
T 
BRNO UNIVERSITY OF TECHNOLOGY 
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 

FACULTY OF MECHANICAL ENGINEERING 
FAKULTA STROJNÍHO INŽENÝRSTVÍ 

INSTITUTE OF SOLID MECHANICS, MECHATRONICS AND BIOMECHANICS 
ÚSTAV MECHANIKY TELES, MECHATRONIKY A BIOMECHANIKY 

HYBRID METHGD FÜR MGDELLING AND STATE ESTIMATION OF 
DYNAMIC SYSTEMS 
HYBRIDNÍ METODA PRO MODELOVÁNÍ A POZOROVÁNÍ STAVŮ DYNAMICKÝCH SYSTÉMŮ 

SHORT VERSION OF DOCTORAL TESIS 
ZKRÁCENÁ VERZE DOKTORSKÉ PRÁCE 

AUTHOR Ing. Martin Brablc 
AUTOR PRÁCE 

SUPERVISOR doc. Ing. Robert Grepl, Ph.D. 
ŠKOLITEL 

BRNO 2023 



K e y w o r d s 
Dynamic systems; Modelling and simulation; Control theory; Continuous time systems; 
Discrete time systems; Approximation methods; Local linear models; Local linear re­
gression; Receptive fields; Weighted regression; M A T L A B ; Parameter estimation; State 
estimation; Kalman filter; Process noise; Gaussian Noise Covariance; Simultaneous esti­
mation; Joint estimation; Dual estimation; Recursive least squares; 

K l í č o v á s l o v a 
Dynamické systémy; Modelování a simulace; Teorie řízení; Systémy se spojitým časem; 
Systémy s diskrétním časem; Aproximační metody; Lokální lineární modely; Lokální 
lineární regrese; Receptivní pole; Vážená regrese; M A T L A B ; Odhadování patametrů; 
Odhadování stavů; Kalmanův filtr; Procesní šum; Kovariance Gaussovs- kého šumu; Sil-
multánní estimace, Sloučená estimace; Duální estimace; Rekursivní metoda nejmenších 
čtverců; 

Místo uložení rukopisu: 
Knihovna VUT-FSI v Brně, Technická2896/2, 61669 Brno. 
Martin Brablc, 2023 
ISBN 80-214-
ISSN 1213-4198 

2 



Contents 

1 Introduction 4 

2 Theoretical Survey 6 
2.1 Dynamic systems 6 
2.2 Kalman filter 8 
2.3 Simultaneous Estimation 10 

2.3.1 Joint estimation 10 
2.3.2 Dual estimation 11 

2.4 Model approximation methods 11 

3 Formulation of the thesis goals 13 

4 Kalman filter with uncertain parameters 16 
4.1 Reformulating K F for uncertain parameters 18 
4.2 Setting the process noise covariance 19 

5 R F W R modification 22 

6 Dual estimation based on R F W R and Kalman filter 26 

7 Conclusion 29 
7.1 Thesis achievements 30 

References 32 

3 



1 Introduction 

In this thesis, we deal primarily with systems that are typical for the field of mechatronics. 
These are systems with concentrated parameters of low order, often nonlinear, which 
typically originated in several other domains, e.g., electronics, electromagnetics, solid body 
mechanics, thermo- or hydromechanics, etc. A very common property is the existence of 
an algebraic or differential relationship between the system states, meaning that we can 
often find pairs or larger groups of states being in the time domain derivative/integral 
relation, e.g., position - velocity, charge current, etc., which gives the system special 
properties that we further investigate. A typical example of such a mechatronic system 
is an electric drive. 

When implementing a control algorithm, especially when dealing with nonlinear sys­
tems, there are three distinct tasks which need to be solved: 

• creating a model of the system, 

• choosing and tuning a signal processing filter or state observer, 

• designing n and tuning the control algorithm itself. 

Usually, the model of the system we want to control, often called the plant, is required 
to be able to simulate the system response in various situations and in combination with 
various filters and controllers without the risk of destroying the real plant. There are 
many different approaches to modelling dynamic systems, and the choice is often very 
application-specific. For the purpose of this thesis, we assume that we can deduce a set 
of ordinary differential equations (ODEs) based on the first-principles approach, which 
describes or approximates the system at hand with reasonable precision. By reasonable 
precision, we mean that we can use it to identify the system states and significant non-
linearities, at least on what states the nonlinearities depend on. This set of ODEs can be 
directly used as a model of the system (assuming that we are able to estimate or mea­
sure the unknown parameters) or it can be further approximated by one of many various 
methods which loosely fall into categories called local and global methods. 

The second base task that needs to be dealt with when developing a control algorithm 
can be summarised as estimating the states of the system to be controlled. This task is 
important as it provides the necessary feedback information for any control algorithm, 
and the signal quality (accuracy, delay, signal-to-noise ratio, etc.) greatly influences the 
quality and stability of the control process. Solutions to this task generally fall into two 
categories: filters and state estimators. Putting aside obvious low-pass and anti-aliasing 
filters, derivative filters are often used in situations where one of the states is not measured 
directly, such as central difference or Savitzky-Golay type filters. For example, when we 
only measure the position of a mechanism and its speed, which is also one of the system 
states that needs to be determined using a derivative filter. 

The third task is the design of the control algorithm itself. Aside from the common 
linear control design methods (PID, L Q R , etc.), there are many methods and approaches 
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1 I N T R O D U C T I O N 

for the design of a control law for nonlinear dynamic systems. At random, we can mention 
feedback linearisation, reinforcement learning, model predictive control (MPC), State-
Dependent Riccati Equation (SDRE), gain scheduling, and many others. Independent of 
the method we choose to implement, the control design methods mostly have to assume the 
knowledge of all the controlled system states. This requirement is often not mentioned 
when describing the design of complex nonlinear control algorithms and is left for the 
reader to deal with on their own, based on the specific application. In practice, this 
presents a problem which is neither trivial nor exact and usually requires the use of one 
of the above-mentioned state estimation techniques. 

To simplify the design process, the three tasks are, in most practical applications, 
being solved independently. First, the models of the system are created, then filters or 
state estimators are implemented and tuned in simulation or with the real plant. Lastly, 
both are used to implement a suitable control algorithm. The design methods for all three 
tasks have many parameters which need to be set by the developer, while some are not 
exact, lacking a guide or criterion function to be correctly set. This is the most common, 
independent design process, even though the results of all the tasks are highly intertwined 
and, in the end, serve to solve a single criterion, the control process quality. 

The problems described above often result in a suboptimal control design and push 
developers to choose the design method out of the great variety of available algorithms they 
know and have experience tuning, as implementing a new, previously unknown algorithm 
requires acquiring enough experience to tune it properly. With that in mind, the main 
goal of this dissertation is to simplify the control design process by removing, or at least 
minimising, the need to tune some of the most critical design parameters. Based on 
previous research and experience, this goal can be achieved by combining independent 
tasks into a single adaptive method or algorithm, which would only be subject to the 
overall control quality. We will mainly focus on combining the first two tasks, modelling 
and state estimation, as these have practical applications on their own and may serve as 
a basis for future research in combining all three tasks. 

Our goal is to develop a hybrid method for the simultaneous estimation of states and 
parameters of nonlinear dynamic systems, which would adapt, online, the model of the 
system and tune a state estimator as new data become available. It is an approach similar 
to dual estimation, where one of the filters is replaced by a more complex approximation 
method, preferably based on local linear models. Both parallel algorithms share not only 
their best estimates, but also confidence in that estimate, which allows the automatic 
parameter tuning. 
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2 Theoretical Survey 

2.1 Dynamic systems 

Under the term dynamic system, we can imagine a somewhat simplified representation 
(model) of a real system that we have in mind, specifically a system that evolves over 
time. By "simplified", we mean that we only observe the outward behaviour of the system 
and the specific physical quantities we want to observe or predict, whose model is usually 
in the form of a set of differential equations. The level of detail is highly dependent 
on the actual application. In the literature, for example, in [1, 2], we can find various 
mathematical definitions of a dynamic system, however, all of them define it using similar 
terms: a state, a phase/state space and an evolution function. 

Depending on the type of the set of all possible time instants T, a system can be in, 
we can differentiate dynamic systems into continuous in time (T C M) and discrete in 
time (T = {kTs : k C Z}, where Ts is a sampling period). 

Then, for both discrete and continuous systems, the evolution function (2.1) 

(p{t,t0,x0) : T x T x Q Q (2.1) 

unequivocally describes the state xt G Q of the system at time instant t G T defined by 
the initial state XQ G Q at time instant to G T. 

Usually, when describing a dynamic system, we start from a set of first-order differen­
tial equations (2.2), 

x(t) = f (x(t) ,t) (2.2) 

where x(t) e l n is a vector of the time domain derivatives of each of the state quantities 
contained in x(t) and / in (2.3), 

/ (x(t),t) : fl x T 4 R" (2.3) 

where / is a vector-valued function that describes the dynamics of the system. Then, the 
evolution function (2.1) is the solution to the initial value problem (IVP) of the set of 
equations (2.3) [1]. 

In this thesis with systems that use T = {kTs : fc 6 Z + } , we will denote a state x at 
a time instant tk G T by a subscript index k, i.e., xtk = Xk-

It is useful to develop the evolution function for this special case of a system with a 
discrete set T to be able to make a transformation between two consecutive time instants 
as in (2.4). 

xk = 0 (tk , tk-i, xk-i) (2.4) 
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2 T H E O R E T I C A L S U R V E Y 

We will refer to this special case of the evolution function as evolution operator $ : 
Q x T —> Q. Then, we can write a discrete model of an autonomous dynamic system as 
(2.5). 

xk = $ (ccfc_i ,t f c_i) (2.5) 

In practice, we often deal with systems that are not autonomous and have an external 
input. For this reason, we must extend our description of dynamic systems by a set of 
all possible inputs \1/ C M m , where m is the number of external inputs and u(t) G \& is 
a specific set of inputs applied to the system at any given time instant t 6 T. Then, we 
can expand the models (2.2) and (2.5) by an additional argument, acquiring a model of 
the dynamics of a controlled system (2.6). Also, to further simplify the notation, we will 
be marking arguments which are functions of time, e.g. x(t), simply the time 
dependence is obvious in most cases. 

x = f{x,u,t) (2.6) 

We can also define the evolution operator for a discrete system with an input as (2.7). 

xk = $ (ccfc_i , u f c _ i ,t f c_i) (2.7) 

Together with the basic system models and dynamic systems themselves, there are a 
number of additional models being used for convenience in practice. Often, it is useful 
to separate the output of the system from its state. Generally, it can be described by 
Equation (2.8). 

y = g(x,u,t) (2.8) 

where y is the output of the system corresponding to state x and input u. Often, the 
output is simply a subset of state y C x. The output often represents one or more 
quantities that we are interested in tracking or controlling. 

Furthermore, we can also use a measurement model to link the quantities that we 
actually measure with the state, using Equation (2.9). 

z = h{x,t) (2.9) 

where z is the measurement vector corresponding to state x. The measurement can also 
be a subset of the state vector z C x. 

A very important special case of all the above mentioned models is a linear system. 
Assuming that the system at hand is linear, time-invariant, and continuous, the general 
model of the system dynamics (2.6), the model of the output (2.8), and the model of 
the measurement (2.9), can be transformed into linear case equations (2.10), (2.11), and 
(2.12), respectively, forming the so-called state space model of a dynamic system. 
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2 T H E O R E T I C A L S U R V E Y 

x = Ax + Bu (2.10) 

y = Cx + Du (2.11) 

z = Hx (2.12) 

Similarly, for linear time-invariant discrete systems, the discrete dynamic model (2.7) 
with input and measurement models can be transformed into (2.13), (2.14), and (2.15), 
respectively, forming the so-called discrete state space model of a dynamic system. 

xk = Fccfc-i + G t i n (2.13) 

yk = Cxk + Duk (2.14) 

zk = Hxk (2.15) 

Lastly, by adding the assumption that the model of a continuous system (2.6) and a 
discrete system (2.7) is not dependent on time, but F and $ depend on a set of parameters 
b e M p instead, where p is the number of parameters, both can be rewritten in the form 
of (2.16) and (2.17), respectively. Both will be useful in the later chapters. 

x = f(x,u,b) (2.16) 

xk = $ (xk-i, u f e _ i , bk-i) (2.17) 

Also, when talking about parameters, it is useful to note a special case of models linear 
in parameters. This is a weaker condition than a linear system, it allows for nonlinearities, 
but the parameter b must only occur as an argument of the linear functions. [3] 

This property can be defined by fulfilling the condition (2.18). A model of a dynamic 
system F (x ,u ,b) is linear in parameters exactly when 

a / ( , , u , b ) a» / (« ,« . . f c ) = £ 6 

obi oof 

2.2 Kalman filter 

The Kalman filter was developed by several mathematicians and physicists in the late 
1950s and is named after the Hungarian mathematician and engineer Rudolf E. Kalman, 
who published his now famous paper [4] in 1960. In the common implementation, the 
Kalman filter (KF) is based on a model of a linear discrete dynamic system with continuous 
state space, which can be described by (2.13) and a model of the measurement process 
as described by (2.15). Both of these models are assumed to be imprecise, and the 
imprecision is modelled by Gaussian zero-mean noise. Specifically, a noise term is added 
to both models as in (2.19) and (2.20), 

8 



2 T H E O R E T I C A L S U R V E Y 

xk = Fkxk-i + Gkuk-i + ir f e (2.19) 

2 f c = Jf f ea; f e + v f c (2.20) 

where u>fc ~ A/"(Qfc, 0) represents the process noise term and ~ J\f(Rk, 0) represents 
the measurement noise term, where = cov{wk) is the process noise covariance and 
Rk = cov(vk) is the measurement noise covariance. 

Various notations are used to describe K F . In this thesis, we will use the hat symbol 
over a variable symbol (e.g. x) to mark that it is an estimate of the true value and 
expand the lower indexing notation by the number of the iteration the estimate is based 
on. For example, XJU represents an estimate of the value of x in iteration % based on 
information from iteration j. Typically, we use either information from the previous 
iteration (j = i — 1), which is called the a priori or the prior estimate, or information 
from the actual iteration (i = j), which is called the a posteriori or the posterior estimate. 

Then, every state estimate that we work with is a tuple (2.21), 

(%, Pi\j) (2-21) 

where x^j is the estimate of the state vector xt and P^j is the estimate of the covariance 
matrix that describes the confidence of the state estimate in the form of a Gaussian 
probability density function (PDF). We can also say that the true state position in the state 
space is described by Xi ~ J\f{Pi\j, Xi\j) with J\f as the PDF . To simplify the notation, we 
will drop the hat symbol on the covariance matrix estimate and simply refer to it as Pi\j, 
as is common in most texts, as we never deal with true covariance, only with its estimate, 
making the estimate symbol obsolete. 

Specifically, the Kalman filter algorithm is as follows. We start with an initial guess 
of the state estimate and the covariance matrix («o|o, PQ\O)- Then, in every iteration k 
of the tracking process (usually every time we get a new measurement), we perform the 
prediction step to acquire the a priori estimate of the state vector and its covariance 
according to (2.22) and (2.23). 

Xk\k-i = PkXk-i\k-i + GkUk-i (2.22) 

Pk\k-i = FkPk-i\k-iFk + Hk (2.23) 

After that, we use the measurement Zk to perform the update step to acquire the a 
posteriori estimates. First, we calculate the Kalman gain K according to (2.24) and then 
perform the updates (2.25) and (2.26), where I is the identity matrix of the appropriate 
order. 

Hk = Pk\k-iHl (HkPk\k-iH^ + Rk) (2.24) 

&k\k = Xk\k-i + Hk [zk — Hkxk\k-i) (2.25) 

Pk\k = {I — HkHk) Pk\k-i (2.26) 

9 



2 T H E O R E T I C A L S U R V E Y 

After the update, we acquire the new estimates (xk\k, Pk\k), which can be used again 
in the next iteration k + 1. 

Generally, correctly setting both the process and the measurement noise covariances 
is the main problem when implementing K F in a practical implementation. The mea­
surement noise covariance R can usually be measured, estimated, guessed, or read from 
a sensor datasheet. Correctly setting the process noise covariance Q is another issue, and 
the question How to set the process noise covariance for a Kalman filter? is probably one 
of the most googled questions by students, engineers, and researchers implementing their 
first filters [5]. 

We can find several ad hoc methods to set Q in some special cases where the per­
fect Kalman conditions are met, for example in [5, 4], also several adaptive autotuning 
algorithms were proposed, for example in [6, 7, 8, 9, 10]. However, in most practical 
applications, the Q matrix is set experimentally by intuition. 

2.3 Simultaneous Estimation 

The purpose of simultaneous estimation is, in the course of the measurement process, 
striving to estimate both the states and the parameters of a model of a dynamic system 
at the same time. Assuming a model in the form of (2.16) or (2.17), we target the state 
vector Xk and the parameters bk, iteratively estimating them as best as possible based 
on the known input Uk and the measurement vector Zk- We also consider the structure of 
the model, the function / for continuous or the $ for discrete systems, to be completely 
known. 

Typically, a suitable variant of the Kalman filter is used for the estimation of the 
state vector, outputting the estimate of the state vector xk\k together with its covariance 
matrix Pk\k, as described in Section 2.2 or, in more detail, regarding the choice of the 
most suitable method for a specific task, in [11, 12]. 

There are many various methods for parameter estimation (PE), which would itera­
tively adjust the estimate based on new data points (online). In case of a system which 
is linear or linear in parameters, for example, the recursive least squares method (RLS) 
can be used (see [3] for further details on RLS and other P E methods). 

In the case where we need to estimate both the states and the parameters, there are 
two distinct approaches that can be used. These are joint estimation and dual estima­
tion, which we outline in further detail in the subsequent sections. Regardless of the 
chosen approach, all the applications utilise some of the Kalman filter variants in differ­
ent configurations. Common characteristics, typical for the K F , also follow from this. It 
is always necessary to correctly set the critical tuning parameters, especially the process 
noise covariance. 

2.3.1 Joint estimation 

The simplest way to implement simultaneous estimation is joint estimation. As mentioned 
in the Introduction, while using this approach, we consider the parameters of the dynamic 
system to be estimated as constant states. This means that we can create an extended 
state vector Xk = [x^, 6^] and reformulate the initial models (2.16) and (2.17) into 
(2.27) and (2.28), respectively. 
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xk = / (xk,uk) (2.27) 

where ccfe = [ab̂  , 0] 

ccfc = $(cc f c_i ,U f c _i) (2.28) 

Similarly to any other system, we can use the K F to estimate the state vector of the 
system (2.27) or (2.28). The state extension, in most cases, causes the system to be 
highly nonlinear, which forces us to use one of the nonlinear Kalman filter versions. The 
nonlinearity occurs even if the initial system was linear, as the parameters now considered 
states usually are in product with the original states, causing a significant nonlinearity. 

2.3.2 Dual estimation 

The second method, which is used more frequently, is dual estimation. In this variant, 
we do not alter the system model or state vector in any way, but implement two parallel 
Kalman filters. The first filter estimates the system states as usual. The second filter is 
based on the same system model as the first, but we swap what we consider states and 
parameters, i.e. the parameters are considered constant states, and the states are consid­
ered parameters that vary in time. In every iteration, both filters exchange information 
about their best estimates of the current states and parameters. Typically, two identical 
filters ( E K F or U K F ) are used. 

A significant advantage of the n is the relatively lower computational complexity, 
thanks to working with systems of lower order and better numerical stability, avoiding 
the issues of joint estimation. However, there may be a disadvantage in not considering 
correlations between the estimates of the states and the parameters, which may cause 
slower or biased convergence or even instability, as was suggested in [13]. 

2.4 Model approximation methods 

When we work with a dynamic system in the form of (2.6), there is a question of finding 
the structure of the function / based on the measured data. Generally, this task falls into 
the field of dynamic system identification [3, 14]. 

In a case where acquiring the function based on the knowledge of the system using 
one of the general analytical modelling methods is not possible, we may choose to use 
one of many general approximation methods to construct a fitting model of the function 
based on measured data, usually the inputs and outputs of the system. As we mentioned 
earlier, these methods can be divided into local and global approximation methods. In 
the context of machine learning, these groups are called lazy learning and eager learning 
[3], where the difference is described based on the willingness of the method to generalise 
new information. Generally, we can say that local (lazy) methods are better suited for 
applications where we require adaptiveness and constantly acquire new data across the 
entire reachable state space of the system, which is exactly the situation that we are 
dealing with. The other advantages of local approximation methods may be the higher 
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stability and the sometimes easier interpretation for humans. 
These are the reasons that we decided to mainly use local approximation methods, 

specifically local linear models as these bring other benefits which will become clearer in 
later chapters. 

Figure 2.1 demonstrates the approximation of a one-dimensional nonlinear function 
using local linear modes with Gaussian weight functions. 

Nonlinear function approximation by local linear models 

/ \ 
/ 
/ 

' — — Local mode ls 

1 1 1 Y Nonl inear funct ion 

Organization of receptive fields 

Figure 2.1: An example of approximation of a one-dimensional nonlinear function using local 
linear models with Gaussian weight functions using the RFWR algorithm. Taken from [15]. 

We will focus on the R F W R method with the further experiments. The original 
algorithm was first presented in [16] and then expanded for control applications and 
higher-dimensional problems in [17]. 

A significant advantage of the R F W R method is that, thanks to the gradient optimi­
sation of the receptive fields, it has the ability to approximate complex shapes using a 
relatively low number of local models. However, it has several tuning parameters which 
need to be set correctly, otherwise the approximation process may be unstable, imprecise, 
or on the contrary lead to overfitting. 

A detailed description of the algorithm can be found in [16, 18, 19]. 
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3 Formulation of the thesis goals 

The significance and need for the simultaneous estimation are outlined in Chapter 1 in 
relation to the typical control design process and related tasks. In Chapter 2, we described 
several existing variants of methods for the individual as well as the simultaneous esti­
mation of states and parameters of dynamic systems, and local linear models of dynamic 
systems. 

These methods are functional, however, none of them are universally applicable and 
there is no clear metric or methodology for the correct method choice. In practice, devel­
opers and scientists often choose the approach with which they have the most experience, 
regardless of the other methods. The existing methods also have significant disadvantages 
as described in Chapter 2, especially requiring intuition-based tuning of many applica­
tion specific parameters, the implementation is often very layman unfriendly and deals 
with the estimation of the states and parameters (in terms of parameter tuning criteria) 
separately, even though they are closely intertwined. 

Based on previous experiments and research, the goal of this thesis is to contribute 
to the solution of the dual estimation problem by developing a hybrid dual estimation 
method based on local approximation (RFWR for example) for the parameter estimation 
and the Kalman filter for the state estimation, instead of using the same algorithm for 
both estimation tasks. One of the main issues to deal with is the correct (preferably 
automated or adaptive) tuning of the Kalman filter's process noise covariance matrix so 
that the dual estimation is stable and performs well, at least for a specific, limited case 
of a typical mechatronic system, defined in Chapter 1. 

It is important to note that we are not primarily aimed at improving the overall 
estimation quality, but to simplify the implementation process while keeping the quality 
good enough. That being said, however, improving the quality of the estimation will be 
a secondary target. 

Specifically, we defined four goals for this research, which correlate with the goals set 
and approved at the State doctoral exam: 

Survey and research of the mutual relationship of typical state and parameter 
estimation methods for dynamic systems 

Chapter 2 describes the relationship of two common tasks that often occur while working 
with nonlinear dynamic systems - state estimation and parameter estimation. The first 
part of the thesis is to research, in detail, the most common methods and algorithms 
used for both these tasks with the goal of finding and exploring the possibilities of their 
mutual interconnection. We will mainly deal with methods from the Bayesian recursive 
filter category (variants of the Kalman filter) for the state estimation task and with local 
linear approximation methods (LWL, R F W R , L O L I M O T , LWPR, etc.) for the modelling 
and parameter estimation task. 

The interconnection of both tasks can be found, for example, in the imprecision or 
uncertainty of the estimation of parameters, which also translates into the states and 
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output of the system. This influences the process noise of the system model, which is 
one of the most important effects that affects the implementation of the Kalman filter or 
variants. Some parameter estimation methods (such as Recursive least squares (RLS)) 
directly deal with the parameter estimation imperfection model in the form of Gaussian 
noise uncertainty. Specifically, questions arise concerning what is the effect of the known 
parameter uncertainty covariance on the process noise covariance in case of a linear system 
or what other effects influence it. 

The output of this step will be an analysis of the signal and parameters occurring in 
both tasks and determining which of them may be used to better tie the said algorithms 
together. 

Modification of the R F W R method for its use on typical mechatronic systems 

The original algorithm described in [16] was successfully used in several practical appli­
cations, however, it almost exclusively involves offline data processing. As Chapter 2 
describes its potential in local linear approximation, the original algorithm has several 
disadvantages that limit its capabilities when applied in the context of the three tasks 
leading to the control design, especially on typical mechatronic systems. 

Namely, these are: 

• problematic stability while incrementally adapting to new data, e.g. when the data 
is asymmetrically localised with respect to the local model centre, 

• vulnerability to overly local data, 

• the validity function dimension is determined by the order of the system, 

• possible inconsistencies between neighbouring local models. 

The goal of this thesis is to modify the original R F W R algorithm in a way that it does 
not suffer from the above-mentioned issues and would be possible to tie the algorithm with 
a state estimation method resulting from the first goal. Specifically, these modifications 
will be made: 

• combining local and global parameters to lower the dimension of the local models 
and validity functions, 

• allowing separate dimension orders for the local models and the validity functions, 

• improving the adaptation convergence stability while applying the algorithm incre­
mentally, 

• reducing the user defined parameters, 

• allowing the interconnection if the algorithm with the state estimation methods 
according to the results of the first goal. 

The output of this goal will be a modified adaptive R F W R algorithm for modelling 
nonlinear dynamic systems in the form of a Matlab library. 
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Hybrid method for the simultaneous modelling and state estimation of non­
linear dynamic systems 

Following up on the previous goals, the third goal of this research is to further develop 
and implement the results from the first goal into the modified R F W R algorithm created 
in the second goal, resulting in a new hybrid method for both the modelling and state 
estimation of nonlinear dynamic systems. The main task is to achieve a reduction in the 
number of parameters a user needs to set and tune while simultaneously maintaining or 
even improving the overall performance of both the modelling and state estimation. 

Again, the work will result in a Matlab library. 

Case study on a real system 

The algorithms developed in the second and third goals will need to be tested, first in a 
simulation and on a real system afterwards, which might reveal some possible shortcom­
ings that may remain hidden when using simulated data (e.g., due to non-white noise or 
unexpected types of nonlinearity). Both algorithms will be tested throughout the devel­
opment process on a suitable system (e.g., a rotary inverse pendulum, a magnetic ball 
levitation system or an automotive actuator, such as a throttle valve or an exhaust gas 
recirculation (EGR) valve) to ensure that the results are applicable in the real world. 

These experiments will serve both as proof that the algorithms are working as intended 
and as an example implementation for a possible new user who intends to use the results 
in their own application or research. 
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4 Kaiman filter with uncertain param­
eters 

Based on our experience and previous research, as well as the current scientific literature 
[20, 5, 21, 22, 23, 24], it is safe to say that of the two covariance matrices Q and R rep­
resenting the process and measurement noise, respectively, the process noise is the bigger 
issue. The measurement noise value can usually be estimated, measured, or acquired from 
the equipment datasheet. For this reason, and for the fact that only the ratio between 
Q and R matters, we will consider R to be known (at least in its order) throughout the 
rest of this thesis and focus on the methods on how to deal with Q. 

Before we discuss how to set Q correctly, we need to address various sources of im­
perfection and uncertainty that might cause it in the first place. We were able to identify 
several categories of effects that play a dominant role in practical applications. 

The process noise can be caused by: 

• a stochastic or an immeasurable input to the system 

• a discretisation (or numerical integration) error 

• a prediction model imperfection 

— wrong, incomplete, or imprecise model structure 

— inaccurate or uncertain parameters 

The first item, a stochastic or an immeasurable input to the system, is the most studied 
case. We can find several algorithms for tuning the Q matrix, for example, in [5]. There 
is usually nothing that can be done about this issue to diminish its influence, as it is 
mostly part of the application. Examples are wind blowing, human behaviour, Brownian 
motion, or quantum effects. In our case, we can consider this issue negligible as we try to 
model or measure every effect influencing the system that we try to track. 

The effect of discretisation can be serious and is often disregarded, however, with most 
dynamic systems in mechatronics, it can be diminished by using higher order discretisation 
methods or shorter sampling periods. Again, in our case, this effect can be considered 
negligible if treated carefully. 

The last item on the list is the prediction model imperfection, which can be further 
divided into two categories. The first category covers situations where the model structure 
simply cannot represent the system it is supposed to model well enough. For example, 
when a linear model is applied on a nonlinear system or when special kinds of nonlinear-
ities, such as friction effects, are not considered in the model structure. This is an issue 
that is very hard to deal with, and setting the Q matrix correctly is left as an ad hoc 
implementation. However, in the case of our research where we decided to use local linear 
approximation methods, it is safe to assume that this effect becomes negligible once the 
approximation converges. 
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4 K A L M A N F I L T E R W I T H U N C E R T A I N P A R A M E T E R S 

That leaves us with the second category of the last item - inaccurate or uncertain 
model parameters. This issue is often regarded as the same problem as the imperfect 
model structure and receives very little scientific attention. We were able to locate only 
a single paper [25] dealing with a similar problem, however, especially in the case of local 
models, this issue becomes the dominant effect causing the process noise. We also believe 
that this issue is the dominant effect far more often than not, except when stochastic or 
immeasurable effects are present. Furthermore, as opposed to most of the other issues, 
we will show, in the following sections, that the parameter uncertainty can be dealt with 
and offers a unique way to set the Q matrix accordingly. 

In ideal conditions, with all the K F requirements met, Figure 4.1 shows the K F per­
formance based on different Q setting. 
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Figure 4.1: The Kalman filter performance measured as an MSE as a function of the Q and R 
values chosen along the axis of symmetry. The figure depicts the comparison of the performance 
metric to the true noise variance values and shows both the extreme and optimal cases of various 
Q and R settings. 
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4 K A L M A N F I L T E R W I T H U N C E R T A I N P A R A M E T E R S 

4.1 Reformulating K F for uncertain parameters 

In the previous section we summarised the effects causing the process noise and determined 
that the parameter uncertainty is the dominant effect that we should deal with. Similarly, 
as the Kalman filter algorithm deals with imprecisions in a stochastic way, we will consider 
the parameter uncertainties stochastic in the same Gaussian way. The reason for this 
assumption is that most parameter estimation algorithms use the Least squares method 
or one of its variants to determine the parameters, and this allows for the estimation of 
the uncertainty. We will expand on this idea in the following section. 

First, consider an autonomous one-dimensional discrete system (4.1). 

xk+i = bxk (4.1) 

where b is the only system parameter replacing the state matrix F, meaning, in this case, 
F = b. 

The Kalman filter assumes the prediction model in the form (4.2), where Wk is the 
process noise, but it can also be seen as the complement to the model to make it fit 
perfectly. 

xk+i = bxk + wk (4.2) 

Assume that we use an estimated parameter bk with an uncertainty represented by its 
variance Sk = var(bk), meaning that the true value of b ~ A/"(<Sfc, bk). We can reformulate 
the model (4.1) into (4.3) 

Xk+i = (bk + sk)xk (4.3) 

with Sk ~ Af(Sk, 0) being the parameter noise in the same sense as the process noise Wk, 
meaning it is the complement to the perfect value. With this in mind, we can further 
expand the model according to (4.4). 

Xk+i = (b + Sk)xk 

= bxk + skXk (4.4) 

= bxk + Wk 

where Wk = SkXk-
This model corresponds to the original K F model (4.2) with the additional fact that 

the process noise Wk is now a function of the state xk- This is an important and also 
expected fact when we consider the uncertainty of the parameters as the dominant source 
of the process noise. 

The process noise covariance is used in the regular Kalman filter algorithm to pre­
dict the value of the state estimate covariance according to (2.23), assuming Wk ~ 
N(Qk, 0) =>• Qk = var{wk). From this, we can expand the process noise covariance 

18 



4 K A L M A N F I L T E R W I T H U N C E R T A I N P A R A M E T E R S 

matrix Qk as (4.5). 

Qk = var(wk) 

var(skxk) 

Skx\ 

(4.5) 

Using this expansion, we can modify the state estimate prediction step (2.23) as (4.6). 
This specific expansion only works for one-dimensional systems, we will deal with its 
expansion to higher dimensions in a later section, after experimentally verifying the mod­
ification. 

The estimate covariance prediction step in the K F basically expands the covariance by 
an amount attributed to the process noise, thus keeping track with the state prediction 
step. First of all, (4.6) assumes that all the process noise comes from the parameter 
uncertainty and is covered by the term Skx2

k1 which depends on the actual state xk as 
opposed to the regular term Qk. 

The results show that with the correct setting, the modified state-dependent method 
for the K F estimate covariance prediction according to (4.6) performs comparably or even 
marginally better when set correctly as opposed to the original prediction method (2.23) 
in situations where the parameter uncertainty is the dominant cause of the process noise. 
The question that remains is how to set S correctly. 

4.2 Setting the process noise covariance 

In this section, we try to find the answer to the question of finding or estimating the 
optimal setting for the process noise covariance S when using the modified prediction 
method (4.6) introduced above. 

In Section 4.1 we made the assumption that the imprecise estimation or stochastic 
uncertainty of the model parameters can be modelled as white Gaussian noise variance 
S. Obviously, this is a simplification to a certain degree and this kind of assumption 
cannot always be met, however, there are several reasons to make it. First of all, it 
makes it possible to work with the uncertainty represented by a single number (or a 
matrix in a multidimensional case) and since it is the same assumption the Kalman filter 
framework makes (and guarantees optimality for), it makes it compatible with the rest of 
the K F algorithm. Second, often while estimating the model parameters, we also acquire 
a measure of how well the model fits the data, which may lead to an estimate of the 
correct setting for the S value. Especially in our case, when we chose to use the local 
linear approximation using LS and RLS for the parameter estimation, the model comes 
directly with the parameter uncertainty estimate. For the least squares method (LS), the 
uncertainty covariance estimate is known to be calculated according to (4.7), 

Pk\k-1 — FkPk_i\k_iF^ + Skx\ (4.6) 
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Figure 4.2: The simulation compares the effect of the original (Q) and modified (S) K F estimate 
covariance prediction step applied individually. Each point in the simulation represents an 
average of 25 simulations with the randomly picked parameter b with a 10% standard deviation. 
The results show that the modified version outperforms the original K F algorithm by about 35% 
in this specific scenario with uncertain parameters, with Sopumai = 2.75 • 10~3 and Qoptimai = 
3.73 • 10"3. 

varib) a' [x-xy (x-xy (4.7) 

where a2 is the estimate error variance, which is theoretically unknown, hence, it is 
replaced by the estimate residual variance e2 and XTX is the so-called cofactor matrix 
based on the data matrix X used for the LS estimate. See [26, 27, 28] for further details 
on the topic. Also, this parameter variance estimate corresponds to the P matrix in the 
RLS algorithm described. 

Furthermore, we introduced an empirical formula which proved to be a very good 
estimate of the value of S. This formula (4.8) is derived from the assumption that S 
must depend on the long-term variance w.r.t. zero of the signal we are tracking. 

S=1-BE[xr1 (4-

Starting from the same simulation as in Figure 4.2, we estimate the value of S using 
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4 K A L M A N F I L T E R W I T H U N C E R T A I N P A R A M E T E R S 

the empirical formula (4.8). We can see that the estimate is very close to the optimal 
value, at least in terms of the resulting filter performance. 

The experiment, shown in Figure 4.3 expands on the previous one by studying only 
the effect of the parameter noise s in more detail, providing not only the average values 
but also the 95% confidence intervals for both the optimal and the estimated S values. 

I I U-J I i i I I i l l I I I I I I I i l l 

i c r 4 i c r 3 i c r 2 l c r 1 io° io 1 io 2 

parameter noise s(-) 

Figure 4.3: A simulation comparing the estimate and the optimal value of S for the modified 
Kalman filter with varying parameter noise s. Each point represents the average value of 100 
independent simulations and its 95% confidence interval. The optimal value Sopumai was found 
using a gradient search optimisation method and R was set optimally in each simulation. 

This experiment demonstrates that the S value estimate slightly overshoots the true 
optimal values in the interval with a reasonable SNR. The overshoot, at 0-2 orders of 
magnitude should still provide good enough performance only slightly under-performing 
the optimal values while keeping on the more stable side, providing more confidence in 
the measurement relative to the process prediction. 
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5 R F W R modification 

In the previous chapter, we developed and experimentally verified a modified version of 
the Kalman filter suitable for hybrid dual estimation with local linear models. Before ap­
plying this modification at scale, in this chapter, we return to the original local modelling 
algorithm that we chose as our starting point, the Receptive Field Weighted Regression, 
to further develop and modify this method to be more suitable for use in the situations 
that we are dealing with in this thesis in the form of a user library. 

1 

The main functionality of the library is accessible to the user through just three 
methods. 

There is the learn function, which takes both x and y as input, which have the 
meaning of a single corresponding data sample (x, y) used to update the set of local 
models stored inside the object. The method has no output. This method implements 
the core functionality of the R F W R algorithm as described in [16], namely adding new and 
pruning obsolete local models, and updating the model parameters and their respective 
receptive fields. A l l the functions called inside the learn method are privately accessed 
methods of the rfdelib class. Figure 5.1 shows a simplified implementation of the learn 
method. 

f u n c t i o n l e a r n (h,x,y) 
W = h . g e t _ l m _ w e i g h t ( x , 0 , 0 ) ; % c a l c u l a t e w e i g h t f o r e v e r y lm 

h.update_lm (x, y,W); % update 1ms u s i n g RLS and d i s t a n c e m e t r i c 

h.add.lm(x,y,W); % add new lm & r f i f n e c e s s a r y 

h.prune_lm (W)% prune o b s o l e t e lm & r f i f n e c e s s a r y 
end 

Figure 5.1: Implementation of the basic RFWR functionality in the learn method. 

Lastly, there is the method get-estimate, which is used to calculate the actual y esti­
mate corresponding to the input query point x. The method also returns the size of the 
95% confidence interval corresponding to the estimate. 

It is actually quite simple to use the library as is shown in the pseudocode presented 
in Figure 5.2. 

For user convenience, there are also publicly accessible methods which generate data 
for various possible visualisations describing the set of local models and the current ap­
proximation result, especially in lower-dimensional cases. 

Compared to the original algorithm, the R F W R method was modified to be used in-

In this chapter, we assume the reader is familiar with the basic concepts of (object-oriented) programming 
and Matlab programming language syntax. 
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5 R F W R MODIFICATION 

LM = = r f d e l i b ( 2 ) ; % i n i t i a l i s e t h e LM o b j e c t f o r two i n p u t s 

f o r i = % each d a t a p o i n t i n d e x 
x ( : , i ) = g e t _ s y s t e m _ i n p u t ( ) ; % measure or l o a d i n p u t d a t a 
y ( i ) = g e t _ s y s t e m _ o u t p u t ( ) ; % measure or l o a d o u t p u t d a t a 
LM. l e a r n (x (:, i ) , y ( i ) ) 

end 

xq = = [0 0 ] ; % t h e query p o i n t - t h e p o i n t o f i n t e r e s t 
yq = = L M . g e t . e s t i m a t e ( x q ) ; % c a l c u l a t e o u t p u t e s t i m a t e 

Figure 5.2: Simple example of the library usage. 

crementally in an online setting. The RLS learning algorithm is incremental by default, 
however, the approach for optimisation of the distribution of the receptive fields was sup­
posed to be used on batch basis. To address this issue, we developed different optimisation 
strategies. 

That being said, the original R F W R algorithm can be implemented in an incremental 
way, however, it turned out to be very hard to set the parameters correctly as the incre­
mental model parameter estimation and receptive field distribution optimisation have low 
stability, especially with uneven data distribution in the input space. For example, with 
an incorrect parameter setting and a high data sampling rate, individual models would 
adjust to data points collected at one location much smaller than the local model validity 
region defined by the receptive field and would completely neglect past data gathered at 
different locations, sort of overfitting. 

To address this issue, we added a datapoint buffer for every local model which is 
used to update the model parameter every time a new datapoint is collected, while the 
datapoints in the buffer are replaced by new ones on a random basis. 

Another major modification which has the potential to greatly simplify the use of the 
library is the introduction of the option to set apart the dimensions of the local models 
and their respective receptive fields. In effect, this causes the local model to distribute 
receptive fields along only a subset of the input dimensions. This may be useful in 
situations where we expect the nonlinearity in the approximated function to be dependent 
only on some of the input quantities and be linear in others. This greatly improves 
the performance and stability, especially when there is only one nonlinear dimension. 
Typically, with mechanical systems, we expect the system to be linear in velocity while 
being nonlinear in position, also with multi-domain systems, typically only some of them 
contain nonlinearities. 

The third significant add-on is the generalisation of the model input vector. In the 
original R F W R algorithm, there is the assumption that the local models generate and 
estimate a parameter for each of the system inputs plus a bias parameter, which is im­
plemented through expanding the input vector by a unit constant. The library treats 
the data input vector and the model input vector as two separate things, linked by a 
private method called ImJnputshuffler. By default, this method acts the same way as 
the original algorithm - expands the input vector by the number one to generate the bias 
parameter, however, it allows for much more customisation. Generally, the local models 
used inside the R F W R framework do not have to be only linear combinations of input 
quantities, it can take the form of any function of the inputs that is linear in parameters. 
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5 R F W R MODIFICATION 

One separate modification to the original R F W R algorithm that we made is the ad­
dition of several different methods for optimising the distribution of the receptive fields. 

Naturally, the first method that the rfdelib class implements is the original algorithm 
described in [16]. This is the only part of the library taken from another source (the au­
thors' implementation published in [29]) and is only modified to fit the library framework. 

The second (Heuristic) method uses the analytical Jacobian matrix of the weight 
function to be able to correctly adjust the elements of the distance inducing matrix M, 
however, it uses a simple heuristic decision rule to choose if the region of validity of the 
given local model should be made larger, smaller, or stay the same with respect to the 
actual datapoint and the local model's long-term performance. This method was first 
introduced in [15] and later improved. 

The third (Random) update method that the library implements is based on the 
stochastic optimisation approach. It only works with diagonal distance inducing matrices 
which, on the one hand, do not allow for such precise receptive field optimisation and 
usually require a few more local models to cover the same input space, however, on the 
other hand, it requires much less computational power and brings more stability. In effect, 
the R F basis functions only scale along the R F input dimensions. 

The last (Numerical) update algorithm that the rfdelib class implements is a method 
using the numerical approximation of the criterion function J gradient. In this case, we 
work directly with the true criterion gradient instead of the simplified J ^ . 

Further, the library implement various minor improvements and modifications such 
as different initialisation methods for newly added RFs, using the weighted version of the 
RLS algorithm and a number of ease-of-use methods to get set save, load or plot all the 
necessary data describing the set of local models 

To test the behaviour of the rfdelib library, we use a second-order nonlinear system, 
which might represent a mechanical oscillator with a nonlinear spring. The system (5.1) 
contains a nonlinearity that spans only a part of the state space of the system, to force 
the algorithm to deal with nonlinearities on different scales. 

rax, = bx + k\x + k^x + k$x + k$e k& +u (5.1) 

Figure 5.3 shows the situation with 6000 datapoints. It is clear that the distribution of 
the receptive fields is optimised, meaning there are fewer, larger receptive fields in regions 
with less significant nonlinearities and the local models begin to cluster more around 
x ~ —0.6 to fit the highly nonlinear part of the function. Also, the confidence interval 
overall is much narrower. 
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5 R F W R MODIFICATION 
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Figure 5.3: rfdelib approximation of the nonlinear system dynamics with 6000 datapoints. 
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6 Dual estimation based on R F W R 
and Kaiman filter 

In this chapter, we describe the final extension of the rfdelib library introduced in the 
Chapter 5. The extension implements the ideas on the Kalman filter modification pre­
sented in Chapter 4. In terms of the various simultaneous estimation approaches described 
in Section 2.3, the combination of the R F W R algorithm for model and parameter estima­
tion and the modified K F for state estimation forms a hybrid dual estimation algorithm, 
hence, the abbreviation R F D E in rfdelib that stands for Receptive Field Dual Estimation. 

The rfdelib library implements the hybrid dual estimation algorithm separately for 
each existing local model in the R F W R structure. Figure 6.1 presents a diagram for the 
R F D E algorithm, showing the interconnection between the R F W R local model set and 
the modified K F calculated for each of the local models. 

Local model 1 

Local model 
receptive field 

Modified KF RLS 

Local model 2 

Local model 
receptive field 

Modified KF 

Local model n 

RLS 

Local model 
receptive field 

Modified KF RLS 

Output 
estimation 

Figure 6.1: The diagram of the RFDE algorithm showing the interconnection between the 
RFWR local model set and the modified K F calculated for each of the local models, x 
represents the system state, w represents the actual local model weight, b represents the 
local model parameters and B represents the model parameter covariance. 
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6 D U A L ESTIMATION B A S E D ON R F W R A N D K A L M A N F I L T E R 

To test the rfde library under real conditions, we performed a case study of hybrid 
simultaneous estimation on a laboratory model of a magnetic manipulator, the same one 
that was used in [30] and initially presented in [31]. 

The magnetic manipulator, shown in Figure 6.2, consists of a row of four coils and an 
iron ball. The position of the ball, measured using a laser distance sensor can be controlled 
by varying currents in the coils, which are driven by a specialised power electronic unit set 
through Matlab commands. The communication between the Matlab environment and 
the power control unit is carried out using the Humusoft MF634 PCIe 10 card [32]. 

Figure 6.2: 3D render of the magnetic manipulator with a row of coils and an iron ball in a 
linear pathway. Taken from [31] and [30], respectively. 

When studying the dynamics of the system, it is important to create a model for a 
single coil, as the effect of multiple coils can be viewed as additive ([31, 30]), especially 
when the system is intended to be controlled in such a way that only a single coil is active 
at any time. For this reason, we focus on the simultaneous estimation of a system with 
the iron ball and a singe coil. This system can generally be described using an explicit 
state model (6.1). 

where x is the position of the ball and u is the system input corresponding to the coil 
current. 

First, we set the R F D E algorithm so that only the position of the ball is consid­
ered when plating the receptive fields of the local models, making the distribution one-
dimensional. The result is shown in Figure 6.3 after learning with 7400 datapoints. We 
can see that the algorithm was able to adapt and to find the shape of the underlying 
nonlinear function similar, however, it contains a great deal of uncertainty and the shape 
of the function is not precise. 
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Figure 6.3: The model shape learned by the RFDE algorithm with one-dimensional RF distri­
bution along the x dimension after 7400 datapoints. The figure shows the dynamic function 
shape for u = 0.5 A and also the distribution of the RFs. 

In the second experiment, we set the R F D E algorithm so that both the ball's position 
and the velocity are considered when placing the receptive fields. The result is shown in 
Figure 6.4. The figure shows the shape of the dynamics of the system in the R F space 
for u = 0.5, as well as the size of the model confidence interval, after 17400 datapoints. 
Again, we can see that the characteristic nonlinear shape is present along the x axis, 
however, the coil effects are lower in higher velocities, representing the effects of the eddy 
currents. 

System approximation Approximation confidence 

Figure 6.4: The model shape learned by the RFDE algorithm with two-dimensional RF dis­
tribution along the x and x dimensions after 17400 datapoints. The figure shows the dynamic 
function shape for u = 0.5 A and the corresponding size of the confidence interval. 
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7 Conclusion 

The research described in this thesis was motivated by engineering experience and previous 
research, published in [33], concerning all three basic tasks described in the Introduction, 
that is, the modelling, state estimation, and control algorithm design for nonlinear dy­
namic systems. It turns out that, individually, these tasks are theoretically mostly solved 
and that the used methods work. However, their practical implementation raises many 
questions for which there are no clear answers. Also, while solving these tasks separately, 
we often arrive at suboptimal solutions due to the criteria used for the separate model 
parameter estimation, and the observer or controller tuning is defined as being unrelated 
even though they all contribute to the overall control quality. 

The four main goals for this dissertation were defined in the presented thesis and 
approved at the State Doctoral Exam: 

1. Research of the mutual relationships in typical algorithms used for estimating the 
states and parameters of dynamic system models. 

2. Modification of the R F W R method for its use with typical mechatronic systems. 

3. Developping a Hybrid method for the simultaneous modelling and state estimation 
of nonlinear dynamic systems. 

4. Implementation and testing of the resulting algorithms in a real system. 

Within the first goal, we mainly studied the uncertainty of dynamic system parameters 
estimated on the basis of noisy data. This uncertainty is one of the sources of estimation 
errors in state estimation algorithms. We identified it as being dominant in situations 
where the structure (ordinary differential equation) of the model can be reliably deter­
mined, we do not work with principally stochastic systems, and the discretisation error 
is also not significant due to the sampling period being orders of magnitude shorter than 
the natural time constants of the system in question. Chapter 4 further describes the use 
of our discoveries for the reformulation of the classical Kalman filter algorithm for this 
very specific situation. We were able to achieve recognisable improvement in the state 
estimation accuracy, but most importantly, we were able to find an empirical approach 
for determining the tuning parameter most critical for the Kalman filter's practical im­
plementation - the process noise covariance. Thanks to this development, we were able 
to create a parameterless link between the modified Kalman filter and a method for the 
parameter estimation of a local linear model of an otherwise nonlinear system. This link 
forms a hybrid dual estimation approach. We were also able to demonstrate its func­
tionality and improved state and parameter estimation accuracy compared to that of a 
typical approach, thus fulfilling the first goal of the thesis. 

Chapter 5 deals with the modification of the Receptive Field Weighted Regression 
(RFWR) originally described in [16, 18] and the development of a user library for M A T -
L A B . We have rewritten the method into an incremental version to be used online without 
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7 CONCLUSION 

the need for batch data processing. This modification was motivated by the inherent po­
tential of incremental methods to work as adaptive approximators in situations in which 
the system that we observe can change its behaviour. For example, due to the wear and 
tear of its parts, changing external conditions, etc. 

Additionally, we expanded the modified R F W R algorithm by several useful elements. 
Most importantly, allowing for a separate number of dimensions in the local models and 
the corresponding receptive fields. This is useful in situations where the nonlinearity of the 
system is exclusively or dominantly dependent on a subset of the system states and when 
other system dynamics are presumed to be linear. Other modifications included minor 
adjustments, such as four different variants of the receptive field optimisation algorithm, 
an improved computational performance, a learning data buffer for each local model, 
calculation of the resulting approximation confidence interval, etc. Thus, the second goal 
can also be considered achieved. 

Furthermore, in Chapter 6, we describe the Hybrid Method for the Simultaneous Mod­
elling and State Estimation of Nonlinear Dynamic Systems built upon the results of pre­
vious research goals. This method, in the form of dual estimation, combines the R F W R 
and K F modified for the situation with uncertain parameters. We tested the hybrid dual 
estimation approach through several simulation experiments and finally on data measured 
in a real system of a magnetic manipulator, achieving the third and fourth research goal 
of the thesis. 

7.1 Thesis achievements 

• Categorisation of error sources for the Kalman filter (KF) process model 
In Chapter 4, we described and categorised the possible sources of errors that influ­
ence the K F process model, which may arise in common engineering applications. 
This methodology can be helpful in practical K F implementations and especially in 
tuning the values of the process noise covariance. 

• Modification of the K F for situations with inaccurate and uncertain pro­
cess model parameters 
Based on previous research, published in [34], we modified a part of the Kalman filter 
algorithm, specifically the state vector covariance prediction step, to better suit the 
situation where the dominant source of the error is inaccurate or contains uncertain 
process model parameters, especially parameters estimated based on noisy data. In 
our experience, this situation is far more common than is assumed, although very 
little scientific attention is paid to it. The results show that this modified K F gives 
better results in conditions with the parameter uncertainty being the dominant 
source of the process noise. 

• Empirical approach for setting the process noise covariance 
We found and experimentally verified an empiric formula to find the value of the 
process noise covariance for the Kalman filter in this very specific situation, greatly 
simplifying the practical implementations. It turned out that it is mostly important 
to set the correct order of the process noise covariance values and this empirical 
formula proved to give an a reasonably accurate and robust estimate. 
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7 CONCLUSION 

• Linking the K F and RLS algorithms for the dual estimation over a local 
linear model 
We further modified the Kalman filter algorithm so that it can be used with local 
linear models that are linked to a parameter estimation method, for example, RLS. 
Mainly, this means implementing the K F in a way that it can work in a shifted state 
and input space corresponding to the centre of the local model validity function and 
using the validity function to weight the RLS estimate as well as the K F prediction. 

• Modification of the R F W R algorithm 
We modified the R F W R function approximation method, which is based on the 
principle of local linear models described in [16], so that it is better suited to be 
used with common low-order mechatronic systems, which typically have a signifi­
cant nonlinearity dependence on a subset of states, and the state space is formed 
by sequences of quantities in integral-derivative relationships. Some of these modi­
fications were published in [30]. We also developed a user library for the M A T L A B 
language. 

• Hybrid dual estimation 
By combining the modified R F W R method and the modified Kalman filter, we 
developed a Hybrid Method for the Simultaneous Modelling and State Estimation 
of Nonlinear Dynamic Systems, which uses a separate Kalman filter for each lo­
cal model whose parameters are estimated. We validated the functionality of this 
method both in simulation and experimentally, and further developed a user library 
for the M A T L A B language, which allows for its simple and fast practical implemen­
tation. 
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Abstract 

This Doctoral thesis deals with the development of a new hybrid method for the dual 
estimation of states and parameters of nonlinear dynamic systems based on the idea of 
local linear models, which uses the estimation of the uncertainty of the model parameters 
to automatically adjust the parameters of the Kalman filter (KF), thus greatly simplifying 
its deployment and adjustment in practical applications. In the first part, the dissertation 
summarises the current state of knowledge in the field of dynamic systems, simultaneous 
estimation, K F and modelling of nonlinear dynamic systems. Then, in two separate chap­
ters, it discusses the modification of K F for situations where inaccurate model parameters 
are the dominant influence causing process noise, and the modification of the Receptive 
field weighted regression (RFWR) method so that it can be used for dual estimation. 
Finally, the paper describes the developed hybrid method composed of modified R F W R 
and K F algorithms called Receptive field dual estimation - (RFDE) and demonstrates its 
performance on simulation and real data. 

Abstrakt 

Tato Disertační práce se zabývá vývojem nové hybridní metody pro současné odha- dování 
stavů a parametrů nelineárních dynamických systémů, založené na myšlence lokálních 
lineárních modelů, která využívá odhad nejistoty parametrů modelu pro automatické 
nastavení některých parametrů Kalmanova filtru (KF), čímž se výrazně zjednodušuje její 
nasazení a nastavení v praktických aplikacích. V první části se disertační práce věnuje 
shrnutí aktuálního stavu poznání v oblasti dynamických systémů, simultánní estimace, 
K F a modelování nelineárních dynamických systémů. Následně se ve dvou samostatných 
kapitolách věnuje modifikaci K F pro situace, kde dominantním vlivem způsobujícím pro­
cesní šum jsou nepřesné parametry modelu, a dále modifikaci metody Receptive field 
weighted regression (RFWR) tak, aby mohla být použita pro duální estimaci. Nakonec 
práce popisuje vyvinutou hybridní metodu složenou z modifikovaných algoritmů R F W R 
a K F nazvanou Receptive field dual estimation - (RFDE) a demonstruje její funkčnost na 
simulačních i reálných datech. 


