
Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Technologies

raj

Bachelor Thesis

Social Network: The Affect Of a Social Network Specialized For
University.

Anar MAMMADHASANOV

© 2024 CZU Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

BACHELOR THESIS ASSIGNMENT
Anar Mammadhasanov

Informatics

Thesis title

Social Network: The Affect Of a Social Network Specialized For University.

Objectives of thesis
The aim of this thesis is to create a social media platform within the university committee using the React
framework.lt is aimed to eliminate the lack of social communication that arose during the pandemic
period, and at the same time, the university will facilitate internal information exchange data .As a result
of the survey conducted among students at our University, it is found that the different activities that the
university has registered for students are not very effective and important by mail.For this reason, the
project I am developing offers the points I am aiming for and the problems it will solve:

1.It is aimed that new students will be more adapted to the university environment.
2.It is aimed that university students will find themselves more useful as a part of the university.
3The communication between the student and the teacher at the university is more convenient and on
a comfortable platform for both parties.
4.Informing students about social events and important projects at the University in a more interactive
and attractive way
5.It is aimed to bring together administrative staff, teachers and students on the same platform and
deconstruct the communication problems that normally exist in the network.

Methodology

The methodology of the thesis, the desired methodology will be discussed in 3 sections.The first part will
be made on the User Interface and will be made in the standard non-JSX format using HTML and module
CSS inside the Javascript code without reaching the business logic layer, and the first part will be completed
in this way.

The second part will be created as a Connect installation.

The Connect abundance is intended to play a bridge role between the BLL and the Ul, as well as ensure
that users cannot access the BLL part of the Ul and ensure security.

Official document * Czech University of Life Sciences Prague * Kamycka 129, 165 00 Praha - Suchdol

http://framework.lt

The final part of the thesis will consist of BLL.The BLL is intended to be installed via Redux.Reducers will
be created for all sections on the social media platform that is planned to be built, and we plan to create
reducers from inicial state, functions and their action creators, and finally, the reducers will be collected in
redux and created in the store.

Official document * Czech University of Life Sciences Prague * Kamycka 129, 165 00 Praha - Suchdol

The proposed extent of the thesis
30-40

Keywords
React,Redux, Flux Conception,Social Network

Recommended information sources
Josef Pavlíček, Cookbook of interaction design for HCI and ID, Online material:

https://docs. google. com/presentation/d/lnbLjgEX5mS6kl_cRx6CeKuhd-fzz-
kyYnJ03vMLkH4/edit?usp=sharing

Expected date of thesis defence
2021/22 SS - FEM

The Bachelor Thesis Supervisor
Ing. Josef Pavlíček, Ph.D.

Supervising department
Department of Information Engineering

Electronic approval: 7. 2. 2022

Ing. Martin Pelikan, Ph.D.

Head of department

Electronic approval: 21. 2. 2022

doc. Ing. Tomáš Šubrt, Ph.D.

Dean

Prague on 12. 03. 2024

Official document * Czech University of Life Sciences Prague * Kamycka 129, 165 00 Praha - Suchdol

https://docs

Declaration

I declare that I have worked on my bachelor thesis titled "Social Network: The Affect Of

a Social Network Specialized For University." by myself and I have used only the sources

mentioned at the end of the thesis. As the author of the bachelor thesis, I declare that the

thesis does not break any copyrights.

In Prague on 10.03.2024

Acknowledgement

Hereby I would like to thank all those who supported me in preparing my bachelor's thesis.

I would especially like to thank my supervisor doc. Ing. Josef Pavlicek, Ph.D for his

professional guidance, assistance, and valuable comments throughout this work. Last but

not least, I would like to thank to my family and collegues from different development

teams for their material and spiritual support during my bachelor studies.

Sociální síť: Vliv sociálního inženýrství na kybernetické útoky -

rizika, zranitelnosti a protiopatření

Abstrakt

Tato bakalářská práce se zabývá studiem a tvorbou specializované sociální sítě, která by

dokázala řešit všechny unikátní výzvy, kterým čelí univerzity během pandemie. Název této

práce je "Sociální síť: Efekt specializované sociální sítě pro univerzity", a bude se

podrobně věnovat zkušenostem souvisejícím s administrativou, vzděláváním a sociálními

problémy, které byly zesíleny náhlým přesunem výuky online. Pandemie změnila způsob,

jakým studenti učí a komunikují mezi sebou, stejně jako s učiteli a administrativními

orgány. Proto by mělo existovat digitální řešení, které by mohlo překlenout komunikační

mezery a zachovat to, co znamená univerzitní život.

Autor tohoto projektu chce vytvořit digitální centrum pro studenty, učitele, administrativní

personál a všechny ostatní zapojené do univerzitního života. Bude obsahovat funkce jako

sítění (ve stylu sociálních médií), aktualizace událostí, sdílení akademických zdrojů, stejně

jako příležitosti pro stáže nebo práci - vše speciálně určené pro univerzity. Tato síť si klade

za cíl znovu vytvořit pocit, že jste na skutečné univerzitě, ale z pohodlí vašeho domova.

Pokud jde o softwarové návrhové vzory, tato práce využívá React pro uživatelské rozhraní,

protože je to v současnosti jedno z nej populárnějších frameworků, známé svou intuitivností

a jednoduchostí. Redux je použit pro správu vrstvy obchodní logiky, zatímco Axios

pokrývá úkoly komunikace se serverem. Všechny tyto technologie dohromady vytvářejí

platformu, která bude fungovat rychle, aniž by někoho nechala v rozpacích.

Tento výzkum by mohl dát vzniknout něčemu opravdu užitečnému v dobách, jako jsou

tyto, kdy vzdělávací instituce si nemohou dovolit další uzavření kvůli nepředvídaným

okolnostem jako je COVID-19. Mícháním technické inovace s porozuměním tomu, co lidé

potřebují z uživatelské perspektivy, by tento komplexní seznam mohl pomoci ještě více

zlepšit vzdělávací zapojení a komunikaci, než jak tomu bylo před rokem 2020.

Klíčová slova: COVID-19, vzdělávací technologie, sociální síť, univerzitní komunikace,

React, Redux, Axios, online vzdělávání, reakce na pandemii, zapojení studentů.

5

Social Network: The Affect Of a Social Network Specialized For

University

Abstract

This bachelor's thesis is about the studying and creation of a specialized social network that

would be able to handle all the unique challenges universities are facing during the

pandemic. The title of this thesis is "Social Network: The Effect Of A Social Network

Specialized For University", it will dive deep into the experiences when it comes to

administration, education, and social issues that have been amplified by moving classes

online so suddenly. The pandemic has changed how students learn, and communicate with

each other, as well as with teachers and administrative bodies. That's why there should be

a digital solution that could bridge gaps in communication and preserve what university

life means.

The author of this project wants to make a digital hub for students, teachers, administration

staff, and everyone else involved in university life. It will have features like networking

(social media style), event updates, academic resource sharing as well as opportunities for

internships or jobs — all made especially for universities. This network aims to recreate

the feeling of being at an actual university on your home computer.

In terms of software design patterns, this thesis uses React for user interface because it's

one of the most popular frameworks at the moment known for its intuitiveness and

simplicity. Redux is used to handle business logic layer management whilst Axios covers

server communication tasks. A l l those technologies combined create a platform that will

work fast without leaving anyone scratching their heads.

This research might give birth to something truly useful in times like these where

educational institutions can't afford another lockdown due to unforeseen circumstances

like COVID-19. By blending technical innovation with an understanding of what people

need from a user perspective, this comprehensive list could help enhance educational

engagement and communication even more than what we've had before 2020.

Keywords: COVID-19, educational technology, social network, university communication,

React, Redux, Axios, online learning, pandemic response, student engagement

Table of content

1. Introduction 11

2 Objectives and Methodology 12
2.1 Objectives 12
2.2 Methodology 12

3 Literature Review 14
3.1 Introduction to the literature review 14
3.2 Software Design Patterns 16

3.2.1 Model-View-Controller (MVC) 17
3.2.2 Redux Architecture 19

3.3 Data Flow in Application Design 21
3.3.1 Bidirectional Data Flow in M V C 21
3.3.2 Unidirectional Data Flow in Redux 22

3.4 Redux vs. M V C : A Comprehensive Analysis 23
3.4.1 Enhanced State Management and Predictability 23

3.4.2 Scalability and Maintainability 23
3.4.3 Debugging and Testing Efficiency 24
3.4.4 Integration with Modern Development Practices 24
3.4.5 Complex User Interface and State Management 25
3.4.6 Adaptability and Performance Optimization 25
3.4.7 Redux vs. M V C : Elevating State Management in Web Development 26

3.5 Comparative Analysis of React, Angular, and Vue.js Frameworks 27
3.5.1 React Framework 28
3.5.2 Angular Framework 30
3.5.3 Vue.js Framework 32
3.5.4 Conclusion 34

4 Practical Part 35
4.1 Design and Architecture 35
4.2 Technology Stack 38

4.2.1 Development Technologies 39
4.2.2 APIs & Middleware 40
4.2.3 Deployment and Version Control: 40
4.2.4 Development and Build Tools 41

4.3 Development Process 41
4.3.1 Planning and Analysis 41
4.3.2 Design 41
4.3.3 Development 42

4.3.4 Testing 42
4.3.5 Deployment 42
4.3.6 Post-Deployment and Maintenance 43

4.4 Implementation Details 43
4.4.1 User Registration 43
4.4.2 Profile Management 43
4.4.3 Communication Tools 44
4.4.4 Content Sharing 44
4.4.5 Security and Privacy 44
4.4.6 Performance and Scalability 45
4.4.7 User Interface and Experience 45

4.5 Scalability and Performance 45
4.5.1 User Data Security and Privacy 45
4.5.2 User Engagement and Retention 46
4.5.3 Cross-platform Compatibility 46
4.5.4 Real-time Communication 46
4.5.5 C ontent Moderati on 46
4.5.6 Integration with University Systems 46

4.6 Testing and Feedback 47
4.6.1 Unit Testing 47
4.6.2 Integration Testing 47
4.6.3 System Testing 47
4.6.4 User Acceptance Testing (UAT) 47
4.6.5 Performance Testing 48
4.6.6 Security Testing 48
4.6.7 Usability Testing 48
4.6.8 Feedback Collection 48

5 Results and Discussion 49
5.1 Improvement of the Platform 49

5.1.1 Mobile App 49
5.1.2 Platform Usability 49

5.2 Helping Community and Sharing 49
5.2.1 Making It Easier to Share and Create Content 49
5.2.2 Getting Feedback and Helping Each Other 49

5.3 Keeping the Platform Good 50
5.3.1 Always Watching and Updating 50
5.3.2 Working with the University 50

6 Conclusion 51

7. References 53

8 List of figures and abbreviations
8.1 Figures
8.2 List of abbreviations

1. Introduction

Information technology has penetrated into the field of education. Distance learning

using Internet technologies is a form of education, along with full-time and part-time. But

for the first time, educational institutions around the World are faced with the problem of a

"pandemic". The root of the problem is divided into two parts. The first part is an

educational institution that was not planned to transfer all studies for everyone online. A l l

teachers had to drastically change the entire methodology of study and the principle of

work. In addition, the system of administrative work was not ready for such changes. The

other side is the students. Students who initially chose online study did not change

anything for them. But the students who go to university, for them have also changed from

the roots. For them, not only the principle of learning has changed, but also the relationship

with teachers. The other side of the problem is the social side, which affects as well as the

change in the principle of study. According to my own research, students who are

transferred to distant from face-to-face study also move away from study, as the

atmosphere at the university creates the feeling that students feel they are part of the

university.The purpose of this thesis is to explore this new problematic phenomenon and

find the right solution for students in advancing their studies.

The new generation will require new solutions. The basis of this thesis is the creation of a

new social network, which will combine maintaining communication between students-

students, students-teachers, students-administration.

In this thesis, we made an attempt to understand what we need to know and be able

to create a social network for the university, what software is a tool for creating a social

network and how to use it effectively. We will build our project using the React framework.

In addition, we will develop business logic layer (BLL) using Redux and using a real

server and by using Axios (connection instrument), we will develop a data access layer

(DAL)

As a result, we get an application in which all the nodes of the problem are

connected. This application contains part of the modern solution to this problem, and by

developing the server part we can fully solve many communication problems both during

and after the pandemic.

11

2 Objectives and Methodology

2.1 Objectives

The aim of this thesis is to create a social media platform within the university

committee using the React framework.lt is aimed to eliminate the lack of social

communication that arose during the pandemic period, and at the same time, the university

will facilitate internal information exchange data. As a result of the survey conducted

among students at our University, it is found that the different activities that the university

has registered for students are not very effective and important by mail.For this reason, the

project I am developing offers the points I am aiming for and the problems it will solve:

Li t is aimed that new students will be more adapted to the university environment.

2.It is aimed that university students will find themselves more useful as a part of the

university.

3.The communication between the student and the teacher at the university is more

convenient and on a comfortable platform for both parties.

4.Informing students about social events and important projects at the University in a more

interactive and attractive way

5.It is aimed to bring together administrative staff, teachers and students on the same

platform and deconstruct the communication problems that normally exist in the network.

2.2 Methodology

The methodology of the thesis, the desired methodology will be discussed in 3

sections.The first part will be made on the User Interface and will be made in the standard

non-JSX format using H T M L and module CSS inside the Javascript code without reaching

the business logic layer, and the first part will be completed in this way.

The second part will be created as a Connect installation.

The Connect abundance is intended to play a bridge role between the B L L and the UI, as

well as ensure that users cannot access the B L L part of the UI and ensure security.

12

http://framework.lt

The final part of the thesis will consist of BLL.The B L L is intended to be installed via

Redux.Reducers will be created for all sections on the social media platform that is

planned to be built, and we plan to create reducers from iniciál state, functions and their

action creators, and finally, the reducers will be collected in redux and created in the store.

13

3 Literature Review

3.1 Introduction to the literature review

The rapid infusion of information technology into education, accelerated by the

COVID-19 pandemic's push for e-learning has opened up new boundaries in educational

technology.This review tackles the role of software design patterns in improving digital

learning environments with a focus on university-centered social network development. At

its core is the Model-View-Controller (MVC) framework. M V C is a fundamental

design pattern that divides application development into three interconnecting sections:

Model for data management, View for user interface, and Controller for user input and

system output [1].Despite its usefulness over time, complex web applications have exposed

the limitations of M V C in terms of scalability. This has prompted the hunt for more lively

patterns (Figure 1)

The Flux architecture has been posited as a solution to these limitations, proposing

a unidirectional data flow and a more centralized control of application state, which has

proven effective for large-scale applications like those utilized by Facebook [2] (Figure 2).

This review will investigate how Flux, and by extension Redux (Figure 3), offer

predictable state management for JavaScript applications, a vital feature for responsive

web applications [3][4],

— *

Figure 1. Model-View-Controller State and Message Sending

14

User input

Action

Dispatched

Store

Reducer

State

User Interface

Figure 2. The Flux architecture, unidirectional data flow

ReactJS has influenced the development of user interfaces a lot through its

component-based approach. It offers a declarative way to program which has made it so

that developers can make dynamic and responsive web pages much easier [3]. With the

help of Redux and Axios, ReactJS makes up the main structure for modern-day web

applications that need real-time data handling and seamless user experience[4][5].

By methodically analyzing the literature, this review will evaluate just how much

potential these technologies have when it comes to aiding in the development of a social

network platform. A platform that not only caters to university communities but also helps

contribute to enriching our educational experience in this day and age where we rely

heavily on technology for education.

15

3.2 Software Design Patterns

Software design patterns are like the blueprints builders use when they're

constructing a house. They are not the actual walls or roof, but the plans that guide how

these parts come together to make a building that stands strong and serves its purpose well.

Donald Le Vie Jr [1] points out that these patterns help people who make software explain

their complex ideas more clearly, much like a well-drawn map can help travelers find their

way.

Greg Perry [2] takes this idea to beginners in programming, showing them how

these blueprints can help create software that's not just a jumble of code, but a well-

organized machine that's easy to understand and fix when things go wrong.

Researchers like Nazar, Aleti, and Zheng [3] take it a step further by developing

ways to automatically spot these patterns in software, ensuring that the right blueprint is

used at the right time, which is crucial for a software's speed and ability to grow without

breaking.

Christopher Alexander [4], who first talked about the idea of patterns in building

design, showed how the same good design ideas could work in different places and for

different purposes, and that's a concept that's very useful in software, too.

Krasner and Pope [5] focused on a specific design pattern called M V C — short for

Model View-Controller. Imagine you're watching a play: the Model is the story happening

behind the scenes, the View is the stage where you see the story unfold, and the Controller

is like the director, making sure everything happens when and how it's supposed to.

These patterns are tools that software developers use every day. They help them

make apps and programs in a way that other developers can easily understand and work on

too. By reading the work of smart people like Depew [6] on how social media fits into

learning, Boduch [7] on the nuts and bolts of Flux architecture, and Abel [8] on the nitty-

gritty of making apps with React, developers can see these blueprints in action.

In the bustling world of web development, books and articles [9-18] are the trusty

guides that show developers how to use patterns to build websites and apps that are easy to

use, quick to load, and simple to maintain. Whether it's the basics of H T M L from

TutorialsPoint [14], the ins and outs of JavaScript from Zakas [15], or the cutting-edge

techniques of React and Redux from Chinnathambi [17] and Gelman and Dinkevich [18],

there's a wealth of knowledge out there.

16

3.2.1 Model-View-Controller (MVC)

The Model-View-Controller (MVC) framework is a software design pattern and

one of the most basic paradigms for organizing and structuring web applications. The

application is divided into three interconnected parts, where each part does different things

to make it work in harmony with other parts while being independent. One of these parts is

responsible for gathering data from the user while another one's job is to show data that

was collected to the user.

- Model: This part represents the core data and business logic of the application, making it

possible to store, retrieve, and process data efficiently. It has all the rules and operations

related to an application's data responsibilities.

- View: With a name that just makes sense intuitively, this part creates what users see on

their screens as they interact with an app or website, etc. It presents features from the

model in a way that's easy for people to understand and use.

- Controller: The third part sits between the first two acting like a bridge that connects

them, making it possible to do all the tasks necessary with ease and flow from start to end

with no interruptions. This part handles requests from users who want something specific

done within your program, manipulates data using model functions, and then selects a view

based on what needs to be shown back to users among many other things. It is responsible

for directing traffic effectively so you can get whatever you need to be done faster.

17

Query the Mode l State

Notify View of Change in
Model Slate

Invoke Methods in the
Mode l ' s Publ ic API

Select View

1 n

User Actions/Commands

Control ler

Method Invocation

Events

Figure 4. Model-View-Controller (MVC)

Advantages of MVC

- Dividing and conquering: This approach splits the application into a few clearly defined

parts, which makes it easier to manage and keeps code development organized.

- Easy to grow: The modular design lets you scale and develop any part of an app without

much hassle.

- Take two, they're small: Often components can be reused for different parts of the same

app, which speeds things up considerably.

Challenges of MVC
- Building a labyrinth: As apps get larger, the number of interdependencies between

various components in M V C grows alarmingly fast, so keeping those in check can get

challenging.

- Slow speed ahead: When views and models are connected, sometimes that may lead to

performance issues, particularly when it comes to handling data-intensive applications.

- Scaling mountains: Let's say you're building complex systems; managing the data flow

between different parts can quickly become a nightmare, and scaling only makes things

more complicated.

18

Application ofMVC

Frameworks like Ruby on Rails, ASP.NET M V C , and Spring M V C are widely

used in web development and make the best examples of M V C design patterns. This model

is especially useful when there is a need for different data presentations or where the same

data-set is accessed from different presentation templates.

3.2.2 Redux Architecture

Redux is an open-source JavaScript library used to manage application state mostly

used in conjunction with React or Angular libraries to build user interfaces (Figure 5). It

serves as a predictable state container that provides consistent behavior across client,

server, and native environments so that applications can be easily tested.

user interaction action
Action Creator

Action Creator
action

(previous sEate, action) => next state

Reducers Reducers

Figure 5. Redux structure

- Actions: Actions are payloads of information that send data from the application to the

Redux store. They are sent using store.dispatch() and they are plain JavaScript objects

having a type property indicating what kind of action is being performed.

- Reducers: Reducers specify how the application's state changes in response to actions

sent to the store. They are pure functions that take the previous state and an action and

return the next state. They are called reducers because they're the type of functions you

would pass to Array.prototype.reduce(reducer, initialValue)

- Store: Actions and reducers are brought together by the store, which stores the

application state, exposes the state through getState(), updates the state with

19

http://ASP.NET

dispatch(action), and registers listeners via subscribe(listener). It also handles the

unregistering of listeners via the function returned by subscribe(listener).

- View: The view in Redux is usually a React component that responds to state changes. It

calls on the required state from the Redux store and then renders itself so it can show the

new data.

Advantages of Redux

- Predictable State Management: Actions in Redux can only change the present

application's state.

- Maintainability: By centralizing the application's state, there is coherence when

developing code thereby making it easy to manage.

- Developer Tools: In terms of developer debugging and checking how states change over

time, Redux presents robust tools.

Challenges of Redux

- Complexity: For small projects, Redux can introduce unnecessary complexity and

overhead.

- Verbosity: There could be cases where much boilerplate code is written thus appearing

to be redundant, especially in the case of simple tasks.

- Steep Learning Curve: New developers find it hard to understand the principles and

structure of Redux as it takes some time for familiarization.

Application of Redux

In complex web applications that handle a lot of states spread across multiple areas in an

application, this framework is commonly employed. The framework best suits systems

where managing states directly affects how stable an app becomes such as those for

enterprises or data-driven interfaces a lot more heavily towards them.

20

3.3 Data Flow in Application Design

Application design data flow enables the movement of information through various

application components. As an example, it determines how well users interact with the

system or how fast it responds and is designed in the application as well as influences

system interactions. The choice of a data flow model has significant implications for the

design and scalability of an application.

3.3.1 Bidirectional Data Flow in MVC

One important feature of the Model-View-Controller (MVC) framework is a

bidirectional data flow that supports interactive user experiences. This allows quick

transfer of data from one part to another part of the M V C , which in turn facilitates dynamic

updates and real-time synchronization.

Dynamics: In addition, M V C architecture lets View display data from Model,

while user's interactions with View can initiate changes on the Model side too. Also when

users make some inputs these are considered by the Controller that makes corresponding

amends within Model, and then back to View this happens.

Advantages:

- Interactive Experience: It improves responsiveness and makes a system more engaging

by enabling instant updates between UI and Data Model.

- Real-Time Synchronization: It maintains synchronization between UI and underlying

data so that users can always work with up-to-date information.

- Adaptive UI Development: It helps create flexible & intuitive interfaces responsive to

changeable data & user input.

Challenges:

21

- Management Complexity: Complexity may rise rapidly because multiple elements are

closely knit into a single architecture especially when they become large-scale applications

using the M V C approach.

- Circular Dependencies: There will be heavy dependencies on debugging or

maintenance if the model has tight coupling with the view resulting in circular

dependencies.

- Performance Overheads: This means continuous synchronization of data hence adverse

performance may be experienced mostly where there is much manipulation of data

happening.

Contextual Use

Bidirectional data flow is especially helpful to applications that demand repeated

updating and user interaction like dynamic web apps, and real-time analytics platforms.

3.3.2 Unidirectional Data Flow in Redux

Redux introduces a unidirectional data flow model that simplifies state

management and enhances predictability within applications, particularly those built with

React.

Dynamics: The unidirectional flow in Redux kicks off when the view dispatches

actions, which are then processed by reducers to update the state before reflecting it to the

view.

Advantages:

- Predictable State Changes: This creates a well-defined path for state updates thus

making system behaviors predictable.

- Debugging Simplicity: Due to having one direction of data flow and clear state

transitions, debugging becomes straightforward.

- Testing Efficiency: The straight-line nature of how Redux handles data makes it easier to

do tests and guess outcomes.

Challenges:

22

- Setup Complexity: Setting up Redux for the first time can be cumbersome and

overwhelming for novice developers.

- Boilerplate Code: This might lead to verbosity in code which may be unnecessary for

simple applications.

Contextual Use

In cases where maintaining state consistency matters most such as in large-scale

single-page applications (SPAs) with heavy state management requirements, the uni

directional flow of redux is shining.

3.4 Redux vs. MVC: A Comprehensive Analysis

3.4.1 Enhanced State Management and Predictability

- Centralized State Management: With Redux, the state of an entire application is stored

in a single object; this is the opposite approach that M V C takes [7][17]. Centralizing

everything makes it easy to manipulate state and also improves predictability- which can

be important when dealing with complex applications and managing state through multiple

components [17]. Meanwhile, M V C ' s way of managing state across multiple components

just leads to inconsistencies and more debugging.

- Predictable Data Flow: With predictable data flow comes a clear path that data takes

while passing through your app using Redux's architecture [10][16]. Not only does this

make everything easier to understand, but also much simpler when it comes to tracking

state changes [10] [16]. Easier debugging means easier maintenance, preventing potential

headaches down the line [10] [16]. On the other hand, M V C patterns tend to struggle with

this level of simplicity due to their bidirectional data flow between components — which

leads to more complex interactions overall.

3.4.2 Scalability and Maintainability

- Modular Code Structure: Every reducer in Redux has its responsibility when it comes

to handling state changes [11][17]. This alone brings on a code structure that is so

23

organized and scalable because each reducer focuses on its specific part of the state —

making it less confusing overall i f you ask us [11][17]. So not only does this make

development faster by dividing work easily among members, but also makes

updating/scale-ups smoother [11][17],

- Ease of Integration: The integration between Redux and modern UI frameworks at their

core is what helps with scalability/maintainability [8][13]. Using both of these technologies

allows devs to leverage their strengths — efficient state management of Redux and

powerful UI capabilities of frameworks like React [8][13]. As amazing as M V C

frameworks are, they don't have this level of seamless integration with modern front-end

technologies. For that reason, it may not be the best choice when complex and modern web

applications arise.

3.4.3 Debugging and Testing Efficiency

- Simplified Debugging Process: Redux's structure is like a single-engine train, it only

goes one way and has one centralized station for managing state systems, causing the

debugging process to be generally less complex than others. With Redux, developers can

easily see how and when states change, this makes it faster to trace back to the root of the

bug. This isn't the case for M V C architectures with their spaghetti data flows intertwined

together, making it difficult to find where bugs originate from, especially in larger-scale

applications.

- Enhanced Testing Capabilities: The organization of Redux allows for simpler and more

efficient testing techniques compared to other frameworks or libraries out there. Since side

effects are isolated, it's easier to write unit tests and integration tests rather than having

interdependent models, views, and controllers like most other frameworks.

3.4.4 Integration with Modern Development Practices

- Compatibility with Component-Based Frameworks: Redux is fully compatible with

component-based frameworks such as React. Having compatibility like this gives

developers a lot more time to build out reusable components that manage their

state/behaviors since they don't have to worry too much about trying not to break anything

24

in the overarching system while doing so. M V C patterns may not offer the same level of

synergy with component-based frameworks which could lead to less efficient development

workflows.

- Community and Ecosystem Support: In terms of user support/community size for

Redux vs M V C framework vs just any regular library out there (most likely including

yours), Redux has strengths over many others due to its strong community base providing

infinite resources such as middleware extensions (which are great for handling side effects),

debugging tools developed by creators, and more libraries that have been released by the

community. The M V C framework also has a strong community but it may lack the specific

focus and breadth of resources that Redux offers. Especially when looking at state

management solutions.

3.4.5 Complex User Interface and State Management

- Handling Complex States: If you have an application that has a lot of moving parts,

then Redux might be the best tool for you to use. Because of its architecture, managing

complicated state transformations is way easier within the application. In big applications

where managing states can get out of hand, using M V C could end up backfiring due to the

potential for increased complexity. Plus components can become tightly coupled.

- Flexible and Dynamic UI Development: With Redux being built into frameworks like

React, developers can create very dynamic interfaces that respond to user inputs promptly.

When you compare it with M V C , there's no guarantee that you'll be able to develop at the

same speed or even offer the same level of flexibility and ease of development, especially

if you're working on something with complex UI requirements.

3.4.6 Adaptability and Performance Optimization

- Adapting to Changing Requirements: Designing an application that's easy to modify is

key when things start changing regularly. Because Redux developers are able to easily add

or modify features without impacting anything else within the overall structure of their app,

this makes it perfect for modern web development. If you're using an M V C framework,

25

changes might have a bigger impact on your codebase since they're usually more rigid and

less flexible than Redux architectures.

- Performance Considerations: When it comes down to tweaking performance, large

datasets can slow down an application. One thing we know about Redux though is that its

efficient state management optimizes performance by eliminating unnecessary re-renders.

With typical M V C architectures that update frequently and sync data between views and

models, performance can suffer especially when you're dealing with complex data

synchronization between the two.

3.4.7 Redux vs. MVC: Elevating State Management in Web Development

As a front-end developer, I've been fascinated with Redux and its bidirectional data

flow versus the traditional M V C pattern and unidirectional data flow. Through my journey

on this subject, I've learned so much about how to use Redux in modern web application

development. Let's start with the state management capabilities of both systems. The

centralized and predictable state management system of Redux is a significant

improvement over M V C ' s distributed state management, especially when it comes to

manipulating states and tracing changes — which are both vital for the scalability and

maintainability of applications.

Next up is the modular code structure enabled by Redux's reducer-based

architecture. It makes it easier to organize, scale, and maintain the codebase — effectively

addressing any scalability challenges you might come across in M V C frameworks.

Moving forward is debugging and testing efficiency. The unidirectional data flow

of Redux simplifies debugging, reducing time spent on identification and resolution of

issues; while the centralized state management significantly enhances testing capabilities.

Integration with modern development practices such as React has uncovered new

efficiencies with component-based frameworks that no one knew existed before now.

Complex user interface states can also be easily managed using Redux without

much hassle. This flexibility allows for rapid changes without refactoring extensive parts

of your app — saving you plenty of time in the fast-paced environment web development

has become today.

Lastly, Redux has impressive performance optimization capabilities, especially in

complex cases. Works best when handling complex state logic and large datasets. It's an

26

approach that efficiently manages state, reducing unnecessary re-renders thus optimizing

application performance.

In conclusion, this research has convinced me that Redux is the go-to choice for

modern web applications. Especially when compared to M V C patterns and other

unidirectional data flow patterns. Redux excelled in four key areas: scalability, debugging,

integration with modern development practices, and most importantly, state management.

This makes it superior to M V C when it comes to contemporary web development

scenarios.

3.5 Comparative Analysis of React, Angular, and Vue.js Frameworks

In the world of web development, any developer will tell you that the technology

stack is everything. It's the most important factor in determining i f an app will be a success

or not. This segment of the report will showcase three key technologies in web

development: React, Angular, and Vue.js.

React was developed by Facebook and is known for its virtual D O M feature. It

helps optimize rendering and boosts performance. On the other hand, we have Angular -

Google's creation which boasts a full-fledged M V C framework with two-way data binding

and a suite of features right out of the box.

Finally, there's Vue.js, a progressive framework that combines features from both

React and Angular for flexibility and simplicity during application development.

Let's dive into their architectural paradigms to examine how each framework

handles components, state management, and user interface rendering. After that, we shall

look at the necessary technicalities of these frameworks, such as React's JSX syntax,

Angular's dependency injection, and Vue's reactive data binding. The evaluation also

looks at how easy it is to integrate with other tools and libraries as well as scalability in

large-scale applications and community support all of which are important factors in

modern web development.

27

Similarly, this analysis will study the impact of these technologies on web

development. This includes things like the speed of development, new developer ramp-up

time required for new developers, different project sizes fit, and quick adaptability to

changing needs in web development.

Thus, through a comprehensive comparative study, this section seeks to equip web

developers and decision-makers with invaluable insight to help them choose the most

suitable technology that aligns with their project objectives and long-term strategy.

3.5.1 React Framework

React is a JavaScript library that Facebook developed to make interactive interfaces.

The biggest draw for developers is the reusability of components, which makes solving

complex problems and building dynamic, data-driven web applications possible.

Technical Abilities and Structure

- Component-Based Architecture: Each component in React has its state and logic,

which allows them to be combined into complex user interfaces. By breaking down every

piece into its smallest parts, developers can reuse code more effectively and keep the

project maintainable.

- Virtual DOM (Document Object Model): The in-memory copy of the real D O M is

called "virtual." This feature lets React optimize how it manipulates H T M L without

sacrificing speed or performance in large-scale applications.

- JSX (JavaScript XML): With JSX syntax extension, writing code that looks like H T M L

with JavaScript behind the scenes becomes possible. This makes the UI readable and

simplifies how components are structured.

- Unidirectional Data Flow: Developers don't always have to pass around data, but when

they do with React, it must be done in one direction only. Child components can't modify

their parent's state directly; instead, data changes are communicated through a system of

"props."

- React Hooks: For functional components that are lightweight and performant, Hooks lets

developers use stateful logic without converting them into classes.

28

- Lifecycle: Components go through different stages as they exist within an application -

these stages are called its lifecycle methods. They provide developers opportunities to

update UIs and application states at exactly the right time.

Mounting

-" constructor()": The first technique to be employed in the process of initializing state and

binding event handlers.

- >ender()": Noted to be invoked, a method used to render the component into the D O M .

- "componentDidMountO": Used for the sole purpose of being called immediately after

the component is stuck into the D O M . Its main uses are for network requests, D O M

manipulations, and subscriptions.

- Updating (Figure 6):

- "shouldComponentUpdateO": Determines whether the component should be re-

rendered. It's used for performance optimizations.

- >ender()": Called again to re-render the component i f shouldComponentUpdate

returns true.

- "componentDidUpdateO": Invoked after the component's updates are flushed to the

D O M . Useful for handling post-render operations.

- Unmounting:

- "componentWillUnmount()": Called before the component is removed from the

D O M . It's used for cleanup activities like invalidating timers and canceling network

requests.

•'Render Phase"

Pure and has no side effects.
May be paused, aborted or

restarted by React.

"Pre-Commit Phase"

Can read the DOM.

"Commit Phase"

Can work with DOM,
run side effects,

schedule updates.

Mounting

New props

Updating

setStateQ forceUpdateQ

getDeri«edState Frorn props

shouldCörmpcnentUpdate

getSnapsriotBefore Update

1
Reset updates DOM and re-fs

com p one ntD id Mount
!

co mpo nentDi dU pdate

Unmounting

com pone ntWil I Unmount

Figure 6. React life cycle structure

29

3.5.2 Angular Framework

Angular, which Google has developed and continues to maintain, is a strong, all-

inclusive framework with an M V C architecture that's used to build dynamic web apps. It's

known for being durable and powerful, as well as for including a lot of tools that make it

capable of building enterprise-level applications.

Technical Abilities and Structure

- Component-Based Architecture: This framework structures every one of its

applications around components, which are what make up the user interface. Each one

comes with a TypeScript class, an H T M L template, and styles that are associated with

them.

- TypeScript:TypeScript is the building block of Angular - it's based on JavaScript offers

developers optional static typing (a type checker), as well as classes and interfaces so you

can catch errors before they happen. It enhances code predictability and quality while also

making it easier to find and fix problems when they come up later on.

- Modules: Modules are self-contained blocks of related functions that are put together in

order to form the entire program. Depending on how many there are in an app, each

module could define different features like services or pipes.

- Dependency Injection: Thanks to this aspect of Angular's setup, objects and services

can be more effectively created and managed within the framework's programs. This

makes it easier to build larger apps without forcing too much extra work onto their creators.

- Two-Way Data Binding: When some data changes in either the model or view side of

things in Angular's apps, this feature automatically ensures that those changes are reflected

on both sides immediately afterward.

- Directives: Developers who want to take more control over elements' behavior in their

programs' DOMs could turn toward directives —which extend the H T M L vocabulary— in

order to do so effectively.

- Services and Dependency Injection: Services are single, reusable objects that can

package together important business logic and data services. Thanks to Angular's

dependency injection systems, they're easily plugged into different components throughout

the app.

30

- RxJS and Observables: Reactive programming using observables is handled by the

RxJS library, which Angular has integrated within its system. This is useful for managing

the state of different parts of an application, as well as handling HTTP requests in a way

that's more flexible than what other libraries or frameworks could offer on their own.

Advantages

- All-in-One Solution: Angular is often called a 'batteries-included' framework, offering

solutions that are normally not included like routing, state management, forms, etc..

- TypeScript's Strong Typing: TypeScript integration brings object-oriented features,

better tools, and error checking so it makes the code more maintainable.

- Very Performant: Thanks to Angular's ahead-of-time (AOT) compiler, change detection,

and dependency injection big applications will run generally fast.

- Lots of Tools and Ecosystems: Angular CLI is a command-line interface tool that

simplifies project scaffolding. It also supports development and testing while having strong

support from the community.

Disadvantages

- Steep Learning Curve: With its comprehensive design and array of concepts it becomes

harder to learn than simpler frameworks, especially for beginners or those coming from

less feature-rich frameworks.

- Too wordy and complex: According to other developers Angular has too many words to

be verbose and too complicated with strict architecture TypeScript's extensive use of

decorators and dependency injection.

- Performance in Large Applications: While Angular performs well on its own making

complex and large applications may result in performance issues i f not optimized properly,

especially regarding change detection.

In conclusion, Angular offers powerful features that make it hard for other

frameworks to compete with it at an enterprise level. This covers all the bases though

learning it might be time-consuming because of how much you have to learn about the

framework itself let alone coding with it properly, It can get pretty confusing with the way

it's built but it tries its best to catch any compiling errors at runtime which makes up for

how difficult it can get, And if you know what you're doing after spending countless hours

31

learning this beast then this is definitely one of the best choices you could make when

working on a big project with complex requirements.

3.5.3 Vue.js Framework

A progressive JavaScript framework used for creating user interfaces, Vue.js is

designed to be incrementally adoptable. That means you can use it as a small part of your

project without causing any integration issues with other JavaScript libraries. Conversely,

you can use it as the main tool to build Single-Page Applications if you're willing to use

some modern tooling and supporting libraries.

Technical Abilities and Structure:

- Reactive and Composable View Layer: This sets the focus on the view layer right away

by offering reactive data binding and composable view components, making interactive

and dynamic user interfaces a piece of cake.

- Single-File Components: By including template, script, and style sections all in one file,

these components are easily readable and maintainable. It also gives them a self-contained

nature.

- Reactivity System: Using a simple API, Vue's reactivity system tracks changes made to

the application state so that it can automatically update the D O M when updates are made.

- Virtual DOM: Borrowed from React, Vue.js uses its own virtual D O M which allows it

to optimize rendering in complex applications while still keeping direct manipulation of

the regular D O M at a minimum. The result is improved performance.

- Template Syntax: Declaratively binding the rendered D O M to an underlying

component's data is easy thanks to Vue.js' HTML-based template syntax. This simple

approach makes development more intuitive for those who know H T M L well enough.

- Ease of Integration: Implementing this framework into your existing projects will not be

difficult or time-consuming work. Additionally, using up-to-date tools with this framework

in complex single-page applications (such as Vue Router or Vuex) will yield great results

too.

32

- Transition System: Vue presents a solid system for adding transition effects to elements

when they come and go from the D O M . This makes it easy to add some extra flair to the

user interface.

Advantages

- Ease of Learning: Vue's gentle learning curve is one of its most significant benefits. It

allows people with basic knowledge of H T M L , CSS, and JavaScript to get started quickly.

- Flexibility and Simplicity: Despite its simplicity, Vue is very flexible. It can be used in

many different projects, no matter how small or large they may be.

- High Performance: Because it's lightweight and utilizes a virtual D O M , Vue.js

performs well, especially with complex user interfaces.

- Robust Community and Ecosystem: Even though it's relatively new, Vue has a fast-

growing community that includes several libraries and tools for easier use.

Disadvantages

- Risk of Over-flexibility: Being so flexible might come back to bite you if you're

working on larger teams or more complex projects; things might start going off the rails

without you even realizing it until it's too late.

- Smaller Community Compared to React and Angular: As much as the community

continues to grow at a rapid pace, Vue still doesn't have as large of a community compared

to other similar frameworks like React and Angular; this could result in fewer resources

and third-party integrations being available.

- Perceived as Less Suitable for Very Large-Scale Projects: People will always say

what they want about something new entering the scene. In this case, because Vue came

later than other frameworks like React did (and also has less widespread support), some

people think it's just not built right for very large-scale applications.

In summary, developers love using Vue.js because of how well it works altogether.

It's great as an easy-to-learn framework for smaller projects or as a more complex one for

large applications. A l l this stuff it carries around with it ensures an efficient and

straightforward experience.

33

3.5.4 Conclusion

After evaluating React, Angular, and Vue.js, I conclude that React is the optimal

choice for my social network application. Analyzing their strengths, weaknesses, and

ability to meet specific platform demands led me to this decision.

Why React Is the Top Pick

- Component-Driven Development: Having a similar structure to a social network

application strengthens its modular UI elements and reusability-speeding up development

time and easing maintenance.

- Performance Optimization: Real-time user interaction requires a dynamic system

capable of smooth updates, so performance is paramount in choosing a framework. React's

virtual D O M handles it with ease.

- Vast Ecosystem and Community Support: With an array of libraries and tools, React's

ecosystem will help me add advanced features to the social network.

- Scalability and Flexibility:** React's potential to scale combined with its ease of

integration makes it perfect for a long-term project expected to grow over time.

Redux's Role in My Decision

Redux is a state management tool that greatly complements the capabilities of

React, especially when it comes to handling the complex state of a social network

application.

By centralizing the store, Redux ensures that state management is done consistently

and predictably throughout the application. This makes the state-handling code much

simpler to write and easier to understand, even with numerous user interactions and real

time data updates. The predictability and maintainability offered by Redux play a key role

in managing the flow of data within a social networking platform.

Additionally, Redux's ease of debugging and its ability to support middleware for

asynchronous operations make it an excellent match for building a solid, interactive social

network app.

Final Thoughts

34

Considering all this information, React combined with Redux seems like my best

choice for developing this social network application. I believe this pairing will help me

create an app that's both high-performing and easy to scale and maintain as social

networking needs evolve. This decision represents a strategic approach to using the best

tools available to build an engaging and efficient platform for people to interact.

4 Practical Part

This project's purpose is to develop a unique social network that will effectively

handle communication for university communities. The platform aims to meet the needs of

schools in times like this pandemic, by supporting educational engagement and

connectivity. It also allows people to share resources easily and engage with one another.

That being said, it should foster efficient information exchange, community building, and

collaborative learning. By doing so, the network caters to both students and faculty/staff

alike for a tailored environment that promotes productive academic collaboration as well as

healthy social interaction.

4.1 Design and Architecture

Akin to a chameleon, our social network system is adaptable to universities' needs.

To be user-friendly, accessible, and efficient, our design approach has ensured a smooth

experience from the beginning.

The User Interface (UI) is simple but effective. We prioritize getting users where

they need to be with ease. From registration to profile management, communication tools

to content sharing, it's all done within a couple of clicks. By using minimalistic design

principles we reduce clutter and enhance usability. The UI works just as well on your

phone as it does on your computer or tablet.

To make this happen we had to integrate several core components:

- User Registration and Profile Management: This one's self-explanatory but worth

mentioning that users have privacy settings available so they can customize their

experience (Figure 7, Figure 8).

35

Create an account

Full n.intp

U N I V E R Z I T A V P R A Z E

Figure 7. Registration page

Full name
Professional title

Bio: Ea dolore officia ad ipsum consequat voluptate hout
proident enim ocxaecat.

Profile sellings

0
Name

James Harrid

Email
example@email.com

y Contact

Figure 8. Profile page details

- Communication Tools: As much as we like independent thinking there's nothing quite

like collaboration. Our platform takes direct messaging to its most convenient level by

including forums and group chats as well (Figure 9).

36

mailto:example@email.com

o Eu officia officia id excepteur enim excepteur
nulla eiusmod in amet ea laborum nostrud aliquip
magna, Adipisicing

C_pidataf exercitation elit consequat

2 rnins ago

Moll it excepteur eiusmod eonsequat Lo

Exercitatior proident ea id r

<s>

Just now

Figure 9. Personal chat design

- Content Sharing and Academic Collaboration: Sharing documents can always be a

headache but not here. Alongside class schedules and academic resources, students will

have no problem spreading their knowledge around (Figure 10).

37

© Jimmy Will 08:10 AM
Velit ipsunn magna laboris duis esse aliqua. Pariatur laboris culpa id en reprehend er it quis nulla culpa
aliqua mollit esse aliquip culpa excepteur 56

•6 Reply

© Alisa Grill 08:24 AM
Amet culpa nulla mollit do et nulla sit aliquip occaecat ipsum officia et incididunt anim esse. Ad est
deserunt enim pariatur excepteur reprehenderit fugiat quis. Nisi mollit aliquip adipisicing cillum ut
proident laboris aliqua anim dolor irure officia ullamco A

Ů Reply (12)

Chris Helson 09:42 AM

Deserunt minim incididunt cillum nostrud do voluptate excepteur excepteur

ó Reply

Green William oe:29 AM
Deserunt minim incididunt cillum nostrud do voluptate excepteur excepteur minim ex minim est laborum
labore S • Mollit commodo in do dolor ut in mollit est

ň Reply

Show more discussion (47)

Figure 10. Group chat for discussion

- Data Management and Security: With great power comes great responsibility which is

why we hold data integrity and confidentiality in high regard. We employ advanced

security measures to protect personal information.

This architecture supports the network's goal of enhancing communication, sharing

resources, and improving engagement while also providing a scalable solution for the

growing needs of university communities everywhere.

4.2 Technology Stack

The technological foundation of the social network is crafted to offer robustness,

high performance, and seamless user experience, adhering to the latest industry standards

38

and best practices. The selection of each technology was strategic, aimed at addressing

specific needs within the platform while ensuring adaptability and future growth.

4.2.1 Development Technologies

Frontend Technologies:

- React: This JavaScript library is central to the development of the user interface, chosen

for its declarative and efficient approach to building complex user interfaces. React's

virtual D O M optimizes rendering, improving performance and user experience. The

component-based architecture enhances code reusability and maintainability.

- Redux: Serving as the state management tool, Redux complements React by providing a

centralized application state, making it easier to manage state across the entire application.

This is particularly beneficial for complex features like user authentication, content

management, and real-time notifications

- Sass (Syntactically Awesome Style Sheets): An extension of CSS that enables more

advanced features like variables, nesting, and inheritance, making the styling more

systematic and easier to manage. Sass helps in writing clean, maintainable styles for a

consistent look and feel across the platform.

Backend Technologies:

- Node.js: Selected for its non-blocking, event-driven architecture, Node.js facilitates

efficient data processing and high concurrency, essential for handling multiple

simultaneous user requests without slowing down.

- Expresses: A minimal and flexible Node.js web application framework that provides a

robust set of features to develop APIs and web applications. It simplifies the server-side

logic and routing, improving the development speed and quality.

Database Management:

- MongoDB (NoSQL): A document-oriented NoSQL database, chosen for its flexibility in

handling large volumes of structured and unstructured data. Its dynamic schema nature

39

allows for rapid iterations and modifications without the need to redesign the database

structure.

4.2.2 APIs & Middleware

- Axios: A JavaScript library for making HTTP requests from the browser to the backend

services, Axios has some advantages over other libraries when it comes to its wide browser

compatibility and ability to intercept request and response data.

- Passport.js: An authentication middleware for Node.js that simplifies the process of

authenticating users with different strategies like OAuth and local authentication, Passport

is known for being easy to use, yet still secure. Plus, it works well with various user

authentication methods.

4.2.3 Deployment and Version Control:

- Git: Used by developers around the world, Git allows multiple people to work on the

same project without stepping on each other's toes. It also helps track changes so if

something goes wrong it's easy to revert.

- Docker: Docker is a platform that allows you to containerize your application. This

ensures consistency across different environments such as development, testing, or

production so there are fewer bugs.

- Heroku: Cloud platforms normally make things easier in terms of deployment and

scaling applications like this one. By integrating with Git repositories it allows teams devs

easy continuous delivery so they can focus more time elsewhere.

The comprehensive integration of these technologies provides a solid foundation

for the social network platform, ensuring scalability, security, and a high-quality user

experience. Each component of the technology stack was chosen not only for its individual

merits but also for its compatibility and synergy with other elements, fostering a cohesive

and efficient development environment.

40

4.2.4 Development and Build Tools

- Webpack: It's a module bundler that takes your assets (JavaScript, CSS, images) and

creates a bundle you can include on your website. This ultimately reduces load times and

optimizes performance.

- Babel: A compiler mainly used to convert ECMAScript 2015+ code into a backward-

compatible version of JavaScript. This way, you can write modern JavaScript features but

still have your app work across all browsers.

4.3 Development Process

The process of development for the social network can be broken down into

various different stages, each designed to take the company closer towards their finished

product. This approach allows a clear path from idea to reality while also maximizing

efficiency.

4.3.1 Planning and Analysis

- In this beginning phase, information is gathered about what the university community

needs.

- Key features are identified and scoped out.

- Existing solutions by competitors are studied to see i f there's something we can do

differently or better than them.

- Objectives are defined with clear timelines and resources allocated accordingly.

4.3.2 Design

- Wireframes and design mockups are made to give a visual representation of what users

will see when they're on the site.

- A system is established consisting of color schemes, typography, and UI elements that

keep the look consistent across all pages.

41

- User flow diagrams will be used to help designers understand how people will navigate

through the platform in order to build an easy-to-use website.

4.3.3 Development

- Setting up the development environment and configuring the technology stack.

- The development is divided into manageable sprints following the Agile methodology,

allowing for incremental progress and regular assessment.

- Frontend and backend development proceed in parallel, with continuous integration and

collaboration between teams.

- Implementation of core features such as user registration, content management, and

communication tools, following the best coding practices and standards.

4.3.4 Testing

Comprehensive testing phase including unit tests, integration tests, and end-to-end tests

to ensure the functionality and performance of the platform.

Conducting usability testing with potential users to gather feedback and identify areas

for improvement.

Addressing bugs and issues that arise during testing promptly to maintain the

development timeline.

4.3.5 Deployment

Preparing the platform for deployment, including final optimization and security checks.

Utilizing continuous integration and continuous deployment (CI/CD) pipelines for

streamlined deployment to the production environment.

Monitoring the deployment process to ensure successful launch and operation of the

platform.

42

4.3.6 Post-Deployment and Maintenance

Post-launch phase involves continuous monitoring of the platform for performance,

security, and user feedback.

Regular updates and enhancements based on user feedback and technological

advancements.

Implementing a support system to address user queries and issues effectively.

This structured development process ensures that the platform is developed with a user-

centric approach, meets the identified needs, and adheres to high standards of quality and

performance. By following this methodology, the project aims to deliver a comprehensive

and effective social network for the university community.

4.4 Implementation Details

The implementation of the social network platform is meticulously planned to

ensure the delivery of a user-friendly, efficient, and secure environment. Below are

insights into the implementation of key features:

4.4.1 User Registration

Implemented a streamlined registration process requiring minimal user input to enhance

user experience.

Integrated email verification to ensure authenticity and prevent spam accounts.

Used Passport.js for authentication, supporting both local authentication methods and

social logins for user convenience.

Encryption of passwords using bcrypt to ensure user data security.

4.4.2 Profile Management

Developed a user profile module allowing users to customize their profiles, including

personal information, educational background, and areas of interest.

Implemented privacy settings enabling users to control the visibility of their information.

43

Provided the ability to upload and change profile pictures, enhancing personalization

and user identity.

4.4.3 Communication Tools

Developed an integrated messaging system enabling private and group conversations,

fostering community engagement and collaboration.

Implemented real-time notifications using Web Sockets to alert users about new

messages and updates.

Included community forums and discussion boards for sharing information, ideas, and

academic resources.

4.4.4 Content Sharing

Enabled users to post, share, and edit content, including text, images, and videos,

supporting academic and social collaboration.

Implemented a tagging system to categorize content and facilitate easy search and

discovery.

Incorporated like and comment functionalities to promote interaction and feedback

among users.

4.4.5 Security and Privacy

Ensured the platform's security by implementing SSL/TLS for encrypted data

transmission.

Conducted regular security assessments and audits to identify and mitigate

vulnerabilities.

Established clear data privacy policies and adhered to GDPR standards to protect user

information.

44

4.4.6 Performance and Scalability

Optimized front-end performance using React's virtual D O M to minimize page load

times.

Utilized MongoDB's efficient data retrieval and indexing features to handle large

volumes of data.

Implemented scalable server architecture to accommodate growing numbers of users and

data.

4.4.7 User Interface and Experience

Adopted a mobile-first design approach to ensure accessibility and usability across

various devices.

Conducted A/B testing to refine UI elements and workflows, ensuring intuitive

navigation and user interactions.

By focusing on these implementation details, the social network platform aims to provide a

comprehensive, secure, and engaging environment for the university community,

promoting connectivity, collaboration, and academic success.

4.5 Scalability and Performance

- Challenge: Making sure our platform can support a lot more users and data without

slowing down.

- Solution: Used a setup where different tasks are handled by separate services

(microservices) and cloud solutions like AWS Elastic Beanstalk and MongoDB Atlas to

automatically adjust resources as needed.

4.5.1 User Data Security and Privacy

- Challenge: Keeping user information safe and private as online security threats grow.

- Solution: Added strong security steps like HTTPS, data encryption, and safe login

methods. Regularly checked our security to keep up with rules on protecting data.

45

4.5.2 User Engagement and Retention

- Challenge: Getting users to keep coming back and stay active on the platform.

- Solution: Added fun features like badges and leaderboards to make participation exciting.

Used AI to suggest personalized content to keep users interested.

4.5.3 Cross-platform Compatibility

- Challenge: Making sure the platform works well on different devices and browsers.

- Solution: Focused on making a design that looks good on mobile first and used

techniques to make sure it adjusts to any screen size or device.

4.5.4 Real-time Communication

- Challenge: Adding features for instant chatting and notifications.

- Solution: Used technology called WebSocket for live chatting and set up notifications to

alert users about new messages or updates.

4.5.5 Content Moderation

- Challenge: Keeping the platform free from bad or harmful content posted by users.

- Solution: Made tools that automatically check content and used machine learning. Set

rules for the community and let users report bad content.

4.5.6 Integration with University Systems

- Challenge: Connecting our platform with the university's existing systems and data

securely.

46

- Solution: Worked with university IT teams to make sure the connection is secure. Used

proper ways to handle login and data sharing that fit university privacy rules.

By tackling these challenges with practical answers, our team made sure the social

network platform was ready to go and continued to be a great tool for university students.

4.6 Testing and Feedback

We made sure to thoroughly test our social network platform to make sure it works

well, is reliable, and makes users happy.

4.6.1 Unit Testing

- We checked each part or piece of code to make sure it's doing its job right.

- We used tools like Jest for JavaScript to run these tests automatically and make sure

everything is working as it should.

4.6.2 Integration Testing

- We tested to see i f different parts of the app work well together.

- We pretended to be real users to see how the different parts interact and pass information.

4.6.3 System Testing

- We looked at the whole software, all put together, to make sure it does what it's supposed

to.

- We checked everything from start to finish to make sure it meets all our requirements.

4.6.4 User Acceptance Testing (UAT)

- We let a group of actual users check if the system does what they need and want.

47

- This helped us see how real people would use the platform and if they like it.

4.6.5 Performance Testing

- We tested how fast and stable the app is under different situations.

- This included checking how the system handles normal and really busy times.

4.6.6 Security Testing

- We checked for any weak spots to make sure user data and the system are safe.

- We looked for common security problems using special tests and tools.

4.6.7 Usability Testing

- We had real users or experts test how easy the platform is to use.

- We focused on making sure the platform is easy to get around, understand, and use.

4.6.8 Feedback Collection

- We kept asking for feedback through surveys, talking to users, and watching how they

use the platform.

- We made it easy for users to tell us what they think right on the platform, and we listened

to what they had to say in group discussions.

- The feedback helped us see what's working and what's not. People liked the platform's

simplicity, design, and how it fits with school life. We took any criticism or ideas for

making things better seriously and made changes to better meet user needs.

This whole cycle of testing and getting feedback helped us make sure the platform

is just right for what users need and expect from something made for the university

community.

48

5 Results and Discussion

This part talks about how we can make our social network for the university better. We

need the help of the university and need to use their tools and departments to do this.

5.1 Improvement of the Platform

5.1.1 Mobile App

We should make a mobile app to make it easy for everyone to use the platform on

their phones. This app should send messages directly to users and work well on mobile

devices. Also, it should work smoothly with the university's systems like online learning

and library databases to make everything easier for users.

5.1.2 Platform Usability

We should change the platform to show users things they like or are interested in,

based on their classes or what they do on the platform. We should also add different

languages so more students can use it comfortably.

5.2 Helping Community and Sharing

5.2.1 Making It Easier to Share and Create Content

We should make it simpler for people to put up their own posts, stories, and

educational materials. This makes the platform richer and helps everyone help each other

out.

5.2.2 Getting Feedback and Helping Each Other

We need a better way for users to tell us what they think and what they need from

the platform. We also should create places like forums and events where users can meet

and help each other.

49

5.3 Keeping the Platform Good

5.3.1 Always Watching and Updating

We need to keep an eye on the platform and update it based on what users say

and what we find from the data. This helps us fix problems quickly and add new things that

users want.

5.3.2 Working with the University

We need ongoing help from the university, like resources and working together

with different departments, to keep making the platform better.

In short, we are suggesting some changes to make our platform better for everyone

at the university. We want to make the platform easy to use on phones, more personal for

users, and better at bringing the community together. We also want to make sure we keep

updating the platform and work closely with the university to do this.

50

6 Conclusion

In summary, the creation and introduction of the social network platform

specifically designed for our university community have been overwhelmingly positive,

achieving the main goals we set out at the beginning. This platform has been particularly

crucial during times when remote learning and social distancing were necessary, providing

a much-needed space for communication and collaboration within our academic setting.

Key accomplishments include:

- Enhanced Communication: There has been a significant improvement in how

students, faculty, and staff communicate with each other. This has led to better

collaboration and sharing of knowledge, which has made our academic community more

connected.

- Community Building: The platform has helped build a stronger sense of unity

and belonging among all members of the university, making our educational environment

more inclusive and supportive.

- Resource Sharing: It has turned into an essential tool for distributing educational

content, research results, and information about academic opportunities, which has

enriched our learning experiences and contributed to academic achievement.

- Increased Engagement: We've seen a clear rise in how much and how often

users participate in discussions, events, and other activities on the platform, showing that

the community is more active and involved.

- Feedback and Improvement: Ongoing feedback from users has been invaluable,

allowing us to continually refine and enhance the platform to better meet the needs of our

community.

51

Overall, this social network platform has proven to be an effective tool in

enhancing the educational journey, fostering community involvement, and supporting the

broader goals of the university. The development of this platform has established a solid

base for continuous innovation and adjustment to meet the changing demands of our

academic community. The success of this project highlights the critical role that targeted

digital solutions can play in today's educational landscapes and suggests that similar

strategies could have a significant positive impact on other institutions and communities as

well. This thesis has not only contributed to our understanding of digital solutions in

academic settings but also set a precedent for future projects aimed at improving

educational environments through technology.

52

7. References

1. Le Vie, Jr., Donald. "An eCommerce PrimerforTechnical Communicators," STC

Proceedings of the 47th Annual Conference, 2000.

2. Perry, Greg Sams. "Teach Yourself BeginningProgramming in 24Hours", Sams

Publishing, 1998 , p.92

3. Najam Nazar, Aldeida Aleti, Yaokun Zheng."Feature-based software design

pattern detection" [online] . December 2021.

https ://reader. el sevier. com/reader/sd/pii/SO 164121221002624?token=B3F43 7B 5 5 8

906EFA2239C679C95F7C89F2A215DB5964DCD20E85A47824C23F27A899A1

BFD87631B318C95FBAA8F91709&originRegion=eu-west-

1 &originCreation=2022022123 0228

4. Alexander Christopher. "Software Architecture Design Pattern in Java. 2004",

p.23

5. Glenn E. Krasner Stephen T. Pope. "A Cookbook for Using View-Controller User

the ModeUnterface Paradigm in Smalltalk-80". 1989 p.26-30

6. K .E . Depew. Social media at Academia's periphery: "Studying multilingual

developmental writers facebook composing strategies". Reading Matrix: An

International Online Journal, 11 (2011)

7. Adam Boduch. "Flux Architecture". May 2016.p93-115

8. Todd Abel."ReactJS: Become a professional in web app development 2016", p.80-

96

9. Jess Chadwick, Todd Snyder, Hrusikesh Panda. "Programming ASP.NETMVC 4:

Developing Real-World Web Applications with ASP.NET MVC ". 2012, p87-93

10. AzatMardan. "React Quickly: Painless Web Apps with React, JSX, Redux and

GraphQL". 2017, p.275-278

11. Sangeeth Arulraj. Flux vs Redux [online]. March 2020. https://medium.com/nerd-

for-tech/flux-vs-redux-6cb572f8d7f8

12. Paul McFedries. "Web Coding & Development All-in-One for Dummies". 2018

p.197-198

13. Alex Banks & Eve Porcello. "Learning React: Functional Web Development with

React and Flux". 2017, 14-16

53

http://ASP.NET
http://ASP.NET
https://medium.com/nerd-

14. TutorialsPoint. "DownloadHTML TutoriaF. 2016, p. 16

15. Nicholas C.Zakas. "JavaScriptfor Web Developers". 2012, p. 43-46

16. Luis Atencio. "Functional Programming in JavaScript". 2016, p. 117-144. ISBN:

9781617292828

17. Kirupa Chinnathambi. "LEARNING REACT'.November 2016, p.81-88. ISBN-13:

978-0-134-54631-5

18. Ilya Gelman Boris Dinkevich. "The Complete Redux Book"[online]. 2017, p 112-

134

8 List of figures and abbreviations

8.1 Figures

Figure 1. Model-View-Controller State and Message Sending 14

Figure 2. The Flux architecture,unidirectional data flow 15

Figure 3. Redux architecture 15

Figure 4. Model-View-Controller (MVC) 18

Figure 5. Redux structure 19

Figure 6. React life cycle structure 29

Figure 7. Registration page 36

Figure 8. Profile page details 36

Figure 9. Personal chat design 37

Figure 10. Group chat for discussion 38

54

8.2 List of abbreviations

API - Application Programming Interface

B L L - Business Logic Layer

D A L Data - Access Layer

H T M L - Hypertext Markup Language

JS - JavaScript

JSX - JavaScript X M L

M V C - Model-View-Controller

IT - Information Technology

HOC - High Order Component

55

