
Remote task management in embedded
devices

Master Thesis

Study programme: N0714A150003 Mechatronics
Author: Bc. Nikita Nagornov
Thesis Supervisors: Ing. Jan Kraus, Ph.D.

Institute of Mechatronics and Computer Engineering

Thesis Consultant: Ing. Ekaterina Nyrobtseva
Institute of Mechatronics and Computer Engineering

Liberec 2020

Master Thesis Assignment Form

Remote task management in
embedded devices

Name and surname: Bc. Nikita Nagornov
Identification number: M19000212
Study programme: N0714A150003 Mechatronics
Assigning department: Institute of Mechatronics and Computer Engineering
Academic year: 2019/2020

Rules for Elaboration:

1. Study and analyse all requirements for a flexible task scheduler system with user friendly
management of large number of tasks for data acquisition, processing and export in
a multi-user environment.

2. Design the required infrastructure and develop your own application and its interfaces to allow
simple handling of multiple automated tasks for a given embedded Linux environment.

3. Check the propper function of your application and evaluate its key performance indicators
under real conditions.

4. Make a brief summary of your achievements in conclusion, discuss most important advantages
and disadvantages of the presented solution and evaluate possibilities for its further
improvements.

Scope of GraphicWork: by appropriate documentation
Scope of Report: 40–50 pages
Thesis Form: printed/electronic
Thesis Language: English

List of Specialised Literature:

[1] KELLER, Michael S. Take command: cron: Job scheduler. Linux Journal, 1999, 1999.65es: 15.
[2] ENVIS Application User Guide: Version 1.8 for Supported Measuring Instruments [online].

Liberec: K M B systems, 2019 [cit. 2019-11-22].
[3] SAUTER, Thilo; LOBASHOV, Maksim. End-to-end communication architecture for smart grids. IEEE
[4] Transactions on Industrial Electronics, 2011, 58.4: 1218-1228.
[5] HILLAR, Gaston C. MQTT Essentials-A Lightweight IoT Protocol. Packt Publishing Ltd, 2017.
[6] PENG, Ya-Shiang; CHEN, Yen-Cheng. SNMP-based monitoring of heterogeneous virtual

infrastructure in clouds. In: 2011 13th Asia-Pacific Network Operations and Management
Symposium. IEEE, 2011. p. 1-6.

Thesis Supervisors: Ing. Jan Kraus, Ph.D.
Institute of Mechatronics and Computer Engineering

Thesis Consultant: Ing. Ekaterina Nyrobtseva
Institute of Mechatronics and Computer Engineering

Date of Thesis Assignment: November 8, 2019
Date of Thesis Submission: May 18, 2020

prof. Ing. Zdeněk Plíva, Ph.D.
Dean

L.S.
doc. Ing. Milan Kolář, CSc.

head of institute

Liberec November 8, 2019

Declaration

I hereby certify, I, myself, have written my master thesis as an original and
primary work using the literature listed below and consulting it with my
thesis supervisor and my thesis counsellor.

I acknowledge that my bachelor master thesis is fully governed by Act
No. 121/2000 Coll., the Copyright Act, in particular Article 60 – School
Work.

I acknowledge that the Technical University of Liberec does not infringe
my copyrights by usingmymaster thesis for internal purposes of the Tech-
nical University of Liberec.

I am aware of my obligation to inform the Technical University of Liberec
on having used or granted license to use the results ofmymaster thesis; in
such a case the Technical University of Liberecmay require reimbursement
of the costs incurred for creating the result up to their actual amount.

At the same time, I honestly declare that the text of the printed version
of my master thesis is identical with the text of the electronic version up-
loaded into the IS/STAG.

I acknowledge that theTechnicalUniversity of Liberecwillmakemymaster
thesis public in accordance with paragraph 47b of Act No. 111/1998 Coll.,
on Higher Education Institutions and on Amendment to Other Acts (the
Higher Education Act), as amended.

I am aware of the consequences which may under the Higher Education
Act result from a breach of this declaration.

May 30, 2020 Bc. Nikita Nagornov

Vzdálená správa úloh ve vestavěných za-
řízeních

Abstrakt

Práce obsahuje výzkum nezbytný k vytvoření kompletního řešení
pro správu a zpracování informací získaných z elektroměrů. Zabývá
se serverem používaným pro připojení k zařízením, nastavováním
úkolů a jejich správou na každém zařízení.

Klíčová slova: Internet věcí, plánovač úloh, vestavěné systémy,
plánovač úloh, colibri, monitorovací server

Remote task management in embedded de-
vices

Abstract

The work contains the research necessary to create a complete so-
lution for the management and processing of information obtained
from electric meters. It deals with a server used to connect to
devices, set tasks, and manage them on each device.

Keywords: Internet of Things, task scheduler, embedded systems,
jobscheduler, colibri, monitoring server

5

Acknowledgements

I would like to express my deep and sincere gratitude to my thesis
supervisor Ing. Jan Kraus, Ph.D. at the Technical University of
Liberec. Prof. Kraus was always open whenever I had a trouble
spot or a question about my research or writing. He consistently al-
lowed this paper to be my work but steered me in the right direction
whenever he thought I needed it.

I would like to thank the experts who were involved in the valida-
tion survey for this research project: Ing. Tomas Bedrnik and Ing.
Ekaterina Nyrobtseva. Without their passionate participation and
input, the work could not have been successfully conducted.

I would also like to thank the Ing. Jaroslav Nosek, CSc. with the
leaderships of the Technical University of Liberec and Erasmus for
the excellent opportunity to live and study in the progressive and
fast developing university.

6

Contents

List of abbreviations . 9

Introduction 10

1 Review of the Internet of Things 11
1.1 IoT Overview . 11

1.1.1 Sensors and Sensor Network Level 11
1.1.2 Gateway and Network Level 12
1.1.3 Application Level . 12
1.1.4 Overview and Analysis of Single-board Computer Modules . . 15

2 Task Planning in Operating System 19
2.1 General Information about Embedded Operating Systems 19
2.2 Overview of Existing Linux Task Schedulers 21

2.2.1 JobScheduler . 21
2.2.2 Activebatch . 21
2.2.3 Oracle Grid . 22

2.3 Overview of Task Scheduler on Windows 10 23

3 Task Manager API 26
3.1 JobScheduler API . 26

3.1.1 Additional JobScheduler Features 26
3.2 Windows Task Scheduler . 27

4 JobScheduler 29
4.1 Preparation . 29
4.2 Job and patterns . 29
4.3 Job execution . 31
4.4 JobScheduler requests . 34
4.5 Data collection and processing . 38

5 Server for Monitoring Schedulers and Tasks on Devices 40
5.1 Architecture . 40

5.1.1 DeviceConnector Class . 40
5.1.2 Device Class . 41
5.1.3 Server Class . 42
5.1.4 Listener Class . 42

7

5.2 Formation of the XML — Answers 44
5.3 Additional Server Functionality . 44

Conclusions 46

Bibliography 48

Appendix 50
A Colibri iMX6 . 50
B Installation of JobSheduler environment 53

B.1 Database Server Setup . 53
B.2 Installation and Configuration of JobScheduler 54
B.3 Installation and Configuration of JOC Cockpit 56
B.4 Launch the Required Services 58

C JobScheduler commands . 61
D Windows Task Scheduler example . 62

8

List of abbreviations
IoT Internet of Things
LAN Local Area Network
PAN Personal Area Network
WAN Wide Area Network
GSM Global System for Mobile Communications
GPRS General Packet Radio Service
LTE Long-Term Evolution
WSN Wireless Sensor Network
WoT Web of Things
HTTP HypperText Transfer Protocol
REST Representational State Transfer
API Application Programming Interface
USB Universal Serial Bus
NAS Network Attached Storage
RAID Redundant Array of Independent Disks
GPU Graphics Processing Unit
CPU Central Processing Unit
ARM Advanced RISC Machine
RISC Reduced Instruction Set Computer
RAM Random-access Memory
LCD Liquid-crystal Display
RGB Red, Green, Blue
OTG On-The-Go
SDIO Secure Digital Input Output
CAN Controller Area Network
PWM Pulse Width Modulation
SQL Structured Query Language
PL Procedural Language
MMC Microsoft Management Console
JOC JobScheduler Operations Center
XML Extensible Markup Language
LIFO Last in, First out
FIFO First in, First out
HTTP Hypertext Transfer Protocol
DBMS Database Management System

9

Introduction

The work is devoted to the development and implementation of a software package
for organizing, managing, and monitoring the automated execution of various tasks
on embedded devices.

The work is of interest for the reason that devices running on the Internet of
things are autonomous. They must perform many scheduled tasks without the
intervention of the end-user: collecting data from sensors, their primary processing
to provide them in a way that is understandable to the user, logging, exchanging
these data with other network devices, and transferring them to administrators for
analysis. Business processes in organizations using IoT devices are not permanent.
They may undergo some changes, which in turn may necessitate adjustments to the
tasks performed by devices autonomously. Making changes to the software running
on the device is difficult. In addition to the time spent on updating the software,
it takes time to install new versions of programs on the devices themselves, which
can lead to disabling and flashing them, which is impossible in most situations.
Therefore, it is preferable to use a flexible task management system on devices with
the ability to remotely create, set a schedule for their implementation, monitor the
status and results of these tasks.

On the Internet of things, as a rule, many devices work, so working with each
individual is not always convenient. For this reason, it is advisable to develop
a centralized server that can manage and monitor the status of tasks on multiple
devices on the network. Thus, the development and implementation of a software
package for organizing centralized management of tasks on the Internet of things
devices are set as a task. The following steps are taken to solve the problem: To be
able to create tasks on the devices themselves, it is proposed to use the existing task
scheduler on the market. There are several such planners. Some are components
of embedded operating systems installed on devices; others are created by third-
party developers and are universal solutions. It is necessary to analyze the existing
implementations of the task planners and select the solution that is most suitable
for the project within which this work is carried out.

For centralized remote task management on network devices, it is planned to
develop their solution, a server that must connect to end devices, issue commands
for managing tasks, and also poll information about created tasks. In turn, the
server itself provides a REST API web interface through which clients can interact
with the server and manage tasks on the devices to which the server is connected.
Based on the provided REST API server, a client web application for IoT network
administrators can be created.

10

1 Review of the Internet of Things

1.1 IoT Overview
The Internet of Things (IoT) hangs on three basic principles. Firstly, the ubiquitous
communication infrastructure, secondly, the global identification of each object and,
thirdly, the ability of each object to send and receive data via a personal network
or the Internet to which it is connected. In IoT, each thing has its identifier, which
together forms a continuum of things that can interact with each other, creating
temporary or permanent networks. So things can take part in the process of moving
them, sharing information about the current geo-location, which allows automating
the logistics process, and having built-in intelligence thoroughly, things can change
their properties and adapt to the environment. Internet of things has a single
interaction protocol, according to which any network node is equal in the provision
of its services. Each node of the Internet of things network provides its service,
providing a specific data delivery service. At the same time, a node in such a network
can receive commands from any other node, which leads all Internet of Things can
interact with each other and solve joint computing problems. The Internet of Things
can form local networks, united by any one service area [1].

The Internet of things conceptually belongs to next-generation networks, and
consists of a set of different information and communication technologies that enable
the functioning, and its architecture shows how these technologies are related to each
other. The IoT architecture includes four functional layers (Figure 1.1), described
below.

1.1.1 Sensors and Sensor Network Level
The lowest level of IoT architecture consists of “smart” objects integrated with
sensors. Sensors realize the connection between the physical and digital worlds,
providing the collection and processing of information in real-time. Miniaturization,
which led to a reduction in the physical dimensions of hardware sensors, made it
possible to integrate them directly into objects of the physical world. Most sensors
require a connection to a sensor gateway, which can be implemented using a local
area network (LAN), such as Ethernet, Wi-Fi, or a personal area network (PAN).
For sensors that do not require a connection to the gateway, their communication
with servers/applications can be provided using global wireless WANs, such as GSM,
GPRS, and LTE. Sensors, which are characterized by low power consumption and

11

Figure 1.1: Internet of Things Architecture [2]

low data transfer rate, form the well-known WSN wireless sensor networks.

1.1.2 Gateway and Network Level
The large amount of data provided by the multiple sensors on the first IoT layer re-
quires a reliable and high-performance wired or wireless infrastructure as a transport
medium. This level consists of converged network infrastructure, which is created
by integrating heterogeneous networks into a single network platform. The service
level contains a set of information services that automate technological business op-
erations in IoT, supporting operational and business activities, various analytical
information processing, data storage, information security, business process man-
agement.

1.1.3 Application Level
At this level, there are various types of applications for the relevant industrial sectors
and fields of activity (energy, transport, trade, medicine, education). Applications

12

can be “vertical” when they are “specific” for a particular industry, as well as “hor-
izontal”, which can be used in various sectors of the economy. An integral part of
the Internet of things is the Web of Things (WoT), which enables the interaction
of various intellectual objects (“things”) using Internet standards and mechanisms.
For example, a URI (Uniform Resource Identifier), HTTP (HypperText Transfer
Protocol), the style of building a distributed application architecture REST (Rep-
resentational State Transfer). WoT provides for the implementation of the IoT
concept at the application level using existing architectural solutions focused on
the development of web applications. There are three methods of interacting with
the Internet of things: direct access, access through a gateway, and access through
a server. In the case of direct access, all devices must have their IP address or net-
work alias, by which any client application can access them. The interface usually in
the form of a web-site with a graphical interface for managing via a web browser. It
is possible to use specialized software. In such web devices, the REST API should be
integrated for direct access to them via the Internet. Access to the Internet of things
through a gateway is a more rational way of organizing interaction. It completely
displaces the direct access method, if necessary, to establish a connection between
wireless sensor networks or the Internet of things network with the global Internet
network. Most standards of wireless sensor networks do not support the IP protocol,
using their interaction protocols, this feature makes it necessary to have a device for
relaying messages from the sensor network to the Internet for protocol compatibility.
The third form of device interaction in IoT through the server implies the existence
of an intermediary between devices and the user. It can be implemented using an
intermediary data platform. This approach assumes the presence of a centralized
server or group of servers, the main functions of which include [3]:

• Receiving messages from the Internet of Things and transmitting them to
users.

• Storage accepted and its processing).

• Providing a user interface with the possibility of a two-way exchange between
the user and the Internet of thing.

The classical architecture of the Internet of things includes:

• IoT devices. They collect readings from sensors and perform physical actions.
Can be personalized, wearable and integrated.

• Gateways that receive information from devices and send them commands to
perform actions. Typically represented by a hardware router or software.

• Use different protocols.

• The server where the sensor readings are stored, processed, and analyzed. It
can be implemented based on a virtual server, a real machine, or through the
cloud.

13

• The client part is implemented through a mobile or web application, provides
access to data and visualization of analysis results.

In general, the scheme of such a service is presented in Figure 1.2.

Figure 1.2: Scheme of the IoT service [4]

Thus, the idea of the Internet of things in the interaction of things with the
server and with each other, where human participation is minimized. For example,
electricity meters that send testimonies to a management company, trackers that

14

Table 1.1: Comparison of the characteristics of open source systems [5, 6, 7, 8, 9]
Support

Title
Open
source
code

Open
hard-
ware

Open
source
for
drivers

Windows
support

Modi-
fied
compo-
nents

Manu-
factory
updates

Long
term
availa-
bility

Raspberi Pi Yes No No Yes Yes Yes Yes
ZoneMinder Yes No No No No No No
Orange Pi Yes Yes Yes No Yes Yes No

Colibri Yes Yes Yes Yes Yes Yes Yes
Rock Pi Yes Yes Yes No Yes Yes Yes

track the movement of taxis, a variety of fitness bracelets — all this is the Internet
of things.

1.1.4 Overview and Analysis of Single-board Computer Modules
Single-board computer modules have been manufactured for a long time. However,
as soon as the Raspberry Pi platform appeared, these devices gained immense pop-
ularity. To select the best platform for the price-quality ratio, consider the popular
models (Table 1.1).

The Raspberry Pi is an incredibly popular device known for its affordability,
versatility, capabilities, and vibrant community. When the first model appeared
in 2012, it became an essential milestone in the single-board market. Although
several good boards already existed, such as Beagleboard and Odroid, they were
quite expensive. The Raspberry Pi is not powerful compared to them, but because
of the fantastic cheapness, it is trendy in the market. The Raspberry Pi happened
cheaper than others, and, as a result, the board was not efficient enough for some
tasks compared to its competitors. In particular, it is poorly suited for network
tasks and USB functionality. Here is the SMSC LAN9514 chip, which connects
to the SoC with one USB channel, acting as a USB-to-Ethernet adapter and USB
hub at the same time. Thus, Ethernet and USB are located on the same channel
and compete with each other, which contradicts the typical use of the NAS when
something is downloaded over the network and stored on a USB drive, not to mention
the addition of RAID here.

For the same reason, even when a model with Gigabit Ethernet support was
released last year, real network performance never even came close to gigabit but
was a maximum of 40 MB/s in net speed and a maximum of 20 MB/s. At that time,
there were already cheap boards with real Gigabit Ethernet and USB3. A similar
problem is with the Raspberry Pi, where the CPU and GPU are integrated into the
same BCM2837B0 chip. The central processor is a 64-bit quad-core ARM A53 at
1400 MHz (in the Pi 3B), and the graphic processor is a dual-core 32-bit VideoCore
IV with a frequency of 400 MHz [5]. The integration of CPU and GPU is widespread
in the mobile world because it reduces the price and power consumption. Competi-

15

Table 1.2: Comparison of the characteristics of single-board computers

Title RAM,
MB

CPU,
GHz

Number
of cores Ethernet Micro

SD
Size,
mm

Price,
eur.

Colibri 512 1,0 4 Yes Yes 74 x
74 58

Orange 256 0,8 2 Yes Yes 69 x
48 18

Raspberi 1024 1,1 4 Yes Yes 85 x
56 65

Rock 4 2048 1,5 8 Yes Yes 85 x
54 105

tors NXP iMX and Allwinner use a similar approach.
Thus, in the last Pi, there are six cores, but only four of them are ARM. The

processor runs Linux, but GPU cores run under the real-time operating system
ThreadX. This closed-source operating system manages the system without the
knowledge of the Linux kernel.

In the fall of 2018, the Rx3399 board from Radxa, called Rock Pi 4, was launched.
RockPi 4 is the same size as the Raspberry Pi. The board can be installed in the
Raspberry Pi case. It fits but needs to be changed a bit to fit the heatsink since
the processor is located on the back of the board. As far as we know, the company
has improved several things compared to the Raspberry Pi, namely, power supply,
the ability to use eMMC instead of an SD card, and in the future M.2 for storage.
Some users, when using Raspberry Pi in projects, already had problems with power
supply and SD-card. Rock Pi is still more reliable than the Raspberry Pi. The
board also supports the Raspberry Pi camera and display.

Below are the comparative characteristics of popular single-board platforms (Ta-
bles 1.1, 1.2):

For our project, first of all, we need an open-source system, with open drivers
and the ability to change components of both the board itself and the drivers used.
Open source should fully allow the modification of any components and their use for
industrial purposes. Regular support and updates from the manufacturer, industrial
reliability are a critical component of the choice of equipment used. In the long run,
it is essential to support the equipment used and the ability to replace with newer
versions of devices without breaking backward compatibility.

Since the developed device will be used for specific goals and objectives, it is es-
sential that it has a small size, and there are no unnecessary additions that will not
be used. Based on the tables, the favorites are the Colibri and Orange Pi series
devices. Therefore, we will compare them in more detail. In essence, they are ap-
proximately similar in their parameters, Orange Pi is also much cheaper than its
competitor, but in the long term orange pi does not have such long-term support
as Colibri until the 2032 year [10]. Another significant point in using Colibri is its
reliability, which is achieved using SO-DIMM DDR3 RAM, which does not lose
power and reliability due to reduced energy costs.

16

Based on the comparison, it was decided to pay attention to the Colibri iMX6
in terms of price and quality. Detailed description of Colibri iMX6 in Appendix A.

Colibri Evaluation Carrier Board is a debugging board for developing and de-
bugging applications on production modules of the Colibri family based on XScale
PXAxxx processors. The board has a built-in analog VGA-interface for connect-
ing electron beam or LCD monitors, as well as a built-in connector for connecting
a TFT display. Using the standard PS / 2 or USB connectors, that can connect
a keyboard and mouse to the board, and audio devices using the “Jack” connectors.
Also, the user interface of the developed system can contain switches, buttons, and
LEDs installed on the board. Distinctive features:

• Connector for installing the Colibri XScale PXA270 module (320).

• Ethernet port 100 Mbps.

• Interface memory cards CompactFlash / PCMCIA / SDCard / Memory Stick.

• VGA interface based on ADV7125.

• two PS / 2 connectors (keyboard and mouse).

• Audio inputs (line and microphone) and line output.

• Infrared port.

• Two user buttons.

• Custom switches and LEDs.

• Channels of analog input-output.

• USB interface (two hosts and one device).

• Two serial interfaces RS-232.

• Isolated (NTE0505M) CAN interface.

• LCD backlight connection connector.

• All signals are available on connectors with a combination of inclusion.

• Power supply + 7 ÷ 24 V.

• Power switch and a reset button.

• Debugging JTAG interface.

• Pre-installed secondary power source.

Colibri iMX6 is compatible with:

17

• TFT module LG.Philips — LCD TFT 6.4 LB064V02-TD01.

• Data cable (on the one hand a flat cable connected to the display, on the other
hand, a two-row IDC block with a step of 2 mm) - ZU-05-319.

• DC / DC inverter — INVERTER GH025A.

• Cable for connecting to the inverter — KA-02-048.

• Touch panel - AST-065B080A.

• Connector for the Colibri SO-DIMM 200 module.

Thus, having considered all possible analogs, it was decided to use the Colibri
iMX6 board. Such a choice was made based on its cost and capabilities. Col-
ibri iMX6 can be used in complete applications for implementation on the Colibri
XScale core, portable battery-powered equipment, Ethernet-based systems, video
surveillance and control systems, and USB 2.0-based applications.

18

2 Task Planning in Operating System

2.1 General Information about Embedded Operating
Systems

In the process of developing devices with a graphical human-machine interface,
sooner or later, the task arises not only to create the interface itself but also to
choose the platform on which it should work. Such a platform can be either a single-
board computer with an operating system, or a microcontroller with a screen and
a set of appropriate libraries, or some other original solution. As for the operating
system for a single-board computer, let us look at two options at once, one of which
is based on Windows Embedded, and the other on Linux Embedded, and compare
them.

Microsoft initially introduced Windows Embedded for embedded systems. Even
in the early version of Windows Embedded XP, developers were provided with a set
of tools for building images that were maximally trimmed but provided with the
correct drivers. These assemblies required a minimum amount of RAM and worked
well even on weak processors. The technology was developed in the version of
Windows Embedded Standard 7, where the process of creating your assemblies was
brought to mind. Windows Embedded used the ideology of an open catalog of
modules, and anyone could equip their system with only the basic set of components.
The latest version in which this approach was available, albeit in a truncated form,
is Windows Embedded Standard 8.1.

Modern Windows 10 IoT is positioned as an alternative to Windows Embedded
but is very different from its predecessors. An open component catalog is no longer
available. It is no longer possible to collect images from the designer and create your
installation disks from them. Individual parameters for the embedded system, such
as a write filter, bootloader branding, keyboard filter, are now configured in the pre-
installed system. Besides, support for these features is available only in the latest
versions of Windows 10 Enterprise. However, despite the high system requirements,
especially in terms of RAM, the use of even heavy versions in embedded solutions
does not cause any problems, primarily due to the availability of hardware compo-
nents. Also, do not forget that in recent years it has become increasingly difficult
to buy a license for old products from Microsoft.

There is no single standard way to create embedded systems with a graphical
interface based on Linux. Just like there is no single typical distribution, it is still
a family of systems created on entirely different principles. The Yocto Linux project

19

may seem the closest in terms of the subject matter. However, compiling images
rich in applications, drivers, and third-party libraries is quite tricky. It is easier to
take a ready-made, well-supported distribution and configure it manually to solve
this problem.

Since the system is based on a single-board computer, it is easy to install any
touch screen or other controls. It is possible to create not only the device manage-
ment console or the interactive dashboard but also other devices, such as information
or trading terminals.

There is an opinion that Linux is complicated to configure and maintain, but
it is free, and Windows is simple and convenient, but it costs money. Perhaps this
is so, but only at the household level. When it comes to creating embedded sys-
tems, there are other circumstances to consider. For example, fine-tuning windows,
especially in terms of power management and other low-level elements, no longer
seem easy and convenient. Besides, do not forget that Windows 10 quite resource
intensive. In this example, we were able to measure the memory consumption of
a clean system several times, and it was about 400 MB in the standby state. In
comparison, Linux Debian, with all its extensions, used about 200 MB of memory.
Of course, if there are several gigabytes of RAM, this is not a problem, but still,
when using Windows and highly loaded client applications, that will have to take
more powerful single-board computers. Linux is less demanding on resources, but
it is complicated to configure and requires a thorough approach, especially when
working with the bootloader. Moreover, in the development and implementation of
some aspects of the system, sometimes it becomes necessary to build an individual
kernel with unique parameters. It is effective but requires an appropriate level of
skill.

It is difficult to make a clear choice when creating a secure interface. The com-
plexity of deploying systems is about the same. The cost of acquiring Windows
licenses for several devices can be compared with the cost of maintaining systems
on Linux. The Linux operating system has long established itself as a reliable and
effective means of solving any problems. In many respects, it has no equal in the
field of server applications. Some Linux distributions are so adapted for the work of
an ordinary user and solving his daily tasks that they can safely bear the name of
a desktop working system, slightly inferior to Microsoft Windows [7].

Thus, the secret of Linux success lies in its non-profit nature and open source.
Any developer with the desire and necessary knowledge can make a change to the
Linux code, starting with graphical applications and ending with the kernel of the
operating system. Not a narrow circle of programmers is working on Linux, but the
global community of developers. It is for this reason that Linux is developing rapidly,
continually updating the components of the operating system. If an error is detected
in the code, it is corrected in the shortest possible time. The foundation of the
Linux operating system is its kernel, which, like all other components, is periodically
updated. Kernel subsystems modify to optimize its operation, adding support for
new hardware.

20

2.2 Overview of Existing Linux Task Schedulers

2.2.1 JobScheduler
One of the popular tools for automating work in them is JobScheduler, but for begin-
ners, this scheduler seems too complicated. When talking about the task scheduler,
Linux often means Cron. Nevertheless, to perform specific tasks on a schedule, or
periodically, after an equal period (regular actions), it is better to use JobScheduler.
This is a daemon program (a service, by analogy with Windows), which is constantly
located and works in the computer’s RAM, scanning once a minute the list of in-
stalled tasks for the actual execution for the current time [7]. The instructions for
starting tasks themselves are in specially designed tables, which, in turn, are located
in strictly reserved system directories. It consists of 6 columns, separated by tabs or
spaces, the first 5 of which determine the start time of the action. The last column
is interpreted as a start command, i.e., the action itself. JobScheduler files cannot
be edited manually, because this may cause a failure in the processing cycle of these
files when the daemon scans them to analyze the description of actions. There are
main features:

• Job activities can be limited to duration, supports any number of time slots.

• The JobScheduler uses job priorities for managing tasks.

• JobScheduler stores job history and logs.

• Only one process can access the resource with lock it for others.

• Main job packages for log rotation and cleanup, sanity checking, job execution
by remote.

• Notifications with job state and results with logs by e-mail.

• API for creating and running jobs. supporting graphical user interface to
better controlling tasks.

2.2.2 Activebatch
Advanced Systems Concepts’ distributed management and scheduling system Ac-
tiveBatch Version 3.0 provides batch jobs on heterogeneous platforms, including
Windows NT, UNIX, and OpenVMS. ActiveBatch 3.0 is a multi-functional and
easy-to-use system. The graphical user interface offers various views for both begin-
ners and specialists, and program experts of queues and tasks simplify the planning
and execution of tasks. Independent of the scripting language, it can also be used
to submit tasks using languages such as XLNT, Perl, VBScript, and Java [5]. The
ActiveBatch scheduling system allows completing tasks depending on time or event.
The product also has a Runbook View for recording and analyzing all batch jobs
— including scheduled, ongoing, and completed ones. The presence of task logging

21

functions ensures the audit of all current information about them. The system can
monitor tasks for failures and allows them to set warnings/interrupts. The task
restart function makes it possible to resume work in the event of a system crash
automatically. ActiveBatch provides automation operators with access to any ac-
cess point and around-the-clock management, so they can safely control and manage
critical operational and business processes while away from their workstations. Cus-
tom alerts and dashboards provide real-time display of the automation environment
to notify users of business-critical issues, facilitate quick responses, and effectively
troubleshoot problems [7]. Major features for increased flexibility for ActiveBatch
operators:

• easily view, control and manage ActiveBatch alerts.

• receive push notifications to raise awareness and take action on significant
conditions.

• monitoring of active instances, historical data, and logs.

• trigger, restart, enable and disable key work processes from anywhere at any
time.

• viewing information about templates, instances, and audits.

• create, configure and filter the application toolbar.

• secure user management with granular political and group permissions and
management settings (installed in the ActiveBatch console).

2.2.3 Oracle Grid
Oracle offers a new Scheduler tool that helps automate tasks inside the database.
The DBMSSCHEDULER package contains various functions and procedures that
help manage the scheduler, although it is also elementary to schedule tasks to run
in the Database Control interface. The most important architectural feature of the
scheduler is its modular approach to task management, which allows reusing similar
tasks [11]. Using scheduler together with Database Resource Manager allows for
fine-tuning the allocation of resources to various tasks. The Oracle Scheduler is not
only a job description tool, it also helps control resource utilization and prioritizes
tasks within the database. Scheduler consists of five fundamental components —
jobs, schedules, programs, events, and chains. Tasks are very similar to the tasks
in the main package, but schedules, programs, events, and chains are new concepts
that form a modular approach to managing tasks. A program, for example, allows
multiple users to perform similar tasks.

A job is a planned task for single or multiple automatic starts. The assignment
contains a specification of what should be done and when. A Scheduler job can
execute a PL/SQL code block, a native binary executable, a Java application, or
a shell script. A new job is created by specifying its details, such as the actions to be

22

performed, the time and frequency of the launch — as is done using the traditional
package. The scheduler allows abstract all the details of the execution and starts
a time of a task using program modules or schedules.

A schedule is a specification of when and how often a database should complete
a task. The same schedule can be used for multiple jobs. The schedule can run
tasks when a specific event occurs in the database [9].

The program contains metadata about the job. The program includes the name,
type (for example, PL / SQL code or a UNIX shell script), and the action of the
program, which is the actual name of the procedure or executable script. Please
note that the task can specify what exactly should be done directly in the definition
of the task, or use a previously created program for the same purpose [9].

The scheduler uses the Oracle Streams tool to trigger events and run event-based
database jobs. An event is a message sent by an application or process in response
to an action or condition. There are two types of events — events triggered by
a Scheduler, and events triggered by an application. Scheduler triggered events are
triggered by changes in the functioning of the scheduler, successful completion of
a job can also be an event. Application-triggered events are consumed or used by
the scheduler to start the job. As a means of launching a task, it is possible to use
an event instead of a job. In this case, the schedule is called the event schedule.

The concept of the Scheduler chain is used to link together interdependent pro-
grams. Thus, the launch of a specific program may be linked to the successful
execution of some other programs. It is possible to run a chain-based task instead
of the only scheduled program. When there are interdependent tasks, the chain
makes it easy to run all the programs needed to complete the whole transaction.

One of the limitations is that it can only perform PL / SQL — based tasks,
and it cannot be used to schedule the launch of system scripts or executable files.
To run such non-database jobs, have to use the crontab tool on UNIX or at on
Windows servers, or use third-party tools. Oracle Scheduler allows using PL/SQL
scripts, operating system shell scripts, Java programs, and native binary executables
to complete scheduled tasks.

Considering the popular event planners, considering their strengths and weak-
nesses, it was decided to opt for JobScheduler as the most universal in terms of
the type of database, supported platforms, output to file, check results of tasks,
relaunch, audit, integration and remote control.

2.3 Overview of Task Scheduler on Windows 10
Having considered the possible options for task schedulers in the Linux embedded
system, the project also needs the ability to equation tasks based on a regular user
computer. According to the data provided on the website Market Share Statistics
for Internet Technologies [12], which tracks the popularity of operating systems used
by users, according to the latest data for February 2020, Windows 10 is the most
popular system. It occupies a market share of more than 57% by the current moment
(Table 2.1).

23

Table 2.1: The popularity of operating systems
Name of the system Share, %
Windows 10 57.22
Windows 7 25.39
Windows 8.1 3.43
Mac OS X 10.15 3.43
Mac OS X 10.14 2.96
Mac OS X 10.13 1.53
Windows XP 1.34
Linux 1.29
Mac OS X 10.12 0.7
Others 2.71

According to Microsoft’s statistics, Windows 10 is currently installed on more
than 900 million devices. The company plans to reach 1 billion devices by the end
of 2020. Also, in January 2020, support for the second polarity of Windows 7 was
completed, which would only increase the popularity of Windows 10. The growth
of its popularity is getting higher and higher every year, and this gives reason to
choose it as the underlying system for users to use.

Unlike Linux, in Windows 10, its task scheduler called “Task Scheduler” is more
common. In essence, it is a snap-in MMC (Microsoft Management Console), with
which you can assign various tasks that will be performed at a specific time or
when certain events occur. Typically, such tasks are used to automate individual
processes:

• Parametric automation of various tasks performed on a computer.

• Optimization of the computer boot process.

The Windows 10 operating system contains several task scheduling tools, includ-
ing such as Task Scheduler, the Schtasks command-line tool, and several Windows
PowerShell console cmdlets. These tools can be used to schedule tasks at both local
and remote workstations [13].

Jobs can have various properties associated with them, including the following:

• Triggers – Using triggers can set the conditions for starting and completing
various tasks. Tasks can be performed on schedule when a user logs on to
the system when the computer starts. You can include events related to user
actions in the task launch parameters. The use of event triggers significantly
enhances process control capabilities.

• Actions – The task parameter determines the specifics of the running process.
Allows a process to run programs, send email messages, or display messages.

• Conditions – The task parameter specifies the events in which the active
process starts or stops. For example, under a given condition, you can start or

24

stop a task based on the length of time the computer is idle. Conditions can
be used to wake the computer from sleep mode to complete a task. You can
configure the conditions for the task under the condition that the computer
is running on the network.

Figure 2.1: The main window of the Task Scheduler on Windows 10

To work with a task can right-click on it in the main panel and select one of the
following commands in the context menu:

• Run – run the task for execution;

• Finish – if the task is running, stop its execution.

• Disable – temporarily disable the task;

• Export – export the task to a file that can be imported to another computer;

• Properties – view and edit task properties;

• Delete – completely delete the task;

25

3 Task Manager API

3.1 JobScheduler API
Instructions for starting tasks are in specially designed tables, which, in turn, are in
strictly reserved system directories. They consist of 6 columns, separated by tabs or
spaces, the first 5 of which determine the start time of the action. The last column
is interpreted as a start command, i.e., the action itself. JobScheduler files cannot
be edited manually, because this may cause a failure in the processing cycle of these
files when the daemon scans them to analyze the description of actions.

JobScheduler is an open-source solution for enterprise process automation. Job-
Scheduler is used to run executable files and shell scripts, as well as to run database
procedures automatically. JobScheduler stores all the information in the server
database system.

Its primary function is to run executable files, shell scripts, and database proce-
dures. Used for batch scheduling, the JobScheduler wizard runs as a Unix daemon
or Windows service in the background. Jobs are run on the primary instance of
JobScheduler or any universal JobScheduler agent.

Job management is done using the command line or the built-in graphical user
interface JOC (JobScheduler Operations Center). To configure the job, the XML
JOE editor (Job Object Editor) is available.

3.1.1 Additional JobScheduler Features
High Availability Cluster: JobScheduler redundant cluster provides uptime and fault
tolerance with automatic failure. A fault-tolerant system consists of a primary
JobScheduler and at least one backup, both of which JobScheduler works on different
computers.

Load balancing: for large amounts of data with long processing times using
multiple JobSchedulers will significantly speed up processing time and provide higher
availability. In load-sharing mode, processing tasks are distributed among several
JobSchedulers that process distributed orders on more than one host.

JobScheduler Operations Center (JOC) Cockpit is the end-user interface for Job-
Scheduler. Designed to keep things simple and minimal, JOC Cockpit offers a mod-
ern, responsive user interface, web service APIs, and finely tuned authentication and
authorization for scheduling open source jobs. The JOC cockpit completely replaces
and extends the functions of the classic JOC and the JobScheduler, JID dashboard,

26

Figure 3.1: Architecture of JobScheduler [14]

so one interface is enough to perform all tasks — from monitoring tasks and task
chains to checking history logs. The JOC cockpit is installed separately from the
JobScheduler wizard. This separation of functions provides the best user experience
for service operators and allows the use of JobScheduler in security-sensitive and
critical networks: JOC can be operated in less restrictive network areas than the
Master and JobScheduler agents.

JobScheduler REST Web Service is a replacement for the obsolete XML interface.
The REST web service is used by the JOC cockpit and external applications to
interact with the JobScheduler wizard. The REST web service provides access
to such objects as tasks, task chains, and orders, as well as their corresponding
operations, for example, to add an order to the task chain (Figure 3.2).

Table 1 in Appendix C lists the available XML commands for the JobScheduler
REST API web service.

In this way, JobScheduler comes with a powerful REST web service interface for
accessing external applications. This interface is used for tasks such as adding orders,
adding events, and receiving information about the status of tasks and orders.

3.2 Windows Task Scheduler
The Task Scheduler is util of Microsoft Windows allows predefined actions to the
launch of programs or scripts whenever a specific set of conditions or after specified
time intervals. For example, you can schedule a task to run a backup script every
night, or send you an e-mail whenever an individual system event occurs.

Tasks can be scheduled to execute in response to these events, or triggers [13].

27

Figure 3.2: JobScheduler’s Web Services [14]

• When a specific system event occurs.

• At a specific time.

• At a specific time on a daily schedule.

• At a specific time on a weekly schedule.

• At a specific time on a monthly schedule.

• At a specific time on a monthly day-of-week schedule.

• When the computer enters an idle state.

• When the task is registered.

• When the system is booted.

• When a user logs on.

• When a Terminal Server session changes state.

Consider how to create scheduler jobs using the API in Appendix D.

28

4 JobScheduler

4.1 Preparation
JobScheduler requires a Java virtual machine for its operation. Before starting the
deployment process, make sure that the Java Runtime Environment (JRE) is in-
stalled on the machine on which the scheduler will run.

Besides, we need to prepare the database server. It can be launched both locally
and remotely.

This software is available both for operating systems of the Linux family and for
operating systems of the Windows family. The installation procedure is identical in
both cases and described in Appendix B.

4.2 Job and patterns
A job determines the program to be executed, its run time and what is to be done
in the event of an error occurring. Further, any parameters to be used, pre and
post processing, locks preventing simultaneous access to a file and possible follow-
on jobs may also belong to a job configuration. The XML configuration of a job
can be carried out in the central start configuration file, (which is usually ./con-
fig/scheduler.xml) or in a separate configuration file in the configuration directory
which is monitored by the JobScheduler.

Jobs are the basic unit for processing executable files, shell scripts, database
procedures, and job implementations based on the JobScheduler API. Tasks can be
performed independently of each other. Depending on the result of the execution,
i.e., the exit code that signals success, failure, or a specific exit code, the task can
run any number of subsequent tasks. Jobs can run in parallel up to a configurable
number of simultaneous tasks. Chains of tasks can be considered as an assembly
line along which several nodes of tasks are transmitted. Thus, each task contains
precisely one step in processing the chain of tasks. Job dependencies based on the
results of the respective job nodes can be configured for the job chain.

Directory monitoring can trigger jobs to run, allowing them to integrate legacy
applications into the business process.

Jobs perform file transfers based on the built-in capabilities of FTP and SFTP
as a popular application integration tool.

Launching tasks is launched by the built-in calendar, command line, or web
interface. Other applications may run jobs or otherwise control the JobScheduler

29

using the API.
Work may be limited to time intervals. JobScheduler supports any number of

time slots that can be customized to suit individual requirements.
JobScheduler allows prioritizing work. Job history logs are optionally stored in

a database. The lock function prevents two jobs from simultaneously accessing the
same resource, such as a file or database. In other words, only one process at a time
can get the exclusive right to access the resource while the lock is active. Standard
job packages, for example, for rotating logs and cleaning, checking sanity, performing
tasks with remote JobSchedulers, and transferring files. Email notifications of job
results, customizable logging, and log monitoring. An API for implementing tasks
and job scripts, for example, for complex conditional processing. There are various
graphical user interfaces: an integrated interface for job management and a graphical
interface for configuration management for several JobSchedulers on different server
systems.

There are some job patterns that can use. Figure 4.1 shows ”Independent Job
Start Pattern”. Jobs are completely independent from one another. Each job has
an individual start time.

Figure 4.1: Independent Job Start Pattern [14]

The another pattern when job starts based on execution results. Jobs are started
based on the execution result of a previous job. Figure 4.2 shows if Job 1 returns
an exit code 1 then Job 2 will be executed. If Job 1 returns an exit code 2 then Job
3 will be executed.

The one more popular pattern that use in current project is ”Parallel Tasks Job
Start Pattern”. Figure 4.3 shows that jobs can be executed in multiple parallel tasks.
All tasks are executed independently from one another.

Jobs have one of the following statuses:

• Pending – No task is running. This is the starting status.

• Running – At least one task is running.

• Stopping – The job is stopping. The JobScheduler will not start another task
and all current tasks are being stopped. As soon as all tasks are stopped, the
job status changes to stopped.

• Stopped – No tasks are running and no further tasks will be started by the
JobScheduler.

30

• Read_error – The reread command has caused an error and the job is unusable
as the program code cannot be read from the underlying file.

• Error – The JobScheduler does not start any new tasks after an error has
occurred.

Figure 4.2: Pattern based on Execution Results [14]

Figure 4.3: Parallel Tasks [14]

4.3 Job execution
The <run_time> parameter is used in the configuration to specify whether a task
should be started once or repeatedly. Both the <start_job> and the Job.start()
API method can be used to start a task.

A task will start automatically when no other task is running and when one of
the following conditions are true:

31

• At the start of a <period>, when repeat= or single_start= is specified in the
period.

• When a previous run set Task.repeat and the repeat time has been reached.

• When a previous run caused an error and Job.delay_after_error has ended.

• When the interval after the end of the previous task defined in <period re-
peat=”…”> has ended.

• When directory monitoring is active and a change occurs in the monitored
directory.

In addition, a task will start when: An order for the job is present and the
number of tasks running is less than that specified in <job tasks=”…”>. A task will
only start when it has a start time (at) or:

• the job has not been stopped,

• a period for the current time is given,

• the (Job.delay_after_error) delay after an error is not active.

After task of a job has terminated you can call various commands depending on
its exit code. These commands are particularly ”start_job” and ”add_order”.

Both commands are supported in JOE:

• Go to command

• Add a new command

• Set the exit code for which the command will be called

• Use the add job or add order buttons to select the command

There are other rare use cases for commands (see list of XML commands).
Other commands may also be indicated in JOE, however, you have to use the

”edit XML” function in the context menu of a job to add such commands. A panel
will be displayed where you can insert the command.

The exit code of a PowerShell/Batch script is usually expected as the result
of the execution of the script. However, the program returns the exit code of the
execution of itself - and this in most cases 0.

To retrieve the effective exit code of the script, that script has to be terminated
with an exit() function and as parameter the variable $lastexitcode (or any other
value/variable for the exit code).

The example below shows how it works:

32

<?xml version="1.0" encoding="ISO-8859-1"?>
<job title="How to get the exit code from a powershell script"

name="PowerShellExitCode">
<script language="shell">

<![CDATA[
powershell.exe -noprofile -command "write-output test; exit 123 "
echo %errorlevel%
exit %errorlevel%

]]>
</script>
<run_time/>

</job>

There is an example of how to configure a job chain with return codes. There
is a one start job, it has some logic after that should run different jobs. Open job
return codes and configure it (Figure 4.4). When the job finished with the return
value is 1, then Client_1 will be started, and so on. In the case of error job emit
the return value ”-1” and error job will be start.

Figure 4.4: Job’s return codes

Figure 4.5 shows how seems the infrastructure of jobs chain with return code.

33

Figure 4.5: Jobs chain with return codes

4.4 JobScheduler requests
After all the necessary software has been installed, and all the services have been
started, we should make sure that everything works.

JOC Cockpit provides a web interface that allows us to monitor the status of
the JobScheduler, as well as perform all the manipulation of tasks through it.

To check if the JOC is working, we will use a browser and go to the IP address
of the host where the JoSccheduler infrastructure is deployed. In this case, we log
in from the same machine, so the address is as follows: http://localhost:4446.

Here, 4446 is the port number on which the Jetty webserver runs. Use the port
that was specified in step 4 when installing JOC in the Jetty configuration step.

If the browser successfully displays an authorization window, this means that
the JOC and Jetty services have been successfully installed and started.

Initially, a user with the root name and password root is registered on the system.
It has all the rights and is intended for the initial setup of the infrastructure. Log
in using the root account.

A panel of the web interface displays a map of the configured JobScheduler
infrastructure. In this example, the figure shows that one instance of JobScheduler
is running, and one database server is being used.

If the map shows that both the database and JobScheduler are working, then
the installation and configuration were performed correctly.

Next, make sure that the REST API is operational. To do this, we need an ap-
plication through which we can send arbitrary HTTP-requests, use arbitrary request
headers, put any data in the request frame.

In this case, we will use Postman software, which is distributed freely and is avail-
able on the developer’s website.

Before sending any commands to the REST API, the client application must log
in to receive an access token. To do this, send a request with the POST method to
the address /joc/api/security/login. The request should contain the Authorization
header, the contents of which are written in the following format: the word “Ba-
sic”, followed by space and the string “login: password” (a string in which a colon
separates the login and password), encoded using the Base 64 algorithm.

In this case, we want to log in as root. The “root:root” line encoded by the Base
64 algorithm is as follows: “cm9vdDpyb290”.

34

Figure 4.6: Infrastructure map

Thus, the following request must be sent to the server:

POST /joc/api/security/login HTTP/1.1
Host: localhost: 4446
Authorization: Basic cm9vdDpyb290
Cache-control: no-cache

Figure 4.7: Submitting a REST API request from a Postman application

The response from the server comes in JSON format and looks like this:

{
"enableTouch": true,
"sessionTimeout": 900000 ,
"user": "root",

35

"accessToken": "4500c00f-a7ae-424a-af5c-178b4b785b6b",
"callerHostName": "0: 0: 0: 0: 0: 0: 0: 1",
"callerIpAddress": "0: 0: 0: 0: 0: 0: 0: 1",
"hasRole": false,
"isAuthenticated": true,
"isPermitted": false

}

As a result of authorization, the following token was received from the server:
“4500c00f-a7ae-424a-af5c-178b4b785b6b”.

For subsequent calls to the JobScheduler via the REST API, should contact
the address /joc/api/jobscheduler/commands and transfer the received token in the
X-Access-Token header.

Let us try to get information about the status of JobScheduler on this node. To
do this, send the following POST request:

POST /joc/api/jobscheduler/commands HTTP/ 1.1
Host: localhost:4446
X-Access-Token: 4500c00f-a7ae-424a-af5c-178b4b785b6b
Content-Type: application/xml

<jobscheduler_commands jobschedulerId = "libroten-lap_40444">
<show_state />

</jobscheduler_commands>

Figure 4.8: Scheduler Status Request — Request Headers

It should be noted that the JobschedulerId attribute requires the identifier of
the JobScheduler process, which was set in step 2 during the installation of the
scheduler.

36

Figure 4.9: Scheduler Status Request — Request Body

Figure 4.10: Scheduler Response to Status Request

37

4.5 Data collection and processing
To verify the server’s performance on real-world tasks, create the following typical
data collection task.

Remote servers host CSV files; for simplicity of the example, they contain only
two lines: id and value. The CSV file is compressed using an archiver with the zip
extension. Let us create several jobs in jobScheduler, in this case, 5. Each of the jobs
will download an archive from its server every 10 minutes, which it will unzip and
send the value as a result. In this case, the temporary folder with the downloaded
files is deleted.

In this case, we can use the result code of the task, which we will pass on.
In general, there is an implementation with locking values and files that can be
processed using the mutex. After the successful execution of jobs, the scheduler will
run the next job, which calculates the average value.

In each of the tasks, there will be a similar script

mkdir tmp1
cd tmp1
curl -o 1.zip https://testingtul.000webhostapp.com/1.zip
tar -xf 1.zip
Start-Sleep -Milliseconds (Get-Random -Minimum 300 -Maximum 9000)
$output = Import-Csv 1.csv | select -ExpandProperty value
Set-Content -Path '1.txt' -Value $output // for mutex realization
cd ..
rm -force -recurse tmp1
Exit $output

The script also contains a random delay to generate the processor with compli-
cated and cumbersome tasks.

Task Scheduler implements event chains that help track task progress. A visu-
alized representation of the chain of events can be seen in the figure.

Figure 4.11: Jobs chain

In case of an error, after 10 minutes, the tasks will be restarted automatically. It
is possible to configure sending messages to e-mail with an error code and additional
information.

38

The result of the task scheduler is to obtain the necessary information from
clients, which will be processed, and subsequently, the average value among all re-
ceived data is displayed. The task scheduler allows you to run more than 200 similar
tasks with 256MB RAM while using the task processing system in the operating sys-
tem using priorities and sorting by the runtime. The solution works on Linux and
Windows operating systems, successfully managing several tasks simultaneously at
a maximum speed of up to 100 Mb/s.

At the moment, the work is not finished, because JobScheduler could not be
launched under embedded Linux. This is due to the fact that this process is fraught
with the following difficulties: JobScheduler uses such fairly heavyweight compo-
nents as a Java virtual machine, an integrated webserver. JobScheduler also man-
ages tasks using databases.

It is supposed to use the following solutions:

• An attempt to start the JobScheduler infrastructure using a version of the
Java virtual machine for embedded devices.

• Deploying a database for JobScheduler on a server remote concerning the end
device and setting up the scheduler to work with a remote database server.

• Install on the end devices versions of the Windows operating system for em-
bedded devices or the Internet of things.

To complete these steps, we will need to conduct additional research and verify
the applicability of these methods in practice.

39

5 Server for Monitoring Schedulers and
Tasks on Devices

The developed server is a prototype and implements the following features:

• Storage of information about devices to be monitored.

• Connect to devices and request information about the status of the scheduler
on them.

• Connecting to devices and requesting information about the tasks created on
them: task name, title, enabled/disabled, status, next run time, source code
of the script launched by the task, information about the language in which
the script is written.

• Providing an API by which client applications can receive all of the above
information about all monitored devices and their tasks.

The main goal of developing this server is to centralize the monitoring of many
devices that use the task scheduler. The use of this server will allow us to carry out
the monitor multiple devices through a single node without addressing each device
individually.

The server is designed to work with devices that use JobScheduler software con-
figured as a task scheduler, which is configured to remotely control via the network
using the REST API provided by JOC Cockpit.

5.1 Architecture
The server consists of 4 main classes. They are shown in the class diagram.

5.1.1 DeviceConnector Class
Created to establish a connection with the REST — service JOC Cockpit on a spe-
cific device and exchange data with them. As an interface class provides the public
method — the request. As an input method, the string — the text that should
be placed in the body of the HTTP request. The value returned from the method
is a string containing the body of the response from the device to the HTTP request.

The algorithm of the method is as follows:

40

• Send an authorization request.

• Get the access token needed to complete the rest of the requests (Auth
method).

• Send a request by placing the received token in the headers and the text
received as a method argument (SendRequest method) in the body.

• Receive a response from the device and return the contents of the response
body.

Figure 5.1: Server core classes

5.1.2 Device Class
It is an abstraction of the device that the server is monitoring. It stores the data
necessary to establish a connection with this device. As an interface, it provides two
public methods designed to receive device data:

• GetInfo is a method that returns information about the device: the identifier
assigned by the server when adding the device, the address, and port of the
device, the identifier of the task scheduler on the device, the device name
assigned to display, as well as the current state of the scheduler on this device.
Scheduler status is requested over the network using the DeviceConnector
class.

41

• GetJobs is a method that allows getting a list of tasks created on the device,
as well as information about each of the tasks. Information is also requested
from the device over the network using the DeviceConnector class.

The described methods work according to the following algorithm:

• Formation from the data received from the client of the corresponding XML-
request.

• Creating a new object of the Device Connector class, passing parameters for
connection to it, calling the Request method, passing the generated request
to it.

• Analysis obtained from the method Request response, parse its XML — struc-
ture extracting necessary data and returns.

5.1.3 Server Class
Stores a list of objects of the Device class — that is, information about all monitored
devices. It provides three public methods as an interface :

• AddDevice – get the information required for the connection, creates a new
object of class Device, and stores it to the list. The method does not cause any
network exchange but stores the information necessary for network interaction
with the device. Each device added to the list is assigned an integer identifier;

• GetDevList – returns a list of monitored devices, previously having requested
each of them for status information by calling the GetInfo method;

• GetJobs – receives the device identifier at the input, finds the desired one in
the list, and requests information about tasks from it by calling the GetJobs
method.

The algorithm of the last two methods is straightforward. It consists of calling
the corresponding methods of objects of the Device class, passing them the received
data, and returning the responses received from them.

5.1.4 Listener Class
This class is designed for the HTTP — requests to parse, generate, and send re-
sponses to clients.

The Listen method is launched in the main thread of the program, and works,
waiting for new requests from clients. Waiting for new requests is performed in
a cycle, which is the primary cycle of the server program (English main program
loop). The method works according to the following algorithm:

• Get a new HTTP request.

42

• Create a new thread in which the handleRequest method will be called that
processes the request.

• Return to the beginning of the cycle.

• The handleRequest method works according to the following algorithm.

• XML parsing — the structure of the command received in the request.

• If an error is detected in the request, send an error message as a response to
the client.

• Extract the necessary command parameters from the request.

• Call the method of the Server object of the class corresponding to the com-
mand, passing the parameters extracted from the request to it.

• Get the answer from the class object Server, generate the XML — represen-
tation of the response, and send it to the client.

The sequence diagram shows a diagram of the interaction of all server compo-
nents when processing a single request from a client.

Figure 5.2: Sequence Diagram: Request Processing

The diagram shows that first, the requested data is first transmitted in a chain
from component to component, then the received response and its data are trans-
mitted in a chain back from the device to the client.

Thus, the server architecture is a set of layers, where the Listener class is located
at the highest level, and DeviceConnector is located at the lower level. Each level
requests a service from a layer of a lower level, passing data to it and receiving
a response.

43

5.2 Formation of the XML — Answers
The diagram shows that some methods to obtain any information from the devices,
return the Class objects DeviceInfoAnswer, DevListAnswer, JobAnswer, JobListAn-
swer. These classes implement the IAnswer interface with one method, GetXml.

The objects of these classes contain fields that store the data necessary to form
the response. The GetXml method from this data forms the correct XML — the
response corresponding to the request.

Figure 5.3: Class diagram for forming a response to a request

The Listener class, receiving one of the objects implementing the IAnswer inter-
face in response to the request, calls the GetXml method to generate a valid XML
response, which is then sent to the client.

5.3 Additional Server Functionality
If we need to expand the list of data received from devices through the server or
add capabilities for managing schedulers on devices, the current architecture allows
us to make the appropriate changes to the code. To make such changes, we will
need to do the following:

• Create new classes that implement the IAnswer interface to form new types
of responses to the client.

• It is necessary to add methods to the Device class that will generate new types
of requests for the device before passing them to DeviceConnector.

44

• In the Server class, we need to add new methods corresponding to the new
types of client requests that will call the corresponding methods of the Device
class and pass data to them.

• It is necessary to add new methods to the Listener class, which will parse the
XML structure of the new types of client requests and call the corresponding
methods of the Server class, passing the parameters extracted from the request
into them.

45

Conclusions

In the course of the work, a review of existing single-board computers was conducted,
an analysis of their characteristics was performed to select the appropriate one.

As a result of the study, a single-board Colibri computer was selected because
it has the necessary properties: OS and open source drivers, regular updates, and
is small in size.

The review of existing task schedulers was conducted to implement a task man-
agement system on devices. As a result of the analysis, the JobScheduler was se-
lected, since it is multi-platform and provides the network API, which is necessary
for implementing remote monitoring and scheduler management.

In the course of this work, a prototype server was developed that allows moni-
toring the status of tasks on devices with the JobScheduler scheduler installed. The
server provides the ability to connect to many devices, monitor the status of the
task scheduler for them, receive information about tasks created on the devices:
name and title, whether the task is enabled, its status, next run time, source code
of the script that the task starts, script language. The server provides a web-based
REST API through which it interacts with the server. Client applications send
XML commands to the server. The server in the process of processing requests the
necessary data from the devices and returns the received information to the client
as a response.

In Chapter 4, a real situation was simulated in which the task scheduler received
data from devices, processed each request. After collecting all the necessary data,
the server provided the information the user needed, successfully handling tasks with
an incoming data flow rate of up to 100 Mb/s with allows to run more than 100
jobs, working on Linux and Windows systems. Thanks to the use of the server and
the JobScheduler, it was possible to create a solution used to monitor and manage
tasks on equipment that will be located remotely and, at the same time, possible
work with various operating systems. The server architecture allows to expand its
functionality and add new scenarios of user interaction with end devices.

46

Bibliography

[1] PFISTER, Cuno. Getting Started with the Internet of Things: Connecting
Sensors and Microcontrollers to the Cloud. Maker Media, 2011. Available
also from: https : //www.amazon . com/Getting - Started - Internet - Things -
Microcontrollers-ebook/dp/B00COVJUGI.

[2] SHARMA, Meenakshi. Stages of “Internet of Things” Architecture [online].
2015 [visited on 02/20/2020]. Available from: https://www.marlabs.com/blog-
stages-of-iot-architecture.

[3] SHARMA, Meenakshi. Stages of “Internet of Things” Architecture [online].
2019 [visited on 02/20/2020]. Available from: https://www.marlabs.com/blog-
stages-of-iot-architecture.

[4] AXMOR. How IoT works: analysis of technical solutions [online]. 2018 [visited
on 02/20/2020]. Available from: https://axmor.ru/articles/tehnologiya-iot-
analiz-tehnicheskih-reshenij.

[5] HAT, Red. What is a Raspberry Pi? [online]. 2019 [visited on 02/20/2020].
Available from: https://opensource.com/resources/raspberry-pi.

[6] MEDIAWIKI. ZoneMinder Wiki [online]. 2018 [visited on 02/20/2020]. Avail-
able from: https://wiki.zoneminder.com.

[7] PI, Orange. What’s Orange Pi? [online]. 2018 [visited on 02/20/2020]. Avail-
able from: http://www.orangepi.org.

[8] TORADEX. Quickstart Guide Torizon [online]. 2019 [visited on 02/20/2020].
Available from: https://developer.toradex.com/products.

[9] RADXA. Introduce the new ROCK Pi [online]. 2018 [visited on 02/20/2020].
Available from: https://wiki.radxa.com.

[10] TORADEX. Colibri iMX6 [online]. 2017 [visited on 02/20/2020]. Available
from: https://developer.toradex.com/products/colibri-imx6.

[11] ALAPATI, Sam R. Expert Oracle Database. Apress, 2018. Available also from:
https : / / www . amazon . com / Expert - Oracle - Database - Administration -
Experts/dp/143021015X.

[12] NETAPPLICATIONS. Browser Market Share [online]. 2017 [visited on
02/20/2020]. Available from: https://netmarketshare.com.

47

https://www.amazon.com/Getting-Started-Internet-Things-Microcontrollers-ebook/dp/B00COVJUGI
https://www.amazon.com/Getting-Started-Internet-Things-Microcontrollers-ebook/dp/B00COVJUGI
https://www.marlabs.com/blog-stages-of-iot-architecture
https://www.marlabs.com/blog-stages-of-iot-architecture
https://www.marlabs.com/blog-stages-of-iot-architecture
https://www.marlabs.com/blog-stages-of-iot-architecture
https://axmor.ru/articles/tehnologiya-iot-analiz-tehnicheskih-reshenij
https://axmor.ru/articles/tehnologiya-iot-analiz-tehnicheskih-reshenij
https://opensource.com/resources/raspberry-pi
https://wiki.zoneminder.com
http://www.orangepi.org
https://developer.toradex.com/products
https://wiki.radxa.com
https://developer.toradex.com/products/colibri-imx6
https://www.amazon.com/Expert-Oracle-Database-Administration-Experts/dp/143021015X
https://www.amazon.com/Expert-Oracle-Database-Administration-Experts/dp/143021015X
https://netmarketshare.com

[13] MICROSOFT. Task Scheduler for developers [online]. 2020 [visited on
02/20/2020]. Available from: https://docs.microsoft.com/cs- cz/windows/
win32/taskschd/task-scheduler-start-page.

[14] ORGANISATIONS SERVICE, Software und. Architecture of JobScheduler
[online]. 2020 [visited on 03/05/2020]. Available from: https://kb.sos-berlin.
com/display/PKB/Architecture.

[15] HOGDAL, ScottJ. Analysis and Diagnostics of Computer Networks. Laurie,
2001.

[16] HABRAKEN, Joe. Do yourself a wireless network. Sams Publishing, 2016.
[17] PEREIRA ZAPATA, Omar U. EDF and RM Multiprocessor Scheduling

Algorithms: Survey and Performance Evaluation [online]. 2019 [visited on
01/25/2020]. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.101.4620.

[18] BARD, John. Programmable Radio Communication Network Architecture [on-
line]. 2019 [visited on 01/25/2020]. Available from: https://www.researchgate.
net /publication/261180140_Software_Defined_Radio_The_Software_
Communications_Architecture.

[19] SCHWARZ, Michael. Linux Job Scheduling [online]. 2000 [visited on
01/25/2020]. Available from: https://www.linuxjournal.com/article/4087.

[20] BELL, Charles. Windows 10 for the Internet of Things [online]. 2017 [vis-
ited on 01/25/2020]. Available from: https ://www.apress . com/gp/book/
9781484221075.

[21] SIMMONDS, Chris. Mastering Embedded Linux Programming [online]. 2015
[visited on 01/25/2020]. Available from: https://subscription.packtpub.com/
book/networking_and_servers/9781784392536.

[22] GONZALEZ, Alex. Embedded Linux Development Using Yocto Project Cook-
book [online]. 2018 [visited on 01/25/2020]. Available from: https : / /
subscription.packtpub.com/book/virtualization_and_cloud/9781788399210.

[23] MADIEU, John. Linux Device Drivers Development [online]. 2017 [visited
on 01/25/2020]. Available from: https://subscription.packtpub.com/book/
networking_and_servers/9781785280009.

48

https://docs.microsoft.com/cs-cz/windows/win32/taskschd/task-scheduler-start-page
https://docs.microsoft.com/cs-cz/windows/win32/taskschd/task-scheduler-start-page
https://kb.sos-berlin.com/display/PKB/Architecture
https://kb.sos-berlin.com/display/PKB/Architecture
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.4620
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.4620
https://www.researchgate.net/publication/261180140_Software_Defined_Radio_The_Software_Communications_Architecture
https://www.researchgate.net/publication/261180140_Software_Defined_Radio_The_Software_Communications_Architecture
https://www.researchgate.net/publication/261180140_Software_Defined_Radio_The_Software_Communications_Architecture
https://www.linuxjournal.com/article/4087
https://www.apress.com/gp/book/9781484221075
https://www.apress.com/gp/book/9781484221075
https://subscription.packtpub.com/book/networking_and_servers/9781784392536
https://subscription.packtpub.com/book/networking_and_servers/9781784392536
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788399210
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788399210
https://subscription.packtpub.com/book/networking_and_servers/9781785280009
https://subscription.packtpub.com/book/networking_and_servers/9781785280009

Index

Actions, 24
AddDevice, 42

Conditions, 24

Delete, 25
Disable, 25

Error, 31
Export, 25

Finish, 25

GetDevList, 42
GetJobs, 42

Pending, 30
Properties, 25

Read_error, 31
Run, 25
Running, 30

Stopped, 30
Stopping, 30

Triggers, 24

49

Appendix

A Colibri iMX6
Toradex recently introduced the Linux-driven Colibri iMX6ULL, one of the first
modules to adopt the new, optimized in terms of power and cost SoC “i.MX6 ULL”
from NXP. The new Colibri module also supports dual-band WiFi-AC and BT 4.2.
On March 28, 2017, Toradex announced the Colibri iMX6ULL computer module at
Embedded World. As its name suggests, this new member of the Toradex Colibri
COM 67.6 x 36.7 mm family combines the recently announced IXM ULL SoC from
NXP, an ultra-low-power option of the ubiquitous NXP i.MX6. The new COM
is also the first Toradex Colibri module to include integrated wireless connectivity.
Comparison of NXP i.MX6 ULL block diagrams (Figure 1) and i.MX6 UL SoC
(Figure 2).

Figure 1: NXP i.MX6 ULL [9]

New features in i.MX6 ULL compared to i.MX6 UL includes multi-channel au-
dio input/input ESAI and 24-bit (or preferably 16-bit) CSI interface. Besides, the

50

Figure 2: i.MX6 UL SoC [9]

EMV SIM UL module has been removed to expand cellular radio communications.
Additional features in ULL extend beyond the ADC and UL multimedia interfaces
and include 10/100 Ethernet and FlexCAN. ULL also adds an EPD / PXP interface
for the e-book market (Figure 3).

Both UL and ULL provide new security, unauthorized access, and power man-
agement features not found in earlier i.MX6 models, while ULL offers more highly
optimized, low-power modes than UL. Although ULL continues to offer basic secu-
rity features such as secure boot, hardware cryptographic encryption mechanisms,
and random number generators, it removes those UL security features that are tar-
geted at POS applications, including CAAM / BEE / DryICE. Like UL, ULL offers
a stripped-down, but still 3D-capable, WXGA display compared to the more pow-
erful Vivante GPUs from earlier i.MX6 SoCs. The Colibri iMX6ULL is the first of
67.6 x 36.7 mm COM Toradex to use NXP’s new Socket i.MX6 ULL SoX, as well
as the first Colibri module, to include integrated wireless connectivity. It follows
the Colibri i.MX6 based on i.MX6, among other Toradex modules (Figure 4).

Toradex offers the Colibri iMX6ULL in two standard SKUs: an 800 MHz clock
board, 512 MB DDR3L SDRAM and 512 MB SLC flash memory and a cheaper
model with 528 MHz clock speed, 256 MB RAM and 128 MB flash memory. Also,
the first of them includes an integrated wireless subsystem that supports Bluetooth
4.2 with BLE, as well as dual-band WiFi with a transfer speed of up to 300 Mbps,
as well as simultaneous station and access point modes (Figure 5).

51

Figure 3: Colibri iMX6ULL interface [10]

Figure 4: Colibri iMX6ULL front and back view [9]

Other features common to both Colibri iMX6ULL models include a USB host
port and OTG ports, an Ethernet 10/100 controller with support for up to two inter-
faces, SDIO / SD / MMC, a 24-bit RGB LCD interface with 4-wire resistive touch,
serial camera interface and stereo digital sound. The Colibri iMX6ULL is addition-
ally equipped with an extensive set of SDIO, I2C, SPI, UART, PWM, and CAN
interfaces, as shown in the block diagram above. The 67.6 x 36.7 x 6.2 mm mod-

52

Figure 5: Colibri iMX6ULL block diagram [9]

ule is available in versions from 0 to 70 °C and -40 to 85 °C and provides minimum
availability until 2028. The module comes with a Linux distribution based on NXP’s
Yocto Project. The Colibri iMX6ULL comes at a low price of 34.75$ (with 256 MB /
128 MB of RAM / flash) and 58.60$ (512 MB / 512 MB of RAM / flash + wireless)
[9].

B Installation of JobSheduler environment

B.1 Database Server Setup
JobScheduler stores all data about tasks on the database server, which can be located
both on the remote node and locally. For work, it is required that for the purposes
of JobScheduler, a separate database be created on the server, as well as a user with
full rights to it. Database tuning is described here using the example of MySQL.

The first thing to do is to create a new database:

mysql> CREATE DATABASE scheduler;

53

Query OK, 1 row affected (0.01 sec)

Then, create a user under whose name JobScheduler will have to log in.

mysql> CREATE USER scheduler IDENTIFIED BY '1234';
Query OK, 0 rows affected (0.01 sec)

The user needs full rights to work with the created database.

mysql> GRANT ALL PRIVILEGES ON scheduler. * TO scheduler;
Query OK, 0 rows affected (0.01 sec)

In these listings, we should pay attention to the selected database and user names
— scheduler, as well as the user password — 1234. These data will be needed in
subsequent steps.

It should be noted that the names for the database and the user scheduler — are
selected merely as an example. Instead of these names, any others can be selected.
However, these data must be remembered.

B.2 Installation and Configuration of JobScheduler
The scheduler is distributed freely and is available on the official JobScheduler
project website as an archive.

The archive contains, among other things, a script designed to start the instal-
lation process. On Windows, the file is called setup.cmd; on Linux, the file is called
setup.sh. Running this script will launch the installation wizard.

The wizard provides a reasonably simple dialog interface. At each stage of in-
stallation, the user is asked standard questions. In this text, attention is paid to the
installation steps that relate to the scheduler settings.

After specifying the directory in which the application should be installed (in-
stallation path), you will need to specify the directory in which the scheduler con-
figuration files will be placed, as well as all the logs (path for configuration files and
logs). It should be noted that these should be two different directories.

Since JobScheduler is run on behalf of a regular OS user who does not have
administrator rights, the directory with the configuration and logs should be located
in the area of the file system to which this user has access. In the case of Linux,
this should be the user’s home directory.

The next step is to specify the data such as the HTTP Scheduler port, as well
as the site address, from which should be allowed access to JobScheduler.

The figure highlights information that we can specify at discretion but must
be remembered. This is the port that the scheduler will listen to via the HTTP
protocol, as well as the identifier of the JobScheduler process on this node.

The identifier must be remembered, as it will be required when accessing the
scheduler via the REST API.

The address of the allowed node must be entered for security reasons. It is be-
lieved that when the scheduler can receive requests from one specific node, this has
a positive effect on security.

54

Figure 6: Request directory for installation

However, if the scheduler is required to be accessible from any node, the IP-
address 0.0.0.0 should be specified in this field.

The following installation steps ask for data to connect to the database. The
figure shows an example of setting access to the database server. Since, in this case,
the scheduler configuration is considered using the example of MySQL, this system
is chosen as the DBMS (database management system).

The next step involves entering data to authorize JobScheduler on the database
server. Here we need to enter precisely the data that was selected at stage 2. The
user name is scheduler, the database name is scheduler, and the user password
is 1234.

The “port” field indicates the standard port on which the MySQL server is run-
ning. If the server we are using is configured to work with another port, then the
data in the field should be changed accordingly.

In addition, it should be noted that the “Host” field is automatically filled in by
the wizard. The hostname is the name of the computer on which the installation
is performed. If it is assumed that the database server is running locally, then it
is advisable to change the value in this field to “localhost”, since the computer may

55

Figure 7: Request a directory of configuration files and logs

not be configured to access by network name.
At the next step, the wizard reports that it is desirable to use the same database

for JobScheduler and JOC Cockpit.
In the event that the adjustment is performed in this way, the attached checkbox

should be marked.
After clicking on the “Next” button, the automatic installation process starts.

B.3 Installation and Configuration of JOC Cockpit
JOC Cockpit software is free and available on the developer’s website.

The software is offered for download in the form of an archive in which, in the
same way as in the case with JobScheduler, in addition to the installation files, there
are a setup script.cmd or setup.sh (depending on the operating system used), which
launches the installation wizard.

The installation process is similar. Let us dwell on the steps related to setting
up the JOC Cockpit.

56

Figure 8: Specifying data to connect JobScheduler

At the beginning of the installation, in the same way, as in the case of JobSched-
uler, it is proposed to specify a directory for placing program files and a directory
for placing configuration files and logs.

In the next step, the wizard prompts us for the Jetty software installation op-
tions. Jetty is a web server designed specifically for organizing a REST API for
interacting with JobScheduler remotely over a network.

JOC Cockpit allows its use with a third-party web server. However, this will
require additional configuration of both preferred web server and JOC.

At this step, pay attention to the port on which Jetty will run. It can be changed
to any other necessary, but it should be remembered since it is through this port
that the interaction with JobScheduler through the REST API will take place.

The next step is to configure the connection to the database. Data is entered
similar to those used in setting up JobScheduler.

Need to specify the same database name, user name, and user password — the
data that was selected in step 2. In this example, the following data is used. The
database name is scheduler, the user name is scheduler, the password is 1234.

As in the case of JobScheduler, the localhost value should be specified in the

57

Figure 9: DBMS selection

“host” field if the database server is running locally — on the same node as the
JOC.

B.4 Launch the Required Services
For the scheduler infrastructure to work, the following services must be running:

• JobScheduler.

• JOC Cockpit.

• Jetty (or other selected webserver).

JOC and Jetty are installed on the system, and then registered as services, and
start automatically.

JobScheduler, in turn, is a process that is launched through an executable file
located in the directory in which the scheduler was installed.

This executable file is located on the system in the following path:

58

Figure 10: Data for connecting to the database server

Figure 11: Configuring JobScheduler and JOC Cockpit to work with one database

<JobScheduler directory>/bin/jobscheduler.cmd
(extension can be *.sh if using Linux OS).

This script requires passing command line arguments, so we should run it through
the terminal (shell for Linux, CMD, or PowerShell for Windows), after moving to
the above directory.

Starting the JobScheduler process is done using the command:

joscheduler.cmd start

59

Figure 12: Jetty Setup

Figure 13: Configure JOC database connection

60

C JobScheduler commands

Table 1: JobScheduler commands
Title of the commands Describes
<terminate/> Terminates a JobScheduler Master
<start_job/> Starts a job

<show_state/> Retrieves status information about
a JobScheduler Master

<show_order/> Retrieve order status information

<show_job_chain/> Retrieves status information
about a job chain

<show_job/> Retrieves status information
about a job

<show_history/> Retrieve the JobScheduler history

<remove_order/> Removes a temporary ad hoc
order from the JobScheduler Master

<params.get/><param.get
name=“...”/>

Shows parameters from
./config/scheduler.xml

<modify_spooler cmd=“stop”/> Stops any running tasks in
a JobScheduler Master

<modify_spooler cmd=“pause”/> Pauses a JobScheduler Master
<modify_spooler
cmd=“continue”/>

Continues operation of the
JobScheduler Master after pausing

<modify_spooler cmd=
“abort_immediately_and_restart”/>

Aborts and restarts a JobScheduler
Master

<modify_spooler cmd=
“abort_immediately”/> Aborts a JobScheduler Master

<modify_order/> Updates order attributes
<modify_order suspended=“yes”/> Suspends an order
<modify_order state=“...”/> Modifies an order’s state
<modify_order action=“reset”/> Resets an order
<modify_job cmd=“unstop”/> Unstops a previously stopped job
<modify_job cmd=“suspend”/> Suspends all running tasks for a job
<modfiy_order at=“now”/> Causes an immediate start of the order
<kill_task/> Kills a task that is running for the job
<job_chain_node.modify
action=“stop”/> Stops a job chain node

<job_chain.modify
state=“stopped”/> Stops a job chain

<job_chain.modify
state=“running”/>

Continues a previously stopped
job chain

<add_order/> Add a temporary order to a job chain

61

D Windows Task Scheduler example
Suppose we need to create a task that will run a specific script every Monday and
Thursday at 11:00. To create a new job, use the cmdlets of the PSScheduledJob
module. For this cmdlet to work, you must install at least PowerShell version 3.0.
Run the PowerShell console with administrator privileges and import the PSSched-
uledJob module.

Create a new trigger:

$Trigger = New-JobTrigger -Weekly -DaysOfWeek 1,4 -At 11:00PM

Now create a new task called BackupDBTask and bind to it the trigger created
earlier (Figure 14):

Register-ScheduledJob -Name BackupDBTask -FilePath
"C:\ps\backupdb.ps1" -Trigger $Trigger

Figure 14: Creating a new Task Scheduler

Scheduler task created. You can find it in the Task Scheduler graphical console
in the section: Task Scheduler -> Task Scheduler Library -> Microsoft-> Windows
-> PowerShell -> SheduledJobs. When creating a new job, PowerShell generates
a new XML file that contains the job definition. You can find this file in the profile
of the current user:

%USERPROFILE%\AppData\Local\Microsoft\Windows\PowerShell\
ScheduledJobs\BackupDBTask

In the future, this XML file can be used to import job settings on other comput-
ers. Import (creating a task with settings from XML) is performed by the following
command:

Register-ScheduledTask -Xml (Get-Content
'\\srv1\ScheduledJobDefinition.xml' | out-string)
-TaskName "BackupDBTask"

In Windows Server 2012 and later, when creating a scheduler job, importing the
PSScheduledJob module is not necessary. If you need to run a task from a specific
user, you need to get his password (it will be saved in the password manager, which
of course is not very secure):

62

$credent = Get-Credential contoso\server-admin1

To start the task with elevated rights, enable the RunElevated flag:

$elevat = New-ScheduledJobOption –RunElevated

Now create a new task:

Register-ScheduledJob -Name BackupDBTask2 -FilePath
C:\ps\backupdb.ps1 -Trigger $Trigger -Credential
$credent –ScheduledJobOption $elevat

Information about all included tasks in the Microsoft Windows Powershell:

Get-ScheduledTask -TaskPath \Microsoft\Windows\Pow*|
? state -ne Disabled

To get information about a specific task:

Get-ScheduledTask BackupDBTask| Get-ScheduledTaskInfo

To disable a specific task:

Get-ScheduledTask BackupDBTask| Disable-ScheduledTask

Task Scheduler allows you to run certain tasks, scripts at a specific time, without
user intervention. Consider using custom applications to communicate with Task
Scheduler using API calls.

1. Create a task “My Task” which runs the RunMe.bat script every day at 9 a.m.

SchTasks /Create /SC DAILY /TN "My Task" /TR "C:RunMe.bat"
/ST 09:00

2. Change “My Task” to run the script at 2 p.m.

SchTasks /Change /TN "My Task" /ST 14:00

3. Create a task “My Task” which runs the RunMe.bat script on the first day of
each month.

SchTasks /Create /SC MONTHLY /D 1 /TN
"My Task" /TR "C:RunMe.bat" /ST 14:00

63

4. Create a task “My Task” which runs the RunMe.bat script every working day
at 2 p.m.

SchTasks /Create /SC WEEKLY /D MON,TUE,WED,THU,FRI /TN "My Task"
/TR "C:RunMe.bat" /ST 14:00

5. Removing a task named “My Task”

SchTasks /Delete /TN “My Task”

Bulk task creation:

SchTasks /Create /SC DAILY /TN "Backup Data" /TR "C:Backup.bat"
/ST 07:00
SchTasks /Create /SC WEEKLY /D MON /TN "Generate TPS Reports"
/TR "C:GenerateTPS.bat" /ST 09:00
SchTasks /Create /SC MONTHLY /D 1 /TN "Sync Database" /TR "C:SyncDB.bat"
/ST 05:00

As with any other command line tool, you can include several commands in
a batch file (script) to create (or delete) several tasks.

64

	List of abbreviations
	Introduction
	Review of the Internet of Things
	IoT Overview
	Sensors and Sensor Network Level
	Gateway and Network Level
	Application Level
	Overview and Analysis of Single-board Computer Modules

	Task Planning in Operating System
	General Information about Embedded Operating Systems
	Overview of Existing Linux Task Schedulers
	JobScheduler
	Activebatch
	Oracle Grid

	Overview of Task Scheduler on Windows 10

	Task Manager API
	JobScheduler API
	Additional JobScheduler Features

	Windows Task Scheduler

	JobScheduler
	Preparation
	Job and patterns
	Job execution
	JobScheduler requests
	Data collection and processing

	Server for Monitoring Schedulers and Tasks on Devices
	Architecture
	DeviceConnector Class
	Device Class
	Server Class
	Listener Class

	Formation of the XML — Answers
	Additional Server Functionality

	Conclusions
	Bibliography
	Appendix
	Colibri iMX6
	Installation of JobSheduler environment
	Database Server Setup
	Installation and Configuration of JobScheduler
	Installation and Configuration of JOC Cockpit
	Launch the Required Services

	JobScheduler commands
	Windows Task Scheduler example

