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Abstract 
k-Wave is a M A T L A B toolbox for the s imulat ion of sound wave propagation. The a i m of 
this thesis is to re-implement a subset of k-Wave i n P y t h o n while focusing on computat ional 
performance. The second goal is to develop a set of guidelines for transforming M A T L A B 
source code to P y t h o n that could aid i n further development. The thesis first summarises 
core features of the k-Wave toolbox, explores available technologies for high performance 
computing i n Py thon , and highlights the most important aspects of transforming M A T L A B 
source codes to Py thon . The second part of the thesis discusses architecture, testing and 
benchmarking of the P y t h o n implementat ion. The result of this thesis is a P y t h o n imple­
mentation of the three-dimensional sound propagation simulat ion compatible w i th k-Wave. 
The new implementat ion improves the structure of the original toolbox while providing 
performance comparable to the original k-Wave. In some instances, the performance of the 
new implementat ion surpasses the original implementation. 

Abstrakt 
k-Wave je M A T L A B n á s t r o j pro simulaci š í ření zvukových v ln . C í lem t é t o p r á c e je reimple-
mentovat čás t n á s t r o j e k-Wave v jazyce P y t h o n se z a m ě ř e n í m na v ý p o č e t n í výkon . D r u h ý m 
cílem je formulace sady d o p o r u č e n í pro transformaci zdro jových k ó d u z j azyka M A T L A B 
do j azyka Py thon , k t e r é by mohly p ř i spě t př i da l š ím vývoji . Tato p r á c e nejprve shrnuje 
klíčové funkce n á s t r o j e k-Wave, z k o u m á technologie pro vysoce v ý k o n n é v ý p o č t y d o s t u p n é 
v jazyce P y t h o n a zdů razňu je ne jzásadnějš í aspekty transformace zdro jových k ó d ů z j azyka 
M A T L A B do j azyka P y t h o n . D r u h á čás t p r á c e se zabývá architekturou, t e s t o v á n í m a 
m ě ř e n í m v ý k o n u výs ledné P y t h o n implementace. Výs ledkem t é t o p r á c e je implementace 
t r o j r o z m ě r n é simulace šíření zvuku , k t e r á je k o m p a t i b i l n í s k-Wave. Nová implementace 
vylepšuje s t rukturu p ů v o d n í h o n á s t r o j e a poskytuje výkon s rovna t e lný s p ů v o d n í m n á s t r o ­
jem, v u rč i tých p ř í p a d e c h výkon p ů v o d n í h o ba l íku převyšu je . 
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Rozšířený abstrakt 

k-Wave je s imulačn í n á s t r o j pro p r o s t ř e d í M A T L A B , k t e r ý umožňu je simulaci š í ření ul tra­
zvuku v j e d n o r o z m ě r n é m , d v o j r o z m ě r n é m i t r o j r o z m ě r n é m prostoru. U l t r azvuková simu­
lace je ča s to využ ívána na pol i medicíny. P r o t o ž e u l t r azvukové simulace vě tš ího rozsahu jsou 
v ý p o č e t n ě n á r o č n é , využ ívá k-Wave ex t e rn í akce le rá to ry jako n a p ř . k - W a v e - F l u i d - O M P , 
k t e r é umožňu j í urychli t proces simulace jak na procesoru, tak p o m o c í grafických karet. 
K vývoj i t ě ch to akce l e r á to rů se pově t š inou používaj í p o m ě r n ě n ízkoúrovňové j azyky jako 
C + + , k t e r é ale nejsou pro všechny už iva te le k-Wave d o s t a t e č n ě p ř í s t u p n é . Dalš í n e v ý h o d o u 
n ízkoúrovňových j a z y k ů je d l o u h á doba vývoje nových funkcí s imu lá to ru . 

Kvůli p o p u l a r i t ě j azyka P y t h o n ve vědecké sféře je i v k o m u n i t ě už iva te lů n á s t r o j e k-
Wave p o p t á v á n a verze tohoto n á s t r o j e v jazyce Py thon . D íky vysoké ú rovn i abstrakce 
jazyka P y t h o n by t a k é bylo u m o ž n ě n o jeho nasazen í př i rych lém p r o t o t y p o v á n í nových 
funkcí s imulačn ího n á s t r o j e k-Wave. D a l š í m p ř í n o s e m verze k-Wave s i m u l á t o r u pro jazyk 
P y t h o n by byla m o ž n o s t p ropo jen í s velkou šká lou j iných p o p u l á r n í c h n á s t r o j ů a knihoven, 
k t e r é byly pro jazyk P y t h o n vy tvořeny . 

Cí lem t é t o p r á c e je implementovat verzi s imulačn ího n á s t r o j e k-Wave v jazyce P y t h o n 
a vy tvo ř i t sadu d o p o r u č e n í pro konverzi zdro jových k ó d ů z j azyka M A T L A B do jazyka 
Py thon , to vše s d ů r a z e m na v ý p o č e t n í výkon . 

P r á c e nejprve shrnuje zák l adn í pojmy a koncepty n á s t r o j e k-Wave a popisuje princip 
jeho fungování , z e jména s ohledem na s t rukturu s imulačních dat, komunikaci s e x t e r n í m i 
akce le rá to ry a funkcemi nás t ro j e , k t e r é jsou p ř e d m ě t e m implementace. N á s l e d n ě jsou pop­
sány ne jzásadnějš í rozdí ly mezi j azyky M A T L A B a P y t h o n z hlediska konverze zdro jových 
kódů . M e z i tyto problematiky p a t ř í indexování , d a to v é struktury, a r i tme t i cké operace, 
fourierovy transformace a vizualizace dat. V souvislosti s t ě m i t o o t á z k a m i jsou p ř e d s t a v e n y 
v ý p o č e t n í a v izual izační knihovny d o s t u p n é v jazyce Py thon . Ze jména je implementace v 
jazyce P y t h o n za ložena na k n i h o v n á c h N u m P y , numexpr a p y F F T W , k t e r é umožňu j í efek­
t ivn í vědecké výpoč ty . Dá le jsou vy jmenovány n ě k t e r é z á s a d n í n á v r h o v é vzory, k t e r é byly 
použ i t y př i implementaci pro z lepšení s t ruktury a modular i ty výs ledného řešení . 

P r a k t i c k á čás t p r á c e popisuje s t rukturu výs ledné implementace, její n á v r h o v á rozhod­
n u t í a odl i šnos t i od p ů v o d n í implementace v jazyce M A T L A B . Nová implementace byla 
o t e s tována p o m o c í n á s t r o j e kWaveTester, k t e r ý je součás t í referenčního ba l íku k-Wave. 

N á s t r o j kWave Tester slouží k a u t o m a t i c k é m u generování tes tovacích dat a s rovnáván í 
výs ledků simulace akce l e r á to rů s referenčními výs ledky simulace. P r á c e p ř e d s t a v u j e několik 
vzorových tes tovac ích p ř ík l adů , na k t e r ý c h byla implementace t e s tována , a zhodnocuje 
jejich výsledky. Ce lá implementace je nakonec zhodnocena z hlediska výkonnos t i p o m o c í 
op t ima l i začn ích n á s t r o j ů , výkonnos t je t a k é p o r o v n á n a s p ů v o d n í i m p l e m e n t a c í v jazyce 
M A T L A B . B ě h e m optimalizace je zhodnocena i p r á c e s p a m ě t í a jsou p ř e d s t a v e n y prob lémy, 
k t e r é neefekt ivní p ř í s t u p k p a m ě t i způsobuje . 

Po z h o d n o c e n í s távaj íc ího stavu jsou n a v r ž e n y dalš í po t enc i á ln í způsoby optimalizace 
vče tně p ř í k l a d ů typicky řešených op t ima l i začn ích p r o b l é m ů . 

Výs ledkem p r á c e je s h r n u t í dů lež i tých a s p e k t ů p ř e v o d u zdro jových k ó d ů z j azyka M A T ­
L A B do jazyka P y t h o n se z a m ě ř e n í m na v ý p o č e n í výkon . H l a v n í m v ý s t u p e m je verze ba l íku 
k-Wave v jazyce Py thon , k t e r á obsahuje všechny n e z b y t n é n á s t r o j e pro t r o j r o z m ě r n o u u l ­
t razvukovou simulaci . Nová implementace vylepšuje s t rukturu p ů v o d n í h o n á s t r o j e a t aké 
poskytuje výkon s rovna te lný s p ů v o d n í m ba l íkem k-Wave, v u rč i tých p ř í p a d e c h výkon 
p ů v o d n í h o ba l íku převyšuje . 
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Chapter 1 

Introduction 

Ultrasound simulation, or more generally the s imulat ion of sound wave propagation, is a 
type of continuous physics simulat ion. It models changes i n pressure and velocity inside a 
media over a given span of t ime using a set of physics equations, the media having predefined 
density and other characteristics. C o m m o n applications include the study of acoustics, 
modeling of human tissue in biomedicine, and other applications, where propagation of 
sound i n materials is important . One of the many simulat ion programs available is k-
Wave [21], a toolbox wri t ten for the environment. It includes configurable tools for sound 
propagation simulations i n up to 3 dimensions. Since both the t ime and memory complexity 
of such simulations sharply increase wi th the size of the s imulat ion medium, opt imizat ion 
is essential to make large-scale simulations feasible. Due to this, k-Wave relies on optimized 
C + + and C U D A accelerators to provide the necessary performance for larger tasks. 

C + + and C U D A , while very fast, require a higher level of programming expertise than 
would generally be expected of an average user of k-Wave. The t ime and effort needed to 
develop new features i n said languages is also significantly increased by their verbosity. 

Ideally, the selected implementat ion language should be abstract enough to speed up 
development t ime and provide good performance at the same time. W h i l e these two re­
quirements go against each other to some degree, it is possible to find a compromise. The 
P y t h o n programming language presents a good candidate for such a compromise. It is 
sufficiently abstract and can also benefit from a large number of performant computat ion 
libraries. Because P y t h o n is also increasingly more popular i n the scientific field, a P y t h o n 
version of k-Wave is i n demand from the k-Wave community. 

This thesis aims to implement a subset of the k-Wave toolbox i n P y t h o n while focusing 
on the computat ional performance of the designed solution. The second objective is to 
create a set of guidelines for converting M A T L A B source codes to P y t h o n based on the ex­
perience gained during the implementat ion and to discuss techniques for wr i t ing performant 
P y t h o n programs. 

Chapter 2 introduces the structure and algorithms of k-Wave, which w i l l be the focus of 
the final implementat ion. Chapter 3 discusses the conversion of M A T L A B source codes to 
Py thon , emphasizing the most important differences and performance. Libraries and design 
patterns used during the implementat ion are also summarized. Chapter 4 describes the 
structure, features, and implementat ion k-Wave-Python. Chapter 5 describes the testing 
the new implementation, explores the effects of various optimizations on the performance 
of the simulator, avenues for further development are also explored. The thesis concludes 
in chapter 6 w i th a summary. 
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Chapter 2 

A brief overview of k-Wave 

k-Wave, as previously described, is a simulation toolbox for M A T L A B . Created by Bradley 
E . Treeby and Benjamin T . Cox in 2010 [21], the project has since been continuously under 
development. Extensions were later wri t ten i n C + + and C U D A to accelerate performance-
cr i t ical parts of the toolbox on both the C P U and the G P U . This chapter w i l l outline 
the general structure of the M A T L A B implementat ion of the toolbox, its most important 
features, and architectural decisions. 

2.1 Structure of the toolbox 

k-Wave consists of a set of core modules that contain the implementat ion of the k-space 
first-order simulation algorithms [20, p. 26]. A l l simulations can be performed i n 1, 2, 
and 3 dimensions, the 3-dimensional variant being the most common i n real-world ap­
plications such as low-intensity ultrasound neurostimulation [11] or high-intensity focused 
ultrasound tumor ablat ion [15]. Variants of the core algorithms are executed using the 
functions kspaceFirstOrderlD, kspaceFirst0rder2D, and kspaceFirst0rder3D for each 
number of dimensions respectively. A p a r t from the core modules, the toolbox also includes 
many auxi l iary modules that handle the ini t ia l izat ion and preparation of simulation data, 
visualizat ion, data recording, and testing. 

2.2 Simulation data 

M u l t i p l e data structures, global variables, and flags serve as input data for in i t ia l iz ing and 
running the simulat ion. Simulat ion input data is d ivided into four groups: the kGrid, 
the Medium, the Source and the Sensor. These four groups are passed to the simulation 
function as data structures together w i th addi t ional opt ional parameters that are described 
in the k-Wave manual [20, p. 68]. This section summarizes contents of a l l input data groups 
and the P M L (Perfectly Matched Layer) . 

kGrid 

The k G r i d contains variables that define the s imulat ion t ime and dimensions of the simu­
lat ion medium. The variables Nx, Ny, Nz define the discrete number of gr id points in each 

x h t t p s : //www.mathworks.com/products/matlab.html 
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cardinal direction and dx, dy, dz define the physical spacing of gr id points in the respective 
direction. The variables Nt and dt set the number of s imulat ion t ime steps and their length. 

Medium 

The M e d i u m describes the physical medium i n which sound waves propagate, the most 
important value being the sound_speed, which defines the speed of sound propagation in 
the medium. The field density describes the density of the medium. In case the s imulat ion 
is non-linear and /or absorbing, addi t ional coefficients are also included. 

The medium can be either homogenous, or heterogenous. A homogenous medium only 
contains one scalar value per field that is used for the entire domain, a heterogenous medium 
defines each field as an array, that contains a value for every grid point. 

% ... Preceding i n i t i a l i z a t i o n steps 
Nx = 64; 
Ny = 64; 

medium.sound_speed = 1700 * ones(Nx, Ny); 
medium.density = 800 * ones(Nx, Ny); 

medium.sound_speed(:, l:Ny) = 2000; 
medium.density(Nx/2:Nx) = 500; 

% ... Following i n i t i a l i z a t i o n steps 
sensor_data = kspaceFirst0rder2D(kgrid, medium, source, sensor); 

Lis t ing 2.1: Ini t ia l izat ion of a heterogenous medium in the k-Wave toolbox 

L i s t ing 2.1 shows the ini t ia l izat ion of a s imulat ion w i t h a heterogenous medium 2 . B o t h the 
medium.sound_speed and medium.density are defined as arrays w i t h values for pressure 
and density for each grid point. Fol lowing the al location of arrays, slices of values in both 
the sound speed array and the density array are changed. This allows the s imulat ion of 
sound propagation through a medium composed of different materials. 

Source 

The Source defines the sources which dictate where the sound wave originates from i n the 
simulation medium. There are two types of sources: initial pressure sources and time-
varying sources. In i t ia l pressure sources only inject pressure into the s imulat ion i n the 
beginning (as defined by the variable pO), whereas t ime-varying sources continuously add 
pressure (or velocity) at gr id points specified by a mask. 

2Similar to an example from k-Wave: examples/example_ipv_heterogenous_medium.m 

5 



X 

source_pos index 
source 

I / 
source 

I / 
0.o|o.5|l.o|o.s|o.o| 

t 
t index 
t 

t index 
D o m a i n 

Figure 2.1: Time-varying source 

Figure 2.1 represents the function of a t ime-varying source. The source_pos_index points 
to the grid points of a domain (in this case, a two-dimensional domain), that contain the 
t ime-varying source. After each step of the simulation, the source fetches the current source 
value pointed to by t_index (index of the current simulation step) from the source_input 
array. This value is then either set or added to the target gr id cells, depending on the 
simulation settings. The source_input and source_pos_index have the prefix p_ and u_ 
for pressure and velocity respectively. The target domain depends on the source type. The 
p array (containing current pressure) is used for pressure sources and the ux_sgx, uy_sgy 
and uz_sgz arrays are used for injection of particle velocity for each cardinal direction. 

7. Preceding i n i t i a l i z a t i o n steps 

Nx = 32; 
Ny = 32; 
source.pO = zeros(Nx, Ny); 

source.pO(Nx/2-2:Nx/2+2, Ny/2-2:Ny/2+2) = 5; 

% ... Following i n i t i a l i z a t i o n steps 
sensor_data = kspaceFirst0rder2D(kgrid, medium, source, sensor); 

Lis t ing 2.2: Creat ion of an in i t i a l pressure source in the k-Wave toolbox 

L i s t ing 2.2 shows the in i t ia l iza t ion of an in i t i a l pressure source for a two-dimensional sim­
ulat ion. The pO array containing in i t i a l pressure is first ini t ia l ized zeroed. Afterwards, a 
cube of in i t i a l pressure measuring 2x2 grid points w i t h the value of 5 pascals is placed in 
the center of the medium. The in i t i a l pressure is copied to the p pressure array during the 
first t ime step of the simulation, then the in i t i a l pressure then propagates. 

Sensor 

Changes i n pressure and particle velocity during simulation are recorded using Sensors. 
The gr id points where measurements are taken can be set using either a binary mask or 
cuboid corners. W i t h boolean masks, the presence of a sensor at a given gr id point is 
defined by the corresponding binary value (0 or 1) i n the sensor mask. This allows for more 
granular control over the shape of the sensors but requires more memory to store values 
for each coordinate. C u b o i d corners, on the other hand, only require the coordinates of 

(i 



two opposing points of a geometric shape to describe the mask. In 3 D , the two opposing 
coordinates form a cuboid, a rectangle in 2D, and a line in I D [20, p. 36]. The record 
field contains the list of a l l measurements to be recorded - this includes pressure, particle 
velocity, and their various aggregations like the maximum, min imum, or final recorded 
value. 

(1,1) 

(2,2) 

(4,3) 

(3,4) 

Figure 2.2: C u b o i d corners mask 

Figure 2.2 shows a two-dimensional gr id w i th two overlapping cuboid corner masks. The 
first mask originates at coordinate (1,1) and ends at (3,4), the second mask originates at 
(2,2) and end at (3,4). A s can be seen, this way of representing masks is very compact, a 
binary sensor mask would require the storage of a value for each ind iv idua l point contained 
in the masks, whereas cuboid masks only define spans of coordinates for each dimension. 

% ... Preceding i n i t i a l i z a t i o n steps 

% Defining a cuboid mask 
sensor.mask = [2 2 4 5 ; 3 3 4 5].'; 

% Running the simulation 
sensor_data = kspaceFirst0rder2D(kgrid, medium, source, sensor); 

Lis t ing 2.3: Creat ion of a cuboid corners mask i n the k-Wave toolbox 

L i s t ing 2.3 contains the definition of a cuboid corners mask i n the M A T L A B version of 
k-Wave, s imilar to one of the mask definitions i n the k-Wave example folder 3 . E a c h cuboid 
is defined as a sequence of numbers in the format [ x l_start y l _ s t a r t x l_end y l_end], 
forming the span of columns that w i l l be the part of the cuboid mask. If mult iple masks 
are defined, each mask is stored i n a separate column of the array. Because figure 2.2 shows 
N u m P y coordinates, a l l indices in the M A T L A B example are incremented by 1. 

3Similar to an example from k-Wave: examples/example_ipv_opposing_corners_sensor_mask.m 
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P M L 
The P M L (Perfectly Matched Layer) is a layer at the boundary of the s imulat ion medium. 
It emulates the effect of pressure waves leaving the s imulat ion medium. Wi thou t the P M L , 
the waves would cause 'echoes' i n the s imulat ion medium, creating noise i n the sensors. 

2.3 Data exchange with k-Wave accelerators 

For simulations wi th smaller gr id sizes, the default M A T L A B implementat ion of k-Wave 
provides sufficient performance. However, larger simulations require the usage of external 
accelerators that implement the core algorithms i n more efficient compiled languages such 
as C + + . The accelerators function as self-sufficient command-line utili t ies that accept 
arguments in order to configure the simulation, the s imulat ion data discussed in the previous 
section 2.2, is passed to the accelerator using an H D F 1 file. k-Wave that is being run 
wi th an accelerator does not ca l l the kspaceFirstOrder. . . () function but instead saves 
al l s imulat ion input data to an input file (sec. 2.3), calls the accelerator specified by the 
options. cpp_binary_name;) variable. The accelerator then executes the simulation, saving 
the results back to an output file (sec. 2.3). The k-Wave then reads the externally computed 
result and continues normal operation. 

Exchange of data using H D F files is well suited for this purpose given, the number of 
variables needed for the ini t ia l izat ion of the simulat ion. The format is also open source and 
platform independent, enabling the implementat ion of accelerators i n any language which 
supports the H D F format. Another important feature is the abi l i ty to stream data to / f rom 
on-disk files, saving memory when working wi th large domains. Th is section describes three 
kinds of H D F files that are used in k-Wave: input files, output files, and checkpoint files. 

Input files 

The input file is created by k - W a v e - M A T L A B and consumed by the accelerator. It contains 
data required to ini t ial ize and execute the simulat ion. The data fields are grouped according 
to the structure of the s imulat ion input data (sec. 2.2). The location and type of used 
sensors are stored in the input file, fields being recorded are toggled using command line 
flags (sec. 1.6). The full list of input fields is available in the k-Wave manual[20, p. 71]. 

Output files 

Output files are created by the accelerator upon the completion of the simulat ion. Apa r t 
from basic information about the simulation, which is similar to fields in the input file, 
results of s imulat ion and values recorded by the sensors are also stored. The recordings can 
either be scalar (maximum pressure, m i n i m u m velocity, etc.), contain the entire state of 
the grid (for example, final state of pressure), or contain a value for each sensor gr id point 
and t ime step, forming a t imeline of values for further analysis. The last type of recorded 
data is the data captured using a cuboid sensor. C u b o i d sensors capture a slice of the array 
for each t ime step, the shape of which is defined by the cuboid mask. A l l available output 
fields are described i n the k-Wave manual [20, p. 75]. 

4 h t t p s : //www.hdf group.org/solutions/hdf5/ 
5Even though the name contains cpp, any executable program or script can be specified, as long as it is 

compliant with the k-Wave command line interface 
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Checkpoint files 

Checkpoint files only contain the grid size and the current s imulat ion state: pressure, 
velocity, density, and the current t ime step index. T h i s file type is used during long-
running simulations to avoid the need to re-run the entire s imulat ion i n case of an outage 
or an error were to occur. Unl ike input and output files, checkpoint files are only created 
if enabled using a command line argument. 

2.4 k-Wave tester 

The k-Wave tester tool was created for standardized testing of both the M A T L A B tool­
box and the accelerators. The test suite is located in the kwave/testing/kWaveTester 
folder, the core implementat ion of the test script is in the kWaveTester .m file. The target 
executable to be tested can be set using the options. cpp_binary_name, as discussed in 
section 2.3. 

The options. custom_test_case list contains various flags for setting up the simula­
t ion. The u t i l i ty kwt_save_input_data.m can be used for saving the customized simulation 
files to disk, making it a useful tool when testing various types of s imulat ion implemen­
tations. The script kwt_run_omp_comparison_tests_<DIM> .m can be used for automatic 
testing of many different simulation settings combinations. The tester first runs the k-
W a v e - M A T L A B version of the simulation, storing recorded results for later comparison. 
After the k - W a v e - M A T L A B simulation ends, the tester creates an input file, calls the ac­
celerator specified by options. cpp_binary_name and reads the results from an output file. 
The values measured by the accelerator stored i n the output file are then compared wi th 
the reference results, creating the graphs and metrics described below. 

k-Wave [Total Pressure) 

<<. F << 
- U -0.1 x 30 

C++ (Total Pressure) 

I 

I 
-20 -10 0 10 

y-position [mm] 
-20 -10 0 10 

y-position [mm] 
-20 -10 0 

y-position [mm] 
, pwiuui . I Ij 

Figure 2.3: kWaveTester example output 

Figure 2.3 shows an example output of the kWaveTester tool . The leftmost plot shows the 
reference output generated by the k - W a v e - M A T L A B , the picture next to it the output of 
the accelerator being tested. The images show the values captured as the pressure wave 
passes through the sensor. The two images on the right show the local and global error 
measured i n percent. The local error displays the difference between reference and measured 
values for each grid point individual ly . The global error shows error as percentage of the 
max imum recorded value. 

A text summary of the test performed by the kWaveTester is always listed at the end 
of the simulation log file. The output for the s imulat ion displayed i n 2.3 can be seen below. 
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C++ ACCURACY COMPARED TO MATLAB: 

Error i n sensor_data(l).p 
MAX VALS = 223497.7471 (MATLAB) 223497.8125 (CPP) 
L2 = 0.00088376 

LINF = 0.20907 (9.3546e-07 normalised to max value) 

Lis t ing 2.4: kWaveTester test log summary 

The output log summary i n l is t ing 2.4 contains three metrics. The MAX VALS shows the 
max imum values recorded i n both M A T L A B and the accelerator being tested. If the maxi ­
m u m values are similar but the recorded results are not, it could mean that the calculation 
is performed correctly, but the sensor is recording at incorrect indices (indexing is a common 
source of issues, as discussed i n section 3.3). The L2 shows the R M S E (Root Mean Square 
Error) [1] of the compared results. The LINF measures the m a x i m u m absolute difference 
between values in the output, this value is then normalized by d iv id ing it by the absolute 
max imum measured value. For testing C P U implementations of k-Wave, the tester sets the 
error tolerance at 1 x 10 - 5. 
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Chapter 3 

Guidelines for converting 
M A T L A B code to Python 

This chapter w i l l summarize the main differences between M A T L A B and Py thon , the im­
portant aspects of code conversion, mainly those related to performance. Differences in 
basic syntax of both languages w i l l not be discussed. 

Because P y t h o n does not support many scientific computing features present i n M A T ­
L A B by default, this guide w i l l use the N u m P y l ibrary for performing such tasks. The 
N u m P y documentation includes a guide created for M A T L A B users [8] that summarizes a l l 
basic equivalents between M A T L A B and N u m P y code. The summary of the recommenda­
tions i n this chapter is available i n section 3.9. 

3.1 Basic comparison of M A T L A B and Python 

The author of Py thon , Guido van Rossum, called P y t h o n a language that can "glue together 
existing components" [12], speeding up development times while offloading performance-
intensive tasks to languages like C , C + + or Java [12]. A l though P y t h o n has since out­
grown this original purpose, the description matches the intended use case - setup of the 
simulation (loading of arrays, setting up the s imulat ion environment) can be quickly im­
plemented i n P y t h o n while the performance-critical s imulat ion algorithms are executed in 
more performant languages without the overhead of cal l ing an external executable. 

M A T L A B is described as a "computing environment for engineers and scientists" [18]. 
Th is math-first, programming-second approach gives M A T L A B an edge when it comes to 
scientific computing - it is highly opt imized for science-related tasks [17]. Py thon , on the 
other hand, was first designed as a programming language and scientific computing is just 
one of the many applications. 

B o t h approaches have advantages and disadvantages - M A T L A B is tr ied and tested 
when it comes to scientific computing but is also monoli thic, P y t h o n is malleable and can 
be applied to any task, albeit at the cost of being less polished i n certain aspects. The 
two approaches are also reflected in the respective available toolboxes - official M A T L A B 
toolboxes come preinstalled and are t ight ly integrated wi th the product, P y t h o n requires the 
instal lat ion of third-party libraries to add advanced functionality. Thi rd-par ty libraries can 
also be advantageous because of greater flexibili ty - the user is not t ied to one part icular 
library, and a l ibrary can be swapped for another one i f required. P y t h o n users can also 
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benefit from a large ecosystem. A s of the t ime of wri t ing, the P y P I contains more than 350 
000 P y t h o n packages [10]. Another big difference between M A T L A B and P y t h o n is that 
M A T L A B is proprietary, whereas P y t h o n and the vast majority of third-party libraries are 
free and open source. 

B o t h M A T L A B and P y t h o n share a similar level of abstraction, the user does not have to 
manually manage memory al location and other low-level tasks, but this level of abstraction 
comes at the price of performance. 

3.2 Python computation libraries 

In order to implement k-Wave using Py thon , it is necessary to find suitable libraries to 
replace bu i l t - in M A T L A B functions i n two areas - fast computat ion and visualizat ion. 
Th is section discusses selected replacement libraries used i n the P y t h o n implementation. 

NumPy 

The N u m P y 2 l ibrary is used for vector computations i n P y t h o n . It allows efficient storage of 
n-dimensional arrays of data and efficient vectorized computations wi th said arrays. These 
features are essential for efficiently computing s imulat ion step operations i n parallel, as 
k-Wave often utilizes ari thmetic operations on n-dimensional data. N u m P y also serves as 
the foundation for many other scientific libraries. Due to this de facto industry standard 
status, N u m P y objects are natively supported i n many other libraries. The performance 
of F F T - r e l a t e d functions in N u m P y falls short of M A T L A B , which internally relies on the 
highly opt imized F F T W l ibrary [16]. 

numexpr 

One of the disadvantages of N u m P y is that it only optimizes ind iv idua l ari thmetic opera­
tions between two operands, which can lead to unnecessary allocation of arrays that store 
intermediate results. The numexpr3 l ibrary further optimizes N u m P y expressions to reduce 
unnecessary reallocation. 

1 Python Package Index 
2 h t t p s : //numpy.org/ 
3 h t t p s : //github.com/pydata/numexpr 
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Table 3.1: N u m P y vs N u m E x p r benchmark comparison for the expression 1.5 * x**2 -
(x + y + z) * g 

N u m P y durat ion [s] N u m E x p r durat ion [s] 
D o m a i n size 

3 2 3 0.28 0.22 
64 3 0.26 0.19 
128 3 0.20 0.18 
256 3 0.21 0.20 
512 3 14.40 1.71 

A short benchmark 3.1 has been performed to il lustrate the impact of numexpr on compu­
tat ion speed. The machine used for the benchmark is described i n chapter 5. A random 
expression 1.5 * x**2 - (x + y + z) * g has been chosen for the benchmark, the ex­
pression represents the k ind of calculat ion that might be performed during simulat ion. Each 
of the variables x, y, z, and x is a three-dimensional N u m P y array i n the shape of a cube, 
the side of which is equivalent to the domain size (32x32x32, etc.). W i t h smaller domain 
sizes, the difference between N u m P y and N u m E x p r is not that significant, but as the do­
main gets bigger, the reallocations N u m P y performs start slowing down the computat ion 
significantly. 

Despite the significant speed improvement, numexpr is relatively easy to implement. 
The expression is s imply wrapped into numexpr. evaluate ( M l . 5 * x**2 - (x + y + z) 
* g", out=output_array) , the numexpr compiler takes care of the opt imizat ion. A l ­
though the compila t ion of expressions also incurs a t ime cost, the speed gain for larger 
domains largely outweighs the disadvantages. 

The only disadvantage of numexpr is, that it only supports ari thmetic operators and a 
set of predefined functions, it is not possible to use P y t h o n functions i n the target expression. 
In k-Wave, this is problematic mainly because of the frequent use of F F T s . 

p y F F T W 

p y F F T W 4 is the P y t h o n wrapper around the F F T W l ib r a ry ' . It provides access to well-
opt imized F F T functions that have bui l t - in mult i threading support. The interface of the 
l ibrary is similar to N u m P y F F T functions, N u m P y F F T drop-in replacements are also 
included wi th the l ibrary for simple replacement of N u m P y . The drop-in replacements 
provide a smal l speed boost w i th almost no changes required to the source code [14], 
although certain modifications are required to fully uti l ize the available performance of 
the library. The most significant difference between N u m P y and p y F F T W functions is, 
that N u m P y returns a newly ini t ia l ized array w i t h results, p y F F T W overwrites an internal 
result array and returns a reference to i t . The internal array makes the computat ion faster 
by el iminat ing inefficient copying of data. O n the other hand, it breaks interchangeability 
wi th N u m P y F F T functions. 

4 h t t p s : //pypi.org/proj ect/pyFFTW/ 
5 h t t p s : //www.fftw.org/ 
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matplotlib 

M a t p l o t l i b 6 is a P y t h o n data visual izat ion library. It offers various kinds of commonly 
used plot types, a l l of which are highly customizable. The l ibrary is also well integrated 
into other libraries and tools, for example such as pandas' and Seaborn8, plots created 
by Ma tp lo t l i b are natively supported i n data science toolkits such as Jupyter 9. Another 
advantage of Ma tp lo t l i b is its native support of N u m P y arrays, which are often used during 
implementation of high-performance computing algorithms. 

3.3 Indexing 

The first major difference between the languages is array indexing. Differences i n array 
indexing might not be noticed at first, but w i l l cause erroneous results and indexing errors 
during runtime. For this reason, indexing differences must always be remembered when 
converting code. 

The first notable difference is that M A T L A B uses column-major (Fortran-style) indexing 
by default [19] and P y t h o n uses row-major (C-style) indexing. Addi t ional ly , indexing starts 
at 1 i n M A T L A B and at 0 in both P y t h o n and N u m P y [8], this means a l l indices must be 
subtracted by one dur ing conversion. 

To illustrate, a 3D array that is indexed p ( l , 2, 3) i n M A T L A B would be indexed 
p[2, 0, 1] i n P y t h o n . W h e n letters are used to denote dimensions i n a 3D array: X for 
row, Y for column, and Z for frame (in other words the z coordinate), M A T L A B dimensions 
are ordered p(X, Y, Z), and P y t h o n dimensions are ordered p[Z, X, Y]. 

(0,2,2) (3,3,1) 

(a) NumPy (b) M A T L A B 

Figure 3.1: Compar ison of indexing 

W h e n working wi th 3D arrays, it is useful to th ink of them as cubes when slicing. Figure 3.1 
shows a comparison of the indexing of 3D arrays i n N u m P y and M A T L A B . B o t h arrays are 
of shape (3, 3, 3) . Figure 3.1a uses C-style indexing used i n N u m P y , indexing starts at 0. 
The m a x i m u m index for each cardinal direction is therefore 2. Figure 3.1b shows indexing 
in M A T L A B , which uses the Fortran-style indexing. Addi t ional ly , indexing i n M A T L A B 
starts at 1, the m a x i m u m index for each dimension is therefore 3. 

6https://matplotlib.org/  
7 h t t p s : //pandas .pydata. org/ 
8 h t t p s : //seaborn.pydata.org/ 
9 h t t p s : //jupyter.org/ 
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The different indexing style together w i th different starting indices can be confusing. 
Moreover, addi t ional precautions must be taken when dimensions of the array are of dif­
ferent lengths. A n array of shape (128, 64, 32) in M A T L A B would be displayed as an 
array of shape (64, 32, 128) in N u m P y . 

A s of the t ime of wri t ing , indexing i n the k-Wave input files is neither row-major, nor 
column-major. A l l arrays are stored from the last dimension to the first - 3D arrays in 
the order ( Z , Y , X ) , 4D arrays (with the t ime dimension) as (T, Z , Y , X ) . 

Python 
+ 

NumPy 
k-Wave 

HDF f i l e 
k-Wave 
MATLAB 

( Z , X , Y ) ( Z , Y , X ) ( X , Y , Z ) 

Figure 3.2: Coordinate conversion schema 

The conversion between a l l used coordinates systems can be seen i n figure 3.2. Appropr ia te 
indexing conversions must be performed any time when reading from and saving to a 
different format. 

Linear indexing 

To conserve memory and disk space, k-Wave uses linear indexing10 to store mask indices 
for sensors and sources. Linear indexing compresses an n-dimensional array coordinate 
to a single number, which denotes the array posit ion i f the array were to be collapsed 
to a one dimensional array. It is important to correctly convert linear indices stored by 
M A T L A B to their corresponding N u m P y counterparts, this can be done using the function 
np.unravel_index(flat_indices-l, shape, order='F') 1 1, the shape of the original ar­
ray must also be specified. 

A common task is the lookup of a l l linear indices i n an array that contain nonzero 
values. In M A T L A B , this is done using the f i n d (array) function, which returns an array 
of a l l non-zero linear indices found i n the array. The equivalent function i n N u m P y is 
np. flat_nonzero (array) 1 2 . M A T L A B allows direct indexing using linear indices such as 
array(123). In N u m P y , a special flat indexer array.flat [123] must be used. 

3.4 Data structures 

Structsu are used i n M A T L A B to group data semantically, they can either be created 
expl ici t ly using struct () or impl ic i t ly by assigning a field to a struct (even one that does 

1 0Alternatively called flat indexing 
https: //numpy.org/doc/stable/ref erence/generated/numpy.unravel_index.html 

1 2 h t t p s : //numpy.org/doc/stable/ref erence/generated/numpy.flatnonzero.html 
1 3 h t t p s : //www.mathworks.com/help/matlab/ref /struct.html 
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not exist) like s t r u c t l .f i e l d l = valuel;. P y t h o n does not have any direct equivalents, 
but there are mult iple possible replacements. 

The first opt ion is to use dictionaries, a data type containing key-value pairs ini t ia l ized 
like d i c t l = {„fieldl" : valuel}. Dictionaries provide a fast and easy way to group 
related data, but lack the means to enforce data types, declare mandatory fields and add 
logic like classes do. 

The second option is to use classes, which allow for encapsulation [13, p. 14] of the 
ini t ia l izat ion logic. In the case of classes that only contain fields and do not require any 
substantial related logic, data classes1^ can be used. D a t a classes automatical ly generate 
boilerplate code from declared fields. They can be declared by adding the Odataclass 
decorator to a class definition and moving the fields from the constructor to the class body. 

3.5 M a t r i x and scalar arithmetic 

Ari thmet i c operators i n M A T L A B are either scalar (+-*/) - they can be used to perform 
arithmetic on scalars or between a scalar and a matr ix , divis ion and, mul t ip l ica t ion op­
erators also have a variant for performing element-wise operations wi th two matrices, the 
operators start w i th a dot ( .* and . / ) . M A T L A B also has a dedicated operator . ' for 
transposing matrices. 

P y t h o n only has operators +-*/ (and a dedicated mat r ix mul t ip l ica t ion operator '(§'), 
which perform different operations based on context. New operators can not be defined, 
but they can be overloaded by a subclass to implement custom behavior. N u m P y exploits 
this property of Py thon , two N u m P y arrays always perform element-wise operations when 
mul t ip l ied /d iv ided . P y t h o n does not provide an operator for transposition, a mat r ix can 
be transposed using the array.T at tr ibute of N u m P y arrays, the equivalent in M A T L A B 
would be array. '. 

Data broadcasting 

A special case is the M A T L A B function bsxfun 1 5. It performs an element-wise operation 
between two matrices w i t h the dis t inct ion that they don't need to have the same shape, 
for example, the matr ix A of shape (32, 32, 32) (3D) can be mul t ip l ied efficiently w i th 
the array B of shape (32, ) ( ID) . Normal ly , array B would need to be enlarged to have the 
same shape as A, bsxfun performs this without this addi t ional step making the operation 
faster while also saving memory, N u m P y performs this opt imizat ion automatically. W h e n 
two matrices of mismatched shapes are used, N u m P y performs automatic broadcasting16. 
The only requirement is that the matrices must have at least one length i n common - array 
of shape (32, 32, 32) can be mul t ip l ied wi th shape (32, 1, 1) or (32, 32, 1) but not 
w i th (16, 1, 1). 

A s an example, the expression from k - W a v e - M A T L A B kspaceFirst Order 3D rhox = 
bsxfun(©times, pml_x, bsxfun(©times, pml_x, rhox) - dt .* rhoO .* duxdx); 
can be rewritten in N u m P y to rhox = pml_x * (pml_x * rhox - dt * rhoO * duxdx), 
the clari ty is greatly improved thanks to impl ic i t broadcasting, mat r ix and scalar mul t ip l i ­
cation also use the same * operator. 

1 4 h t t p s : //docs.python.org/3/library/dataclasses.html 
1 5 h t t p s : //www.mathworks.com/help/mat lab / r ei /bsxf un.html 
1 6 h t t p s : //numpy.org/doc/ 1 .22/user/basics.broadcasting.html 
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3.6 Fourier transforms 

Performing F F T related computations can be done efficiently in M A T L A B using the bui l t - in 
functions f f t, f f tn, i f ftn, etc. N u m P y has equivalent functions in the package numpy. f f t, 
they are not suitable for high performance applications, as is discussed i n chapter 5. It is 
advisable to use the pyFFTW l ibrary as it is also used for F F T i n M A T L A B [7]. 

Cau t ion is required when replacing N u m P y F F T functions wi th p y F F T W functions, 
although the functions and their arguments are similar, there are some notable distinctions. 
This section w i l l compare F F T functions i n N u m P y and p y F F T W , namely f f tn and i f f t n 
which are often used i n k-Wave. 

Firs t ly , N u m P y F F T functions promote input data types differently from p y F F T W . 
W i t h an input of type f loat32, the resulting datatype w i l l be complexl28 i n N u m P y but 
complex64 i n p y F F T W . W i t h an input datatype of f loat64, datatype of the result w i l l be 
complexl28 for both libraries. Th is discrepancy in input and output data types can cause 
differences i n results, it is also not easily detectable during debugging because of Pythons 
dynamic type system. More details about this and other differences between N u m P y and 
p y F F T W can be found in the p y F F T W manual [3, p. 20]. 

Another important difference is that results from calls to N u m P y F F T s return a newly 
ini t ia l ized array each time, p y F F T W (when not used i n the drop-in mode, as discussed 
in section 3.2) returns a reference to the same internal result array[3, p. 11], results must 
be copied using numpy. array. copy () as a subsequent ca l l to the function overwrites the 
internal result array, causing the previous result to be destroyed. Each p y F F T W function 
that is ini t ia l ized by default creates an internal input and output array, to avoid extra 
memory allocation, the function func .update_arrays (input_array, output_array) 1 7 

can be used to set a single shared array for mult iple functions, it can also be used to make 
p y F F T W use the same array for both input and output for a given function. 

Dur ing ini t ia l izat ion, F F T W compares a number of F F T algorithms and chooses the 
fastest one i n a process called planning, the generated configuration is called wisdom18. 
p y F F T W supports different kinds of F F T W planning wi th varying speed and opt imali ty: 
FFTW_ESTIMATE, FFTW_MEASURE, FFTW_PATIENT and FFTW_EXHAUSTIVE [2]. 

The FFTW_MEASURE planner (the default opt ion i n p y F F T W ) provides a good compro­
mise between planning speed and performance, it was therefore chosen for k-Wave-Python. 
Because planning can have a noticeable startup cost, it is best to cache the generated wis­
dom to a file for re-use. In the p y F F T W library, export ing can be done using the function 
pyfftw.export_wisdom() 1 9, impor t ing is likewise done using 
pyfftw.import_wisdom(wisdom). The P y t h o n standard l ibrary pickle20 can be used for 
serializing and deserializing of wisdom for storage on disk. 

3.7 Data visualization 

Al though visualizat ion is not necessary for k-Wave to function, it is useful for checking 
progress of a s imulat ion. A s previously said i n section 3.2, Ma tp lo t l i b is the l ibrary of 
choice for visualizat ion in the P y t h o n implementation. In the following paragraphs, the 

1 7 h t t p s : //pyfftw. readthedocs.io/en/lat est/sour ce/pyfftw/pyff tw.html#pyf f tw. FFTW. update_arr ays 
1 8 h t t p s : //www.f ftw.org/fftw3_doc/Wisdom.html 
1 9 h t t p s : //hgomersail.github.io/pyFFTW/pyf f tw/pyf f tw.html#pyf f tw.export_wisdom 
2 0 h t t p s : //docs.python.org/3/library/pickle.html 
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symbol p i t refers to the l ibrary imported using the standard impor t m a t p l o t l i b . p y p l o t 
as p i t command. 

For one dimensional simulations, a simple line graph can be used for visualizat ion, 
a pressure curve can be plotted using p i t . p l o t ( d a t a ) 2 1 . 

For two and three dimensional simulations, the visualizat ion technique is the same 
because only a two-dimensional slice of the array can be plotted. 

S t e p 3 0 4 o f 3 2 1 

x - y p l a n e ( f r o n t v i e w ) y-z p l a n e ( s i de v i e w ) x -z p l a n e ( t o p v i e w ) 

20 40 60 0 20 40 60 0 20 40 

80000 

60000 

40000 

20000 

0 ; 

-20000 

-40000 

-60000 

-80000 

Figure 3.3: Example plot using p i t . imshowO 

The p i t . i m s h o w ( d a t a ) 2 2 can be used for visual izing 2D slices of arrays as images. F i g ­
ure 3.3 shows a k-Wave-Python simulat ion progress visualized using Matp lo t l ib . 

3.8 Design patterns 

Dur ing the implementat ion of the object oriented P y t h o n version of the k-Wave toolbox, 
numerous measures were taken to improve the code structure of the simulat ion. One of 
the means of improving code structure is to uti l ize software design patterns, solutions to 
commonly occuring problems i n software engineering. The advantage of design patterns is 
their abstract nature - they can be applied to any programming language which has at 
least some of the concepts in O O P : abstraction, encapsulation, inheritance, and polymor­
phism [13, p . 18]. 

Design patterns are divided into three categories: creational (concerned wi th creation 
of objects), structural (concerned wi th creating larger structures from objects), and behav­
ioral (concerned wi th communicat ion and interaction between objects) [13, p. 29]. This 
section lists mult iple important design patterns used i n the implementation: the Builder, 
the Observer, the Strategy and the Adapter. 

Builder 

The Bui lder is a creational design pattern [13, p. 105]. The task of the Bui lder is to 
make the ini t ia l iza t ion process of objects more flexible. W i t h simple classes, in i t ia l izat ion 
using the constructor is sufficient, but wi th complex objects like the ones used for k-Wave 
simulations, the class constructor becomes very long, as well as the parameter list. The 

2 1 h t t p s : //matplotlib. org/3.5.0/api/_as_gen/matplotlib.pyplot.plot .html 
2 2 h t t p s : //matplotlib.org/3.5.0/api/_as_gen/matplotlib.pyplot.imshow.html 
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Bui lder solves the issue of complicated in i t ia l iza t ion by breaking it down into separate 
steps. The builder instance holds a semi-init ial ized instance of the target class internally, 
the instance is ini t ia l ized step by step using setter methods of the builder. 

There are mult iple advantages to this approach: the constructor is simplified, the in i t ia l ­
izat ion is separated from the usage of the class (this also enables creating different builders 
for the same class), some parts of the instance can only be ini t ia l ized optionally, the parts 
can also be ini t ia l ized i n any order since the order in which the setters are called is not 
predetermined. After a l l in i t ia l izat ion steps are complete, the fully ini t ia l ized instance is 
retrieved from the builder. Builders are used i n the k-Wave-Python implementat ion for 
in i t ia l iz ing the kspaceFirstOrder s imulation classes (sec. 4.3). 

Observer 

The Observer, a behavioral design pattern [13, p. 336], allows the state of an object (or 
changes thereof) to be observed by any number of Observers. The Observable (the object 
being observed) curates a list of observers, al lowing them to be added and removed at 
any time. After an event in the observable occurs, it notifies each observer i n its list of 
the change, the observers can then perform any logic defined by their callback functions. 
The advantage of using observers is the independence of the logic responsible for recording 
values from the core logic of the simulat ion. This design pattern is closely related to the 
publish/subscribe model [5, p. 158]. The kSensor objects (sec. 4.5) are observers observing 
the kspaceFirstOrderBase subclasses. 

Strategy 

The Strategy, s imilar ly to the observer, is a behavioral design pattern [13, p. 368]. It is 
used when a group of algorithms share a common structure but differ i n certain aspects or 
settings. Conventionally, a lgori thm variants and options are handled by branch statements, 
this however becomes more and more difficult as more variants of the a lgori thm are added, 
making the a lgori thm difficult to navigate. The Strategy solves this by keeping the structure 
of the a lgori thm but delegating the parts that differ to objects which encapsulate the 
differing logic. D u r i n g ini t ia l izat ion, the suitable strategy (algorithm variant) is chosen 
based on configuration. This way different algorithms can be used w i t h the same basic 
structure without the need for changing the core structure. T h i s pattern is used i n the 
core s imulat ion algorithms of kspaceFirstOrder 4.3 for setting up pressure and velocity 
sources. 

Adapter 

The Adapter is a s tructural design pattern [13, p. 150]. It solves the problem of compat ibi l i ty 
between two parts of a program that need to communicate, but the format of data they use 
is different. Conversion to the target format could be handled by the consumer of the data, 
but this approach does not scale well when the data source is being used i n mult iple places. 
Furthermore, i f the source format changes i n any way, the change needs to be reflected 
everywhere the source is used. The Adapter solves this by wrapping the original source of 
data, creating an interface between the data source and the data consumer. A n y t ime the 
consumer requests data, the adapter can translate the request to the data source. After 
the data from the source is retrieved, it can be converted to the target format and passed 
to the consumer. 
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HDFIndexingAdapter 
/* 

HDF 
Dataset 

Figure 3.4: Indexing adapter 

The class HDFIndexingAdapter is an example of an adapter. Because the k - W a v e - M A T L A B 
stores arrays using ( Z , Y , X ) , it is incompatible w i th the rest of the simulator, which 
uses C-style indexing. The si tuation can be seen i n figure 3.4. Because data from the 
input files is handled in many places of the program, an Adapter is required to ensure 
compat ibi l i ty without making the implementation-dependent on a part icular indexing style. 
If the indexing i n the input files changes in the future, the adapter can either be easily 
modified to accommodate the change or discarded i f the indexing i n the input file becomes 
C-style. 

(Z,Y,X) 

(Z,Y,X) 

(Z,X,Y) 
Request 

(Z,X,Y) 
Response 
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3.9 Summary 

This section contains the summary of technologies and guidelines discussed in this chapter. 

1. Convert basic syntax (if statements, for loops, function definitions, etc.) to Py thon . 

2. Replace M A T L A B structs (sec. 3.4) w i th classes, data classes or other equivalents. 

3. In places where mult i-dimensional arrays are used, use the N u m P y l ibrary (sec. 3.2). 

4. Convert operators to operators used by N u m P y (sec. 3.5), replace the bsxfun(. . .) 
wi th a simple * mul t ip ly operator, N u m P y performs automatic broadcasting. 

5. W h e n indexing, always remember to subtract 1 (usually not i n code, just dur ing re­
writing) from indices when re-writ ing. If indices are being loaded from an input file 
(sec. 2.3), subtract 1 before doing other operations, as the indices were stored by 
M A T L A B , which starts indexing at 1. 

6. W h e n indexing mult i-dimensional arrays, remember to convert Fortran-style indices 
to C-style indices (sec. 3.3). A p p l y extra caution when loading linear/flat indices from 
an input file, as they are stored i n M A T L A B column-major order. 

7. Preferably use the p y F F T W l ibrary (sec. 3.2) for good F F T performance. 

8. Use numexpr (sec. 3.2) where possible, avoid creating temporary copies of arrays by 
preallocating them. Perform in-place operations where possible. 

9. If visual izat ion is needed, use matplot l ib (sec. 3.2) but be aware of the performance 
implications. 

10. For details about N u m P y equivalents for M A T L A B features, refer to the official 
guide [8]. 
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Chapter 4 

k-Wave-Python implementation 

The goal of the implementat ion is to create a P y t h o n version of the core k-Wave sound 
propagation simulat ion and a l l key features surrounding i t . The simulat ion should be 
able to load a l l necessary data from an input H D F file, ini t ial ize a l l objects required for 
the simulation, perform the specified simulat ion and finally save a l l results and recorded 
outputs to an output H D F file. The implementat ion must be able to communicate w i th 
k - W a v e - M A T L A B using the command line, passing input and output data w i th H D F files. 

The command line interface must be compliant w i th the options specified in [20, p. 54], 
ideally interchangeable w i th the k - W a v e - F l u i d - O M P [22] C + + implementation. 

Apar t from specified functional requirements, the implementat ion has mult iple goals: 

1. Performance - performance of the new implementat ion must be better or at least 
comparable to the original M A T L A B version 

2. Accuracy - the results must be reasonably accurate and not deviate from the refer­
ence implementat ion 

3. Ease of use - the simulator should be easy to set up, easy to use and easy to extend 

The secondary focus is on modular i ty and extensibili ty - k - W a v e - M A T L A B is t ight ly 
coupled, this means it is sometimes difficult to modify or access k-Wave functionality sep­
arately, examples of this include dupl icat ion of certain snippets of logic and code used for 
visual izat ion located direct ly i n the simulat ion loop, k -Wave-Python attempts to mitigate 
such issues by adhering to the DRY (Don't Repeat Yourself) principle [5, p. 26] completely 
separating logic related to simulat ion and other logic used for recording values and load­
ing/saving of arrays. The final implementat ion of k-Wave-Python consists of around 2000 
lines of code (not including empty lines and comments), which is a substantial improve­
ment over versions wri t ten in C + + . 

This chapter describes the design and implementat ion of k-Wave-Python. Differences 
from the original M A T L A B implementation, architectural choices and improvements over 
the original implementation are also discussed. 

4.1 Project structure 

Unlike the monoli thic, predominantly procedural M A T L A B implementat ion of k-Wave, the 
P y t h o n implementat ion puts a much greater emphasis on modular i ty and abstraction, as 
was stated i n the implementat ion goals. The M A T L A B implementat ion usually defines 
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variables i n the global scope and manipulates them by cal l ing functions or executing entire 
modules that contain logic i n the global scope. This approach is more convenient due to 
the large number of variables, but it also has many disadvantages: 

1. hard to unit test - very long functions (or entire modules) that complete many 
different tasks i n sequential order are difficult to unit test, because it is not possible 
to test ind iv idua l parts in isolation. 

2. hard to re-use - for the same reason, code that is not sufficiently subdivided into 
functions is difficult to re-use. This leads to the M A T L A B implementat ion having 
many duplicated snippets of code that could otherwise be defined once, making the 
source code longer and harder to maintain. 

3. hard to extend - the global scope allows functions to have immediate access to 
al l needed data, but on the other hand also other unrelated data. B y min imiz ing 
the amount of data a function has access to and hiding implementat ion details, it is 
possible to create code that is easier to extend and test - making changes to one part 
of the program w i l l not affect other parts. 

4. hard to understand - unclear flow of data wi th in the program and low abstraction 
make the code more difficult to understand. It is not always clear, where a change of 
state ocurred because many variables are being modified in the global scope, semantic 
blocks of code that would otherwise be labelled by their function name are left without 
context. 

4.2 Input and output file handling 

k-Wave simulations are ini t ia l ized using standardized input files (sec. 2.3) generated by k-
W a v e - M A T L A B . These files are also the main means of communicat ion between the P y t h o n 
modules and the M A T L A B modules. 

Input files 

The h5py l ibrary is used for accessing and manipula t ing H D F files. It provides a simple 
interface h5py.File to specified file s imilar ly to a P y t h o n diet. The module 
kwave.utils.h5_utils contains classes that provide addi t ional layers of abstraction over 
h5py.File. 

The class H5File which wraps h5py.File, simplifies retrieval and setting of values in 
H D F files, it also handles retrieval of scalar values from input files. Since scalar values are 
wri t ten by k - W a v e - M A T L A B to the input files as an array of dimensions (1, 1, 1), it is 
necessary to unwrap it before retrieval. It is also needed to convert unsigned integer values 
to the N u m P y type of int64 because data types are not enforced in Py thon , making the 
resultant bugs related to unsigned values hard to detect. 

The final abstraction layer is the kWaveH5Dataset, it wraps the H5File and serves for 
loading specific fields required during in i t ia l iza t ion of the simulat ion. The ind iv idua l fields 
can either be accessed directly using the indexer like f i l e [ Mf i e l d " ] , 
dataset [ MpO_source_f lag"] or using specialized methods and attributes. Some methods 
require the dimension (x, y, z, t, etc.) to be specified - dataset .get_kgrid_dim( Mx"). 

One of the implementat ion issues is a relatively large number of parameters that are 
used. For example, the kGrid (k-Wave grid) requires the Nx (number of gr id points) and dx 
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(the distance between grid points), this adds up to 6 parameters used in the constructor, not 
to mention other addi t ional parameters. To mitigate this, mult iple classes used expressly 
for storing related data were used. They are used only for simplifying the in i t ia l iza t ion and 
passing of related data. The list includes PMLDim and PMLDimProperties for in i t ia l iz ing the 
P M L ; SoundProperties, DensityProperties and AbsorptionProperties for in i t ia l iz ing 
the Medium. These objects are returned by the kWaveH5Dataset in i t ia l ized using the data 
from the wrapped file. 

Output files 

The output file is created using the H5File class. Input and output files share many 
common fields, some fields are therefore directly copied from the input file to the output 
file. Other fields are populated using results from the simulat ion and data from kSensor 
sensor based on selected C L I flags. 

4.3 kspaceFirstOrder 

The group of kspaceFirstOrder classes represent the core logic of the s imulat ion algori thm. 
The k -Wave-Python implementat ion focused only on the three-dimensional 
kspaceFirst0rder3D variant of the simulat ion. The lower-dimensional variants have a 
similar structure and can be implemented s imilar ly to the three-dimensional implementa­
t ion. Because the implementat ion relies on inheritance, the s imulat ion equations are shared, 
avoiding duplicat ion of logic. 

ABC <H kspaceFirstOrderBase -> PSource 

USource 

kSensor 

Figure 4.1: kSpaceFirs tOrder class hierarchy 

The kspaceFirstOrderBase class hierarchy can be seen in figure 4.1. A l l shared logic 
is contained in the base class kspaceFirstOrderBase. Shared logic includes simulation 
equations, management of attached sensors, control of s imulat ion step iteration, calculat­
ing number of remaining steps, etc. The base class contains mult iple important abstract 
methods: the init_data() method handles the al location and the ini t ia l izat ion of simula­
t ion data, the _sim_step is the core of the s imulat ion algori thm. These two methods are 
overridden by the s imulat ion subclasses and adapted to the number of dimensions. The 
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simulation class is dependent on pressure and velocity sources, which are described in sec­
t ion 4.4. For the recording of data dur ing the simulation, the s imulat ion class also holds a 
list of sensors, which are described i n section 2.2. 

The class kspaceFirst0rder3D inherits the previously mentioned features and adapts 
them for three-dimensional simulations, overriding the init_data() and _sim_step() w i th 
three-dimensional simulation logic. The method _sim_step() containing the simulation 
algori thm is significantly shorter than the k - W a v e - M A T L A B counterpart as most of the 
equations, recording, and pressure/velocity sources are hidden behind interfaces. Unl ike 
the k - W a v e - M A T L A B , the k-Wave-Python is not aware of the type of source being used, 
nor is it aware of the equation of state, linearity, data recording and visual izat ion. The 
modular i ty of the a lgori thm is the adaptat ion of the Strategy design pattern, which was 
described i n section 3.8. 

kspaceFirstOrder initialization 

F u l l in i t ia l izat ion of k-Wave is a complex process, it requires mult iple related objects to be 
ini t ial ized, some of them i n a fixed order because of interdependence. The ini t ia l izat ion 
steps are the following: 

1. L o a d kGrid 

2. L o a d Medium and setup absorption variables using kGrid data 

3. L o a d PML using data from kGrid and Medium 

4. Select equation of state 

5. Select linear or non linear mode 

6. Configure sources (pO, p and u source) 

7. Setup and attach a kSensorRecorder for data recording (optional) 

The H5InputDataLoader class executes this sequence and initializes a l l objects using data 
from a specified input file. Instead of direct ly in i t ia l iz ing an instance of k-Wave, an auxi l ­
iary data structure called kspacelnputData is returned by the loader, this allows greater 
flexibili ty when in i t ia l iz ing the simulation - the loaded data can be inspected or overridden 
manually. The only component that is not loaded from the input file is the P M L (sec. 2.2), 
it is instead ini t ia l ized using data from the Medium and the kGrid. 

Some ini t ia l ized objects can addi t ional ly be adjusted using supplied command line ar­
guments. Namely the computation backend (the backend option) described in section 4.3), 
the number of s imulat ion t ime steps (the benchmark opt ion overrides kgrid.Nt), and the 
data recorded by the kSensorRecorder. These adjustments are however not handled by 
the input data loader. 

kspaceFirstOrderBuilder 

One of the innovations of the P y t h o n implementat ion is the kspaceFirstOrderBuilder 
which implements the Builder design pattern (sec. 3.8). It allows the final kspaceFirstOrder 
object to be ini t ia l ized gradually instead of passing a large number of arguments to the 
constructor. A l l objects needed for the in i t ia l iza t ion can be direct ly retrieved from the 
kspacelnputData loaded from an input file. The computat ion backend is selected based 
on command line options. 
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Computation backends 

Computa t ion backends are classes containing references to different implementations of 
common functions used by k-Wave during simulation, usually related to F F T s ( f f t , f f t n , 
i f f t s h i f t , etc.). The two currently available backends are NumpyBackend and 
PyFFTWBackend, each of them using functions from their respective libraries - N u m P y and 
p y F F T W . 

Swappable backends simplify the comparison of benchmarks using different computat ion 
libraries. It also allows fast replacements of libraries or fallback libraries i n case a l ibrary is 
not available for the target platform. The simulat ion itself does not know, which backend 
is being used, the pointers to functions are s imply replaced dur ing ini t ia l izat ion by the 
builder. 

4.4 Sources 

A s described i n section 2.3, there are three kinds of sources, which inject pressure or ve­
locity into the simulation: pO sources, p sources and u sources. The k-Wave simulation is 
ini t ia l ized w i th instances of a l l three of the sources, their methods are called at part icular 
points in the simulation algori thm to inject pressure or velocity, the self reference of the 
simulation is passed to allow access to the internal s imulat ion state. Depending on the 
selected options, the density and velocity variables of the simulation are changed. W h e n a 
disabled source is used, the called methods do not perform any action. 

PO sources 

The in i t i a l pressure sources are the simplest of the tree source types. O n the first step 
of the simulation (t_index == 0), the pressure at a l l gr id points is set to pre-determined 
values, this pressure then propagates and no more pressure is injected during the course of 
the simulation. 

POSourceActive 

ABC < POSource ABC < POSource 

POSourcelnactive 

Figure 4.2: PO source class hierarchy 

Figure 4.2 shows the class hierarchy of pO sources. The class POSourceActive is used, when 
the pO source is enabled by the pO_source_f lag in the input file (sec. 2.3) and is ini t ia l ized 
by data from the pO_source_input from the input file, the class POSourcelnactive is used 
when the source is disabled. Because the s imulat ion classes (sec. 4.3) only see the POSource 
interface, the s imulat ion is not dependent on the k ind of source used. 
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P sources 
The variable pressure sources add pressure to the simulation continuously. The mechanism 
of t ime varying sources is described in section 2.2. The indices, where the pressure is set 
after each i teration is defined by the p_source_pos_index mask indices. The value being 
set to a l l points of the mask is selected from a list of pressure values. W h e n p_source_many 
is enabled, the pressure value is set for each point of the mask individual ly . The series of 
pressure values can be both shorter or longer than the number of t ime steps, the source w i l l 
either not use a l l the available values or stop emit t ing pressure if the t ime index t_ index 
exceeds the length of the array. 

PSourcelnactive 

ABC PSource 

PSourceActive « 

PSourceDirichlet 

PSource Additive 

PSource AdditiveNoCorrection 

Figure 4.3: P source class hierarchy 

Similar ly to the pO source (sec. 4.4), the p source also has its class hierarchy, as seen in 
figure 4.3. The p source can either be PSourcelnactive or PSourceActive, based on the 
p_source_f lag from the input file. PSourceActive is further subdivided into three sub­
classes PSourceDirichlet, PSourceAdditiveNoCorrection and PSourceAdditive based 
on the configured source mode p_source_mode. The simulat ion only communicates w i th 
the PSource interface. 

U sources 

The last source type is the velocity source. Instead of changing the pressure, it injects 
particle velocity for each cardinal direction. Selection of mask indices is similar to the p 
source, they are stored i n u_source_pos_index field i n the input file. The velocity source 
can be independently enabled for each direction by the ux_source_f lag, uy_source_f lag 
and uy_source_f lag respectively. The values for the velocity sources are also stored sepa­
rately i n ux_source_input, etc. The stored values can either be scalar or defined for each 
source point, depending on the „u_source_many" flag. The t ime varying source mechanism 
is the same at w i th p sources (sec. 4.4) and is described i n section 2.2. 
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ABC USource 

USourcelnactive USourceDirichlet 

USourceActive <• USourceAdditive 

USource AdditiveNoCorrection 

Figure 4.4: U source class hierarchy 

The class hierarchy, as shown in figure 4.4, is almost identical to the p source class hierarchy, 
the difference being the injection of particle velocity instead of pressure. The source can 
be either enabled wi th USourceActive or disabled wi th USourcelnactive, depending on 
the u_source_f lag from the input file. The available variants of enabled u sources are 
USourceDirichlet, USourceAdditiveNoCorrection and USourceAdditive, depending on 
the u_source_mode setting. A s wi th the two previous source types, the s imulat ion only 
interacts w i th the USource interface. 

4.5 Sensors and recorders 

k-Wave relies on sensors to record measurements of the simulation state, the sensor mask 
can be defined either as a binary mask or a cuboid corners mask, as described i n section 2.2. 

CheckpointHandler 

kSensor <• 

ABC 

kSensorRecorder 

Recorder 

PressureRecorder 

VelocityRecorder 

Figure 4.5: Class hierarchy of sensors and recorders 

Figure 4.5 shows the class hierarchy of sensors and recorders in k-Wave-Python. The 
kSensor (sec. 4.5) serves as the base class for a l l sensors attachable to the simulat ion. The 
kSensorRecorder, which is the subclass of kSensor has the same role as the sensors i n the 
original k - W a v e - M A T L A B . In the original implementation, the values being recorded (for 
example p, p_max, u_rms) were checked in a large i f statement to determine, whether the 
recording of a part icular value is enabled. The kSensorRecorder improves this by using a 
list of Recorder (sec. 4.5) instances instead. E a c h Recorder represents a single value being 
recorded. Dur ing the in i t ia l iza t ion of the simulation, a list of recorders is generated based 
on the command line recording flags, this list is then passed to the kSensorRecorder. 
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kSensor 

k-Wave-Python introduces sensors, that can be optionally attached to the simulator. The 
simulation itself is not aware of any implementat ion details of the attached sensors, it s imply 
calls callback functions of each attached sensor after a s imulat ion step, passing itself as an 
argument i n the process. The attached sensors can then extract any needed data directly 
from the simulat ion instance which contains current s imulat ion state. The way sensors 
process data depends solely on the user. D a t a recorded after each step can be stored in 
memory and later visualized, saved as a spreadsheet or streamed directly to disk. 

This implementat ion approach is comparable wi th the Observer design pattern (sec. 3.8). 
The abstract base class kSensor contains methods and attributes expected by the simula­
t ion objects dur ing callbacks, this base class can then be inherited and easily extended by 
the user. Sensors are attached to an ini t ia l ized s imulat ion object using the 
. attach_sensor (kSensor) method at any t ime during simulation. 

Recorder 

Recorders handle the recording of ind iv idua l sensor fields, which can use different slicing 
and aggregation functions. Examples of fields include p_raw (records the entire pressure 
domain), p_max (records the m a x i m u m pressure at the sensor gr id points for each t ime step), 
u_min_all (records the m i n i m u m particle velocity i n the pressure arrays for each direction 
respectively), etc. The full list of available flags is listed in the k-Wave manual [20, p. 54] 
under output flags. 

NumPyDataset 

HDFDataset 

Velocity Recorder 

Figure 4.6: Recorder class hierarchy 

The above shown figure 4.6 displays the recorder class hierarchy. The Recorder class 
is the abstract base class for a l l recorder types, it contains abstract methods related to 
allocation (_allocate()), indexing (_dst_index(), _src_data()) and aggregation func­
tions (_func()). To isolate the format to which data is recorded from the recorders, the 
DatasetBackend is used. The DatasetBackend provides an abstract interface for the al­
location of arrays, accessible using the allocate (shape, name) method. E a c h backend 
initializes an array differently, the NumPyBackend returns a new N u m P y array of the speci­
fied shape, the HDFBackend returns an h5py.File H D F file handle. 

The pressure and velocity recorder groups both have their subclasses: PressureRecorder 
and VelocityRecorder. The fundamental difference between them is, that pressure recorders 
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only allocate one array for pressure recording and velocity recorders allocate up to three 
arrays (for each velocity direction), depending on the number of dimensions. The ind iv id­
ual recorders are further subclassed from these two groups. For instance the previously 
mentioned u _ m i n_all field is represented by the U_MIN_ALL_Recorder class. 

class U_MIN_ALL_Recorder(Binary, Single, VelocityRecorder): 
template = "uO_min_all" 

def _func(self, current_data, new_data): 
return np.minimum(current_ _data, new_data) 

Lis t ing 4.1: Defini t ion of the U_MIN_ALL_Recorder class 

The definition of the u_min_all recorder field can be seen i n l is t ing 4.1. The class utilizes 
mult iple inheritance to configure the properties of the recorder. The order of inheritance is 
generally i n the order this order: 
class ExampleRecorder(<indexing_type>, <count_type>, <recorder_type>). 
The <indexing_type> configures the type of indexing the recorder field uses: 

• Flat - record at gr id points defined by a list of l inear/flat indices (sec. 3.3) 

• Cuboid - record at gr id points defined by a cuboid mask (sec. 2.2) 

• Binary - record the entire domain 

The <count_type> defines, whether the values are recorded for each t ime step (Multiple), 
or if the recorded values overwrite previously recorded ones (Single). The <recorder_type 
selects the type of recorder (PressureRecorder or VelocityRecorder). 

Al though this approach creates many subclasses and makes certain parts of the recording 
process less transparent, it greatly simplifies the introduct ion of changes. A change made 
in the base class is automatical ly applied to a l l subclasses, the entire behavior of a recorder 
can be changed by s imply changing the classes it inherits from, this also allows the creation 
of new recorders using a very smal l number of lines of code. 

4.6 Command line interface 

k-Wave-Python provides a command line interface for simple access to its s imulat ion capa­
bilities. Th is interface is based on the standardized command line interface for accelerators 
described by the k-Wave manual [20, p. 54] w i th the exception of implementation-specific 
flags (-g for G P U accelerators), compression (-c) and recording non-staggered grid velocity 
recording (-u_non_staggered_raw). The full list of available arguments and flags can be 
viewed by using the -help flag, the example output can be seen i n appendix D . 

Apar t from the standard arguments, k -Wave-Python introduces non-standard ones. The 
-show flag enables the pressure domain preview visual izat ion which utilizes Matp lo t l ib 
(sec. 3.2). The refresh rate of the visual izat ion is t ied to the - r <interval_in_percent> 
parameter which sets the logging interval i n percent. The show flag should only be used 
for debugging and wi th large refresh intervals, as it w i l l slow down the s imulat ion loop. 
The other non-standard parameter is the backend which sets the default backend used for 
calculating F F T s as described i n section 3.2. The available backends are numpy and pyf f tw 
(the default), the numpy backend being significantly slower. The backend selection can be 
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used for debugging and for comparing various F F T libraries. Non-standard arguments can 
be disabled and hidden by setting the compatibility_mode. For details on usage of the 
command line, refer to appendix B . l . 
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Chapter 5 

Testing and optimization 

This chapter describes the process of testing of k-Wave-Python using the kWaveTester and 
analyzes performance of the new implementat ion from the point of both computat ional 
performance and memory usage. Performance bottlenecks, their causes and possible avenues 
for further opt imizat ion are also discussed. 

If not stated otherwise, a l l benchmarks were conducted on a laptop w i t h the Intel 
15-8257U C P U clocked at 1.4 G h z and 8 G B of R A M . 

5.1 Testing 

The testing of k-Wave-Python was performed using the kWaveTester tool from k-Wave-
M A T L A B . The kWaveTester serves as the ground t ru th because it can both generate input 
data for any combination of simulation settings and compare the output out the program 
being tested w i t h the reference results. 

The kwt_run_omp_comparison_tests_3D test script was used for thorough testing. 
The script iterates t rough more than 200 test configurations, ensuring every aspect of the 
program is tested. Because of unimplemented features and known issues, some of the 
test cases generate inval id results. Because k-Wave-Python currently does not support the 
staggered gr id and the kspace, they must be disabled using options.use_sg = false; 
and options.use_kspace = false i n the k - W a v e - M A T L A B simulat ion file that is being 
run using the kWaveTester (kspaceFirst0rder3D i n the case of k-Wave-Python) . Mul t ip l e 
s imulation runs were conducted to test the implementation k-Wave-Python. The simula­
tions used non-linear, heterogenous and absorbing settings (LIN=1, ABS=1, HET=2) and the 
grid size of 128x64x32 to test as many implementat ion edge cases as possible at the same 
time. 
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Figure 5.1: kWaveTester output for pO source 

Figure 5.1 shows the output of the kWaveTester for a s imulat ion using a single pO source. 
Execut ion in k - W a v e - M A T L A B took 30.55s, execution i n k-Wave-Python took 25.84s. 
The tota l normalized error was LINF=2.619e-07. 
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Figure 5.2: kWaveTester output for mult iple p sources 

y-position [mm] 

Figure 5.2 shows the output of the kWaveTester for a s imulat ion using mult iple p sources. 
Execut ion in k - W a v e - M A T L A B took 34.86s, execution i n k-Wave-Python took 26.44s. 
The tota l normalized error was LINF=8.4321e-07. 
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Figure 5.3: kWaveTester output for mult iple u sources 

Figure 5.3 shows the output of the kWaveTester for a s imulat ion using mult iple u sources. 
Execut ion in k - W a v e - M A T L A B took 30.08s, execution i n k-Wave-Python took 25.65s. 
The tota l normalized error was LINF=5.3346e-07. 

The results of the above described tests show, that the k-Wave-Python implementat ion 
is reasonably accurate and around 1 8 % faster for this configuration. There are some cases 
where calculated results are currently incorrect or cannot be tested because of unimple-
mented features. 

5.2 Performance benchmarks 

A performance comparison between k - W a v e - M A T L A B and k-Wave-Python was conducted 
using the kWaveTester for various domain sizes. The used version of M A T L A B was R2021a, 
version of P y t h o n 3.10.4, N u m P y 1.21.4, numexpr 2.8.1. The simulat ion settings used 
were 3D, non-linear, heterogenous, and absorbing. A simulat ion was executed for each 
medium shape using the kWaveTester. Dura t ion of data preprocessing is not included in 
the performance measurements. 
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Figure 5.4: T i m e step durat ion comparison w i t h domain sizes from 64x64x64 up to 
512x256x256 

Figure 5.4 shows the comparison of t ime step speeds based on measured data from ap­
pendix C . A s can be seen, k-Wave-Python outperforms k-Wave M A T L A B i n every case. The 
average speedup over the M A T L A B implementat ion is around 50%, the biggest speedups 
were observed wi th domain sizes. 

Peak m e m o r y u s e in k - W a v e - P y t h o n 

Grid points l e7 

Figure 5.5: Peak memory usage i n k-Wave-Python wi th domain sizes from 64x64x64 up to 
512x256x256 
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Figure 5.5 shows the peak memory usage i n k-Wave-Python, as measured during bench­
marking. The recorded values are on average higher than reference values from the k-Wave 
manual [20, p. 80]. One of the reasons is the inherent overhead of the Py thon , the other 
reason is the usage of temporary arrays i n some parts of k-Wave-Python. After the in i t i a l 
spike i n memory use, the memory usage usually decreases, as seen i n figures 5.4 and 5.5, 
meaning the recorded peak memory usage only occurs in a fraction of the to ta l runtime. 

5.3 Memory profiling and optimization 

Opt imiza t ion of memory handling is closely t ied to the overall performance of the s imulat ion 
algori thm. Effects of inefficient memory handling might not be perceivable w i t h smaller 
arrays, but as the domain size increases, every unnecessary al location or reallocation de­
creases performance and might also make the program run out of memory. In low-level 
languages such as C and C + + , the user has tight control over allocations that occur i n the 
program and accidental al location is less likely. However, w i th high-level garbage-collected 
languages such as Py thon , the si tuation is much less clear. 

Even when using libraries such as N u m P y that store arrays efficiently, close attention 
must be paid to the way a part icular expression is wri t ten. Seemingly analogous implemen­
tations of an expression can often have very different performance characteristics. One of 
the common causes of unnecessary allocations is the incorrect usage of assignment: whereas 
the expression y = x [: ] w i l l create a new object for y in memory each t ime executed, y [: ] 
= x w i l l copy values of x without reallocating y. Th is style of wr i t ing code requires some 
changes i n the way functions are wri t ten. For instance, functions should not return the 
computed values but instead copy them to an already existing array, which is passed to the 
function as an argument. 

Memory profiling example 

In this example, the effects of temporary variables on memory al location are analyzed. A 
simulation wi th the dimensions of 256x256x256 grid points is used for demonstration of the 
effects of temporary variables. 

Figure 5.6: Memory al location wi th temporary array captured using mprof 
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Figure 5.6 displays total allocated memory as a function of t ime captured using the mprof 
memory profiler. Functions decorated wi th the ©profile decorator (such as _sim_step in 
this example) are highlighted in blue. The red dashed cross highlights the t ime of peak 
memory consumption. 

In k-Wave-Python, the first s imulat ion step usually creates a large spike i n memory 
allocation, because a l l temporary arrays and libraries are being ini t ia l ized. Peak memory 
consumption cannot be easily compared wi th languages such as C + + because the user does 
not always have full control over al location and de-allocation. 

A s can be seen i n figure 5.6, a pattern of periodic spikes i n memory consumption can be 
observed during each t ime step after the in i t i a l memory allocations. This pattern indicates, 
that temporary arrays are being created dur ing calls to certain functions. Th is is not 
desirable because the al location of memory becomes less predictable. 

l/opt/python@3.10/bin/python3.10 kwave/kspaceFirstOrder3DP.py -i test_inputs/input_data_256_256_256.h5 -o output_file.h5 ~p_final --benchmark 10 

2000 

0 5 10 15 20 
t ime (in seconds) 

Figure 5.7: Memory al location wi th a pre-allocated array captured using mprof 

Figure 5.7 displays memory al location after a pre-allocated array for temporary results was 
introduced. Because temporary data is wri t ten to the pre-allocated array instead of creating 
new arrays, the spikes i n memory consumption from the previous example disappear. Th is 
memory consumption of the program becomes more predictable and less t ime is consumed 
by allocation. 

x h t t p s : //pypi.org/project/memory-profiler/ 
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on@3.10/bin/python3.10 kwave/kspaceFirstOrder3DP.py -i test_inputs/input_data_nl_abs_het_256_256_256.h5 -o output_file.h5 -p_f inal -benchmark 10 

0 10 20 30 40 50 
t ime (in seconds) 

Figure 5.8: Memory al location wi th non-linear, heterogenous, and absorbing settings cap­
tured using mprof 

Figure 5.8 shows an example of a non-linear, heterogenous, and absorbing simulat ion. Even 
though the numexpr l ibrary is being used, it sometimes is not possible to avoid temporary 
allocations. Even if temporary arrays can be avoided, it does not always guarantee an 
increase i n speed. Forcefully rewri t ing expressions to avoid reallocation may make the 
calculations less efficient, thus slowing the program down. 

Analysis of bottlenecks 

M u l t i p l e profiling tools were used during opt imizat ion of the implementat ion. The perfor­
mance profiling tools c P r o f i l e 2 and py -spy 3 provide an aggregate overview of the most 
performance intensive function calls, they are mainly used to identify the general locat ion of 
a bottleneck. Once an approximate location of the bottleneck is found, a line profiler can be 
used to locate the exact lines of code causing the slowdown. The kernprof/line_prof i l e r 1 

profiler was used for measuring the percentage of t ime spent i n ind iv idua l functions. In 
this section, a 128x128x128 simulat ion was run for 1000 time steps w i t h py -spy attached, 
generating figures described below. 

kspaceloop (kspaceFirstOrderRunner.py:322) 

j next (kspacefirstorder/kspaceFirstDrderBase.py:163) 
j ..spaceFirstOrder3D.py:101) ..paceFirstOrder3D.py:105) | .rder/kspac;eFirsl:Order3D.py: 117) .tarder/kspaceFirstOrder3D.py:118) ..) ..y:12S) 

..eFirstOrderBase.py:208) ..py:215) .,FirstOrderBase.py:217) ,y:215) ..irstOrderBase.py:217) .y:215) | ..FirstOrderBase.py:217) 

II llll 1 ••) m 
! IIIIII 

i i 

Figure 5.9: Performance profile of a linear, lossless, and homogenous simulat ion captured 
using py-spy 

Figure 5.9 displays a flame chart that breaks down percent of runtime spent i n each func­
t ion of the cal l stack. More than 90% of the runtime is spent i n the kspace_runner, which 

2 h t t p s : //docs.python.org / 3/library/profile.html 
3 h t t p s : //github.com/benf red/py-spy 
4 h t t p s : //github.com/pyutils/line_prof i l e r 
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executes the ma in simulation loop and a l l related behavior such as data recording and visu­
alization. The runtime is evenly spread between the ind iv idua l s imulat ion functions, which 
is to be expected. The simulat ion function kspaceFirst0rder3D._sim_step() was pro­
filed using the line_prof i l e r tool for 1000 time steps and the domain size of 128x128x128. 
Simulat ion settings used were linear, homogenous, and lossless. A r o u n d 4 5 % of computa­
t ion t ime was spent i n the function calc_duxdx(), 4 3 % i n calc_ux_sgx(), 6% of t ime was 
spent i n recalculate_rho() . W i t h the selected settings, the computat ion t ime is roughly 
divided by the number of F F T s computed. 

all 
run_ksp3ceFirst0rder_CLJ (kspaceFirstOrderRunn sr.py:432) 

| ^ ^ ^ ^ ^ ^ ^ ^ | ..UrderJU.py: I'JH) ..rderJU.py :109) ,.rstOrder3D.py:116) ..stOrd 
..Base.py:206) | ..rBase.py:208) | ^ ^ ^ ^ :2Q8) ..15} ..Base.py:217) ..5) . .ase.py:217) .5) ..ase.py:217) ^ ^ ^ r e c a l c i jlate p (kspacefirstorder/kspaceFirstOrderStrats.py:156) 

1 1 II I I I I • 
py:69) ..paceFirstOrderStrats.py:70) ...py:73) ..aceFirstOrderStrats.py:74) 

II i 

Figure 5.10: Performance profile of a non-linear, absorbing, and heterogenous simulat ion 
captured using py-spy 

W i t h non-linear, absorbing, and heterogenous simulations, the profile changes consid­
erably. A large por t ion of runtime, as shown in figure 5.10, is spent in the function 
recalculate_p() , that handles the updates of the pressure array. The function causing 
the slowdown in this case is the EosAbsorbing.recalculate_p_nonlinear() . It contains 
four F F T calculations (fftn() and i f f t n O ) and is also difficult to optimize using num-
expr. S imi lar ly to the first example, the kspaceFirst0rder3D._sim_step() function was 
profiled using the line_prof i l e r w i th the same domain size and number of t ime steps. 
The settings used were non-linear, heterogenous and absorbing. T h i s t ime, the function 
recalculate_p() consumed almost 3 6 % of the computat ion time, 2 9 % of t ime was spent 
in calc_duxdx() , and around 27.5% i n calc_ux_sgx() . It can thus be concluded, that 
the calculat ion of F F T s has the most significant impact on the overall performance of the 
simulation. 

Process of optimization 

This section outlines the approximate steps taken during the opt imizat ion of k-Wave-
Py thon . In the first opt imizat ion phase, unnecessary reallocations of N u m P y arrays were 
eliminated where possible. Reallocations are usually unintentionally caused by assigning 
a result of a calculation to an variable point ing to an already existing array, this makes 
the garbage collector destroy the object and a reallocation occurs. Reallocations can be 
eliminated by assigning a new value to an already existing array like x[:] = result or 
by using np.copyto(x, result). A n y such optimizations should first be verified since 
copying might not always be faster than creating a new array. 

In the second phase, a l l equations, that can benefit from it , were wrapped wi th numexpr. 
Th is mainly applies to equations for recalculating pressure and density, which contain a large 
number of ari thmetic operations. Equations that contain F F T s which cannot be included 
into numexpr can be opt imized this way at least partially. 

Since F F T s form a large majority of the computat ion time, as described i n section 5.3, 
the performance is ul t imately t ied to the performance of the underlying F F T l ibrary (in 
this case p y F F T W ) . 
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Further avenues for optimization 

One of the ways better performance could be achieved is by using various P y t h o n libraries, 
that enable ahead-of-time, just-in-time compilat ion, or improve parallel ism of the compu­
tations. 

Ahead-of-time compiled functions provide speeds comparable to C , this can be done 
by wr i t ing functions i n Cython as separate modules and compil ing them. Compi l i ng to 
C might not always equate to a speed boost. Since k-Wave-Python uses the N u m P y and 
numexpr libraries, which are already vectorized, the benefit of compil ing 
might be negligible [4, p. 162]. 

Just-in-time compiled solutions are easier to deploy to the target program. The Numba6 

l ibrary allows compilat ion of ind iv idua l functions using a decorator. Compi la t ion occurs 
during the first cal l of the functions, the J I T compiled code is then cached for further use. 
Limi ta t ions are however similar to the previously described pre-compiled C y t h o n . Further 
deployment of numexpr, which could also be classified as a J I T library, is also an option. 

W h i l e p y F F T W automatical ly works i n mult iple threads, some parts of the s imulat ion 
algori thm could s t i l l benefit from added parallelization. This mainly applies to equations 
that are calculated for each dimension of the array separately. Th is includes velocity and 
density calculations for each cardinal direction X, Y, and Z. Since the P y t h o n GIL (Global 
Interpreter Lock) prohibits parallel computat ion using threads [9], separate processes must 
be used instead of threads. Th is can be achieved using the multiprocessing standard 
library, which allows the simple creation of worker pools. There are mult iple caveats to 
this approach. For smaller domains, the overhead of forking and jo in ing threads might 
outweigh the possible speed benefits. For larger domains, the cost of synchronizing results 
between threads might also be an issue [4, p. 280]. Another issue could be the dupl icat ion 
of allocated arrays during forking, a possible solution is to allocate shared N u m P y arrays 
using multiprocessing. Array to avoid dupl icat ion of the memory from the 
main thread [4, p. 298]. 

One of the components which is currently not opt imized is the class HDFIndexingAdapter 
(sec. 3.8) used for converting indices from H D F to N u m P y . The slowdown is caused by the 
indexing conversion during runtime, which often needs to re-shape the target data. 

W h i l e the k-Wave-Python performance was also benchmarked on the Barbora cluster 
from IT4Innovations [6] w i th P y t h o n 3.9.6 (and other versions) and M A T L A B R2021a, 
the performance measured indicates, that local ly measured speed improvements over the 
k - W a v e - M A T L A B do not translate to computat ional clusters. One of the further avenues of 
development could therefore be the adaptat ion of k -Wave-Python take advantage of cluster 
computing. 

5 h t t p s : //cython.org/ 
6 h t t p s : //numba.pydata.org/ 
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Chapter 6 

Conclusion 

The goal of this thesis was to analyze conversion of M A T L A B programs to P y t h o n and to 
summarize the main issues arising from such conversions. The topics discussed mainly relate 
to the issues encountered during the re-implementation of the k-Wave toolbox, emphasizing 
the aspect of performance. The second goal was to create a P y t h o n implementat ion of a 
subset of the k-Wave toolbox, thus laying the groundwork for further development. 

A s a part of this thesis, a working P y t h o n k-Wave implementat ion was developed. The 
performance of the new implementat ion is comparable to the original M A T L A B implemen­
tat ion, in some cases, the new implementat ion surpasses the performance of the original 
implementation by around 10-50%. The to ta l number of lines of code is approximately 
2000 lines (not including empty lines and comments), which is a substantial improvement 
over C + + implementations. 

Based on the insights gained during implementat ion and conversion from M A T L A B , 
a set of guidelines and tips was proposed. A summary of high performance computing 
technologies used in P y t h o n was also compiled. 

The takeaway from this thesis is, that opt imizat ion is a non- t r iv ia l multi-faceted issue. 
Proper opt imizat ion requires due diligence and careful balancing of counteracting effects. 

Currently, the performance of the implementat ion is l imi ted by a smal l por t ion of the 
tota l lines of code, mainly due to F F T computations. In terms of opt imizat ion, acceleration 
of the most performance-critical s imulation functions could provide substantial performance 
improvements. Funct ion calls to F F T s currently prevent the applicat ion of numexpr to 
entire equations, br idging this gap could lead to improved memory handling. Performance 
on computer clusters could also be the focus of further development. 

In the future, the implementat ion could be expanded to include I D and 2D simulations. 
Due to the popular i ty of Py thon , k-Wave could also be brought to a wider audience of 
potential users while also enabling integration wi th other powerful P y t h o n libraries. 
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Appendix A 

Contents of the included storage 
media 

• k-Wave-MATLAB/ - folder containing source code of the k - W a v e - M A T L A B toolbox 
which served as the reference during implementat ion of k-Wave-Python 

• Sources/ - folder containing source files of the k-Wave-Python implementat ion 

• Thesis/ - folder containing source files of the thesis text 

• Data/ - folder containing example data, measurements and simulat ion logs 

• README. md - file describing contents of the storage media 

• xcerny74.pdf - P D F version of the thesis text 
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Appendix B 

k-Wave Python user manual 

This appendix contains the guide for the instal lat ion and usage of k-Wave-Python. The 
basic requirements include: 

• A U N I X - l i k e operating system such as L i n u x or M a c O S . 

• P y t h o n 1 version 3.10, lower versions such as P y t h o n 3.9 may run, but full compati­
bi l i ty is not guaranteed. 

• The P y t h o n libraries numpy 2 , numexpr 3 , matplot l ib . A l though the simulator can 
run without the l ibrary p y F F T W ' ' , it is highly recommended because of performance 
benefits. 

• If the p y F F T W l ibrary is used, the underlying F F T W 3 6 l ibrary must also be installed 
on the target system. 

P y t h o n libraries can be installed using the P y t h o n pip package management tool using 
the command pip i n s t a l l - r requirements.txt, the requirements.txt file contains 
above listed required libraries. The pip tool may also be called pip3 depending on the 
configuration of the target system. 

To simplify the instal lat ion process, k -Wave-Python can be directly installed using pip. 
Th is can be done by navigating to the root folder of the project and using the pip i n s t a l l 
. command. A new kwave python package w i l l be installed system-wide. A new ut i l i ty 
kspaceFirst0rder3DP w i l l also be installed and can be used i n any terminal . The default 
instal l only installs the N u m P y F F T backend, to instal l the addi t ional p y F F T W backend, 
use the command pip i n s t a l l M. [fftw]". For more information, refer to README.md. 

x h t t p s : //www.python.org/ 
2 h t t p s : //numpy.org/ 
3 h t t p s : //github.com/pydata/numexpr 
4https://matplotlib.org/ 
5 h t t p s : //github.com/pyFFTW/pyFFTW 
6 h t t p s : //www.fftw.org/ 
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B . l Using the simulator 

The command line interface of the simulator can be accessed using the file 
kspaceFirst0rder3DP .py. It can be executed using the commands: 
python3 kspaceFirst0rder3DP.py or ./kspaceFirst0rder3DP.py on L i n u x / M a c O S (this 
may require granting execution permissions using chmod). 

To use the simulator w i th k - W a v e - M A T L A B dur ing development, create a hard l ink of 
the C L I script using In kspaceFirst0rder3DP.py kspaceFirst0rder3DP, then move the 
kspaceFirst0rder3DP hard l ink to the k-Wave-MATLAB/k-Wave/binaries folder i n the k-
W a v e - M A T L A B . To ensure ind iv idua l modules are correctly found, and add the root folder 
of k -Wave-Python to the PATH and PYTHONPATH environment variables. 

To simplify the process of using k-Wave-Python wi th in the k - W a v e - M A T L A B tool­
box, the link_kwave.py u t i l i ty was developed. After executing python3 link_kwave.py 
path/to/kwave/binaries, the u t i l i ty w i l l create a new hard l ink for the 
kspaceFirst0rder3DP i n the specified binaries folder, permissions to execute the script 
w i l l also be added. Addi t ional ly , the k-Wave-Python folder w i l l be exported to P A T H and 
P Y T H O N P A T H . Because the environment variable export is not persistent, the script lists 
the shell commands that should be added to the configuration file of the terminal . The 
command 
python3 kspaceFirst0rder3DP.py - i input_file.h.5 -o output_file.h.5 is the sim­
plest example of usage of the command line interface, only the input and output files are 
defined. B y default, the simulator w i l l only record the p_raw field and log progress every 
5% of t ime steps. The log output w i l l resemble the example output i n appendix E . A l l 
available parameters can be seen i n appendix D . 
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Appendix C 

Benchmark 
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Table C . l : T ime step durat ion [ms] and m a x i m u m memory usage i n k-Wave-Python [MB] 

D o m a i n size 
M A T L A B P y t h o n M e m o r y [MB] 

64x64x64 47. .42 30.32 111 
96x64x64 64. .52 46.90 135 
128x64x64 83. .52 59.65 160 
96x96x64 94. .07 68.93 173 
96x96x96 138. .35 103.76 231 
128x128x64 163. .90 120.71 259 
128x96x96 186. .07 140.26 284 
128x128x96 249. .72 187.80 364 
128x128x128 337. .02 248.29 465 
160x128x128 418. .46 313.31 566 
160x160x128 526. .11 450.23 688 
160x160x160 671. .74 584.03 843 
256x128x128 684. .18 615.97 860 
192x160x160 827. .36 719.57 1001 
192x192x160 1064. .74 877.12 1188 
192x192x192 1381. .20 1077.28 1415 
224x192x192 1674. .80 1145.75 1640 
224x224x192 2128. .18 1450.44 1910 
224x224x224 2582. .44 1744.35 1855 
256x224x224 2890. .54 2197.79 2267 
256x256x256 4164. .30 2759.15 2720 
288x256x256 4723. .41 3166.60 2915 
288x288x256 9180. .95 4138.25 3378 
288x288x288 10088. .54 4983.87 3677 
320x288x288 12347. .96 5637.26 4072 
320x320x288 14813. .73 7234.01 4217 
320x320x320 18922. .59 9761.35 4468 
512x256x256 20854. .13 10784.86 4547 
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Appendix D 

k-Wave-Python help menu 

usage: kspaceFirst0rder3D [-h] - i <file_name> -o <file_name> [—version] 
[-r <interval_in_°/0>] [—verbose <level>] 
[—benchmark <time_steps>] [—show] [-b <backend>] 
[-t <num_threads>] [-s <time_step>] 
[—checkpoint_interval <sec>] 
[—checkpoint_file <file_name>] [-p] [—p_rms] 
[—p_max] [—p_min] [—p_max_all] [—p_min_all] 
[—p_final] [-u] [—u_rms] [—u_max] [—u_min] 
[—u_max_all] [—u_min_all] [—u_final] 
[—copy_sensor_mask] 

kspaceFirst0rder3D launcher s c r i p t . This script can be used to run 
kspaceFirst0rder3D simulations using HDF input f i l e s . Simulation dimensions 
and settings are automatically loaded from the input dataset. Other available 
options are described below. 

options: 
-h, — h e l p show this help message and exit 

mandatory parameters: 
- i <file_name> 
-o <file name> 

name of HDF5 input f i l e 
name of HDF5 output f i l e 

optional parameters: 
— v e r s i o n print version and build info 
-r <interval_in_°/0> progress print interval (default = 5%) 
—verbose <level> level of verbosity <0, 2> (default = 1) 
—benchmark <time_steps> 

run only a specified number of time steps 
-t <num_threads> number of CPU threads for FFT (default = 8) 
-s <time_step> time step when data co l l e c t i o n begins (default = 0) 
—checkpoint_interval <sec> 

checkpoint after a given number of seconds (default = 
60) 
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— c h e c k p o i n t _ f i l e <file_name> 
name of HDF5 checkpoint f i l e 

implementation s p e c i f i c parameters: 
—show w i l l display simulation progress preview 
-b <backend>, —backend <backend> 

backend used for FFT computations (default = pyfftw) 

output flags: 
-p, —p_raw 
—p_rms 
—p_max 
—p_min 
—p_max_all 
—p_min_all 
— p _ f i n a l 
-u, —u_raw 
—u_rms 
—u_max 
—u_min 
—u_max_all 
—u_min_all 
— u _ f i n a l 
—copy_sensor_mask 

store time varying acoustic pressure 
store rms of P 
store max of P 
store min of P 
store max of P (whole domain) 
store min of P (whole domain) 
store f i n a l pressure f i e l d 
store time varying p a r t i c l e velocity (ux, uy, uz) 
store rms of ux, uy, uz 
store max of ux, uy, uz 
store min of ux, uy, uz 
store max of ux, uy, uz (whole domain) 
store min of ux, uy, uz (whole domain) 
store f i n a l p a r t i c l e velocity f i e l d 
copy sensor mask to output f i l e 
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Appendix E 

Example output log 

— + 

I 
— + 

8 I 
Done I 

kSpaceFirst0rder3D-Python vO.l 

Number of CPU threads: 
Reading simulation configuration: 

-+ 

I 
-+ 

I 
I 
+ 
I 
+ 

Done I 
Done I 
0.08s I 

Simulation details 

Simulation dimensions: 
Simulation time steps: 

128 x 128 x 128 
50 

I n i t i a l i z a t i o n 

Memory allocation: 
Data loading: 
Elapsed time: 

FFT plans creation: 
Pre-processing phase: 
Elapsed time: 

Computational resources 
Current host memory i n use: 

Done I 
Done I 
0.08s I 

+ 
I 
I 

-+ 

I 
-+ 

240MB 

Simulation 
+ +-

Elapsed time | Time to go | Progress | Est. f i n i s h time I 
+ + + +-

4% 1 0 464s 1 22.29s 1 06/05/22 11 58 43 
8% 1 1 047s 1 16.048s 1 06/05/22 11 58 37 
12% 1 1 581s 1 13.913s 1 06/05/22 11 58 35 
16% 1 2 121s 1 12.725s 1 06/05/22 11 58 35 
20% 1 2 646s 1 11.76s 1 06/05/22 11 58 34 
24% 1 3 167s 1 10.94s 1 06/05/22 11 58 34 
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28% 1 3 692s 1 10.225s 1 06/05/22 11 58 34 
32% 1 4 223s 1 9.571s 1 06/05/22 11 58 34 
36% 1 4 767s 1 8.973s 1 06/05/22 11 58 33 
40% 1 5 303s 1 8.374s 1 06/05/22 11 58 33 
44% 1 5 842 s 1 7.79s 1 06/05/22 11 58 33 
48% 1 6 382s 1 7.214s 1 06/05/22 11 58 33 
52% 1 6 913s 1 6.637s 1 06/05/22 11 58 33 
56% 1 7 441s 1 6.063s 1 06/05/22 11 58 33 
60% 1 7 958s 1 5.488s 1 06/05/22 11 58 33 
64% 1 8 475s 1 4.921s 1 06/05/22 11 58 33 
68% 1 8 993s 1 4.36s 1 06/05/22 11 58 33 
72% 1 9 508s 1 3.803s 1 06/05/22 11 58 33 
76% 1 10 034s 1 3.254s 1 06/05/22 11 58 33 
80% 1 10 564s 1 2.709s 1 06/05/22 11 58 33 
84% 1 11 087s 1 2.163s 1 06/05/22 11 58 33 
88% 1 11 615s 1 1.621s 1 06/05/22 11 58 33 
92% 1 12 145s 1 1.08s 1 06/05/22 11 58 33 
96% 1 12 673s 1 0.539s 1 06/05/22 11 58 33 
98% 1 12 936s 1 0.27s 1 06/05/22 11 58 33 

+ + + + + 
I Elapsed time: 13.47s | 
+ + 
I Summary I 
+ + 
I Peak memory i n use: 505MB | 
+ + 
I Total execution time: 13.8536s | 
+ + 
I End of computation I 

+ + 
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