
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

MODEL-BASED REINFORCEMENT LEARNING FOR
POMDPS
ZPĚTNOVAZEBNĚ UČENÍ PRO POMDPS S VYUŽITÍM MODELŮ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR LUCIE SMÍŠKOVA
AUTOR PRÁCE

SUPERVISOR doc. RNDr. MILAN ČEŠKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2024

Bachelor's Thesis Assignment
Institut:

Student :

P rogramme:

Tit le:

Category:

Depar tment of Intel l igent Sys tems (DITS)
S m í š k o v a L u c i e
Informat ion Techno logy

M o d e l - B a s e d R e i n f o r c e m e n t L e a r n i n g f o r P O M D P s

Artif icial Intel l igence

162598

Academic year: 2023/24

Ass ignment :

1. S tudy the state-of- the-art p lanning and re in forcement learning methods Markov Decis ion Processes
(MDPs) and Part ial ly Observab le M D P s (POMDPs) wi th the focus on mode l -based approaches .

2. Des ign an ex tens ion of the tool P A Y N T al lowing to comb ine induct ive control ler synthesis wi th
re in forcement learning methods .

3. Imp lement the ex tens ion wi th the use of exist ing f rameworks for re in forcement learning methods.

4 . Using sui table benchmarks , eva luate the per fo rmance as wel l as the practical usefu lness of the
imp lemented ex tens ion.

Li terature:
• Kochender fer , M.J., Wheeler , T.A., and W r a y K.H, A lgor i thms for Decis ion Mak ing , MIT Press 2 0 2 1 .

• Andr iushchenko , R., Češka , M., Junges , S., and Katoen, J.P. Induct ive synthes is of f ini te-state
control lers for P O M D P s . In UAI '22 . Proceed ings of Mach ine Learning Research .

• Andr iushchenko , R., Češka , M., Junges , S., Katoen, J.P. and Stupinský, Š. PAYNT: A Too l for
Induct ive Synthes is of Probabi l ist ic Programs. In CAV 2021. Spr inger.

• An tonog lou , I., Schr i t twieser, J . , Ozair, S., Hubert , T.K. and Silver, D. P lanning in Stochast ic
Env i ronments wi th a Learned Mode l . In ICLR 2021.

• Carr, S., Jansen , N., and Topcu , U. Task -aware ver i f iable RNN-based pol icies for partial ly
observab le markov decis ion processes. J . Artif. Int. Res. 72. 2022 .

Detai led formal requi rements can be found at ht tps: / /www.f i t .vut .cz/study/ theses/

Superv isor : Č e š k a M i l a n , d o c . RNDr . , Ph .D .

Head of Depar tment : Hanáček Petr, doc. Dr. Ing.

Beginning of work : 1.11.2023

Submiss ion deadl ine: 31.7 .2024

Approva l date: 8.7.2024

Faculty of Informat ion Techno logy , Brno Universi ty of Techno logy / Bože těchova 1/2 / 612 66 / Brno

https://www.fit.vut.cz/study/theses/

Abstract
Par t ia l ly observable Markov decision processes allow us to model systems containing state
uncertainty. They are useful when we have only par t ia l information about the states (so
called observations). The a im of this thesis was to develop a method combining inductive
synthesis and reinforcement learning to develop the best possible finite-state controller.
Th i s method was then implemented as an extension to the tool P A Y N T .

Abstrakt
Markovské rozhodovac í procesy s č á s t e č n ý m p o z o r o v á n í m n á m umožňu j í modelovat sys
t é m y obsahuj íc í stavovou neu rč i to s t . Jsou už i t ečné , pokud m á m e pouze čás t ečné informace
o stavech (tak zvaná pozorován í) . C í lem t é t o p r á c e bylo vyvinout metodu kombinuj íc í
i n d u k t i v n í syn t ézu a z p ě t n o v a z e b n ě učen í k vy tvo řen í co nej lepšího konečně s t avového kon
t ro lé ru . Tato metoda p o t é byla i m p l e m e n t o v á n a jako rozší ření n á s t r o j e P A Y N T .

Keywords
Par t ia l ly observable Markov decision processes, F in i te State Controller , Synthesis, Re in
forcement learning, recurrent neural network

Klíčová slova
Markovské rozhodovac í procesy s č á s t e č n ý m pozorován ím, K o n e č n ě s tavovový kont ro lér ,
syn téza , z p ě t n o v a z e b n ě učení , r e k u r e n t n í neu ronové sí tě

Reference
S M Í Š K O V A , Lucie . Model-Based Reinforcement Learning for POMDPs. Brno , 2024. Bach
elor's thesis. B rno Univers i ty of Technology, Facul ty of Information Technology. Supervisor
doc. R N D r . M i l a n Češka , P h . D .

Model-Based Reinforcement Learning for P O M D P s

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of doc. R N D r . M i l a n Češka , P h . D . The supplementary information
was provided by Ing. F i l i p M a c á k . I have listed a l l the l i terary sources, publications and
other sources, which were used during the preparation of this thesis.

Lucie Smíškova
Ju ly 30, 2024

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Markov chain 5
2.2 Fami ly of Markov chains 6
2.3 M D P 7
2.4 P O M P D 9
2.5 F in i te State Control ler 10

3 Inductive synthesis 11
3.1 P A Y N T 11
3.2 Abst rac t ion refinement 12

4 Reinforcement learning 13
4.1 Deep reinforcement learning 14
4.2 Recurrent Deep Q-learning 17
4.3 Neura l network architecture 17
4.4 Tra in ing 18

4.4.1 Environment 18
4.4.2 Ini t ia l izat ion 19
4.4.3 Pre - t r a in ing phase 19
4.4.4 Tra ining cycle 19

5 Combinat ion of reinforcement learning and synthesis 22
5.1 Implemented method 22

6 Evaluat ion 25
6.1 Exper imenta l setting 25
6.2 G r i d 26
6.3 Maze 28
6.4 Pentagon 29

6.5 I F F 31

7 Conclusion 35

Bibl iography 37

1

List of Figures

2.1 Example of Markov chain 6
2.2 Example of family of Markov chains 7
2.3 Realisat ion n 8
2.4 Realisat ion ri 8
2.5 Example of an M D P 9

4.1 Reinforcement learning loop. The agent takes actions resulting in changes
in the environment (transitions between states). The agent then receives
reward and new observation from the environment 14

4.2 General structure of a neural network 15
4.3 Recurrent network architecture by Jeffrey E l m a n 1 16
4.4 L S T M architecture 2 16
4.5 Structure of implemented neural network 18

6.1 G r i d 27
6.2 Maze 29
6.3 G r a p h comparing max ima l rewards of each Pentagon experiment construct

ing 1-FSC, to is t ime needed to find the best found F S C 30
6.4 G r a p h comparing max ima l rewards of each Pentagon experiment construct

ing 2 - F S C 31
6.5 G r a p h comparing max ima l rewards of each I F F experiment constructing 1-FSC 32
6.6 G r a p h comparing max ima l rewards of I F F experiments constructing incre

mental F S C 34

2

Chapter 1

Introduction

Nowadays, machine learning is very popular for solving various tasks. It is well-suited to
a wide range of problems, among the most notable ones are the processing of the natural
language and image recognition. Addi t ional ly , the field has applications i n other areas such
as medicine, finance, various analyses. To be able to solve a certain problem, we need to
define it at first. This can be done using a variety of models. In certain instances, we want
robots to make decisions, so we do not have to control them. For this type of problems, we
can use Markov Decision Processes (M D P s) . Y o u can effectively bu i ld policies for M D P s
using probabil ist ic model checkers such as S torm [20] or P r i s m [23].

In the real world, we are confronted wi th uncertainties and randomness. M D P s can only
deal w i th uncertainties to a l imi ted extent. For this reason, it may be necessary to use their
extension instead, namely Par t i a l ly Observable Markov Decision Processes (P O M D P s) .
These are par t icular ly useful in cases we have to deal w i t h state uncertainty. P O M D P s
have the same properties as M D P s wi th the difference, that they also contain observations.
For example, we do not have the information of which state we are currently i n , but we
have some incomplete information (observation) about this state (such as where we can
move or whether or not we are i n a goal state). The potential applications of P O M D P vary
widely. F r o m basic navigation problems, such as navigating a maze, to the development of
self-driving cars. B u t we can also find applications outside the technical fields, for example
i n medicine. Further applications can be found i n a Survey of P O M D P Appl ica t ions by
Anthony R . Cassandra [12].

The goal i n P O M D P solving is to create a scheduler. The scheduler should be able to find
the best possible action in each state for given the observation. Scheduler can be represented
either by belief-states or F in i t e State Controllers (FSCs) . In the first case, we select an
action to be performed based on a belief [26]. Belief represents a probabil i ty dis t r ibut ion
over states of P O M D P . O n the other hand, finite state controller maps observations directly
to actions. These controllers can be either deterministic or nondeterministic. In this thesis,
I w i l l only deal w i th deterministic ones. F S C s map directly observations to actions. There
are several ways to create the F S C . We can use formal methods such as synthesis. Several
synthesizing methods are implemented in the P y t h o n tool P A Y N T [2]. Synthesis allows
us to find op t imal controller by exploring the design space. Synthesis is highly effective
i n te rm of finding scheduler for smaller models, but the computat ion t ime is too high for
large models (scales exponentially) and in some cases the problem can be undecidable. For
this reason, it is almost impossible to solve really large models using these methods i n an
acceptable time. Us ing reinforcement learning methods should help to solve this problem.
Machine learning methods are not able to guarantee correctness and efficiency of the found

3

solution, which is a significant disadvantage. Reinforcement learning methods are capable of
finding F S C s even for larger models. Therefore, I w i l l combine both mentioned approaches
in this thesis. I w i l l combine reinforcement learning technique which allows us to solve large
P O M D P s wi th synthesis method which helps us to achieve the opt imal i ty and verify the
controller. There is a number of solutions to M D P using reinforcement learning techniques
[27], but i n the case of P O M D P it is more complex and neural networks must be used.

Thesis structure

In the following Chapter 2, I define several terms that are necessary for the understanding
of the following text. Th is is going to be followed by Chapter 3 where I introduce synthesis
w i th emphasis on the tool P A Y N T . After that In Chapter 4 I w i l l move onto reinforcement
learning topic and describe Recurrent Deep Q- learn ing algori thm, I have implemented. In
Chapter 4.2 I w i l l introduce combination of synthesis and reinforcement learning, which is
the a i m of this thesis, the experimental results w i l l then be evaluated In Chapter 6.

4

Chapter 2

Preliminaries

A t first, we need to declare definitions of some important terms that w i l l be used further In
this thesis. F r o m Section 2.1 to Section 2.4. I w i l l first introduce several stochastic models
from the most basic (Markov chains) to the more complicated (Par t ia l ly Observable Markov
Decision Processes). Then I need to define the F in i t e State Controllers which is a way to
represent schedulers. The definitions are provided wi th i l lustrative examples for better
understanding.

Definitions i n this chapter are taken over and adapted from several papers. Specifically,
Markov chain definition (Definition 1) is taken from Inductive Synthesis for Probabi l is t ic
Programs Reaches New Horizons [3]. The definition of Fami ly of Markov Chains (Defini
t ion 2) and definition of Realisat ion (Definition 3) are taken from Counterexample-Driven
Synthesis for Probabi l i s t ic P rogram Sketches [14]. Definitions of Markov Decision Process
(Definition 4) and Par t i a l ly Observable Markov Decision Process (5) are both taken from
Inductive Synthesis of Fini te-State Controllers for P O M D P s [4]. Definitions of an Observa
t ion based strategy and F in i t e State Control ler are both taken from Permissive Finite-State
Controllers of P O M D P s using Parameter Synthesis [22].

2.1 Markov chain

Markov Chains (M C) are the most basic mathematical models w i th Markov property. The
other Markov processes, which I w i l l mention later i n this chapter, are based on the Markov
chain. A stochastic process has the Markov p r o p e r t y i f the future states depend solely on
the present state, without regard to the previous states. The probabilities of moving from
one state to another can be represented by a transit ion matr ix .

Definition 1. A Markov chain is a tuple D = (S, SQ,P), where

• S is a finite set of states,

• so G S is an in i t i a l state,

• P : S —>• Distr(S) is a t ransi t ion probabil i ty function.

We write P(s,t) to denote P(s)(t). The state s is absorbing i f P(s,s) = 1.

If we get into absorbing state, we are never going to be able to get to any other state
(it has only one transi t ion wi th probabil i ty 1 that goes back to this state).

5

Another property of the state is reachability. Reachabi l i ty refers to the abi l i ty to transi
t ion from one state to another state. It means we can get from state SQ to state sn i n one or
more steps. The state is not reachable, if we are not able to get into this state after infinite
number of transitions from the in i t i a l state. B y other words, a l l probabilities of reaching
in this state from a l l reachable states are zero. Otherwise, we can count probabil i ty of
reaching the state and expected number of steps needed to reach the state.

Example 1. Basic example is in Figure 2.1. This example consists of three states (S =
so, si, S2). Transition probabilities are given by following matrix:

/OA 0.1 0 .5\
P = 0.7 0.2 0.1

\ 0 0.7 0 .3 /

As you can see, the sum of each row equals to one. Probabilities on the diagonal cor
responds to staying in the same state after the next transition. Each row represents prob
abilities of reaching next state given by a column after being in a current state given by a
row. In our example the probability of not moving from state so is 0.4, the probability of
transition from SQ to s\ is 0.1 and probability of transition from SQ to S2 is 0.5.

0.2

0.5

Figure 2.1: Example of Markov chain

2.2 Family of Markov chains

We can also describe more than one M C at a t ime using families of Markov Chains . If we
have one set of states w i th different t ransi t ion probabili ty, we are able to describe them as
a family of Markov chains.

Definition 2. A family of Markov chains is a tuple 2) = (S, SQ, K, where

• S and so as in definition 1,

• K is a finite set of parameters where domain for each parameter k £ K is T^ C S

• is t ransi t ion probabi l i ty function ^ : S —>• Distr(K)

If we want to get Markov chain from its family, we can do so by instantiat ing each
parameter w i t h value from its domain. Created Markov chain is called a realisation.

G

Definition 3. A realisation of a family T> = (S,so,K,*$) is a function r : K —>• S1 where
Vk £ K : r(k) G Tfc. A realisation r yields an MCDr := (S, so, ^J(r)), where ^)J(r) is the
transi t ion probabil i ty mat r ix i n which each A; € K i n is replaced by r(k). Let 72.® denote
the set of a l l realisations for T>.

Example 2. As an example, I will use an abstract family of Markov chains consisting of
three states S = {so, s\, S2}, where so is an initial state, and three parameters K = {a, b, c}.
The number of states and parameters in this example is the same, but it is not necessary. We
can also have a family of Markov chains with, for example, two states and five parameters
or, on the contrary, five states and two parameters.

Domains of the parameters are Ta = {so, si},Tb = {so, si, S2}, Tc = {«1,52}- The
transition probability matrix is:

2x-5y = 8

3x2 + 9y = 3a + c

You can see this family of Markov chains in picture 2.2.

b

0.1

Figure 2.2: Example of family of Markov chains

There are 2 x 3 x 2 = 12 possible realisations. It is counted by multiplying of set of
domains of each parameter. I am going to show you only two realisations as an example.

The first realisation is defined as r\ : r\{a) = so,ri(b) = so,ri(c) = «2- you can see
in picture 2.3, there is no possible way how to get from initial state so to state s\, therefore
the state s\ is unreachable. There is no absorbing state.

Another realisation can be, for example, r2 defined as r2 • ri{a) = «1,^2(6) = S2,r2(c) =
S2- You can see this realisation in picture 2.4- None of the states are absorbing or unreach
able.

2.3 M D P

Markov decision processes (M D P s) are models similar to the Markov chains. They both
model stochastic processes and have Markov property. The main difference is that M D P

7

0.5

0.1

Figure 2.3: Realisat ion r\

0.5

0.1

Figure 2.4: Realisat ion r2

can be controlled by actions. So we have more control over the transi t ion probabilities and
we can, for example, maximize the probabi l i ty of reaching a certain state.

To choose which action should be taken, we use schedulers. Briefly, scheduler is a
mapping function that determines what action should be selected i n each state (this is not
very important for this thesis, so I w i l l not define it formally, but you can take a look at
the definition 6 of Observation based scheduler in Section 2.4).

Definition 4. M D P is a tuple M = (S, s0,Act, P) where

• S is finite set of states

• SQ £ S is an in i t i a l state

• Act is a finite set of actions

• P(s'\s,a) is a t ransi t ion probabil i ty function that gives probabil i ty of evolving to s'
after taking action a in state s

Example 3. As an example, I will use simple MDP consisting of two states and two possible
actions from each state. You can see the diagram and transition probability matrix in Figure
2.5.

By applying memory-less scheduler on MDP, we get induced Markov chain. For exam
ple, if we want to maximize the probability of being in state SQ, the scheduler should be:
o~ = {so —>• b, s\ —>• a}. Using this scheduler on given MDP, we get MC with two states and
following transition probability matrix:

/0 .7 0 .3 \
V0.8 0.2 J

In that case, the number of the states did not change, but in some cases, it is possible
to get MC with less states than was in the original MDP. For example, if we have MDP

8

(a) M D P diagram

Figure 2.5: Example of an M D P

{s0, a) "0.5 0.5

Oo,&) 0.7 0.3
(s i , a) 0.8 0.2
{si,b) _ 0 1

(b) M D P transition
probability matrix

consisting of three states, but one of the states is unreachable in the MDP, the MC will
consist of only two states (the unreachable one can be excluded).

Another model important for one of the synthesizing methods, the Abs t rac t ion refine
ment method, is all-in-one M D P . It is derived from Fami ly of Markov Chains and represents
al l possible realisations i n a compact way. The abstraction of all-in-one M D P (called quo
tient) can be evaluated by model checker (such as Storm).

2.4 P O M P D

Generalizat ion of M D P is Pa r t i a l ly Observable Markov Decision Process (P O M D P) . They
are both used to model decision-making problems. In many real world situations, we do
not have complete information. To model these situations, we need something that allows
us to deal w i th uncertainty. The agent has only incomplete information about the state it
is currently in . The piece of information is called observation. The agent, unlike the M D P ,
does not make decisions based on the state, but works w i th observations instead.

Definition 5. P O M D P is a tuple M = {S, s0, Act, P, Z, O) where

• S is finite set of states

• so £ S is an in i t i a l state

• Act is a finite set of actions

• P{s'\s,a) is a t ransi t ion probabil i ty function that gives probabil i ty of evolving to s'
after taking action a in state s

• Z is a finite set of observations

• O is an observation function that returns for every state s an observation.

Y o u can imagine P O M D P as an M D P wi th added observation into each state. There
are usually mult iple states w i th the same observation. A n example of an P O M D P is in
Section 6.2. It is an example of simple 4 x 4 gr id which is figured i n Figure 6.1.

Simi lar ly to M D P , we are t ry ing to create a scheduler that w i l l tel l us which act ion to
perform. The difference is that here we w i l l not handle states, but observations, because

9

the agent is not always able to clearly determine what state it is i n . The Observation-based
scheduler therefore maps observations to actions.

Before the actual definition, we have to introduce a few symbols. Set of finite paths
7T = so s\ —k> ... sn £ Paths in- B y lifting the observation function O to paths we get

7T = O(s0)^O(s1)^...O(sn).

Definition 6. A n observation-based strategy a for a P O M D P M is a strategy for the
underlying M D P M such that CT(TT) = a(Tr') for a l l vr, vr' G Pathsfin w i t h O(vr) = O(TT'). E M

is the set of observation-based strategies for M .

2.5 Finite State Controller

Fin i te state controllers (FSCs) represent observation-based schedulers. F S C s have finite
memory given by number of memory nodes which represents inner states of Mea ly Machine.

Definition 7. A finite state controller for P O M D P M is tuple F = (N, no,7,6 where

• iV is a finite set of nodes

• no £ iV is an in i t i a l node

• 7 is the action mapping function 7 : J V x Z ^ Distr{Act)

• 5 is the memory update function 5 : N x Z x Act —> Distr(N)

For \N\ = k, we cal l an F S C a k - F S C .

Less formally we can say that j(n, z) determines the action when agent is i n node n and
observes z and 5 updates the memory node, when being in node n and observing z after
taking action Act.

Fini te state controllers can be either deterministic or stochastic. Stochastic F S C s define
next node as probabil i ty dis t r ibut ion, but we w i l l use deterministic ones i n this thesis.

The workflow of controll ing the agent i n the environment modeled as P O M D P using
F S C is following. Agent is i n node and gets an observation. Th is observation determines
next action. Agent takes the action. This causes P O M D P to move to the next state and
F C S to the next node. There agent gets new observation and the entire process repeats.

10

Chapter 3

Inductive synthesis

In this chapter, I w i l l firstly describe what how does the synthesis work, then I w i l l talk
about the P A Y N T tool and then I w i l l focus on one of the inductive synthesis methods
implemented P A Y N T , which is the abstraction refinement method.

Synthesis is a way to bu i ld an F S C for a given P O M D P to satisfy the specification.
Usual ly we want to find op t imal fc-FSC which maximizes cumulative reward. This problem
is undecidable, because the k can be indefinitely large. The synthesis has two stages. We
create family of F S C which is called the design space. In the second stage we t ry to select
the best F S C from the design space. Usual ly we firstly synthesize 1-FSC, than create new
design space using 2 - F S C and so on. There are mult iple methods for identifying the most
opt imal F S C wi th in the family of F S C s . Some of these methods are implemented into the
P A Y N T tool , which w i l l be further described i n the following section.

3.1 P A Y N T

Probabi l is t ic p r o g r A m sYNThes ize r , shortly P A Y N T , is a tool implemented i n Py thon .
P A Y N T was, as the name suggests, developed to be able to synthesize probabil ist ic pro
grams. The goal in this case is to fi l l holes (undefined parameters) to meet a specification
(typically maUsual ly we create 1-FSC first, then 2 - F S C and so on. x imiz ing reward or
reachability). Another task that P A Y N T can solve is the synthesis of F S C s for P O M D P s
and that is what I w i l l focus on.

To be able to accomplish these tasks, it contains an implementat ion of several synthesis
methods. Simply, this tool works by setting up a design space containing a family of F S C s
and t ry ing to select the F S C representing the policy that the desired specification the
best. The most basic method is one-by-one. This method goes through a l l the possible
F S C s from the family and selects the one that best suits its given specification. Next
method is Counter Example Gu ided Inductive Synthesis (C E G I S) . This method is more
complicated, as it first selects one realisation from the family and decides whether or not
it meets the specification. If the specification is not met, a cr i t ica l set of states is sampled.
Then a l l realisations that do contain this subset of the states are removed from the family,
because it is assumed that they do not meet the required specification either. P A Y N T also
contains the A R method, which w i l l be discussed more in Section 3.2. B y combining the
two previously mentioned methods (C E G I S and A R) a hybr id method is developed, which
switches between these two methods.

11

P A Y N T needs two inputs to be able to perform synthesis. It needs to know the model
(in our case P O M D P) and the specification. P A Y N T has two input options. The model can
be defined as a sketch i n P R I S M language format [23]. The specification of the property
is then i n the form of an expression in probabil ist ic temporal logic, which can for example
be P C T L (Probabil is t ic Computa t ion Tree Logic) . Another way of input to P A Y N T is the
P O M D P file format by Cassandra et. a l [11], which was created just for defining P O M D P s .
Th is format has an enormous advantage, as the parsing of this format is much simpler,
because it consists only of preamble, obligatory in i t i a l state, and several matrices. Because
of its s implic i ty it is suitable for creating an environment for t ra ining neural networks and
for this reason it is more useful for this work, and I w i l l discuss it a l i t t le further.

In this work I w i l l use Cassandra file format P O M D P as an input . The P O M D P input
file consists of a preamble and a body. The preamble contains a discount, a value type (in
our case reward), a number or list of states, actions and observations. The body is com
posed of several matrices determining transitions between states, observations and rewards.
The values i n these matrices take the form of probabilit ies that a given transition/obser
vat ion/reward w i l l be executed under given conditions (ini t ia l state, action, target state
. . .) .

3.2 Abstraction refinement

Abst rac t ion refinement (A R) is one of the synthesis methods implemented in P A Y N T ,
as mentioned earlier i n this text. It works i n quite opposite way than C E G I S method.
A R takes family of M C s and transforms it into all-in-one M D P which is then abstracted
into quotient. We can obtain an expected m i n i m u m and m a x i m u m values (probabili ty or
reward) using Storm model checker from the quotient and based on the values, we decide i f
the family satisfies given specification or not. Quotient is a model created from all-in-one
M D P by forgetting i n which realisation it operates. This process is called an abstraction.

Second part of this a lgori thm is a refinement loop. It varies according to the type of
problem we're solving. The problem can be either maximiza t ion or we have given threshold.
In case we get threshold, it is a bit easier. We have three values which can be set i n three
ways (the m i n i m u m is always smaller than the m a x i m u m and therefore, only the posit ion
of the threshold differs). In case thrashold is smaller than min imum, none of the ralisations
in this family satisfy the specification. O n the contrary, i f the threshold is greater than
the max imum, a l l realisations satisfy the specification. If threshold is i n the between the
min imum and the max imum, we split the set of realisations into subfamilies and consider
them separately. The spl i t t ing is done by restricting actions of the M D P to the part icular
subfamily of M C s . Th is avoids rebuilding M D P after each iteration.

The second one is maximiz ing synthesis, where we do not have given threshold and
are supposed to find the max imum. A t the beginning, we set m a x i m u m (let me sign it as
max*) as a smal l value. Then , if we get m a x i m u m which is bigger than max*, there are
another two options, if the max ima l scheduler is consistent, we set the max* to value of
maximum, otherwise we split and if m i n i m u m is bigger than max*, the max* is set to the
value of min imum. If the m a x i m u m is lower than max*, this realisation is discharged. A s
you can see, the reinforcement loop is similar to the one wi th threshold wi th the difference
that instead of threshold we use a value that changes i n t ime according to the max imum
and m i n i m u m values.

In the case of m a x i m u m synthesis, consistency is the crucial factor for us (as it is also
used to choose, i f m a x i m u m should be overwritten i n maximiz ing synthesis).

12

Chapter 4

Reinforcement learning

Reinforcement learning (R L) is one of the fields of Machine learning. Reinforcement learning
reflects more the actual way people learn than other methods, such as supervised learning,
semi-supervised learning and unsupervised learning do. Said methods differ i n the k ind of
data we have available. In supervised learning, we need to have labeled data. It is really
powerful approach, however data-set creation is t ime and human resources consuming. The
best use of this approach is i n speak recognition or image classification. In semi-supervised
learning, we have part of the data labeled, but not a l l of them. These techniques are used in
case we need a huge amount of data, but do not have resources to label a l l of them. Semi-
supervised learning can be used i n image classification i f we do not have enough labeled
data. The learning itself can be a bit less effective in comparison to the supervised learning,
but this is compensated by the difficulty of creating the dataset. Unsupervised learning, as
the name suggests, works wi th unlabeled data. It can be used for various pattern matching
problems, where it is difficult to obtain labeled data.

In reinforcement learning, agent learns from experience, same as people do. A t first,
agent performs random actions and gets new observations wi th information on how good
of a choice he made. We can compare it to children exploring the world by moving around
and getting feedback from their surroundings on what to do or not to do. The feedback,
the agent receives, has a form of rewards. A reward is a numerical value, and it is typical ly
said that the higher the better. Th is value can be both positive and negative. A positive
value typical ly signifies the agent's progress towards the goal state, while negative can be
moving to an unsatisfactory state. The a i m is almost always to learn how to get the biggest
cumulative reward possible. We do not need to maximize the reward obtained after each
step, but the cumulative reward we get after a sequence of steps is more important for us.

The learning is based on evaluating long term rewards that the agent gets after taking
steps i n the environment. The environment is a model and, in our case, is represented
by P O M D P (definition 5). The learning process is a loop. The agent performs an action
in the environment. The action determines what is to happen in the environment. This
usually determines which transi t ion between states is to be performed (the agent can also
stay in the same state). These transitions are given by a transi t ion probabil i ty matr ix
defined i n the P O M D P model . The agent receives a reward and a new observation from
the environment as a response. This observation is corresponding to a different observation
that was assigned to the state we get i n after performing an action and not the state before
the action was performed. This process is shown in Figure 4.1.

13

Action Observation + Reward

Figure 4.1: Reinforcement learning loop. The agent takes actions resulting in changes in
the environment (transitions between states). The agent then receives reward and new
observation from the environment.

4.1 Deep reinforcement learning

Deep reinforcement learning is a subfield of reinforcement learning. Deep learning methods
(in general, also in the case of supervised learning . . .) contain neural networks (usually
one, but can be mult iple) . Neura l networks (NN) are par t icular ly useful i n the case of
t ra ining huge models. There is a large variety of reinforcement learning method. Y o u
can see the taxonomy of reinforcement learning algorithms at O p e n A i Spinning U p page
[1]. A n overview of reinforcement learning algorithms and several examples of their use
is presented i n the paper Recent Advances i n Deep Reinforcement Learning Appl ica t ions
for Solving Par t i a l ly Observable Markov Decision Processes (P O M D P) Problems: Par t
1—Fundamentals and Appl ica t ions i n Games, Robot ics and N a t u r a l Language Processing
[30].

In order for a large model to be trained, it is necessary to have a large amount of data
available for t raining the model on. This problem does not need to be solved that much
in my case, because the model is trained by simulation in a defined environment that can
be reset and reused. Another problem I have to deal w i th is overtraining. Overt ra ining of
a model occurs when the model is already trained, but we continue training, or we t ry to
t ra in an already trained model . I w i l l discuss this problem and its solution i n more details
later i n Section 5.

Neura l networks are made up of layers. These layers are made up of neurons. The
neurons usually have some biases and weights, in some cases they may also contain some
addi t ional variables. In general, a neural network looks like the one i n Figure 4.2. It
contains one input layer, several hidden layers and one output layer. Input data is fed into
the input layer. These are then processed through the hidden layers and finally we get the
values at the output layer. There are several types of layers. Neura l networks are often
named after the layers they contain (for example, a recurrent neural network contains one
or more recurrent layers, but usually some other layers i n addit ion).

Let me describe i n more details types of N N layers which I w i l l deal w i th further in this
theses.

L i n e a r layer

Linear layer can be also called Fu l ly connected layer and that describes exactly how it works.
Regardless of which layer follows, a l l neurons of this layer are connected to a l l neurons of the
following layer (e.g. in Figure 1.2 a l l layers are linear). It is the most frequently used type
of layer and can be found i n almost every neural network. For example, in convolutional
neural networks it is used to connect ind iv idua l convolutional layers.

14

Input layer j Hidden layers Output layer

Figure 4.2: General structure of a neural network

Softmax

Softmax is not so much a layer as a function, but I decided to include it here. Softmax is
usually found at the end of the neural network and is usually preceded by a linear layer.
Softmax is used to normalize the output so that the values are i n the interval (0; 1) and al l
of the output values sum to 1.

Recurrent layer

Recurrent neural networks are very extensive in the creation of large language models.
Other types of neural layers have no memory and this l imits them because they can only
work wi th the last information. B u t for example, if we want to translate a sentence, we
need to know the context i n the form of the previous words i n the sentence and this is
what the recurrent layer solves. There are several types of recurrent neural layers. One
of the first recurrent neural networks was introduced by John Hopfield [21]. I w i l l not
describe it in detail , because I d id not use this N N in this work. The one I use is in
Pytorch module: torch.nn.RNN which was introduced i n 1990 by Jeffrey E l m a n [18]. Y o u
can see the architecture of recurrent layer i n Figure 4.3. E a c h neuron in this layer has a
cell. The cell is used to store information from previous passes. The output of this layer
w i l l be added to the next input w i th some weight, which is usually lower than the weight
of the input . In this way we achieve that w i th the passage of t ime the first value w i l l have
less and less influence than the following values.

Long short—term memory

Long short - term memory (L S T M) is another type of recurrent layer. The recurrent layer
as described previously has one disadvantage. In some cases, we do not have, for example,
words that are related directly next to each other, but the context is stretched out in
a larger section where unnecessary words are found. For this it is useful to have a tool
that allows us to remember some stuff and forget others and this is what the L S T M layer
solves. L S T M has a hidden state In addi t ion to the cell state. The cell state serves to store
information in long-term and the hidden state represents short-term memory (hidden state
represents current output) . L S T M contains three gates that determine what data should
be stored in the long-term memory (cell state). These gates control the flow of information
which is needed to predict the output i n the network. A l l three gates are Sigmoid function

lrThe picture was taken over from https://pabloinsente.github.io/the-recurrent-net [8]

15

https://pabloinsente.github.io/the-recurrent-net

compact
representation

time unfolded
representation

output
layer

output
layer at t

output
layer at t+1

w

hidden
layer ir

w

®
input
layer

cloned
state

(memory)

w

hidden
layer

©
input

layer at t

ir
cloned

t state
(memory)

at £

w

input
layer at t+1

cloned
J- state

(memory)
at t+1

Figure 4.3: Recurrent network architecture by Jeffrey E l m a n 1

and their results are constant on the interval (0;1). The first gate is an input gate. It
determines how important the new data is to remember. Next , there is a forget gate. This
gate determines how important the data stored i n cell state are (if we can forget them
or keep them). Last ly, there is output gate. Th is gate decides i f the data stored i n cell
state are relevant for current output. The workflow is as follows. A t first, we mul t ip ly cell
state wi th result of forget gate, then we add input w i th input gate and mul t ip ly this result
w i th cell state (which is already affected by the previous calculation). Then we generate
output applying the activation function to the output of input mul t ip l ied by output gate.
The L S T M architecture is described in L o n g Shor t -Term Memory based recurrent neural
network architectures for large vocabulary speech recognition by H a s i m Sak et. a l . [29].

memory
(cell unit)

ct-

hidden U
n>t-i state

generated /j
output yt

forget
gate

T T

Xt input
vector

fully
connected

layer

elementwise
c o P y concatenate operator

Figure 4.4: L S T M architecture 2

vector
transfer

16

4.2 Recurrent Deep Q—learning

A s a base of reinforcement learning method I have implemented, I have chosen to use Deep
Q-Lea rn ing algori thm (D Q L) described in Human-level control through deep reinforcement
learning by M n i h et. a l . [25]. The a im of its task is to find opt imal action-value function (Q -
function) using Deep Q-Ne twork (D Q N) agent. Authors of referenced paper have evaluated
this a lgori thm on several A t a r i 2600 games. A fundamental insight into Deep Q-learning
is also provided by M a x i m Egrov in Deep Reinforcement Learning w i t h P O M D P s [17].

Neura l networks are a powerful tool , but they are not suitable for dealing w i t h long
term dependencies between data. However, recurrent neural networks allow us to work
wi th memory. Due to that fact, I have decided to extend this method on recurrent neural
network. One of the recurrent neural network architectures is described by Clare Chen in
Deep Q - L e a r n i n g w i t h Recurrent Neura l Networks [16]. Deep Recurrent Q - L e a r n i n g in the
context of P O M D P s is i n Deep Recurrent Q-Learning for Par t i a l ly Observable M D P s by
Mat thew Hausknecht and Peter Stone [19]. In the lastly mentioned paper, authors used
L S T M as a recurrent layer in combination wi th three convolutional layers.

In the following sections of the text, I describe firstly the architecture of the neural
network that was used, then the used machine learning algori thm and finally I describe
how this a lgori thm was implemented and connected wi th the synthesis i n the framework of
P A Y N T .

4.3 Neural network architecture

The neural network was i n P y t h o n using P y T o r c h l ibrary [5]. I have assessed two networks,
which are the same, besides the fact that one of them contains E l m a n Recurrent layer, and
the second one has Long-Shor t -Term Memory layer instead. B o t h of these layers gave me
similar outputs which w i l l be discussed In more depth i n the Section 6. The neural network
architecture is i l lustrated i n Figure 4.5. A l l of the layer's functions were mentioned earlier
in this text. I have chosen to use two recurrent layers, where the input size of the first one is
1, which is because we can have only one observation at t ime. A s a hidden size (that is also
number of output size of the recurrent neural network and input size of the linear layer) I
have chosen random number, which seems to work fine. The output size of the linear layer
equals number of actions of the P O M D P model as this output gives us dis t r ibut ion over
actions. To be able to have the probabil i ty dis t r ibut ion we have to normalize the output
using Softmax function.

B o t h modules torch.nn.RNN and torch.nn.LSTM use the same activation function as
default. The activation function is Tanh function. For R N N it is also possible to use ReLU
as an activation function. For R N N , the function that computes hidden state is following:

ht = tanh(xtWfh + bih + ht-iW%h + bhh)

where,

• x is an input

• t is and index i n sequence

• h is hidden state

2The picture was taken over from https://pabloinsente.github.io/the-recurrent-net [8]

17

https://pabloinsente.github.io/the-recurrent-net

• Wih is input -h idden weight

• is hidden-hidden weight

• bih is input -h idden bias

• bhh is hidden-hidden bias

The previous equation is adapted from P y T o r c h documentation [28].

Observation sequence Distribution
-^over actions

Figure 4.5: Structure of implemented neural network

4.4 Training

Training has two phases. Fi rs t ly , we need to ini t ial ize Q-funct ion, target Q-funct ion and
replay buffer. Then , there is an inner cycle. A l l the ini t ia l izat ion is done while the learning
agent is ini t ial ized, because we cal l the t ra ining function repeatedly un t i l the neural network
is trained well enough. In the beginning of the cycle, we choose an action based on s-greedy
policy. We use this action to perform a step. A s a result of performing a step, we get a
reward and new observation. We append this transaction to replay buffer and update
reward of the episode. After that we sample batch of transitions from replay buffer. Then
we count target value. The calculat ion of target value varies on whether we are or are
not i n the goal state after last step. A t the end of the loop, we perform gradient descent
step. O n every C of steps, we need to update parameters of target Q-funct ion from online
Q-funct ion before the loop ends. Now, I w i l l describe each of the steps i n more details.
Hyper parameters used for t ra ining and their values are described i n Table 4.1

4.4.1 Environment

To be able to t ra in the neural network, we need to define the environment. We use the
environment to simulate performing steps (taking actions which leads to transit ioning be
tween states). We get a l l the necessary information, specifically observations and rewards,
from the environment. The environment is generated from P O M D P file we get as an input
to the synthesis. For parsing the input model i n P O M D P file format and generating envi
ronment, I have used P y t h o n tool called Gym-pyro developed by Andrea Baisero [6]. The
environment is created using the Open AI Gym l ibrary [7].

The environment consists of three spaces: state_space, action_space, observation_space,

which are ini t ia l ized from the input P O M D P model i n my case. Two most important meth
ods, used to move in the environment, are env. step (action) and env.reset () . The reset

18

function resets the environment into its in i t i a l state. The step function performs steps in
the environment based on the action, environments current state and the model . After the
step is done, we get observation, action, reward and info. The first three variables are stored
in the replay buffer. The info consists of t ransi t ion dis t r ibut ion, observation dis t r ibut ion
and reward based on state (before step is performed) and action.

4.4.2 Initialization

A t first, we need to ini t ial ize Neura l network and replay buffer. I have skipped ini t ia l izat ion
of replay buffer, and instead, I have only defined it as a list. The values to the buffer w i l l be
added later dur ing pre- t ra ining cycles, which is why I do not see any reason to ini t ial ize it
now w i t h random values. There are two neural networks that need to be ini t ia l ized. Weights
of bo th of them are ini t ia l ized to random uniform values. I also ini t ial ize optimizer. A s an
optimizer I w i l l use A d a m .

4.4.3 Pre—training phase

Before we start t raining, we need to run several cycles. Transitions from this cycle are used
as in i t i a l values of replay buffer. That is why the number of steps in this cycle corresponds
to the size of the replay memory. Agent chooses a l l of the actions wi th in this cycle randomly.
The random action is chosen using the command s e l f . e n v . a c t i o n \ _ s p a c e . s a m p l e O .

After the cycle, few more variables have to be defined. One of them is counter, which is
used to count steps. We need this information to be able to identify the moment, of when
is best to update the target network. We create variable e p s i l o n which is used to store
probabil i ty of selecting the action randomly. There are also several variables which w i l l be
used later to store a batch of transitions. They are ini t ia l ized as zero, but later I found out
that it may not be necessary.

4.4.4 Training cycle

There are two cycles; the inner cycle and the outer cycle. E a c h i teration of outer cycle
represents one episode. Number of episodes is a mult iple of a constant. Tha t is, because
the t ra ining function is called repeatedly, and we do not know how many times (it varies task
from task (and can differ also why running same program repeatedly w i t h same parameters
due to the randomness of selecting actions). The inner cycle does not have number of
iterations, but it is l imi ted, the m a x i m u m number of iterations is derived from number of
states of P O M D P (is double the number of states). In our case, we do not have defined
terminal state i n our model, so the condit ion on ending the inner cycle when the goal state
is finished is ignored and we use m a x i m u m number of iterations to break the inner cycle.
Iterations of the inner cycle represent ind iv idua l transitions.

In the outer cycle, there is not so much going on. It is a wrapper around the inner cycle.
Before getting into the inner cycle, some values (specifically reward and counter of steps of
the current episode) are being set to zero.

We spend most of our t raining t ime performing iterations i n the inner cycle. A t first,
we increment counters and decrement e. A t first, we need to generate observation-action
sequences, which are then used as an input for t ra ining neural network. Tha t is done by
selecting actions using e-greedy policy. After that, we perform a step using selected action.
We store the transit ion, which we obtained as a reaction to the step taken. The transi t ion
is stored into replay buffer. E a c h transi t ion consists of previous observation, action that

19

was taken, reward, flag done (that indicates if we are i n the final state; i n our case always
set to False) and new observation we obtained after performing the step. The cumulative
reward of the current episode increases by the value of the obtained reward. If the inner
cycle has finished, cumulative reward and number of steps are added to lists.

After this, we generate a batch of random transactions from the replay buffer. This set
of transactions is used to perform a gradient descent step. In the original article, this part
was done once every several iterations, but I do it after each one. We need to count target
values. Th is is done by equation:

where yj is target and ymax is m a x i m u m value we got as a result from target neural
network from previous transactions i n this batch. T h a n we need to get value qj. This value
is a result from online neural network. We use these two values to count error w i th the use
of loss function.

After we count value of loss function, we have to remove gradients from the last iter
ations. We do so, by setting them to zero. Now, we can compute gradients and perform
gradient descent step, using an optimizer. A s the optimizer I use A d a m .

After every n iterations, where n represents the update frequency, we have to update
the target network wi th values from online network.

After each training loop (50 episodes) is finished, we save the model i n file model.pt..

e—greedy policy

W h i l e deciding which action to use, there are three options. We can select an action, based
on a synthesized assignment or a random action or select the best option i n the Neura l
Network available for last observation. W h i c h of these two options to choose, is decided
by probabili ty. The probabil i ty of which action we choose is set by e(at first, we select
random actions more often and later, we rely more on trained neural network). If the
random generated number i n range (0; 1) is smaller than e, we have 50% chance agent
performs random action from the action space of the environment and 50% chance agent
selects action based on the result of synthesis. Otherwise, the action that seems the best
to the agent is taken. The best action from an agent's point of view is selected based on
the output from the neural network, while using the last observation as an input.

Loss function

A s a loss function, I used Mean squared error loss function, as well as the authors of the
paper that I used as a base of my work. The error is calculated by equation:

where yj is calculated from the reward, the max ima l Q-value for the selected action and
Q{p) is an actual output from the neural network, p stands for parameters, which were the
same as the ones that were used to calculate the yj.

rewardj

rewardj + discount * y.: 'max

if episode terminates at j+1

otherwise

loss = (yj - Q(p))2

20

http://model.pt

Hyperparameters I have used for t ra ining are described i n Table 4.1 wi th their assigned
value.

batch size 32 Number of transitions to be chosen
to compute gradient descent update

buffer size 10000 Number of pre- t ra ining cycles
update frequency 10 the frequency in which target network is updated

epsilon start 1 Ini t ia l value of e
epsilon end 0.1 F i n a l value of z

epsilon decrease 0.000007 the number subtracted from eat each step
number of episodes 50 x A; Number of t ra ining episodes (excluding pretraining cycles)

discount 0.99 Used in Q- learning update

Table 4.1: Hyperparameters used for t raining

21

Chapter 5

Combination of reinforcement
learning and synthesis

The possibilities of using synthesis in combinat ion w i t h machine learning are a matter
of current research. One approach is presented by Steven Ca r r et. a l . In Task-Aware
Verifiable R N N - B a s e d Policies for Par t i a l ly Observable Markov Decision Processes [9]. In
contrast to the above approach, I have chosen not to deal w i th memory nodes at a l l during
reinforcement learning, but to focus only on assigning actions to observations. Therefor my
approach is significantly different.

5.1 Implemented method

I have combined two previously mentioned algorithms, Abs t rac t ion refinement and Recur
rent Deep Q-learning. The entire process has three phases, which w i l l be described i n this
chapter. B o t h algorithms w i l l run i n separate processes, for this reason we need to init ial ize
these processes at first. Then they run independently un t i l one of them is finished and
after this, the results have to be processed. Y o u can see simplified workflow i n following
pseudocode.

run p a r a l l e l :

AR synthesis

training NN

i f synthesis finished:

terminate

else:

r e s t r i c t design space using NN output

run AR using limited design space

Firs t I run the synthesis and t ra ining of the neural network in parallel . W h a t happens
next depends on which of these two processes ends first. If the synthesis is finished (this
happens mainly wi th smaller models), a l l possible F S C s in the family are processed and the
program can be terminated (or continue wi th 2 -FSCs for incremental synthesis . . .) . If we
manage to t ra in the neural network first (this happens wi th larger models), the following
process is slightly more complex. We use the output of the neural network to restrict the
family of F S C s . We do this by removing the possibilities that are less l ikely to be good and

22

leaving only those that have a better chance of containing a better contorter. We w i l l then
synthesize over the modified F S C family again using the A R method. The different parts
of this process are described in more detai l in the following sections.

Preparation

A s the method is implemented inside the original method synthesize_one originally used
for Abs t rac t ion refinement method, I had to add in i t ia l iza t ion of the agent used for t raining
the neural network.

To be able to run both algorithms as two separate processes, I have used P y t h o n l ibrary
multiprocessing. A s getting variable satisfying_assigment from process after termi
nation is a bit complicated, I created only one new process for t raining, and abstraction
refinement synthesizer remained almost the same. I have created a shared list where the
output data from the neural network w i l l be stored at the end of the learning. This data
w i l l then be used to create a new family for synthesis.

Synthesis

Synthesis proceeds exactly as stated i n Section 3.2, except that it can be aborted early i f
the learning ends before synthesis. In case, there are no more families to consider before the
t ra ining of the neural network has finished, the learning process is aborted and this method
finishes as if there had never been any training. This happens especially for smal l models,
for which is the use of a neural network too robust. Since the learning algori thm runs i n a
separate thread, this method is almost comparably as fast as the original A R method (it is
only slightly slower).

Neural network training

The learning loop runs i n cycles of fifty episodes. After each cycle, it is evaluated whether
or not there has been an improvement compared to the previous fifty episodes. If there has
been an improvement, the scheduler is updated according to the current state of the neural
network. If there is no improvement, it means that there has been a probable overtraining
and further t ra ining is pointless. After this occurs, the previous scheduler is returned and
the learning process ends.

After each cycle (50 episodes), learning agent updates the assignment according to the
current synthesis progress.

Post—training

There are two possibilities that can occur, either the synthesis finishes as the first one and
thus this method is terminated as already said, or the learning of the neural network finishes
before the synthesis. We w i l l discuss the second scenario in more detail .

We get Observation based scheduler from neural network. Since the output of the neural
network is a probabil i ty dis t r ibut ion over actions corresponding to a specific observation
that is on the input to this neural network, we select the action that has the highest
probability. In some cases, it may happen that this probabil i ty is not very high, and it is
possible that another action may be more suitable. For example, i f the probabil i ty of one

23

action is 49 % and the probabil i ty of the other is 51 %, it is reasonable to consider both
possibilities. Th is was a pretty extreme case, usually the difference is a bit wider. In a
downturn, when there is a large number of actions, we can consider even more. The key to
selecting the number of actions is that the sum of their probabilit ies exceeds the threshold
I set as 0.6. The family is then restricted using obtained scheduler and synthesis is run
again, but now w i t h the restricted family.

Example 4. For example, we have two Observations and three actions for each observation.
During the training, the rewards stopped increasing and started decreasing, we caught the
overtraining. We have a scheduler that we created in the last cycle (at the time of peak
rewards before we have caught the drop). At the time of creating the scheduler, we got the
following probability distribution over actions as the output of the neural network:

O0 : P(ao) = 0.1; P(ax) = 0.2; P(a2) = 0.7

Ox : P(ao) = 0.4; P(ai) = 0.35; P(a2) = 0.25

As you can see, the best action for the first observation is clearly a2, its probability is
bigger than 0.6 which means we can use it. The best action for the second observation is OQ,
but its probability, according to the neural network, is only 0.4- It is smaller than threshold
which is 0.6. This means that we must also take into account the second-best action which
is ax- We create family containing one action for the first observation and two possible
actions for the second observation. This is a very simple example, which will never occur,
because it would be solved very quickly using synthesis. In more complex cases, it is possible
to have more than one possible action for one observation, there is no upper bound, except
for the sum of probabilities.

The method of creating list of actions for given observation is following:

def best_actions(self, obs):

obs_tensor = torch.as_tensor(obs, dtype=torch.float32)

q, _ = self(obs_tensor.unsqueeze(0), torch.zeros(2 ,1,10))

i = 0.0

J = o

while i < 0.7:

J + = 1

options = torch.topk(q, j) [l]

i = torch.topk(q,j)[0].sum()

return options.tolist()

24

Chapter 6

Evaluation

In this chapter, I w i l l compare the results of a method combining synthesis w i t h reinforce
ment learning against the results of an abstract refinement method.

This chapter w i l l be divided into several sections. Fi rs t ly , the experimental conditions
and the models that w i l l be used in the experiments w i l l be described. Fol lowing this, the
experiments that have been performed wi th each model w i l l be evaluated.

6.1 Experimental setting

A l l of the experiments were run on Lenovo T h i n k p a d E490 equipped wi th I n t e l O C o r e ™
i7-8565U C P U @ 1 .80GHzx8 and 16 G B of R A M . I w i l l compare the results of experi
ments using a method combining reinforcement learning wi th the Abs t rac t ion Refinement
method against the results obtained using only the Abs t rac t ion Refinement method, which
is implemented in P A Y N T .

I w i l l use two different types of model as a benchmark. F i rs t , I w i l l use the simple G r i d
and Maze models. I obtained these models by overwrit ing the models that were already in
P A Y N T [2] into Cassandra format. The Maze model was introduced in the paper P A Y N T :
A Too l for Inductive Synthesis of Probabi l i s t ic Programs [2]. Secondly, I w i l l perform
experiments using more complicated models Pentagon and I F F obtained from [10].

Since the results using reinforcement learning can differ while using the same input, I
run each experiment using reinforcement learning mult iple times. I w i l l compare the mean
results of the experiments performed using the implemented method wi th the results of the
Abs t rac t ion Refinement method and also evaluate how much the results of each experiment
using reinforcement learning differ and compare these results w i th A R method.

B y performing experiments I w i l l t ry to answer the following questions:

• Do we obtain similar results for Maze and G r i d models using method combining R L
wi th A R as using the A R method only?

• We w i l l be able to get better results for models Pentagon and I F F using combination
of R L wi th A R than using A R method only?

• W i l l we be able to get at least as good results for models Pentagon and I F F , but in
less t ime using combination of R L wi th A R i n comparison to A R method only?

• How stable the method using reinforcement learning is?

25

Parameters of models used for experiments are i n Table 6.1. I w i l l give more details to
each model i n following sections of this text.

M o d e l \s\ \Z\ \A\ M D P \S\ M D P \A\ \Designspace\
G r i d 4 x 4 16 9 4 33 126 10 6

G r i d 10 x 10 100 9 4 201 798 10 6

Maze 14 7 4 27 102 10 5

Pentagon 212 28 4 5646 22578 1 0 1 0

I F F 104 22 4 668 2666 1 0 1 3

Table 6.1: Benchmark models. \S\ stands for number of states in P O M D P , \Z\ stands for
number of observations in P O M D P , \A\ stands for number of actions i n P O M D P
, M D P \S\ stands for number of states of underlying M D P after determination, \A\ stands
for number of actions i n underlying M D P after determination and \Designspace\ is size of
the design space. A l l of the values are for 1-FSCs, i n case of 2 -FSCs . . . some of the values

are bigger.

6.2 G r i d

The gr id is one of the simplest navigation problems modeled as P O M D P . If the grids size
is n x n , the P O M D P has n 2 states, always have 4 actions and 9 observations. The actions
define the directions the agent can move (north, south, east, west). The probabi l i ty of
successfully moving into the neighboring state equals one, except for impossible directions.
If the agent tries to get into the impossible direction (out of the grid), the agent stays in
the current state. The in i t i a l state is set by uniform dis t r ibut ion over a l l states, except the
goal state. The goal state is the last state (in bo t tom right corner) and after reaching this
state, the next state is not selected by action, but is random (one from a l l possible states
except the goal). Y o u can see an example of 4 x 4 gr id in Figure 6.1. The reward in each
state is -0.1, except for the goal state which has reward one.

A s you can see i n Table 6.2, the method using reinforcement learning is a bit slower
than the abstraction refinement method. This was expected i n this case, because this
P O M D P is easy to solve using only A R in almost no time, but t ra ining the neural network
takes t ime even while using smal l environment. The method including combination of the
reinforcement learning and the synthesis i n this case d id not use any outputs from the
reinforcement learning, because the A R method finished a lot quicker, than we were able to
obtain any useful data from the learning. For this reason are the results of both methods
the same.

M o d e l
Abs t rac t ion refinement A R + R L

M o d e l
M a x Reward Dura t ion [s] M a x Reward Dura t ion [s]

G r i d 4 x 4 2.62 0.01 2.62 0.04
G r i d 10 x 10 -1.29 0.06 -1.29 0.07

Table 6.2: G r i d experimental results

26

North North

North; West

West([SA/ZA

South; West((S 1 2 / 2 2

Westi [s%/z4

South; East

South South

Figure 6.1: G r i d

27

3 - F S C

I have also performed experiments creating 3 - F S C . A s you can see the reward is the same
using both methods same as in previous case using 1-FSC. Tha t is because the A R method
was able to find op t imal 3 - F S C really fast. The difference is i n times needed for the pro
gram to terminata. The technique combining Abs t rac t ion Refinemenet w i th Reinforcement
Learning sometimes terminates faster. The results are shown i n Table 6.3. A l l experiment
using both methods results i n finding the same opt imal reward (2.62 for gr id 4 x 4 and
-1.29 for gr id 10 x 10), for this reason the table shows only t ime needed for the experiment
to terminate.

M o d e l A R A R + R L A R + R L mean
G r i d 4 x 4 14395 31.36 33.62 60.06 106.16 29.7 52.18

G r i d 10 x 10 14395 14397 14396 14396 707.41 148.13 8808.91
Terminat ion timeout timeout timeout timeout finished finished -

Table 6.3: G r i d 3 -FSC experimental results

A s you can see i n Table 6.3, the Abs t rac t ion Refinement method terminated always due
to t imeout. W h i l e using reinforcement learning i n addi t ion to Abs t rac t ion Refinement, the
synthesis in some cases terminates before the set timeout.

A l l experiment using grid 4 x 4 as an input terminated a lot faster using combinat ion of
synthesis w i th learning. Four out of five experiments terminated i n about a minute. The
experiment that took the most t ime ended after 106 seconds. The mean time of run using
combination of R L an A R methods is 52.18 seconds which is less than a minute, whereas
while not using reinforcement learning, the process terminates due to timeout after four
hours.

For the bigger gr id 10 x 10, is the difference between used methods not that obvious.
The combinat ion of synthesis and learning terminates i n only two out of five before the
timeout, but i n this two cases, the t ime difference is significant. The mean time when using
the combinat ion of R L and A R i n the performed experiments is less than two and a half
hours, which is a bit over half of the t ime than i n the case of using only the A R method
only, which ends after four hours w i th a timeout.

A s expected this model is too smal l for reinforcement learning to be useful. The A R
method was i n a l l cases able to give us op t imal controller really fast. The reason why the
3 - F S C results are not better than the 1-FSC results is that the model is so simple that
we are able to obtain the opt imal 1-FSC. For example i f the goal state is so, we opt imal ly
should take act ion nor th in a l l states besides the ones on the top where we need to go west.
We do not need any memory to do this so we are able to get op t imal 1-FSC.

6.3 Maze

The Maze is s imilar to the G r i d mentioned previously. Y o u can see the visualizat ion of
the Maze i n Figure 6.2. It consists of 13 states, where s\3 is goal state and so and sio are
unwanted states. There are 4 actions, same as i n the G r i d , and 6 observations.

I have performed a bit different experiments using this model than using grid. I run
1 experiment using A R method and 5 experiments using combination of A R wi th R L . In
these experiments I was doing incremental synthesis which means 1-FSC synthesis is run
first, than the experiment continues wi th 2 - F S C Unl ike the grid here, we are able to

28

3 4 5 6 7

2 11 8

1 12 9

13 10

Figure 6.2: Maze

get 2 - F S C , which is better than the best possible 1-FSC. In a l l experiments we were able
to find 1-FSC wi th the best reward -0.4 in about 0.05 seconds. The best found k - F S C was
2 - F S C i n a l l of the experiments and that gave us reward 1.231. The difference i n the time
to find the op t imal 2 - F S C was 0.39 i n the case of the A R method and about 0.48 i n the
case of the combination of A R and R L . The result is very similar to the grid results. More
precise results of ind iv idua l experiments are i n table 6.4. The timoeout was set to 4 hours
so I was able to explore k - F S C for k > 2, but were not able to find any better controller.

Maze 2-FSC A R A R + RL A R + RL mean
Duration s 0.39 0.45 0.56 0.43 0.44 0.52 0.48

Table 6.4: Maze 2 - F S C experimental results

6.4 Pentagon

Pentagon is larger navigation problem i n compare to G r i d . It consists of 212 states, 4
actions and 28 observations. Th is model is noisy, which means the transitions between
states are par t ia l ly random. The observations are also par t ia l ly random. Due to these facts
this model is a lot more difficult to solve and the induced M D P is large consisting of 5646
states and 22578 actions. The size of the design space is 1 0 1 6 for 1-FSC and 1 0 4 9 for 2 - F S C .
I have performed two different kinds of experiment constructing 1-FSC and 2 - F S C which
w i l l be discussed i n following sections.

1-FSC

Results of performed experiments constructing 1-FSC are consistent. The results are in
Table 6.5. M a x rewards are either -1.585 (same as using A R method only) or 0.0 (which is
opt imal reward, because rewards can be zero or negative). Three out of five experiments
two of them were able to find 1-FSC wi th reward 0. The mean reward is -0.634 which is by
0.951 better then using A R method only. The mean time is slightly higher in case of using
combination of A R and R L method, that is because most of the experiments were ki l led

29

by operating system probably because of lack of memory (including experiment using A R
method only) . Y o u can see the results also i n graph 6.3. The result of second experiment
using combinat ion of A R + R L methods is not visible in the graph, that is because it
terminated too quickly.

Pentagon 1-FSC AR AR + RL AR + RL mean
Max Reward -1.585 0.0 0.0 -1.585 0.0 -1.585 -0.634
Duration [s] 9590 14360 14373 11452 452.47 11284 10384.3

to 6953 6849 2978 8865 25 8852 -
Termination memory out timeout timeout memory out finished memory out -

Table 6.5: Pentagon 1-FSC experimental results

0,0

-0,5

•o

I -1,0

-1,5

-2,0

r

AR + RL 1

AR + RL 2

AR + RL 3

AR + RL 4

AR + RL 5

AR

2500 5000 7500 10000 12500

Time [s]

Figure 6.3: G r a p h comparing max ima l rewards of each Pentagon experiment constructing
1-FSC, to is t ime needed to find the best found F S C

The reason why using R L i n combination w i t h the A R method gave us better results
is that by just using A R we ran out of memory before we were able to explore a l l possible
controllers, i n the case of not running out of memory it is possible that we would run out
of t ime before we would be able to go through a l l possibilities and even wi th more memory
we have no guarantee that we are able to find a better controller i n a given t ime. B y using
machine learning I am able to reduce the number of controllers by those that are less l ikely
to be good, I can find a more op t imal controller faster. So it is possible (and from some
experimental results this has been confirmed) that I may not go through a l l the possibilities,
but I a m able to find a better controller without running out of memory and i n less time.

2 - F S C

Results of experiments constructing 2 - F S C are also pretty consistent. They are either -
1.704 of -0.393. In three out of five cases is the best found reward -1.704 which is the same

30

as using A R method only. In other two cases the result is -0.393 which is better. The mean
reward of experiment using combination of A R and R L method is -1.108. The mean time
is almost the same as using A R method. This experiments were also terminated due to
lack of memory as i n the case of the constructing 1-FSC (in this case a l l of the experiments
terminated for this reason).

Pentagon 2 - F S C A R A R + R L A R + R L mean
M a x Reward -1.704 -0.393 -1.704 -1.704 -0.393 -1.704 -1.180
Dura t ion [s] 7826 5799 9279 10191 5143 9459 7974.2

to 207 564 153 189 3302 207 -

Table 6.6: Pentagon 2 - F S C experimental results, to is t ime needed to find best found F S C

"5
CO
<;

0,0

-0,5

-1,0

-1,5

-2,0

1

2000 4000 6000 8000 10000

Time [s]

AR + RL 1

AR + RL 2

AR + RL 3

AR + RL 4

AR + RL 5

AR

Figure 6.4: G r a p h comparing max ima l rewards of each Pentagon experiment constructing
2 - F S C

A s you can see from the results, we were not able to find a better 2 - F S C than 1-FSC.
This is due to the fact that 2 - F S C has a significantly larger design space (10 4 9 while 1-FSC
is 1 0 1 6) . For this reason, we can go through a significantly smaller part of the possibilities
before we run out of memory.

6.5 I F F

The I F F (Identifidation Fr iend or Foe) is an aircraft identification problem. M o d e l I have
used consists of 104 states, 4 actions and 22 possible observations. I have split this section
into two parts, firstly I constructed only 1-FSC. Secondly, I was construction k - F S C , where
k increases from 1 to bigger number, bo th parts contain a table w i th the results of exper-

31

iments, a graph of the process of experiments and the evaluation of experiments for this
model.

1 - F S C

A s you can see i n 6.7, results of each experiment differ. A l l of the max ima l computed
rewards are above two. The mean reward using combinat ion of A R and R L method is
2.5096 which is by 0.2656 more thabn using only A R method. O n l y one out of five of the
experiments using A R + R L method gives worse results, than using only A R method. In
one case the result is same and other three cases the results were better. The best result
of these experiments was 2.822 and the worst was 2.196.

The durations of the experiments also differ. A s is shown i n graph 6.5, two experi
ments terminated a way faster than others and gave us the best results. One experiment
terminated in only 231 seconds and that is the one wi th the worst results (reward 2.196
while the reference reward is 2.244, but i n four hours. The second experiment has the same
durat ion as the reference experiment, therefore we do not really see it i n the graph. The
last experiment is most of the t ime same as the reference experiment, but its results near
the end slightly outperform and the experiment terminates a bit earlier giving us better
results.

I F F 1-FSC A R A R + R L A R + R L mean
M a x Reward 2.244 2.976 2.244 2.822 2.196 2.311 2.5096
Dura t ion [s] 14397 1191.16 9353.65 1196.84 231.19 14396 5273.77

to 303 772 348 762 72 12916 -

Table 6.7: I F F 1-FSC experimental results, to is t ime needed to find best found F S C

3,00

2,75

2,50

2,25

2,00

AR + RL 1

AR + RL 2

AR + RL 3

AR + RL 4

AR + RL 5

AR

2500 5000 7500

Time [s]

10000 12500

Figure 6.5: G r a p h comparing max ima l rewards of each I F F experiment constructing 1-FSC

32

Incremental F S C

The results where the k in k — FSC is increasing are very similar to results of constructing
only 1-FSC. In the experiment a l l of the best computed rewards only 1-FSC. A s i n the
previous experiments, the method combining A R and R L has one worse, one equal and
three better results than the A R method. B u t one of the better ones is only slightly better
and the other two are not as good as the best result i n the previous experiments. A s you
can see in Table 6.8, three of the experiments started computing 2 - F S C , but in given time
(four hours including solving 1-FSC) were not able to find better results, the other two
experiments terminated i n four hours while solving 1-FSC same as reference experiment
using A R method.

Since the synthesis process for 1-FSC takes a long time, we were not able to get any
better results for incremental F S C synthesis. W h i l e using the A R method only, we were not
even able to finish 1-FSC synthesis thus there is no difference in results in comparison to
1-FSC synthesis. The method using R L is faster so we were i n three out of five experiments
able to begin 2 - F S C synthesis, but d id not have enough t ime to get any better results.

In the graph 6.6 you can see plotted durat ion of the experiments is s imilar to 1-FSC.
The main difference is i n this case a l l of the experiments terminates due to timeout, because
when 1-FSC synthesis is completed, 2 - F S C synthesis begins.

I F F incremental F S C A R A R + R L A R + R L mean
M a x Reward 2.244 2.244 2.714 2.714 2.291 2.196 2.4318

to 291 330 7469 9361 369 3 -

Table 6.8: I F F incremental F S C experimental results, to is t ime needed to find best found
F S C

33

2,8

2,6

2,4

2,2

AR + RL 1

AR + RL 2

AR + RL 3

AR + RL 4

AR + RL 5

AR

2,0
2500 5000 7500 10000 12500

Figure 6.6: G r a p h comparing max ima l rewards of I F F experiments constructing incremental
F S C

34

Chapter 7

Conclusion

The a im of this theses was to combine inductive controller synthesis w i t h reinforcement
learning method. I have implemented the combinat ion of these two techniques i n the
P y t h o n tool P A Y N T .

The implemented method contains two ind iv idua l processes that run i n parallel . One is
recurrent deep Q-learning and the other one is the abstraction refinement synthesis method.
The prel iminary results of the synthesis are used for t ra ining the neural network. After the
neural network is good enough, the learning is finished. Based on the output of the neural
network, an Observation-Based scheduler is created, which is then used to constrain the
family of F in i t e State Controllers. The synthesis is then run again to optimize the F in i te
State Controller , but now only on the restricted family.

A number of experiments comparing this method wi th the abstraction refinement method
was performed. The experiments were performed on several different models. In the case of
using the G r i d and Maze models, the method I have implemented had the same results as
the A R method, however my method was slightly slower. A l though that was to be expected
since the model was too smal l to be able to achieve t ra ining the neural network before the
syntesis was finished.

I have also performed several experiments using larger models - Pentagon and I F F .
These models are noisy and have significantly larger design space. The size of the design
space for 1-FSC synthesis of the Pentagon model is 1 0 1 6 and for 2 - F S C it is 1 0 4 9 . The
synthesis using the A R method was not able to finish due to a lack of memory. I was able
to get better 1-FSC using my method i n three out of five cases. W h i l e constructing 2 - F S C
for the Pentagon model I was able to get better results i n two out of five cases, however I
was not able to finish the 2 - F S C synthesis, for the lack of memory, w i th neither one of the
methods. The resutls of the I F F model were similar to the results of the Pentagon. The
size of the I F F design space is 1 0 1 3 . Since the I F F model has a slightly smaller size of the
design space than the Pentagon model, I d id not have problems w i t h memory. The results
of my method in comparison to the A R method were once worse, once the same and in
three cases better. The mean value of the rewards of the experiments performed using my
method were about 2.5, while using the A R method the reward was about 2.244.

F rom the results of performed experiments, we can see that the combination of the
reinforcement learnign method wi th Abs t rac t ion Refinement method does not outperform
Abst rac t ion Refinement method for constructing F S C s wi th in smaller models. I was able
to get better results for more complicated models i n shorter t ime than the A R method. In
the future, it could be interesting to t ry out different model sizes and find the boundaries

35

of the usefulness of using reinforcement learning. It would also be useful to improve the
stabil i ty of reinforcement learning.

36

Bibliography

[1] Part 2: Kinds of RL Algorithms - Spinning Up documentation [online]. 2018 [cit.
2024-05-03]. Available at: h t tps : / / sp inn ingup .opena i .com/en/ la tes t / sp inn ingup/
rl_intro2.html#a- taxonomy- of-rl-a lgor i thms .

[2] A N D R I U S H C H E N K O , R . , Č E Š K A , M . , J U N G E S , S., K A T O E N , J . -P. and STUPINSKÝ, Š .
P A Y N T : A Too l for Inductive Synthesis of Probabi l i s t ic Programs. In: SILVA, A .
and L E I N O , K . R . M . , ed. Computer Aided Verification. C h a m : Springer
International Publ i sh ing , 2021, p. 856-869. I S B N 978-3-030-81685-8.

[3] A N D R I U S H C H E N K O , R . , Č E Š K A , M . , J U N G E S , S. and K A T O E N , J . - P . Inductive
Synthesis for Probabi l i s t ic Programs Reaches New Horizons. In: International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Springer International Publ i sh ing , 2021, p. 191-209. Lecture Notes i n
Computer Science. D O I : 10.1007/978-3-030-72016-2_ll . I S B N 978-3-030-72015-5.
Available at: https://www.fit.vut.cz/research/publication/12498.

[4] A N D R I U S H C H E N K O , R . , Č E Š K A , M . , J U N G E S , S. and K A T O E N , J . - P . Inductive
synthesis of finite-state controllers for P O M D P s . In: CUSSENS, J . and Z H A N G , K . ,
ed. Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial
Intelligence. P M L R , 01-05 A u g 2022, vol . 180, p. 85-95. Proceedings of Machine
Learning Research. Available at:
h t tp s : //proceedings.mlr.press/vl80/andriushchenko22a.html.

[5] A N S E L , J . , Y A N G , E . , H E , H . , G I M E L S H E I N , N . , J A I N , A . et a l . P y T o r c h 2: Faster
Machine Learning Through Dynamic P y t h o n Bytecode Transformation and G r a p h
Compi la t ion . In: 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2 (ASPLOS '24). A C M ,
A p r i l 2024. D O I : 10.1145/3620665.3640366. Available at:
h t tp s : / / p y t o r ch.org/asset s /pytor ch2-2.pdf.

[6] B A I S E R O , A . Gym-pyro [online]. G i t H u b , 2024 [cit. 2024-05-05]. Available at:
h t tp s : / /gi thub.com/abaisero/gym-pyro.

[7] B R O C K M A N , G . , C H E U N G , V . , P E T T E R S S O N , L . , SCHNEIDER, J . , S C H U L M A N , J . et a l .
OpenAI Gym. 2016.

[8] C A C E R E S , P . The Recurrent Neural Network - Theory and Implementation of the
Elman Network and LSTM [online]. 2020-04-16 [cit. 2024-05-05]. Available at:
h t t p s : / / pab lo insen te .g i t hub . io / t he - r ecu r r en t -ne t .

37

https://spinningup.openai.com/en/latest/spinningup/
https://www.fit.vut.cz/research/publication/12498
http://ch.org/
https://pabloinsente.github.io/the-recurrent-net

[9] C A R R , S., J A N S E N , N . and T O P C U , U . Task-Aware Verifiable R N N - B a s e d Policies for
Par t i a l ly Observable Markov Decision Processes. J. Artif. Int. Res. E l Segundo, C A ,
U S A : A I Access Foundation, j an 2022, vol . 72, p. 819-847. D O I : 10.1613/jair.l .12963.
I S S N 1076-9757. Available at: https://doi.Org/10.1613/jair.l.12963.

[10] C A S S A N D R A , A . R . POMDP Example Domains [online], [cit. 2024-06-05]. Available at:
https: //www.pomdp.org/code/pomdp-file-spec.html.

[11] C A S S A N D R A , A . R . POMDP File Format [online], [cit. 2024-05-05]. Available at:
https: //www.pomdp.org/code/pomdp-file-spec.html.

[12] C A S S A N D R A , A . R . A survey of P O M D P applications. In: Working notes of AAAI
1998 fall symposium on planning with partially observable Markov decision processes.
1998, vol . 1724.

[13] C A S S A N D R A , A . , K A E L B L I N G , L . and K U R I E N , J . A c t i n g under uncertainty: discrete
Bayesian models for mobile-robot navigation. In: Proceedings of IEEE/RS.J
International Conference on Intelligent Robots and Systems. IROS '96. 1996, vol . 2,
p. 963-972 vol.2. D O I : 10.1109/IROS.1996.571080.

[14] C E S K A , M . , H E N S E L , C , J U N G E S , S. and K A T O E N , J . -P. Counterexample-Driven
Synthesis for Probabi l i s t ic P rogram Sketches. In: B E E K , M . H . ter, M C I V E R , A .
and O L I V E I R A , J . N . , ed. Formal Methods - The Next 30 Years. C h a m : Springer
International Publ i sh ing , 2019, p. 101-120. I S B N 978-3-030-30942-8.

[15] C E S K A , M . , J A N S E N , N . , J U N G E S , S. and K A T O E N , J . - P . Shepherding Hordes of
Markov Chains . In: V O J N A R , T . and Z H A N G , L . , ed. Tools and Algorithms for the
Construction and Analysis of Systems. C h a m : Springer International Publ ish ing,
2019, p. 172-190. I S B N 978-3-030-17465-1.

[16] C H E N , C . Deep Q-Learning w i t h Recurrent Neura l Networks. In:. 2016. Available at:
https: / / api.semanticscholar.org/CorpusID: 29201646.

[17] E G O R O V , M . Deep Reinforcement Learning wi th P O M D P s . In:. 2015. Available at:
https: / / api.semanticscholar.org/CorpusID: 15312806.

[18] E L M A N , J . L . F i n d i n g Structure in T ime . Cognitive Science. 1990, vol . 14, no. 2,
p. 179-211. D O I : h t tps : / /do i .o rg /10 .1207/s l5516709cogl402_l . Available at:
https://onlinelibrary.wiley.com/doi/abs/10.1207/sl5516709cogl402_l.

[19] H A U S K N E C H T , M . and S T O N E , P . Deep Recurrent Q-Learning for Partially
Observable MDPs. 2017.

[20] H E N S E L , C , J U N G E S , S., K A T O E N , J . - P . , Q U A T M A N N , T . and V O L K , M . The
probabilist ic model checker Storm. International Journal on Software Tools for
Technology Transfer, august 2022, vol . 24, no. 4, p. 589-610.

[21] H O P F I E L D , J . J . Neura l networks and physical systems wi th emergent collective
computat ional abilities. Proceedings of the National Academy of Sciences. 1982,
vol . 79, no. 8, p. 2554-2558. D O I : 10.1073/pnas.79.8.2554. Available at:
https://www.pnas.org/doi/abs/10.1073/pnas.79.8.2554.

38

https://doi.Org/10.1613/jair.l.12963
http://www.pomdp.org/code/pomdp-file-spec.html
http://www.pomdp.org/code/pomdp-file-spec.html
http://api.semanticscholar.org/
http://api.semanticscholar.org/
https://doi.org/10.1207/sl5516709cogl402_l
https://onlinelibrary.wiley.com/doi/abs/10.1207/sl5516709cogl402_l
https://www.pnas.org/doi/abs/10.1073/pnas

[22] J U N G E S , S., J A N S E N , N . , W I M M E R , R . , Q U A T M A N N , T. , W I N T E R E R , L . et al .
Permissive Fini te-State Controllers of P O M D P s using Parameter Synthesis. CoRR.
2017, abs/1710.10294. Available at: http://arxiv.org/abs/1710.10294.

[23] K W I A T K O W S K A , M . , N O R M A N , G . and P A R K E R , D . P R I S M 4.0: Verification of
Probabi l i s t ic Real- t ime Systems. In: G O P A L A K R I S H N A N , G . and Q A D E E R , S.,
ed. Proc. 23rd International Conference on Computer Aided Verification (CAV'll).
Springer, 2011, vol . 6806, p. 585-591. L N C S .

[24] L I T T M A N , M . , C A S S A N D R A , A . and K A E L B L I N G , L . Learning policies for par t ia l ly
observable environments: Scaling up. California, february 1970. D O I :
10.1016/B978-1-55860-377-6.50052-9.

[25] M N I H , V . , K A V U K C U O G L U , K . , S ILVER, D . , R U S U , A . A . , V E N E S S , J . et al .
Human-level control through deep reinforcement learning. Nature, february 2015,
vol . 518, no. 7540, p. 529-533.

[26] M Y K E L J . K O C H E N D E R F E R , K . H . W . Algor i thms for Decision M a k i n g . In:.
Cambridge, Massachusetts, London , England: M I T P R E S S , 2022, chap. 19,
p. 379-405. I S B N 9780262047012. Available at:
h t tp s : / / algorithmsbook.com/f i les/chapter-19 .pdf.

[27] M Y K E L J . K O C H E N D E R F E R , K . H . W . Algor i thms for Decision M a k i n g . In:.
Cambridge, Massachusetts, London , England: M I T P R E S S , 2022, chap. 15-18,
p. 299-375. I S B N 9780262047012. Available at: ht tps:/ /algori thmsbook.eom/#.

[28] P Y T O R C H , C . RNN [online]. 2023 [cit. 2024-05-05]. Available at:
h t tp s : / / p y t o r ch.org/docs/stable/generated/torch.nn.RNN .html#rnn.

[29] S A K , H . , SENIOR, A . W . and B E A U F A Y S , F . L o n g Short-Term Memory Based
Recurrent Neura l Network Architectures for Large Vocabulary Speech Recognit ion.
CoRR. 2014, abs/1402.1128. Available at: http://arxiv.org/abs/1402.1128.

[30] X I A N G , X . and F o o , S. Recent Advances i n Deep Reinforcement Learning
Appl icat ions for Solving Pa r t i a l ly Observable Markov Decision Processes (P O M D P)
Problems: Par t 1—Fundamentals and Appl ica t ions i n Games, Robotics and Na tu ra l
Language Processing. Machine Learning and Knowledge Extraction. July 2021, vol . 3,
p. 554-581. D O I : 10.3390/make3030029.

39

http://arxiv.org/abs/1710.10294
http://algorithmsbook.com/
https://algorithmsbook.eom/%23
http://ch.org/docs/
http://arxiv.org/abs/1402.1128

