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Abstract 
This thesis aims to design and implement a system that automatically detects retinal eye 
pathologies. The retina is an essential part of the eye that, as the only organ in the body, 
contains light-sensitive cells that make a vision possible. For the treatment of eye disease to 
be successful, early detection and precise examination of its extent are crucial. The proposed 
system based on the supplied image automatically generates masks representing occurrences 
of individual pathologies. The result is then presented to the user. A convolutional neural 
network based on the U-Net architecture handles the evaluation. The network was trained 
on the Indian Diabetic Retinopathy Image Dataset (IDRiD), which contains 81 images 
of the retina and associated annotations. The system was evaluated using the A U C - P R 
score (area under the precision-recall curve). Segmentation of hard exudates, soft exudates, 
hemorrhages and microaneurysms achieved an A U C - P R score of 74%, 50%, 45% and 33%, 
respectively. This work proposes an innovative architecture that, if further developed, has 
the potential to be used by ophthalmologists for diagnosing and determining the extent of 
retinal disease. 

Abstrakt 
Cílem této práce je navrhnout a vyvinout systém, který automaticky odhalí vybrané patolo­
gie nacházející se na snímcích sítnice lidského oka. Sítnice jako jediný orgán v těle obsahuje 
světlocitlivé buňky potřebné k vidění. Proto, aby byla léčba onemocnění sítnice úspěšná je 
klíčové jeho včasné zachycení a přesné určení rozsahu. Navržený systém automaticky k do­
danému snímku vygeneruje segmentační masky reprezentující výskyt jednotlivých patologií. 
Výsledek je poté prezentován uživateli. O samotné vyhodnocení se stará konvoluční neu­
ronová síť jejímž základem je architektura U-Net. Síť byla natrénovaná na datasetu Indian 
Diabetic Retinopathy Image Dataset zkráceně IDRiD, který obsahuje 81 snímků sítnice a 
k nim příslušících anotací. Úspěšnost navrhovaného systému byla stanovena pomocí A U C -
P R skóre (plocha pod precision-recall křivkou). Segmentace tvrdých exsudátů, měkkých 
exsudátů, hemoragií a mikroaneuryzmat dosáhla hodnot A U C - P R 74%, 50%, 45% a 33%, 
v daném pořadí. Tato práce přináší inovativní architekturu, která má v případě dalšího 
rozvoje potenciál být využita oftalmology pro diagnostiku a stanovení rozsahu onemocnění 
sítnice oka. 
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Rozšířený abstrakt 
Zrak hraje zásadní roli v kvalitě lidského života. Umožňuje nám nejen se orientovat v pros­
toru, ale i vnímat nebezpečí. Oko je párový orgán, bez něhož by vidění nebylo možné. 
Detekuje světlo ve viditelném spektru a informace o pozorované realitě následně posílá do 
mozku, který je interpretuje. I malé poškození zraku může výrazně ovlivnit kvalitu života, 
je tedy třeba zrak chránit tak, jak je to jen možné. Jednou z nejdůležitějších částí oka je 
sítnice. Sítnice jako jediný orgán v těle obsahuje světlocitlivé buňky potřebné k vidění. Sít­
nice je náchylná k řadě onemocnění, která mohou být charakterizována výskytem některé z 
následujících patologií. Častý je výskyt tvrdých a měkkých exsudátů, microaneurysmat a 
hemoragií. Tvrdé exsudáty jsou nažloutlá ložiska tvořené nahromaděným lipidovým a pro­
teinovým materiálem. Měkké (vatovité) exsudáty jsou tvořeny nahromaděnými mrtvými 
nervovými buňkami. Vznikají většinou v důsledku nedostatečného přísunu krve (ischemie). 
Microaneurysmata jsou drobné výdutě na cévách, které mohou prasknout a vytvořit tak 
krevní výron. Hemoragie neboli krvácení mohou vznikat právě v důsledku prasklého mi-
croaneurysma. Proto, aby byla léčba onemocnění sítnice úspěšná je klíčové jeho včasné 
zachycení a přesné určení rozsahu. 

Cílem této práce je navrhnout a vyvinout systém, který automaticky odhalí patologie 
nacházející se na snímcích sítnice lidského oka, který by mohl pomáhat lékařům rychle a 
efektivně dané patologie odhalovat. 

Navržený a implementovaný systém automaticky k dodanému snímku sítnice vygeneruje 
segmentační masky reprezentující výskyt jednotlivých patologií. Výsledek je poté prezen­
tován uživateli. Pro prezentaci výsledku je použita knihovna napari, která umožňuje uži­
vateli se snímkem pohybovat, přibližovat si jej a vypínat jednotlivé masky. O samotné 
vyhodnocení se stará konvoluční neuronová síť. Architektura neuronové sítě se zakládá na 
modelu U-Net, který byl zvolen, protože v oblasti segmentace medicínských dat v mnoha 
případech dosahuje výborných výsledků. Navržená architektura byla oproti své standardní 
variantě rozšířena využitím residual bloků, které umožňují lepší optimalizaci hlubokých 
neuronvoých sítí a aplikací mechanismu pozornosti (attention), který výrazným způsobem 
urychluje učení tím, že relevantní části vstupů přiřadí vyšší váhu. Jako datový zdroj tohoto 
projektu, byl využit dataset Indián Diabetic Retinopathy Image Dataset (IDRiD), který 
disponje 81 barevnými snímky sítnice a k nim příslušících anotací. Aby data mohla být 
vyžita pro trénink a následnou evaluaci modelu, byla nejdříve předzpracována. Předzpra­
cování spočívá ve zmenšení jejich rozměrů, zakódování masek jednotlivých patologií do 
podoby sparse encoded vektorů a následné vytvoření trénovacích a validačních datasetů 
aplikací metody cross validace. Daná data jsou dále rozdělena na malé překrýcajicí se 
části, které jsou použity pro samotný trénik/evaluaci. Výsledný prodkut byl natrénován 
na takto připravených datech pro segmentaci čtyř výše představených typů lézí - tvrdé 
exsudáty, měkké exsudáty, hemoragie a mikroaneuryzmata. 

Jelikož bylo potřeba natrénovat relitivně velké množství různých modelů, je další pos­
traním produktem této práce U-Net framework. U-Net framework je vysokoúrovňové A P I , 
které umožňuje uživateli vytvářet modely založené na architektuře U-Net jednoduše bez 
nutnosti programování. Uživatel specifikuje parametry modelu a ten mu je následně auto­
maticky vygenerován. 

Úspěšnost navrhovaného systému byla kvantifikována pomocí A U C - P R skóre (plocha 
pod precision-recall křivkou). Segmentace tvrdých exsudátů, měkkých exsudátů, hemoragií 
a mikroaneuryzmat dosáhla hodnot A U C - P R 74% , 50%, 45% a 33%, v daném pořadí. Po­
drobná analýza navrženého modelu včetně návrhu dalšího vylepšíní je důkladně diskutována 
v závěru práce. Tato práce přináší inovativní architekturu, která má v případě dalšího 



rozvoje potenciál být využita oftalmology pro diagnostiku a stanovení rozsahu onemocnění 
sítnice oka. 
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Chapter 1 

Introduction 

Sight plays a vital role in the quality of human life. It allows us not only to navigate 
in the surrounding environment, but also to perceive danger. The eye is a paired organ 
without which the vision would not be possible. It detects light in the visible spectrum and 
sends information about the observed reality to the brain. The brain, specifically the visual 
cortex, then creates an image of the observed reality. The most important part of the eye 
is the retina. As the only organ in the body, the retina contains light sensitive cells needed 
for vision. Thanks to its complexity, it is susceptible to a number of diseases. Even a minor 
vision impairment can affect the quality of life highly. Therefore we should do everything 
in our power to preserve a good vision. Early diagnosis and ongoing monitoring of the 
retinal disease are essential for its successful treatment. This is both a time-consuming and 
challenging process. Therefore, there is a need for an automated solution to help health 
care professionals with such tasks. 

To solve any problem with the aid of a computer, we need an algorithm. The algorithm 
can be viewed as a sequence of steps that need to be performed to solve some problem. 
However, we do not know the exact sequence for complicated problems like autonomous 
driving or, in this case, the detection of retinal eye pathologies. Machine learning is an 
application of artificial intelligence featuring algorithms that can learn through experience, 
thus making it suitable for such tasks. One of the sub-areas of machine learning is deep 
learning. Deep learning algorithms are collectively referred to as neural networks due to 
their inspiration from the human brain. Nowadays, artificial neural networks, thanks to 
their high success rate, are widely used almost in any field of data processing. 

To properly understand the problematic Chapter 2 presents needed theoretical knowl­
edge. Anatomy of the eye is discussed in Chapter 2.2. A Particular focus is applied to the 
retina and its diseases. Needed technical knowledge is presented in Chapter 2.3 and Chapter 
2.4. Chapter 2.3 introduces general concepts in artificial intelligence and machine learning. 
Neural networks and relevant state of the art techniques and architectures are discussed 
in Chapter 2.4. Chapter 3 introduces the proposed system and its implementation. The 
proposed model is thoroughly analysed in Chapter 4. 
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1.1 Notation 

Following symbols and notation are used throughout this thesis. 

Notation Description 
k A scalar 
V A vector 

M A set 
dy 
dx A derivative of y with respect x 

A gradient of y with respect to v 
A n index i represents i-th element 

h' A n output of n-th layer of the network 
<p(x) A mapping applied to the x 

Table 1.1: Notation and symbols 

(i 



Chapter 2 

State of the art 

This chapter summarises the state of the art knowledge. The basics of optics needed for 
understanding a vision are introduced in Chapter 2.1. The anatomy of the eye is described 
in Chapter 2.2. Fundamentals of artificial intelligence and machine learning are presented 
in Chapter 2.3. Lastly, neural networks are discussed in depth in Chapter 2.4. 

2.1 Optics 
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Figure 2.1: Electromagnetic spectrum, source [34] 

Light is electromagnetic radiation that a wavelength can characterise. A sensory organ, the 
eye, perceives different wavelengths later interpreted by the brain as colours. The human eye 
can see only a small portion (400-700nm) of the whole electromagnetic spectrum, ranging 
from short gamma waves to long radio waves. [34] 

2.2 Human eye 

The human eye, described as both perfect and complex by Charles Darwin, is the first 
in a series of organs that makes vision possible. The eye converts the incident light into 
electrochemical impulses that are transmitted to the brain. When the light encounters 
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the eye, it first passes through a cornea layer. The cornea is a transparent layer where 
the light is refracted, allowing it to converge. After the cornea, the light reaches a pupil. 
The pupil is an opening in the iris that controls the amount of light let into the eye. It 
dilates or contracts based on the intensity, thereby controlling the amount of light. Once 
through the pupil, the light is processed by a lens. The lens is a bi-convex transparent disc 
that, with the aid of auxiliary muscles, changes its shape to focus the light rays onto the 
retina. The retina is the only place in the eye with light sensitive cells (rods and cones) 
that convert the light energy into electrochemical impulses. The electrochemical impulses 
are then propagated to the brain that interprets the observed reality. [36] [2] 

2.2.1 Anatomy 

This subchapter has been adopted from [2] and [36]. 

Anterior cavity 
(aqueous humor) 
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Figure 2.2: Eye anatomy, source: [20] 

The eye can be divided into anterior and posterior segments. The anterior segment 
consists of the cornea, iris, pupil, conjunctiva, ciliary body, anterior chamber, aqueous 
humour, trabecular meshwork, and lens. The posterior segment comprises vitreous humour, 
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sclera, choroid, retina, macula and optic nerve. Structures involved in light processing are 
discussed below. 

• A sclera is an opaque white outer layer surrounding most of the eyeball. Its primary 
responsibility is to protect and maintain the shape of the eye. 

• A cornea is a transparent layer covering the front of the eyeball. It is the first layer 
encountered by the light. It protects the rest of the eye from microorganisms, injuries 
and artificial substances like dust. It is also responsible for focusing the light rays 
onto the retina (light-sensitive layer). It has a greater refractive index than the air. 
Therefore, the light is slowed down. Since there are no blood vessels, it receives its 
nourishment by tears and by the aqueous humour (fluid inside the anterior chamber). 

• A n aqueous humour occupies a space between the cornea and the lens. It is 
responsible for the nutrition of the cornea and the lens. Therefore it is constantly 
refiled. 

• A n iris is a thin circular structure responsible for controlling the size of the pupil. 
The colour of the iris is determined genetically. 

• A pupil is a small opening in the iris that controls the amount of light that is let 
into the eye. In low-light environments, the pupil is dilated, allowing more light 
to enter the eye. In high-light environments, it is shrieked, thereby protecting the 
photo-receptive cells and providing a better image. It is controlled by the sphincter 
and dilator muscles of the iris. 

• A lens is a biconvex elastic layer that can change its shape with the aid of ciliary 
muscles. Once the optimal amount of light reaches the lens, it is further focused, 
resulting in a more refined image. The process is called accommodation. During 
accommodation, the lens changes the degree of refraction, providing a better and 
more precise picture. When the eye focuses on a near object, the lens is forced into a 
bulging shape providing a greater optic power which brings the focal point closer. 

• A ciliary body is a ring-shaped tissue surrounding the lens. It is composed of ciliary 
muscles and ciliary zonule. Ciliary muscles help the lens change its shape while the 
ciliary zonule holds it in position. 

• A vitreous humour is a gel-like fluid mainly composed of water. Once the amount 
of light is reduced by the pupil and refracted by the cornea and the lens, it needs 
to pass through the vitreous humour. The vitreous humour is located in the cavity 
between the lens and the retina occupying about two-thirds of the eye volume. Its 
primary function is to maintain the shape of the eye. 

• A retina is the only part of the eye containing photo-receptive cells. Since the topic 
of the work is the detection of retinal eye pathologies, the Chapter 2.2.2 is devoted 
to the retina. 

• A n optic nerve connects the eye to the brain. The information is transmitted in 
the form of electrochemical impulses. 
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2.2.2 Retina 

This subchapter has been adopted from [2] and [36]. The retina is a thin circular disc 
with a diameter of 30-40mm [2] located at the back of the eyeball. It is the only organ 
in the human body containing light-sensitive cells needed for vision. It is responsible for 
transforming the incident light into signals that the brain can interpret. This is a rather 
complex process involving multiple neurons. Individual neuron types are discussed below. 

Ganglion cells 
Bipolar cells 
Amacrine cells 
Horizontal cells 
Rods 
Cones 

Figure 2.3: Retinal cells, source: [36] 

• Transmission neurons are involved in the transmission of signals generated by 
photoreceptors (light sensitive cells) to the brain. The ganglion neurons are the 
innermost cells that connect to the optic nerve. Bipolar neurons work as a bridge 
between the ganglion and photoreceptor cells. They synapse with the photoreceptor 
on the one end and with the ganglion neuron on the other. 

• Photoreceptive neurons, the rods and cones, are located in the outermost layer 
of the retina. They absorb photons of the incident light, and when the absorbed 
amount is significant enough, they initiate a signal transmitted to the brain. Rods 
are highly susceptible to light but only detect shades of grey. Many different rod cells 
connect via bipolar neurons to a single ganglion cell. Therefore, they provide the 
brain with information about the object's general shape or whether it is light or dark, 
but not with fine detail. Conversely, cones are susceptible to specific light frequencies 
providing the brain with information interpreted as colour. Unlike the rod cell, each 
cone cell has a personal ganglion cell. Therefore the brain can distinguish individual 
cells and provide a detailed image. 

• Lateral neurons, horizontal and amacrine cells, link impulses originating from the 
photoreceptors. The horizontal cells interconnect multiple photoreceptors, thereby 
increasing the contrast. Amacrine cells form links between vertical pathway neurons. 
It is supposed that they contribute to better contrast as well. 
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Figure 2.4: Retina regions, source: [6] 

A method called fundoscopic examination may be used to assess the state of the retina. 
The ophthalmoscope, a device for acquiring the images, is placed in front of the patient 
eye. The inside of the eye is illuminated with sufficiently intense light. The rays forming 
the image of the retina re-emerge through the pupil, and the ophthalmoscope captures the 
image. [29] A n image of a healthy retina is shown in Figure 2.4. There are three regions to 
recognise. 

• A n optic disc forms a passage for the transmission neurons. Since it does not contain 
photoreceptors, it is often called a blind spot. 

• A macula is an area with a very high concentration of photoreceptors on which the 
light is being focused. 

• A fovea, the dark part of the macula, is in the centre of the macula. Thanks to this, 
it provides the sharpest vision. 
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Figure 2.5: Retinal eye pathologies, source: [7] 

The following text has been adopted from [33]. Due to its complexity, the retina may 
be subject to many diseases. Pathologies that are subject to this thesis are discussed below. 

• Hard exudates are lesions, mainly formed as a result of leaking microaneurysms, 
composed of lipid and proteinaceous material. 

• Soft exudates, also called cotton wool spots, are accumulations of dead nerve cells 
caused mainly by ischaemic damage (restricted blood supply). 

• Hemorrhages ctriS6 ctS cl result of bleeding capillaries. 

• Microaneurysms are outpouchings of the capillary walls that may leak fluids into 
the retina, thus creating hemorrhages or hard exudates. 

2.3 Artif icial intelligence 

This chapter discusses general concepts in artificial intelligence and presents needed theo­
retical knowledge. Artificial intelligence (AI) has become a vital part of computer science. 
To solve any problem with the aid of a computer, we need an algorithm. The algorithm can 
be viewed as a computational step sequence that transforms input to output. However, we 
do not know the exact transformation for complicated problems like autonomous driving 
or stock price prediction. In that case, we use machine learning algorithms. 

2.3.1 General workflow 

This subchapter has been adopted from [1]. The workflow of any data-science project can 
be divided into at least four stages. 
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• Data collection. Enough data has to be collected to train and evaluate the model. 
In some cases, existing datasets can be used. It is important to note that the usability 
of the final product is greatly affected by data quality. 

• Data preprocessing. Once the data is collected, it needs to be preprocessed. Data 
preprocessing involves cleaning, verifying and transforming the data into a usable 
form. 

• Building datasets. The preprocessed data needs to be divided into training, valida­
tion and testing subsets. The training subset is used for model optimisation, whereas 
the validation subset is used only for model evaluation. The testing subset is used for 
assessing multiple trained models on unseen data. 

• Model training and refinement. Once the datasets are built, models need to be 
designed, trained and evaluated. Generally, multiple different models are trained, and 
the best or a combination of them (ensemble) is used for the final product. 

2.3.2 Common tasks 

When designing an algorithm, the first thing to be done is to determine the fundamental 
objective. From a top-level perspective, there are three groups of tasks - classification, 
segmentation and regression. 

• Classification, as the name suggests, aims to classify (divide) data into categories. 
Its typical application might be written digits recognition. 

• Segmentation is only a different type of classification. Instead of assigning a category 
(class) to the data entry as a whole, each part has its class. A typical segmentation 
application is an automatic map creation. 

• Regression, based on hidden patterns in the data, predicts the value of some phe­
nomenon. A typical example of regression is a weather forecast or stock price predic­
tion. 

2.3.3 Learning 

The way the machine learning algorithm learns highly depends on the data and task. 

• The supervised learning is a process when annotated data is fed to the model. The 
model periodically updates its parameters until a required performance is reached. Its 
typical application might be classifying written digits. The model would receive an 
image representing the number and a correct label, e.g. 5. 

• The reinforcement learning is a trial and error based method. The model gains 
rewards or penalties based on how it performs. This technique is employed when a 
model needs to make a series of decisions in a potentially complex environment. A 
typical application might be training a self-driving car algorithm. 

• Unsupervised learning also referred to as clustering, is a set of techniques that 
are used when dealing with unlabeled data. Its typical use is to categorise data into 
groups based on some similarity without the categories. One typical deployment of 
this technique is product recommendation. 
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Loss function 

This subchapter has been adopted from [14], [32] and [13] 

L(w,X) (2.1) 

X = {(xi.yi), (x 2 ,y 2 ) , . . . , (xN, yN))} (2.2) 

The loss function, also referred to as cost or objective function, is a mathematical 
function that quantifies how bad the model performs. Generally, it can be expressed as 
Equation 2.1. Given training data X we try to find model parameters w that minimise the 
loss function. A supervised learning data can view as a finite set of ordered pairs where 
Xj represents encoded data and y« the ground truth. Popular loss functions are discussed 
below. 

• Binary-cross entropy loss 

Li(x.i,yi) = - 1 x ( y i x log(pi) + (1 - yi) x log(l -j>i)) (2.3) 

z = ¥>(xi) (2.4) 

Pi = a(z) = (2-5) 

The binary-cross entropy, also called a sigmoid loss, is a widely used loss function 
for binary classification or binary segmentation problems. The data entry Xi can be 
labeled as either positive or negative class y$ G 0,1. The term pj G< 0,1 > represents 
predicted probability of the positive class. For numerical stability, every computation 
takes place in the logarithmic domain. The term z represents the learned underlying 
mapping of the network applied to the data-entry Xi, producing a value that is in the 
context of deep learning called „logit". 

0.8 

0.6 

0./ 

/ 0 . 2 

- 4 - 2 2 4 

Figure 2.6: Sic moid function 

The „logit" value ranges from — oo to +oo. To convert the „logit" to a valid probability 
range pi a sigmoid function is used. The course of the sigmoid function is shown in 
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Figure 2.6. Intuitively, for small „logit" values probability pi reaches 0 while for large 
values pi reaches 1. 

• Categorical cross entropy loss 

i i ( x i , y i ) = - b g ( p i ) (2.6) 

z = ^(xj) (2.7) 

N 
log{pi) = logisoftmaxiiz)) = log(—^ - ) = z{ - log eZc (2.8) 

Z^c=0  e Z c c = 0 

Categorical cross-entropy, also called softmax loss, is a generalisation of the binary-
cross entropy for multi-class classifications and segmentation problems. In the case 
of categorical cross-entropy, the network produces a vector of „logits" z. A softmax 
function is used to transform the vector to a valid probability range. It is worth 
noting that also the softmax function is usually calculated in the logarithmic domain 
providing several advantages - better numerical stability and reduced computational 
expensiveness. 

• Dice loss 

D i c e { A B ) = WTW\ ( 2 - 9 ) 

Lt(Pt,yt) = l - 2 X P : X m (2.10) 
Pi + Vi 

The dice loss is founded on a geometric basis. Given two sets A and B, the ratio 
of intersection and addition is measured. The function must be differentiable to be 
usable for training. Therefore its differentiable approximation is being used. The 
main advantage of using dice loss over cross-entropy is that it is usable even for 
highly imbalanced datasets. [22] 

• Taversky loss 

LifaVi) = 1 ~ P h l X V i A ~ ~R (2-11) 
Pi,i x Vi,i + a x piti x yifi + p x pifi x yiti 

The Taversky loss is a generalization of the Dice loss. It introduces two hyper-
parameters a and j3 allowing us to control the importance of false-positives and false-
negatives. For hyper-parameters a = (3 = 0.5 the function simplifies to a dice loss. 
Indexes i,c represent i-th data entry and predicted/ground truth class c G {0,1}. [22] 
[28] 

Metrics 

This chapter introduces metrics used for the model evaluation. 
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Confusion matrix 
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Figure 2.7: Confusion matrix, source: [10] 

The confusion matrix, also called the error matrix, is used for assessing the model perfor­
mance. The prediction made by the model can fall into one of the following categories. If 
the model correctly predicted a positive/negative class, it is labelled as a true-positive/true-
negative. If the model misclassified the positive (predicted negative class) / negative (pre­
dicted positive class) class, it is labelled as a false-negative/false-positive. 

Metrics that are based on the confusion matrix are listed below. 

• The sensitivity measures the ability of the model to classify positive class samples 
correctly. 

• The specificity measures the ability of the model to classify negative class samples 
correctly. 

• The positive predictive value measures the ratio of true positive predictions and 
all positive predictions. 

• The negative predictive value measures the ratio of true negative predictions and 
all negative predictions. 

Jacquard coefficient 

IoU(A,B) = \ A

A

n ^ \ (2.12) 

The Jacquard coefficient, also called the Intersection over Union metrics, is formed 
on the same basis as the Dice coefficient (2.9). Given two sets A and B, the ratio of 
intersection and union is measured. A value close to one/zero indicates that the model 
performs well/bad on the data. [22] 
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Model training 

Underfitting Appropriate capacity Overfitting 

0 x 0 x 0 

Figure 2.8: Underfitting/overfitting, source: [14] 

When training a model, one thing to keep in mind is to monitor whether the model is 
underfitting or overfitting 2.8. This phenomenon is largely influenced by the model's ca­
pacity (number of parameters). For a model to perform well on real-world data, its capacity 
should be right. If the capacity is too big, the model overfits (it will respond well to the 
training data, but the performance on real-world data will suffer). On the other hand, the 
model will underfit if the capacity is too low (it will not be able to recognise enough features 
leading to poor performance on both training and real-world data). [14] 

Data augmentation 

Data augmentation is a set of techniques used for reducing overfitting. The overfitting is 
reduced by applying random transformations to the training data. Some of the important 
techniques are discussed below. This subchapter has been adopted from [24] and [19]. 

• Scaling 

Figure 2.9: Scale, source: [24] 
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The same object may be captured in the image at various scales depending on the 
distance to the camera. Therefore, the model should provide a uniform prediction 
even for differently scaled objects. Scaling introduces multiple differently scaled rep­
resentations of the same image to the dataset. 

• Translation 

Figure 2.10: Translation, source: [24] 

The object may appear anywhere in the image, depending on how the picture is taken. 
Therefore, the model needs to be invariant against the object's position. Positional 
diversity can be increased by shifting the object within the image. 

0 100 2 0 0 0 100 2 0 0 0 100 2 0 0 

Figure 2.11: Rotation, source: [24] 

A rotation of the image should not affect the model's prediction. A random rotation 
might be applied to the image to make the model more resistant to rotations. If the 
rotation angle is not a multiple of 90 degrees, then the rotated image does not fit 
perfectly with the input image. 

• Brightness 
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Figure 2.12: Brightness, source: [24] 

The lighting conditions may significantly affect the model's performance. For this 
reason, brightness and contrast may be adjusted randomly to improve the lighting 
conditions dependency. 

• Noise 

Base Image Salt pepper noise image 

Figure 2.13: Noise, source: [24] 

It has been observed that adding a small amount of noise to the input images improves 
network generalisation. [8] A salt pepper noise or Gaussian noise might be used. 

• Dropout 
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Figure 2.14: Dropout, source: [19] 

Coarse and channel dropout are two techniques used for preventing the model from 
overfitting. The coarse dropout omits small parts of the image, whereas the channel 
dropout randomly drops some of the channels. 

2.4 Deep learning 

Deep learning is a set of techniques inspired by the human brain. Due to insufficient 
computational power, artificial neural networks have not become popular until recently. 
Nowadays, artificial neural networks are widely used almost in any field of data processing 
(visual data, natural language, . . . ) . 

2.4.1 Neural networks 

A fundamental building block of any artificial neural network is a neuron. A real neuron 
inspires the function and structure of the artificial neuron but in no case replicates it. Like 
real neurons in the brain, artificial neurons are placed in many interconnected layers. 

Neuron 

3dondr i lo * astrocyte (glial c b 11) 6 Oligodendrocyte 

7 a icon terminals 

Figure 2.15: Real neuron, source: [12] 
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A real neuron has three basic parts: a cell body, an axon and dendrites. Both the axon 
and dendrites are protrusions of the neuron. Axon propagates the output signal, whereas 
dendrites are designated for receiving input signals. The place where an axon of one neuron 
connects to a dendrite of a different neuron is called a synapse. The cell body accumulates 
incoming signals, and when certain conditions are met, an outgoing signal is sent via the 
axon for other neurons to receive. [12] 

Bias 

Inputs 

Weights 

Figure 2.16: Artificial neuron, source: [11] 

A n artificial neuron is composed of three operations - an element-wise dot product 
(dendrites), a summation operator (cell body) and a mapping function (axon). First, the 
element-wise dot product of incoming signals x (outputs of predeceasing layer) with neuron 
weights w is calculated. Then all the multiplied elements are summed by the summation 
operator. Lastly, an output is generated by a mapping function ip that transforms summed 
signals into an output signal. 

Activation function 

Another crucial building block of any neural network is an activation function. Since both 
the dot product and the summation are linear operations, the neural network would not 
be able to separate linearly inseparable data. That would make the network unusable for 
complex problems like autonomous driving. The activation function introduces the non-
linearity into the neural network allowing the network to recognise complex data patterns. 
This subchapter has been adopted from [18] and [4]. 
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Rectified linear unit (ReLU) 

Figure 2.17: R e L U - function 
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Figure 2.18: R e L U - first derivative 

h(a) = max(0, a) (2.13) 

V/i(o) 
1 a > 0 
0 a < 0 

(2.14) 

Rectified linear unit (ReLU) is probably the most commonly used activation function 
in hidden layers. 

The R e L U is computationally inexpensive - both the forward (2.13) (maximum op­
eration) and backward (constant) (2.14) passes are computationally non-demanding. 
Another advantage is that the function does not saturate for positive activation values 
thanks to its linear characteristics. 

The most significant limitation faced by the function is a dying R e L U problem. The 
derivative of any negative activation value is zero making the neuron „dead" (weights 
will never be updated). 

Leaky Rectified linear unit (Leaky ReLU) 
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Figure 2.19: Leaky R e L U - function 

Figure 2.20: Leaky R e L U - first derivative 
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h(a) = max(a x a, a) (2.15) 

Vh(a)= 1 (2.16) 
l a a < 0 

The leaky rectified linear unit (Leaky ReLU) solves the dying R e L U problem. Other 
than that, the Leaky R e L U has the same advantages as the R e L U . The problem is 
fixed by mapping all negative activation values to non-zero values making the gradient 
non-zero. The constant a determines the slope of the activation function for negative 
values. 

Pooling layer 

Since we have limited computational resources available, there is a need to be efficient. 
Pooling is used for a spatial reduction of the input. It also helps the network become 
invariant against a precise position of certain features. A slight difference in the position 
of the feature might result in a completely different feature map. A common approach to 
address this issue is to use pooling. Pooling reduces the size of an input, thereby extending 
the neuron's receptive field (at the expense of fine detail). [14] [9] 

Original Image Max pool ing Average pool ing 

W 
0 20 40 60 80 100 

Figure 2.21: Pooling, source: [5] 

maxi=o,...,p 
;j=o,...,g(h[ * (x+i,y+j)' 

V p V 9 h {x+i,y+j) 

avg 

(2.17) 

(2.18) 
p + q + 2 

Commonly used pooling functions are a maximum hl

max and an average hl

avg pooling 
functions. The pooling function shifts a fixed-size window over the input and computes 
a maximum or average value at each position. Figure 2.21 demonstrates the use of an 
average and maximum pooling on a straight line. While it cannot be explicitly said that 
one is better than the other, a few characteristics are obvious. The average pooling smooths 
out the feature map meaning sharp features may not be recognised. On the other hand, 
the maximum pooling recognises only the sharpest feature. [5] 
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2.4.2 Optimization 

At the beginning of the training, a model is initialised with small randomly distributed 
weights. Then a process called optimisation starts. The weights are systematically adjusted 
to minimise a loss function (2.3.3). 

Optimizers 

This subchapter has been adopted from [14], [3] and [31]. 

Wj+i = Wi - j] x V W i (2.19) 

Optimisation of a neural network is an iterative process based on gradient calculation. 
The gradient V W i represents the steepest ascend of the loss function with respect to model 
weights. The index i represents the current iteration. Once the gradient is computed, a 
small step (determined by the learning rate rj) is performed in the negative gradient (steepest 
descent) direction, thereby minimising the loss function. In the context of deep learning, the 
process is called gradient descent. Performing the step is a non-trivial problem because the 
gradient space is usually non-convex and contains many local minimums and maximums. 
Therefore there is a need for smart optimisation algorithms, also called optimisers. 

• Learning rate 

Small learning rate Right learning rate Big learning rate 

w w w 

Figure 2.22: Learning rate, source: [3] 

Choosing a correct learning rate is crucial for the model to converge. As shown in 
Figure 2.22 if the learning rate is too high, the loss function fluctuates. Conversely, 
the optimisation takes unreasonably long if the learning rate is too low. 

• Gradient descent 
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Batch Gradient Descent Mini-Batch Gradient Descent 

Stochastic Gradient Descent 

Figure 2.23: Batch vs. mini-batch vs. stochastic gradient, source: [3] 

The next challenge comes when choosing when should the weights updates occur. 
There are essentially three methods - batch, mini-batch and stochastic gradient de­
scent. 

Batch gradient descent updates the weights once the gradient is computed for the 
whole dataset. This method produces the most accurate gradients of the three but is 
very computationally expensive. Therefore it might be impractical for large datasets. 

Mini-batch gradient descent method introduces a hyper-parameter called batch_size 
that determines how many data-set entries are used for a gradient computation and 
weights update. As a result, weight updates are more frequent but not as accurate. 
However, it has been observed that the network converges similarly but in a fraction 
of the time. 

Stochastic gradient descent method is a special case of the mini-batch gradient descent 
method when batch_size = 1. It further reduces the computational expensiveness at 
the expense of accuracy. This approach might not apply to some problems because 
the loss function might fluctuate (due to the noisy gradients). 

• Momentum 
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Without Momentum Momentum 

Figure 2.24: Momentum, source: [3] 

Wj+i = W j - r\ x V W i + P x (wj - w j _ i ) (2.20) 

A trick called gradient descent with momentum can be used to accelerate the training. 
The new weights are computed as a weighted sum of a gradient V W i from the current 
position and the last step W j — W j _ i . The hyper-parameter j3 G (0,1) determines the 
importance of the last step. 

• Adaptive learning 

The training can be further improved by adaptive training methods such as RMSProp 
or Adam. The learning rate is no longer global. Instead, it is computed for each weight 
individually. 

Figure 2.25: RMSProp, source: [3] 

As shown in the Figure 2.25 by introducing different learning rates for individual 
weights, depicted as slow and fast, the training becomes smoother. 

s i + i = a x s4 + (1 - a)Vl. (2.21) 

w i + i = Wi - r, x _ZZ? (2.22) 

V s «+i + e 
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This can be achieved by introducing the exponential moving average Sj+i to the Equa­
tion 2.22. The exponential moving average is represented by the Equation 2.21. It 
can be viewed as a window that slides over past gradients and computes an „average" 
of squared derivatives for each weight. It is desirable to slow down the learning in 
the direction where the derivatives are large. Therefore the gradient is divided by the 
square root of the exponential moving average. The e in the denominator prevents a 
division by zero. 

The holy grail of modern optimisers is the Adam algorithm. Adam uses the above 
described adaptive learning combined with the momentum (2.4.2). 

Computation 

Every deep learning framework represents a neural network as a computational graph. The 
nodes represent elementary mathematical operations, and edges connect the operations, 
creating more or less complex functions. Decomposing neural networks into computational 
graphs makes an automated computation and differentiation possible. However, a funda­
mental assumption for the automatic differentiation is the existence of the first derivative 
of each operation in the graph. The gradient computation is done by applying the rules of 
differentiation and the chain rule, which lays the foundations for the derivation of composite 
functions. [13] [30] 

The calculation itself consists of two passes - a forward pass and a backward pass. The 
forward pass, calculated „from left to right", evaluates the loss function for current model 
weights. The backwards pass, calculated „from right to left", minimises the loss function 
by using the gradient descent technique (2.4.2). 

2.4.3 Convolutional neural networks 

Figure 2.26: Convolution, source: [26] 

Convolutional neural networks change the way neurons are connected. The output of every 
neuron is no longer directly connected to the input of every neuron in the following layer. 
Instead, a convolution operation is performed. Neurons called kernels or filters are small 
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matrices of weights. They might be viewed as windows that are being shifted over the input. 
A n element-wise dot product is taken at each position creating activation maps. It has 
been observed that this type of computation dramatically improves network performance, 
especially in computer vision. During the training kernel, weights learn to represent more or 
less complex shapes. The number of filters is the first in a series of parameters that need to 
be experimented with. If the amount is not big enough, the network underfitts. Conversely, 
if the amount is too big, the network is prone to overfitting 2.8. A hyper-parameter kernel 
size determines the receptive field of the neuron. The larger the kernel size is, the bigger 
the receptive field (at the expense of computational complexity). [13] [14] 

2.4.4 Popular architectures and techniques 

This chapter introduces state of the art architectures and techniques. 

Residual networks 

Residual connections were firstly introduced in the paper [15]. Since then, the principle has 
been used by many engineers and scientists. This subchapter has been adopted from [15]. 

It has been observed that the model benefits from more layers (accuracy improves) 
until, at some point, the model starts to perform much worse - degrades. As described 
in the paper, such degradation is not caused by overfitting. As the depth of the model 
increases, the model becomes more difficult to train due to the vanishing/exploding gradient 
types of problems. Residual networks are based on the same hypothesis as regular neural 
networks. Let g(h) be an underlying mapping to be learned by a part of the neural network. 
The input to the mapping is denoted as h. It is assumed that multiple non-linear layers 
can asymptotically approximate the mapping, which also applies to the residual function 
g(h.) — x. While both functions should approximate the desired function, the training 
difficulty might differ in favour of the residual networks. 

• Vanilla network 

The output of the n-th layer h n of the vanilla network, a network that does not 
employ identity (skip) connections, solely depends on the mapping function gn. The 
function gn represents a transformation performed by the n-th layer of the network. 
The transformation comprises a linear (linearity) and a non-linear (non_linearity) 
component. The linear component involves weights and biases, whereas the non­
linear component represents an activation function. Typical examples of the linear 
and the non-linear components are convolution and R e L U activation, respectively. 

• Residual network 

g n (h n ) = non-linearity (linearity (h™ )) (2.23) 

hn = gn(hn-1) (2.24) 
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Figure 2.27: Residual block, source: [5] 

h n = 5 n(h"- 1) + h"- 1 (2.25) 

A residual block introduces identity (skip) connections to the architecture. The output 
of the current layer h n no longer depends only on the gn, it also depends directly on 
the output of the predeceasing layer h n _ 1 . 

Dense networks 

Densely connected networks improve the vanishing gradient types of problems. One key 
difference compared to the residual networks is the number of parameters. As described in 
the paper, residual networks suffer from a significant redundancy, meaning the parameters 
are not efficiently used. Densely connected networks reduce the number of parameters while 
achieving similar or better performance by introducing dense connections to the framework. 
This subchapter has been adopted from [17]. 

• Dense block 
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Figure 2.28: Dense block, source: [17] 

A dense block is a series of convolutional layers where each layer is directly (densely) 
connected to all outputs of predeceasing layers. The information flow is even better 
compared to the residual networks. Another great benefit of the dense connections 
is collective knowledge. Later layers can use all the predeceasing outputs resulting in 
fewer redundant feature maps. 

h n = ^ ( [ h ° , h 1 , . . . , h n - 1 ] ) (2.26) 

The output of the n-th layer h n can be calculated using the Equation 2.26. Term 
[h 0 , ] ! 1 , . . . , h n _ 1 ] represents a concatenation of feature maps that are produced by 
predeceasing layers. 

• Transition block 

The transition block is placed directly after the dense block. Its purpose is to reduce 
the spatial resolution and number of filters. 

U-Net 

The U-Net architecture was firstly introduced in the paper [27]. The U-Net is widely used 
for the segmentation of medical data. This subchapter has been adopted from [27]. 
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Figure 2.29: U-Net architecture, source [27] 

The architecture is composed of two symmetric paths - counteractive and expansive 
paths. The counteractive path (encoder) is used to build a feature-rich representation. The 
other expansive path (decoder) makes precise localisation possible. The biggest drawback 
of using encoder-decoder architectures is losing spatial information at later layers. The U -
Net skip connections are introduced to preserve more spatial information between adjacent 
levels of the encoder-decoder. 

i n __ run u n - 1 l /r, r,j\ 
'•'•expansive {"contracttvei expansive! \ ') 

A skip connection connects each level of the counteractive path to the adjacent level 
of the expansive path, thereby allowing more precise localisation. Input ^-expansive to the 
first convolution of the n-th layer of the expansive path can be calculated using Equation 
2.27. The [^•contractive^ ^expansive] represents concatenation of the contracting and expansive 
feature maps. Note last skip connection is applied at the depth n = 1 because expansive 
does not exist. 

Attention 

Loosely defined attention is a mechanism that lets the network focus on things we care 
about. The attention speeds up the training process by highlighting relevant features. The 
attention mechanisms can be divided into spatial and channel attention. This subchapter 
has been adopted from [23] and [35]. 
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Image Spatial Channel 

Figure 2.30: Attention, source: [21] 

As the name suggests, spatial attention highlights relevant regions of the feature map. 
On the other hand, the channel attention highlights relevant feature maps as a whole. 

• Spatial attention module (SAM) 
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Figure 2.31: Spatial attention module, source: [35] 

As shown in Figure 2.31, spatial attention consists of three sequential operations. 
First, a spatial average and maximum pooling are performed. Thereby, maximum 
and average feature representations are exposed to the following layers. The convolu-
tional layer then consumes the output. Lastly, the sigmoid activation layer transforms 
the intermediate feature map values into the range of < 0,1 >, thereby the spatial 
attention map is created. 

• Squeeze and excitation block (SE) 

Figure 2.32: Squeeze and excitation block, source: [16] 
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Computation of the channel attention while using the squeeze and excitation block is 
visualised in Figure 2.32. First, an global average or maximum pooling is performed. 
It has been observed that the global average pooling produces slightly better results 
[16]. The intermediate feature map is then squeezed to the lower-dimensional vector 
and excited to the original-sized vector. Lastly, the sigmoid activation layer transforms 
the feature map values into the range of < 0,1 >. Thus an attention map is created. 
[16] 

Channel attention module ( C A M ) 
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Figure 2.33: Channel attention module, source: [35] 

The architecture of the channel attention module shown in Figure 2.33 is similar to 
the squeeze and excitation block except for the use of a global pooling layer. Both 
the global maximum and the global average poolings are used simultaneously. The 
abbreviation Shared M L P stands for Shard multi-level preceptor used for squeezing 
and the excitation of the intermediate outputs. 

• Combined attention module ( C B A M ) 

Convolutional Block Attention Module 

Input Feature r Channel 
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Figure 2.34: Convolutional block attention module, source: [35] 

It has been observed that channel and spatial attention work well together. In the 
case of the C B A M module, channel attention is followed by spatial attention. 
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Chapter 3 

Algorithm design and 
implementation 

Correctly identifying and segmenting retinal eye pathologies is a challenging task. Some 
pathologies are only a few pixels large or/and similarly looking. Even an experienced 
ophthalmologist (eye doctor) might have difficulty identifying them correctly. This chapter 
introduces the proposed solution and its fundamental principles. 

3.1 Architecture 

A variety of models has been trained, resulting in several observations. Based on those 
observations, the proposed architecture has been designed. 

Design choices 

• The U-Net architecture, described in Chapter 2.4.4, achieves the state of the 
performance on medical problems. Therefore it has been selected as the basis for the 
proposed architecture. 

• Residual blocks, described in Chapter 2.27, were used to provide the expanding 
path with even more detailed positional information. They also improve the explod­
ing/vanishing gradient types of problems. 

• Attention, described in Chapter 2.4.4, is a mechanism used for speeding up the 
training by applying bigger weights to regions/channels that are relevant. The best 
results were achieved using the C B A M block. The C B A M block applies a channel 
followed by spatial attention to the input. 

• The batch normalisation has proved to be an absolute necessity. Without the 
batch normalisation, the model was unable to learn anything. 

• Dropout layers were used to reduce overfitting (2.8). A dropout layer randomly 
disables a specified amount of kernels during training. 
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Proposed architecture 

Figure 3.1: Proposed architecture 
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The architecture of the proposed system is shown in the Figure 3.1. For clarity, layers are 
consolidated into blocks. The implementation of individual blocks is explained in detail in 
Chapter 3.2. 

The contracting path of the architecture comprises residual blocks (2.4.4) and strided 
convolution layers (2.26). The strided convolution is used for spatial dimensions reduction 
(downsampling). The following pattern is repeated throughout the path. First, a residual 
block is applied to the intermediate output. Once two consecutive residual blocks process 
the input, a strided convolution downsamples the intermediate output by half. 

The expanding path comprises transposed convolution layers, attention and residual 
blocks. The transposed convolution is used for upsampling the input in a learnable way. The 
following sequence of operations is repeated through the expanding path. First, attention is 
applied to the adjacent level output of the contracting path. Then predeceasing level output 
of the expanding path is via the transposed convolution upsampled. Both intermediate 
outputs are concatenated, producing a feature map later consumed by two consecutive 
residual blocks. 

Model hyper-parameters 

• Activation function. A R e L U activation functions are used as the non-linear com­
ponents of the network. 

• Kernels size. Convolutional layers use kernels of size three, whereas transposed 
convolution layers use kernels of size two. 

• Number of kernels. The first level of the U-Net has 16 kernels. The amount 
increases with a factor of two up to 512 kernels in the last level. 

• Dropout rate of 0.2 (20% of neurons are dropped during training) was used. 

• Kernel weights initialisation. Kernel weights were initialised using the H E uniform 
distribution. The H E uniform distribution is specially designed to be used with the 
ReLU activation function. 

3.2 Implementation 

This chapter introduces used technologies and describes individual components of the pro­
posed system. 

3.2.1 Technologies 

The proposed system is developed using the Python programming language. Python was 
chosen because it has become a standard for data science projects and the enormous avail­
ability of data science libraries. Important used libraries are listed below. 

• Tensor flow1 

Tensorflow is an open-source framework developed by the Google Brain Team. It is 
widely used for various machine and deep learning applications. 

1https://www.tensorflow.org/ 
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• keras2 

Keras is a high-level Tensorflow A P I that further simplifies the model design, training 
and evaluation. 

• TensorBoard 3 

The TensorBoard is a visualisation toolkit used for model evaluation. 

• scikit-image1 

The scikit-image is an open-source library that provides a rich A P I for image process­
ing. 

• napari'' 

The napari is an image viewer used for viewing and annotating multi-dimensional 
data. 

• jupyter 6 

The juypter is a web-based service used for interactive code execution. 

• Albumentations ' 

The albumantion is a library providing a variety of augmentation techniques. 

3.2.2 System architecture 

The project structure is presented below: 

• data/ Data used for training and evaluation 

• docs/ Documentation of the project 

• logs/ TensorBoard logs directory 

• models/ Model weights directory 

• notebooks/ Jupyter notebooks used for interactive code execution 

• s r c / Source files of the proposed system 

— a r c h i t e c t u r e / Implementation of the U-Net framework (3.2.3) 

— data/ Data processing scripts 

— metrics/ Metrics used for model evaluation 

— losses/ Implemented loss functions 

— handlers/ Training, evaluation and prediction scripts 
2https://keras.io/ 
3https: / / www.tensorflow.org/ tensorboard 
4https://scikit-image.org/  
5https://napari.org/index.html  
6https://jupyter.org/  
7https://albumentations.ai/ 
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3.2.3 U-Net framework 

A U-Net framework has been built to provide a simple and efficient interface for model 
design and creation. The basic building blocks of the framework are model skeletons and 
blocks. Blocks assemble individual layers like convolution into higher functional units like 
residual blocks, whereas model skeletons connect individual blocks, thus forming the archi­
tecture. 

Layers 

Before the architecture of individual blocks can be discussed, layers must be introduced. 

• Conv layer performs a spatial convolution. 

• B N stands for batch normalization. The layer transforms inputs to maintain mean 
close to 0 and standard deviation close to 1. 

• Activation represents an activation layer. The layer transforms inputs by the acti­
vation function. 

• Add performs element-wise addition. 

• Multiply performs element-wise multiplication. 

• Concat concatenates inputs by the last axis. 

• Dropout randomly sets units to 0. 

• Pooling reduces inputs spatial dimensions by applying either the maximum (2.17) 
or average pooling (2.18). Special case of the pooling is a global maximum/average 
pooling that reduces the spatial dimension to the size of 1. 

Blocks 

This chapter introduces individual blocks and describes their architecture. Layers repre­
sented by a dashed line are optional. 

• ConvBlock 

in • 

Conv BN Activation Dropout 

Figure 3.2: ConvBlock architecture 
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The ConvBlock forms a basic convolutional block comprising a convolutional, batch 
normalisation, activation and dropout layers. 

• ResConvBlock 

r > *• \ 1 

Conv BN Activation Add Dropout 

Figure 3.3: ResConvBlock architecture 

The ResConvBlock forms a residual convolutional block (2.27). 

DenseBlock 

-> out 

Conv BN Activation Concat Dropout 

Figure 3.4: DenseBlock architecture 
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The DenseBlock is an implementation of the densely connected block (2.28). Only 
one iteration of convolutional layers within the block is shown for better clarity. 

SEBlock 

1 
- > out 

I I I I I 
BN Activation Multiply Pooling Dense 

Figure 3.5: SEBlock architecture 

The SEBlock forms a squeeze and excitation block (2.32). Based on the configuration, 
the pooling layer represents either a GlobalMaxPooling or a GlobalAveragePooling 
layer. 

. C B A M B l o c k 

GlobalMax max 

out 

Conv BN Act ivat ion Add Mult iply Concat Pooling Dense Lambda 

Figure 3.6: C B A M B l o c k architecture 
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The C B A M B l o c k implements a channel followed by a spatial attention mechanism 
applied to the input. The GlobalMax/GlobalMin pooling layer produces a single 
maximum/average value per channel. The Lambda max/mean layer computes a 
max/mean value over the last (channel) axis. 

U-Net model skeletons 

The implementation of the U-Net model skeleton can be found within the sub-directory 
/skeletons. 

model = compose(input_shape=(224, 224, 3), num_chanels=5, 
enc_kernels=[(2, 16), (2, 32), (2, 64), (2, 128), (2, 256), (2, 512)], 
enc_conv_block=ResConvBlock('relu', dropout_rate=0.2), 
dec_kernels=[(2, 16), (2, 32), (2, 64), (2, 128), (2, 256), (2, 512)], 
dec_conv_block=ResConvBlock('relu', dropout_rate=0.2), 
downsample_block=lambda x, s i z e : Conv2D(K.int_shape(x)[-1], (3, 3), 

strides=size, padding='same',kernel_initializer = ,he_uniform')(x), 
upsample_block=lambda x, s i z e : Conv2DTranspose(K.int_shape(x)[-1] // 2, 

(2,2), strides=size, padding='same', 
k e r n e l _ i n i t i a l i z e r = ' h e _ i m i f o r m ) ) ( x ) , 
attention_block=CBAMBlock('relu'), attention_mode='dec )) 

Figure 3.7: Proposed model configuration 

The model skeleton implements a compose() method used for the model creation. Its 
function can be shown in the way the proposed model is created. The model is composed 
by providing the configuration shown in Figure 3.7. 

enc convblock Concatenate 

downsample_block 

T 

dec conv block 

upsample_block 

Figure 3.8: U-Net skeleton blocks connections 

For a better understanding, Figure 3.8 shows the interconnection of individual blocks. 
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3.2.4 Preprocessing 

Figure 3.9: Original image 

Figure 3.10: Preprocessed image 

A green channel extraction and C L A H E preprocessing method has been implemented. The 
green channel is selected because it offers the best amount of contrast. Once the green 
channel is extracted, an adaptive contract limited equalisation ( C L A H E ) is applied to 
improve the contrast further. 

3.2.5 Prediction 

The prediction from raw data is handled by the Predictor class, whose implementation is 
located in the /src/model/predictor .py file. 

42 



Figure 3.11: Prediction pipeline 

The prediction process is discussed below. 

1. Original (to be annotated) image is loaded from the disk. 

2. Spatial dimensions of the image are reduced to 1072x712 pixels. 

3. If the model was trained using preprocessed data, the image is preprocessed. 

4. The image is divided into small overlapping patches. The overlap is used for extending 
the contextual region of the prediction. 

5. The patches are fed to the model resulting in the same number of prediction masks. 

6. The final prediction masks are created by appropriately arranging the prediction 
masks. 

3.3 Running the code 

This chapter describes how to use the implemented system. 

3.3.1 Environment 

First, the environment needs to be prepared. This can be done by issuing the following 
command from the project's top directory. 

• pip i n s t a l l - r requirements.txt 
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3.3.2 Data 

Before any training or evaluation can occur, the datasets need to be created. The Jupyter 
notebook /project/src/notebooks/data.ipynb encapsulates the data preparation pro­
cess. To prepare the data, execute the following sequence of steps. 

1. Inside the notebook, set the T0P_DIR variable to the project's top directory location. 

2. Run cells # conf_0, # c o n f _ l and # organize_0 to create a directory structure 
accepted by the implemented methods. 

3. Download the segmentation part, denoted as A. Segmentation.zip, of the dataset 
8 or use the provided dataset / i d r i d . z i p . 

4. Unzip the dataset into the folder TOP_DIR/data/unpacked. 

5. Process the data by running the cell # extract_0. This action can take up to 45 
minutes. After processing the data, patches (small images used for training and 
evaluation) will appear in the TOP_DIR/data/patches directory. 

3.3.3 Training 

The Jupyter notebook /project/src/notebooks/model. ipynb encapsulates the model 
training, evaluation and prediction. To train the model, execute the following sequence 
of steps. 

1. Inside the notebook, set the T0P_DIR variable to the project's top directory. 

2. Run cells # conf _0, # conf _1 and # model_0 to instantiate the model. 

3. Run the cell # t r a i n _ 0 to create a directory that will contain the model weights. 

4. Run cells # t r a i n _ l and # t r a i n _ 2 to instantiate the model training wrapper and 
train the model. 

3.3.4 Evaluation 

Execute the following sequence of steps to evaluate the model. 

1. If using the provided model weights, unzip the /weights. z i p to the TOP_DIR/models 
directory. 

2. Run cells # conf _0, # conf _1 and # model_0 to instantiate the model. 

3. Run cells # evaluate_0 and # evaluate_l to instantiate the model evaluation wrap­
per and evaluate the model. Once computed the model evaluation report will appear 
at the bottom of the cell. 

8https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid 
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3 .3 .5 Prediction 

To make a prediction execute the following sequence of steps. 

1. If using the provided model weights, unzip the /weights. z i p to the TOP_DIR/models 
directory. 

2. Run cells # conf _0, # conf _1, # model_0 and # predict_0 to instantiate the model 
and the model prediction wrapper. 

3. Set the IMG_PATH to the to be predicted image location. 

4. Run cells # p r e d i c t _ l to make the prediction. Once computed, a window containing 
the original image with generated predictions will appear. 
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Chapter 4 

Experiments and evaluation 

Over a hundred different models have been trained using various training methods and loss 
functions leading up to the proposed architecture. This chapter discusses how the proposed 
architecture was trained and presents achieved results. 

4.1 Data 

This subchapter introduces the IDRiD dataset used for training and discusses the dataset 
preparation. Every model has been trained on the Indian Diabetic Retinopathy Image 
Dataset (IDRiD). [25] The IDRiD is a multipurpose data-set created by retinal specialists 
at Eye Clinic located in Nanded, (M.S.), India. The dataset is available from I E E E Dataport 
Repository 1 . It is divided into three parts - segmentation, disease grading and localisation. 
Every part contains colour retina images. 

Figure 4.1: IDRiD annotations, source: [25] 

Only the segmentation part has been used for model training and evaluation. It contains 
81 colour images and belonging pixel-level annotations. The annotations are provided as 

1https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid 
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binary masks for the following lesions - hard exudates, soft exudates (cotton wool spots), 
microaneurysms and hemorrhages. 

Before the training or evaluation of the model could begin, the datasets had to be 
prepared. The process is described below. 

1. Spatial dimensions of the data are reduced to 1072x712 pixels. 

2. Data is divided into training and validation datasets using the 5-fold cross-validation 
technique. 

3. To increase the amount of data, original images are divided into small overlapping 
patches. The spatial dimensions of the patches were set to 224x224 pixels. The 
overlap was set to 112x112 pixels. 

4.2 Training 

This chapter summarises the training process. 

• Batches. The data was fed to the model in the form of mini-batches. The batch size 
of 15 patches has proved to produce the best results. 

• Loss function. Taversky loss function 2.11 has proved to provide much better results 
out of all tried loss functions. Best results were achieved for parameters set to a = 
(3 = 0.5 simplifying the loss function to be a Dice loss 2.10. 

• Augmentation. To reduce the overfitting 2.8 several augmentation techniques 2.3.3 
specifically scaling, rotation by a multiple of 90 degrees, random brightness and con­
trast were used. 

• Optimizer. The model was trained using the Adam optimizer 2.21 with the first and 
second moment estimates set to 0.9 and 0.999. 

• Learning rate. The initial learning rate was set to 1 0 - 4 . 

V v ^ ^ v v'^-^-'^—n^a/v 

0 50 1C0 153 200 

Figure 4.2: Loss function 

Figure 4.2 shows the loss function of the best performing model (discussed in detail 
below) trained on fold three. The model has been trained for 250 epochs on the Nvidia 
RTX4000 graphic card. The best performance (smallest validation loss) was achieved at 
the 208 epoch. Therefore those weights are used for the final product. 
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4.3 Evaluation 

This chapter presents achieved results. First, performance on individual folds is evaluated 
then the best performing model is discussed in detail. 

Performance on folds 

The data, as previously stated, has been divided into five-folds, each containing training 
and validation datasets. 

Fo ld 0 Fo ld l 

Fo ld 2 Fo ld 3 

Fo ld 4 

Figure 4.3: Mean lesion pixel frequencies per fold distributions 

Figure 4.3 shows the mean frequencies of lesion pixels per dataset. A blue/green colour 
represents the training/validation dataset frequencies. The dataset is relatively small be­
cause all of the presented cases are more or less imbalanced. Fold 3 is the most balanced fold 
out of all the presented folds. Therefore, it should produce results close to the performance 
of the real-world data. 
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fold hard exudates soft exudates hemorrhages microaneurysms 
0 0.73 0.46 0.53 0.33 
1 0.25 0.42 0.32 0.55 
2 0.76 0.43 0.44 0.33 
3 0.74 0.5 0.45 0.33 
4 0.74 0.39 0.32 0.44 
mean 0.62 0.4525 0.435 0.385 

Table 4.1: A U C - P R scores obtained on folds one to five 

The Table 4.1 presents achieved results on folds one to five. The A U C - P R scores were 
obtained by computing the area under the precision-recall curve. The model trained on fold 
three has been selected as the final model. This decision was made based on the A U C - P R 
score and the knowledge of mean lesion pixel frequencies per fold distributions as shown in 
Figure 4.3. 

Final model 

The model trained on fold three is discussed in detail in this chapter. 

ROC 

FPR 

Figure 4.4: Receiver operating characteristic curve 

TP 
TPR = — — (4.1) 

TP + FN v ' 

TP 
FPR = — — (4.2) 

TP + FN v ' 
Figure 4.4 shows the receiver operating characteristic curve. The x-axis represents the 

true positive rate (4.1) also referred to as sensitivity. The y-axis represents a false positive 
rate (4.2). However, given such a highly imbalanced dataset, it presents too optimistic 
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results. The false-positive rate is due to the high amount of true-negatives, always close to 
1 except for the background region. 

PR 

Recall 

Figure 4.5: Precision-recall curve 

TP 
precision = —— —— (4.3) 
1 TP + FP v ' 

TP 
recall = —— —— (4.4) 

TP + FN v ' 
Since the precision-recall curve does not consider true negatives, it can be used even 

for highly imbalanced datasets. Figure 4.5 demonstrates the segmentation abilities of the 
model. The x-axis represents the recall (4.4) also referred to as sensitivity. The recall 
determines the ratio of correctly predicted diseased regions to all diseased areas). The 
y-axis represents a precision (4.3) also called the positive predictive value. The precision 
is determined by calculating the ratio of correctly predicted diseased regions to all regions 
predicted as diseased. As shown in Figure 4.5 the model performs well considering the 
hard exudates lesions. A good precision is achieved at a reasonable recall in addressing 
the haemorrhages and soft exudates lesions. Correctly segmenting microaneurysm is a 
challenging task. Some are almost indistinguishable from the background. In this case, a 
steeply decreasing precision with increasing recall is evident. 
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predicted 
background E X SE M A H E 

s background 48910130 139953 16052 12667 85753 
•o

un
d

 t
i hard exudates (EX) 207755 559372 1536 3 18 

•o
un

d
 t

i 

soft exudates (SE) 28913 2159 45529 68 341 

•o
un

d
 t

i 

microaneurysms (MA) 27451 25 0 25130 4352 
hemorrhages (HE) 164270 364 100 9550 185389 

Table 4.2: Confusion matrix 

The confusion matrix for the model evaluated on the validation dataset is shown in 
Figure 4.2. The main problem of the model is to distinguish lesions from the background. 
If the pixel is labelled as a lesion, it is likely to be correctly classified. The most significant 
overlap of about 7% was measured between hemorrhages and microaneurysms. 

lesion sensitivity specificity precision 
hard exudates 0.73 0.9971 0.8 
soft exudates 0.59 0.9996 0.72 
hemorrhages 0.52 0.9982 0.67 
microaneurysms 0.44 0.9995 0.53 

Table 4.3: Confusion matrix based metrics 

The performance considering the sensitivity, specificity and positive predictive value 
metrics is presented in Table 4.3. Given the task's difficulty, it can be said that the model 
performs well while segmenting the hard exudates. A good performance was achieved while 
segmenting the soft exudates and hemorrhages. The microaneurysms are usually only a few 
pixels wide or blend in with the background making them challenging to segment correctly. 
Thus, the lower performance is somewhat expected. 
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Chapter 5 

Conclusion 

This thesis aimed to design and implement a system that automatically detects retinal eye 
pathologies, specifically exudates/drusens and hemorrhages. 

The implemented system based on the supplied image of the retina automatically gener­
ates masks representing occurrences of individual pathologies. The result is then presented 
to the user. For this purpose, the napari library is used, enabling the user to manipulate 
the images (move, zoom in/out, turn on/off individual masks). A convolutional neural 
network handles the segmentation. The network architecture is based on the U-Net archi­
tecture enhanced by residual blocks combined with an attention mechanism. The model 
was trained on the Indian Diabetic Retinopathy Image Dataset (IDRiD) to segment four 
lesions - hard exudates, soft exudates, hemorrhages and microaneurysms. The dataset was 
divided into five parts using the k-fold cross-validation technique. Then five models were 
trained, and the best was selected as the final product. The models were thoroughly anal­
ysed using the receiver operating characteristic curves, precision-recall curves and confusion 
matrix based metrics (sensitivity, specificity, precision). Since the dataset is highly imbal-
anced, most insights were obtained using the P R curve. Based on testing, I can state the 
segmentation of hard exudates works reasonably well since it achieves an A U C - P R (area 
under the precision-recall curve) of 74%. Segmentation of soft exudates, hemorrhages, and 
microaneurysms achieves A U C - P R scores of 50%, 45% and 33%, respectively. For such a 
challenging task, I believe that this is a good result (see the previous chapter). 

Another output of this project is the U-Net framework. Since various models had to 
be trained, there was a need for a tool that would simplify the model creation process. 
Therefore, the U-Net framework has been developed. The U-Net framework is a high-level 
A P I that lets the user create U-Net-based models without the need for programming simply 
by providing a model configuration. 

Since there are still things to improve, I intend to continue working on this project as part 
of my follow-up master's degree thesis. I believe that the proposed architecture is powerful 
enough to achieve even better performance if the preprocessing of the data and method for 
composing the prediction are improved. Another thing to try is to create an ensemble model 
containing several networks, each trained on a different input size resolution. Without a 
doubt, the model would benefit from a larger dataset. Therefore I would like to create a 
larger dataset with the cooperation of ophthalmologists or synthesise the data using the 
generative adversarial network. 
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Appendix A 

Contents of the D V D 

The directory structure of the provided D V D : 

• /project Source files of the system 

• / i d r i d . z i p Segmentation part of the IDRiD dataset 

• /weights.zip Trained model weights 

• /text Source files of the thesis 

• /thesis.pdf Text of the thesis 
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Appendix B 

Predictions 

The following Screenshots show the pathology prediction based on the unseen retinal image 
created by the final model. 

Figure B . l : Retinal image with predicted occurrences of individual pathologies 
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Figure B.2: Masks capturing the predicted occurrences of individual pathologies 

Figure B.3: Masks provided by an ophthalmologist capturing the real occurrences of indi­
vidual pathologies, source: [25] 
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