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Abstract 
 

Motivation: Imputation of missing data is a crucial step in data analysis since many statistical 

methods require complete datasets. In that regard MissForest imputation is a powerful tool that 

seems to outperform most other imputation approaches. This analysis evaluates how good 

imputation using MissForest is compared to other methods like imputation by Multivariate 

Imputation by Chained Equations (MICE), Restricted Boltzmann Machines (RBM) or the  standard 

strawman (mean) imputation in a clinical dataset that is used to predict the mortality of patients 

after heart valve surgery. 

Result: Models which were trained on datasets imputed by MissForest, MICE or RBM managed 

to outperform those which used standard strawman imputation in a most of the cases. The best 

values for area under the (ROC-)curve and balanced accuracy were achieved using MICE and RBM 

respectively while strawman imputation still yielded the best result in terms of accuracy. However, 

the differences were rather small and significant in only 5/66 of the tested cases. The expectation 

that MissForest, MICE and RBM would overall significantly outperform strawman imputation 

could therefore not be met. Without a complete reference dataset the true imputation error cannot 

be calculated and the reason for this outcome can only be speculated upon. Two of the probable 

causes would be that the missing values are not significant for prediction and that data is not 

missing at random which negatively affects imputation by MissForest, MICE and RBM. 

 

1. Introduction 
 

Missing data presents a problem in nearly all of today’s bigger research projects that depend on 

big datasets. Missingness may occur in different forms: Not missing at random data may 

introduce systematic error and make the study population less representative of the general 

population, while on the other hand missing at random data leads to a significant loss in statistical 

power and predictive ability. (Waljee AK, Mukherjee A, Singal AG, et al., 2013, p. 1) Many 

established methods of analysis require fully observed datasets without any missing values, 

therefore imputation of missing values is a crucial step in data analysis. Many popular imputation 

methods depend on tuning parameters or specification of a parametric model. The choice of these 

tuning parameters or models without prior knowledge is a difficult task and might have dramatic 
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effects on a method’s performance. Furthermore a majority of imputation methods are restricted 

to one type of variable and make assumptions about the distribution of the data or subsets of the 

variables, which lead to questionable situations e. g. assuming normal distributions. MissForest is 

an imputation approach based on random forests and is able to handle continuous as well as 

categorical data while making as few assumptions about structural aspects of the data as possible. 

(Stekhoven DJ, Bühlmann P, 2011, p. 1f) 

Waljee et al., Tang and Ishwaran, Stekhoven and Bühlmann all concluded that MissForest was able 

to compete with or outperform other imputation methods on their used datasets. (Waljee AK, 

Mukherjee A, Singal AG, et al., 2013, p. 1) (Tang F, Ishwaran H, 2017, p. 1) (Stekhoven DJ, 

Bühlmann P, 2011, p. 1) In respect to that, this paper tries to assess if their success is also 

reproducible in a clinical dataset composing information about heart valve surgery patients. It also 

compares MissForest imputation to other popular approaches like Multivariate Imputation by 

Chained Equations, often abbreviated as MICE, and imputation by Restricted Boltzmann Machines 

(RBM), which have successfully been used as generative models for different types of data in the 

past. (Hinton G, 2010, p. 3) 

The goal was to show if there is a significant difference in prediction accuracy of mortality of 

patients that underwent heart valve surgery when using MissForest, MICE, RBM or strawman 

imputation. 
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2. Methods 
 

The following data and methods were used as part of my analysis. 

 

2.1. Predictive Modeling Of Mortality After Heart Valve Surgeries 
 

“Predictive Modeling Of Mortality After Heart Valve Surgeries” (Bodenhofer U, Haslinger-

Eisterer B, Minichmayer A, et al., 2016) is a workflow written in the programming language “R” 

(R Core Team, 2019) by my supervisor Ulrich Bodenhofer to model post-operative mortality of 

patients that undergo heart valve surgery.  

The workflow consists of: 

 The “Heart Valve Surgery Dataset”. 

 The preprocess-function that does strawman (mean) imputation (STRAW). 

 A function that builds a random forest model that is optimized for accuracy (ACC). 

 A function that builds a random forest model that is optimized for the area under the ROC-

curve (AUC). 

 A function that builds a random forest model that is optimized for balanced accuracy 

(BACC). 

 A function that performs double 5-fold cross-validation and evaluates the models. 

(Bodenhofer U, Haslinger-Eisterer B, Minichmayer A, et al., 2016, p. 2-6) 

 

2.2. Setup 
 

The idea was to only alter the imputation method implemented in the preprocessing-function and 

not touch any other part of the “Predictive Modeling Of Mortality After Heart Valve Surgeries”-

workflow and compare the results. 

Therefore the workflow for this analysis could be described as the following: 

 Implement a “missForest” version of the preprocessing-function using MissForest 

imputation (MF). It should be mentioned here that the notation missForest is used when the 
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“R”-package is addressed while on the other hand MissForest refers to the general 

imputation approach. Although these are practically interchangeable. 

 Implement a “MICE” version of the preprocessing-function using Multivariate Imputation 

by Chained Equations (MICE). 

 Implement an “RBM” version of the preprocessing-function using Restricted Boltzmann 

Machines for imputation (RBM). 

 Run the “Predictive Modeling Of Mortality After Heart Valve Surgeries”-workflow for the 

four different imputation methods and different thresholds of missing data. To be more 

specific the thresholds were chosen in similar fashion to the approaches used by Tang and 

Ishwaran (Tang F, Ishwaran H, 2017, p. 9) and Waljee, et al. (Waljee AK, Mukherjee A, 

Singal AG, et al., 2013, p. 4) and increased stepwise by 10% starting from 15% to 35%. 

One run with high amount of missing data was also performed for each imputation method 

and in this case a maximum of 60% missingness was chosen. This resulted in runs with 

maximum 15%, 25%, 35% and 60% missingness respectively. The exact values are chosen 

arbitrary however and one could also do 10%, 20%, 30% and 70% for example and still 

should come to the same conclusion! 

 Compare the results of models that used MissForest/MICE/RBM imputation to the output 

of models that used strawman imputation. 

 

2.2.1 Example Workflow of one Experiment 

 

For better understanding let experiments be denoted as EXP(missingness, imputation method, 

optimization) with the following values: 

 missingness: 

o - : variables that contain missing values are excluded 

o 0.15 : maximum 15% missingness per variable 

o 0.25 : maximum 25% missingness per variable 

o 0.35 : maximum 35% missingness per variable 

o 0.60 : maximum 60% missingness per variable 

o * : all except “-“ 
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 imputation method: 

o - : no imputation 

o STRAW : strawman imputation 

o MF : MissForest imputation 

o MICE: MICE imputation 

o RBM: RBM imputation 

o * : all except “-“ 

 optimization: 

o ACC : accuracy optimization 

o AUC : area under the ROC-curve optimization 

o BACC : balanced accuracy optimization 

o * : all 

An example workflow then would look like this: 

 Choose a maximum amount of missingness (0.15, 0.25, 0.35 or 0.60). 

 Choose an imputation method (STRAW, MF, MICE or RBM). 

 Choose which value you want to optimize with the random forest (ACC, AUC, BACC). 

Choosing 15% maximum missingness, MF imputation and ACC optimization – so for 

EXP(0.15, MF, ACC) - the workflow would continue as the following: 

 Exclude all variables from the dataset that contain more that 15% missing values. 

 Impute the dataset with MissForest imputation. 

 Train the random forests to maximize ACC. 

 Perform cross-validation. 

Each experiment results in an AROC.Mean, an ACC.Mean and a BACC.Mean from the cross-

validation which can be seen in Fig. 3-14. 

More examples using the EXP-notation: 

 EXP(*, MF, ACC) would denote all experiments that used MissForest imputation and 

accuracy optimization. Therefore four experiments could be denoted by this expression, 

namely EXP(0.15, MF, ACC), EXP(0.25, MF, ACC), EXP(0.35, MF, ACC) and 

EXP(0.60, MF, ACC). 
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 EXP(*, MF, *) would denote all experiments that used MissForest imputation which would 

be 12 in total. 

 EXP(*, *, *) would denote all experiments without EXP(-, -, *) which would be 48 in total 

(all experiments that used imputation). 
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2.3. Heart Valve Surgery Dataset 
 

The used dataset was composed of data about patients undergoing heart valve surgery. Each patient 

was represented in a separate row in the dataset and the columns linked to information like 

laboratory data, test results and clinical annotations. 

A snapshot of the demographic and preoperative data of the patients included in the dataset: 

Age in years:  mean: 68.0   standard deviation: ±12.6 

Height in cm:  mean: 169   standard deviation: ±11 

Weight in kg:  mean: 78.0   standard deviation: ±16.1 

Sex:    male: 1356 (60.8%) female: 873 (39.2%) 

Patients on dialysis: 1.3% 

Patients with endocarditis: 5.1% 

Patients with cerebrovascular disease: 11.6% 

Patients with peripheral vascular disease: 8% 

Patients with angina pectoris: 26.2% 

Patients with arrhythmia: 22.7% 

Patients with cardiogenic shock: 0.44% 

NYHA-Classification:   

     I / II / III / IV  

 (in %)    9.6 / 59.9 / 28.2 / 2.3 

ASA-Classification:    

     I / II / III / III / IV / V 

(in %)    0.1 / 4.9 / 80.9 / 13.9 / 0.2 

Hemoglobin in g/dl: mean: 13.1   standard deviation: ±1.8 

Potassium in mmol/l: mean: 4.4   standard deviation: ±0.5 

Creatinin in mg/dl: mean: 1.1   standard deviation: ±0.9 

BUN in mg/dl: mean: 21.7   standard deviation: ±11.2 

Glomerular filtration rate in ml/min/1.73m2: 

    mean: 74   standard deviation: ±26 

Leukocytes in G/l:  mean: 8.0   standard deviation: ±3.3 

Bilirubin in ml/dl: mean: 0.9   standard deviation: ±0.6 

apTT in sec:  mean: 30.9   standard deviation: ±4.5 

(Bodenhofer U, Haslinger-Eisterer B, Minichmayer A, et al., 2016, p. 3) 
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The dataset contains 2229 observations (patients/rows) with 147 variables (columns), only 13 of 

them are complete and 134 of these variables have missing values. There are zero complete 

observations, so there was no patient that had a complete record. A visual representation of the 

missingness in the dataset is shown in the following graph. 

 

 

Fig. 1: All variables in the dataset sorted according to their amount of missingness. Each bar 

represents one variable (13 of them are not shown as bars as they are complete and therefore have 

0% missingness). The variables are coloured corresponding to which group they belong to, green 

means not more than 15% missingness and therefore these variables (73 in total) will be used in 

every run. Dark green is every variable between 15% and 25% missingness (4 in total). Yellow is 

every variable in the range from 25% to 35% which amounts to 8 variables. Variables that had 

more than 35% but less than 60% missingness (23) were coloured orange. The part in red was 

discarded as those had more than 60% missingness (39 variables) and as described in 2.2 SETUP 

there was no run that used variables with more than 60% missingness. 
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2.4. Data Preprocessing using Strawman (Mean) Imputation 
 

In the first approach the dataset was preprocessed using strawman imputation (or more commonly 

used is the term “mean imputation”) (Tang F, Ishwaran H, 2017, p. 3f). That meant missing variable 

values were imputed in the following manner. 

Considering an n x p-dimensional data matrix X = (X1, X2,…, Xp) with variables containing missing 

values and choosing an arbitrary variable XS including missing values, then the observed values 

(values that weren’t missing) of variable XS would be denoted by y(S)
obs and the missing values of 

variable XS would be denoted by y(S)
mis. The imputation could then be described as: 

 Numerical variables: The missing values y(S)
mis were imputed by taking the mean of the 

observable values y(S)
obs. 

 Ordinal variables: The missing values y(S)
mis were imputed by taking the value that had the 

highest frequency among observable values y(S)
obs. 

 Categorical variables: These were first one-hot-encoded and then missing values y(S)
mis 

were imputed using the most frequent value among observable values y(S)
obs. 

 Binary variables: The missing values y(S)
mis were imputed by taking the value that had 

highest frequency among observable values y(S)
obs. 

(Bodenhofer U, Haslinger-Eisterer B, Minichmayer A, et al., 2016, p. 4) 

Furthermore variables that exceeded the threshold of 15/25/35/60 percent missing values were 

discarded as mentioned in 2.2 SETUP. 
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2.5. Data Preprocessing using MissForest Imputation 
 

In the second approach the first step was to one-hot-encode categorical variables but not impute 

anything yet. The whole but still incomplete dataset was then fed to the missForest-function from 

the “R”-package “missForest” which took care of imputing missing values. (Stekhoven DJ, 2013) 

Similar to the strawman approach, variables that exceeded the threshold of 15/25/35/60 percent 

missing values were discarded. 

 

2.5.1. MissForest 

 

MissForest is an imputation approach that utilizes the flexibility and versatility of random forest 

models to predict missing values. It thereby creates a random forest model for each variable in the 

dataset and uses the rest of the variables to predict the missing values for that variable. This is done 

in a cyclic fashion for all variables and the entire process is iteratively repeated until a stopping 

criterion is met. Random forest models are able to handle continuous as well as categorical 

responses, require very little tuning and provide an internally cross-validated error estimate which 

are only a few of their advantages. (Waljee AK, Mukherjee A, Singal AG, et al., 2013, p. 3) 

To go into more detail, here is how the creators of the “missForest” “R”-package, Stekhoven and 

Bühlmann, describe their approach: 

Assuming that X = (X1, X2,…, Xp) is an n x p-dimensional data matrix containing missing 

values we are able to use a random forest to impute the missing data. The random forest 

algorithm proposed by Breiman would be able to handle missing values by itself if there is 

a complete response variable. This is done by weighting  the  frequencies  of  the  observed  

values  in  a  variable  with  the  random forest  proximities  after  being  trained  on  the  

initially  mean  imputed  dataset. (Stekhoven DJ, Bühlmann P, 2011, p. 3) 

In the missForest approach however, the missing values are predicted by using a random 

forest trained on the observed parts of the data set. For an arbitrary variable XS including 

missing values at entries i(S)
mis ⊆ {1,…, n} the dataset can be separated into four parts: 

1. The observed values of variable XS, denoted by y(S)
obs; 

2. The missing values of variable XS, denoted by y(S)
mis; 
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3. The variables other than XS, with observations i(S)
obs = {1,…, n}\ i(S)

mis denoted 

by x(S)
obs; 

4. The variabes other than XS with observations i(S)
mis denoted by x(S)

mis. 

(Stekhoven DJ, Bühlmann P, 2011, p. 3) 

At the start we make an initial guess for the missing values in X using mean imputation or 

any other suitable imputation method. Then the variables XS, s = 1,…, p are sorted 

according to the amount of missing values in increasing order. For each variable XS in the 

dataset the missing values are imputed by first fitting a random forest with response y(S)
obs 

(the observed values of XS) and predictors x(S)
obs (all observations (rows) of variables that 

are not XS and do NOT have a missing value in XS). After that the missing values y(S)
mis 

(the missing values in variable XS) are predicted by applying the trained random forest to 

x(S)
mis (all observations (rows) of variables that are not XS and DO have a missing value in 

XS). This imputation procedure is done in an iterative fashion until a stopping criterion is 

met. (Stekhoven DJ, Bühlmann P, 2011, p. 3) 

The following pseudo algorithm 1 gives a representation of the missForest method.  

Algorithm 1 Impute missing values with random forest. 

Require: X an n x p matrix, stopping criterion γ 

1. Make initial guess for missing values; 

2. k ← vector of sorted indices of columns in X w.r.t. increasing amount of missing values 

3. while not γ do 

4.   Ximp
old ← store previously imputed matrix; 

5.   for S in k do 

6.    Fit a random forest: y(S)
obs ~ x(S)

obs; 

7.    Predict y(S)
mis using x(S)

mis; 

8.    Ximp
new ← update imputed matrix, using predicted y(S)

mis; 

9.   end for 

10.   update γ 

11. end while 

12. return the imputed matrix Ximp 

(Stekhoven DJ, Bühlmann P, 2011, p. 4) 

As shown the algorithm halts as soon as the stopping criterion γ is met. In Stekhoven and 

Bühlmann’s implementation this is the case when the difference between the newly imputed 
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data matrix compared to the previous one increases for the first time with respect to both 

variable types, if present. The difference for the set of continuous variables N is defined as 

∆𝑁 =
∑ (𝑋𝑛𝑒𝑤

𝑖𝑚𝑝
− 𝑋𝑜𝑙𝑑

𝑖𝑚𝑝
)2

𝑗 ∈ 𝑁

∑ (𝑋𝑛𝑒𝑤
𝑖𝑚𝑝

)2
𝑗 ∈ 𝑁

 

and for the set of categorical variables F as 

∆𝐹 =
∑ ∑ 𝐼

𝑋𝑛𝑒𝑤
𝑖𝑚𝑝

≠𝑋𝑜𝑙𝑑
𝑖𝑚𝑝

𝑛
𝑖=1𝑗 ∈ 𝐹

#𝑁𝐴
 

where #NA is the number of missing values in the categorical variables. 

After imputation of the missing values the performance can be assessed by using the 

normalised root mean squared error (NRMSE) for continuous variables and by using the 

proportion of falsely classified entries over categorical missing values for categorical 

variables. This results in values close to 0 if the performance is good and values close to 1 

if the performance is bad. (Stekhoven DJ, Bühlmann P, 2011, p. 4) 
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2.6. Data Preprocessing using MICE 
 

The third approach was carried out the same way as the imputation with MissForest but instead of 

“missForest” the “MICE” package was used to impute missing values. (Van Buuren S, Groothuis-

Oudshoorn K, 2018) MICE is short for Multivariate Imputation by Chained Equations and the 

package uses Fully Conditional Specification (FCS) (Van Buuren S, 2012, p. 108) implemented by 

the MICE algorithm as described by Van Buuren and Groothuis-Oudshoorn (a more detailed 

explanation can be found below). Again variables that exceeded a certain threshold of missing 

values were discarded. 

 

2.6.1. Multiple Imputation 

 

Before diving into MICE we should clarify what we mean by “multiple imputation”. MICE is a 

multiple imputation technique which means that after imputing a dataset with missing values we 

not only get one but multiple “complete” datasets. In comparison to single imputation procedures 

like the previously used strawman imputation or also MissForest imputation, multiple imputation 

has a few advantages. For example the analysis of the multiple imputed datasets takes into account 

the uncertainty in the imputations and yields accurate standard errors due to the multiple predictions 

for each missing value. To be more specific, this means that if there is not much information in the 

observed part of the data the imputations will be very variable which leads to a high standard error. 

On the other hand if the observed part of the data is very descriptive and highly predictive of the 

missing values the imputed values will be very similar across all imputations which results in a 

smaller standard error. (Azur MJ, Stuart EA, Frangakis C, et al., 2011, p. 2) 

 

2.6.2. MICE - Multivariate Imputation by Chained Equations 

 

Multivariate Imputation by Chained Equation is an alternative approach to multiple imputation 

procedures that rely on a large joint model – such as a joint normal distribution – for all of the 

variables. Especially in large datasets with hundreds of variables of different types such an 

assumption is rarely appropriate. Because of this, there is a need for other methods like MICE 

which has proven to produce accurate and useful results in cases that exceed thousands of 

observations and hundreds of variables. The MICE algorithm runs a series of regression models 
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where each variable with missing data is modelled conditional upon the other variables in the 

dataset. This means that each variable can be modelled according to its own distribution. (Azur 

MJ, Stuart EA, Frangakis C, et al., 2011, p. 2) 

The chained equation process can be broken down into several general steps: 

1. Every missing value in the dataset is imputed by a simple imputation method like strawman 

imputation. These values however are only place holders. 

2. Place holder values are set back to missing for one variable XS. 

3. Observed values y(S)
obs from variable XS are regressed on the on the other variables in the 

dataset. In other words, XS is the dependent variable in a regression model and all other 

remaining variables are independent variables in the regression model. These regression 

models work the same as when performing linear, logistic or Poison regression outside of 

the context of missing data. 

4. The missing values y(S)
mis from the variable XS are replaced by the predictions from the 

regression model in Step 3. When the next variable XT (and all other remaining variables) 

is imputed, XS and all its values, hence y(S)
obs and the imputed y(S)

mis, are used as an 

independent variable in the regression model for XT. 

5. The procedure described in steps 2-4 is then repeated for every variable containing missing 

values. After iterating over all variables one “cycle” is done. At the end of this “cycle” all 

of the missing values – that initially were filled by strawman imputation – have been 

replaced by regressions that reflect the relationships observed in the dataset. 

6. Usually not only one but several “cycles” are performed and the missing values are updated 

after each “cycle”. At the end of the last “cycle” the imputed values are saved and a 

completed dataset is returned. The number of “cycles” is flexible and can be specified by 

the researcher. In general 10 “cycles” are suggested but to identify the optimal number of 

“cycles” e.g. in identifying when the imputations converge, more research is needed. (Azur 

MJ, Stuart EA, Frangakis C, et al., 2011, p. 3) 

This is the general approach that Multivariate Imputation by Chained Equations follows. The 

software implementations of MICE differ in some points however. The specific implementation 

from the “R”-package by Stef van Buuren and Karin Groothuis-Oudshoorn (that was used in this 

research) as well as a more detailed and mathematical explanation will be shown in the next two 

subchapters. 
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2.6.3. Fully Conditional Specification 

 

Fully Conditional Specification (Van Buuren S, 2012, p. 108) or often just abbreviated as FCS is 

an imputation technique that fills in multivariate missing data on a variable-by-variable basis. It 

requires the specification of an imputation model for each variable containing missing values and 

creates imputations per variable in an iterative fashion. 

Contrary to traditional joint modelling approaches, FCS specifies the multivariate distribution P(Y, 

X, R | θ) through a set of conditional densities P(Yj | X, Y-j, R, ϕj) which is used to impute Yj given 

X, Y-j and R. The missing values are first imputed by simple random draws from the distribution 

and then the imputation by FCS is done by iterating over all variables and their conditionally 

specified imputation models. Imputation with FCS is a natural generalization of univariate 

imputation. (Van Buuren S, 2012, p. 108) 

In the context of missing data imputation similar terms have been coined describing the same or a 

similar idea e.g. “chained equations” by Van Buuren and Groothuis-Oudshoorn. (Van Buuren S, 

2012, p. 109) 

 

2.6.4. The MICE algorithm and “R”-package by Van Buuren and Groothuis-Oudshoorn 

 

Again considering an n x p-dimensional data matrix X = (X1, X2,…, Xp) with variables containing 

missing values, then: 

 Xj would be the jth column of that data matrix, 

 Xj
mis would be the missing values of variable Xj, 

 Xj
obs would be the observed values of variable Xj, 

 and X-j would be all other columns of data matrix X except j. 

Applying that, Van Buuren describes the implemented MICE algorithm as the following: 
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Algorithm 2 MICE algorithm for imputation of multivariate missing data 

1. Specify an imputation model P(Xj
mis | Xj

obs, X-j, R) for variable Xj with j = 1,…,p. 

2. For each j, fill in starting imputations Xj
0 by random draws from Xj

obs. 

3. Repeat for t = 1,…,T: 

4. Repeat for j = 1,…,p: 

5. Define X-j
t = (X1

t,…, Xj-1
t, Xj+1

t-1,…, Xp
t-1) as the currently complete data except Xj. 

6. Draw ϕj
t ~ P(ϕj

t | Xj
obs, X-j

t, R). 

7. Draw imputations Xj
t ~ P(Xj

mis | Xj
obs, X-j

t, R, ϕj
t). 

8. End repeat j. 

9. End repeat t. 

(Van Buuren S, 2012, p. 110; notation adjusted) 

Parameter T refers to the number of iterations and can be specified by the user. Usually a number 

of 5-10 iterations is sufficient. (Van Buuren S, 2012, p. 109) 

The name “chained equations” is referring to the fact that the MICE algorithm can easily be 

implemented as a concatenation of univariate procedures to impute missing values. The mice() 

function in the “R”-package runs the algorithm m times in parallel which results in m differently 

imputed datasets. (Van Buuren S, Groothuis-Oudshoorn K, 2011, p. 7) 

The MICE package offers the user complete control over the imputation procedure and it is possible 

to specify a separate univariate imputation model for each column. The default imputation methods 

are predictive mean matching for numeric data, logistic regression for binary data, polytomous 

regression for unordered categorical data and a proportional odds model for ordered data with more 

than two levels. MICE provides many other methods and it is also possible to implement your own 

imputation functions and use them in the algorithm. (Van Buuren S, Groothuis-Oudshoorn K, 2018, 

p. 67f) 
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2.7. Data Preprocessing using Restricted Boltzmann Machines 
 

In the fourth and final approach Restricted Boltzmann Machines (RBM) (Hinton G, 2007, p. 1) 

were trained to impute the missing values in the dataset. Differently to MICE and similar to 

MissForest this procedure produces only a single complete dataset (no multiple imputations). 

Contrary to all other imputation methods, imputation with RBM was carried out in “python” 

(Python Software Foundation, 2019) instead of “R” since “python” offered a more convenient 

implementation. I used the package “SherlockML-BoltzmannClean” by ASI Data Science which 

implements a scikit-learn transformer interface for creating and training a Restricted Boltzmann 

Machine which can be used to impute a pandas-dataframe. The package follows the guidelines 

established by Geoffrey Hinton. (ASI Data Science, 2018) Similar to all other imputation 

approaches variables that exceeded the threshold of 15/25/35/60 percent missing values were 

discarded. 

 

2.7.1. Restricted Boltzmann Machines 

 

When neuron-like units that make stochastic decisions about whether to be on or off are 

symmetrically connected to form a network, this network is called a Boltzmann Machine. 

Boltzmann Machines can be used to solve two different computational problems: 

 Firstly, search problems where the weights on the connections are fixed and used to 

represent a cost function to generate data vectors with low cost values. 

 Secondly, learning problems where the data vectors are fixed and used to learn the weights 

of the connections to generate the data vectors with high probability. 

 (Hinton G, 2007, p. 1)  

Since missing value imputation can be viewed as a learning problem the usage of Boltzmann 

Machines seems to be a promising approach. However since learning is typically very slow in 

Boltzmann Machines the deployment of the more efficient Restricted Boltzmann Machines is 

obvious. (Hinton G, 2007, p. 4) The major differences are that in a Restricted Boltzmann Machine 

there only are two layers of units, one layer consisting of visible units and one layer of hidden units. 

Furthermore, unlike in the Boltzmann Machine, not all units are connected with each other, the 

connections are only between visible-hidden/hidden-visible units which means there are no 
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connections within the layers itself, hence the name “restricted”. This way the hidden units are 

conditionally independent and learning can be done more efficiently. (Hinton G, 2007, p. 4) 

 

Fig. 2: Example of a Restricted Boltzmann Machine with 4 visible units in the visible layer (v) and 

3 hidden units in the hidden layer (h). The learned parameters are coloured in red: Bias vectors for 

visible and hidden layer (bv, bh) and the connections/weight-matrix (W). 

 

2.7.2. Learning in a Restricted Boltzmann Machine using Contrastive Divergence 

 

To elaborate further on how and what is learned in a Restricted Boltzmann Machine we consider a 

binary feature vector as input, e.g. it could be the pixels of a black and white image. 

Geoffrey Hinton describes the learning procedure (Hinton G, 2010, p. 3ff) as the following: 

According to Hopfield a joint configuration, (v, h) of the visible and hidden units has an 

energy given by: 

(1) 𝐸(𝑣, ℎ) =  − ∑ 𝑎𝑖𝑣𝑖𝑖 ∈ 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 − ∑ 𝑏𝑗ℎ𝑗 − ∑ 𝑣𝑖ℎ𝑗𝑤𝑖𝑗𝑖,𝑗𝑗 ∈ ℎ𝑖𝑑𝑑𝑒𝑛  

where vi, hj are the binary states of visible unit i and hidden unit j, ai, bj are their biases and 

wij is the weight between them. The network assigns a probability to every possible pair of 

a visible and a hidden vector via this energy function: 

(2) 𝑝(𝑣, ℎ) =  
1

𝑍
𝑒−𝐸(𝑣,ℎ) 
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where the “partition function”, Z, is given by summing over all possible pairs of visible and 

hidden vectors: 

(3) 𝑍 =  ∑ 𝑒−𝐸(𝑣,ℎ)
𝑣,ℎ  

The probability that the networks assigns to a visible vector, v, is given by summing over 

all possible hidden vectors: 

(4) 𝑝(𝑣) =
1

𝑍
∑ 𝑒−𝐸(𝑣,ℎ)

ℎ  

The probability that the network assigns to a training vector, or in our case a training image, 

can be raised by adjusting the weights and biases to lower the energy of that vector/image 

and raise the energy of other vectors/images, especially those that have low energies and 

therefore make a big contribution to the partition function. The derivative of the log 

probability of a training vector with respect to a weight is surprisingly simple and given as 

the following: 

(5) 
𝜕 log 𝑝(𝑣)

𝜕𝑤𝑖𝑗
= 〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙 

where the angle brackets are used to denote expectations of the in the subscript specified 

distribution. This results in a very simple learning rule for performing stochastic steepest 

ascent in the log probability of the training data: 

(6) ∆𝑤𝑖𝑗 = ∈ (〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙) 

where ∈ is the learning rate. 

Because there are no direct connections between hidden units in an RBM, it is very easy to 

get an unbiased sample of 〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎. Given a randomly selected training vector, v, the 

binary state, hj, of each hidden unit, j, is set to 1 with probability 

(7) 𝑝(ℎ𝑗 = 1|𝑣) =  𝜎(𝑏𝑗 + ∑ 𝑣𝑖𝑤𝑖𝑗𝑖 ) 

where 𝜎(𝑥) is the logistic sigmoid function 1 (1 + exp(−𝑥))⁄ . vihj is then an unbiased 

sample. 
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Because there also are no direct connections between visible units in an RBM, it is also 

very easy to get an unbiased sample of the state of a visible unit, given a hidden vector 

(8) 𝑝(𝑣𝑖 = 1|ℎ) =  𝜎(𝑎𝑖 + ∑ ℎ𝑗𝑤𝑖𝑗𝑗 ) 

However getting an unbiased sample of 〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙, is a lot more difficult. 

Therefore Hinton proposed a much faster learning procedure in 2002 that starts by setting 

the states of the visible units to any training vector. Secondly the binary states of the hidden 

units are all computed in parallel using the equation in step 7. Once the binary states have 

been chosen for the hidden units, a “reconstruction” is produced by setting each vi to 1 with 

a probability given by the equation used in step 8. The change in a weight is then given by 

(9) ∆𝑤𝑖𝑗 = ∈ (〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝑟𝑒𝑐𝑜𝑛) 

A simplified version of the same learning rule that uses the states of individual units instead 

of pairwise products is used for the biases. (Hinton G, 2010, p. 3ff) 

The learning procedure works very well in practice even though it is only crudely approximating 

the gradient of the log probability of the training data. The learning algorithm is actually much 

more closely approximating the gradient of another objective function called Contrastive 

Divergence (hence the name). (Hinton G, 2010, p. 5) 

Contrastive Divergence generally provides biased estimates, however the bias is usually very small. 

Another advantage of Contrastive Divergence learning is that the procedure is relatively fast and 

therefore it can be used as a first step to get close to a maximum-likelihood solution before another 

slower maximum-likelihood learning rule fine tunes the Contrastive Divergence model. (Carreira-

Perpiñán M, Hinton G, 2005, p. 1) 
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2.8. Result Analysis 
 

To assess the performance of the different models under given imputation methods I used the 

following tools and statistical tests (used “R” functions denoted as name {package}): 

 T-Test for pairwise comparison of means (t.test {stats}). 

To assess if there is an overall tendency over all the experiments that one or more imputation 

methods generally significantly perform better than their counterparts, t-tests are used. In 

these t-tests one sample always consists of either all AROC.Means, ACC.Means or 

BACC.Means of all experiments of one imputation method e.g. all EXP(*, STRAW, *). 

Similar the other sample then consists of all values from another imputation method e.g. 

EXP(*, MF, *). Furthermore this means that each sample consist of 12 values in total.  

 McNemar’s Chi-squared Test for pairwise comparisons of ACC (mcnemar.test 

{stats}). 

The McNemar’s Chi-squared Test is used to compare different accuracy optimized 

models. In this case the predictions from one random forest of one experiment e.g. 

EXP(0.15, STRAW, ACC) are compared to the predictions of another random forest 

from another experiment e.g. EXP(0.15, MF, ACC). Since the samples are the 

predictions the sample size is 2229 – the number of patients in our dataset. 

 DeLong Test for pairwise comparison of AUC (roc.test {pROC}). 

The DeLong Test in “R” allows for comparison of the AUC from two ROC-curves. The 

models that were optimized for area under the ROC-curve are compared using this test. 

One sample therefore consists of one ROC-curve from one random forest of one 

experiment e.g. EXP(0.15, STRAW, AUC) and the other sample of another ROC-curve 

from another random forest of another experiment e.g. EXP(0.15, MF, AUC). 
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3. Results 
 

The following results were achieved with the imputation methods and the workflow described in 

the previous chapter. This chapter is subdivided into sections for each tested amount of missing 

values, a short performance overview and an in-depth analysis at the end that clarifies if and which 

of the differences are significant or not. 

As a short recap of what is mentioned in 2.1 PREDICTIVE MODELING OF MORTALITY AFTER HEART 

VALVE SURGERIES and in 2.2 SETUP the following plots show the means of the results of 5-fold  

cross-validation setups where models have been built with either 15, 25, 35 or 60 percent maximum 

missingness and have been optimized to either maximize AUC, ACC or BACC (see plot 

description which threshold and optimization was used). 

 

3.1. Maximum 15% Missingness 
 

Results for a maximum of 15% missing values per column in the dataset. To rehearse, that means 

that only 73 out of all 147 variables were used. 

 

Fig. 3: Comparison of the four different imputation methods when up to 15% missing values are 

allowed and the model is optimized to maximize accuracy. MICE has the highest AUC with 0.8399, 

while there is no difference between the different methods in ACC. MICE performs slightly worse 

than the other methods in terms of BACC. The plot shows results from EXP(0.15, *, ACC). 
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Fig. 4: Comparison of the four different imputation methods when up to 15% missing values are 

allowed and the model is optimized to maximize the area under the ROC-curve. RBM has the 

highest AUC with 0.843, while there is no difference between the different methods in ACC and 

BACC. The plot shows results from EXP(0.15, *, AUC). 

 

 

Fig. 5: Comparison of the four different imputation methods when up to 15% missing values are 

allowed and the model is optimized to maximize balanced accuracy. MF has the highest AUC with 

0.8114, while STRAW leads in ACC with 0.8519. MF also outperformed all other methods in 

terms of BACC with 0.735 balanced accuracy. The plot shows results from EXP(0.15, *, BACC). 
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3.2. Maximum 25% Missingness 
 

Results for a maximum of 25% missing values per column in the dataset. Rising the threshold to 

25% meant an increase of 4 variables and therefore a total of 77 (out of 147) variables that were 

used.  

 

Fig. 6: Comparison of the four different imputation methods when up to 25% missing values are 

allowed and the model is optimized to maximize accuracy. MICE has the highest AUC with 0.8497, 

while it performs slightly worse than the other methods when it comes to ACC and BACC. The 

plot shows results from EXP(0.25, *, ACC). 
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Fig. 7: Comparison of the four different imputation methods when up to 25% missing values are 

allowed and the model is optimized to maximize the area under the ROC-curve. MICE has the 

highest AUC with 0.848, while there is almost no difference between the methods in ACC (RBM 

is slightly ahead). MF performs the best in terms of BACC with 0.5652 balanced accuracy. The 

plot shows results from EXP(0.25, *, AUC). 

 

Fig. 8: Comparison of the four different imputation methods when up to 25% missing values are 

allowed and the model is optimized to maximize balanced accuracy. MF has the highest AUC with 

0.8457, while MICE leads in ACC and BACC with 0.8582 and 0.7327 respectively. The plot shows 

results from EXP(0.25, *, BACC). 
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3.3. Maximum 35% Missingness 
 

Results for a maximum of 35% missing values per column in the dataset. In total 85 out of the 147 

variables were used which meant a net gain of 8 variables compared to 25% maximum missingness. 

 

Fig. 9: Comparison of the four different imputation methods when up to 35% missing values are 

allowed and the model is optimized to maximize accuracy. MICE has the highest AUC with 0.8419, 

while strawman imputation leads in both ACC and BACC with 0.9672 and 0.5823 respectively. 

The plot shows results from EXP(0.35, *, ACC). 
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Fig. 10: Comparison of the four different imputation methods when up to 35% missing values are 

allowed and the model is optimized to maximize the area under the ROC-curve. MICE has the 

highest AUC with 0.8456, while both strawman imputation and RBM achieve the same, best results 

in ACC and BACC with 0.9659 and 0.5604. The plot shows results from EXP(0.35, *, AUC). 

 

 

Fig. 11: Comparison of the four different imputation methods when up to 35% missing values are 

allowed and the model is optimized to maximize balanced accuracy. MICE has the highest AUC 

with 0.8289, while RBM leads in both ACC and BACC with 0.8564 and 0.735 respectively. The 

plot shows results from EXP(0.35, *, BACC). 
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3.4. Maximum 60% Missingness 
 

Results for a maximum of 60% missing values per column in the dataset. Extending to a maximum 

amount of 60% missingness meant a further addition of 23 variables, resulting in 108 out of the 

147 variables to be used. 

 

Fig. 12: Comparison of the four different imputation methods when up to 60% missing values are 

allowed and the model is optimized to maximize accuracy. MICE has the highest AUC with 0.8347, 

while strawman imputation leads in ACC with 0.9659 and RBM outperforms it’s counterparts in 

BACC with 0.5867 balanced accuracy. The plot shows results from EXP(0.60, *, ACC). 
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Fig. 13: Comparison of the four different imputation methods when up to 60% missing values are 

allowed and the model is optimized to maximize the area under the ROC-curve. MICE has the 

highest AUC with 0.8482, while strawman imputation leads both in terms of ACC and BACC with 

0.9659 and 0.5604 respectively. The plot shows results from EXP(0.60, *, AUC). 

 

 

Fig. 14: Comparison of the four different imputation methods when up to 60% missing values are 

allowed and the model is optimized to maximize balanced accuracy. MICE has the highest AUC 

with 0.8376 and ACC with 0.8694. RBM leads in terms of BACC with 0.7432 balanced accuracy. 

The plot shows results from EXP(0.60, *, BACC). 
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3.5. Performance without Imputation 
 

In order to get an ever wider view of the performance, one run without the imputation of missing 

values was done. This means that all columns that had missing values somewhere were completely 

discarded from the dataset and only the complete variables (13 in total) were used for building the 

model. The result can be seen in the next plot: 

 

Fig. 15: Model performance in comparison of the three different optimization methods. As one 

would expect, AUC optimization yields the best AUC, ACC optimization the best ACC and BACC 

optimization the best BACC. All values are smaller than any of the imputed counterparts however! 

The plot shows results from EXP(-, -, *). 
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3.6. Performance Overview 
 

There is no general answer to what method performed best without doing further analysis. However 

it can be assessed directly from the results in which cases each method produced the best values 

and how often. The results also immediately show which models produced the overall best values 

in regards of AUC, ACC and BACC, namely: 

 Best AUC: Imputation with MICE, maximum of 25% missing values, ACC optimization  

→ 0.8497 AUC. 

 Best ACC: Imputation with strawman method, maximum of 35% missing values, ACC 

optimization  

→ 0.9672 ACC. 

 Best BACC: Imputation with RBM, maximum of 60% missing values, BACC optimization  

→ 0.7432 BACC. 
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3.7. Analysis 
 

Further in-depth analysis is needed to address if MissForest, MICE and RBM significantly 

outperformed standard strawman imputation. For that matter the tools described in the last chapter 

in 2.8 RESULT ANALYSIS were used and produced the following results. For better comparison the 

fields of significant p-values were coloured in green and the significantly better performing method 

was denoted in bold green. 

The null hypothesis H0 is that there is no difference between the compared imputation methods. 

The alternative hypothesis H1 is that there is a difference between the compared imputation 

methods. 

Furthermore a significance level of 5% is chosen (α = 0.05). 
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Compared Methods Compared Values Test P-Value 

MF, STRAW ACC T-Test 0.9746 

MF, STRAW AUC T-Test 0.07471 

MF, STRAW BACC T-Test 0.8063 

MICE, STRAW ACC T-Test 0.9032 

MICE, STRAW AUC T-Test 0.01961 

MICE, STRAW BACC T-Test 0.9642 

RBM, STRAW ACC T-Test 0.9453 

RBM, STRAW AUC T-Test 0.14 

RBM, STRAW BACC T-Test 0.7621 

MF, MICE ACC T-Test 0.8775 

MF, MICE AUC T-Test 0.3314 

MF, MICE BACC T-Test 0.8552 

MF, RBM ACC T-Test 0.9197 

MF, RBM AUC T-Test 0.7705 

MF, RBM BACC T-Test 0.9551 

MICE, RBM ACC T-Test 0.958 

MICE, RBM AUC T-Test 0.2478 

MICE, RBM BACC T-Test 0.8135 

 

Fig. 16: Pairwise comparison of means of the different imputation methods to assess if one method 

generally outperforms the others. Significant p-values are coloured in green. MICE generally 

performed significantly better than strawman imputation in terms of AUC. As an example, the first 

line shows the comparison of ACC.Means yielded by all models that used MF – so  

EXP(*, MF, *) – (sample 1) to all models that used STRAW – so EXP(*, STRAW, *) –  

(sample 2). To be more specific that means that sample 1 consisted of all MissForest imputed 

ACC.Mean values from Fig. 3-14 which leads to in total 12 values per sample. The same concept 

holds for sample 2.  
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Compared Methods Compared Values Missingness Test P-Value 

MF, STRAW ACC 0.15 McNemar 1 

MF, STRAW ACC 0.25 McNemar 1 

MF, STRAW ACC 0.35 McNemar 1 

MF, STRAW ACC 0.60 McNemar 1 

MICE, STRAW ACC 0.15 McNemar 1 

MICE, STRAW ACC 0.25 McNemar 1 

MICE, STRAW ACC 0.35 McNemar 0.2207 

MICE, STRAW ACC 0.60 McNemar 0.02334 

RBM, STRAW ACC 0.15 McNemar NA 

RBM, STRAW ACC 0.25 McNemar 1 

RBM, STRAW ACC 0.35 McNemar 1 

RBM, STRAW ACC 0.60 McNemar 1 

MF, MICE ACC 0.15 McNemar 1 

MF, MICE ACC 0.25 McNemar 1 

MF, MICE ACC 0.35 McNemar 0.1306 

MF, MICE ACC 0.60 McNemar 0.04123 

MF, RBM ACC 0.15 McNemar 1 

MF, RBM ACC 0.25 McNemar NA 

MF, RBM ACC 0.35 McNemar 1 

MF, RBM ACC 0.60 McNemar 0.6831 

MICE, RBM ACC 0.15 McNemar 1 

MICE, RBM ACC 0.25 McNemar 1 

MICE, RBM ACC 0.35 McNemar 0.1306 

MICE, RBM ACC 0.60 McNemar 0.01333 

 

Fig. 17: Pairwise comparison of ACC optimized results using the McNemar-test to assess if there 

are significant differences in these specific scenarios. Significant p-values are coloured in green. 

MICE performed significantly better than all other methods in cases where high amounts of missing 

data was permitted (maximum 60% missing values). As an example, the first line shows the 

comparison of results from the ACC optimized random forest trained with the MF imputed dataset 

and a maximum of 15% missing values – so EXP(0.15, MF, ACC) – (sample 1) to the ACC 

optimized random forest trained with the STRAW imputed dataset and a maximum of 15% missing 

values – so EXP(0.15, STRAW, ACC) – (sample 2). In more detail that means that sample 1 

consisted of all 2229 predictions from the random forests that were trained to maximize accuracy 

on the dataset that had a maximum of 15% missingness per variable and was imputed with 

MissForest. Again the same concept for sample 2. 
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Compared Methods Compared Values Missingness Test P-Value 

MF, STRAW AUC 0.15 DeLong 0.3375 

MF, STRAW AUC 0.25 DeLong 0.05335 

MF, STRAW AUC 0.35 DeLong 0.1914 

MF, STRAW AUC 0.60 DeLong 0.3173 

MICE, STRAW AUC 0.15 DeLong 1 

MICE, STRAW AUC 0.25 DeLong 0.1469 

MICE, STRAW AUC 0.35 DeLong 0.1549 

MICE, STRAW AUC 0.60 DeLong 0.3173 

RBM, STRAW AUC 0.15 DeLong 1 

RBM, STRAW AUC 0.25 DeLong 1 

RBM, STRAW AUC 0.35 DeLong 1 

RBM, STRAW AUC 0.60 DeLong 0.3173 

MF, MICE AUC 0.15 DeLong 0.3375 

MF, MICE AUC 0.25 DeLong 0.01405 

MF, MICE AUC 0.35 DeLong 0.05083 

MF, MICE AUC 0.60 DeLong 0.3272 

MF, RBM AUC 0.15 DeLong 0.3375 

MF, RBM AUC 0.25 DeLong 0.5335 

MF, RBM AUC 0.35 DeLong 0.1914 

MF, RBM AUC 0.60 DeLong 0.3375 

MICE, RBM AUC 0.15 DeLong 1 

MICE, RBM AUC 0.25 DeLong 0.1469 

MICE, RBM AUC 0.35 DeLong 0.1549 

MICE, RBM AUC 0.60 DeLong 0.5652 

 

Fig. 18: Pairwise comparison of AUC optimized results using DeLong-test to assess if there are 

significant differences in these specific scenarios. Significant p-values are coloured in green. 

MissForest performed significantly better than MICE in the case of 25% missing values at 

maximum. As an example, the first line shows the comparison of results from the AUC optimized 

random forest trained with the MF imputed dataset and a maximum of 15% missing values – so 

EXP(0.15, MF, AUC) – (sample 1) to the AUC optimized random forest trained with the STRAW 

imputed dataset and a maximum of 15% missing values – so EXP(0.15, STRAW, AUC) –  

(sample 2). For the DeLong-test that means that sample 1 was the ROC-curve produced by the 

random forests that were trained to maximize AUC on the dataset that had a maximum of 15% 

missingness per variable and was imputed with MissForest. Again the same concept for sample 2. 
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3.8. Computational Speed and Implementation Effort 
 

Excluding strawman imputation the fastest method definitely was MICE which imputed the whole 

dataset in roughly a few minutes. RBM is a little behind MICE and imputation took up to half an 

hour. The worst of the methods definitely was MissForest which took about 20 minutes per iteration 

for 100 trees per forest increasing to 7 hours per iteration for 10 000 trees per forest. On the other 

hand MissForest can easily be run in parallel which can drastically speed up the imputation time if 

one has the necessary resources. One has to also note here, that this dataset is rather small and 

therefore the time for imputation is still acceptable. In bigger setups this might actually be an aspect 

to think of however.  

For reference: The used computer was equipped with an intel Core i7-4790K processor (CPU) 

running at 4GHz and 16 GB DDR3-2133MHz random access memory (RAM). 

In terms of implementation effort the most easy to use method was MissForest as the “R”-package 

is really straight forward to use and well documented. MICE is slightly less convenient since the 

package is a lot mightier and offers a lot of tools for multiple imputation that not directly are 

involved with the MICE imputation method itself, which can be slightly confusing. The least 

convenient method was imputation by RBM as there is not really any material available in “R” and 

one has to either implement it from scratch or use one of the less known packages where it is unsure 

how trustworthy they are. For that step “python” was the programming language of choice and 

there is an imputation package available which does RBM imputation given a pandas-dataframe. 

This was mostly inconvenient because of the communication of values between “R” and “python” 

since the preprocessing is first done with “R”, the values have then to be transferred to “python” 

were the missing ones are imputed by the RBM and afterwards the values have to be sent back to 

“R” to complete the rest of the workflow. If the workflow was completely written in “python” this 

might have been a lot more straight forward and easier to implement. 
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4. Interpretation of Results and Discussion 
 

MissForest and MICE imputation were both praised by Waljee, Mukherjee, Singal, et al. as well 

as Tang and Ishwaran to be a promising method for imputation of missing values that does a 

significantly better job than other imputation methods including strawman imputation, therefore 

the question arises why the results in our dataset and setup are not significantly improving across 

most cases regardless if imputed by MissForest, MICE or RBM. To rehearse, there were only 5 out 

of 66 tested cases where imputation significantly improved the results. 

Since we don’t have a complete reference dataset we can’t determine the true imputation error and 

we are left guessing why the results are actually how they are. There are various possible reasons 

that could cause this behaviour: 

 The values that are imputed don’t affect the prediction in a significant way. 

 Strawman imputation might already give good predictions for missing values. 

 Data might not be missing at random which negatively affects MissForest, MICE and RBM 

imputation. 

Most likely the observed behaviour is caused by a combination of all three points. Notable is that 

the imputed variables are indeed affecting the prediction which is shown by results of the run 

without imputation (significantly worse accuracy, balanced accuracy and area under the curve). 

However the difference in amount of variables between using only complete variables (13) and 

variables up to 15% missingness (73) is pretty big. Concluding from that we can assume that the 

variables with missing values are important and significantly improve the result, but on the other 

hand the 15% that is missing in those variables might not be. 

Concerning the last point, it seems also very likely that data is not missing at random since clinical 

tests are usually taken based on what other tests have yet been performed and not been performed, 

which leads to missing variables (lab data) that is both dependent on observed and missing values. 

(Tang F, Ishwaran H, 2017, p. 9)  
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5. Conclusion 
 

In conclusion MissForest, MICE and RBM manage to outperform standard strawman imputation 

in a most of the cases. The best values for AUC and BACC were achieved using MICE and RBM 

respectively while strawman imputation still yielded the best result in terms of ACC. In our setup 

however the differences were rather small and significant in only 5/66 of the tested cases. The 

expectation that MissForest, MICE and RBM would significantly outperform strawman imputation 

across the field could therefore not be met. Since there is no complete reference dataset the true 

imputation error cannot be calculated and the cause for this behaviour can only be speculated upon. 

The most probable reasons are that missing values are not significant for the prediction and that 

the data in the dataset is not missing at random which negatively affects imputation by MissForest, 

MICE and RBM. 
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7. List of Figures 
 

 Fig. 1, 3-18: Created with “R” and Microsoft Excel for this paper. Works are the author’s! 

 Fig. 2: Restriced Boltzmann Machine by Martin Thoma, distributed under Creative 

Commons CC0 1.0 

 

8. References 
 

ASI Data Science. Package “sherlockml-boltzmannclean”: Fill missing values in a Pandas 

DataFrame using a Restricted Boltzmann Machine. PyPI 2018. Available from: 

https://pypi.org/project/sherlockml-boltzmannclean/; 

Azur MJ, Stuart EA, Frangakis C, et al. Multiple Imputation by Chained Equations: What is it 

and how does it work? International Journal of Methods in Psychiatric Research 2011; 

Bodenhofer U, Haslinger-Eisterer B, Minichmayer A, Hermanutz G, and Meier J. Machine 

Learning-Based Risk Profile Classification of Patients Undergoing Heart Valve Surgery. 

Johannes Kepler University and Kepler University Clinic 2016; 

Breiman L. Random forests. University of California 2001; 

Carreira-Perpiñán MA, Hinton G. On Contrastive Divergence Learning. University of Toronto 

2005; 

Hinton G. Boltzmann Machine. Scholarpedia 2007; 

Hinton G. A Practical Guide to Training Restricted Boltzmann Machines. University of Toronto 

2010; 

Oba S, Sato M, Takemasa I, Monden M, Matsubara K, and Ishii S. A Bayesian missing value 

estimation method for gene expression profile data. PubMed 2003; 

Python Software Foundation. The Python Programming Language. USA: 2019. Available from: 

https://www.python.org/; 

R Core Team. R: The R Project for Statistical Computing. Vienna, Austria: 2019. Available 

from: https://www.R-project.org/; 

https://pypi.org/project/sherlockml-boltzmannclean/
https://www.python.org/
https://www.r-project.org/


Micha Birklbauer  Imputation Of Missing Values In Clinical Data 

40 
 

Stekhoven DJ. Package “missForest”: Nonparametric Missing Value Imputation using Random 

Forest. CRAN 2013; / Daniel J. Stekhoven (2013). missForest: Nonparametric Missing Value 

Imputation using Random Forest. R package version 1.4. Available from: https://cran.r-

project.org/package=missForest; 

Stekhoven DJ, Buehlmann P. MissForest - nonparametric missing value imputation for mixed-

type data. Bioinformatics 2012; 

Tang F, Ishwaran H. Random Forest Missing Data Algorithms. University of Miami 2017; 

Van Buuren S. Flexible Imputation of Missing Data. CRC Press 2012; 

Van Buuren S, Groothuis-Oudshoorn K. Package “mice”: Multivariate Imputation by Chained 

Equations. CRAN 2018. Available from: https://cran.r-project.org/package=mice; 

Van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations in 

R. Journal of Statistical Software 2011; 

Waljee AK, Mukherjee A, Singal AG, et al. Comparison of imputation methods for missing 

laboratory data in medicine. BMJ Open 2013; 

https://cran.r-project.org/package=missForest
https://cran.r-project.org/package=missForest
https://cran.r-project.org/package=mice

