
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

AN INTEGRATION OF SIP VOICE CALLS INTO AN
IRC CLIENT OR GATEWAY
INTEGRACE SIP HLASOVÉHO VOLÁNÍ DO IRC KLIENTA ČI BRÁNY

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR DAVID KOCMAN
AUTOR PRÁCE

SUPERVISOR RNDr. MAREK RYCHLÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023

BRNO FACULTY 1 r UNIVERSITY OF INFORMATION 1

• GFTECHNOLOGY TECHNOLOGY

Bachelor's Thesis Assignment |||||||||||||||||
140536

Institut: Department of Information Systems (UIFS)
Student: Kocman David
Programme: Information Technology
Specialization: Information Technology
Title: A n Integration of SIP Voice Cal ls into an IRC Client or Gateway
Category: Networking
Academic year: 2022/23

Assignment:

1. Familiarize yourself with IRC technology and the SIP protocol and its use for voice calls. Explore
the cross-platform solutions available to support IRC and SIP on client devices. Focus especially
on WeeChat, Bitlbee, Linphone, and Baresip.

2. Design a way to integrate voice calls using SIP into IRC communication on the gateway or client
applications. Choose the appropriate technologies.

3. After consultation with the supervisor, implement the support for SIP calls to the selected IRC
clients or gateways according to the design. Also design and implement automated acceptance
tests.

4. Thoroughly test the solution, evaluate it against other possible solutions and publish it as open-
source.

Literature:
• Flanagan, William A. VoIP and unified communications: internet telephony and the future voice

network. Wiley, 2012. ISBN 978-1-118-01921-4
• Belledonne Communications SARL. Linphone [online]. 2021 [cit. 2021-08-18]. Available at

https://www.linphone.org/technical-corner/linphone
• Baresip Foundation. Baresip [online]. 2021 [cit. 2021-08-18]. Available at

https://github.com/baresip/baresip

Requirements for the semestral defence:
Items 1 and 2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor:
Head of Department:
Beginning of work:
Submission deadline:
Approval date:

Rychlý Marek, RNDr., Ph.D.
Kolář Dušan, doc. Dr. Ing.
1.11.2022
10.5.2023
24.10.2022

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

https://www.linphone.org/technical-corner/linphone
https://github.com/baresip/baresip
https://www.fit.vut.cz/study/theses/

Abstract
This thesis describes the design, implementation and testing of a Session Initiation Protocol
user agent, using an Internet Relay Chat client or gate as its graphical interface. A third-
party open-source library, called liblinphone, is used for call related implementation and
the application itself is written in the C / C + + language. The program can make calls
and other basic SIP-related features, which include proxy registration, E N U M lookup, and
instant messaging. A n address book is also available for storing contacts and identities,
and is implemented with the SQLite3 C / C + + library. The result of this thesis is an ability
to make calls with IRC.

Abstrakt
Tato práce popisuje návrh, implementaci a testování Session Initiation Protocol uživatel­
ského agenta, který používá Internet Relay Chat klienta či bránu jako jeho grafické rozhraní.
Pro implementaci volání je použita open-source knihovna třetí strany, nazývána liblinphone,
a samotný program je napsán v jazyce C / C + + . Program je schopen jak volání, tak i zák­
ladních SIP vlastností, jako je registrace u ústředny, překlad čísel na adresy pomocí E N U M
a přímé zprávy. Také je k dispozici adresář pro ukládání kontaktů a identit, napsán pomocí
knihovny SQLite3 pro C / C + + . Výsledek této práce zavádí možnost volání z IRC.

Keywords
SIP, RTP, IRC, VoIP, C, C++, SIP user agent, calls, SQLite3, database, integration

Klíčová slova
SIP, RTP, IRC, VoIP, C, C++, SIP user agent, volání, SQLite3, databáze, integrace

Reference
K O C M A N , David. An Integration of SIP Voice Calls into an IRC Client or Gateway. Brno,
2023. Bachelor's thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor RNDr . Marek Rychlý, Ph.D.

Rozšířený abstrakt
Tato práce se zabývá návrhem, implementací a testováním Session Initiation Protocol uži­
vatelského agenta, který, jako jeho grafické rozhraní, používá rozhraní Internet Relay Chat
klienta či brány. Aplikace se chová jako plnohodnotný SIP uživatelský agent, schopen volání,
registrace u ústředny, zasílání zpráv a vytáčení hovorů pomocí E N U M vyhledání. Imple­
mentaci všech SIP záležitostí poskytuje open-source knihovna třetí strany liblinphone. Pro
ukládání kontaktů a registračních identit je k dispozici adresář v podobě lokální databáze
napsané v SQLite. Celý program je napsán v jazyce C / C + + pro platformu Linux a je
vydán jako open-source program.

V úvodu je popsána motivace a cíl práce, společně s odkazem na GitHub, kde je pro­
gram zveřejněn jako open-source. Následně úvod popisuje i předběžný obsah následujících
kapitol.

Druhá kapitola se zabývá seznámením se s technologiemi. Probírají se zde struktury,
architektury a funkce protokolů SIP, Real-Time Transport Protocol pro přenos médií a IRC.
Dále se také kapitola zabývá aplikacemi, které byly zkoumány pro tuto práci. Jedná se o SIP
uživatelské agenty Linphone a Baresip, které poskytují knihovny třetí strany, a IRC klienta
a bránu - Weechat a Bitlbee.

Třetí kapitola heslovitě shrnuje formální požadavky práce, které vychází ze zadání práce,
konzultací s vedoucím a z inspirace z ostatních SIP uživatelských agentů. Další, čtvrtá, kapi­
tola pojednává v první části o výběru technologií pro finální implementaci. Ve druhé části
se píše o celkové architektuře programu. Tedy jak se aplikace spouští, jak se ovládá, jakým
způsobem docílí klíčových funkcionalit programu a jak se realizuje adresář. Celá aplikace je
koncipována jako IRC bot, který čeká na příkazy od uživatele, přenášené technologií IRC,
a těmito příkazy je ovládán.

Pá tá kapitola obsahuje samotnou implementaci programu. Tato kapitola opisuje struk­
turu předchozí kapitoly o architektuře a pojednává o implementaci různých problémů
a řešení, a také popisuje práci s knihovnou liblinphone. V začátcích popisuje spouštění
programu přes příkazovou řádku, dále popisuje způsob registrace agenta k ústředně a prob­
lematiku N A T , poté implementaci hovorů, vyhledání pomocí E N U M a přímých zpráv.
Nakonec je popsána implementace adresáře, jakožto lokální databáze, pomocí knihovny
SQLite pro C / C + + .

Šestá kapitola popisuje návrh automatizovaných akceptačních testů. Pro tyto účely je
vytvořen skript v jazyce Python, který spustí program a testuje jeho klíčové vlastnosti.
Tento skript simuluje reálného uživatele při používání aplikace. Pro účely generování SIP
provozu pro testování hovorů byl použit program jménem SIPp. V této předposlední kapi­
tole se také vyskytuje porovnání aplikace s jinými SIP uživatelskými agenty. Testování
jiných okrajových případů bylo uskutečněno ručně.

Závěr shrnuje dosažené výsledky a návrhy pro budoucí rozšíření. Výsledkem práce
je plnohodnotný SIP uživatelský agent, který integruje možnost volání z technologie IRC
a sada automatizovaných akceptačních testů pro ověření základní funkcionality programu.

A n Integration of SIP Voice Calls into an IRC
Client or Gateway

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of Mr . RNDr . Marek Rychlý Ph.D. I have listed all the literary
sources, publications and other sources, which were used during the preparation of this
thesis.

David Kocman
May 2, 2023

Acknowledgements
I want to thank my supervisor RNDr . Marek Rychlý Ph.D. for his willingness, feedback,
consultations and professional help during the making of this thesis. I also want to thank
my family for their support during my studies at B U T FIT.

Contents

1 Introduction 3

2 Analysis of technologies 4
2.1 Session Initiation Protocol 4
2.2 Real-time Transport Protocol 15
2.3 Internet Relay Chat 17
2.4 Applications 22

3 Specifications 24
3.1 Requirements 24

4 Design 26
4.1 Technologies 26
4.2 Architecture 26

5 Implementation 33
5.1 Launching and connecting 33
5.2 Command handling 34
5.3 Registration and N A T traversing 36
5.4 Calls 38
5.5 Instant messages 45
5.6 Address book 46

6 Application tests 52
6.1 Tests script 52

6.2 Comparison 57

7 Conclusion 58

Bibliography 59

A Contents of the included storage media 61

B Program manual 62

1

List of Figures

2.1 A diagram showing basic SIP signalization and key components. Adapted
from [8, p. 84] 6

2.2 SIP registration and second user localization. Adapted from [6, p. 87] . . . 7
2.3 Address changes with N A T traversing. Adapted from [8, p. 198] 12
2.4 S T U N topology and message exchange. Adapted from [8, p. 203] 12
2.5 T U R N topology and message exchange. Adapted from [8, p. 205] 13
2.6 Real-time Transport Protocol for voice information. Adapted from [8, p. 55]. 15
2.7 Real-time Transport Control Protocol used for R T P sessions monitoring.

Adapted from [8, p. 57] 16
2.8 The IRC message relaying between two users. Adapted from [19] 18
2.9 The client registration process without the PASS command. Adapted from

[19] 19
2.10 Joining the channel and relaying the Join message. Adapted from [19]. . . . 20
2.11 Message relaying to channel members. Adapted from [19] 21

4.1 Bot and user connecting to the server and channel 27
4.2 Registration of the user agent to a SIP proxy 28
4.3 Initiation of an outgoing call through proxy 29
4.4 Media exchange with voice capture and audio playback 29
4.5 Receiving an incoming call and accepting it 30
4.6 Initiation of an outgoing call with database lookup 31

5.1 Format and indexing of an IRC P R I V M S G message 35

2

Chapter 1

Introduction

People communicated with each other since the beginning, either face to face or via letters.
Wi th the invention of the telephone in the 19th century and the internet in the 20th century,
communication became much simpler and faster. Nowadays we can call or text another
person with just a click of a button because internet connection is almost ubiquitous.

Wi th the Internet also came quite a few call-oriented and message-oriented protocols,
such as the Voice over Internet Protocol (VoIP) and Internet Relay Chat (IRC). VoIP
enables voice and video calls to use internet infrastructure as their medium with the help
of numerous signaling and transport protocols, such as Session Initiation Protocol (SIP).
Wi th IRC, users are able to send relayed text messages to each other and talk about various
topics together.

This thesis combines these two technologies together and aims to create a program that
is able to make calls with the help of an IRC client or gate interface. The result behaves
as a full-fledged SIP user agent and is available as open-source software on Gi tHub 1 .

Chapter 2 contains a basic theory of used technologies, mainly Session Initiation Pro­
tocol and Internet Relay Chat. It also takes a look at some of the applications that were
researched for this thesis.

The summary of the program's requirements is described in Chapter 3 and the design of
the architecture can be found in Chapter 4. The main concept, used libraries, and program
specifications are described here.

Implementation of the architecture is described in Chapter 5, mainly the usage of said
third-party libraries and different original algorithms.

Chapter 6 talks about the testing of the system, the design of the test script, and
a comparison with different contemporary SIP user agents.

Chapter 7 contains the conclusion to this thesis, a description of achieved goals, and
some ideas for future extensions of this system.

x

https: //github.com/DavidKocman36/IRCPhone

3

Chapter 2

Analysis of technologies

This chapter takes a look at the technologies and protocols used in this thesis. The first
section (2.1) talks about the Session Initiation Protocol, its architecture, the format of
the messages, and other SIP-related technologies. In Section 2.2 the Real-Time Transport
Protocol for transmitting media is described. Section 2.3 talks about Internet Relay Chat.
The last section (2.4) takes a look at some of the SIP and IRC applications, that were
researched for this thesis.

2.1 Session Initiation Protocol

When two parties want to exchange data between each other, a session has to be created.
Though sometimes it is hard to locate the second participant, some protocols were made
for this specific reason.

The Session Initiation Protocol, SIP for short, is an application-layer signaling protocol
for IP telephony. It can establish, modify and terminate multimedia sessions and helps
these two parties to agree on session characterization with Session Description Protocol,
talked about in Section 2.1.3. It is based on a request-response model, which means each
transaction or method shall have at least one response [16, p. 8-11].

It was created in the early 2000s by Internet Engineering Task Force (IETF). SIP
messages are text-based [16, p. 26] and consist of human-readable text tags, called headers,
and are similar to markup languages such as H T M L [8, p. 80]. They were designed to
minimize the number of messages exchanged during the initiation phase as opposed to
H.323 1 for example. Media parameters are sent in the text fields of I N V I T E and O K
methods instead of separate packets [8, p. 86].

SIP is completely independent as an application but it is always used with other pro­
tocols to make the architecture work. At the transport layer, it is transported either by
Transmission Control Protocol or User Datagram Protocol, depending on the circumstances.
For delivering media and QoS monitoring, the Real-Time Transport Protocol is used, more
on this in Section 2.2 [16, p. 9] [8, p. 81].

Each user is identified with a unique address, called "SIP URI" , or Uniform Resource
Identifier. It is an address that contains enough information for establishing a session with
the other end. It is very similar to an E-Mai l address and its general format looks like this:

[sip or sips]:user:password®[host name, FQDN or IP address]:port

;uri-parameters?headers

x

https: //www.techopedia.com/definition/4478/h323

4

http://www.techopedia.com/definition/4478/h323

The user: password® part might be omitted if no service is associated with a user.
URIs also support escaping special characters, using % sign and hexadecimal digits of its
ASCII designation. As a separator, & is used [8, p. 80-81].

2.1.1 Architecture and signaling

SIP architecture consists of either hardware or software elements that communicate with
each other. These include [8, p. 81-82]:

• User Agent (UA): an end point, able to send requests (also known as User Agent
Client - U A C) and receive responses (User Agent Server - UAS) . User Agent usually
acts as both client and server and some examples are - IP phone, softphone, and
camera.

• U A proxy: a server that acts as an intermediary for receiving and sending messages
to other UAs or proxies. They provide location services when initiating a call and
their domains are stored in the DNS SRV resource record for callers to know where
to send call requests.

• Location Service: a database in which a specific called U A can be found in that
domain. The database gets its information from the registrar server to which different
UAs are registering.

• Registrar: a server or process to which a U A sends its location or address and lets
the server know that it is ready to receive requests.

• Redirect server: a proxy that tells U A or proxy server where to send messages with
the help of location service.

As stated before, SIP follows a request-response model, where one U A takes the role of
client (UAC) and sends a request to another U A in the role of server (UAS). The role of
one U A fluctuates from client to server depending on circumstances.

The requests and responses are called "SIP methods" [8, p. 82] or "SIP messages" [16,
p. 26]. They are used for initiating, managing, and terminating sessions (media connection).
Procedures for sending messages differ from when dialog (communication between two UAs)
does not exist from when one does, mainly in the fact that both UAs know each other's
Tags. Each dialog is identified with this Tag and a Call-ID value [8, p. 82].

Call initiation

Figure 2.1 shows an example of session initiation and key components. A session is initiated
with an I N V I T E method which is the request from a U A client (caller) [8, p. 82]. I N V I T E
has attributes that mainly contain source address, destination address, and information
about the session from the caller's perspective [16, p. 11].

If the O K message takes over 200ms to deliver, the progress and status (Trying) messages
are sent to the caller. The O K message confirms the connection to the caller and the
A C K message confirms to the callee that the connection exists, completing the three-way
handshake. The session is now established and media transport may commence, which is
logically separated from the session initiation. The dialog and session terminate when one
of the parties sends a B Y E method which ends the call [8, p. 82-85].

5

The most common SIP messages, described closely in 2.1.2 [8, p. 83]:

• I N V I T E : initiation of a dialog and a session.

• O K : confirmation of a request. Content depends on the type of request [16, p. 183].

• A C K : confirming the connection from caller to callee.

• B Y E : closes a connection, session, and dialog. Always sent from within the dialog,
else C A N C E L is sent.

• R E G I S T E R : transmission of a location to the desired proxy.

• C A N C E L : cancel an outgoing I N V I T E . After a connection is established, B Y E is
used.

• M E S S A G E : used for an exchange of content in real time, especially text messages [18,
p. 2].

Caller
Proxy A Proxy B

4 Trying
•

Ringing

<— 200 OK

INVITE

Trying

Ringing

200 OK

ACK

INVITE

Callee

4 Trying >
Ringing

<
200 OK

Figure 2.1: A diagram showing basic SIP signalization and key components. Adapted
from [8, p. 84].

Locating the callee

SIP also uses additional network services, such as D H C P and DNS servers. DNS servers
play a huge role in SIP signaling as they are able to help locate proxies and users. For a
user to locate other, an infrastructure has to be set up, such as [8, p. 87]:

Each user has a unique SIP U R L

G

• The callee must be registered to a reachable proxy server with a findable IP address.
This registration might be permanent or temporary.

• The called proxy must be able to find the current callee's IP address.

Figure 2.2 illustrates the SIP registration process and subsequent localization of a
callee. One U A with the URI sip:adam@example.com registers (1) to example regis­
trar which stores this entry to proxy's location service (2). Our second participant with
the URI sip:david@something.com sends the I N V I T E message (3) to his local proxy
with sip: adam@example.com as the destination address. David's proxy with the help
of DNS resolution finds the address of the authoritative proxy for Adam's Address Of
Record (adam@example.com). The query asks specifically for the SIP server for the do­
main sip.example.com. The proxy then sends the invite to Adam's proxy (4). When
Adam's proxy receives the I N V I T E method it has to query (5) its location service and
receive (6) the registered address or IP address associated with sip:adam@example.com.
Adam's proxy then forwards the I N V I T E method to the registered phone (7) [8, p. 87-88].

sip:david@something.com sip:adam(S>exaple.com

01 01

Location service Registrar

Figure 2.2: SIP registration and second user localization. Adapted from [6, p. 87]

2.1.2 Structure of the messages

SIP messages are human-readable and use the UTF-8 charset [16, p. 26]. They follow the
standard format for Internet Messages2, which is [8, p. 89] [16, p. 27]:

• Start line - method, protocol.

• Header fields in the form of Type: value; parameters.

• Blank line.

• Optional message body.
2

https: //www.rfc-editor.org/rfc/rfc5322

7

mailto:adam@example.com
mailto:david@something.com
mailto:adam@example.com
mailto:adam@example.com
http://sip.example.com
mailto:adam@example.com
mailto:david@something.com
http://www.rfc-editor.org/rfc/rfc5322

U A clients match the requests with received responses by the Tag and Call-ID values.
The initial I N V I T E contains Tag in the From: header and Call-ID. The subsequent O K
response adds Tag to the To: header. These two tags and Call-ID define a dialog [8, p. 88].

Request messages start with the method (INVITE, R E G I S T E R) followed by the URI
and protocol version, currently "SIP/2.0". Mandatory request header fields are To:, From:,
Cseq:, Call-ID:, Max-Forwards:, and Via: . Message body is optional, but most of the time
consists of SDP parameters.

Response methods contain protocol version (SIP/2.0) followed by a 3-digit code num­
ber and the text explanation. Some response messages also contain headers, such as O K
response. Table 2.1 contains types of response codes [8, p. 89-90].

3-digit code Class Description
l x x Provisional Request received, continuing to process the request
2xx Success Action was successfully received, understood, and

accepted
3xx Redirection Further action needed to complete the request
4xx Client error Request contains bad syntax or can not be fulfilled

at this server
5xx Server error Server failed to fulfill a valid request
6xx Global failure request can not be fulfilled anywhere

Table 2.1: SIP status responses. Adapted from [8, p. 91].

Table 2.2 describes the structure of the I N V I T E method. The structure of other methods
is very similar, especially the request ones.

Start Line INVITE sip:bob@biloxi.com SIP/2.0

method called address SIP version
Header fields Via: SIP/2.O/UDP pc33.atlanta.com;

branch=z9hG4bKnashds

Max-Forwards: 70

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;

tag=1928301774

Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Content-Type: applcation/sdp

Content-Length: 142

header type: value;parameters
Required Empty Line C R L F
Message Body Alice's SDP goes here

Table 2.2: I N V I T E method format. Adapted from [8, p. 89].

The meaning of the headers is drawn from [8, p. 91-92] and [16, p. 39, p. 40, p. 169].
The Via: header identifies the location where the response is supposed to be sent to and
its transport (such as U D P for example). Branch number is unique for all requests sent by
U A . Max-Forwards: acts as a hop count before the packet is discarded. The To: header

8

mailto:bob@biloxi.com
http://pc33.atlanta.com
mailto:bob@biloxi.com
mailto:alice@atlanta.com

contains the display name and the SIP URI of the user being called. Opposed to this, the
From: header contains the display name of the caller. Call-ID: is a unique identifier for
this call based on the caller's host name and a cryptographically generated random number.
A sequence number incremented with each message that sets their order is stored in CSeq:
header. Contact contains a SIP URI that is used to contact this exact U A for other requests.
Content-Type: header describes the message body if present and Content-Length states
its length.

The message body usually contains SDP (application/spd type) and the M E S S A G E
method carries text/plain or message/cpim content types in message bodies with the text
message itself [18, p. 7].

Table 2.3 takes a look at typical R E G I S T E R method structure which is used for locating
the U A by other UAs.

Start Line REGISTER sip:biloxi.com SIP/2.0

method register domain SIP version
Header fields Via: SIP/2.O/TCP 192.0.2.2;

branch=z9hG4bK-bad0ce-11-1036

Max-Forwards: 70

From: Bob <sip:bob@biloxi.com>;tag=d879h76

To: Bob <sip:bob@biloxi.com>

Call-ID: 8921348ju72je840.204

CSeq: 1 REGISTER

Supported: path, outbound

Contact: <sip:linel@192.0.2.2;transport=tcp>;

reg-id=l;+sip.instance="urn:uuid:00000000-

0000-1000-8000-00A95A0E128>"

Expires: 3600

Content-Length: 0

header type: value;parameters
Required Empty Line C R L F
Message Body none in REGISTER

Table 2.3: R E G I S T E R method format. Adapted from [8, p. 89].

The R E G I S T E R method contains an additional mandatory Expires: header that con­
tains the desired registration duration in seconds. The Contact: header contains an address
to bind to A O R (Address Of Record). When a user wants to unregister, it sends a message
with "Expires: 0". One user may register one A O R for multiple devices (UAs). Supported:
header contains a list of option tags for SIP extensions [8, p. 94, p. 100] [16, p. 57].

During the processing of a request, each proxy adds a new Via: header with its IP
address and data. These headers then allow each proxy to forward the method without
the need of DNS lookup, for example. And when handling a response, each Via: header,
belonging to a specific proxy, is removed so that only Via: of the calling phone is present
when it reaches it [8, p. 92].

2.1.3 Session Description Protocol

When a session is being initiated, there is a need for media details, transport addresses,
and other session metadata to be conveyed to the other participant [15, p. 3]. Session

9

http://biloxi.com
mailto:bob@biloxi.com

Description Protocol (SDP) provides these exact services. Wi th SDP, the user is informed
about the session, so that he may decide whether to participate or where and how to join
a session. The SDP is most of the time carried in the initial I N V I T E and subsequent O K
method. The general structure is [8, p. 101-102]:

Session name and purpose

Time the session is active

The media comprising the session

Information needed to receive media (ports, addresses, etc.)

More than one media option may be listed and the U A S then can see whether it supports
these. U A S may also send a list of its own media options and the overlap of these options
is used in the subsequent session [8, p. 102].

The final choice of the media type is based on the "q=" header which contains the
quality of each option in the interval between 0 and 1. Types are ranked and the one with
the highest rating is used [8, p. 103].

Though U A C is not obliged to send SDP in the initial I N V I T E . When this happens, the
U A S sends its SDP information in a subsequent response, that is "delivered with a reliable
method" (Trying or O K) . U A C then sends its SDP in the A C K method [8, p. 103].

SDP message format

The SDP, just like SIP, is an entirely textual protocol using ISO 10646 character set and
UTF-8 encoding, though field names and attribute names use only US-ASCII subset. For­
mat of the headers is as follows [15, p. 7-8]:

<type>=<value> with no white spaces

Where <type> is exactly one case-insensitive letter and <value> is structured text with
its format dependent on the <type> [8, p. 103].

SDP has also its own M I M E type, occurring in Content-Type: SIP header:

application/sdp

A l l messages have a defined order which they must follow [8, p. 105]:

• Session.

• Time.

. Media.

Each message begins with the "v=" header which starts the session-level part and
continues to the media-level part, which starts with "m=" [15, p. 8]. Media parts contain
specific attributes in "a=" and other lines. The session-level part is as follows (attributes
with "*" are optional) [8, p. 104-106]:

v=(protocol version)

o=(oroginator and session ientifier)

s=(session name)

i=*(session information)

10

u=*(URI of description)

e=*(email address)

p=*(phone number)

c=*(connection information)

b=*(bandwidth information lines)

These attributes apply to all media sections unless overridden there. After the session
level, a time description follows in the format of Network Time Protocol [8, p. 106].

t=(time the session is active) starttime stoptime

r=*(zero or more repeat times)

z=*(time zone adjustments)

k=*(encryption key)

After time description, zero or more media descriptions follow. These may override
parameters in the session level.

m=(media name and transport address)

i=*(media title)

c=*(connection information)

b=*(bandwidth information lines)

k=*(encryption key)

a=*(media attribute lines)

The format of <type>=<value> is formally defined in Augmented Baus-Naur Form
(A B N F) 3 .

2.1.4 SIP vs Network Address Translation

Network Address Translation, or N A T for short, allows many hosts on a private network to
communicate over the public network via one shared public IP address. N A T maps private
addresses, usually beginning with 10.x.x.x or 192.168.x.x, and a port number into another
port on the public static IP. When initiating a session from within N A T , a "pinhole" is
created in a firewall. The firewall then takes a look at the destination port number of an
incoming packet and maps it to the port number of the U A that created the "pinhole" [8,
p. 196].

N A T was created as a security measure that hides the topology of the private network
so that it is shielded from an attack, but outside connections from the internet are difficult
because [8, p. 197]:

• Mapped port numbers do not correspond to well-known services.

• N A T requires an outbound packet with a specific IP and port before passing an
inbound packet to the socket.

When traversing through N A T the IP addresses are changed, so signaling protocols and
media packets, which contain the IP addresses of both end points, usually fail. The IP
addresses used on the network between the N A T devices are different from the addresses of
the UAs. Thus UAs can no longer give their native addresses [8, p. 197]. Figure 2.3 shows
the topology.

3

https: //www.rfc-editor.org/rfc/rfc4234

11

http://www.rfc-editor.org/rfc/rfc4234

L2 switch r o u t e r NAT FW

234.5.6.7 123.6.6.5

10.1.2.101 10.1.2.102

Intended RTP path

5:10.1.2.101 -> D:192.168.1.2

Effect of NAT in path

S:10.1.2.101 -> D:234.5.6.7 5:234.5.6.7 -> D:123.6.6.7 S:123.6.6.7-> D:192.1 68.1.2

Figure 2.3: Address changes with N A T traversing. Adapted from [8, p. 198].

Solutions to this problem are using Session Traversal Utilities for N A T (STUN), Traver­
sal Using Relays around N A T (TURN), and Interactive Connectivity Establishment (ICE),
which all of these might have problems with symmetric N A T or N A T on both ends. The
next subsections describe these solutions in detail. The most reliable solution is to register
to a SIP proxy server. When a U A registers from within N A T , a pinhole is created, and
by keeping the connection open, the proxy server is able to forward the messages to the
registered U A [8, p. 197-198].

Session Traversal Utilities for N A T (STUN)

01—
10.1.2.101

STUN query

S:10.1.2.101:7777 -> D:123.6.6.11
TYPE=STUN

STUN response
<

S:123.6.6.11-> D:1 0.1.2.101
Mapped-Addr: 234.7.8.9:9876

Media session
<

S:x.x.x.x -> D:10.1.2.101:7777

234.7.8.9:9876 bound to
10.1.2.101:777 by NAT

S:234.7.8.9:9876 -> D:123.6.6.1 1
TYPE=STUN

<
S:123.6.6.11-> D:234.7.8.9:9876
Mapped-Addr: 234.7.8.9:9876

<
S:x.x.x.x -> D:234.5.6.7:9876

Figure 2.4: S T U N topology and message exchange. Adapted from [8, p. 203].

S T U N works on a basis of client-server. The server resides on a public part of the
internet or in a network where it is reachable for all interested parties. The client then

12

queries this server from behind the N A T to learn what public IP and port the device was
assigned to by the N A T firewall. The mapping of the private socket to the public socket is
called "binding" [8, p. 201].

When a query arrives at the server, the source address is the translated or public IP
address and port inserted by the N A T . The S T U N server then returns this public IP and
port in the payload of the response. When initiating a session with a device outside of the
N A T , the caller gives its public IP address to the callee. Callee then sends its packets to
the public IP and port of the caller [8, p. 203] as shown in Figure 2.4.

S T U N has difficulties with symmetrical NATs and when both parties are behind different
NATs. It is just a part of the process than a standalone feature - it provides only an address
discovery and is not in the path of either media or signaling packets [8, p. 204].

Traversal Using Relays around N A T (TURN)

The T U R N server is - again - located outside of the N A T network. It accepts packets
from one device and forwards them to another, during which the server changes addresses,
recalculates CRCs , and resets the Time To Live field. It is a relay extension of S T U N
designed to work also with I C E (see 2.1.4) or alone [8, p. 204].

• U

a
10.1.2.101

TURN server forwards
packets

As
t

123.6.6.7:8888 allocated
to 234.789:9876

•<2>—0
234.7.8.9:9876 bound to
10.1.2.101:777 by NAT

STUN query

— • •
5:10.1.2.101:7777 -> D:123.6.6.11 5:234.7.8.9:9876 -> D:123.6.5.11
TYPE=Allocate TYPE=Allocate
STUN response
<

5:123.6.6.11-> D:10.1.2.101:7777
ChannelBind: 123.6.6.7:8888

<
5:123.6.6.11 -> D:234.7.8.9:9876
ChannelBind: 123.6.6.7:8888

S:x.x.x.x -> D:10.1.2.101:7777 S:x.x.x.x -> D:234.5.6.7:9876

5:10.1.2.101 -> D:x.x.x.x
-O-

5:234.7.8.9:9876-> S:123.6.6.7
D:x.x.x.x D:x.x.x.x

Figure 2.5: T U R N topology and message exchange. Adapted from [8, p. 205].

To set up a connection, both end devices shall request an address allocation from the
same server, or servers that can find each other. Then, with the A L L O C A T E message sent

4 Cyclic Redundancy Check - used for detection of accidental changes to digital data

13

by a client, the server allocates a unique public socket on itself and sends the information
to the client in an AllocationConf irm message. The response sends information similar to
S T U N but the difference is, that S T U N returns a socket on the client's N A T while T U R N
returns a socket allocated on itself [8, p. 204]. The caller sends packets to the callee by
addressing its address, which is on the T U R N server. The server translates the addresses
and forwards them to the N A T function at the second site. Callee uses the same method
of sending packets. Figure 2.5 illustrates the process.

Interactive Connectivity Establishment (ICE)

ICE is designed to work with S T U N and T U R N and is used for two UAs to learn each
other's public addresses and ports for media exchange by the shortest or lowest cost path.

ICE offers each U A a list of C A N D I D A T E addresses, drawn from options such as:

• Network interface address.

• Translated address (public N A T address).

• T U R N server allocated address.

Every address in this linked list is ranked with a preference attribute (q=, as talked
about in 2.1.3). The UAs then try to connect directly to each of these addresses in order,
until one works or the list is exhausted. The packets open a "pinhole" in the N A T firewall,
which is kept open by a S T U N keep-alive packets. If no more direct paths are possible,
the packets are sent to a T U R N server. If this connection test is successful, the route
is established without the need of communicating anything special to N A T devices and
without having a SIP-aware firewall [8, p. 206-207].

2.1.5 Electronic N U m b e r Mapping

This subsection draws from [8, p. 136]. Electronic NUmber Mapping, or E N U M for short,
is a way of mapping a public telephone number to a unique SIP U R L It uses DNS and its
N A P T R (Naming Authority Pointer) records to store these mapped URIs. DNS query may
return any number of these records not only for SIP but also for fax, telephone, instant
messaging, e-mail, and so on.

E N U M takes an E.164 telephone number, which is globally unique and reachable, makes
it DNS-searchable, and assigns the requested SIP URI for it. The I T U recommendation for
E.164 number format is as follows:

+ Country code.Area code.Exchange.Line

+ 1.202.555.1234 or + 1-202-555-1234

In the decimal system, the most significant digit (MSD) in a phone number is at the
left, but DNS places the most significant element (TLD) to the right and subdomains are
assigned to the left. The algorithm for making these numbers searchable is as follows:

• A l l non-numeric characters are removed: 12025551234,

• The order is reversed: 43215552021,

• Dots between digits are added. The subdomains and zones are created: 4.3.2.1.5.5.
5.2.0.2.1,

14

A domain and T L D are added, making it an F Q D N : 4.3.2.1.5.5.5.2.0.2.1.el64.arpa.

Typical N A P T R response also includes an e-mail server, a web server, a phone number
(not necessarily the same one), and a SIP proxy server.

2.2 Real-time Transport Protocol

Real-time Transport Protocol, or R T P for short, is an application layer protocol that pro­
vides end-to-end delivery of voice and video packets. SIP itself does not transmit any media,
so it uses this protocol for it. The R T P is usually run on top of U D P and does not re­
quire a particular port number when sending and receiving. However, when communicating
through not RTP-aware N A T firewall, it is required to receive and send R T P on the same
port [17, p. 4] [8, p. 55].

The R T P itself does not ensure reliable delivery of the packets but relies on the lower-
layer protocols to do so. The sequence numbers in the R T P header allow the receiver
to reconstruct the packet sequence. For the quality of service monitoring, the Real-time
Transport Control Protocol (RTCP) is used (2.2.1) [17, p. 4]. Figure 2.6 describes the R T P
packet.

-1 Octet-

Ethernet header (24 octets)
IP header (20 octets)

UDP header (8 octets)
V=2

Header
Extension

CC M PT Sequence number
Timestamp

Synchronization source (SSRC) identifier
0 to 15 Contributing source (CSRC) identifiers

Defined in Profile Length
Extension content (if length > 0)

Payload
Ethernet frame check sequence, etc.

Í
Basic
RTP
header

Figure 2.6: Real-time Transport Protocol for voice information. Adapted from [8, p. 55].

The meaning of the most important headers is as follows:

• P T : payload type, indicates the type of payload for the receiver to interpret.

• SN: the Sequence number.

• Timestamp: clock, that allows the receiver to compute jitter and synchronize the
playback of different streams.

• SSRC: the Synchronization Source Identifier, a random number that should be unique
within the whole R T P sequence.

15

• C S R C : the Contributing Source, represents sources of content that have been com­
bined in some way.

Header extensions are optional and were inserted to allow vendors to experiment with
proprietary functions. The payload containing the encoded media then follows [8, p. 56].

2.2.1 Real-time Transport Control Protocol

The Real-time Transport Control Protocol, or R T C P for short, is a protocol used for mon­
itoring the R T P streams. The format of the packet is similar to R T P but contains only
reports [8, p. 57]. Figure 2.7 describes the format of the R T C P packet.

-1 Octet-

V=2 Count

Ethernet header (24 octets)

IP header (20 octets)

UDP header (8 octets)

Type Length

Per formance data/reports

Ethernet f rame check sequence, etc.

í
RTCP
header

1

Figure 2.7: Real-time Transport Control Protocol used for R T P sessions monitoring.
Adapted from [8, p. 57].

There are five types of R T C P packets [17, p. 21]:

• SR Sender Report: transmission and reception statistics from active senders.

• R R Receiver Report: for reception statistics from participants that are not active
users.

• SDES: Source DEScription including the canonical name (C N A M E) for the source.

• B Y E : end of participation.

• A P P : application-specific function.

Often at least two R T C P packets are bundled into one U D P packet, the first one being
either the SR or R R type, and the second must be the C N A M E for the source. The reason
is that every time a new participant appears, each source identifies its C N A M E [8, p. 58].

Key functions of R T C P are to synchronize the various clock and time stamps and
keep track of counts of lost packets to calculate the quality of distribution networks. The
frequency of the R T C P packets sent depends on some factors - available bandwidth and
the number of end points. The report interval shall increase for more participants or lower
link speeds but never exceed more than 5% of utilization [8, p. 58].

16

2.3 Internet Relay Chat

Internet Relay Chat, or IRC for short, is a worldwide system of real-time, synchronous, text-
based conferencing on the Internet. Created in 1988 by Jarkko Oikarinen, the protocol is
based on the client-server architecture and allows multiple users from around the world to
engage in conversation with each other. The messages are not sent directly to the users,
but they are relayed through an IRC server [6, p. 311] [14, p. 4].

Users of the IRC use an IRC client to connect to multiple servers on which they are
able to join any server they want under an alias, called "nick" or "nickname". Wi th users
connected, they are then able to send and receive messages with the use of a graphical
interface or text-based IRC clients [6, p. 312-313].

2.3.1 Structure and architecture

The basic components of the IRC structure and architecture are as follows [12, p. 2-3]:

• Server: a backbone of the IRC network. The server is the component users connect
to with the intention of talking with each other and is intertwined with other IRC
servers forming the IRC network.

The application (on the server) that allows users to connect to the server and relay
messages is called an IRC daemon [6, p. 312].

• Client: a client is anything connecting to a server that is not another server. There
are two types of clients:

— User Clients: a program providing an interface for IRC chatting, also referred
to as "users".

— Service Clients: a client that provides some sort of service to other users and
is not used for chatting.

There are also classes of clients: normal, operator, and channel operator. The main
difference between them is the types of privileges they have.

• Channels: a channel is a named group of users that all receive messages addressed
to that channel. The names of servers that start with are global channels,
accessible from any server. The ones starting with are accessible only on that
server itself [14, p. 5] [6, p. 312].

The web of servers creates the IRC network, where each server acts as a central node for
the rest of the network it can see. Servers may communicate with other servers and users.
No message is sent between two users directly. A l l messages travel through IRC servers to
the designated user as shown in Figure 2.8. This method is called "relaying" [12, p. 3].

The IRC protocol provides these services that allow real-time chatting and conferenc­
ing [12, p. 4]:

• Client Locator: localization of two users for message exchange.

• Message Relaying: messages travel through a server before being sent to a specified
user.

• Channel Hosting and Management: servers host and manage channels.

17

foo.example.com
Nick: amy bar.example.com

baz.example.com
Nick: rory

IRC Client IRC Server

PRIVMSG rory :Hello!

PRIVMSGamy:Hi!

IRC Client

PRIVMSG rory :Hello!

PRIVMSG amy :Hi!

Figure 2.8: The IRC message relaying between two users. Adapted from [19].

The IRC protocol defines a set of concepts that helps with delivering messages of dif­
ferent classes. Next segment draws from [12, p. 5-7]

The One-to-one communication occurs mainly between users. Wi th the messages being
sent by servers in one direction through the spanning network tree, the resulting path is
the shortest between any two end points on the spanning tree.

One-to-many style of communication refers to sending a message to multiple chosen
targets. A user might send a message to a channel, which acts as a multicast group in IRC
so only users in said channel receive the message. A message also might be sent to users
whose host or server information matches a specific mask or the least efficient way is to
define a list of targets to which to send the message.

One-to-all communication is, in fact, a broadcast message sent to all servers, users,
or both. These classes of messages are mainly used for updating users' status on multiple
servers for example. The message might be sent Client-to-client, which means it will be
sent to all clients. Client-to-server sends the message to all servers. Server-to-server
sends a message to all connected servers from a server.

To prevent clients to "flood" servers by sending a continuous stream of messages, flood
protection is implemented to every server and applies to all clients except services. A l l
clients are able to send one message every two seconds. The algorithm is as follows [14,
p. 60]:

• Check to see if client's "message timer" is less than the current time (set to be equal
if it is).

• Read any data present from the client.

• While the timer is less than ten seconds ahead of the current time, parse any present
messages and penalize the client by 2 seconds for each message.

2.3.2 Messages

Clients and servers of IRC communicate through messages, using T C P as its transport
protocol. Some messages may or may not generate a reply when a valid command is
provided.

18

http://foo.example.com
http://bar.example.com
http://baz.example.com

The message is composed of up to three parts: the prefix (optional), the command, and
the command parameters (up to 15). A l l parts are separated by at least one (or more)
ASCII space characters. The presence of a prefix is indicated by a single leading ASCII
colon character (":") with no spaces around and it is used for determining the origin of
the message. The command parameter is either a valid IRC command or a three-digit
numeric code. A l l messages are terminated with C R - L F (Carriage Return - Line Feed) and
do not exceed 512 characters, including the C R - L F pair [14, p. 7-8]. The Backus-Naur
Form representation of a message is as follows [14, p. 8]:

<message>

<prefix>

<command>

<SPACE>

<params>

= [':' <prefix> <SPACE>] <command> <params> <crlf>

= <servername> | <nick> [' ! ' <user>] ['<&' <host>]

= <letter> { <letter> } | <number> <number> <number>

= > > { > > }

= <SPACE> [':' <trailing> | <middle> <params>]

<middle> ::= <Any *non-empty* sequence of octets not including

SPACE or NUL or CR or LF, the fi r s t of which may

not be ' : ' >

<trailing> : := <Any, possibly *empty*, sequence of octets not

including NUL or CR or LF>

<crlf> := CR LF

Server registration

The server registration is conducted by sending three commands to the desired server: Pass
command (although not required sometimes), Nick command, and User command, in this
order. See Figure 2.9 for illustration.

f oo . examp le . com ba r . examp le . com
IRC Cl ient IRC Server

NICK a m y

USER a m y * * : A m y Pond
w

: ba r . example . com 001 a m y :We lcome
amy !amy@foo . examp le , c o m

Figure 2.9: The client registration process without the PASS command. Adapted from [19].

The Pass message is used to set a "connection password" and is not required, though
it adds some sort of level of security to the connection. This command must precede the
Nick and User commands [14, p. 14].

19

http://foo.example.com
http://bar.example.com

PASS <password>

The Nick command is used for setting or changing users' nickname which is used for
addressing the user. Hop count is used by servers to identify how far the user is from its
home server [14, p. 14].

NICK <nickname> [<hopcount>]

The User message is used for setting the username, server name, hostname, and real
name. Also used between servers to indicate a new user. The real name should be at the
end and prefixed by ":" because the real name might contain spaces [14, p. 15].

USER <username> <hostname> <servername> <realname>

For terminating the session, command QUIT [<message>] is used. The OPER <user>
<password> command is used to obtain operator privileges [14, p. 17].

Text messages and channel commands

To join a specific channel or channels, the command Join is used. To successfully join
a channel the user has to be invited if it is invite-only, the user does not have an active
ban, and the correct password has to be provided if set [14, p. 19-20].

The Join message is also relayed to all participants in the channel as shown in Fig­
ure 2.10. Note that the Join message is also relayed back to the original user as a confir­
mation for successfully joining the channel [19].

foo.example.com
Nick: amy

baz.example.com qux.example.com
bar.example.com Nick: doctor

IRC Client IRC Server

JOIN #channel

:amy!amy@foo. example.com
JOIN #channel

IRC Client

:amy!amy@foo. example, com
JOIN#channel

:amy!amy@foo. example, com
JOIN #channel

Nick: river
IRC Client

miro

Figure 2.10: Joining the channel and relaying the Join message. Adapted from [19].

Just before joining, the user is able to see a list of public channels on the specific server
with the List command [6, p. 312].

JOIN <charniel>{,<charinel>} [<key>{,<key>}]

LIST [<channel>{,<chamiel>]- [<server>]]

Names message lists all nicknames visible to a user in a channel [14, p. 24] and Part
message removes the user from the active users list [14, p. 20].

20

http://foo.example.com
http://baz.example.com
http://qux.example.com
http://bar.example.com
http://example.com

NAMES [< channe1>{,<channe1>}]

PART <channel>{,<channel>}

Some commands are available only to the Channel Operators. These are TOPIC that
changes or sets the channel's topic, KICK which kicks a user, MODE which is used to change
the channel's mode, and INVITE which invites a user to an invite-only channel [14, p. 6].

For sending text messages, the Privmsg command is used. <receiver> contains the
nickname of the recipient or a channel or a server. It also might be a list of recipients [14,
p. 32]. When a Privmsg is sent to a channel, the message is relayed to all users in the
channel as shown in Figure 2.11. When a message is sent to only one user, it is relayed
through a server to the specific user as shown in Figure 2.8 before.

PRIVMSG <receiver>{,<receiver>} :<text to be sent>

The NOTICE <nickname> <text> message is similar to Privmsg but automatic replies
are never sent in response to a NOTICE message [14, p. 33].

These messages also support wildcards for addressing the receiver. The wildcards are "*"
and "?". For example, PRIVMSG #*.edu sends a message to all channels ending with .edu
[6, p. 32].

foo.example.com
Nick: amy bar.example.com

baz.example.com
Nick: doctor

qux.example.com
Nick: river

IRC Client IRC Server IRC Client IRC Client

:doctor!doctor@baz.exam pie.com
PRIVMSG #channel :Hello!

PRIVMSG #channel :Hello!

:doctor!doctor@baz.example.com
PRIVMSG #channel :Hello!

Figure 2.11: Message relaying to channel members. Adapted from [19].

Other commands

Some other commands may be used for the user to query various information about the
server. A l l servers must respond to these queries.

The Version message returns the version of the queried server. The Stats message
returns the statistics of a particular server. For the name of the admin of a specific server,
the Admin command is used and for the server information, the Info command is used [14,
p. 26-31].

VERSION [<server>]

STATUS [<query> [<server>]]

ADMIN [<server>]

INFO [<server>]

21

http://foo.example.com
http://bar.example.com
http://baz.example.com
http://qux.example.com
mailto:doctor@baz.example.com

The User-based queries help with finding information about other users or a group of
users. The Who command is used for returning a list of information about a certain user.
A similar command called Whois returns the same information but the user is able to
address a specific server [14, p. 33-34].

WHO [<name> [<o>]]

WHOIS [<server>] <nickmask>[,<nickmask> [,...]]

The last important group of messages is the miscellaneous messages, used for connection
and error-oriented services. The K i l l command is used for terminating the connection
between a user and server when a duplicate entry in the list of valid nicknames is found.
Used by servers and operators [14, p. 36].

KILL <nickname> <comment>

One of the most important commands is the P I N G - P O N G duo. These are used for
testing whether the endpoint is still active or not. The Ping message is sent at regular
intervals and if the endpoint fails to send a Pong response in a certain amount of time, the
connection is terminated. The Pong response contains the name of the same daemon that
arrived in the Ping message [14, p. 37].

PING <serverl> [<server2>]

PONG <daemon> [<daemon2>]

The Error command is used by servers to report fatal errors to its operators and it is
server-to-server only. Operators receive this message encapsulated in a Notice message [14,
p. 38].

ERROR <error message>

2.4 Applications

Here are some of the applications that were taken a look at during the research. Two of
them are SIP User Agents with their own open-source APIs (Linphone, Baresip), one is an
IRC client and the fourth application is an IRC gateway.

2.4.1 Linphone

Linphone is an open-source SIP-based user agent, available for mobile and desktop. It
features all basic SIP-related services, such as audio and video calls, call management,
call transfer, audio conferencing, and instant messages. It also provides user-experience
features such as file sharing, contact lists, and chat during calls. Linphone is available with
a graphical interface or as a console application.

Linphone uses its open-source library as its core, called liblinphone. The library is
a SIP-based S D K 5 for video and audio over IP and is written in C / C + + .

The application is available on Linux, Windows, MacOS, iOS, and Android [5].
5 Software Development Kit

22

2.4.2 Baresip

Baresip is also a SIP user agent but uses the command line as a graphical interface. The
application uses librem and libre libraries for audio and video calls and real-time commu­
nication, respectively. Both libraries are written in C / C + + .

Baresip offers similar services as Linphone (SIP features and user experience features),
but it omits the comfortability of graphical user interfaces.

Baresip is also available on the same platforms as Linphone, that is Linux, Windows,
MacOS, iOS, and Android [3].

2.4.3 Weechat

Weechat is a lightweight IRC client with a text-based user interface. It was designed to be
heavily extensible with plugins. It is a full-fledged text client with user-experience features,
such as incremental text search, spell checker, scripts manager, and customizable interface.

The user is able to connect to numerous IRC servers, join channels and chat with other
users, using Internet Relay Chat protocol.

Weechat is available on multiple platforms: Linux, UNIX, BSD, G N U Hurd, Haiku,
MacOS and Windows [11].

2.4.4 BitlBee

As opposed to Weechat, BitlBee is not an IRC client but an IRC gateway. It provides access
to other popular messaging applications, such as ICQ, Facebook, Skype, and Twitter for
example. BitlBee communicates with the users via IRC protocol.

The user installs BitlBee and connects to the BitlBee server (mostly local) with its
favorite IRC client. After registering, user is able to work just like he normally does on
IRC or is able to use any other supported instant messaging application.

BitlBee is available on Linux, UNIX, BSD, Windows, AmigaOS, and MacOS [7].

2.4.5 Summary

For SIP and call implementation, the liblinphone S D K was chosen for this thesis. Liblin-
phone is overall more documented and recent than the libraries offered by Baresip. Further­
more, Baresip offers two libraries, as opposed to liblinphone which bundles all dependencies
together.

For the program's "graphical interface", the IRC client Weechat was chosen. The rea­
soning behind this decision is that Weechat is very lightweight and the process of connecting
to an IRC server is much easier as opposed to BitlBee.

23

Chapter 3

Specifications

This chapter takes a look at the program's formal requirements - what the final program
should be capable of - which are described in Section 3.1. For a detailed explanation of the
architecture and concepts, refer to Section 4.2.

3.1 Requirements

This thesis aims to create a SIP user agent with an IRC client as its graphical interface. The
formal requirements come from the assignment of the thesis, from consultations with the
supervisor and some were inspired by researching other applications. Program is required
to perform basic SIP services and to maintain a good user experience. These requirements
are:

• A console application in the form of an IRC bot.

— The bot acts as a user agent.

• A n IRC client or gateway as the program's graphical interface.

— Use the IRC protocol for the user agent's control - in the form of commands
addressed to the bot.

— Provide feedback after each command.

• Be able to make voice calls with the use of Session Initiation Protocol.

— Basic call, either through proxy or peer-to-peer.
— Be able to process the situation where U A receives numerous incoming calls

simultaneously.

— Be able to host multiple outgoing or incoming calls.

• Standard N A T traversal utilities.

— S T U N and T U R N support, inspired by SIP's problem with N A T in Subsec­
tion 2.1.4.

• Standard call control.

— Hold and resume a call.

24

— Hangup current call.

— Accept or decline an incoming call.

• Instant messaging.

— Send instant text messages not only through IRC but also to other SIP user
agents.

— Send messages also during a call directly to the other participant. Inspired by
Linphone.

• Standard proxy registration.

. Be able to call with the help of E N U M (2.1.5).

• A local database containing contacts of the user - address book. The database shall
also hold proxy identities, just like other user agents.

The program shall be written in C / C + + with the help of a third-party library for
implementing calls. The supported platform is Linux.

Automated acceptance tests are also required. Tests may be in a form of a script, using
a SIP traffic generator to test calls. Architecture and implementation of the automated
tests are described in Chapter 6.

25

Chapter 4

Design

This chapter describes the choice of technologies used for this thesis in Section 4.1. The
architecture and intended use of technologies are described in Section 4.2, based on the
formal requirements from Chapter 3.

4.1 Technologies

The choice of technologies for this project, or any other project, is essential. Section 2.4
introduced four applications researched for this thesis - two SIP user agents, one IRC client,
and one IRC gateway. Both user agents are developed with open-source SIP libraries, which
might be used for this thesis.

For implementing calls and SIP services, the liblinphone was chosen as the main library.
This project uses linphone-SDK 1, which bundles liblinphone and its dependencies together.
As the program's graphical interface, Weechat was chosen. For the reasons why, see 2.4.5.

The programming language for this project is C / C + + . Although the classes are present,
no O O P 2 pattern is implemented. The reason is, the classes are only used for encapsulating
data and making the code cleaner with class methods. Standard C + + and C libraries are
used, such as string, vector, sys/socket and iostream for example.

The operating system this application aims at is Linux, mainly because of the Linux
sockets used for communication with IRC.

For the address book, which is conceptualized as a local database, a database language
is needed. Thus, SQLite3 with its C / C + + interface A P I was chosen. SQLite3 provides
easy integration and database manipulation within a C / C + + program.

4.2 Architecture

The user agent is conceptualized as an Internet Relay Chat bot that joins a channel on an
IRC server and awaits for commands, sent via the IRC protocol. The bot is listening to
commands sent only from a certain user, specified in the command line argument.

x

https: //github.com/BelledonneCommunications/linphone-sdk
2Object-oriented programming

26

4.2.1 Connecting

Program is launched from the command line, where server, channel, user, and pass­
word are specified. The server and channel are locations the bot connects to and waits
for commands. User is a nickname of the user the bot listens to and password is the bot's
password. Bot's nickname, which is used for its addressing, is created from the provided
user's nickname and a suffix "_b", for example, Joe_b if the user's nickname is Joe.

User IRC Server

1: JOIN #channel

2:

PASS
NICK
USER

2:

PASS
NICK
USER

^
3: JOIN #channel

Bot

Figure 4.1: Bot and user connecting to the server and channel.

It is advised for the bot and the user to connect to the same server and channel and
that the user is connected first. After successfully connecting, the bot sends a welcome
message and is ready to accept commands.

4.2.2 Commands

Commands sent from the user are in the form of private messages relayed through an IRC
server to the bot, as shown in Figure 2.8. The format is a standard PRIVMSG containing the
command and its parameters.

PRIVMSG nickname_b : <command> <command_parameters>

The command is a human-readable text that corresponds to the action, for example:

• register: register to a proxy,

• call: initiate an outgoing call,

• hangup: terminate the current call.

Parameters contain additional important information for the command to be successful,
for example, call must be followed by a SIP URI that the user wishes to call.

Some commands, especially for working with the address book, are only composed of the
initial letters of the actions, preceded with a dash. For example, a command for inserting
a contact would be -ic (insert contact). The full list of commands is in the program
manual, Appendix B.

27

4.2.3 Registration and N A T traversing

When the bot successfully connects it is not registered to any proxy nor connected to any
S T U N or T U R N server. It is possible to initiate outgoing calls, but only in Local Area
Network. When a user wishes to communicate with users outside of his L A N , it is crucial
to register to a SIP proxy or use utilities for N A T traversal.

For the user to specify S T U N or T U R N server, the -s command is used. This command
requires a hostname or an IP address of the server. For passing the T U R N credentials, an
optional argument -t is used.

-s <server> [-t <turn_username> <turn_password>]

For the bot to be able to register to a proxy, the user must provide its SIP URI and
password. The register command is used for this. The command is relayed to the bot,
then SIP method REGISTER is sent to the desired proxy as shown in Figure 4.2.

User IRC Server Bot SIP proxy

1: register <credentials>

2: register <credentials>
3: REGISTER ...

Figure 4.2: Registration of the user agent to a SIP proxy.

Register command also supports the address book lookup with the -a argument and
provided <name>. A closer description of the address book logic is described in 4.2.6. The
format of the command is as follows:

register {<sip_uri> <password>]- | {-a <name>}

After a successful registration, a confirmation message with the user's current URI is
sent to the user.

4.2.4 Calls

According to formal requests, the program must be able to initiate and receive calls from
other user agents. Calls may be either peer-to-peer or with the use of a proxy. How the
bot registers or is able to use utilities for N A T traversal is described above in 4.2.3.

The user is able to initiate a call with the call command. A valid SIP URI must be
provided for the call to be successfully initiated. After the command is relayed, the bot
sends I N V I T E method to the other party, as illustrated in Figure 4.3.

Call command also supports dialing a user from the address book with the -a argument
and <name>, see 4.2.6 for a detailed explanation.

28

With the -e argument, the user is able to call with the help of E N U M lookup. The
<number> provided must be in the E.164 format, described in 2.1.5. The format of the
command is as follows:

call {<sip_uri>]- | {-a <name>} | {-e <number>}

User IRC Server Bet SIP proxy Callee

^ ^ f c ^

1: call sip:user(S)domain.com 1: call sip:user(S)domain.com
2: call sip:user@domain.com

1: call sip:user(S)domain.com
2: call sip:user@domain.com

3: INVITE ...

1: call sip:user(S)domain.com
2: call sip:user@domain.com

3: INVITE ...
4: INVITE ...

Figure 4.3: Initiation of an outgoing call through proxy.

The bot acts as the applications' "backend". It receives and processes SIP messages,
and subsequent R T P streams and handles media. With the call initiated, R T P streams are
opened directly between the participants, as the standard states. For voice capture and
audio playback, the mediastreamer2'^ library for media processing is used by the bot, which
is part of linphone-SDK. Wi th the bot being interpreted as the "backend", the interface of
the IRC client is interpreted as the "frontend", for this project.

Figure 4.4: Media exchange with voice capture and audio playback.

When another user agent initiates a call, the bot sends a message after receiving the
I N V I T E method, informing the user that someone is calling. The message contains a remote
URI and an order. Wi th each new incoming call, the order increments. This order allows

3

https: //github.com/BelledonneCommunications/mediastreamer2

29

mailto:user@domain.com
mailto:user@domain.com
mailto:user@domain.com

the user to choose a specific call to accept when more than one is ringing. The order of the
call must be specified in the accept command.

The user has a choice to accept or decline a call. When a specific call is accepted, all
other incoming calls are declined. Figure 4.5 illustrates accepting an incoming call.

accept <order>

decline

Callee SIP proxy ; : t

1: INVITE sip:user(S>...
2: INVITE sip:user@...

3: s ip:cal lee@domain.com is
calling...

6: accept 1

4: s ip:cal lee@domain.com is
calling...

5: accept 1

Figure 4.5: Receiving an incoming call and accepting it.

When a call is successfully established, either outgoing or incoming, there is a possibility
to control the flow of the call. It is possible to hold and resume a call with the use of
commands of the same name. Wi th the hangup command, it is possible to terminate the
current call.

hold

resume

hangup

4.2.5 Instant messages

The bot is able to receive and send instant messages with the use of the MESSAGE SIP
method. When one is received, the remote URI of the sender and the text are displayed to
the user. Example of a received message:

joe@sip.example.com: Hello!

For the user to send a message, the command mess is used. The user must provide a SIP
URI of the receiver and a text message. It is also possible to send a message to someone
from the user's contacts with arguments -a and <name>.

mess {<URI> <text_message>} | {-a <name> <text_message>}

30

mailto:callee@domain.com
mailto:callee@domain.com
mailto:joe@sip.example.com

The liblinphone library also supports a feature, where after a call is established, the
user may send a message directly to the other party. For this feature, the command -m
is used. Note that it may be used only during a call and the message is sent only to the
second participant, that is why no U R I may be specified.

-m <text_message>

4.2.6 Address book

A n address book allows the user to save SIP URIs to contacts and also its SIP proxy
credentials for faster registrations and dialing. The address book is conceptualized as
a local database that communicates with the bot. The SQLite3 C / C + + A P I allows these
functionalities.

The structure of the database consists of two tables, contacts and registrar. Each
entry in the database consists of ID, name, sip_uri, and the registrar table also includes
sip_password. The name attribute shall be unique within the table and is used for querying
the database for information.

The -a argument, supported by call, register and mess methods, is the sign for the
bot to retrieve needed information from the database, corresponding to the given <name>
argument. After the information is retrieved, the command delivered with -a argument
is performed. The process of calling a user with the database lookup is illustrated in
Figure 4.6.

2: call -a Adam
3: what uri corresponds to Adam?

4: sip:adair.@example.com

SIP p r o x y

5: INVITE sip:adam@example.carn

6: INVITE sip:adam@exarnple.com

Figure 4.6: Initiation of an outgoing call with database lookup.

The user is able to perform basic C R U D ' 1 operations. Commands for these operations
start with a dash followed by the first letters of the desired actions. For example, the
format for insert contact and remove from registrar commands are as follows:

-ic <name> <sip_uri>

-rr <name>

4Create Read Update Delete

31

mailto:adam@exarnple.com

To browse the user's contacts or SIP identities, a database browsing mode is available.
The mode may be accessed by -con for contacts browsing or -reg for identity browsing.
The data entries are projected to the user, five at a time. If the user has more entries, they
are divided into pages. User may also specify a pattern, which acts as a regular expression
that filters the name attribute. For traversing pages while in the database browsing mode,
commands next and prev are used, and exit for leaving the mode. For the full list of
commands, see Appendix B.

32

Chapter 5

Implementation

This chapter closely describes the program's implementation and its details with code sam­
ples. Also, work with the third-party library, liblinphone, is explained. Code for calls im­
plementation was drawn from linphone's official documentation and tutorials [4]. Sections
have a similar structure as the architecture described in Section 4.2, that is: Connecting
(5.1), Commands (5.2), Registration and N A T (5.3), Calls (5.4), Messages (5.5) and the
address book (5.6).

The program was developed in Visual Studio Code on Ubuntu 20.04, and the source
code is distributed between 15 files, including the header files. Note that the names of files
and classes are the same.

Source code is compiled with standard g++ compiler, with the use of Makefile, gener­
ated by the G N U Autotools 1. After the compilation is successful, binary, named irc_bot,
appears in the root directory.

5.1 Launching and connecting

The program is a console application launched from the command prompt and it does
not need any special root privileges. It is launched as any other console application
with four required arguments. The main function of the program is implemented in the
irc_bot_main.cpp file.

./irc_bot {server]- {channel]- {user]- {password}

server - IRC server the bot connects to

channel - channel the bot joins

user - a nickname of the user the bot shall listen to

password - the bot's password

After launching the program, a linphone core is created. The process of the creation is
closely described in Section 5.3. A l l of the objects used in this program are global singletons
and are defined and declared just before the main function.

Wi th the core successfully created, it is necessary to obtain a database handle for the
address book. The class method for opening the database handle is addrBook: : addr_book_
open(). The addrBook methods are closely described in Subsection 5.6.

x

https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html

33

https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html

After successfully creating and opening global dependencies, the process of connecting
the bot begins. The bot itself is designed as a T C P client, which connects to a T C P server.
The logic of how the bot works is described in [1]. Although the tutorial is written in
Python, the logic is the same in C / C + + . Class called irc_bot represents the bot. At the
start, the command line arguments are parsed to bot's attributes.

The server's hostname is resolved with the gethostbyname () method to get the ap­
propriate IP address. Wi th the hostname successfully resolved, a T C P socket descriptor is
created. It is crucial to set a socket timeout with setsockopt for the socket to not wait
for a packet to continue. The reason for this option to be crucial is that the application
has to run in a constant loop for correct functionality. This also ensures that there is no
need for implementing multiple threads. The program always awaits a specific command
or message for an action to be performed but still continues to perform other tasks.

After the socket is prepared, the connect method connects to the server. Bot sends
the PASS, NICK, and USER commands to authenticate and after the authentication is suc­
cessful, bot sends a "welcome message" to the user with its current SIP U R L Bot joins the
channel after the MODE command was sent by the server. The program then enters the main
application loop and is now ready for interaction.

To terminate the bot, end command or SIGINT C T R L + C interruption are available.
The SIGINT signal callback function is defined at the start of the irc_bot_main. cpp file.
The process of the termination (either for the signal and for the end command) is as follows:

1. Close the database handle.

2. Unregister the user from a SIP proxy.

3. Destroy the linphone core.

4. Send a bye message and QUIT the IRC server.

5. Exit the program.

Steps 2 - 4 are implemented in the irc_bot: :bot_terminate () method and destruction
of the core and unregistration of the user are closely described in Subsection 5.3.

5.2 Command handling

Commands are transmitted via T C P packets. These packets are received in the main loop
with the recv method. The variable bytes_received is greater than zero when the bot
receives a packet. In that case, the message is processed or else the loop continues.

The C L - R F duo is cut off and the whole command is split with spaces (" ") as a delimiter
into the messages vector. To split the message, a method with the same name is used. The
method is not a standard C + + method and the code is adapted from [9].

ircMsg = string(buffer, 0, bytes_recieved);

ircMsg.resize(ircMsg.length() - 2);

split(ircMsg, " ", messages);

Just before the bot handles a specific command, other miscellaneous matters must be
resolved. Whether the messages vector contains the MODE command (then the bot joins

34

a channel) or the ERROR command for an unsuccessful connection. If the vector contains
PING command, an adequate PONG response is sent.

If the message is a private message, the corresponding nickname has to be checked.
The first index of the vector has to be split with the use of "!" as a delimiter. It contains
a nickname of the sender and it has to match the user argument. The third index shall
contain the bot's nickname. Indexing and format of this message are shown in Figure 5.1.
If one of these checks fails then the loop continues.

messages index : [0] [1] [2] [3+]

:user!user@domain.com PRIVMSG nickname_b :<text>

T " I -

sender's nickname bot's nickname

Figure 5.1: Format and indexing of an IRC P R I V M S G message.

The code snippet below shows the process of checking the first index of the messages
vector for the correct nickname. It is also needed to also check, whether the message was
addressed to the bot, i.e. the third index.

split(messages[0], "!", aux); // 1st index shall contain the nickname

if((aux[0] != correct_nick) II (messages[2] != bot.nick))

continue;

string command = messages[3];

The command variable then contains the fourth index which should contain a command.
This variable's content is then compared with string literals, containing supported com­
mands. If they match, appropriate action is performed or else an unknown command
message is sent.

The command parameters are processed the same way. The appropriate messages
index is again compared with a string literal. Correct usage of the commands is checked
through the vector's size. When the user sends an invalid format of a command, a message
containing the correct usage is sent.

After a successful action is performed bot shall always send feedback, confirmation, or
a fail message. The send socket method is used for communication with the user and the
server.

Two irc_bot class methods are available for communication. The send_com() method
sends the desired string and an empty line afterward for better visual separation of re­
sponses. The send_ init_com() method sends a string literal without the subsequent new
line. A typical example of sending a response:

string msg = "PRIVMSG " + user_nick + " :text\r\n";

bot.send_com(msg);

A complete list of commands, their format, and usage can be found in Appendix B.
Also, a structured help command can be used for help while using the bot.

35

mailto:user@domain.com

5.3 Registration and N A T traversing

When the bot joins and sends the welcome message, it is not registered to any proxy nor
uses any N A T traversal utilities. These are needed to be set if the user wishes to call outside
of L A N .

The chosen third-party library liblinphone helps to implement these features. The
condition for working with the library is to create the linphone core. This core does basic
SIP and other functionalities in the background and is crucial.

The irc_bot_core class implements all linphone core-related functionalities. The core is
created with the irc_bot_core: : core_create() method. As the documentation states [4,
Initializing], the core shall first be created and then started. After both of these actions are
successful, the core callbacks are inserted. The code snippet is showcased in Listing 5.1.
These callbacks are called after an important action is made by the linphone core and are
also implemented in the ire_bot_core. epp file. Wi th the core created at the beginning of
the main function, the bot may now register to a proxy, set N A T traversal options, initiate
or receive calls, and other SIP-related functionalities.

this->_core = linphone_factory_create_core_3(...);

int err;

if((err = linphone_core_start(this->_core)) != 0){

}
//create the core callbacks
this->_cbs = linphone_factory_create_core_cbs(this->_factory);

/* Add callbacks */

linphone_core_cbs_set_call_state_changed(...);

linphone_core_cbs_set_registration_state_changed(...);

linphone_core_cbs_set_message_received(...);

linphone_core_add_callbacks(...);

// set other core options

Listing 5.1: Creation of the linphone core and callbacks setting.

When the user wishes to terminate the bot, the core is destroyed. First, the core is
stopped and then the reference counter to the object is decremented, which shall destroy
it. The irc_bot_core: :core_destroy() method implements this behavior.

Setting the N A T traversal utilities

Enabling the N A T utilities is implemented also in the irc_bot_core. epp file. The corre­
sponding command to enable these functionalities is -s with its optional -t command to
also enable the T U R N support.

This command may only be performed if the user is not in a call. The user has to provide
a valid S T U N or T U R N server as its first argument. If the format of this command is valid,
S T U N and ICE support is enabled with the irc_bot_core: : enable_stun() method.

36

The linphone methods recommended for enabling the S T U N and I C E support are as
follows, according to [4, Network parameters]:

linphone_nat_policy_enable_ice(this->_nat, true);

linphone_nat_policy_enable_stun(this->_nat, true);

linphone_nat_policy_set_stun_server(this->_nat, address.c_str());

... // check, whether the stun server is valid or not

linphone_core_set_nat_policy(this->_core, this->_nat);

The LinphoneNatPolicy _nat attribute first must be initialized with linphone_core
_create_nat_policy() method. This behavior is implemented in irc_bot_core: : create
_nat_policy() method which is called right after creating the core.

For the optional -t part to be successful, the user has to provide a valid T U R N username
and password. After successfully parsing and checking the arguments, the irc_bot_core: :
enable_turn() method is called.

The method must create a LinphoneAuthlnf o object that stores provided username
and password, then sets the username.

linphone_nat_policy_enable_turn(this->_nat, true);

this->_turn_cred=linphone_auth_info_new(...);

linphone_core_add_auth_info(this->_core, this->_turn_cred);

linphone_nat_policy_set_stun_server_username(...);

To disable S T U N and T U R N support, the command -sd is used which clears the
LinphoneNatPolicy object.

Registration

The register and unregister commands are used for registering and unregistering to and
from a SIP proxy server. The user has to provide a valid SIP URI and password for the
registration to be successful. These commands, as well as the -s command, are available
only when the user is not in a call.

The irc_bot_proxy. cpp file implements the code for registering and unregistering. Af­
ter checking, whether the user is already registered and whether the -a argument is specified,
the credentials are stored in the class attributes and irc_bot_proxy: :bot_register()
method is called, as shown in Listing 5.2. The logic of processing -a arguments is closely
described in Section 5.6.

if(proxy.proxy_cfg != nullptr && linphone_proxy_config_get_state

(proxy.proxy_cfg) == LinphoneRegistrationOk)

{

//already registered

}

int err = proxy.bot_register(core._core);

Listing 5.2: Check, whether the user is already registered.

The code for the irc_bot_proxy: :bot_register() method is adapted from [4, Tuto­
rials - Basic registration]. This tutorial also implements a proxy unregistration.

37

After the method is successfully performed, it is necessary to call irc_bot_core: :
iterate() method. The iterate function calls the linphone_core_iterate() method for
a linphone core background SIP work until the registration is either successful or not, as
shown in Listing 5.3.

After the user is successfully - proxy config's state is in LinphoneRegistrationOk -

or unsuccessfully - proxy config's state is in LinphoneRegistrationFailed - registered,
a feedback message is sent to the user. When the registration is successful, the current SIP
URI is sent to the user in the confirmation message.

The unregistration is very similar. First, the program checks whether the user is regis­
tered or not, irc_bot_proxy: :bot_unregister() method is called, and after the unreg­
istration is successful (the proxy config is in the LinphoneRegistrationCleared state),
a message with the user's current URI is sent.

/* Register */

while((linphone_proxy_config_get_state(proxy.proxy_cfg) !=

LinphoneRegistrationFailed) && (linphone_proxy_config_get_state

(proxy.proxy_cfg) != LinphoneRegistrationOk))

{

core.iterate();

usleep(20000);

}

/* Confirm the registration */

Listing 5.3: A while loop for performing the registration.

This URI and the "welcome" URI are in the form of peer-to-peer SIP URI, where after
the "@" character is the user's IP address.

For the user to tell, whether he is registered or not, a status command is available.
This command prints crucial information about the user, such as:

• Register state - whether registered or not and current SIP URI.

• N A T utilities - whether the S T U N or T U R N support is enabled or not.

• Current call and a list of calls.

5.4 Calls

The ability to make and receive calls is a crucial feature of this project. The third-party
library, liblinphone, provides all of the functionality for SIP calls. The user is able to initiate
peer-to-peer calls, with the help of N A T traversing utilities and also calls initiated through
a SIP proxy server.

For the user to initiate an outgoing call, the call command is used. This command
requires a mandatory argument in the form of a remote SIP URI . It also supports initiating
a call with the help of an address book lookup with -a argument and an E N U M lookup
with -e argument. Address book logic is described in Section 5.6 and the E N U M lookup
implementation is described below in this section (5.4).

Initiation and termination of the calls are implemented in the irc_bot_call. cpp file
and the argument checking, processing, and main calls loop are in the irc_bot. cpp file.

38

Initiating a call

After the call command is received and processed, the irc_bot: : call () method is called.
This method processes the arguments and initiates an outgoing call by calling the irc_bot_
call::call_invite() method.

This method uses linphone functions to initiate a call. The functions in Listing 5.4 are
used as recommended in the official tutorial [4, Tutorials - Basic calls].

//Initiate the call

this->_call = linphone_core_invite(lc, uri.c_str());

i f (this->_call == nullptr)

{

//failed

}
//Get a reference of the call i f we want to work with i t later

linphone_call_ref(this->_call);

Listing 5.4: Call initiation with linphone methods.

If the initial I N V I T E is successful, the current call is pushed into the callsVector

vector and the program enters a call loop by calling the irc_bot: :call_loop() method.
The vector is used for keeping track of all outgoing and incoming calls. The main call loop
consists of six logical sections:

1. The core iterate method.

2. Call established check.

3. Paused or resumed by the remote check.

4. A wrong URI check.

5. Check for incoming commands.

6. Call is still active check.

Not all commands available in "not-in-a-call" state are available during the call. These
include register, unregister and -s commands. On the other hand, the call control
commands, such as hangup, hold and resume are available. The irc_bot: :check_mes-
sages_during_call () method has the same structure and command processing logic as
the main program loop. This method is periodically called during the call to check whether
the user sent a command or the server sent a PING message.

Liblinphone library implements various call states. These call states are used to control
the call flow and when a state changes, the call_state_changed callback, implemented
in the irc_bot_core. cpp file, is invoked and appropriate actions are taken. This program
uses the callback for recognition when the bot receives an incoming call or when a call is
terminated.

The call states are also used for an on-hold check, call established check, and an error
check during the loop itself, without using the callback (steps 2, 3, and 4). The user is
always notified by a private message when a major call event happens. Some of these
checks (2, 3) also use a boolean flag variable, so that they can be called more easily or
called just once.

39

// the auxCall variable holds the current call

if(!callsVector.empty())

{

bool found = false;

for(int i = 0; i < callsVector.size(); i++)
{

// check whether the current call is s t i l l in the vector

if(auxCall._call == callsVector.at(i)._call)

{

// call is s t i l l active

>

}

if(!found)

// exit loop

}

else

// exit loop

Listing 5.5: Active call check at the end of the call loop.

The user is also able to initiate or receive a call during another call. The previous
call is always put on hold and the program enters a new call loop. For this purpose, the
callsVector vector is used. Each new call is pushed into this vector and when either
the remote or the user terminates a call, the specific call is removed from the callsVector
vector in the call_state_changed callback. At the end of every loop, a check is performed,
whether the call the loop belongs to is still in the vector. When the call is not in the vector
anymore, the nested loop is exited and the loop of the previous call is entered. The code is
shown in Listing 5.5.

The iterate method is very crucial for all linphone applications. This method does all
the background tasks needed for the call to be active, such as receiving SIP messages,
recording voice, playing audio, and so on.

Whenever the remote or the user terminates the call and this call is deleted from the
callsVector vector, a notify message is assembled and assigned to the remoteHungUp
variable. This callback also simultaneously deals with an incoming call being terminated,
this behavior is described closely in the next subsection (5.4).

Contents of the remoteHungUp variable are checked at the beginning of each loop, either
the main loop or the call loop with a simple i f statement:

if(!remoteHungUp.empty())

{

// send the notify message that the call is terminated

string msg = "PRIVMSG " + user_nick + " :" + remoteHungUp + "\r\n";

send_com(msg);

remoteHungUp.clear();

}

Note that this program allows only one active, unpaused call at a time. The status
command provides information on which call is current and a list of all calls that are put
on hold, in case of multiple calls.

40

Receiving calls

Whenever a new call comes, the linphone core changes its call state to the LinphoneCall
StatelncomingReceived state. This state change invokes the callback function in the
irc_bot_core. cpp file.

This callback is used for assembling the notify message and pushing the incoming call
structure into the incomingCallsVector vector. This structure is only used for recognizing
whether incoming calls are still ringing or not.

struct IncCall

{

LinphoneCall * c a l l ; //the incoming call

int status; // flag, whether the call is s t i l l ringing or not

};

The contents of the notify message, located in the incomingCallMessage variable, are
periodically checked at the beginning of each loop (either the main or call loop, just like
the remoteHungUp message described in the previous subsection). When the variable is not
empty, that means there is a new incoming call.

Wi th each incoming call, the order attribute is incremented. This order acts as an
index of the call in the vector. The user is able to choose which incoming call to accept in
case of multiple incoming calls, and the order is always sent to the user in the notification
message. The if statement is shown below in Listing 5.6.

if(!incomingCallMessage.empty())

{

order += 1;

// send the incoming call message to the user

string msg = ... "Type V'accept " + to_string(order) + "\" to

accept this call!\r\n";

send_com(msg);

incomingCallMessage.clear();

}

Listing 5.6: Incoming call notify procedure.

These message variables, as well as the vectors, are conceptualized as global variables.
The reason is that the callback function is not a class method, so class attributes cannot
be accessed.

The user may accept a call with the accept command. This command has a mandatory
integer argument - the order of the call user wishes to accept.

Accepting a call is implemented in the irc_bot: :accept () method. The method first
checks the validity of the argument provided and then converts it into an integer, creating
the index. The appropriate incoming call struct is obtained from the incomingCallsVector
vector:

int index = stoi(messages[4]) - 1;

IncCall incCall = incomingCallsVector[index];

incomingCall = incCall.call;

41

With the help of linphone_call_accept () method, the call is accepted and a message
of its acceptance is sent to the user. When the user accepts a call from multiple incoming
calls, all of the other calls are declined. The decline logic is described below in this subsec­
tion. After declining other incoming calls, the incomingCallsVector and order are reset,
the call is pushed into the callsVector vector, and the program enters the call loop, as
shown below in Listing 5.7.

int ret = linphone_call_accept(incomingCall);

// parse the remote address from the call

// send a confirmation message

call._ c a l l = incomingCall;

// decline

incomingCallsVector.clear();

order = 0;

linphone_call_ref(call._call);

callsVector.push_back(call);

call_loop(...);

Listing 5.7: The process of accepting a call.

The user may also decline an incoming call with the use of decline command. This com­
mand declines all incoming calls and its behavior is implemented in the irc_bot: : decline
_func() method. Only active calls - with the status attribute equal to one - are declined.
Liblinphone method linphone_call_ dec line () is used for declining the calls. The vector
and order are also reset. This logic is also used in declining calls while accepting.

Listing 5.8 describes the logic of declining calls. The irc_bot:: decline _func()
method is called by the irc_bot: : decline () function, which only contains error checking.

for(int i = 0; i < incomingCallsVector.size(); i++)
{

aux = incomingCallsVector.at(i);

if(aux.status == 1)

{

ret = linphone_call_decline(aux.call, LinphoneReasonDeclined);

// send a message that the call was terminated

}

}

Listing 5.8: The process of declining calls. This logic is also used in declining the other not
accepted incoming calls.

When the remote terminates an incoming call while still ringing, the call_state_
changed callback is also invoked. The callback changes the status of the call to inactive
(value 0) and also assembles the notify message that the remote terminated the call.

42

Cal l control

The user is able to control the flow of a call with hangup, hold and resume commands.
The hangup command is used for terminating the current call. The behavior for this

action is implemented in the irc_bot_call: : call_terminate() method. Liblinphone
method for terminating a call is linphone_call_terminate(). After the user terminates
the current call, remoteHungUp message is shown to the user. The logic of assembling this
message is described above in Subsection 5.4.

if(this->_call != nullptr)

{

linphone_call_terminate(this->_call);

}

For putting the call on hold from the user's side, the hold command is used. After
receiving the command, the program checks, whether the call can be put on hold, then
holds it. The adequate liblinphone method for holding calls is the linphone_call_pause ()
method. User is also notified that the call is going to be put on hold.

After successfully putting the call on hold, the user is also able to resume this call with
the resume command. After receiving this command, the program checks whether the call
can be resumed and resumes it. The user is again notified that the call is being resumed.
The adequate liblinphone method is called linphone_call_resume().

E N U M lookup

This user agent also supports initiating calls with an E.164 format number. A DNS N A P T R
lookup is used for retrieving the mapped SIP U R L This implementation's logic draws from
Subsection 2.1.5.

To use this feature, the user has to provide -e argument with a valid E.164 number in
the call command. The functionality is implemented in the addr_book: :get_enum_uri()
method. This method is divided into three logical subsections:

1. Modify the number to be DNS-searchable.

2. Execute the DNS N A P T R lookup.

3. Execute the regex substitution.

The first step for a valid DNS-searchable phone number is to reverse it and put dots
(".") in between. For this purpose, a backward for loop is implemented. Only numeric
values from the original number are used.

// number contains the provided number

for(int i = number.length() - 1; i >= 0; i —)
{

if(!isdigit(number [i]))

continue;

// revNum contains the reversed number

revNum.push_back(number[i]);

revNum += ".";

}

43

After the number is reversed, an "el64.arpa." suffix must be added:

revNum += "el64.arpa.";

To retrieve the DNS N A P T R record, the resolv.h C / C + + library and its functions
are used [2]. The res_search() is used for the N A P T R query and the answer is copied to
the response variable. This answer has to be parsed first. For this, the ns_initparse()
method fills the according buffer with data and parses them.

int responseLen =res_search(qry, ns_c_in, ns_t_naptr,

(u_char *)&response,sizeof(response));

if (ns_initparse(response.buf, responseLen, &handle)<0)

{

perror("Error: ");

return "";

}

Now the answer has to be looped through to find the appropriate data. When the
type of record is N A P T R , the rdata section is copied to an auxiliary buffer. A n offset of
11 bytes must be used for correct data to be copied. The last step of this resolution is to
check whether the auxiliary buffer contains a SIP U R L

for (rrnum=0;rrnum<(ns_msg_count(handle,section));rrnum++)

{

if (ns_rr_type(rr)==ns_t_naptr)

{

// retrieve the rdata

memcpy(&res, ns_rr_rdata(rr) + 11, sizeof (res));

aux = string(res);

i f (aux.find("sip") != string::npos)

{

/* The SIP NAPTR RR was found */

found = true;

break;

>
}

}

The aux variable contains a "regexp" [13] string in POSIX that is used for substitution.
Its format is as follows:

!<regex>!<substitution>!

This string is split into the regex and substitution parts and is stored in the regexes
vector. The number is then substituted with the help of regular expression substitution in
extended POSIX. The C++ regex library is used for this and the corresponding process is
shown below:

regex re(regexes [0], regex_constants::extended);

uri = regex_replace(number, re, regexes [1], regex_constants::

match_default | regex_constants::format_sed);

44

The final SIP URI corresponding to the provided phone number is stored in the uri
variable and is returned by the function. Whenever an error occurs or the number does not
map to any SIP URI, the function returns an empty string. Returned URI is checked in
the irc_bot_call: :call() method, whether it is empty or not, and then passed into the
irc_bot_call::call_invite() method.

5.5 Instant messages

The user may send an instant SIP message with the use of a SIP M E S S A G E method. This
user agent supports two types of instant messages:

1. Send a message to a user, specified with a URI.

2. Send a message directly to the other participant in the current call.

To send an instant message to any user, specified with a URI , the mess command is
used. The destination URI must be passed as the second argument of the command. This
command also supports address book lookup with the -a argument, closely described in
Section 5.6.

The instant messaging implementation is in the irc_bot_message. cpp file. To be able
to send messages, the liblinphone library creates a so-called "chat rooms". The usage of
these methods was inspired from [4, Tutorials - Chat room and messaging].

After the command is processed and its arguments checked, the irc_bot_message: :
create_chat_room() method creates a chat room with the specified remote user, as shown
below:

this->uri = uri.c_str();

LinphoneAddress *addr = linphone_core_create_address(lc, this->uri);

this->chat_room = linphone_core_get_chat_room(lc, addr);

Next, the text message is created by concatenating the arguments that have an index
greater than five or six (based on whether the -a argument is present or not). This complete
message is passed to the irc_bot_message: : send_message(), where a SIP M E S S A G E is
created and sent to the remote user. The code snippet below illustrates the process.

LinphoneChatMessage *chat_message = linphone_chat_room_create_message

(this->chat_room, msg.c_str());

1inphone _ chat _me s s age _ s end(chat _me s s age);

The liblinphone supports creating chat rooms associated with a call. The user does not
have to specify the remote URI and the message is sent directly to the other participant.
The command for sending direct messages during a call is -m. This feature was inspired by
[4, Tutorials - Real Time Text Receiver].

The corresponding chat room with the other participant is created when a call is estab­
lished by calling the irc_bot_message: : create_call_chat_room() method.

After receiving the -m command during a call, a text message is created in the same way
as in the mess command and the irc_bot_message: : send_message () method is called to
create and send the message.

45

5.6 Address book

The address book is a local database for the user to save contacts and proxy identities,
so the user does not have to type long URIs and passwords all the time. The database
is implemented in SQLite3 C / C + + library and the corresponding code is located in the
addr_book. cpp file. The code and routines were drawn from [20].

Initializing

The first step of working with the database is to open a database handle. This action is
done right at the start of the program with the help of addr_book: : addr_book_open()
method, which calls the sqlite3_open() routine. The database handle is then stored in
the db attribute.

After the opening is successful, tables contacts and registrar are created with the
addr_book: :addr_book_create() method, whose code snippet may be found below in
Listing 5.9. Tables are created only when they do not exist. A SELECT statement is used
for this check.

When they do not exist, they are created with the use of CREATE TABLE statement.
This statement also includes a second layer of security in the form of IF NOT EXISTS.

sql = "CREATE TABLE IF NOT EXISTS CONTACTS(" \

"ID INTEGER PRIMARY KEY," \

"NAME CHAR(150) NOT NULL," \

"URI CHAR(150) NOT NULL);";

/* Execute SQL statement */

rc = sqlite3_exec(this->db, sql, callback, 0, fezErrMsg);

sql = "CREATE TABLE IF NOT EXISTS REGISTRAR(" \

"ID INTEGER PRIMARY KEY," \

"NAME CHAR(150) NOT NULL," \

"URI CHAR(150) NOT NULL," \

"PASSW CHAR(150) NOT NULL);";

/* Execute SQL statement */

rc = sqlite3_exec(this->db, sql, callback, 0, fezErrMsg);

Listing 5.9: Creation of the tables.

Both tables contain ID, NAME and URI attributes and the registrar table also contains
an additional PASSW attribute. The NAME attribute is unique within the corresponding table
and is used and intended for data retrieval. User may also manually create tables with the
-c command.

The database may also be dropped with the -dropdb command. This command invokes
the addr_book: :addr_book_drop() method. The code snippet below describes the process
of creating both DROP statements and executing them.

sql = "DROP TABLE IF EXISTS CONTACTS; \

DROP TABLE IF EXISTS REGISTRAR;";

/* Execute SQL statement */

rc = sqlite3_exec(this->db, sql, callback, 0, fezErrMsg);

46

When the program is about to be shut down, it is needed to close the database handle.
The addr_book: : addr_book_close () method is called, containing the sqlite3_close ()
routine.

To process the address book commands, the addr_book: : addr_book_iterate () meth­
od is used. This method is called at the end of either the main or the call loop. It compares
the command variable with each possible address book command and performs adequate
action.

The address book also constructs its own feedback messages. These messages are as­
signed to the dbMessage class attribute and then sent through a PRIVMSG to the user as
a form of feedback.

Inserting data

To insert some data into the address book, the -ic and - i r commands for inserting into
contacts or inserting into registrar are available. Both of these commands invoke the
addr_book::addr_book_insert() method.

Before the data are inserted, a check whether a record with the same NAME already exists
is done. This is provided by the addr_book: :addr_book_check() method. This method
runs a SELECT statement and tries to retrieve data with the same NAME.

When it is ensured that the record does not already exist, the INSERT statement is
assembled based on the Option.

enum Option

{

Contact = 0,

Registrar = 1

};
The Option enum determines which insertion type is to be done. This enum also applies

to the addr_book: : addr_book_check() method for the function to determine which table
to look in. The enum option is passed to the function via argument. So the function to
insert data into contacts is called like this, for example:

this->addr_book_insert(messages[4], messages[5], auxl, Contact);

The option is then checked with an if-else statement and appropriate action is executed:

i f (opt == Contact)

{

if(this->addr_book_check(name, Contact))

{

this->dbMessage = "Contact already exists!";

return 1;

}

sql_str = "INSERT INTO CONTACTS (NAME.URI) " \

"VALUES ("'+ name + "', >" + uri + " ') ; " ;

}

The else branch is very similar. After evaluation, the statement is executed with the
sqlite3_exec() method and a feedback message is sent to the user.

/* Insert */

int rc = sqlite3_exec(db, sql, callback, 0, fezErrMsg);

47

Updating data

The user may update the contents of tables with the -uc and -ur commands. These
commands are used for updating contacts and updating registrar, respectively. Both of
these commands invoke the addr_book: : addr_book_update () method. Again, the Option
enum determines which table is worked with.

Before a contact is updated, it is needed for its existence to be checked. The addr_book
: : addr_book_check() method is used for this. Afterward, an UPDATE statement is assem­
bled and executed.

Updating a registrar identity is a bit different. The user has a choice to update only the
URI or only the PASSW or both. To achieve this, the user types a single dash ("-") instead of
the specific argument. The existence of the record is checked and a proper UPDATE statement
is assembled, based on whether the user wishes to change URI, PASSW or both. Example:

if(passw == "-" && uri != "-")

{

sql_str = "UPDATE REGISTRAR set URI='" + uri + "> where

NAME='" + name + "';";

}

Removing data

The user may also delete data from the address book. The logic and implementation are
similar to inserting and updating data.

The first step is that the existence of the record is checked, then this record is deleted
with a DELETE statement. The Option enum is again used to determine the table to work
with. The commands to remove a record from contacts or remove from the registrar are
-rc and -rr.

Retrieving data

The address book data are used for the user to initiate calls, register to a proxy, and send
messages faster. Whenever the -a attribute is provided within the c a l l , register or mess
commands, it is a sign for the program to take a look in the address book and retrieve some
data. The -a attribute requires a NAME argument which must be unique within the specific
table. This NAME is then used for data retrieval.

There are two data retrieval methods, one for contacts and the other for registrar. The
call and mess commands invoke the addr_book: :addr_book_get_contact () method.

The method first checks the existence of the contact and then builds a SELECT statement.
The statement shall return only one record and the URI is then assigned to contactUri class
attribute, as shown in Listing 5.10. This class attribute is passed into the irc_bot_call: :
call_invite() or the irc_bot_message: : create_chat_room() methods through the uri
string variable.

The addr_book: :addr_book_get_registrar() method for retrieving the identity cre­
dentials has the same structure as the method above. The only difference is that this method
has to also retrieve a password. This difference is shown Listing 5.11. The credentials are
stored in the regUri and passw class attributes, which are then set as the irc_bot_proxy
credentials.

18

sql_str = "SELECT URI from CONTACTS where NAME='" + name +

int result = sqlite3_prepare_v2(db, sql, -1, feselectstrnt, NULL);

if(result == SQLITE_0K)

{

/* The SELECT shall always return only one row because the name

is always unique. */

if (sqlite3_step(selectstmt) == SQLITE_ROW)

{

this->contactUri = string(reinterpret_cast<const char*>

(sqlite3_column_text(selectstmt, 0)));
}

}

Listing 5.10: Retrieval of a contact from the database.

sql_str = "SELECT URI.PASSW from REGISTRAR where NAME='" + name + ">;";

int result = sqlite3_prepare_v2(db, sql, -1, feselectstrnt, NULL);

if(result == SQLITE_0K)

{

i f (sqlite3_step(selectstmt) == SQLITE_R0W)

{

/* Retrieve two sets of data */

this->regUri = string(reinterpret_cast<const char*>

(sqlite3_column_text(selectstmt, 0)));

this->passw = string(reinterpret_cast<const char*>

(sqlite3_column_text(selectstmt, 1)));

}

}

Listing 5.11: Retrieval of an identity from the database.

Browsing data

The user may browse its contacts and identities with a database browsing mode. This mode
shows the user's data divided into pages. The page always has five entries at a time. This
mode has its own loop and supports only three commands: exit, next and prev.

The database browsing mode is entered with the use of -con or -reg commands for
browsing contacts or register identities, respectfully. These commands are processed at
the end of the main and call loop. The user may also specify a pattern, acting as a regular
expression. These patterns conform to SQLite standards, with the "%" and " _ " characters
as wildcards.

First, it is needed to retrieve the corresponding data with the addr_book: :addr_book
_get_data() method. The Option enum is used to determine which table is worked with
and the corresponding SELECT statement is assembled, based on, whether the user specified
a pattern. When the user specified a pattern, the LIKE statement is added. Note that this
pattern corresponds to the NAME attribute.

49

The retrieved data are stored in the Data struct, which is then stored in the dbData
vector, as shown in Listing 5.12. Only URI and NAME attributes are retrieved either for
contacts or registrar.

// the struct definition in the header f i l e

struct Data{

string name;

string uri;

};
// the data retrieval and storing

while(sqlite3_step(selectstmt) == SQLITE_ROW)

{

data.name = string(reinterpret_cast<const char*>

(sqlite3_column_text(selectstmt, 0)));

data.uri = string(reinterpret_cast<const char*>

(sqlite3_column_text(selectstmt, 1)));

this->dbData.push_back(data);

}

Listing 5.12: Data retrieval and storing into the Data structure.

After the data are retrieved, the irc_bot: : addr_book_print () method is called. The
program enters a browsing loop. This loop is used for processing certain commands and
the PING messages.

The exit command quits the database browsing mode. To scroll through the pages
next and prev commands are used. These two commands accept an optional argument,
which specifies the number of pages to be skipped. If the argument is not specified, the
number of pages skipped is implicitly one.

After processing the argument, starting and ending vector indexes of the data entries
that are to be printed, and the next page number, are calculated, as shown in Listing 5.13.

/* Increase actual page number */

pact += number;

/* If i t overflowed then correct i t */

if(pact > pmax)

pact = pmax;

/* Compute the next starting index */

n += number * 5;

/* If i t overflowed then correct i t */

if(n > size)

n = lastPageIndex;

/* Compute the last data index */

x += number * 5;

/* If i t overflowed then correct i t */

if(x > size)

x = size;

i = print(n, x, i , pact, pmax, addrBook);

Listing 5.13: The process of calculating the parameters for the next page.

50

The prev command has a very similar structure. Finally, the irc_bot: :print () func­
tion then prints the appropriate data to the user in the form of private messages. This
function also prints the actual page number, and maximum page number and returns an
index it ended at. The user is still able to maintain the call during the database browsing
but is unable to hang up or control it.

51

Chapter 6

Application tests

This chapter describes the implementation of the automated application tests. These tests
are used for testing the basic features of the program. Other edge cases were tested sepa­
rately.

Tests are in a form of a Python script. A special tool, called SIPp [10], that generates
SIP traffic is used for testing calls.

The first Section 6.1 describes the logic and implementation of the script and test
scenarios. Section 6.2 then describes a comparison of this program with other user agents.

6.1 Tests script

The script is conceptualized as another IRC bot that simulates the actions of a human user.
It connects to the same IRC server and channel as the user agent and sends direct messages
to it.

The script tests only basic user agent scenarios and some of the tests are optional,
launched only if an argument is present. The script is implemented in test.py file and
launched in this format:

python3 test.py {server} {channel]- [-r URI passw] [-s STUN_server

TURN_user TURN_passw]

The server and channel are mandatory and run only basic test scenarios - testing the
UA's connection, receiving and making calls, and working with the local database.

Wi th the -r argument user may also run proxy registration tests. Valid SIP URI and
password must be provided.

The last -s argument runs also the N A T traversal utilities setting tests. Again, valid
server and T U R N credentials must be provided.

After launching the script and the arguments are processed, they are assigned into
adequate variables. The bot is then connected to the specified server and channel with
Python sockets. Bot's nickname is SIPTest. The routine for connecting the bot is similar
to connecting the user agent, as inspired by [1]. After being successfully connected, the
script runs the desired test scenarios.

Test scenarios

The total number of test scenarios is 14. Each test scenario consists of multiple test cases,
totaling 39 test cases. Three test scenarios are optional.

52

The concept of the test scenarios is to send a command to the user agent and test that
it sent a correct response message. After sending a command, a test_loop() method is
called, which awaits the response. The receiving socket waits fifteen seconds before timing
out and flagging the test Cc tS6 ctS failed. The timeout consists of three, five-second socket
timeouts. The general logic of each test case is as follows:

1. Prepare the test case (prepare commands, run external programs, etc.).

2. Send a command.

3. Wait and receive a response.

4. Check the response.

5. Print, whether the test case succeeded or not.

After receiving a response, it is checked, whether it is a PING message from the server
(by calling the pong_response () method) or whether it is the correct user agent response.
The contents of the message are checked with a regular expression, whose string is passed
through the function argument. The inside of the loop is as follows:

wait for response

try:

result = recv_timeout(s, 1024)

except TimeoutError:

aux += 1

if aux == 3:

test failed

continue

print the received result

print(result)

pong_response(s, result)

i f re.search(r'(.*)PRIVMSG ' + nick + ' :' + control_mess + '(.*)',

result, re.MULTILINE):

test passed

break

Listing 6.1: The inside of the loop used for receiving and checking the correct response.

Whether the test passed or not is printed to the standard output with the use of colored
text. Successful test cases are printed in green and failed in red. Before every test scenario,
a header is printed in purple, containing a brief description of the following test. A version
of this function that checks for two possible responses is available, called test_loop_or ().

There is an exception in the timeout duration at the first test scenario, which will be
described in the next subsection.

During the execution of the tests, a C T R L + C interrupt is possible. The interrupt
correctly kills all subprocesses created by the script and disconnects the test bot from the
server.

53

At the end of all test scenarios, a final summary is printed to the user. The summary
contains a number of passed and failed tests, and a total number of possible test scenarios
and test cases.

Launch

This is the first test scenario, that tests the user agent's launch and connection to the server.
It is implemented in the test_bot_connect () method.

This test scenario first launches the irc_bot user agent with the use of Python's sub-
process module. The method then waits for one minute maximum to receive a response in
the form of a welcome message. Reason for the timeout being this long is that the pro­
cess of connecting might sometimes take a while. The structure of the loop is similar to
test_loop() method.

This method is crucial and without the user agent being available no other tests may
be conducted. So as opposed to other test cases, this test case exits the script when it fails.

Address book operations

The next two test scenarios are regarding insert, update and delete address book methods.
The first scenario tests these methods with the contacts table and it is implemented in
the test_crud_contact () method. The function contains these test cases:

• - i c method - inserts a new contact.

• -uc method - updates the same contact that was just added.

• -rc method - removes the test contact that was just added.

The registrar table is tested with the same logic, implemented by the test_crud_regist-
rar() method:

• - i r method - insert a new register identity.

• -ur method - update just the SIP URI of the same identity that was just added.

• -rr method - delete the identity that was just added.

The insert methods are checked with the test_loop_or () method. Valid responses are
"Record created successfully!" and "Record already exists!". Other methods only accept
the "Record action successfully!" response. Note that a failed test no longer exits the
script.

Calls

Most of the test scenarios revolve around testing the basic feature of this program - calls.
In total, seven test scenarios deal with basic call cases this program supports.

To initiate or receive a call, the SIPp command line application is used. This tool
generates SIP traffic and simulates another user agent.

This tool is always launched with the use of Python's subprocess module. It is needed
to create custom SIP scenarios for some test cases. These scenarios are written in X M L
and can be found in the test/ folder.

54

The SIPp tool is launched bound to the loopback IP address, in the background mode
and with the scenario set. A n example of launching SIPp with the User Agent Server
scenario (uas - awaits for SIP methods, -sn argument), only one call to be made (-m) and
in the background mode (

_

bg):

subprocess.Popen("cd sipp-3.3 && ./sipp -sn uas -m 1 -bg", ...)

The first test scenario tests a basic call ability. The SIPp tool is launched in a style
described in a few lines above. This scenario is implemented in the test_call() method
and the test cases are:

• Initiate a call - send the call command with sip: 127.0.0.1:5061 as the remote
U R L Wait for the "Calling URI!" and " A call with U R I is established!" responses.

• Terminate the call - send the hangup command and await the confirmation response
the call was terminated.

The next test scenario, implemented in the test_call_w_lookup() method, tests the
call command ability to dial from the contacts and with the use of a phone number. The
SIPp tool is not needed for this scenario. The test follows:

• Create a record with a non-valid URI and initiate the call with the use of -a argument.
This case also tests a failure of a call.

• Initiate a call to the given phone number. The number provided is a valid one and
shall have a DNS N A P T R record. This case tests the correct lookup, establishing
and terminating the call.

The next two test scenarios test accepting and declining an incoming call. The cor­
responding methods are called test_incoming_call() and test_decline_call() . The
SIPp tool is used with the User Agent Client scenario bound to the loopback IP address.

• Wait for the bot to send an incoming call notification message.

• Accept the call with accept 1 command and wait for " A call with URI is estab­
lished!" response. The call is then terminated and a termination confirmation mes­
sage is also awaited.

• Decline an incoming call with the decline command and await for the "Declined all
calls!" confirmation message.

The fifth test scenario tests the program's ability to control a call flow - hold and resume.
This scenario requires a custom SIPp scenario that may be found in the hold_res .xml file.
The method this scenario is implemented in is called test_hold_resume (). The test cases
£1X6 ctS follows:

• Initiate a call after two seconds put it on hold. Await the "Holding call URI!"
response.

• Resume the call and again await the confirmation message.

55

The sixth test scenario tests the program's ability to initiate more than one call.
This scenario initiates a call from an already established call and is implemented in the
test_call_in_a_call() method. For this, two custom SIPp scenarios are created and
can be located in the call_A.xml and call_B.xml files. The test cases:

• Initiate the first and second calls and await the call established confirmation message.

• Terminate the second call and await the call terminated response.

• The first call shall be put on hold, so this test case tries to resume the call and await
the call resumed response.

• Last test case terminates the first call.

The last call-oriented test scenario tests the incoming call stacking ability in the test_
multiple_inc_calls() method. This scenario receives three incoming calls and accepts
the middle one. Three SIPp tools are launched with the User Agent Client scenarios and
bound to the loopback address with different ports (5061, 5062, and 5063). The test case is:

• Await for three incoming calls and accept the middle one with the accept 2 command.
Await the " A call with URI:5062 is established" response.

At the end of all test scenarios, the SIPp instances are always terminated with the
os.killpg method. This is just another layer of security for the script to not leave active
processes. The processes should terminate themselves.

Messages

The script also tests receiving a SIP M E S S A G E method with the use of the SIPp tool.
A custom SIPp scenario that creates the SIP M E S S A G E method was created and is located
in the mess.xml file.

The test scenario is implemented in the test_message () method. This scenario is made
up of three test cases:

• Receive a message - SIPp tool sends a SIP M E S S A G E method with a "Hello!" text.

• Send a message - the message is sent to loopback. "Sending a message" response is
awaited.

• Send a message with an address book lookup - a new contact containing the loopback
IP address is created and a message is sent to this contact. "Sending a message"
response is again awaited and the new contact is removed afterward.

Registration

The next two test scenarios are optional and can be triggered by providing the -r argument
and valid proxy credentials. The SIPp tool is not used.

The first scenario is implemented in the test_register () method and tests basic reg­
istration with the register command. The test cases are:

• Send the register command with the provided credentials and await a confirmation
response.

56

• Unregister from the proxy and await a confirmation response.

The second scenario tests the same behavior but with the use of the address book
lookup. It is implemented in the test_register_w_lookup() method and the test cases
are:

• Create a record and register. Await a confirmation response.

• Unregister from the proxy and await a confirmation response. Delete the newly
created record.

N A T utilities

The last set of test cases is implemented in the test_stun_turn() method. This scenario
tests the program's ability to set the N A T traversal utilities.

This scenario is also optional and may be triggered by providing the -s argument, valid
server, and T U R N credentials. The test cases are:

. Enable S T U N and ICE . Await the " S T U N enabled!" response.

. Enable also T U R N . Await the " S T U N and T U R N enabled!" response.

. Disable the N A T settings. Await " S T U N / T U R N disabled!" response.

6.2 Comparison

The final program was properly tested for any edge cases and basic functionalities and
afterward was compared with two other SIP user agents - Linphone and J i ts i 1 . IRCPhone
was chosen as the official name of this project.

Linphone and Jitsi have their GUIs and do not use commands for controlling the U A .
The IRCPhone, just like the other two UAs, supports basic SIP features - calls, registration,
and instant messages. A l l three UAs have a contacts list (address book) and can save the
proxy identities, though the IRCPhone has to first manually unregister to switch accounts.

The biggest setback of the IRCPhone is that it does not support video calls and local
conferences. Although, most of the SIP proxies nowadays provide conference rooms.

As opposed to Linphone and Jitsi, IRCPhone supports E N U M lookup itself. Usually,
the DNS N A P T R query is performed by a proxy the user is registered to. IRCPhone
performs this query itself and initiates the call with the returned SIP U R L

IRCPhone is suitable for users that use IRC frequently and want to also initiate calls
with their IRC buddies. The IRCPhone is easily integrated into the user's favorite IRC
client and no other user agent has to be downloaded.

x

https: //desktop, j itsi.org/

57

http://itsi.org/

Chapter 7

Conclusion

This thesis described the creation of a Session Initiation Protocol user agent which uses an
Internet Relay Chat client as its graphical interface. The purpose is to connect these two
technologies to easily make calls within the IRC network.

The individual technologies used in this thesis were introduced, such as the SIP itself,
the IRC technology, and already existing applications, which helped to create the final
program.

In the next two chapters, the formal requirements have been summarized, and based on
these requirements, the third-party library and IRC client - which acts as the GUI - were
chosen and the program's final architecture was created.

The fifth chapter describes how this architecture was implemented into the chosen IRC
client with the help of the chosen third-party library. The final program was properly tested
and an automated acceptance tests script was created for the users themselves to also test
the basic functionality of the final product. The implementation of this script is described
in the penultimate sixth chapter.

A final important requirement is to release this program as an open-source project. The
name "IRCPhone" was chosen as an official name for this project and it was released on
Gi tHub 1 . The program is distributed with the help of G N U Autotools.

Possible future extensions for this project are video call support implementation, the
possibility of being able to create local conferences, and also multi-platform support. For
future user experience-oriented extensions, an improvement of the database browsing mode
could be implemented as a local web server that projects the database data, for example.

x

https: //github.com/DavidKocman36/IRCPhone

58

Bibliography

[1] A G A R V A L , M . Pyhon IRC Bot - A Hands-on Tutorial with Example [online].
TechBeamers, 2018 [cit. 2023-03-29]. Available at:
https: //www.techbeamers.com/create-python-irc-bot/.

[2] A L B I T Z , P. and L i u , C. C Programming with the Resolver Library Routines (DNS
and BIND, 4th edition) [online]. O'Reilly & Associates, april 2001 [cit. 2023-03-28].
Available at: https: //docstore.mik.ua/orelly/networking_2ndEd/dns/chl5_02.htm.

[3] B A R E S I P F O U N D A T I O N . Baresip [online]. 2010 [cit. 2023-03-21]. Available at:
https: //github.com/baresip/baresip.

[4] B E L L E D O N E C O M M U N I C A T I O N S S A R L . Liblinphone: Modules [online]. 2020 [cit.
2023-03-24]. Available at:
https: //download.linphone.org/releases/docs/liblinphone/latest/c/modules.html.

[5] B E L L E D O N E C O M M U N I C A T I O N S S A R L . Linphone [online]. 2020 [cit. 2023-03-21].
Available at: https://www.linphone.org/technical-corner/linphone.

[6] B I D G O L I , H . The Internet Encyclopedia, Volume 2 (G - O) [online]. 2nd ed. Wiley,
2004 [cit. 2023-03-20]. The Internet Encyclopedia. ISBN 9780471689966. Available
at: https://books.google.cz/books?id=gZ9srwU_9xMC.

[7] B I T L B E E . Bitlbee [online]. 2002 [cit. 2023-03-21]. Available at:
https: //www.bitlbee.org/main.php/news.r.html.

[8] F L A N A G A N , W . A . VoIP and Unified Communications: Internet Telephony and the
Future Voice Network. 1st ed. Wiley, 2012. ISBN 978-1-118-01921-4.

[9] G A M B L I N , T. C-h-f— Using strtok with a std::string - Stack Overflow [online]. 2008
[cit. 2023-03-26]. Available at: https://stackoverflow.eom/a/289365.

[10] G A Y R A U D , R. and J A C Q U E S , O. SIPp [online]. 2004 [cit. 2023-03-30]. Available at:
https: //sipp.sour ceforge.net/doc3.3/ref erence.html.

[11] H E L L E U , S. Weechat [online]. 2003 [cit. 2023-03-21]. Available at:
https: //wee chat. org/.

[12] K A L T , C. Internet Relay Chat: Architecture [RFC 2810]. R F C Editor, 1. april 2000
[cit. 2023-03-20]. DOI: 10.17487/RFC2810. Available at:
https: / / www.rf c-editor.org/rf c/rf c2810.html.

59

http://www.techbeamers.com/create-python-irc-bot/
http://linphone.org/releases/docs/liblinphone/latest/
https://www.linphone.org/technical-corner/linphone
https://books.google.cz/books?id=gZ9srwU_9xMC
http://www.bitlbee.org/main.php/news.r.html
https://stackoverflow.eom/a/289365
http://ceforge.net
http://www.rf
http://c-editor.org/

[13] M E A L L I N G , M . H . Dynamic Delegation Discovery System (DDDS) Part Three: The
Domain Name System (DNS) Database: NAPTR RR Format [RFC 3403]. R F C
Editor, October 2002 [cit. 2023-03-28]. DOI: 10.17487/RFC3403. Available at:
https: / / www.rf c-editor.org/rf c / r f c3403#page- 5.

[14] O I K A R I N E N , J . and R E E D , D . Internet Relay Chat Protocol [RFC 1459]. R F C Editor,
may 1993 [cit. 2023-03-20]. DOI: 10.17487/RFC1459. Available at:
https: //www.rf c -ed i tor .o rg / r fc/rfcl459.

[15] P E R K I N S , C , H A N D L E Y , M . J . and J A C O B S O N , V . SDP: Session Description Protocol
[RFC 4566]. R F C Editor, July 2006 [cit. 2023-03-16]. DOI: 10.17487/RFC4566.
Available at: https://www.rfc-editor.org/rfc/rfc4566.html.

[16] S C H O O L E R , E . , R O S E N B E R G , J . , S C H U L Z R I N N E , H . , J O H N S T O N , A . , C A M A R I L L O , G .
et al. SIP: Session Initiation Protocol [RFC 3261]. R F C Editor, July 2002 [cit.
2023-03-15]. DOI: 10.17487/RFC3261. Available at:
https: //www.rf c-editor .org/rfc/rfc3261.

[17] S C H U L Z R I N N E , H . , C A S N E R , S. L . , F R E D E R I C K , R. and J A C O B S O N , V . RTP: A
Transport Protocol for Real-Time Applications [RFC 3550]. R F C Editor, July 2003
[cit. 2023-03-17]. DOI: 10.17487/RFC3550. Available at:
https: //www.rf c-editor.org/rf c / r f c3550.html.

[18] S C H U L Z R I N N E , H . , R O S E N B E R G , J . , C A M P B E L L , B. , G U R L E , D. M . and H U I T E M A , C.
Session Initiation Protocol (SIP) Extension for Instant Messaging [RFC 3428]. R F C
Editor, december 2002 [cit. 2023-03-16]. DOI: 10.17487/RFC3428. Available at:
https: //www.rf c-editor .org/rfc/rfc3428.

[19] S O T O M A Y O R , B . Example IRC Communications - The UChicago x-Projects [online].
The University Of Chicago, 2010 [cit. 2023-03-20]. Available at:
http: / / chi.cs.uchicago.edu/chirc/irc_examples.html.

[20] T U T O R I A L S P O I N T . SQLite - C/C++ [online]. 2020 [cit. 2023-03-29]. Available at:
https: //www.tutorialspoint.com/ sqlite/sqlite_c_cpp.htm.

60

http://www.rf
http://c-editor.org/
http://www.rf
http://c-editor.org/rfc/rfcl459
https://www.rfc-editor.org/rfc/rfc4566.html
http://www.rf
http://c-editor.org/rfc/rfc3261
http://www.rf
http://c-editor.org/
http://www.rf
http://c-editor.org/rfc/rfc3428
http://chi.cs.uchicago.edu/
http://www.tutorialspoint.com/

Appendix A

Contents of the included storage
media

root

db Folder for storing the local database.
_doc Folder containing the thesis.

src Folder containing the thesis's source codes.
xkocma08.pdf The thesis.

.grammars Folder containing important grammar files.
linphone-sdk The third-party library.
.sounds Folder containing the phone's sounds, such as ringtone.
src Folder containing the source files.
test Folder containing the application tests.

. irc_bot The program's binary
_LICENCE.txt G N U Affero licence.

Makefile.am Makefile template for generating Makefile.
_ manual. txt File containing the commands and their usage
packages.sh Bash script for checking the program's dependencies.
_README.txt The installation and launching manual.
configure. ac Template of the configure file
build.sh Script used for invoking the Autotools commands.

61

Appendix B

Program manual

This appendix contains all of the possible commands the user agent accepts, also available
in the manual. txt file.

The commands and examples used in IRCPhone.

IMPORTANT: Do not accidentally flood your BOT. It might stop

receiving messages!!

TIP: Use mostly servers where registration is not required.

For example ire.libera.chat

Launching in terminal:

./irc_bot {ip/server} {channel]- {user]- {password}

- ip/server : ip address or domain of the IRC server.

- channel : channel on the server where the user will be present.

The format is "#channel" or just channel.

- user : Nick of the user the bot shall listen to.

Nick of the bot therefore will be "user_b".

- password : Bots password. Sometimes not needed but s t i l l mandatory.

After the Hello! message you are able to use these commands. The bot

shall ALWAYS give the user feedback in a form of a short message.

The commands are sent in a form of an IRC private message. After the

bot sends a welcome message, a new chat window shall open.

To communicate, just type

<command> <arguments>

For communicating outside of the chat window, use

/msg nick_b <command> <arguments>

Below is the l i s t of a l l available commands:

62

- register {-a <name>J- | {<uri> <password>J-

- Registers at a proxy with provided uri and password. You are also

able to register with uri and password stored in the database

using -a and unique <name>.

- example: register sip:username@domain password or register -a joe

- unregister

- Unregisters at the proxy.

- call {-a <name>]- | {-e <mimber>J- | {<uri>}

- Initiates a call to <uri>. If you have the person stored in your

contacts you might use -a <name>.

- Also you are able to make peer-to-peer calls

with sip:username@ip-address

- The ENUM lookup is also available with argument -e.

Just type the phone number in an E.164 format.

-example: call sip:username@domain

or call -a John or call -e +431123456789

- accept {<number>}

- User is informed i f an incoming call comes. User then might accept

this call by typing accept <number> where <number> is the order

of the call in which the call comes.

The order is displayed to the user.

All other active incoming calls are declined.

- decline

- Decline an incoming call/calls.

- status

- Displays current status of the bot. If it' s registered, i f it ' s in

an active c a l l , the l i s t of a l l calls (paused and active) and

whether STUN or TRUN is enabled.

help {<option>]-

- Displays l i s t of a l l usable commands. Use <option> for a command

category.

- Options 1. o - options

2. c - call commands

3. r - register commands

4. m - direct messages commands

5. a - address book commands

6. dl - database l i s t commands

ids browsing)

- example: help o

63

- -s {<address>} [-t {<username>} {<passw>}]

- Enables ICE, STUN and sets the address of the STUN/TURN server (-s)

and i f desired enables TURN and authenticates at the TURN server

with provided <username> and <password> (-t).

The -t argument is optional.

- example: -s stun.domain.com -t username password

- -sd

- Disables STUN/TURN option.

- end

- Terminates the bot.

- mess {-a <name>} {<text>} | {<uri>} {<text>}

- Sends a direct message to the given <uri>.

If the remote is in contacts the user may use -a <name>.

-examle: mess -a johnny Hey how are you?

or mess sip:username@domain Hey how are you?

When a call is initiated, you may also use these additional commands:

- hold

- Puts the current call on hold.

- resume

- Resumes the current c a l l .

- hangup

- Hangs up the current c a l l .

- -m {text}

- Sends a direct message to the user you are in call with.

On the other hand, these are not available during call:

- register, unregister, -s - t , end

NOTE: Bot can also be terminated by CTRL+C in terminal.

Address book commands are ubiquitous and their role is to manage your

contacts or proxy identities. The database is open since the bot's launch

on server.

NOTE: A l l <name> attributes ARE unique within each table!

- -dropdb

- Drops the tables.

64

http://stun.domain.com

- -c
- Creates the tables.

- -ic {<name>} {<uri>}

- Inserts new contact.

- example: -ic JohnDoe sip:johnOdomain

- - i r {<name>]- {<uri>> {<password>}

- Inserts new proxy identity used for registering.

- example: - i r MyProxy sip:myname©domain mypassword

- -uc {<name>} {<uri>}

- Updates contact. Must already exist.

- example: -uc JohnDoe sip:NewUri@domain

- -ur {<name>]- {<uri>> {<password>}

- Updates identity. Must already exist. If you wish to not update
an attribute, type "-" instead.

- example: -ur MyNewId sip:NewUri@domain newPassw
- If you want to update just password: -ur MyNewId - newPassw

- -rc {<name>} or -rr {<name>}

- Removes a record from contacts (-rc) or from proxy identity (-rr)

respectively.

Also the user is able to browse its contacts/identities:

- -con [<pattern>]

- Browse contacts. The pattern is standard sqlite regex with %

and _ wildcards.

- example: -con joh°/o will search for records starting with joh

and ending with any number of random characters.

- -reg [<pattern>]

- Browse proxy identities. Same rules for patter as in -con command.

- next [<number>]

- While in browsing mode you can turn to next page by typing this

command. You can skip a certain number of pages by providing

a <number>. By default i t is 1.

- prev [<number>]

65

- Turns to previous page. <number> argument has the same rules

as in "next" command.

- exit

- Exits the browsing mode.

NOTE: No other commands than next, prev and exit are available.

You must leave the browsing mode f i r s t . If in an active call the user

is s t i l l able to keep calling.

