
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA I N F O R M A Č N Í C H TECHNOLOGI Í

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

ULTRASOUND SIMULATION IN PYTHON
ULTRAZVUKOVÁ SIMULACE V PYTHONU

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR DAVID ČERNÝ
AUTOR PRÁCE

SUPERVISOR doc. Ing. JIŘÍ JAROŠ, Ph.D.
VEDOUCÍ PRÁCE

B R N O 2022

Brno University of Technology
Facu l ty of In fo rmat ion T e c h n o l o g y

Department of Computer Systems (DCSY) Academic year 2021/2022

Bachelor's Thesis Specification |||||||||||||||||||||||||
2 4 8 8 4

Student: Černý David
Programme: Information Technology
Title: Ultrasound Simulation in Python
Category: Software Engineering
Assignment:

1. Familiarize yourself with the k-Wave software toolbox for simulation of ultrasound wave
propagation.

2. Study the features of the Python language related to the high performance computing.
3. Design a method for transforming simulation codes written in Matlab to Python considering

the performance as a primary objective.
4. Implement the designed solution.
5. Evaluate the performance of the developed solution on a standard set of test tasks.
6. Discuss the impact and contribution of your work to the future development of k-Wave.

Recommended literature:
• According to supervisor's advice.

Requirements for the first semester:
• Items 1 to 3 of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Jaroš Jiří, doc. Ing., Ph.D.
Head of Department: Sekanina Lukáš, prof. Ing., Ph.D.
Beginning of work: November 1, 2021
Submission deadline: May 11, 2022
Approval date: October 29, 2021

Bache lo r ' s T h e s i s S p e c i f i c a t i o n / 2 4 8 8 4 / 2 0 2 1 / x c e r n y 7 4 P a g e 1/1

https://www.fit.vut.cz/study/theses/

Abstract
k-Wave is a M A T L A B toolbox for the s imulat ion of sound wave propagation. The a i m of
this thesis is to re-implement a subset of k-Wave i n P y t h o n while focusing on computat ional
performance. The second goal is to develop a set of guidelines for transforming M A T L A B
source code to P y t h o n that could aid i n further development. The thesis first summarises
core features of the k-Wave toolbox, explores available technologies for high performance
computing i n Py thon , and highlights the most important aspects of transforming M A T L A B
source codes to Py thon . The second part of the thesis discusses architecture, testing and
benchmarking of the P y t h o n implementat ion. The result of this thesis is a P y t h o n imple­
mentation of the three-dimensional sound propagation simulat ion compatible w i th k-Wave.
The new implementat ion improves the structure of the original toolbox while providing
performance comparable to the original k-Wave. In some instances, the performance of the
new implementat ion surpasses the original implementation.

Abstrakt
k-Wave je M A T L A B n á s t r o j pro simulaci š í ření zvukových v ln . C í lem t é t o p r á c e je reimple-
mentovat čás t n á s t r o j e k-Wave v jazyce P y t h o n se z a m ě ř e n í m na v ý p o č e t n í výkon . D r u h ý m
cílem je formulace sady d o p o r u č e n í pro transformaci zdro jových k ó d u z j azyka M A T L A B
do j azyka Py thon , k t e r é by mohly p ř i spě t př i da l š ím vývoji . Tato p r á c e nejprve shrnuje
klíčové funkce n á s t r o j e k-Wave, z k o u m á technologie pro vysoce v ý k o n n é v ý p o č t y d o s t u p n é
v jazyce P y t h o n a zdů razňu je ne jzásadnějš í aspekty transformace zdro jových k ó d ů z j azyka
M A T L A B do j azyka P y t h o n . D r u h á čás t p r á c e se zabývá architekturou, t e s t o v á n í m a
m ě ř e n í m v ý k o n u výs ledné P y t h o n implementace. Výs ledkem t é t o p r á c e je implementace
t r o j r o z m ě r n é simulace šíření zvuku , k t e r á je k o m p a t i b i l n í s k-Wave. Nová implementace
vylepšuje s t rukturu p ů v o d n í h o n á s t r o j e a poskytuje výkon s rovna t e lný s p ů v o d n í m n á s t r o ­
jem, v u rč i tých p ř í p a d e c h výkon p ů v o d n í h o ba l íku převyšu je .

Keywords
k-Wave, simulation, opt imizat ion, O O P , N u m P y , Py thon , M A T L A B

Klíčová slova
k-Wave, simulace, optimalizace, O O P , N u m P y , Py thon , M A T L A B

Reference
Č E R N Ý , D a v i d . Ultrasound Simulation in Python. Brno , 2022. Bachelor's thesis. Brno
Univers i ty of Technology, Facul ty of Information Technology. Supervisor doc. Ing. J i ř í
J a r o š , P h . D .

Rozšířený abstrakt

k-Wave je s imulačn í n á s t r o j pro p r o s t ř e d í M A T L A B , k t e r ý umožňu je simulaci š í ření ul tra­
zvuku v j e d n o r o z m ě r n é m , d v o j r o z m ě r n é m i t r o j r o z m ě r n é m prostoru. U l t r azvuková simu­
lace je ča s to využ ívána na pol i medicíny. P r o t o ž e u l t r azvukové simulace vě tš ího rozsahu jsou
v ý p o č e t n ě n á r o č n é , využ ívá k-Wave ex t e rn í akce le rá to ry jako n a p ř . k - W a v e - F l u i d - O M P ,
k t e r é umožňu j í urychli t proces simulace jak na procesoru, tak p o m o c í grafických karet.
K vývoj i t ě ch to akce l e r á to rů se pově t š inou používaj í p o m ě r n ě n ízkoúrovňové j azyky jako
C + + , k t e r é ale nejsou pro všechny už iva te le k-Wave d o s t a t e č n ě p ř í s t u p n é . Dalš í n e v ý h o d o u
n ízkoúrovňových j a z y k ů je d l o u h á doba vývoje nových funkcí s imu lá to ru .

Kvůli p o p u l a r i t ě j azyka P y t h o n ve vědecké sféře je i v k o m u n i t ě už iva te lů n á s t r o j e k-
Wave p o p t á v á n a verze tohoto n á s t r o j e v jazyce Py thon . D íky vysoké ú rovn i abstrakce
jazyka P y t h o n by t a k é bylo u m o ž n ě n o jeho nasazen í př i rych lém p r o t o t y p o v á n í nových
funkcí s imulačn ího n á s t r o j e k-Wave. D a l š í m p ř í n o s e m verze k-Wave s i m u l á t o r u pro jazyk
P y t h o n by byla m o ž n o s t p ropo jen í s velkou šká lou j iných p o p u l á r n í c h n á s t r o j ů a knihoven,
k t e r é byly pro jazyk P y t h o n vy tvořeny .

Cí lem t é t o p r á c e je implementovat verzi s imulačn ího n á s t r o j e k-Wave v jazyce P y t h o n
a vy tvo ř i t sadu d o p o r u č e n í pro konverzi zdro jových k ó d ů z j azyka M A T L A B do jazyka
Py thon , to vše s d ů r a z e m na v ý p o č e t n í výkon .

P r á c e nejprve shrnuje zák l adn í pojmy a koncepty n á s t r o j e k-Wave a popisuje princip
jeho fungování , z e jména s ohledem na s t rukturu s imulačních dat, komunikaci s e x t e r n í m i
akce le rá to ry a funkcemi nás t ro j e , k t e r é jsou p ř e d m ě t e m implementace. N á s l e d n ě jsou pop­
sány ne jzásadnějš í rozdí ly mezi j azyky M A T L A B a P y t h o n z hlediska konverze zdro jových
kódů . M e z i tyto problematiky p a t ř í indexování , d a to v é struktury, a r i tme t i cké operace,
fourierovy transformace a vizualizace dat. V souvislosti s t ě m i t o o t á z k a m i jsou p ř e d s t a v e n y
v ý p o č e t n í a v izual izační knihovny d o s t u p n é v jazyce Py thon . Ze jména je implementace v
jazyce P y t h o n za ložena na k n i h o v n á c h N u m P y , numexpr a p y F F T W , k t e r é umožňu j í efek­
t ivn í vědecké výpoč ty . Dá le jsou vy jmenovány n ě k t e r é z á s a d n í n á v r h o v é vzory, k t e r é byly
použ i t y př i implementaci pro z lepšení s t ruktury a modular i ty výs ledného řešení .

P r a k t i c k á čás t p r á c e popisuje s t rukturu výs ledné implementace, její n á v r h o v á rozhod­
n u t í a odl i šnos t i od p ů v o d n í implementace v jazyce M A T L A B . Nová implementace byla
o t e s tována p o m o c í n á s t r o j e kWaveTester, k t e r ý je součás t í referenčního ba l íku k-Wave.

N á s t r o j kWave Tester slouží k a u t o m a t i c k é m u generování tes tovacích dat a s rovnáván í
výs ledků simulace akce l e r á to rů s referenčními výs ledky simulace. P r á c e p ř e d s t a v u j e několik
vzorových tes tovac ích p ř ík l adů , na k t e r ý c h byla implementace t e s tována , a zhodnocuje
jejich výsledky. Ce lá implementace je nakonec zhodnocena z hlediska výkonnos t i p o m o c í
op t ima l i začn ích n á s t r o j ů , výkonnos t je t a k é p o r o v n á n a s p ů v o d n í i m p l e m e n t a c í v jazyce
M A T L A B . B ě h e m optimalizace je zhodnocena i p r á c e s p a m ě t í a jsou p ř e d s t a v e n y prob lémy,
k t e r é neefekt ivní p ř í s t u p k p a m ě t i způsobuje .

Po z h o d n o c e n í s távaj íc ího stavu jsou n a v r ž e n y dalš í po t enc i á ln í způsoby optimalizace
vče tně p ř í k l a d ů typicky řešených op t ima l i začn ích p r o b l é m ů .

Výs ledkem p r á c e je s h r n u t í dů lež i tých a s p e k t ů p ř e v o d u zdro jových k ó d ů z j azyka M A T ­
L A B do jazyka P y t h o n se z a m ě ř e n í m na v ý p o č e n í výkon . H l a v n í m v ý s t u p e m je verze ba l íku
k-Wave v jazyce Py thon , k t e r á obsahuje všechny n e z b y t n é n á s t r o j e pro t r o j r o z m ě r n o u u l ­
t razvukovou simulaci . Nová implementace vylepšuje s t rukturu p ů v o d n í h o n á s t r o j e a t aké
poskytuje výkon s rovna te lný s p ů v o d n í m ba l íkem k-Wave, v u rč i tých p ř í p a d e c h výkon
p ů v o d n í h o ba l íku převyšuje .

Ultrasound Simulation in P y t h o n

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of doc. Ing. J i ř í J a r o š , P h . D . I have listed a l l the l i terary sources,
publications and other sources, which were used during the preparation of this thesis.

D a v i d Č e r n ý
M a y 11, 2022

Acknowledgements
I want to thank my supervisor, doc. Ing. J i ř í J a r o š , P h . D . , for his guidance and willingness
to help during the wr i t ing of this thesis. Th is work was supported by the M i n i s t r y of
Educat ion , Y o u t h and Sports of the Czech Republ ic through the e - I N F R A C Z (ID:90140).

Contents

1 Introduction 3

2 A brief overview of k-Wave 4
2.1 Structure of the toolbox 4
2.2 Simulat ion data 4
2.3 D a t a exchange w i t h k-Wave accelerators 8
2.4 k-Wave tester 9

3 Guidelines for converting M A T L A B code to P y t h o n 11
3.1 Basic comparison of M A T L A B and P y t h o n 11
3.2 P y t h o n computat ion libraries 12
3.3 Indexing 14
3.4 D a t a structures 15
3.5 M a t r i x and scalar ari thmetic 16
3.6 Fourier transforms 17
3.7 D a t a visualizat ion 17
3.8 Design patterns 18
3.9 Summary 21

4 k-Wave-Python implementation 22
4.1 Project structure 22
4.2 Input and output file handling 23
4.3 kspaceFirstOrder 24
4.4 Sources 26
4.5 Sensors and recorders 28
4.6 C o m m a n d line interface 30

5 Testing and optimization 32
5.1 Testing 32
5.2 Performance benchmarks 34

5.3 Memory profiling and opt imizat ion 36

6 Conclusion 41

Bibl iography 42

A Contents of the included storage media 44

B k-Wave P y t h o n user manual 45

1

B . l Us ing the simulator 46

C Benchmark 47

D k-Wave-Python help menu 49

E Example output log 51

2

Chapter 1

Introduction

Ultrasound simulation, or more generally the s imulat ion of sound wave propagation, is a
type of continuous physics simulat ion. It models changes i n pressure and velocity inside a
media over a given span of t ime using a set of physics equations, the media having predefined
density and other characteristics. C o m m o n applications include the study of acoustics,
modeling of human tissue in biomedicine, and other applications, where propagation of
sound i n materials is important . One of the many simulat ion programs available is k-
Wave [21], a toolbox wri t ten for the environment. It includes configurable tools for sound
propagation simulations i n up to 3 dimensions. Since both the t ime and memory complexity
of such simulations sharply increase wi th the size of the s imulat ion medium, opt imizat ion
is essential to make large-scale simulations feasible. Due to this, k-Wave relies on optimized
C + + and C U D A accelerators to provide the necessary performance for larger tasks.

C + + and C U D A , while very fast, require a higher level of programming expertise than
would generally be expected of an average user of k-Wave. The t ime and effort needed to
develop new features i n said languages is also significantly increased by their verbosity.

Ideally, the selected implementat ion language should be abstract enough to speed up
development t ime and provide good performance at the same time. W h i l e these two re­
quirements go against each other to some degree, it is possible to find a compromise. The
P y t h o n programming language presents a good candidate for such a compromise. It is
sufficiently abstract and can also benefit from a large number of performant computat ion
libraries. Because P y t h o n is also increasingly more popular i n the scientific field, a P y t h o n
version of k-Wave is i n demand from the k-Wave community.

This thesis aims to implement a subset of the k-Wave toolbox i n P y t h o n while focusing
on the computat ional performance of the designed solution. The second objective is to
create a set of guidelines for converting M A T L A B source codes to P y t h o n based on the ex­
perience gained during the implementat ion and to discuss techniques for wr i t ing performant
P y t h o n programs.

Chapter 2 introduces the structure and algorithms of k-Wave, which w i l l be the focus of
the final implementat ion. Chapter 3 discusses the conversion of M A T L A B source codes to
Py thon , emphasizing the most important differences and performance. Libraries and design
patterns used during the implementat ion are also summarized. Chapter 4 describes the
structure, features, and implementat ion k-Wave-Python. Chapter 5 describes the testing
the new implementation, explores the effects of various optimizations on the performance
of the simulator, avenues for further development are also explored. The thesis concludes
in chapter 6 w i th a summary.

3

Chapter 2

A brief overview of k-Wave

k-Wave, as previously described, is a simulation toolbox for M A T L A B . Created by Bradley
E . Treeby and Benjamin T . Cox in 2010 [21], the project has since been continuously under
development. Extensions were later wri t ten i n C + + and C U D A to accelerate performance-
cr i t ical parts of the toolbox on both the C P U and the G P U . This chapter w i l l outline
the general structure of the M A T L A B implementat ion of the toolbox, its most important
features, and architectural decisions.

2.1 Structure of the toolbox

k-Wave consists of a set of core modules that contain the implementat ion of the k-space
first-order simulation algorithms [20, p. 26]. A l l simulations can be performed i n 1, 2,
and 3 dimensions, the 3-dimensional variant being the most common i n real-world ap­
plications such as low-intensity ultrasound neurostimulation [11] or high-intensity focused
ultrasound tumor ablat ion [15]. Variants of the core algorithms are executed using the
functions kspaceFirstOrderlD, kspaceFirst0rder2D, and kspaceFirst0rder3D for each
number of dimensions respectively. A p a r t from the core modules, the toolbox also includes
many auxi l iary modules that handle the ini t ia l izat ion and preparation of simulation data,
visualizat ion, data recording, and testing.

2.2 Simulation data

M u l t i p l e data structures, global variables, and flags serve as input data for in i t ia l iz ing and
running the simulat ion. Simulat ion input data is d ivided into four groups: the kGrid,
the Medium, the Source and the Sensor. These four groups are passed to the simulation
function as data structures together w i th addi t ional opt ional parameters that are described
in the k-Wave manual [20, p. 68]. This section summarizes contents of a l l input data groups
and the P M L (Perfectly Matched Layer) .

kGrid

The k G r i d contains variables that define the s imulat ion t ime and dimensions of the simu­
lat ion medium. The variables Nx, Ny, Nz define the discrete number of gr id points in each

x h t t p s : //www.mathworks.com/products/matlab.html

4

http://www.mathworks.com/products/matlab.html

cardinal direction and dx, dy, dz define the physical spacing of gr id points in the respective
direction. The variables Nt and dt set the number of s imulat ion t ime steps and their length.

Medium

The M e d i u m describes the physical medium i n which sound waves propagate, the most
important value being the sound_speed, which defines the speed of sound propagation in
the medium. The field density describes the density of the medium. In case the s imulat ion
is non-linear and /or absorbing, addi t ional coefficients are also included.

The medium can be either homogenous, or heterogenous. A homogenous medium only
contains one scalar value per field that is used for the entire domain, a heterogenous medium
defines each field as an array, that contains a value for every grid point.

% ... Preceding i n i t i a l i z a t i o n steps
Nx = 64;
Ny = 64;

medium.sound_speed = 1700 * ones(Nx, Ny);
medium.density = 800 * ones(Nx, Ny);

medium.sound_speed(:, l:Ny) = 2000;
medium.density(Nx/2:Nx) = 500;

% ... Following i n i t i a l i z a t i o n steps
sensor_data = kspaceFirst0rder2D(kgrid, medium, source, sensor);

Lis t ing 2.1: Ini t ia l izat ion of a heterogenous medium in the k-Wave toolbox

L i s t ing 2.1 shows the ini t ia l izat ion of a s imulat ion w i t h a heterogenous medium 2 . B o t h the
medium.sound_speed and medium.density are defined as arrays w i t h values for pressure
and density for each grid point. Fol lowing the al location of arrays, slices of values in both
the sound speed array and the density array are changed. This allows the s imulat ion of
sound propagation through a medium composed of different materials.

Source

The Source defines the sources which dictate where the sound wave originates from i n the
simulation medium. There are two types of sources: initial pressure sources and time-
varying sources. In i t ia l pressure sources only inject pressure into the s imulat ion i n the
beginning (as defined by the variable pO), whereas t ime-varying sources continuously add
pressure (or velocity) at gr id points specified by a mask.

2Similar to an example from k-Wave: examples/example_ipv_heterogenous_medium.m

5

X

source_pos index
source

I /
source

I /
0.o|o.5|l.o|o.s|o.o|

t
t index
t

t index
D o m a i n

Figure 2.1: Time-varying source

Figure 2.1 represents the function of a t ime-varying source. The source_pos_index points
to the grid points of a domain (in this case, a two-dimensional domain), that contain the
t ime-varying source. After each step of the simulation, the source fetches the current source
value pointed to by t_index (index of the current simulation step) from the source_input
array. This value is then either set or added to the target gr id cells, depending on the
simulation settings. The source_input and source_pos_index have the prefix p_ and u_
for pressure and velocity respectively. The target domain depends on the source type. The
p array (containing current pressure) is used for pressure sources and the ux_sgx, uy_sgy
and uz_sgz arrays are used for injection of particle velocity for each cardinal direction.

7. Preceding i n i t i a l i z a t i o n steps

Nx = 32;
Ny = 32;
source.pO = zeros(Nx, Ny);

source.pO(Nx/2-2:Nx/2+2, Ny/2-2:Ny/2+2) = 5;

% ... Following i n i t i a l i z a t i o n steps
sensor_data = kspaceFirst0rder2D(kgrid, medium, source, sensor);

Lis t ing 2.2: Creat ion of an in i t i a l pressure source in the k-Wave toolbox

L i s t ing 2.2 shows the in i t ia l iza t ion of an in i t i a l pressure source for a two-dimensional sim­
ulat ion. The pO array containing in i t i a l pressure is first ini t ia l ized zeroed. Afterwards, a
cube of in i t i a l pressure measuring 2x2 grid points w i t h the value of 5 pascals is placed in
the center of the medium. The in i t i a l pressure is copied to the p pressure array during the
first t ime step of the simulation, then the in i t i a l pressure then propagates.

Sensor

Changes i n pressure and particle velocity during simulation are recorded using Sensors.
The gr id points where measurements are taken can be set using either a binary mask or
cuboid corners. W i t h boolean masks, the presence of a sensor at a given gr id point is
defined by the corresponding binary value (0 or 1) i n the sensor mask. This allows for more
granular control over the shape of the sensors but requires more memory to store values
for each coordinate. C u b o i d corners, on the other hand, only require the coordinates of

(i

two opposing points of a geometric shape to describe the mask. In 3 D , the two opposing
coordinates form a cuboid, a rectangle in 2D, and a line in I D [20, p. 36]. The record
field contains the list of a l l measurements to be recorded - this includes pressure, particle
velocity, and their various aggregations like the maximum, min imum, or final recorded
value.

(1,1)

(2,2)

(4,3)

(3,4)

Figure 2.2: C u b o i d corners mask

Figure 2.2 shows a two-dimensional gr id w i th two overlapping cuboid corner masks. The
first mask originates at coordinate (1,1) and ends at (3,4), the second mask originates at
(2,2) and end at (3,4). A s can be seen, this way of representing masks is very compact, a
binary sensor mask would require the storage of a value for each ind iv idua l point contained
in the masks, whereas cuboid masks only define spans of coordinates for each dimension.

% ... Preceding i n i t i a l i z a t i o n steps

% Defining a cuboid mask
sensor.mask = [2 2 4 5 ; 3 3 4 5].';

% Running the simulation
sensor_data = kspaceFirst0rder2D(kgrid, medium, source, sensor);

Lis t ing 2.3: Creat ion of a cuboid corners mask i n the k-Wave toolbox

L i s t ing 2.3 contains the definition of a cuboid corners mask i n the M A T L A B version of
k-Wave, s imilar to one of the mask definitions i n the k-Wave example folder 3 . E a c h cuboid
is defined as a sequence of numbers in the format [x l_start y l _ s t a r t x l_end y l_end],
forming the span of columns that w i l l be the part of the cuboid mask. If mult iple masks
are defined, each mask is stored i n a separate column of the array. Because figure 2.2 shows
N u m P y coordinates, a l l indices in the M A T L A B example are incremented by 1.

3Similar to an example from k-Wave: examples/example_ipv_opposing_corners_sensor_mask.m

7

P M L
The P M L (Perfectly Matched Layer) is a layer at the boundary of the s imulat ion medium.
It emulates the effect of pressure waves leaving the s imulat ion medium. Wi thou t the P M L ,
the waves would cause 'echoes' i n the s imulat ion medium, creating noise i n the sensors.

2.3 Data exchange with k-Wave accelerators

For simulations wi th smaller gr id sizes, the default M A T L A B implementat ion of k-Wave
provides sufficient performance. However, larger simulations require the usage of external
accelerators that implement the core algorithms i n more efficient compiled languages such
as C + + . The accelerators function as self-sufficient command-line utili t ies that accept
arguments in order to configure the simulation, the s imulat ion data discussed in the previous
section 2.2, is passed to the accelerator using an H D F 1 file. k-Wave that is being run
wi th an accelerator does not ca l l the kspaceFirstOrder. . . () function but instead saves
al l s imulat ion input data to an input file (sec. 2.3), calls the accelerator specified by the
options. cpp_binary_name;) variable. The accelerator then executes the simulation, saving
the results back to an output file (sec. 2.3). The k-Wave then reads the externally computed
result and continues normal operation.

Exchange of data using H D F files is well suited for this purpose given, the number of
variables needed for the ini t ia l izat ion of the simulat ion. The format is also open source and
platform independent, enabling the implementat ion of accelerators i n any language which
supports the H D F format. Another important feature is the abi l i ty to stream data to / f rom
on-disk files, saving memory when working wi th large domains. Th is section describes three
kinds of H D F files that are used in k-Wave: input files, output files, and checkpoint files.

Input files

The input file is created by k - W a v e - M A T L A B and consumed by the accelerator. It contains
data required to ini t ial ize and execute the simulat ion. The data fields are grouped according
to the structure of the s imulat ion input data (sec. 2.2). The location and type of used
sensors are stored in the input file, fields being recorded are toggled using command line
flags (sec. 1.6). The full list of input fields is available in the k-Wave manual[20, p. 71].

Output files

Output files are created by the accelerator upon the completion of the simulat ion. Apa r t
from basic information about the simulation, which is similar to fields in the input file,
results of s imulat ion and values recorded by the sensors are also stored. The recordings can
either be scalar (maximum pressure, m i n i m u m velocity, etc.), contain the entire state of
the grid (for example, final state of pressure), or contain a value for each sensor gr id point
and t ime step, forming a t imeline of values for further analysis. The last type of recorded
data is the data captured using a cuboid sensor. C u b o i d sensors capture a slice of the array
for each t ime step, the shape of which is defined by the cuboid mask. A l l available output
fields are described i n the k-Wave manual [20, p. 75].

4 h t t p s : //www.hdf group.org/solutions/hdf5/
5Even though the name contains cpp, any executable program or script can be specified, as long as it is

compliant with the k-Wave command line interface

8

http://www.hdf
http://group.org/solutions/hdf5/

Checkpoint files

Checkpoint files only contain the grid size and the current s imulat ion state: pressure,
velocity, density, and the current t ime step index. T h i s file type is used during long-
running simulations to avoid the need to re-run the entire s imulat ion i n case of an outage
or an error were to occur. Unl ike input and output files, checkpoint files are only created
if enabled using a command line argument.

2.4 k-Wave tester

The k-Wave tester tool was created for standardized testing of both the M A T L A B tool­
box and the accelerators. The test suite is located in the kwave/testing/kWaveTester
folder, the core implementat ion of the test script is in the kWaveTester .m file. The target
executable to be tested can be set using the options. cpp_binary_name, as discussed in
section 2.3.

The options. custom_test_case list contains various flags for setting up the simula­
t ion. The u t i l i ty kwt_save_input_data.m can be used for saving the customized simulation
files to disk, making it a useful tool when testing various types of s imulat ion implemen­
tations. The script kwt_run_omp_comparison_tests_<DIM> .m can be used for automatic
testing of many different simulation settings combinations. The tester first runs the k-
W a v e - M A T L A B version of the simulation, storing recorded results for later comparison.
After the k - W a v e - M A T L A B simulation ends, the tester creates an input file, calls the ac­
celerator specified by options. cpp_binary_name and reads the results from an output file.
The values measured by the accelerator stored i n the output file are then compared wi th
the reference results, creating the graphs and metrics described below.

k-Wave [Total Pressure)

<<. F <<
- U -0.1 x 30

C++ (Total Pressure)

I

I
-20 -10 0 10

y-position [mm]
-20 -10 0 10

y-position [mm]
-20 -10 0

y-position [mm]
, pwiuui . I Ij

Figure 2.3: kWaveTester example output

Figure 2.3 shows an example output of the kWaveTester tool . The leftmost plot shows the
reference output generated by the k - W a v e - M A T L A B , the picture next to it the output of
the accelerator being tested. The images show the values captured as the pressure wave
passes through the sensor. The two images on the right show the local and global error
measured i n percent. The local error displays the difference between reference and measured
values for each grid point individual ly . The global error shows error as percentage of the
max imum recorded value.

A text summary of the test performed by the kWaveTester is always listed at the end
of the simulation log file. The output for the s imulat ion displayed i n 2.3 can be seen below.

9

C++ ACCURACY COMPARED TO MATLAB:

Error i n sensor_data(l).p
MAX VALS = 223497.7471 (MATLAB) 223497.8125 (CPP)
L2 = 0.00088376

LINF = 0.20907 (9.3546e-07 normalised to max value)

Lis t ing 2.4: kWaveTester test log summary

The output log summary i n l is t ing 2.4 contains three metrics. The MAX VALS shows the
max imum values recorded i n both M A T L A B and the accelerator being tested. If the maxi ­
m u m values are similar but the recorded results are not, it could mean that the calculation
is performed correctly, but the sensor is recording at incorrect indices (indexing is a common
source of issues, as discussed i n section 3.3). The L2 shows the R M S E (Root Mean Square
Error) [1] of the compared results. The LINF measures the m a x i m u m absolute difference
between values in the output, this value is then normalized by d iv id ing it by the absolute
max imum measured value. For testing C P U implementations of k-Wave, the tester sets the
error tolerance at 1 x 10 - 5.

10

Chapter 3

Guidelines for converting
M A T L A B code to Python

This chapter w i l l summarize the main differences between M A T L A B and Py thon , the im­
portant aspects of code conversion, mainly those related to performance. Differences in
basic syntax of both languages w i l l not be discussed.

Because P y t h o n does not support many scientific computing features present i n M A T ­
L A B by default, this guide w i l l use the N u m P y l ibrary for performing such tasks. The
N u m P y documentation includes a guide created for M A T L A B users [8] that summarizes a l l
basic equivalents between M A T L A B and N u m P y code. The summary of the recommenda­
tions i n this chapter is available i n section 3.9.

3.1 Basic comparison of M A T L A B and Python

The author of Py thon , Guido van Rossum, called P y t h o n a language that can "glue together
existing components" [12], speeding up development times while offloading performance-
intensive tasks to languages like C , C + + or Java [12]. A l though P y t h o n has since out­
grown this original purpose, the description matches the intended use case - setup of the
simulation (loading of arrays, setting up the s imulat ion environment) can be quickly im­
plemented i n P y t h o n while the performance-critical s imulat ion algorithms are executed in
more performant languages without the overhead of cal l ing an external executable.

M A T L A B is described as a "computing environment for engineers and scientists" [18].
Th is math-first, programming-second approach gives M A T L A B an edge when it comes to
scientific computing - it is highly opt imized for science-related tasks [17]. Py thon , on the
other hand, was first designed as a programming language and scientific computing is just
one of the many applications.

B o t h approaches have advantages and disadvantages - M A T L A B is tr ied and tested
when it comes to scientific computing but is also monoli thic, P y t h o n is malleable and can
be applied to any task, albeit at the cost of being less polished i n certain aspects. The
two approaches are also reflected in the respective available toolboxes - official M A T L A B
toolboxes come preinstalled and are t ight ly integrated wi th the product, P y t h o n requires the
instal lat ion of third-party libraries to add advanced functionality. Thi rd-par ty libraries can
also be advantageous because of greater flexibili ty - the user is not t ied to one part icular
library, and a l ibrary can be swapped for another one i f required. P y t h o n users can also

11

benefit from a large ecosystem. A s of the t ime of wri t ing, the P y P I contains more than 350
000 P y t h o n packages [10]. Another big difference between M A T L A B and P y t h o n is that
M A T L A B is proprietary, whereas P y t h o n and the vast majority of third-party libraries are
free and open source.

B o t h M A T L A B and P y t h o n share a similar level of abstraction, the user does not have to
manually manage memory al location and other low-level tasks, but this level of abstraction
comes at the price of performance.

3.2 Python computation libraries

In order to implement k-Wave using Py thon , it is necessary to find suitable libraries to
replace bu i l t - in M A T L A B functions i n two areas - fast computat ion and visualizat ion.
Th is section discusses selected replacement libraries used i n the P y t h o n implementation.

NumPy

The N u m P y 2 l ibrary is used for vector computations i n P y t h o n . It allows efficient storage of
n-dimensional arrays of data and efficient vectorized computations wi th said arrays. These
features are essential for efficiently computing s imulat ion step operations i n parallel, as
k-Wave often utilizes ari thmetic operations on n-dimensional data. N u m P y also serves as
the foundation for many other scientific libraries. Due to this de facto industry standard
status, N u m P y objects are natively supported i n many other libraries. The performance
of F F T - r e l a t e d functions in N u m P y falls short of M A T L A B , which internally relies on the
highly opt imized F F T W l ibrary [16].

numexpr

One of the disadvantages of N u m P y is that it only optimizes ind iv idua l ari thmetic opera­
tions between two operands, which can lead to unnecessary allocation of arrays that store
intermediate results. The numexpr3 l ibrary further optimizes N u m P y expressions to reduce
unnecessary reallocation.

1 Python Package Index
2 h t t p s : //numpy.org/
3 h t t p s : //github.com/pydata/numexpr

12

Table 3.1: N u m P y vs N u m E x p r benchmark comparison for the expression 1.5 * x**2 -
(x + y + z) * g

N u m P y durat ion [s] N u m E x p r durat ion [s]
D o m a i n size

3 2 3 0.28 0.22
64 3 0.26 0.19
128 3 0.20 0.18
256 3 0.21 0.20
512 3 14.40 1.71

A short benchmark 3.1 has been performed to il lustrate the impact of numexpr on compu­
tat ion speed. The machine used for the benchmark is described i n chapter 5. A random
expression 1.5 * x**2 - (x + y + z) * g has been chosen for the benchmark, the ex­
pression represents the k ind of calculat ion that might be performed during simulat ion. Each
of the variables x, y, z, and x is a three-dimensional N u m P y array i n the shape of a cube,
the side of which is equivalent to the domain size (32x32x32, etc.). W i t h smaller domain
sizes, the difference between N u m P y and N u m E x p r is not that significant, but as the do­
main gets bigger, the reallocations N u m P y performs start slowing down the computat ion
significantly.

Despite the significant speed improvement, numexpr is relatively easy to implement.
The expression is s imply wrapped into numexpr. evaluate (M l . 5 * x**2 - (x + y + z)
* g", out=output_array) , the numexpr compiler takes care of the opt imizat ion. A l ­
though the compila t ion of expressions also incurs a t ime cost, the speed gain for larger
domains largely outweighs the disadvantages.

The only disadvantage of numexpr is, that it only supports ari thmetic operators and a
set of predefined functions, it is not possible to use P y t h o n functions i n the target expression.
In k-Wave, this is problematic mainly because of the frequent use of F F T s .

p y F F T W

p y F F T W 4 is the P y t h o n wrapper around the F F T W l ib r a ry ' . It provides access to well-
opt imized F F T functions that have bui l t - in mult i threading support. The interface of the
l ibrary is similar to N u m P y F F T functions, N u m P y F F T drop-in replacements are also
included wi th the l ibrary for simple replacement of N u m P y . The drop-in replacements
provide a smal l speed boost w i th almost no changes required to the source code [14],
although certain modifications are required to fully uti l ize the available performance of
the library. The most significant difference between N u m P y and p y F F T W functions is,
that N u m P y returns a newly ini t ia l ized array w i t h results, p y F F T W overwrites an internal
result array and returns a reference to i t . The internal array makes the computat ion faster
by el iminat ing inefficient copying of data. O n the other hand, it breaks interchangeability
wi th N u m P y F F T functions.

4 h t t p s : //pypi.org/proj ect/pyFFTW/
5 h t t p s : //www.fftw.org/

13

http://www.fftw.org/

matplotlib

M a t p l o t l i b 6 is a P y t h o n data visual izat ion library. It offers various kinds of commonly
used plot types, a l l of which are highly customizable. The l ibrary is also well integrated
into other libraries and tools, for example such as pandas' and Seaborn8, plots created
by Ma tp lo t l i b are natively supported i n data science toolkits such as Jupyter 9. Another
advantage of Ma tp lo t l i b is its native support of N u m P y arrays, which are often used during
implementation of high-performance computing algorithms.

3.3 Indexing

The first major difference between the languages is array indexing. Differences i n array
indexing might not be noticed at first, but w i l l cause erroneous results and indexing errors
during runtime. For this reason, indexing differences must always be remembered when
converting code.

The first notable difference is that M A T L A B uses column-major (Fortran-style) indexing
by default [19] and P y t h o n uses row-major (C-style) indexing. Addi t ional ly , indexing starts
at 1 i n M A T L A B and at 0 in both P y t h o n and N u m P y [8], this means a l l indices must be
subtracted by one dur ing conversion.

To illustrate, a 3D array that is indexed p (l , 2, 3) i n M A T L A B would be indexed
p[2, 0, 1] i n P y t h o n . W h e n letters are used to denote dimensions i n a 3D array: X for
row, Y for column, and Z for frame (in other words the z coordinate), M A T L A B dimensions
are ordered p(X, Y, Z), and P y t h o n dimensions are ordered p[Z, X, Y].

(0,2,2) (3,3,1)

(a) NumPy (b) M A T L A B

Figure 3.1: Compar ison of indexing

W h e n working wi th 3D arrays, it is useful to th ink of them as cubes when slicing. Figure 3.1
shows a comparison of the indexing of 3D arrays i n N u m P y and M A T L A B . B o t h arrays are
of shape (3, 3, 3) . Figure 3.1a uses C-style indexing used i n N u m P y , indexing starts at 0.
The m a x i m u m index for each cardinal direction is therefore 2. Figure 3.1b shows indexing
in M A T L A B , which uses the Fortran-style indexing. Addi t ional ly , indexing i n M A T L A B
starts at 1, the m a x i m u m index for each dimension is therefore 3.

6https://matplotlib.org/
7 h t t p s : //pandas .pydata. org/
8 h t t p s : //seaborn.pydata.org/
9 h t t p s : //jupyter.org/

14

https://matplotlib.org/

The different indexing style together w i th different starting indices can be confusing.
Moreover, addi t ional precautions must be taken when dimensions of the array are of dif­
ferent lengths. A n array of shape (128, 64, 32) in M A T L A B would be displayed as an
array of shape (64, 32, 128) in N u m P y .

A s of the t ime of wri t ing , indexing i n the k-Wave input files is neither row-major, nor
column-major. A l l arrays are stored from the last dimension to the first - 3D arrays in
the order (Z , Y , X) , 4D arrays (with the t ime dimension) as (T, Z , Y , X) .

Python
+

NumPy
k-Wave

HDF f i l e
k-Wave
MATLAB

(Z , X , Y) (Z , Y , X) (X , Y , Z)

Figure 3.2: Coordinate conversion schema

The conversion between a l l used coordinates systems can be seen i n figure 3.2. Appropr ia te
indexing conversions must be performed any time when reading from and saving to a
different format.

Linear indexing

To conserve memory and disk space, k-Wave uses linear indexing10 to store mask indices
for sensors and sources. Linear indexing compresses an n-dimensional array coordinate
to a single number, which denotes the array posit ion i f the array were to be collapsed
to a one dimensional array. It is important to correctly convert linear indices stored by
M A T L A B to their corresponding N u m P y counterparts, this can be done using the function
np.unravel_index(flat_indices-l, shape, order='F') 1 1, the shape of the original ar­
ray must also be specified.

A common task is the lookup of a l l linear indices i n an array that contain nonzero
values. In M A T L A B , this is done using the f i n d (array) function, which returns an array
of a l l non-zero linear indices found i n the array. The equivalent function i n N u m P y is
np. flat_nonzero (array) 1 2 . M A T L A B allows direct indexing using linear indices such as
array(123). In N u m P y , a special flat indexer array.flat [123] must be used.

3.4 Data structures

Structsu are used i n M A T L A B to group data semantically, they can either be created
expl ici t ly using struct () or impl ic i t ly by assigning a field to a struct (even one that does

1 0Alternatively called flat indexing
https: //numpy.org/doc/stable/ref erence/generated/numpy.unravel_index.html

1 2 h t t p s : //numpy.org/doc/stable/ref erence/generated/numpy.flatnonzero.html
1 3 h t t p s : //www.mathworks.com/help/matlab/ref /struct.html

15

http://www.mathworks.com/help/matlab/ref

not exist) like s t r u c t l .f i e l d l = valuel;. P y t h o n does not have any direct equivalents,
but there are mult iple possible replacements.

The first opt ion is to use dictionaries, a data type containing key-value pairs ini t ia l ized
like d i c t l = {„fieldl" : valuel}. Dictionaries provide a fast and easy way to group
related data, but lack the means to enforce data types, declare mandatory fields and add
logic like classes do.

The second option is to use classes, which allow for encapsulation [13, p. 14] of the
ini t ia l izat ion logic. In the case of classes that only contain fields and do not require any
substantial related logic, data classes1^ can be used. D a t a classes automatical ly generate
boilerplate code from declared fields. They can be declared by adding the Odataclass
decorator to a class definition and moving the fields from the constructor to the class body.

3.5 M a t r i x and scalar arithmetic

Ari thmet i c operators i n M A T L A B are either scalar (+-*/) - they can be used to perform
arithmetic on scalars or between a scalar and a matr ix , divis ion and, mul t ip l ica t ion op­
erators also have a variant for performing element-wise operations wi th two matrices, the
operators start w i th a dot (.* and . /) . M A T L A B also has a dedicated operator . ' for
transposing matrices.

P y t h o n only has operators +-*/ (and a dedicated mat r ix mul t ip l ica t ion operator '(§'),
which perform different operations based on context. New operators can not be defined,
but they can be overloaded by a subclass to implement custom behavior. N u m P y exploits
this property of Py thon , two N u m P y arrays always perform element-wise operations when
mul t ip l ied /d iv ided . P y t h o n does not provide an operator for transposition, a mat r ix can
be transposed using the array.T at tr ibute of N u m P y arrays, the equivalent in M A T L A B
would be array. '.

Data broadcasting

A special case is the M A T L A B function bsxfun 1 5. It performs an element-wise operation
between two matrices w i t h the dis t inct ion that they don't need to have the same shape,
for example, the matr ix A of shape (32, 32, 32) (3D) can be mul t ip l ied efficiently w i th
the array B of shape (32,) (ID) . Normal ly , array B would need to be enlarged to have the
same shape as A, bsxfun performs this without this addi t ional step making the operation
faster while also saving memory, N u m P y performs this opt imizat ion automatically. W h e n
two matrices of mismatched shapes are used, N u m P y performs automatic broadcasting16.
The only requirement is that the matrices must have at least one length i n common - array
of shape (32, 32, 32) can be mul t ip l ied wi th shape (32, 1, 1) or (32, 32, 1) but not
w i th (16, 1, 1).

A s an example, the expression from k - W a v e - M A T L A B kspaceFirst Order 3D rhox =
bsxfun(©times, pml_x, bsxfun(©times, pml_x, rhox) - dt .* rhoO .* duxdx);
can be rewritten in N u m P y to rhox = pml_x * (pml_x * rhox - dt * rhoO * duxdx),
the clari ty is greatly improved thanks to impl ic i t broadcasting, mat r ix and scalar mul t ip l i ­
cation also use the same * operator.

1 4 h t t p s : //docs.python.org/3/library/dataclasses.html
1 5 h t t p s : //www.mathworks.com/help/mat lab / r ei /bsxf un.html
1 6 h t t p s : //numpy.org/doc/ 1 .22/user/basics.broadcasting.html

16

http://docs.python.org/
http://www.mathworks.com/help/mat

3.6 Fourier transforms

Performing F F T related computations can be done efficiently in M A T L A B using the bui l t - in
functions f f t, f f tn, i f ftn, etc. N u m P y has equivalent functions in the package numpy. f f t,
they are not suitable for high performance applications, as is discussed i n chapter 5. It is
advisable to use the pyFFTW l ibrary as it is also used for F F T i n M A T L A B [7].

Cau t ion is required when replacing N u m P y F F T functions wi th p y F F T W functions,
although the functions and their arguments are similar, there are some notable distinctions.
This section w i l l compare F F T functions i n N u m P y and p y F F T W , namely f f tn and i f f t n
which are often used i n k-Wave.

Firs t ly , N u m P y F F T functions promote input data types differently from p y F F T W .
W i t h an input of type f loat32, the resulting datatype w i l l be complexl28 i n N u m P y but
complex64 i n p y F F T W . W i t h an input datatype of f loat64, datatype of the result w i l l be
complexl28 for both libraries. Th is discrepancy in input and output data types can cause
differences i n results, it is also not easily detectable during debugging because of Pythons
dynamic type system. More details about this and other differences between N u m P y and
p y F F T W can be found in the p y F F T W manual [3, p. 20].

Another important difference is that results from calls to N u m P y F F T s return a newly
ini t ia l ized array each time, p y F F T W (when not used i n the drop-in mode, as discussed
in section 3.2) returns a reference to the same internal result array[3, p. 11], results must
be copied using numpy. array. copy () as a subsequent ca l l to the function overwrites the
internal result array, causing the previous result to be destroyed. Each p y F F T W function
that is ini t ia l ized by default creates an internal input and output array, to avoid extra
memory allocation, the function func .update_arrays (input_array, output_array) 1 7

can be used to set a single shared array for mult iple functions, it can also be used to make
p y F F T W use the same array for both input and output for a given function.

Dur ing ini t ia l izat ion, F F T W compares a number of F F T algorithms and chooses the
fastest one i n a process called planning, the generated configuration is called wisdom18.
p y F F T W supports different kinds of F F T W planning wi th varying speed and opt imali ty:
FFTW_ESTIMATE, FFTW_MEASURE, FFTW_PATIENT and FFTW_EXHAUSTIVE [2].

The FFTW_MEASURE planner (the default opt ion i n p y F F T W) provides a good compro­
mise between planning speed and performance, it was therefore chosen for k-Wave-Python.
Because planning can have a noticeable startup cost, it is best to cache the generated wis­
dom to a file for re-use. In the p y F F T W library, export ing can be done using the function
pyfftw.export_wisdom() 1 9, impor t ing is likewise done using
pyfftw.import_wisdom(wisdom). The P y t h o n standard l ibrary pickle20 can be used for
serializing and deserializing of wisdom for storage on disk.

3.7 Data visualization

Al though visualizat ion is not necessary for k-Wave to function, it is useful for checking
progress of a s imulat ion. A s previously said i n section 3.2, Ma tp lo t l i b is the l ibrary of
choice for visualizat ion in the P y t h o n implementation. In the following paragraphs, the

1 7 h t t p s : //pyfftw. readthedocs.io/en/lat est/sour ce/pyfftw/pyff tw.html#pyf f tw. FFTW. update_arr ays
1 8 h t t p s : //www.f ftw.org/fftw3_doc/Wisdom.html
1 9 h t t p s : //hgomersail.github.io/pyFFTW/pyf f tw/pyf f tw.html#pyf f tw.export_wisdom
2 0 h t t p s : //docs.python.org/3/library/pickle.html

17

http://www.f
http://ftw.org/fftw3_doc/Wisdom.html

symbol p i t refers to the l ibrary imported using the standard impor t m a t p l o t l i b . p y p l o t
as p i t command.

For one dimensional simulations, a simple line graph can be used for visualizat ion,
a pressure curve can be plotted using p i t . p l o t (d a t a) 2 1 .

For two and three dimensional simulations, the visualizat ion technique is the same
because only a two-dimensional slice of the array can be plotted.

S t e p 3 0 4 o f 3 2 1

x - y p l a n e (f r o n t v i e w) y-z p l a n e (s i de v i e w) x -z p l a n e (t o p v i e w)

20 40 60 0 20 40 60 0 20 40

80000

60000

40000

20000

0 ;

-20000

-40000

-60000

-80000

Figure 3.3: Example plot using p i t . imshowO

The p i t . i m s h o w (d a t a) 2 2 can be used for visual izing 2D slices of arrays as images. F i g ­
ure 3.3 shows a k-Wave-Python simulat ion progress visualized using Matp lo t l ib .

3.8 Design patterns

Dur ing the implementat ion of the object oriented P y t h o n version of the k-Wave toolbox,
numerous measures were taken to improve the code structure of the simulat ion. One of
the means of improving code structure is to uti l ize software design patterns, solutions to
commonly occuring problems i n software engineering. The advantage of design patterns is
their abstract nature - they can be applied to any programming language which has at
least some of the concepts in O O P : abstraction, encapsulation, inheritance, and polymor­
phism [13, p . 18].

Design patterns are divided into three categories: creational (concerned wi th creation
of objects), structural (concerned wi th creating larger structures from objects), and behav­
ioral (concerned wi th communicat ion and interaction between objects) [13, p. 29]. This
section lists mult iple important design patterns used i n the implementation: the Builder,
the Observer, the Strategy and the Adapter.

Builder

The Bui lder is a creational design pattern [13, p. 105]. The task of the Bui lder is to
make the ini t ia l iza t ion process of objects more flexible. W i t h simple classes, in i t ia l izat ion
using the constructor is sufficient, but wi th complex objects like the ones used for k-Wave
simulations, the class constructor becomes very long, as well as the parameter list. The

2 1 h t t p s : //matplotlib. org/3.5.0/api/_as_gen/matplotlib.pyplot.plot .html
2 2 h t t p s : //matplotlib.org/3.5.0/api/_as_gen/matplotlib.pyplot.imshow.html

18

Bui lder solves the issue of complicated in i t ia l iza t ion by breaking it down into separate
steps. The builder instance holds a semi-init ial ized instance of the target class internally,
the instance is ini t ia l ized step by step using setter methods of the builder.

There are mult iple advantages to this approach: the constructor is simplified, the in i t ia l ­
izat ion is separated from the usage of the class (this also enables creating different builders
for the same class), some parts of the instance can only be ini t ia l ized optionally, the parts
can also be ini t ia l ized i n any order since the order in which the setters are called is not
predetermined. After a l l in i t ia l izat ion steps are complete, the fully ini t ia l ized instance is
retrieved from the builder. Builders are used i n the k-Wave-Python implementat ion for
in i t ia l iz ing the kspaceFirstOrder s imulation classes (sec. 4.3).

Observer

The Observer, a behavioral design pattern [13, p. 336], allows the state of an object (or
changes thereof) to be observed by any number of Observers. The Observable (the object
being observed) curates a list of observers, al lowing them to be added and removed at
any time. After an event in the observable occurs, it notifies each observer i n its list of
the change, the observers can then perform any logic defined by their callback functions.
The advantage of using observers is the independence of the logic responsible for recording
values from the core logic of the simulat ion. This design pattern is closely related to the
publish/subscribe model [5, p. 158]. The kSensor objects (sec. 4.5) are observers observing
the kspaceFirstOrderBase subclasses.

Strategy

The Strategy, s imilar ly to the observer, is a behavioral design pattern [13, p. 368]. It is
used when a group of algorithms share a common structure but differ i n certain aspects or
settings. Conventionally, a lgori thm variants and options are handled by branch statements,
this however becomes more and more difficult as more variants of the a lgori thm are added,
making the a lgori thm difficult to navigate. The Strategy solves this by keeping the structure
of the a lgori thm but delegating the parts that differ to objects which encapsulate the
differing logic. D u r i n g ini t ia l izat ion, the suitable strategy (algorithm variant) is chosen
based on configuration. This way different algorithms can be used w i t h the same basic
structure without the need for changing the core structure. T h i s pattern is used i n the
core s imulat ion algorithms of kspaceFirstOrder 4.3 for setting up pressure and velocity
sources.

Adapter

The Adapter is a s tructural design pattern [13, p. 150]. It solves the problem of compat ibi l i ty
between two parts of a program that need to communicate, but the format of data they use
is different. Conversion to the target format could be handled by the consumer of the data,
but this approach does not scale well when the data source is being used i n mult iple places.
Furthermore, i f the source format changes i n any way, the change needs to be reflected
everywhere the source is used. The Adapter solves this by wrapping the original source of
data, creating an interface between the data source and the data consumer. A n y t ime the
consumer requests data, the adapter can translate the request to the data source. After
the data from the source is retrieved, it can be converted to the target format and passed
to the consumer.

19

HDFIndexingAdapter
/*

HDF
Dataset

Figure 3.4: Indexing adapter

The class HDFIndexingAdapter is an example of an adapter. Because the k - W a v e - M A T L A B
stores arrays using (Z , Y , X) , it is incompatible w i th the rest of the simulator, which
uses C-style indexing. The si tuation can be seen i n figure 3.4. Because data from the
input files is handled in many places of the program, an Adapter is required to ensure
compat ibi l i ty without making the implementation-dependent on a part icular indexing style.
If the indexing i n the input files changes in the future, the adapter can either be easily
modified to accommodate the change or discarded i f the indexing i n the input file becomes
C-style.

(Z,Y,X)

(Z,Y,X)

(Z,X,Y)
Request

(Z,X,Y)
Response

20

3.9 Summary

This section contains the summary of technologies and guidelines discussed in this chapter.

1. Convert basic syntax (if statements, for loops, function definitions, etc.) to Py thon .

2. Replace M A T L A B structs (sec. 3.4) w i th classes, data classes or other equivalents.

3. In places where mult i-dimensional arrays are used, use the N u m P y l ibrary (sec. 3.2).

4. Convert operators to operators used by N u m P y (sec. 3.5), replace the bsxfun(. . .)
wi th a simple * mul t ip ly operator, N u m P y performs automatic broadcasting.

5. W h e n indexing, always remember to subtract 1 (usually not i n code, just dur ing re­
writing) from indices when re-writ ing. If indices are being loaded from an input file
(sec. 2.3), subtract 1 before doing other operations, as the indices were stored by
M A T L A B , which starts indexing at 1.

6. W h e n indexing mult i-dimensional arrays, remember to convert Fortran-style indices
to C-style indices (sec. 3.3). A p p l y extra caution when loading linear/flat indices from
an input file, as they are stored i n M A T L A B column-major order.

7. Preferably use the p y F F T W l ibrary (sec. 3.2) for good F F T performance.

8. Use numexpr (sec. 3.2) where possible, avoid creating temporary copies of arrays by
preallocating them. Perform in-place operations where possible.

9. If visual izat ion is needed, use matplot l ib (sec. 3.2) but be aware of the performance
implications.

10. For details about N u m P y equivalents for M A T L A B features, refer to the official
guide [8].

21

Chapter 4

k-Wave-Python implementation

The goal of the implementat ion is to create a P y t h o n version of the core k-Wave sound
propagation simulat ion and a l l key features surrounding i t . The simulat ion should be
able to load a l l necessary data from an input H D F file, ini t ial ize a l l objects required for
the simulation, perform the specified simulat ion and finally save a l l results and recorded
outputs to an output H D F file. The implementat ion must be able to communicate w i th
k - W a v e - M A T L A B using the command line, passing input and output data w i th H D F files.

The command line interface must be compliant w i th the options specified in [20, p. 54],
ideally interchangeable w i th the k - W a v e - F l u i d - O M P [22] C + + implementation.

Apar t from specified functional requirements, the implementat ion has mult iple goals:

1. Performance - performance of the new implementat ion must be better or at least
comparable to the original M A T L A B version

2. Accuracy - the results must be reasonably accurate and not deviate from the refer­
ence implementat ion

3. Ease of use - the simulator should be easy to set up, easy to use and easy to extend

The secondary focus is on modular i ty and extensibili ty - k - W a v e - M A T L A B is t ight ly
coupled, this means it is sometimes difficult to modify or access k-Wave functionality sep­
arately, examples of this include dupl icat ion of certain snippets of logic and code used for
visual izat ion located direct ly i n the simulat ion loop, k -Wave-Python attempts to mitigate
such issues by adhering to the DRY (Don't Repeat Yourself) principle [5, p. 26] completely
separating logic related to simulat ion and other logic used for recording values and load­
ing/saving of arrays. The final implementat ion of k-Wave-Python consists of around 2000
lines of code (not including empty lines and comments), which is a substantial improve­
ment over versions wri t ten in C + + .

This chapter describes the design and implementat ion of k-Wave-Python. Differences
from the original M A T L A B implementation, architectural choices and improvements over
the original implementation are also discussed.

4.1 Project structure

Unlike the monoli thic, predominantly procedural M A T L A B implementat ion of k-Wave, the
P y t h o n implementat ion puts a much greater emphasis on modular i ty and abstraction, as
was stated i n the implementat ion goals. The M A T L A B implementat ion usually defines

22

variables i n the global scope and manipulates them by cal l ing functions or executing entire
modules that contain logic i n the global scope. This approach is more convenient due to
the large number of variables, but it also has many disadvantages:

1. hard to unit test - very long functions (or entire modules) that complete many
different tasks i n sequential order are difficult to unit test, because it is not possible
to test ind iv idua l parts in isolation.

2. hard to re-use - for the same reason, code that is not sufficiently subdivided into
functions is difficult to re-use. This leads to the M A T L A B implementat ion having
many duplicated snippets of code that could otherwise be defined once, making the
source code longer and harder to maintain.

3. hard to extend - the global scope allows functions to have immediate access to
al l needed data, but on the other hand also other unrelated data. B y min imiz ing
the amount of data a function has access to and hiding implementat ion details, it is
possible to create code that is easier to extend and test - making changes to one part
of the program w i l l not affect other parts.

4. hard to understand - unclear flow of data wi th in the program and low abstraction
make the code more difficult to understand. It is not always clear, where a change of
state ocurred because many variables are being modified in the global scope, semantic
blocks of code that would otherwise be labelled by their function name are left without
context.

4.2 Input and output file handling

k-Wave simulations are ini t ia l ized using standardized input files (sec. 2.3) generated by k-
W a v e - M A T L A B . These files are also the main means of communicat ion between the P y t h o n
modules and the M A T L A B modules.

Input files

The h5py l ibrary is used for accessing and manipula t ing H D F files. It provides a simple
interface h5py.File to specified file s imilar ly to a P y t h o n diet. The module
kwave.utils.h5_utils contains classes that provide addi t ional layers of abstraction over
h5py.File.

The class H5File which wraps h5py.File, simplifies retrieval and setting of values in
H D F files, it also handles retrieval of scalar values from input files. Since scalar values are
wri t ten by k - W a v e - M A T L A B to the input files as an array of dimensions (1, 1, 1), it is
necessary to unwrap it before retrieval. It is also needed to convert unsigned integer values
to the N u m P y type of int64 because data types are not enforced in Py thon , making the
resultant bugs related to unsigned values hard to detect.

The final abstraction layer is the kWaveH5Dataset, it wraps the H5File and serves for
loading specific fields required during in i t ia l iza t ion of the simulat ion. The ind iv idua l fields
can either be accessed directly using the indexer like f i l e [Mf i e l d "] ,
dataset [MpO_source_f lag"] or using specialized methods and attributes. Some methods
require the dimension (x, y, z, t, etc.) to be specified - dataset .get_kgrid_dim(Mx").

One of the implementat ion issues is a relatively large number of parameters that are
used. For example, the kGrid (k-Wave grid) requires the Nx (number of gr id points) and dx

23

(the distance between grid points), this adds up to 6 parameters used in the constructor, not
to mention other addi t ional parameters. To mitigate this, mult iple classes used expressly
for storing related data were used. They are used only for simplifying the in i t ia l iza t ion and
passing of related data. The list includes PMLDim and PMLDimProperties for in i t ia l iz ing the
P M L ; SoundProperties, DensityProperties and AbsorptionProperties for in i t ia l iz ing
the Medium. These objects are returned by the kWaveH5Dataset in i t ia l ized using the data
from the wrapped file.

Output files

The output file is created using the H5File class. Input and output files share many
common fields, some fields are therefore directly copied from the input file to the output
file. Other fields are populated using results from the simulat ion and data from kSensor
sensor based on selected C L I flags.

4.3 kspaceFirstOrder

The group of kspaceFirstOrder classes represent the core logic of the s imulat ion algori thm.
The k -Wave-Python implementat ion focused only on the three-dimensional
kspaceFirst0rder3D variant of the simulat ion. The lower-dimensional variants have a
similar structure and can be implemented s imilar ly to the three-dimensional implementa­
t ion. Because the implementat ion relies on inheritance, the s imulat ion equations are shared,
avoiding duplicat ion of logic.

ABC <H kspaceFirstOrderBase -> PSource

USource

kSensor

Figure 4.1: kSpaceFirs tOrder class hierarchy

The kspaceFirstOrderBase class hierarchy can be seen in figure 4.1. A l l shared logic
is contained in the base class kspaceFirstOrderBase. Shared logic includes simulation
equations, management of attached sensors, control of s imulat ion step iteration, calculat­
ing number of remaining steps, etc. The base class contains mult iple important abstract
methods: the init_data() method handles the al location and the ini t ia l izat ion of simula­
t ion data, the _sim_step is the core of the s imulat ion algori thm. These two methods are
overridden by the s imulat ion subclasses and adapted to the number of dimensions. The

24

simulation class is dependent on pressure and velocity sources, which are described in sec­
t ion 4.4. For the recording of data dur ing the simulation, the s imulat ion class also holds a
list of sensors, which are described i n section 2.2.

The class kspaceFirst0rder3D inherits the previously mentioned features and adapts
them for three-dimensional simulations, overriding the init_data() and _sim_step() w i th
three-dimensional simulation logic. The method _sim_step() containing the simulation
algori thm is significantly shorter than the k - W a v e - M A T L A B counterpart as most of the
equations, recording, and pressure/velocity sources are hidden behind interfaces. Unl ike
the k - W a v e - M A T L A B , the k-Wave-Python is not aware of the type of source being used,
nor is it aware of the equation of state, linearity, data recording and visual izat ion. The
modular i ty of the a lgori thm is the adaptat ion of the Strategy design pattern, which was
described i n section 3.8.

kspaceFirstOrder initialization

F u l l in i t ia l izat ion of k-Wave is a complex process, it requires mult iple related objects to be
ini t ial ized, some of them i n a fixed order because of interdependence. The ini t ia l izat ion
steps are the following:

1. L o a d kGrid

2. L o a d Medium and setup absorption variables using kGrid data

3. L o a d PML using data from kGrid and Medium

4. Select equation of state

5. Select linear or non linear mode

6. Configure sources (pO, p and u source)

7. Setup and attach a kSensorRecorder for data recording (optional)

The H5InputDataLoader class executes this sequence and initializes a l l objects using data
from a specified input file. Instead of direct ly in i t ia l iz ing an instance of k-Wave, an auxi l ­
iary data structure called kspacelnputData is returned by the loader, this allows greater
flexibili ty when in i t ia l iz ing the simulation - the loaded data can be inspected or overridden
manually. The only component that is not loaded from the input file is the P M L (sec. 2.2),
it is instead ini t ia l ized using data from the Medium and the kGrid.

Some ini t ia l ized objects can addi t ional ly be adjusted using supplied command line ar­
guments. Namely the computation backend (the backend option) described in section 4.3),
the number of s imulat ion t ime steps (the benchmark opt ion overrides kgrid.Nt), and the
data recorded by the kSensorRecorder. These adjustments are however not handled by
the input data loader.

kspaceFirstOrderBuilder

One of the innovations of the P y t h o n implementat ion is the kspaceFirstOrderBuilder
which implements the Builder design pattern (sec. 3.8). It allows the final kspaceFirstOrder
object to be ini t ia l ized gradually instead of passing a large number of arguments to the
constructor. A l l objects needed for the in i t ia l iza t ion can be direct ly retrieved from the
kspacelnputData loaded from an input file. The computat ion backend is selected based
on command line options.

25

Computation backends

Computa t ion backends are classes containing references to different implementations of
common functions used by k-Wave during simulation, usually related to F F T s (f f t , f f t n ,
i f f t s h i f t , etc.). The two currently available backends are NumpyBackend and
PyFFTWBackend, each of them using functions from their respective libraries - N u m P y and
p y F F T W .

Swappable backends simplify the comparison of benchmarks using different computat ion
libraries. It also allows fast replacements of libraries or fallback libraries i n case a l ibrary is
not available for the target platform. The simulat ion itself does not know, which backend
is being used, the pointers to functions are s imply replaced dur ing ini t ia l izat ion by the
builder.

4.4 Sources

A s described i n section 2.3, there are three kinds of sources, which inject pressure or ve­
locity into the simulation: pO sources, p sources and u sources. The k-Wave simulation is
ini t ia l ized w i th instances of a l l three of the sources, their methods are called at part icular
points in the simulation algori thm to inject pressure or velocity, the self reference of the
simulation is passed to allow access to the internal s imulat ion state. Depending on the
selected options, the density and velocity variables of the simulation are changed. W h e n a
disabled source is used, the called methods do not perform any action.

PO sources

The in i t i a l pressure sources are the simplest of the tree source types. O n the first step
of the simulation (t_index == 0), the pressure at a l l gr id points is set to pre-determined
values, this pressure then propagates and no more pressure is injected during the course of
the simulation.

POSourceActive

ABC < POSource ABC < POSource

POSourcelnactive

Figure 4.2: PO source class hierarchy

Figure 4.2 shows the class hierarchy of pO sources. The class POSourceActive is used, when
the pO source is enabled by the pO_source_f lag in the input file (sec. 2.3) and is ini t ia l ized
by data from the pO_source_input from the input file, the class POSourcelnactive is used
when the source is disabled. Because the s imulat ion classes (sec. 4.3) only see the POSource
interface, the s imulat ion is not dependent on the k ind of source used.

26

P sources
The variable pressure sources add pressure to the simulation continuously. The mechanism
of t ime varying sources is described in section 2.2. The indices, where the pressure is set
after each i teration is defined by the p_source_pos_index mask indices. The value being
set to a l l points of the mask is selected from a list of pressure values. W h e n p_source_many
is enabled, the pressure value is set for each point of the mask individual ly . The series of
pressure values can be both shorter or longer than the number of t ime steps, the source w i l l
either not use a l l the available values or stop emit t ing pressure if the t ime index t_ index
exceeds the length of the array.

PSourcelnactive

ABC PSource

PSourceActive «

PSourceDirichlet

PSource Additive

PSource AdditiveNoCorrection

Figure 4.3: P source class hierarchy

Similar ly to the pO source (sec. 4.4), the p source also has its class hierarchy, as seen in
figure 4.3. The p source can either be PSourcelnactive or PSourceActive, based on the
p_source_f lag from the input file. PSourceActive is further subdivided into three sub­
classes PSourceDirichlet, PSourceAdditiveNoCorrection and PSourceAdditive based
on the configured source mode p_source_mode. The simulat ion only communicates w i th
the PSource interface.

U sources

The last source type is the velocity source. Instead of changing the pressure, it injects
particle velocity for each cardinal direction. Selection of mask indices is similar to the p
source, they are stored i n u_source_pos_index field i n the input file. The velocity source
can be independently enabled for each direction by the ux_source_f lag, uy_source_f lag
and uy_source_f lag respectively. The values for the velocity sources are also stored sepa­
rately i n ux_source_input, etc. The stored values can either be scalar or defined for each
source point, depending on the „u_source_many" flag. The t ime varying source mechanism
is the same at w i th p sources (sec. 4.4) and is described i n section 2.2.

27

ABC USource

USourcelnactive USourceDirichlet

USourceActive <• USourceAdditive

USource AdditiveNoCorrection

Figure 4.4: U source class hierarchy

The class hierarchy, as shown in figure 4.4, is almost identical to the p source class hierarchy,
the difference being the injection of particle velocity instead of pressure. The source can
be either enabled wi th USourceActive or disabled wi th USourcelnactive, depending on
the u_source_f lag from the input file. The available variants of enabled u sources are
USourceDirichlet, USourceAdditiveNoCorrection and USourceAdditive, depending on
the u_source_mode setting. A s wi th the two previous source types, the s imulat ion only
interacts w i th the USource interface.

4.5 Sensors and recorders

k-Wave relies on sensors to record measurements of the simulation state, the sensor mask
can be defined either as a binary mask or a cuboid corners mask, as described i n section 2.2.

CheckpointHandler

kSensor <•

ABC

kSensorRecorder

Recorder

PressureRecorder

VelocityRecorder

Figure 4.5: Class hierarchy of sensors and recorders

Figure 4.5 shows the class hierarchy of sensors and recorders in k-Wave-Python. The
kSensor (sec. 4.5) serves as the base class for a l l sensors attachable to the simulat ion. The
kSensorRecorder, which is the subclass of kSensor has the same role as the sensors i n the
original k - W a v e - M A T L A B . In the original implementation, the values being recorded (for
example p, p_max, u_rms) were checked in a large i f statement to determine, whether the
recording of a part icular value is enabled. The kSensorRecorder improves this by using a
list of Recorder (sec. 4.5) instances instead. E a c h Recorder represents a single value being
recorded. Dur ing the in i t ia l iza t ion of the simulation, a list of recorders is generated based
on the command line recording flags, this list is then passed to the kSensorRecorder.

28

kSensor

k-Wave-Python introduces sensors, that can be optionally attached to the simulator. The
simulation itself is not aware of any implementat ion details of the attached sensors, it s imply
calls callback functions of each attached sensor after a s imulat ion step, passing itself as an
argument i n the process. The attached sensors can then extract any needed data directly
from the simulat ion instance which contains current s imulat ion state. The way sensors
process data depends solely on the user. D a t a recorded after each step can be stored in
memory and later visualized, saved as a spreadsheet or streamed directly to disk.

This implementat ion approach is comparable wi th the Observer design pattern (sec. 3.8).
The abstract base class kSensor contains methods and attributes expected by the simula­
t ion objects dur ing callbacks, this base class can then be inherited and easily extended by
the user. Sensors are attached to an ini t ia l ized s imulat ion object using the
. attach_sensor (kSensor) method at any t ime during simulation.

Recorder

Recorders handle the recording of ind iv idua l sensor fields, which can use different slicing
and aggregation functions. Examples of fields include p_raw (records the entire pressure
domain), p_max (records the m a x i m u m pressure at the sensor gr id points for each t ime step),
u_min_all (records the m i n i m u m particle velocity i n the pressure arrays for each direction
respectively), etc. The full list of available flags is listed in the k-Wave manual [20, p. 54]
under output flags.

NumPyDataset

HDFDataset

Velocity Recorder

Figure 4.6: Recorder class hierarchy

The above shown figure 4.6 displays the recorder class hierarchy. The Recorder class
is the abstract base class for a l l recorder types, it contains abstract methods related to
allocation (_allocate()), indexing (_dst_index(), _src_data()) and aggregation func­
tions (_func()). To isolate the format to which data is recorded from the recorders, the
DatasetBackend is used. The DatasetBackend provides an abstract interface for the al­
location of arrays, accessible using the allocate (shape, name) method. E a c h backend
initializes an array differently, the NumPyBackend returns a new N u m P y array of the speci­
fied shape, the HDFBackend returns an h5py.File H D F file handle.

The pressure and velocity recorder groups both have their subclasses: PressureRecorder
and VelocityRecorder. The fundamental difference between them is, that pressure recorders

29

only allocate one array for pressure recording and velocity recorders allocate up to three
arrays (for each velocity direction), depending on the number of dimensions. The ind iv id­
ual recorders are further subclassed from these two groups. For instance the previously
mentioned u _ m i n_all field is represented by the U_MIN_ALL_Recorder class.

class U_MIN_ALL_Recorder(Binary, Single, VelocityRecorder):
template = "uO_min_all"

def _func(self, current_data, new_data):
return np.minimum(current_ _data, new_data)

Lis t ing 4.1: Defini t ion of the U_MIN_ALL_Recorder class

The definition of the u_min_all recorder field can be seen i n l is t ing 4.1. The class utilizes
mult iple inheritance to configure the properties of the recorder. The order of inheritance is
generally i n the order this order:
class ExampleRecorder(<indexing_type>, <count_type>, <recorder_type>).
The <indexing_type> configures the type of indexing the recorder field uses:

• Flat - record at gr id points defined by a list of l inear/flat indices (sec. 3.3)

• Cuboid - record at gr id points defined by a cuboid mask (sec. 2.2)

• Binary - record the entire domain

The <count_type> defines, whether the values are recorded for each t ime step (Multiple),
or if the recorded values overwrite previously recorded ones (Single). The <recorder_type
selects the type of recorder (PressureRecorder or VelocityRecorder).

Al though this approach creates many subclasses and makes certain parts of the recording
process less transparent, it greatly simplifies the introduct ion of changes. A change made
in the base class is automatical ly applied to a l l subclasses, the entire behavior of a recorder
can be changed by s imply changing the classes it inherits from, this also allows the creation
of new recorders using a very smal l number of lines of code.

4.6 Command line interface

k-Wave-Python provides a command line interface for simple access to its s imulat ion capa­
bilities. Th is interface is based on the standardized command line interface for accelerators
described by the k-Wave manual [20, p. 54] w i th the exception of implementation-specific
flags (-g for G P U accelerators), compression (-c) and recording non-staggered grid velocity
recording (-u_non_staggered_raw). The full list of available arguments and flags can be
viewed by using the -help flag, the example output can be seen i n appendix D .

Apar t from the standard arguments, k -Wave-Python introduces non-standard ones. The
-show flag enables the pressure domain preview visual izat ion which utilizes Matp lo t l ib
(sec. 3.2). The refresh rate of the visual izat ion is t ied to the - r <interval_in_percent>
parameter which sets the logging interval i n percent. The show flag should only be used
for debugging and wi th large refresh intervals, as it w i l l slow down the s imulat ion loop.
The other non-standard parameter is the backend which sets the default backend used for
calculating F F T s as described i n section 3.2. The available backends are numpy and pyf f tw
(the default), the numpy backend being significantly slower. The backend selection can be

30

used for debugging and for comparing various F F T libraries. Non-standard arguments can
be disabled and hidden by setting the compatibility_mode. For details on usage of the
command line, refer to appendix B . l .

31

Chapter 5

Testing and optimization

This chapter describes the process of testing of k-Wave-Python using the kWaveTester and
analyzes performance of the new implementat ion from the point of both computat ional
performance and memory usage. Performance bottlenecks, their causes and possible avenues
for further opt imizat ion are also discussed.

If not stated otherwise, a l l benchmarks were conducted on a laptop w i t h the Intel
15-8257U C P U clocked at 1.4 G h z and 8 G B of R A M .

5.1 Testing

The testing of k-Wave-Python was performed using the kWaveTester tool from k-Wave-
M A T L A B . The kWaveTester serves as the ground t ru th because it can both generate input
data for any combination of simulation settings and compare the output out the program
being tested w i t h the reference results.

The kwt_run_omp_comparison_tests_3D test script was used for thorough testing.
The script iterates t rough more than 200 test configurations, ensuring every aspect of the
program is tested. Because of unimplemented features and known issues, some of the
test cases generate inval id results. Because k-Wave-Python currently does not support the
staggered gr id and the kspace, they must be disabled using options.use_sg = false;
and options.use_kspace = false i n the k - W a v e - M A T L A B simulat ion file that is being
run using the kWaveTester (kspaceFirst0rder3D i n the case of k-Wave-Python) . Mul t ip l e
s imulation runs were conducted to test the implementation k-Wave-Python. The simula­
tions used non-linear, heterogenous and absorbing settings (LIN=1, ABS=1, HET=2) and the
grid size of 128x64x32 to test as many implementat ion edge cases as possible at the same
time.

32

k-Wave (Total Pressure) C++ (Total Pressure)

y-position [mm] y-position [mm]

• 0 I

} 5

1.2

10

Pr
es

su
re

 [
M

Pa

x-
po

si
tio

n
[m

m
]

0.4
30

1
0.2 35

y-position [mm] y-position [mm]

Figure 5.1: kWaveTester output for pO source

Figure 5.1 shows the output of the kWaveTester for a s imulat ion using a single pO source.
Execut ion in k - W a v e - M A T L A B took 30.55s, execution i n k-Wave-Python took 25.84s.
The tota l normalized error was LINF=2.619e-07.

k-Wave fTotal Pressure)

y-position [mm]

I" 10
2.5

"E 15

s. 2

1 20
0

1.5 Q.

it 25
1

30

D.5 35

C++ (Total Pressure)

8

y-position [mm] y-position [mm]

• o
0.07

5
0.06

10

0.05

"E 15
E

0.04 ^

£ •£ 20
0.03 Q.

k 25

0.02
30

1 0.01 3 5

Figure 5.2: kWaveTester output for mult iple p sources

y-position [mm]

Figure 5.2 shows the output of the kWaveTester for a s imulat ion using mult iple p sources.
Execut ion in k - W a v e - M A T L A B took 34.86s, execution i n k-Wave-Python took 26.44s.
The tota l normalized error was LINF=8.4321e-07.

33

Figure 5.3: kWaveTester output for mult iple u sources

Figure 5.3 shows the output of the kWaveTester for a s imulat ion using mult iple u sources.
Execut ion in k - W a v e - M A T L A B took 30.08s, execution i n k-Wave-Python took 25.65s.
The tota l normalized error was LINF=5.3346e-07.

The results of the above described tests show, that the k-Wave-Python implementat ion
is reasonably accurate and around 1 8 % faster for this configuration. There are some cases
where calculated results are currently incorrect or cannot be tested because of unimple-
mented features.

5.2 Performance benchmarks

A performance comparison between k - W a v e - M A T L A B and k-Wave-Python was conducted
using the kWaveTester for various domain sizes. The used version of M A T L A B was R2021a,
version of P y t h o n 3.10.4, N u m P y 1.21.4, numexpr 2.8.1. The simulat ion settings used
were 3D, non-linear, heterogenous, and absorbing. A simulat ion was executed for each
medium shape using the kWaveTester. Dura t ion of data preprocessing is not included in
the performance measurements.

34

k -Wave-MATLAB a n d k - W a v e - P y t h o n p e r f o r m a n c e c o m p a r i s o n

10"

& io 3

in

<ij
Q. OJ E

102

MATLAB
- » - Python

#~"

_

if f f -f f f
J

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Grid points l e7

Figure 5.4: T i m e step durat ion comparison w i t h domain sizes from 64x64x64 up to
512x256x256

Figure 5.4 shows the comparison of t ime step speeds based on measured data from ap­
pendix C . A s can be seen, k-Wave-Python outperforms k-Wave M A T L A B i n every case. The
average speedup over the M A T L A B implementat ion is around 50%, the biggest speedups
were observed wi th domain sizes.

Peak m e m o r y u s e in k - W a v e - P y t h o n

Grid points l e7

Figure 5.5: Peak memory usage i n k-Wave-Python wi th domain sizes from 64x64x64 up to
512x256x256

35

Figure 5.5 shows the peak memory usage i n k-Wave-Python, as measured during bench­
marking. The recorded values are on average higher than reference values from the k-Wave
manual [20, p. 80]. One of the reasons is the inherent overhead of the Py thon , the other
reason is the usage of temporary arrays i n some parts of k-Wave-Python. After the in i t i a l
spike i n memory use, the memory usage usually decreases, as seen i n figures 5.4 and 5.5,
meaning the recorded peak memory usage only occurs in a fraction of the to ta l runtime.

5.3 Memory profiling and optimization

Opt imiza t ion of memory handling is closely t ied to the overall performance of the s imulat ion
algori thm. Effects of inefficient memory handling might not be perceivable w i t h smaller
arrays, but as the domain size increases, every unnecessary al location or reallocation de­
creases performance and might also make the program run out of memory. In low-level
languages such as C and C + + , the user has tight control over allocations that occur i n the
program and accidental al location is less likely. However, w i th high-level garbage-collected
languages such as Py thon , the si tuation is much less clear.

Even when using libraries such as N u m P y that store arrays efficiently, close attention
must be paid to the way a part icular expression is wri t ten. Seemingly analogous implemen­
tations of an expression can often have very different performance characteristics. One of
the common causes of unnecessary allocations is the incorrect usage of assignment: whereas
the expression y = x [:] w i l l create a new object for y in memory each t ime executed, y [:]
= x w i l l copy values of x without reallocating y. Th is style of wr i t ing code requires some
changes i n the way functions are wri t ten. For instance, functions should not return the
computed values but instead copy them to an already existing array, which is passed to the
function as an argument.

Memory profiling example

In this example, the effects of temporary variables on memory al location are analyzed. A
simulation wi th the dimensions of 256x256x256 grid points is used for demonstration of the
effects of temporary variables.

Figure 5.6: Memory al location wi th temporary array captured using mprof

36

Figure 5.6 displays total allocated memory as a function of t ime captured using the mprof
memory profiler. Functions decorated wi th the ©profile decorator (such as _sim_step in
this example) are highlighted in blue. The red dashed cross highlights the t ime of peak
memory consumption.

In k-Wave-Python, the first s imulat ion step usually creates a large spike i n memory
allocation, because a l l temporary arrays and libraries are being ini t ia l ized. Peak memory
consumption cannot be easily compared wi th languages such as C + + because the user does
not always have full control over al location and de-allocation.

A s can be seen i n figure 5.6, a pattern of periodic spikes i n memory consumption can be
observed during each t ime step after the in i t i a l memory allocations. This pattern indicates,
that temporary arrays are being created dur ing calls to certain functions. Th is is not
desirable because the al location of memory becomes less predictable.

l/opt/python@3.10/bin/python3.10 kwave/kspaceFirstOrder3DP.py -i test_inputs/input_data_256_256_256.h5 -o output_file.h5 ~p_final --benchmark 10

2000

0 5 10 15 20
t ime (in seconds)

Figure 5.7: Memory al location wi th a pre-allocated array captured using mprof

Figure 5.7 displays memory al location after a pre-allocated array for temporary results was
introduced. Because temporary data is wri t ten to the pre-allocated array instead of creating
new arrays, the spikes i n memory consumption from the previous example disappear. Th is
memory consumption of the program becomes more predictable and less t ime is consumed
by allocation.

x h t t p s : //pypi.org/project/memory-profiler/

37

on@3.10/bin/python3.10 kwave/kspaceFirstOrder3DP.py -i test_inputs/input_data_nl_abs_het_256_256_256.h5 -o output_file.h5 -p_f inal -benchmark 10

0 10 20 30 40 50
t ime (in seconds)

Figure 5.8: Memory al location wi th non-linear, heterogenous, and absorbing settings cap­
tured using mprof

Figure 5.8 shows an example of a non-linear, heterogenous, and absorbing simulat ion. Even
though the numexpr l ibrary is being used, it sometimes is not possible to avoid temporary
allocations. Even if temporary arrays can be avoided, it does not always guarantee an
increase i n speed. Forcefully rewri t ing expressions to avoid reallocation may make the
calculations less efficient, thus slowing the program down.

Analysis of bottlenecks

M u l t i p l e profiling tools were used during opt imizat ion of the implementat ion. The perfor­
mance profiling tools c P r o f i l e 2 and py -spy 3 provide an aggregate overview of the most
performance intensive function calls, they are mainly used to identify the general locat ion of
a bottleneck. Once an approximate location of the bottleneck is found, a line profiler can be
used to locate the exact lines of code causing the slowdown. The kernprof/line_prof i l e r 1

profiler was used for measuring the percentage of t ime spent i n ind iv idua l functions. In
this section, a 128x128x128 simulat ion was run for 1000 time steps w i t h py -spy attached,
generating figures described below.

kspaceloop (kspaceFirstOrderRunner.py:322)

j next (kspacefirstorder/kspaceFirstDrderBase.py:163)
j ..spaceFirstOrder3D.py:101) ..paceFirstOrder3D.py:105) | .rder/kspac;eFirsl:Order3D.py: 117) .tarder/kspaceFirstOrder3D.py:118) ..) ..y:12S)

..eFirstOrderBase.py:208) ..py:215) .,FirstOrderBase.py:217) ,y:215) ..irstOrderBase.py:217) .y:215) | ..FirstOrderBase.py:217)

II llll 1 ••) m
! IIIIII

i i

Figure 5.9: Performance profile of a linear, lossless, and homogenous simulat ion captured
using py-spy

Figure 5.9 displays a flame chart that breaks down percent of runtime spent i n each func­
t ion of the cal l stack. More than 90% of the runtime is spent i n the kspace_runner, which

2 h t t p s : //docs.python.org / 3/library/profile.html
3 h t t p s : //github.com/benf red/py-spy
4 h t t p s : //github.com/pyutils/line_prof i l e r

38

executes the ma in simulation loop and a l l related behavior such as data recording and visu­
alization. The runtime is evenly spread between the ind iv idua l s imulat ion functions, which
is to be expected. The simulat ion function kspaceFirst0rder3D._sim_step() was pro­
filed using the line_prof i l e r tool for 1000 time steps and the domain size of 128x128x128.
Simulat ion settings used were linear, homogenous, and lossless. A r o u n d 4 5 % of computa­
t ion t ime was spent i n the function calc_duxdx(), 4 3 % i n calc_ux_sgx(), 6% of t ime was
spent i n recalculate_rho() . W i t h the selected settings, the computat ion t ime is roughly
divided by the number of F F T s computed.

all
run_ksp3ceFirst0rder_CLJ (kspaceFirstOrderRunn sr.py:432)

| ^ ^ ^ ^ ^ ^ ^ ^ | ..UrderJU.py: I'JH) ..rderJU.py :109) ,.rstOrder3D.py:116) ..stOrd
..Base.py:206) | ..rBase.py:208) | ^ ^ ^ ^ :2Q8) ..15} ..Base.py:217) ..5) . .ase.py:217) .5) ..ase.py:217) ^ ^ ^ r e c a l c i jlate p (kspacefirstorder/kspaceFirstOrderStrats.py:156)

1 1 II I I I I •
py:69) ..paceFirstOrderStrats.py:70) ...py:73) ..aceFirstOrderStrats.py:74)

II i

Figure 5.10: Performance profile of a non-linear, absorbing, and heterogenous simulat ion
captured using py-spy

W i t h non-linear, absorbing, and heterogenous simulations, the profile changes consid­
erably. A large por t ion of runtime, as shown in figure 5.10, is spent in the function
recalculate_p() , that handles the updates of the pressure array. The function causing
the slowdown in this case is the EosAbsorbing.recalculate_p_nonlinear() . It contains
four F F T calculations (fftn() and i f f t n O) and is also difficult to optimize using num-
expr. S imi lar ly to the first example, the kspaceFirst0rder3D._sim_step() function was
profiled using the line_prof i l e r w i th the same domain size and number of t ime steps.
The settings used were non-linear, heterogenous and absorbing. T h i s t ime, the function
recalculate_p() consumed almost 3 6 % of the computat ion time, 2 9 % of t ime was spent
in calc_duxdx() , and around 27.5% i n calc_ux_sgx() . It can thus be concluded, that
the calculat ion of F F T s has the most significant impact on the overall performance of the
simulation.

Process of optimization

This section outlines the approximate steps taken during the opt imizat ion of k-Wave-
Py thon . In the first opt imizat ion phase, unnecessary reallocations of N u m P y arrays were
eliminated where possible. Reallocations are usually unintentionally caused by assigning
a result of a calculation to an variable point ing to an already existing array, this makes
the garbage collector destroy the object and a reallocation occurs. Reallocations can be
eliminated by assigning a new value to an already existing array like x[:] = result or
by using np.copyto(x, result). A n y such optimizations should first be verified since
copying might not always be faster than creating a new array.

In the second phase, a l l equations, that can benefit from it , were wrapped wi th numexpr.
Th is mainly applies to equations for recalculating pressure and density, which contain a large
number of ari thmetic operations. Equations that contain F F T s which cannot be included
into numexpr can be opt imized this way at least partially.

Since F F T s form a large majority of the computat ion time, as described i n section 5.3,
the performance is ul t imately t ied to the performance of the underlying F F T l ibrary (in
this case p y F F T W) .

39

Further avenues for optimization

One of the ways better performance could be achieved is by using various P y t h o n libraries,
that enable ahead-of-time, just-in-time compilat ion, or improve parallel ism of the compu­
tations.

Ahead-of-time compiled functions provide speeds comparable to C , this can be done
by wr i t ing functions i n Cython as separate modules and compil ing them. Compi l i ng to
C might not always equate to a speed boost. Since k-Wave-Python uses the N u m P y and
numexpr libraries, which are already vectorized, the benefit of compil ing
might be negligible [4, p. 162].

Just-in-time compiled solutions are easier to deploy to the target program. The Numba6

l ibrary allows compilat ion of ind iv idua l functions using a decorator. Compi la t ion occurs
during the first cal l of the functions, the J I T compiled code is then cached for further use.
Limi ta t ions are however similar to the previously described pre-compiled C y t h o n . Further
deployment of numexpr, which could also be classified as a J I T library, is also an option.

W h i l e p y F F T W automatical ly works i n mult iple threads, some parts of the s imulat ion
algori thm could s t i l l benefit from added parallelization. This mainly applies to equations
that are calculated for each dimension of the array separately. Th is includes velocity and
density calculations for each cardinal direction X, Y, and Z. Since the P y t h o n GIL (Global
Interpreter Lock) prohibits parallel computat ion using threads [9], separate processes must
be used instead of threads. Th is can be achieved using the multiprocessing standard
library, which allows the simple creation of worker pools. There are mult iple caveats to
this approach. For smaller domains, the overhead of forking and jo in ing threads might
outweigh the possible speed benefits. For larger domains, the cost of synchronizing results
between threads might also be an issue [4, p. 280]. Another issue could be the dupl icat ion
of allocated arrays during forking, a possible solution is to allocate shared N u m P y arrays
using multiprocessing. Array to avoid dupl icat ion of the memory from the
main thread [4, p. 298].

One of the components which is currently not opt imized is the class HDFIndexingAdapter
(sec. 3.8) used for converting indices from H D F to N u m P y . The slowdown is caused by the
indexing conversion during runtime, which often needs to re-shape the target data.

W h i l e the k-Wave-Python performance was also benchmarked on the Barbora cluster
from IT4Innovations [6] w i th P y t h o n 3.9.6 (and other versions) and M A T L A B R2021a,
the performance measured indicates, that local ly measured speed improvements over the
k - W a v e - M A T L A B do not translate to computat ional clusters. One of the further avenues of
development could therefore be the adaptat ion of k -Wave-Python take advantage of cluster
computing.

5 h t t p s : //cython.org/
6 h t t p s : //numba.pydata.org/

40

Chapter 6

Conclusion

The goal of this thesis was to analyze conversion of M A T L A B programs to P y t h o n and to
summarize the main issues arising from such conversions. The topics discussed mainly relate
to the issues encountered during the re-implementation of the k-Wave toolbox, emphasizing
the aspect of performance. The second goal was to create a P y t h o n implementat ion of a
subset of the k-Wave toolbox, thus laying the groundwork for further development.

A s a part of this thesis, a working P y t h o n k-Wave implementat ion was developed. The
performance of the new implementat ion is comparable to the original M A T L A B implemen­
tat ion, in some cases, the new implementat ion surpasses the performance of the original
implementation by around 10-50%. The to ta l number of lines of code is approximately
2000 lines (not including empty lines and comments), which is a substantial improvement
over C + + implementations.

Based on the insights gained during implementat ion and conversion from M A T L A B ,
a set of guidelines and tips was proposed. A summary of high performance computing
technologies used in P y t h o n was also compiled.

The takeaway from this thesis is, that opt imizat ion is a non- t r iv ia l multi-faceted issue.
Proper opt imizat ion requires due diligence and careful balancing of counteracting effects.

Currently, the performance of the implementat ion is l imi ted by a smal l por t ion of the
tota l lines of code, mainly due to F F T computations. In terms of opt imizat ion, acceleration
of the most performance-critical s imulation functions could provide substantial performance
improvements. Funct ion calls to F F T s currently prevent the applicat ion of numexpr to
entire equations, br idging this gap could lead to improved memory handling. Performance
on computer clusters could also be the focus of further development.

In the future, the implementat ion could be expanded to include I D and 2D simulations.
Due to the popular i ty of Py thon , k-Wave could also be brought to a wider audience of
potential users while also enabling integration wi th other powerful P y t h o n libraries.

41

Bibliography

[1] E U R O S T A T . Root mean square error (RMSE) [online], 9. may 2019 [cit. 2022-05-09].
Available at:
https: //ec.europa.eu/eurostat/cros/content/root-mean-square-error-rmse_en.

[2] F F T W . O R G . Planner Flags [online]. [cit. 2022-05-06]. Available at:
https: //www.f ftw.org/fftw3_doc/Planner-Flags.html.

[3] G O M E R S A L L , H . pyFFTW Documentation rev.86df872 [online]. 2021-12-27 [cit.
2022-01-16]. Available at: https://pyfftw.readthedocs.io.

[4] G O R E L I C K , M . and O Z S V A L D , I. High Performance Python. 2nd ed. Sebastopol:
O ' R e i l l y Media , Inc., may 2020. I S B N 9781492055020.

[5] H U N T , A . and T H O M A S , D . The Pragmatic Programmer. 1st ed. Addison-Wesley,

2000. I S B N 0-201-61622-X.

[6] I T 4 I N N O V A T I O N S . Barbara [online], [cit. 2022-05-10]. Available at:
https://www.it4i.cz/en/infrastructure/barbora.

[7] M O L E R , C., E D D I N S , S. and M A T H W O R K S . Faster Finite Fourier Transforms

MATLAB [online], [cit. 2022-01-15]. Available at: https://www.mathworks.com/
company/newsletters/articles/faster-finite-fourier-transforms-matlab.html.

[8] N U M P Y D E V E L O P E R S . NumPy for MATLAB users [online], [cit. 2022-01-15].
Available at: https: //numpy.org/doc/1.22/user/numpy-f or-matlab-users.html.

[9] P Y T H O N S O F T W A R E F O U N D A T I O N . GloballnterpreterLock [online], [cit. 2022-05-06].
Available at: https: //wiki .python.org/mo in/Global Interpret erLo ck.

[10] P Y T H O N S O F T W A R E F O U N D A T I O N . Python Package Index [online], [cit. 2022-01-15].
Available at: https://pypi.org.

[11] R O B E R T S O N , J . L . , Cox, B . T. , J A R O S , J . and T R E E B Y , B . E . Accurate s imulat ion of

t ranscranial ultrasound propagation for ultrasonic neuromodulat ion and s t imulation.
J. Acoust. Soc. Am. 2017, vol. 141, no. 3, p. 1726-1738. D O I : 10.1121/1.4976339.
Available at: http://bug.medphys.ucl.ac.uk/papers/2017-Robertson-JASA.pdf.

[12] R O S S U M , G . van. Glue It A l l Together W i t h Py thon . In: T H O M P S O N , C ,
ed. Workshop on Compositional Software Architecture [online], [cit. 2022-01-15].
Available at: http://www.obj s.com/workshops/ws9801/papers/paper070.html.

[13] S H V E T S , A . Dive Into Design Patterns [online]. V2021-2.32th ed. 2021 [cit.
2022-05-03]. Available at: https://refactoring.guru/design-patterns/book.

42

http://fftw.ORG
http://www.f
http://ftw.org/fftw3_doc/Planner-Flags.html
https://pyfftw.readthedocs.io
https://www.it4i.cz/en/infrastructure/barbora
https://www.mathworks.com/
http://python.org/
https://pypi.org
http://bug.medphys.ucl.ac.uk/papers/2017-Robertson-JASA.pdf
http://www.obj
https://refactoring.guru/design-patterns/book

[14] S T E N S O N , I . Faster Fast Fourier Transforms in Python [online], 11. June 2021 [cit.
2022-05-09]. Available at: ht tps: / /blog.hpc.qmul.ac.uk/pyfftw.html.

[15] S U O M I , V . , T R E E B Y , B . E . , J A R O S , J . , M A K E L A , P . , A N T T I N E N , M . et al .

Transurethral ultrasound therapy of the prostate in the presence of calcifications: A
simulation study. Med. Phys. 2018, vol . 45, no. 11, p. 4793-4805. D O I :
10.1002/mp.l3183. Available at:
http://bug. medphys.ucl.ac.uk/papers/2018-Suomi-MP.pdf.

[16] T H E M A T H W O R K S , I N C . . Fft [online], [cit. 2022-05-07]. Available at:
h t tp s : / / www.mathworks.com/help/matlab/ref / f f t .html.

[17] T H E M A T H W O R K S , I N C . . MATLAB Performance [online], [cit. 2022-05-09]. Available
at: h t tps : //www.mathworks.com/products/matlab/perf ormance.html.

[18] T H E M A T H W O R K S , I N C . . MATLAB vs. Python: Top Reasons to Choose MATLAB
[online], [cit. 2022-01-15]. Available at:
h t tp s : //www.mathworks.com/products/matlab/matlab-vs-python.html.

[19] T H E M A T H W O R K S , I N C . . Row-Major and Column-Major Array Layouts [online],
[cit. 2022-01-15]. Available at: https://www.mathworks.com/help/coder/ug/what-are-
column-major-and-row-major-representat ion-l .html.

[20] T R E E B Y , B . , C O X , B . and J A R O S , J . k-Wave - User Manual [online]. August 2016,
2016-08-27 [cit. 2022-01-17]. Available at:
h t t p : / / www.k-wave.org/manual/k-wave_user_manual_ 1.1 .pdf.

[21] T R E E B Y , B . E . and Cox, B . T . k-Wave: M A T L A B toolbox for the s imulat ion and
reconstruction of photoacoustic wave fields, [online]. S P I E . vol . 15, no. 2, p. 1 - 12,
[cit. 2022-01-15]. D O I : 10.1117/1.3360308.

[22] T R E E B Y , E . B . , J A R O Š , J . , R E N D E L L , P . A . and Cox, T . B . Mode l ing nonlinear

ultrasound propagation i n heterogeneous media w i t h power law absorption using a
k-space pseudospectral method. Journal of the Acoustical Society of America. 2012,
vol . 131, no. 6, p. 4324-4336. D O I : 10.1121/1.4712021. I S S N 1520-8524. Available at:
h t tp s : / /www.fit.vut .cz / research /publ ica t ion/10069.

43

https://blog.hpc.qmul.ac.uk/pyfftw.html
http://bug
http://medphys.ucl.ac.uk/papers/2018-Suomi-MP.pdf
http://www.mathworks.com/help/
http://www.mathworks.com/products/matlab/perf
http://www.mathworks.com/products/matlab/matlab-vs-python.html
https://www.mathworks.com/help/coder/ug/what-are-
http://www.k-wave.org/
http://www.fit.vut.cz/research/publicat

Appendix A

Contents of the included storage
media

• k-Wave-MATLAB/ - folder containing source code of the k - W a v e - M A T L A B toolbox
which served as the reference during implementat ion of k-Wave-Python

• Sources/ - folder containing source files of the k-Wave-Python implementat ion

• Thesis/ - folder containing source files of the thesis text

• Data/ - folder containing example data, measurements and simulat ion logs

• README. md - file describing contents of the storage media

• xcerny74.pdf - P D F version of the thesis text

44

Appendix B

k-Wave Python user manual

This appendix contains the guide for the instal lat ion and usage of k-Wave-Python. The
basic requirements include:

• A U N I X - l i k e operating system such as L i n u x or M a c O S .

• P y t h o n 1 version 3.10, lower versions such as P y t h o n 3.9 may run, but full compati­
bi l i ty is not guaranteed.

• The P y t h o n libraries numpy 2 , numexpr 3 , matplot l ib . A l though the simulator can
run without the l ibrary p y F F T W ' ' , it is highly recommended because of performance
benefits.

• If the p y F F T W l ibrary is used, the underlying F F T W 3 6 l ibrary must also be installed
on the target system.

P y t h o n libraries can be installed using the P y t h o n pip package management tool using
the command pip i n s t a l l - r requirements.txt, the requirements.txt file contains
above listed required libraries. The pip tool may also be called pip3 depending on the
configuration of the target system.

To simplify the instal lat ion process, k -Wave-Python can be directly installed using pip.
Th is can be done by navigating to the root folder of the project and using the pip i n s t a l l
. command. A new kwave python package w i l l be installed system-wide. A new ut i l i ty
kspaceFirst0rder3DP w i l l also be installed and can be used i n any terminal . The default
instal l only installs the N u m P y F F T backend, to instal l the addi t ional p y F F T W backend,
use the command pip i n s t a l l M. [fftw]". For more information, refer to README.md.

x h t t p s : //www.python.org/
2 h t t p s : //numpy.org/
3 h t t p s : //github.com/pydata/numexpr
4https://matplotlib.org/
5 h t t p s : //github.com/pyFFTW/pyFFTW
6 h t t p s : //www.fftw.org/

45

http://www.python.org/
https://matplotlib.org/
http://www.fftw.org/

B . l Using the simulator

The command line interface of the simulator can be accessed using the file
kspaceFirst0rder3DP .py. It can be executed using the commands:
python3 kspaceFirst0rder3DP.py or ./kspaceFirst0rder3DP.py on L i n u x / M a c O S (this
may require granting execution permissions using chmod).

To use the simulator w i th k - W a v e - M A T L A B dur ing development, create a hard l ink of
the C L I script using In kspaceFirst0rder3DP.py kspaceFirst0rder3DP, then move the
kspaceFirst0rder3DP hard l ink to the k-Wave-MATLAB/k-Wave/binaries folder i n the k-
W a v e - M A T L A B . To ensure ind iv idua l modules are correctly found, and add the root folder
of k -Wave-Python to the PATH and PYTHONPATH environment variables.

To simplify the process of using k-Wave-Python wi th in the k - W a v e - M A T L A B tool­
box, the link_kwave.py u t i l i ty was developed. After executing python3 link_kwave.py
path/to/kwave/binaries, the u t i l i ty w i l l create a new hard l ink for the
kspaceFirst0rder3DP i n the specified binaries folder, permissions to execute the script
w i l l also be added. Addi t ional ly , the k-Wave-Python folder w i l l be exported to P A T H and
P Y T H O N P A T H . Because the environment variable export is not persistent, the script lists
the shell commands that should be added to the configuration file of the terminal . The
command
python3 kspaceFirst0rder3DP.py - i input_file.h.5 -o output_file.h.5 is the sim­
plest example of usage of the command line interface, only the input and output files are
defined. B y default, the simulator w i l l only record the p_raw field and log progress every
5% of t ime steps. The log output w i l l resemble the example output i n appendix E . A l l
available parameters can be seen i n appendix D .

46

Appendix C

Benchmark

47

Table C . l : T ime step durat ion [ms] and m a x i m u m memory usage i n k-Wave-Python [MB]

D o m a i n size
M A T L A B P y t h o n M e m o r y [MB]

64x64x64 47. .42 30.32 111
96x64x64 64. .52 46.90 135
128x64x64 83. .52 59.65 160
96x96x64 94. .07 68.93 173
96x96x96 138. .35 103.76 231
128x128x64 163. .90 120.71 259
128x96x96 186. .07 140.26 284
128x128x96 249. .72 187.80 364
128x128x128 337. .02 248.29 465
160x128x128 418. .46 313.31 566
160x160x128 526. .11 450.23 688
160x160x160 671. .74 584.03 843
256x128x128 684. .18 615.97 860
192x160x160 827. .36 719.57 1001
192x192x160 1064. .74 877.12 1188
192x192x192 1381. .20 1077.28 1415
224x192x192 1674. .80 1145.75 1640
224x224x192 2128. .18 1450.44 1910
224x224x224 2582. .44 1744.35 1855
256x224x224 2890. .54 2197.79 2267
256x256x256 4164. .30 2759.15 2720
288x256x256 4723. .41 3166.60 2915
288x288x256 9180. .95 4138.25 3378
288x288x288 10088. .54 4983.87 3677
320x288x288 12347. .96 5637.26 4072
320x320x288 14813. .73 7234.01 4217
320x320x320 18922. .59 9761.35 4468
512x256x256 20854. .13 10784.86 4547

18

Appendix D

k-Wave-Python help menu

usage: kspaceFirst0rder3D [-h] - i <file_name> -o <file_name> [—version]
[-r <interval_in_°/0>] [—verbose <level>]
[—benchmark <time_steps>] [—show] [-b <backend>]
[-t <num_threads>] [-s <time_step>]
[—checkpoint_interval <sec>]
[—checkpoint_file <file_name>] [-p] [—p_rms]
[—p_max] [—p_min] [—p_max_all] [—p_min_all]
[—p_final] [-u] [—u_rms] [—u_max] [—u_min]
[—u_max_all] [—u_min_all] [—u_final]
[—copy_sensor_mask]

kspaceFirst0rder3D launcher s c r i p t . This script can be used to run
kspaceFirst0rder3D simulations using HDF input f i l e s . Simulation dimensions
and settings are automatically loaded from the input dataset. Other available
options are described below.

options:
-h, — h e l p show this help message and exit

mandatory parameters:
- i <file_name>
-o <file name>

name of HDF5 input f i l e
name of HDF5 output f i l e

optional parameters:
— v e r s i o n print version and build info
-r <interval_in_°/0> progress print interval (default = 5%)
—verbose <level> level of verbosity <0, 2> (default = 1)
—benchmark <time_steps>

run only a specified number of time steps
-t <num_threads> number of CPU threads for FFT (default = 8)
-s <time_step> time step when data co l l e c t i o n begins (default = 0)
—checkpoint_interval <sec>

checkpoint after a given number of seconds (default =
60)

49

— c h e c k p o i n t _ f i l e <file_name>
name of HDF5 checkpoint f i l e

implementation s p e c i f i c parameters:
—show w i l l display simulation progress preview
-b <backend>, —backend <backend>

backend used for FFT computations (default = pyfftw)

output flags:
-p, —p_raw
—p_rms
—p_max
—p_min
—p_max_all
—p_min_all
— p _ f i n a l
-u, —u_raw
—u_rms
—u_max
—u_min
—u_max_all
—u_min_all
— u _ f i n a l
—copy_sensor_mask

store time varying acoustic pressure
store rms of P
store max of P
store min of P
store max of P (whole domain)
store min of P (whole domain)
store f i n a l pressure f i e l d
store time varying p a r t i c l e velocity (ux, uy, uz)
store rms of ux, uy, uz
store max of ux, uy, uz
store min of ux, uy, uz
store max of ux, uy, uz (whole domain)
store min of ux, uy, uz (whole domain)
store f i n a l p a r t i c l e velocity f i e l d
copy sensor mask to output f i l e

50

Appendix E

Example output log

— +

I
— +

8 I
Done I

kSpaceFirst0rder3D-Python vO.l

Number of CPU threads:
Reading simulation configuration:

-+

I
-+

I
I
+
I
+

Done I
Done I
0.08s I

Simulation details

Simulation dimensions:
Simulation time steps:

128 x 128 x 128
50

I n i t i a l i z a t i o n

Memory allocation:
Data loading:
Elapsed time:

FFT plans creation:
Pre-processing phase:
Elapsed time:

Computational resources
Current host memory i n use:

Done I
Done I
0.08s I

+
I
I

-+

I
-+

240MB

Simulation
+ +-

Elapsed time | Time to go | Progress | Est. f i n i s h time I
+ + + +-

4% 1 0 464s 1 22.29s 1 06/05/22 11 58 43
8% 1 1 047s 1 16.048s 1 06/05/22 11 58 37
12% 1 1 581s 1 13.913s 1 06/05/22 11 58 35
16% 1 2 121s 1 12.725s 1 06/05/22 11 58 35
20% 1 2 646s 1 11.76s 1 06/05/22 11 58 34
24% 1 3 167s 1 10.94s 1 06/05/22 11 58 34

51

28% 1 3 692s 1 10.225s 1 06/05/22 11 58 34
32% 1 4 223s 1 9.571s 1 06/05/22 11 58 34
36% 1 4 767s 1 8.973s 1 06/05/22 11 58 33
40% 1 5 303s 1 8.374s 1 06/05/22 11 58 33
44% 1 5 842 s 1 7.79s 1 06/05/22 11 58 33
48% 1 6 382s 1 7.214s 1 06/05/22 11 58 33
52% 1 6 913s 1 6.637s 1 06/05/22 11 58 33
56% 1 7 441s 1 6.063s 1 06/05/22 11 58 33
60% 1 7 958s 1 5.488s 1 06/05/22 11 58 33
64% 1 8 475s 1 4.921s 1 06/05/22 11 58 33
68% 1 8 993s 1 4.36s 1 06/05/22 11 58 33
72% 1 9 508s 1 3.803s 1 06/05/22 11 58 33
76% 1 10 034s 1 3.254s 1 06/05/22 11 58 33
80% 1 10 564s 1 2.709s 1 06/05/22 11 58 33
84% 1 11 087s 1 2.163s 1 06/05/22 11 58 33
88% 1 11 615s 1 1.621s 1 06/05/22 11 58 33
92% 1 12 145s 1 1.08s 1 06/05/22 11 58 33
96% 1 12 673s 1 0.539s 1 06/05/22 11 58 33
98% 1 12 936s 1 0.27s 1 06/05/22 11 58 33

+ + + + +
I Elapsed time: 13.47s |
+ +
I Summary I
+ +
I Peak memory i n use: 505MB |
+ +
I Total execution time: 13.8536s |
+ +
I End of computation I

+ +

52

