) procedure closely
follows the previously presented equations and involves mainly basic ari thmetic over bound
expressions and simplification techniques which reduce the number of terms i n the final
bound expression.

5.4 Construction of Reset Chains

The construction process involves generation of a reset graph which we proceed to traverse
in order to find max ima l reset chains. However, we also have to ensure that a l l reset chains
are so called optimal which requires addi t ional traversals of a corresponding D C P . We w i l l
cover the validat ion process i n more detail shortly.

We w i l l first discuss the RG module which represents a reset graph and the generation
process. S imi lar ly to the D C P construction, we used the parametric Graph module from
the OCamlgraph l ibrary and provided an implementat ion for the signature Node and Edge
modules. It corresponds to the reset graph nodes and edges as discussed i n Section 4.3.5.
Thus, the RG.Node module is just a wrapper for the Exp module which we use to represent
norms. The RG.Edge module has a following inner record data type:

type t = {
dcp_edge : DCP.E. t ;
const : I n t L i t . t ;

}

The dcp_edge field stores a reference of the original D C P edge wi th the nodeAst < nodeSTC +
const reset D C . It is necessary to keep references due to the ResetSum procedure which
has to construct the trn{n) t ransi t ion set for a given reset chain n and recursively ca l l the
TransitionBound procedure for each of these transitions.

The straightforward process of reset graph construction is presented i n A l g o r i t h m 6.
We search for reset D C s of form [x] < [y] + c and use the isReset function to perform
the syntactic inequality check of [x] and [y] norms. E a c h reset D C is transformed into

42

a [y] ^-t [x] part of the reset graph, i.e., the [y] norm becomes the source node and the [x]
norm becomes the destination node which signifies the assignment of y to x.

A l g o r i t h m 6: Const ruct ion of a reset graph based on edges of existing D C P . E a c h
reset D C of form x < y + c on D C P edge e is used to create two new R G nodes
where x and y represent the destination and source nodes, respectively. B o t h nodes
are connected by an edge which stores the D C P edge e and the D C constant c.

Input : A set of DCP edges
Output: A corresponding reset graph

1 Rese tGraph = RG.create() :
2 foreach Edge G DCP do
3 foreach DC G Edge.constraints do
4 if DC.isResetf) then
5 SrcNode = Rese tGraph .addNode(DC.rhsNorm):
6 Ds tNode = Rese tGraph .addNode(DC. lhsNorm);
7 ResetGraph.addEdge(srcNode, {Edge, DC.cons t} , dstNode):

The subsequent construction of reset chains is however not as simple as traversing the
reset graph and finding the longest possible sequences of transitions. We also have to check
if a reset chain is optimal, i.e., max ima l and sound at the same time and shorten the chain
accordingly i f it is not. A reset chain K = a n

 T",C"> a n_i - " 1> . . . ai T 1'C l> ao is sound,
if each norm aj for 1 < i < n is reset on all paths from the target locat ion of T\ to the
source locat ion of Tj i n the corresponding D C P . The in tui t ion is following: if we are using
a reset chain n for a norm ao, a l l the variable norms along the chain must actually be reset
between any two executions of the transi t ion T\, otherwise the entire sequence of resets
might not occur on some execution paths of a program and therefore the chain would not
be applicable on a l l relevant execution paths. A n optimal reset chain is thus a sound reset
chain that cannot be further extended without becoming unsound.

Recal l the previously featured Figure 4.6. We can demonstrate that the reset chains

[x]' < [x

[r]' < [r

h
[x\ < [n]

f \ [x]' < [x]
V [r]' < [r]

T3 [p]' < [p] - 1

72

[P]

Figure 4.6: #2 (from page 25)

43

K\ = [0]—^>[r] r 2 '°>[p] and K2 = [n][r] —^>[p] are indeed optimal, i.e., sound and i n this
case obviously also maximal . B o t h of these chains have only single variable norm [r] that
has to be reset and i = 1, hence n = T\. Therefore, [r] has to be reset on a l l paths from
the locat ion £3 to the locat ion I2, which is clearly true because the transi t ion T4 w i t h the
[r]' < [0] reset D C is executed on a l l possible paths. We can conclude that both reset chains
are sound and max ima l as they cannot be further extended.

The construction of op t imal reset chains involves two steps. Fi rs t , we find longest and
possibly unsound reset chains wi th the recursive procedure presented i n A l g o r i t h m 7. We

A l g o r i t h m 7: Reset graph traversal and construction of unsound reset chains. The
modified D F S algori thm traverses the input reset graph i n the opposite direction,
starting at the CurrentNode, and gradually extends the input zero length chain wi th
each reset graph node un t i l it reaches a source node.

Input : Reset graph node CurrentNode representing the local bound norm and
a zero length reset chain Chain

Output: A set of a l l longest (possibly unsound) reset chains
Data: R G — a corresponding reset graph wi th global scope

1 Function TraverseRG(CurrentNode, Chain):
2 IncomingEdges = RG. incomingEdges(CurrentNode) :
3 if IncomingEdges = 0 then return { C h a i n } ;
4 else
5 ChainSet = 0 :

6 foreach (SrcNode, Edge, DstNode) G IncomingEdges do
7 Ex tendedCha in = Chain.append((SrcNode, Edge, DstNode)) :
8 ChainSet = ChainSet U TraverseRG (5Vc./Vo(ie; ExtendedChain):

9 return ChainSet:

start at the local bound node w i t h a chain of zero length represented by an empty list
and perform a depth first search in the opposite direction through the reset graph. The
IncomingEdges procedure returns a set of incoming edges in the form of a tuple (RG. Node. t,
RG.Edge.t, RG.Node.t) where the first element is the predecessor source node and the last
element is the destination node equal to the CurrentNode. We terminate the recursion
if there are no incoming edges and return a singleton set w i th the final chain which is
reversed due to the opposite direction traversal. Otherwise we create a new extended chain
and recursively cal l the TraverseRG procedure for each predecessor node. Final ly , we return
a set of a l l reset chains. We do not need to mainta in a set of visi ted nodes as w i th the
general D F S algori thm because a reset graph of a flow-sensitive D C P is guaranteed to be
acyclic.

The second step involves validat ion of each obtained reset chain, i.e., we t ry to find the
longest sound subsequence of each reset chain. A l g o r i t h m 8 presents a chain opt imizat ion
pseudocode. We start at the first ao norm of the reversed chain (local bound) and gradually
extend the chain as we check for resets of each norm a^<^n on a l l D C P paths between
locations Orig in and End. The recursive CheckPaths procedure performs a D F S of the
corresponding D C P and returns None i f there is a path without a reset or i f there are no
paths at a l l . If this occurs, we terminate the loop and return the sound subsequence. Note,

44

A l g o r i t h m 8: F i n d i n g the longest sound subsequence of a reset chain. The algori thm
gradually extends the in i t i a l zero length sound chain wi th elements from the unsound
input chain, start ing at the end and progressing towards the first element. E a c h norm
of the unsound chain is checked for resets on a l l D C P paths w i t h the CheckPaths
procedure.

Input : Unsound reset chain UnsoundChain and the origin node PathOrigin for
the paths check, i.e., the destination node of the last t ransi t ion of the
input reset chain

Output: A n opt imal (longest sound) reset chain
1 Function OptimizeChain(UnsoundChain, PathOrigin):
2 O p t i m a l C h a i n = [UnsoundChain [0]];
3 for i 4— 1 to UnsoundChain.length() - 1 do
4 S rcNorm, Da ta , D s t N o r m = UnsoundChain[i] :
5 P a t h E n d = Data.dcpEdge.dstNode:
6 PathsReset = CheckPaths {PathOrigin, 0, DstNorm, None):
7 if PathsReset = None then break :
8 else OptimalChain.prepend(UnsoundChain[i]) :

9 return Op t ima lCha in :

that we prepend each new norm to get non-reversed final chain which starts w i th the a n

norm.
The CheckPaths procedure presented in A l g o r i t h m 9 performs a slightly modified tra

di t ional D F S . We start at the PathOrigin node and recursively traverse a D C P un t i l we
reach the PathEnd node or a dead end without any outgoing edges. The terminat ion con
di t ion for a val id path contains addi t ional check for non-empty set of visi ted nodes because
we start at the PathOrigin node which can be equal to the PathEnd node i n edge cases.
The PathReset argument stores the information whether we already encountered a reset of
the Norm argument on the current path. The PathReset argument has an optional boolean
data type wi th three possible values i n order to differentiate between three possible sce
narios: a path that contains a reset, a path that does not contain a reset, and not a path.
We start w i th a None value and change it to True when we encounter a reset of the norm.
The True value cannot be changed and is propagated further un t i l we reach the end of
the path. The None value returned in cases of no path is ignored as we care only about
resets on val id paths. The procedure returns False if it reaches the end of the path wi th
the None value. However, the three possible values are encoded only to True or None at
the end for more convenient checking later on. Note that it is possible that there w i l l be
no va l id paths i n which case the procedure natural ly returns None. Thus, we can interpret
the None value as False because it does not matter whether there were no val id paths or i f
there was a path without a reset. The isReset method also returns None i f the Edge does
not contain a reset of the Norm. We assume that PathOrigin and PathEnd variables have
global scope.

5.5 Flow-sensitivity Transformation

The three step flow-sensitivity transformation follows the concept discussed i n Section 4.3.6.
Fi rs t , we construct a V F G , then we compute S C C s and create a V F G mapping from each

45

A l g o r i t h m 9: N o r m reset check wi th D F S traversal. The algori thm checks if a l l paths
between the PathOrigin and PathEnd nodes contain a reset of the input Norm.

Input : P a t h origin node Current, empty set of visi ted nodes Visited, and the norm
of interest Norm.

Output: A n information i f the input norm was reset on a l l paths
Data: The PathOrigin, and PathEnd variables are inherited from the scope of

A l g o r i t h m 8
Function CheckPaths (Current, Visited, Norm, PathReset):

if Current = PathEnd A Visited / 0 then
if PathReset = None then return False :
else return PathReset :

else
Outgoing = DCP.outgoingEdges(Current) :
if Outgoing = 0 then return None :
else

if Current ^ PathOrigin then Visi ted. insert(Current) :
foreach Edge £ Outgoing do

if Edge.dstNode ^ Visited A ^Edge.isLoopback() then
if PathReset = None then PathReset = Edge.isReset(Norm)
Reset = CheckPaths(Edge.dstNode, Visited, PathReset);
if Reset = True then PathReset = True :
else if Reset = False then return None :

return PathReset:

S C C to a new artificial variable, and finally we apply the mapping to variables of a D C P .
Please note that a l l algorithms referenced i n this section were moved to Append ix i n order
to save space.

The V F G construction process is presented in A l g o r i t h m 10. We use the OCamlgraph
l ibrary to and provide an implementat ion for the signature Node and Edge modules. In this
case, the inner data type of the Node module is the following tuple: (Exp.t * DCP. Node, t)
where the first value is a norm and the second one is a D C P location represented by a D C P
node. The Edge module remains empty (unit data type) because V F G does not store
any data on edges. We iterate through a l l D C s of each edge and search for D C s of form
x < y + c, where both x and y must be non-constant norms and x can be equal to y, i.e., we
process a l l kinds of updates involving variable norms unlike wi th the construction of a reset
graph. The x norm is coupled wi th the D C P destination node to create a new destination
node of the V F G and the y norm is coupled wi th the D C P source node to create a new
source node.

Next we proceed to create the (norm, location) —> v, i.e, VFGNode —> v mapping as
shown i n A l g o r i t h m 11. We create a fresh art if icial variable v for each existing S C C Q
and use the iteration index to ensure that the name of each new variable is unique. The
associations between V F G nodes of each S C C Q and fresh variables v are stored i n the
VFGMapping map.

Final ly , we apply the V F G mapping and construct a new set of transformed D C s for each
D C P edge as shown i n A l g o r i t h m 12. We combine appropriate norms of each D C wi th nodes

46

of the current edge and use the constructed tuples as search keys for the VFGMapping map.
The map contains associations only for variable norms and we thus extend the mapping to
constants by using the original constant norms when we fail to find an association i n the
map. The LhsNorm and RhsNorm variables are used to form the transformed D C which is
stored i n the DCs set. F ina l ly , we replace the set of original constraints w i th the DCs set for
each edge. Figure 5.8 shows an example of a D C P after the renaming transformation.

Begin [69:1]

[var_0]' <= [n]
[var_l]' <= [0]

while [71:9]

while[71:9](false)

Exit

while[71:9](true)
[var_0]' <= [var_0] - 1
[var_l]' <= [var_l] + 1,

while [74:10]

while[74:10](false)
var_0]' <= [var_0]

[var_l]' <= [var_l]

while[74:10](true)
[var_0]' <= [var_0]

[var_l]' <= [var_l] - 1

Figure 5.8: A flow-sensitive D C P obtained from the tarjan (4.1) example after the V F G
transformation.

47

Chapter 6

Evaluation

This chapter experimentally evaluates our implementat ion of the Looper analyser. We first
verified the correct implementat ion of the abstraction algori thm and the bound algori thm
extended wi th reset chains and flow-sensitivity transformation and checked i f it produced
expected results on few artif icial examples. Next , we evaluated Looper on several code
examples from [12] to demonstrate its precision. Most of these examples are originally from
the SPEC CPU®2006 [13] benchmark and focus on real world instances of problems requiring
amortized complexity analysis such as the aforementioned string parsing or pattern matching
algorithms. F ina l ly , we evaluated Looper on a test set 1 used by the C O S T 2 analyser in order
to get a fair comparison between both solutions and discuss l imitat ions of either approaches.

6.1 Evaluation on the Cost Analyser Test Set

We evaluated Looper on the C O S T test set to show that our analyser works well even on
non-cherry-picked code examples. These examples do not require amortized reasoning and
serve as a set of basic tests for our evaluation.

The complete test set contains a to ta l of 62 functions from which we have selected
30 samples. The remaining 32 functions are mainly interprocedural tests or functions wi th
goto statements which we do not currently support. Moreover, the goto statement was used
for direct jumps into loops (or to simulate such behaviour) which we argue is uncommon as
opposed to real world usage of goto such as for error handling purposes in L i n u x K e r n e l 3 .
Addi t ional ly , four functions contained break, switch or continue statements which we
also do not suppor t 1 . F inal ly , there were 8 cases wi th no loops at a l l which we ignored.

Table 6.1 presents the comparison between results of Looper and Infer's C O S T analyser
for the set of 30 selected samples. Looper managed to infer the precise bound in 24 cases
and imprecise bound i n 3 cases. One imprecise bound was caused by insufficient guarding
concept from Section 4.2 which failed to infer a guard necessary for determining of a local
bound. Next imprecise bound was caused by a function which requires a path sensitive
reasoning. In the last case, Looper inferred imprecise bound n instead of | due to insufficient
abstraction algori thm which abstracts a l l decreasing D C s to x < x—1. However, the original
Loopus tool implements an extension which allows it to handle arbi trary decrements. We
argue though that this imprecision is negligible.

x h t t p s : //github.com/f acebook/inf er/tree/master/infer/test s/codetoanalyze/c/perf ormance
2 h t t p s : //github.com/f acebook/inf er/blob/master/infer/ src/checkers/cost.ml
3 h t t p s : //koblents.com/Ches/Links/Month-Mar-2013/20-Using-Goto-in-Linux-Kernel-Code/
4 H o w e v e r , the o r i g i n a l Loopus t o o l i m p l e m e n t s extensions w h i c h a l l o w i t to hand le some o f these cases

18

Precise Bounds Imprecise Bounds Errors *Time [s]

Looper 24 3 3 5.5
Cost 27 3 0 15.3

Table 6.1: A n experimental evaluation of Looper on a subset of Infer's test suite and
comparison wi th the existing C O S T analyser. The complete test suite contains a to ta l of
62 functions and the subset consists of 30 selected relevant examples. *The tota l t ime was
measured only on 27 functions which d id not result i n a crash of Looper.

The three remaining error cases crashed our analyser due to the complicated short-
circui t ing of loop conditions which generate complex native Infer C F G and our L T S con
struction algori thm failed to produce a val id L T S . We conclude that most of the imprecise
bounds and errors were caused by the shortcomings of our immature implementat ion rather
than by the general l imitat ions of the adopted approach.

C O S T analyser managed to infer the precise bound in 27 cases and imprecise bounds
in the remaining 3 cases, i.e., it was able to analyse a l l tests without any error. B u t , a l l
imprecise bounds inferred by C O S T are unsound as it managed to infer a constant cost for
a test w i t h non-deterministic terminat ion and for another test which does not terminate
in a l l executions. The last unsound bound was inferred for the test which requires a path-
sensitive reasoning. Addi t ional ly , we opt imist ical ly classified the 2 + (3 x n) + 2 x (2 +
max(—l,n)) cost inferred for the test w i th | real bound as correct due to our inabi l i ty to
interpret the true meaning of the max(—l ,n) term. Note that C O S T was able to infer the
correct cost of 2 + (3 x n) + 2 x (1 + max(0, n)) for a modified version w i t h the bound of n.

The runtime comparison was conducted on a total of 27 functions which d id not result
in a crash of Looper . The experiment was run on a Core i5-3320M processor at 3.30 G H z
running U b u n t u 16.04 wi th 64-bit binaries for both analysers. Infer was run in the mul t i
threaded batch mode which analysed a l l tests i n one go i n order to avoid the non-negligible
startup overhead of Infer on ind iv idua l analyses. In conclusion, our Looper was nearly
3 times faster than the current implementat ion of C O S T analyser on a subset of their
test suite. The higher runtime of C O S T presumably mainly arises from the internal use
of a relatively expensive invariant pre-analysis developed by the Lnferbo [8] team for the
purposes of their buffer overrun analysis.

6.2 Evaluation on the Loopus Test Set

The second experiment was conducted on our test suite of 8 functions which require amor
tized complexity reasoning i n order to infer the precise bounds. The test suite consists of
functions selected from the benchmark [12] and is publ ic ly available at our Bitbucket repos
i t o r y 0 . Note that while this benchmark may seem small , it contains challenging examples,
and hence it can accurately demonstrate the precision of one's approach.

Table 6.2 presents the results and comparison of both analysers on our test suite which
was also used for evaluation of Looper i n our E x c e l @ F I T ' 1 9 [10] paper. However, we
have corrected few functions where we d id not include non-deterministic conditions which
can affect the results of C O S T analyser, hence the differences i n examples no. 2 and 5
(originally 5n and 12n, respectively). Addi t ional ly , we have remeasured the to ta l runtime
in the batch mode and used it instead of the original per-example runtime which included

5 h t t p s : //bitbucket.org/paveon/ in f er-perf ormance/src/looper-develop/examples/Loopus/

49

the aforementioned non-negligible startup t ime of Infer. This allowed us to obtain a more
accurate measurement which should be closer to results i n real world scenarios. Note
that the real bounds of examples no. 4 and 6 are actually n + n x max(n — 1,0) and
3 n + m a x (m l , m2) , respectively. For the sake of presentation, we have simplified a l l bounds.

R e a l B o u n d
Inferred bound Tota l T ime [s]

R e a l B o u n d
Looper Cost Looper Cost

#1 n 2n n2

#2 2n 2n n2

#3 An 5n oo

#4 *n2 n2 oo 5.5 10.2
#5 2n 2n oo

5.5 10.2

#6 *n n oo

#7 2n 2n oo

#8 2n 2n oo

Table 6.2: A n experimental evaluation of Looper and comparison wi th the existing C O S T

analyser on our test suite which consists of 8 functions selected from [12]. *The real bounds
of examples no. 4 and 6 were simplified.

Looper managed to infer the exact precise bound in 6 cases and reasonably precise
bound wi th the correct degree in the remaining two cases. The first example requires a path-
sensitive reasoning i n order to infer the precise bound n and the imprecision i n example
no. 3 is introduced due to the flow-sensitivity transformation discussed i n Section 4.3.6.
The transformation generates a redundant path i n the corresponding reset graph and con
sequently a redundant reset chain which adds addi t ional n to the to ta l sum through the
IncrementSum(aíoms2(/í)) te rm of the modified ResetSum procedure 5.3. However, Looper
is able to infer the precise bound 4n wi th the flow-sensitivity transformation disabled.

C O S T analyser failed to infer the precise bound i n a l l cases. In 6 cases, it failed to
infer at least reasonably precise bound and returned oo. The remaining two cases produced
imprecise bounds wi th wrong polynomia l degree which were expected from an analyser
without the support for amortized complexity analysis. Note that the inferred costs were
simplified to presented bounds based on the back-edge metric used by Looper.

50

Chapter 7

Conclusion
In this work we extended the scalable abstract interpretation framework of the Facebook
Infer tool w i th a new performance oriented analyser. More specifically, we wanted to
focus on the somewhat lacking area of automated complexity and resource bound analysis
which was not supported by Infer at the time. O u r solution recasts the existing powerful
intraprocedural Loopus [12] tool wi th in incremental Infer.AI, al lowing it to scale on a large
and quickly changing codebases. The hooper (Loopus i n Infer) is currently able to analyse
both t r iv ia l programs w i t h loops as well as moderately complex programs which require
amortized complexity analysis. The latter is where Looper outperformed the existing C O S T

analyser currently developed by the Infer team.
Our future work w i l l p r imar i ly focus on extending the current intra-procedural approach

to scalable inter-procedural analysis which would keep a reasonable precision. Addi t ional ly ,
we plan to implement the remaining extensions proposed i n [12], such as path-sensitive
reasoning which should greatly improve the precision of Looper. Last ly, we intend to devise
a mechanism similar to the one used by C O S T which would track changes i n the performance
footprint of each function between ind iv idua l program revisions.

The prel iminary results of this thesis were presented at the E x c e l @ F I T ' 1 9 [10] conference
where it received an award from the expert committee.

51

Bibliography

[1] B e n - A m r a m , A . M . : Size-change Terminat ion wi th Difference Constraints. ACM
Trans. Program. Lang. Syst.. vol . 30, no. 3. M a y 2008: pp. 16:1-16:31. I S S N
0164-0925.

[2] Bygde, S.: Static WCET analysis based on abstract interpretation and counting of
elements. P h D . Thesis. M ä l a r d a l e n University. 2010.

[3] Calcagno, C ; Distefano, D . ; O 'Hearn , P. ; et a l . : Composi t ional Shape Analys is by
Means of Bi -abduct ion . In Proc. of POPL'09, vol . 44. A C M . 2009. I S B N
978-1-60558-379-2. pp. 289-300.

[4] Cousot, P. ; Cousot, R . : Abst rac t interpretation: a unified lattice model for static
analysis of programs by construction or approximat ion of fixpoints. In Proc. of
POPL'77. A C M . 1977. pp. 238-252.

[5] Fiedor , T . ; Hol ik , L . ; Rogalewicz, A . ; et a l . : F r o m Shapes to Amor t i zed Complexi ty.
In Proc. of VMCAI'18. Springer International Publ i sh ing . 2018. I S B N
978-3-319-73721-8. pp. 205-225.

[6] Fiedor , T . ; Hol ik , L . ; Rogalewicz, A . ; et a l . : Ranger: A Tool for Bounds Analys is of
Heap-Manipula t ing Programs, online. 2018.
Retrieved from:
http: //www.f i t .vutbr.cz /research/groups/veri f i t / t o o l s / r a n g e r /

[7] J i n , C ; Song, L . ; Shi , X . ; et a l . : Understanding and Detect ing Real-world
Performance Bugs. In Proc. of PLDI'12. A C M . 2012. I S B N 978-1-4503-1205-9. pp.
77-88.

[8] Kwangkeun, Y . : Inferbo: Infer-based buffer overrun analyzer, online.
Retrieved from:
https: / /research.fb.com/inferbo-infer-based-buffer-overrun-analyzer/

[9] O 'Hearn , P . W . : Continuous Reasoning: Scaling the impact of formal methods. In
Proc. of LLCS'18. A C M . 2018. pp. 13-25.

[10] Pavela, O. ; H a r m i m , D . ; M a r c i n , V . : Scalable Static Analys is Us ing Facebook Infer.
In Proc. of Excel@FLT'19. 2019.
Retrieved from: http: / / exce l . f i t . vu tbr . cz / submis s ions /2019 /059 /59 . pd f

[11] Puschner, P.; K i rne r , R . ; Huber , B . : Techniques to Calculate the Worst-Case
Execut ion Time, online. 2016. Zeitanalyse von sicherheitskritischen Echtzeitsystemen.
T U W i e n , Institute of Computer Engineering.

52

http://www.f
http://it.vutbr.cz/research/groups/verif
https://research.fb.com/inferbo-infer-based-buffer-overrun-analyzer/
http://fit.vutbr.cz/

Retrieved from: h t t p s : / / t i . t u w i e n . a c . a t / c p s / t e a c h i n g / c o u r s e s / w c e t / s l i d e s /
w c e t 0 2 _ s t a t i c _ a n a l y s i s . p d f

[12] Sinn, M . : Automated Complexity Analysis for Imperative Programs. P h D . Thesis.
V i e n n a Universi ty of Technology. 2016.

[13] Standard Performance Evalua t ion Corporat ion: S P E C C P U ® 2006. online.
Retrieved from: h t t p s : / / w w w . s p e c . o r g / c p u 2 0 0 6 /

[14] Vojnar, T . : Latt ices and Fixpoin ts for Symbolic M o d e l Checking, online. 2017.
Formal Analys is and Verification. B U T , Facul ty of Information Technology.

[15] Vojnar, T . ; Lengä l , O. : Abst rac t Interpretation, online. 2017. Formal Analys is and
Verification. B U T , Facul ty of Information Technology.

53

https://www.spec.org/cpu2006/

Appendix A

Additional algorithms

A l g o r i t h m 10: Const ruct ion of a Variable Flow Graph (V F G) from a D C P . E a c h
D C of form x < y + c where x and y are variable norms is used to create two V F G
nodes represented by tuples (x, dst) and (y, src) where src and dst are source and
destination nodes of the corresponding D C P edge. These nodes are connected by an
empty V F G edge.

Input : A set of DCP edges
Output: A corresponding V F G

1 V F G r a p h = VFG.c rea te () ;
2 foreach Edge G DCP do
3 foreach DC G Edge.constraints do
4 if DC.lhsNorm G V A DC.rhsNorm G V then
5 Ds tNode = V F G r a p h . a d d N o d e ((D C . l h s N o r m , Edge.dstNode)):
6 SrcNode = V F G r a p h . a d d N o d e ((D C . r h s N o r m , Edge.srcNode)):
7 VFGraph .addEdge(SrcNode , (), DstNode) ;

A l g o r i t h m 11: Construct ion of a V F G mapping. The input V F G is split into strongly
connected components (S C C) and a fresh auxi l iary variable v is created for each S C C .
V F G nodes of each S C C are mapped to the corresponding fresh variable.

Input : V F G VFGraph split into SCCs
Output: V F G mapping of form (norm, location) —> v

1 S C C s = V F G r a p h . c o m p u t e S C C s Q ;
2 V F G M a p p i n g = V F G . M a p . e m p t y () :
3 foreach {Q, index) G SCCs do
4 FreshVariable = E x p . L v a r (' v a r _ ' + index):
5 foreach Node G £ do
6 | VFGMapp ing fNode] = FreshVariable:

54

A l g o r i t h m 12: D C P renaming transformation. A V F G mapping a is used to trans
form a l l x < y + c D C s on each edge e into cr(x, e d s t) < o~{y, ^src) + c.

Input : A set of DCP edges and V F G mapping VFGMapping
Output: Flow-sensitive D C P wi th renamed variable norms

1 foreach Edge € DCP do
2 D C s = 0 ;

3 foreach DC E Edge.constraints do
4 L h s N o r m = V F G M a p p i n g [(D C . l h s N o r m , Edge.dstNode)];
5 R h s N o r m = V F G M a p p i n g [(D C . r h s N o r m , Edge.srcNode)];
6 if LhsNorm = None then L h s N o r m = D C . l h s N o r m :
7 if RhsNorm = A^one then R h s N o r m = D C . r h s N o r m :
8 DCs . inse r t ((LhsNorm, R h s N o r m , DC.cons t)) :

9 Edge.constraints = D C s ;

55

