
Czech University of Life Sciences Prague

Faculty of Economics and Management

 Department of Statistics

Master's Thesis

Machine Learning for Cyber Security:

Mitigating Cyber Attacks and Detecting Malicious Activities

in Network Traffic

Prepared by: Abenezer Desalgn Dana

Thesis Supervisor: Ing. Tomáš Hlavsa, Ph.D.

© 2023 CULS Prague

i

ii

iii

iv

Declaration

 I hereby declare that this thesis is the result of my original work and that no part of it has been

submitted for another degree or diploma at any university or other tertiary institution. Any assistance

that I have received in my research work and the preparation of this thesis has been acknowledged.

I also declare that the work presented in this thesis is free from plagiarism and any other academic

malpractice. All sources used in this work have been appropriately cited and referenced.

In Prague on 25.03.2023 ------------------------------------

 Abenezer Desalgn Dana

v

Acknowledgement

First and foremost, I would like to express my gratitude to Almighty God that gave me the physical and

mental strength, determination, and good health to complete this master's thesis. Secondly, I would like

to extend my sincere appreciation to my supervisor, Ing. Tomas Hlavsa Ph. D, for his amazing support

and valuable guidance throughout the writing process of this thesis.

I'd like to express my heartfelt gratitude to my sister Lulit(Mitu) and our university contact Marin Kozak,.

A special thanks to Kidest Kasa(Mekiye) and Edema Shukule(Abba), the engineers of my life, and my

loving wife Yemisirach Hailu for her care and encouragement.

vi

Machine Learning for Cyber Security:

Mitigating Cyber Attacks and Detecting Malicious Activities in

Network Traffic

Abstract:

The increasing dependence on computer networks for communication and critical operations has led to

a rise in cyber-attacks and malicious activities. Traditional security measures such as firewalls and

intrusion detection systems are no longer sufficient to protect against modern cyber threats. Machine

learning has emerged as a promising approach for detecting and mitigating cyber-attacks.

This thesis explores the use of machine learning techniques for cyber security. The primary focus is on

the detection of malicious activities in network traffic. The research involves the analysis of network

traffic data using various machine learning algorithms, including Decision Trees, Random Forests,

Support Vector Machines, and Logistic regression.

The study includes the collection and pre-processing of network traffic data from the NSL-KDD dataset,

which is a widely used benchmark dataset for intrusion detection. The dataset includes network traffic

traces from various types of cyber-attacks, including denial-of-service, probing, and user-to-root attacks.

The results of the study demonstrate the effectiveness of machine learning algorithms for detecting

malicious activities in network traffic. The Random Forest and Support vector machine algorithms

outperformed other algorithms in terms of accuracy and detection rate. The study also shows the

importance of feature selection and pre-processing techniques in achieving high performance in machine

learning models.

The findings of this research have practical implications for the development of effective intrusion

detection systems and cyber security measures. The use of machine learning algorithms can improve the

accuracy and efficiency of current security systems and enhance the ability to detect and mitigate cyber-

attacks.

Keywords: WEKA, IDS, Cyber Security, Machine Learning

1

Contents

1.Introduction .. 6

2. Objectives and Methodology .. 7

2.1 Objectives .. 7

3. Literature review .. 21

3.1. Computer security background .. 21

3.2. Overview of Intrusion Detection .. 23

3.3. Related Works .. 24

3.4. Types of Intrusion Detection System ... 26

3.4.1. Host -based Intrusion Detection System ... 26

3.4.2. Network -based Intrusion Detection System ... 26

3.5. Category according to the learning method ... 30

3.6. Where IDS Should be Placed in Network Topology ... 32

3.7. Intrusion detection system administration ... 36

3.8. How to Protect IDS Itself ... 37

3.9. Machine Learning Approaches and Implementation on Cyber-Security 37

3.10. Model selection preliminaries .. 40

3.11. Machine learning Algorithms ... 41

3.11.1. Support Vector Machine .. 41

4: Practical part... 48

4.1. Implementation Tools .. 48

Programming languages: ... 48

Integrated Development Environments (IDEs): .. 48

2

Data manipulation and analysis libraries: ... 48

Data visualization libraries: ... 48

Machine learning and deep learning libraries: .. 49

4.3 Data source and description .. 49

4.4.2. Classifying Attacks into Four Categories .. 52

4.4.3. Data Scaling ... 53

4.5 Exploratory Data Analysis .. 53

4.5.1 Data Profiling and Visualization .. 53

4.6 Feature Selection Using Recursive Feature Elimination (RFE).......................... 57

5. Results and Discussion .. 59

5.1 Decision tree .. 59

5.2. Logistic regression ... 65

5.3. Support Vector Machine .. 68

5.4. Random forest .. 72

6. Conclusion ... 79

6.1 Future work ... 79

Reference ... 81

3

LIST OF FIGURES

Figure 1: Important python libraries. (own work) ... 8

Figure 2: Indicating the directory where data is available. (own work) .. 9

Figure 3: Changing nominal values into binary. (own work) .. 9

Figure 4: One hot encoding of categorical features (own work) ... 9

Figure 5: Creating list to hold the categorized attack group (own work) 10

Figure 6: Feature scaling of each attack group (own work) .. 10

Figure 7: Calculating number of occurrences of each type of attack. (Own work) 11

Figure 8: Features selecting using Recursive Feature Elimination (RFE). (Own work) 12

Figure 9: Decision tree feature importance plot. (Own work) ... 13

Figure 10: Decision tree classifier model. (Own work)... 14

Figure 11: Pruned version of the decision tree. (Own work) ... 14

Figure 12: Feature selection using Recursive Feature Elimination. (Own work) 14

Figure 13: Logistic regression model. (Own work) ... 16

Figure 14: Recursive Feature Elimination (RFE) for logistic regression model. (Own work) ... 16

Figure 15: Support vector machine model. (Own work) ... 17

Figure 16: Random Forest model. (Own work) ... 17

Figure 17: Decision tree for random forest. (Own work) .. 18

Figure 18: System Integrity: Source: (Ruiz, I.P. and Ramón, 2008) ... 22

Figure 19: Security Analytics Survey (Oppmann, 2022) .. 23

Figure 20: Architecture of a Network-Based IDS security System (Hosseinzadeh, 2022) 28

Figure 21: Typical Location for an Intrusion Detection System (Rehman, 2003) 33

Figure 22: Near DZS (Ruiz, I.P. and Ramón, 2008) ... 34

Figure 23: In front of The External Firewall (Ruiz, I.P. and Ramón, 2008) 35

Figure 24: Behind the External Firewall (Ruiz, I.P. and Ramón, 2008) 35

Figure 25: Behind the Second Firewall (Ruiz, I.P. and Ramón, 2008) 36

Figure 26: Separating Hyperplane Maximizes the Margin (Hosseinzadeh,2020) 42

Figure 27: Random Forest Algorithm (Goyal C, 2022)... 44

Figure 28: Example of Simple Decision Tree (Sumathi and Sivanandam, 2006) 47

Figure 29: Distribution of Attack Data Only. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization. ... 50

Figure 30: Distribution of full data. Data source: https://www.unb.ca/cic/datasets/nsl.html. Own

visualization. ... 50

Figure 31: Distribution feature columns One Hot Encoded. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization. ... 51

Figure 32: Protocols and Occurrence of Attacks. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization. ... 52

Figure 33: Exploring Distribution of Training and Test set. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization. ... 54

Figure 34: Attack Distribution of NSL-KDD Dataset. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization. ... 54

4

Figure 35: Attack distribution of NSL-KDD Dataset. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization. ... 55

Figure 36: Service. Data source: https://www.unb.ca/cic/datasets/nsl.html. Own visualization. 56

Figure 37: Protocol Type. Data source: https://www.unb.ca/cic/datasets/nsl.html. Own

visualization. ... 56

Figure 38: One hot Encoding. Data source: https://www.unb.ca/cic/datasets/nsl.html. Own

visualization. ... 57

Figure 39: Decision tree. Data source: https://www.unb.ca/cic/datasets/nsl.html. Own

visualization. ... 61

Figure 40: List of Important predictors. Data source: https://www.unb.ca/cic/datasets/nsl.html.

Own visualization. .. 62

Figure 41: Overall model performance Decision tree. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization. ... 63

Figure 42: confusion matrix of Decision tree. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization. ... 64

Figure 43: Logistic regression Coefficient. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization. ... 65

Figure 44: Performance evaluation. Data source: https://www.unb.ca/cic/datasets/nsl.html. Own

visualization. ... 67

Figure 45: Confusion matrix of Logistic Regression. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization. ... 67

Figure 46: Feature significance score in support vector machine. (Own work) 69

Figure 47 :Classification report of SVM. Data source: https://www.unb.ca/cic/datasets/nsl.html.

Own visualization. .. 69

Figure 48: Confusion matrix of SVM. Data source: https://www.unb.ca/cic/datasets/nsl.html.

Own visualization. .. 71

Figure 49: Selected features and their importance score. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization. ... 72

Figure 50: Random Forest pruned decision tree. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization. ... 73

Figure 51: Classification report of Random Forest. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization. ... 74

Figure 52: Confusion matrix of Random Forest. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization. ... 74

Figure 53: ROC curve for all trained models. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization. ... 76

file:///C:/Users/Ab%20saved%20by%20Grace/Desktop/aleke/Final-2023.docx%23_Toc131101804
file:///C:/Users/Ab%20saved%20by%20Grace/Desktop/aleke/Final-2023.docx%23_Toc131101804

5

LIST OF TABLES

Table 1: Confusion Matrix: Source: (Smith, 2020) ... 20

Table 2: Selected features as important predictors. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own table. .. 62

Table 3: Logistic regression Coefficient (Own table) .. 66

Table 4:Algorithm time complexity analysis. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own table. .. 78

List of Abbreviations

 DMZ - Demilitarized Zone

RFE- Recursive Feature Elimination

NSL-KDD - Network Security Lab - KDD Cup 99 Dataset

IDS- Intrusion Detection System

DoS- Denial of Service

U2R - Privilege Escalation attacks

R2L- Remote Access attacks

ROC - Receiver Operating Characteristic curve

WEKA- Waikato Environment for Knowledge Analysis

SVM - Support Vector Machines

CIA - Confidentiality Integrity and Availability

HIDS - Host Based Intrusion Detection Systems

NIDS - Network Based Intrusion Detection Systems

IDE - Integrated Development Environments

6

1. Introduction

Cybersecurity has become a growing concern with the widespread use of the internet and the

increasing digitization of businesses and individuals' activities. Cyberattacks have become more

sophisticated and widespread, causing significant financial losses to companies and individuals.

Cybersecurity Ventures (2019) predicts that cybercrime's financial losses will reach up to $6

trillion annually by 2021, these attacks target large and emerging industrial companies, banking

sectors, government financial agencies, and individuals, resulting in costly and disruptive effects

that can create social and political crises (Ahmad & Khatun, 2020).

The increasing prevalence of cyberattacks highlights the urgent need for advanced and effective

intrusion detection systems to minimize unplanned downtime and protect against potential losses.

Enterprise businesses are faced with the increasing likelihood of unexpected downtime due to

various cyberattacks and security breaches. Network downtime results in financial losses,

reputational damage, and questions the credibility of commercial companies. Therefore,

prioritizing defense mechanisms against misuse, attacks, and vulnerabilities is crucial in

minimizing or avoiding unplanned downtime.

One of the most promising methods to protect systems from new, more complex, and dynamic

attacks is the intrusion detection system (IDS). IDSs can detect malicious activity in the network

traffic by matching known attacks (signature-based) or detecting new cyber threat anomaly

activities (anomaly-based) to evaluate the relative risk of individual threats and autonomously give

an effective and appropriate response to the relevant threats using an efficient intrusion prevention

system (IPS).

Most IDS currently in use are either rule-based or anomaly detection-based IDS (Jia, Huang, &

Zhang, 2021). However, these systems can be limited by the inability to detect new and previously

unknown attacks. To address this, researchers have turned to machine learning techniques to

develop intelligent models that can automatically learn from data by extracting patterns from

network traffic in the training phase. Once the model learns the normal/attack traffic patterns

accurately with a low false-positive rate by fulfilling the standard of the accuracy matrix, it can be

deployed in the network alongside the firewall.

7

These algorithms used can learn from the provided training data and generalize when exposed to

new untrained data, increasing the detection ability in the big network infrastructure, which may

have terabytes of network traffic data.

This thesis aims to identify the best machine learning model that can enhance intrusion detection

and detect malicious activities with higher accuracy and a lower false alarming rate.

2. Objectives and Methodology

2.1 Objectives

The main objective is to evaluate the efficiency of different Machine learning models to get the

better understanding of the area and finally recommend the better model that can enhance Intrusion

Detection which can detect malicious activities with better accuracy and low false alarming rate.

Specific objectives

• To study scientific and expert literature,

• Matching patterns of known attacks

• To detect anomaly activities

• Train the model and test different Machine learning algorithms and recommend the

better one for future use.

2.2. Motivation

Cyber-attacks are a significant threat to individuals, organizations, and governments, with

financial losses caused by cybercrime predicted trillions of dollars annually. Good security

techniques and monitoring mechanisms are crucial for ensuring the confidentiality, integrity, and

availability of data. While intrusion detection systems (IDSs) have been considered a significant

breakthrough, traditional IDSs can be limited in detecting new and previously unknown attacks.

Machine learning techniques provide a promising approach to developing intelligent intrusion

detection systems that can effectively detect various types of cyber-attacks.

8

2.3. Methodology

Choice of the Dataset

To achieve the objective stated above the dataset used in this study is the NSL-KDD dataset, which

is a widely used benchmark dataset for evaluating intrusion detection systems (Tavallaee et al.,

2009). This dataset was chosen due to its popularity and the fact that it includes a variety of

different types of cyberattacks. The dataset contains a total of 41 features and is divided into a

training set of 125,973 instances and a testing set of 22,544 instances. The dataset includes four

types of attacks: Probe, DoS, U2R, and R2L.

Choice of Data Mining Software

The data mining software used in this study is Python, which is a popular programming language

for data analysis and machine learning. Python provides a wide range of libraries and packages

that facilitate data analysis and machine learning, such as NumPy, Pandas, Matplotlib, and Scikit-

learn. Scikit-learn is a powerful machine learning library in Python that provides a variety of

machine learning algorithms and tools for data preprocessing, model selection, and model

evaluation. It was chosen for this study due very rich machine learning library content and to get

support from vast number data science community mainly python has high speed than the tools

like SPSS, Statistica and even over R and SAS (Jones, 2019).

Data Pre-Processing

First, important python libraries as follows.

Figure 1: Important python libraries. (own work)

9

Once the libraries were imported, the downloaded data was brought into the Spider IDE by

indicating the directory where the data is saved.

Figure 2: Indicating the directory where data is available. (own work)

Mapping Normal as 0 and Attack as 1 (Encoding)

Figure 3: Changing nominal values into binary. (own work)

Before training the models, the dataset undergoes a pre-processing stage to ensure optimal model

performance. One critical step in this process is encoding the target variable, which consists of two

categories: Normal and Attack. To facilitate the use of machine learning algorithms, the target

variable is transformed into numerical values by mapping "Normal" instances to 0 and "Attack"

instances to 1.

This encoding enables the algorithms to process the data correctly and make accurate predictions.

The Label Encoder class from the sklearn.preprocessing module is used to perform this encoding.

Figure 4: One hot encoding of categorical features (own work)

10

Classifying Attacks into Four Categories

The dataset consists of numerous attack types. To simplify the classification process, we group

these attacks into four primary categories: Denial of Service (DoS), Probe, Privilege Escalation,

and Remote Access. This approach enables a more manageable and focused analysis while still

addressing the different types of cyberattacks.

Categorizing the attacks types in to four major classes.

Figure 5: Creating list to hold the categorized attack group (own work)

By categorizing the attacks, the model can be trained to recognize these broader categories,

allowing for more accurate and efficient classification. The labels used for these categories are

DoS, Probe, U2R, R2L, and Normal (for non-attack instances).

 Data Scaling

Before training models, data has been standardized the features of the dataset to ensure that all

features in all categories DoS, Probe, R2L, and U2R. have the same scale.

Figure 6: Feature scaling of each attack group (own work)

11

Examining the dataset

Examining the dataset to understand its characteristics, such as data distribution is critical, and this

proses of grouping and see the distribution of attack groups are done this way.

Figure 7: Calculating number of occurrences of each type of attack. (Own work)

Feature Selection Using Recursive Feature Elimination (RFE)

Feature selection plays an important role in building effective machine learning models, as it helps

in identifying the most relevant features for the task and reduces the computational complexity of

the models. In this study, we employ Recursive Feature Elimination (RFE) as a feature selection

technique. RFE is a recursive process that works by fitting a model, ranking the features based on

their importance, and removing the least important features one by one. This process is repeated

until a desired number of features are selected. RFE is particularly useful in identifying the most

relevant features that contribute to the classification task and can help improve the performance of

the models.

12

Figure 8: Features selecting using Recursive Feature Elimination (RFE). (Own work)

To implement RFE, the RFE function from the scikit-learn feature selection library is applied to

the four major classes: DoS, Probe, R2L, and U2R, to select the most relevant features for each

category. By doing so, it can be ensured that our machine learning models are trained on the most

informative features, leading to more accurate and efficient classification results.

Choice of Data Mining Algorithms

In this study, we will evaluate the performance of four different machine learning algorithms for

intrusion detection:

• Decision Tree

• Random Forest

• Support Vector Machine

• Logistic Regression

These algorithms were chosen based on their effectiveness in detecting different types of

cyberattacks and their ease of implementation. Decision Tree and Random Forest are tree-based

algorithms that are commonly used for classification problems. Support Vector Machine is a

powerful algorithm that is effective in detecting complex decision boundaries. Logistic Regression

is a simple but effective algorithm that is commonly used for binary classification problems.

13

Decision Tree

Decision tree feature importance

The decision tree feature importance done in the figure 9 using the clf.feature_importances_

attribute of the fitted decision tree model, sorts them in descending order using the np.argsort()

function, and selects the top 13 features using the [:13] slicing. The importance of features in a

decision tree is determined by how much they reduce the impurity of the target variable in a given

split. The Gini impurity or entropy is commonly used to measure impurity. Features with higher

importance scores are those that reduce impurity the most and are therefore more useful in making

predictions.

Figure 9: Decision tree feature importance plot. (Own work)

Decision tree classifier model

Decision tree classifier model using the Gini criterion for splitting and a maximum depth of 4. The

trained model is then used to predict the target variable for both the training and testing data, and

the classification accuracy scores are printed out. Additionally, a classification report is printed

out, which contains metrics such as precision, recall, and F1 score for each class in the target

variable.

14

Figure 10: Decision tree classifier model. (Own work)

The pruned version of the decision tree is plotted as shown below.

Figure 11: Pruned version of the decision tree. (Own work)

Logistic Regression

Future selection

RFE (Recursive Feature Elimination) is a technique is used to select the best feature as shown in

the figure 12 below. It works by recursively removing attributes and building a model on those

attributes that remain. It uses cross-validation to determine which features contribute the most to

predicting the target variable and discards those that contribute the least.

Figure 12: Feature selection using Recursive Feature Elimination. (Own work)

15

Logistic regression Model

The equation used in logistic regression model is a linear combination of the input features, with

learned weights and biases. It is represented as

 Z = wX + b eq1

where Z is the weighted sum of inputs, w is the learned weights, X is the input features, and b is

the bias term. The probabilities of the output classes are obtained using the sigmoid function, which

maps the weighted sum Z to a value between 0 and 1. The sigmoid function is applied to the linear

combination of the input features using the equation:

 1 / (1 + exp(-Z)) eq2

 The dot product of the learned weights and the input features, X_test, plus the bias term, b, is

computed using the equation:

z = w_1x_1 + w_2x_2 + ... + w_n*x_n + b eq3

where w_i represents the weight associated with the i-th feature, x_i represents the i-th feature

value, b is the bias term, and z is the log-odds or logit of the predicted probability of the positive

class.

In code, this equation is computed as:

z = np.dot(w, X_test.T) + b[:, np.newaxis]

where w is the array of learned weights, X_test is the matrix of test set inputs, T is the transpose

operation, and b is the array of learned bias terms. In terms of the attack classes classification, the

logistic regression algorithm predicted the probability of an instance belonging to a particular

attack class. The learned weight and bias terms will be specific to the attack class being predicted.

By training the logistic regression algorithm on a dataset of labeled instances, the algorithm can

learn the weight and bias terms that best discriminate between the different attack classes. The

resulting model can then be used to predict the attack class of new instances based on their features.

16

Figure 13: Logistic regression model. (Own work)

Support Vector Machines (SVMs)

Feature selection

Support Vector Machines (SVMs) is used from the scikit-learn library to create a model with a

linear kernel and a random state of 0. Then we are creating a Recursive Feature Elimination (RFE)

object with 13 features and fitting it to the training data. RFE selects the best features for the given

model by recursively removing the least important features based on the feature ranking.

Figure 14: Recursive Feature Elimination (RFE) for logistic regression model. (Own work)

17

Support vector machine model

SVM model with the selected features from the feature selection step. It then fits the model to the

training data and makes predictions on the test data.

Figure 15: Support vector machine model. (Own work)

Random forest model

Random forest model Random forest model with 100 trees and a maximum depth of 3 using

RandomForestClassifier(n_estimators=100, max_depth=3, random_state=0). The model trained

on the training data using rf.fit(). We obtain the feature importance scores using the

feature_importances_ attribute and sort them in descending order using pd.Series().sort_values().

Finally, we select the top 13 features and their corresponding feature scores using the [:13]

Figure 16: Random Forest model. (Own work)

18

A decision tree for random forest generated as shown below.

Figure 17: Decision tree for random forest. (Own work)

Model performance

The performance of the models will be evaluated using various performance metrics, including

accuracy, precision, recall, and F1-score. The accuracy of the models will be the primary metric

used to evaluate their effectiveness in detecting various types of cyberattacks accurately. To ensure

the accuracy and reliability of the results, the experiments will be repeated multiple times using

different random seeds, and the results will be averaged.

The results of the model evaluation will be analyzed to identify the most effective machine learning

models for intrusion detection. The strengths and limitations of different machine learning

approaches for intrusion detection will be discussed. The results will be compared to previous

research to determine the performance of the proposed models compared to other models. Based

on the results and analysis, a conclusion will be drawn, and recommendations for future research

will be provided.

In summary, the proposed methodology involves using the NSL-KDD dataset to evaluate the

performance of different machine learning models for intrusion detection. The models will be

trained and evaluated using various performance metrics, and the results will be analyzed to

identify the most effective models for intrusion detection. The proposed methodology will provide

insights into the strengths and limitations of different machine learning approaches for intrusion

detection.

19

Model Performance Evaluation

To evaluate the performance of the machine learning models in the context of this thesis, multiple

performance metrics will be used. These metrics will help assess the models' effectiveness in

accurately detecting various types of cyberattacks. The selected metrics are:

Accuracy: The proportion of correctly classified instances out of the total instances. It is calculated

as

(True Positives + True Negatives) / eq 4

(True Positives + False Positives + True Negatives + False Negatives)

Precision: The proportion of true positive instances among the instances predicted as positive. It

is calculated as

True Positives / (True Positives + False Positives) eq 5

Recall (Sensitivity) : The proportion of true positive instances among the actual positive instances.

It is calculated as True Positives / (True Positives + False Negatives) eq 6

F1 Score: The harmonic means of precision and recall, which provides a balanced measure of

both metrics. It is calculated as

 2 * (Precision * Recall) / (Precision + Recall) eq 7

Receiver Operating Characteristic (ROC) Curve

 A graphical representation of a classifier's performance, showing the trade-off between true

positive rate (sensitivity) and false positive rate (1 - specificity) at various thresholds.

20

These metrics will be used to compare the performance of different machine learning models in

detecting various types of cyberattacks. By analyzing these metrics, we can identify the strengths

and weaknesses of each model and determine the most effective models for intrusion detection.

Additionally, visualizations such as confusion matrices, ROC curves, and calibration plots will be

used to provide further insights into the performance of the models. These visualizations will help

identify any potential issues with the models, such as misclassifications, and support the

interpretation of the performance metrics.

In summary, the proposed methodology for evaluating the performance of the machine learning

models includes the use of various metrics, formulas, and visualizations to assess the effectiveness

of the models in detecting different types of cyberattacks. This comprehensive evaluation will

enable us to draw meaningful conclusions and provide recommendations for future research in the

field of intrusion detection.

What is a Confusion Matrix

A confusion matrix is a combination of expected and actual categorization data that is used in a

specific system. For the performance analysis, the data obtained for such a system is examined. A

confusion square matrix including positive and negative rates is constructed during predictive

analysis (both true and false)

 Predicted As

Normal

Predicted As

Attack

Actually Normal TN FP

Actually Attack FN TP

Table 1: Confusion Matrix: Source: (Smith, 2020)

21

3. Literature review

3.1. Computer security background

Computers and the Internet are now vital in practically every aspect of our life. Since the invention

of the personal computer, the number of users has grown at an exponential rate, and it is today

hard to imagine a company, university, or even small shops using computers to save all its

customer, purchase, and inventory data in an electronic database or the computer.

With the ability to link many computers and networks, the need to safeguard all this data and

computers from intruders (hackers) who want to steal secret information for their own gain or just

delete or change vital data appeared.

Simultaneously with the growth of the Internet was the security requirements grew exponentially,

and there was no way to stop them. Equilibrium among privacy and use resources is a difficult

notion to grasp; the network must also be adaptable enough to meet the needs required to track

down the cybercriminals.

With the increasing use of computers and the internet, cyber security has become a major concern

for both individuals and businesses. The growth in the number of users and the interconnectivity

of networks has resulted in an increased risk of cyber-attacks and the need for robust security

measures to protect against these attacks (NIST, 2018).

There are various security methods available to secure computer systems, but it is nearly

impossible to create an invulnerable system. A robust security strategy and a thorough risk

analysis, combined with well-educated users, can significantly improve the security of a computer

system (Kumar, 2015).

The three primary pillars of computer security are confidentiality, integrity, and availability (CIA),

which represent the goals of computer security (Kizza, 2017). Confidentiality is about the

protection of sensitive information from unauthorized access. Integrity ensures that data is

accurate, complete, and has not been tampered with by an unauthorized party. Availability refers

to the ability of authorized users to access the system and its resources. Any activity that

jeopardizes the confidentiality, integrity, or availability of information or computer resources is

considered an intrusion.

22

Figure 18: System Integrity: Source: (Ruiz, I.P. and Ramón, 2008)

One method of identifying an intrusion is through the characterization of unusual behavior and

system usage (Jin et al., 2020). This type of intrusion detection aims to measure a user's typical

behavior and detect any deviations from it. There are three primary types of attacks based on who

carries them out: external penetration, internal penetration, and resource abuse (Kizza, 2017).

External penetration refers to attacks from outside the network firewall, while internal penetration

is carried out by unauthorized users within the firewall. Resource abuse occurs when authorized

users misuse data or resources in unexpected and undesired ways.

To identify and prevent intrusions, it is essential to distinguish between the three primary types of

attacks: external penetration, internal penetration, and resource abuse. Active and passive security

measures can be employed to protect computer systems from these types of attacks. Active security

measures, such as firewalls and intrusion prevention systems, are used to filter access to specific

services or connections and intervene in the event of an attack. Passive security measures, such as

intrusion detection systems, are used to alert the system to potential threats (Chen et al., 2020).

In a survey of big data and security analytics conducted by Ponemon Institute (2018), it was found

that most big companies and industries use a variety of security solutions to defend themselves

against cyber threats. The survey revealed that the most used security measures were firewalls,

endpoint protection, identity and access management, intrusion detection, and intrusion prevention

systems.

In summary, computer security is an essential aspect of modern life due to the widespread use of

computers and the internet. While there are various security methods available, it is nearly

impossible to create an invulnerable system. A combination of active and passive security

23

measures, as well as well-educated users, can significantly improve the security of computer

systems. The use of a variety of security solutions, such as firewalls, intrusion detection, and IPS,

is common among big companies and industries to protect against cyber threats.

Figure 19: Security Analytics Survey (Oppmann, 2022)

3.2. Overview of Intrusion Detection

The increasing prevalence of cyberattacks highlights the urgent need for advanced and effective

intrusion detection systems (IDS) to minimize unplanned downtime and protect against potential

losses. An IDS is a security solution that monitors network traffic for signs of unauthorized access,

misuse, and/or policy violations (Mishra, 2019).

Intrusion detection systems can be categorized into two types: signature-based and anomaly-based

detection systems. Signature-based IDS matches known attack signatures against the traffic

passing through the system. On the other hand, anomaly-based IDS detects abnormal network

traffic behavior and activities that do not conform to the expected usage patterns (Ghebleh et al.,

2021).

24

To address the limitations of traditional IDS systems, researchers have turned to machine learning

(ML) and artificial intelligence (AI) techniques. By leveraging the ability of ML models to

automatically learn from data, these systems can learn to identify new and previously unknown

attacks. A significant advantage of using ML-based IDS is their ability to adapt to new attacks by

detecting and responding to previously unseen patterns of network traffic (Ghebleh et al., 2021).

Some of the most used ML algorithms for network intrusion detection are decision trees, artificial

neural networks (ANN), and support vector machines (SVM) (Jain & Mishra, 2019). The choice

of algorithm depends on the type of data and the required performance metrics. For example (Jain

and Mishra ,2019) evaluated the performance of different ML algorithms on the NSL-KDD dataset

and found that a multi-layer perceptron neural network (MLP-NN) outperformed other algorithms

in terms of detection accuracy, recall, and F1 score.

In recent years, deep learning (DL) approaches have also been applied to network intrusion

detection systems. DL models, such as convolutional neural networks (CNN) and recurrent neural

networks (RNN), have been shown to achieve high accuracy and improved performance in

detecting new and complex attacks (Li et al., 2022). For example, (Li et al.,2022) proposed a hybrid

CNN-LSTM model for network intrusion detection that outperformed other state-of-the-art models

on the NSL-KDD dataset.

 3.3. Related Works

The paper titled, "Comparison of Machine Learning Techniques for Intrusion Detection System,"

authors (Shahid et al, 2021) compare the performance of four machine learning algorithms for

intrusion detection: Random Forest, Support Vector Machine, Logistic Regression, and Gaussian

Naive Bayes. The study aims to determine which algorithm is best suited for detecting intrusion

attacks in network traffic.

The authors collected and preprocessed network traffic data from the NSL-KDD dataset and used

it to train and test each algorithm. They evaluated the performance of each algorithm using several

performance metrics, including accuracy, precision, and recall, F1-score, and ROC curve.

25

The results of the study showed that Random Forest had the highest accuracy (99.13%) and F1-

score (99.13%).

The study also found that Random Forest and Support Vector Machine had the best performance

in detecting different types of attacks, including DoS, Probe, R2L, and U2R. The authors conclude

that Random Forest and Support Vector Machine are suitable for intrusion detection systems in

detecting network attacks with high accuracy and low false positives.

The paper titled "Comparative Analysis of Machine Learning Techniques for Intrusion Detection

System" by (Yassin et al.,2021) compares the performance of four machine learning algorithms

(random forest, decision tree, k-nearest neighbors, and support vector machine) for intrusion

detection on the NSL-KDD dataset. The authors evaluate the algorithms based on four metrics:

accuracy, precision, recall, and F1-score. They also conduct a feature selection process to identify

the most important features for intrusion detection.

The results show that random forest and support vector machine outperform decision tree and k-

nearest neighbors in terms of accuracy, precision, recall, and F1-score. The authors also find that

the selected subset of features leads to better performance compared to using all features.

Comparative Analysis of Machine Learning Techniques for Intrusion Detection" by (Balaji et al.,

2022) evaluated the performance of five machine learning algorithms (K-Nearest Neighbor,

Support Vector Machines, Decision Trees, Random Forest, and Gradient Boosting) in detecting

intrusion attacks in a simulated network environment. The authors used the NSL-KDD dataset and

performed feature selection using mutual information gain.

Their results showed that Random Forest and Gradient Boosting outperformed the other

algorithms in terms of detection accuracy, false positive rate, and F1-score. The authors also found

that mutual information gain-based feature selection significantly improved the performance of

the algorithms, especially for K-Nearest Neighbor and Decision Trees.

In conclusion, the study provided insight into the performance of different machine learning

algorithms for intrusion detection and showed the effectiveness of mutual information gain-based

feature selection in improving the performance of certain algorithms.

26

3.4. Types of Intrusion Detection System

3.4.1. Host -based Intrusion Detection System

Host-based intrusion detection systems (HIDS) monitor and analyze the events and activities that

occur within a single host or endpoint. HIDS aim to detect any suspicious or malicious activity

that could compromise the security of the host or the entire network. HIDS have access to a wealth

of information about the host's system calls, processes, and other system-level activity, which

makes them capable of detecting attacks that cannot be identified by network-based intrusion

detection systems (NIDS) (Huang et al., 2016).

HIDS typically work by comparing the observed system activity to a predefined set of rules or

profiles that describe normal behavior. Any deviation from the established rules or profiles is

considered an anomaly and is flagged as a potential security threat. The detected anomalies are

then analyzed by security administrators or automated systems to determine whether they represent

actual attacks or false positives (Pawar & Bhavsar, 2018). One of the main advantages of HIDS is

their ability to detect insider threats, which are attacks carried out by authorized users with access

to the system. HIDS can also detect attacks that are specifically designed to evade network-based

detection systems, such as those that use encrypted channels or tunneling protocols (Huang et al.,

2016).

Several studies have evaluated the effectiveness of HIDS in detecting various types of attacks. For

example, (Cui et al., 2018) proposed a HIDS based on machine learning algorithms for detecting

malicious code execution on Windows operating systems. Their results showed that the proposed

HIDS achieved high accuracy and low false positive rates in detecting different types of malicious

code.

3.4.2. Network -based Intrusion Detection System

Network-based intrusion detection systems (NIDS) are designed to monitor network traffic and

detect potential intrusion attempts. They analyze network packets and identify patterns that match

27

known attack signatures or anomalous behavior that deviates from normal network activity. NIDS

can be deployed at various locations in the network topology, such as at the perimeter, core, or on

specific subnets.

One common type of NIDS is signature-based detection. Signature-based NIDS uses a database of

pre-defined attack signatures to match against network traffic and identify potential attacks.

Researchers in (S. Singh & K. Singh, 2019) proposed a signature-based NIDS system that uses a

multi-layered approach to detect attacks in real-time. The system uses multiple detection engines,

including a rule-based engine, signature-based engine, and machine learning engine, to increase

the accuracy of the detection. Anomaly-based NIDS, on the other hand, use machine learning and

statistical techniques to identify abnormal network behavior that may indicate an attack.

Researchers in (N. A. O. Al-Nassiri et al., 2019) proposed an anomaly-based NIDS that uses

clustering and classification techniques to identify potential attacks. The system utilizes K-means

clustering to group network traffic into different clusters and then uses a support vector machine

(SVM) to classify each cluster as either normal or anomalous.

Another type of NIDS is hybrid detection, which combines signature-based and anomaly-based

detection techniques. Researchers in (A. U. Hassan et al., 2019) proposed a hybrid NIDS that

utilizes a combination of signature-based detection, machine learning, and deep learning

techniques. The system uses a convolutional neural network (CNN) to extract features from

network traffic and a random forest classifier to classify the traffic as normal or malicious.

Intrusion prevention systems (IPS) are another type of NIDS that not only detect potential attacks

but also take preventive measures to stop them. Researchers in (K. M. Alqudah et al., 2019)

proposed an IPS that uses a combination of signature-based and behavior-based detection

techniques. The system uses Snort, a popular open-source NIDS, for signature-based detection and

Bro, another open-source network security monitoring tool, for behavior-based detection. The IPS

also utilizes a honeypot, a decoy system designed to attract and detect attacks, to provide an

additional layer of security. Therefore network-based intrusion detection systems are critical for

identifying and preventing potential attacks in computer networks. They can be deployed at

various locations in the network topology and utilize different detection techniques, such as

signature-based, anomaly-based, and hybrid detection, to improve their accuracy. The use of

28

intrusion prevention systems provides an additional layer of security by not only detecting but also

preventing potential attacks.

Figure 20: Architecture of a Network-Based IDS security System (Hosseinzadeh, 2022)

3.4.3. Strength of network-based IDS

Network-based intrusion detection systems (NIDS) have several strengths that make them an

effective security solution for protecting against network attacks. Firstly, NIDS can monitor

network traffic in real-time, providing immediate alerts to potential threats. This allows for quick

responses to prevent attacks from causing significant damage.

Secondly, NIDS can detect network-based attacks that originate from external sources and internal

sources, including unauthorized network access attempts, malware infections, and denial-of-

service (DoS) attacks. Thirdly, NIDS can analyze network traffic at different levels, including

packet-level, session-level, and application-level. This provides a comprehensive view of network

activity, making it easier to detect and prevent sophisticated attacks. Lastly, NIDS can be used to

29

monitor large-scale networks and can be easily deployed and managed, making them an effective

solution for protecting against network attacks in complex environments.

3.4.4. Weakness of network-based IDS

There are several weaknesses of network-based IDS that should be considered, including:

Inability to detect attacks within encrypted traffic: Network-based IDS cannot detect attacks within

encrypted traffic since they cannot analyze the contents of the encrypted packets (NIST, 2018).

False positives: Network-based IDS can generate a high number of false positives, particularly

when detecting anomalies, as legitimate network activity may be interpreted as an attack (Liu et

al., 2019).

Dependence on network topology: Network-based IDS may not be effective in large and complex

networks, where the topology is constantly changing. The IDS may miss attacks that occur outside

its range of monitoring or that are not visible due to network segmentation (Chen et al., 2020).

Performance degradation: Network-based IDS may suffer from performance degradation due to

the high volume of network traffic that needs to be analyzed. This can result in delays and missed

attacks (Jain & Mishra, 2019). Susceptibility to evasion techniques: Attackers may use evasion

techniques to bypass network-based IDS, such as fragmentation, tunneling, or packet obfuscation

(Ghebleh et al., 2021).

Overall, network-based IDS can be an effective security solution for detecting network-based

attacks. However, it is important to consider the limitations and weaknesses of the system and to

use it in combination with other security measures to provide comprehensive protection against

cyber threats.

30

3.5. Category according to the learning method

 3.5.1. Signature-based detection

Signature-based IDS, also known as rule-based IDS, compares the traffic passing through a system

with a database of known attack signatures (Ghebleh et al., 2021). These signatures are pre-defined

patterns of network traffic that correspond to known attacks. When the IDS detects a match

between the traffic passing through the system and an attack signature, it generates an alert or takes

action to prevent the attack (Mishra, 2019).

One advantage of Signature-based IDS is their ability to detect known attacks with high accuracy

and low false positives (Agyeman et al., 2020). Signature-based IDS are also relatively simple to

implement and can operate in real-time (Jain & Mishra, 2019).

However, Signature-based IDS have limitations. They are unable to detect new or previously

unknown attacks that do not match any of the pre-defined attack signatures (Ghebleh et al., 2021).

This limitation is particularly significant given the increasing prevalence of new and sophisticated

cyber threats that do not have pre-existing signatures (Li et al., 2022).

Despite their limitations, Signature-based IDS remain an important component of a comprehensive

network security strategy. They are particularly effective in detecting well-known and widely used

attacks that have established signatures, such as the Ping of Death and SQL injection attacks

(Mishra, 2019).

3.5.2. Anomaly Based Detection

Anomaly-based intrusion detection systems (IDS) are designed to detect network attacks based on

deviations from normal system behavior, as opposed to looking for specific known attack patterns

like signature-based IDS. Anomaly-based IDS rely on creating a baseline of normal system

behavior and then identifying any activity that deviates from that baseline. If the system identifies

activity that falls outside of the normal behavior pattern, it raises an alarm or takes action to block

the suspicious activity.

31

One approach for anomaly-based IDS is statistical anomaly detection, which utilizes statistical

methods to establish a baseline of normal behavior and then detect deviations from that baseline.

One such method is Principal Component Analysis (PCA), which reduces the dimensionality of

data and identifies correlations among variables to determine normal behavior patterns. Other

statistical methods used in anomaly-based IDS include clustering, classification, and regression

analysis (Xu et al., 2018).

Another approach for anomaly-based IDS is machine learning-based anomaly detection. Machine

learning algorithms can learn to identify normal and abnormal behavior patterns based on historical

data. These algorithms can be trained on both labeled and unlabeled data, making them capable of

detecting previously unknown attacks. Examples of machine learning algorithms used in anomaly-

based IDS include decision trees, neural networks, and support vector machines (SVMs) (Alazab

et al., 2020).

A third approach for anomaly-based IDS is behavior-based detection, which focuses on identifying

behavior patterns that deviate from the user’s normal behavior, instead of detecting anomalies in

the network traffic itself. This method is useful for detecting insider attacks or other attacks that

involve user behavior. The behavior patterns are established through profiling the user’s behavior

over a period and identifying any deviations from the normal pattern (Saini & Singla, 2019).

In summary, anomaly-based IDS are designed to detect attacks based on deviations from normal

behavior patterns, rather than identifying known attack signatures. Statistical methods, machine

learning algorithms, and behavior-based detection are commonly used approaches for developing

anomaly-based IDS. These methods offer several advantages, such as the ability to detect

previously unknown attacks and identifying abnormal user behavior patterns.

3.5.3. Hybrid Intrusion Detection

 Hybrid IDS is a combination of two or more IDS types and aims to overcome the limitations of

each individual IDS. It can provide more accurate and effective intrusion detection by utilizing

multiple detection methods. The combination of signature-based and anomaly-based IDS is a

common approach for hybrid IDS.

32

One study by (Velayutham et al. ,2017) proposed a hybrid IDS that combines signature-based and

anomaly-based IDS to improve the accuracy of intrusion detection. The study evaluated the

performance of the proposed hybrid IDS on the NSL-KDD dataset and found that it outperformed

both signature-based and anomaly-based IDS.

Another study by (Kaur and Singh ,2018) proposed a hybrid IDS that combines machine learning

and rule-based techniques to improve the accuracy of intrusion detection. The study evaluated the

performance of the proposed hybrid IDS on the KDDCup'99 dataset and found that it achieved

better performance compared to individual IDS.

A third study by (Sari et al., 2019) proposed a hybrid IDS that combines three IDS types: signature-

based, anomaly-based, and stateful protocol analysis. The study evaluated the performance of the

proposed hybrid IDS on the DARPA 2000 dataset and found that it achieved higher detection rates

and lower false positive rates compared to individual IDS.

Therefore, hybrid IDS combines multiple IDS types to improve the accuracy and effectiveness of

intrusion detection. The combination of signature-based and anomaly-based IDS is a common

approach for hybrid IDS, but other combinations of IDS types and techniques can also be used.

3.6. Where IDS Should be Placed in Network Topology

The placement of IDS in a network topology is crucial in maximizing its effectiveness in detecting

and preventing intrusions. IDS can be placed in different locations within the network topology,

including at the perimeter, internal network, and endpoints (hosts).

Placing IDS at the network perimeter allows it to monitor all incoming and outgoing traffic from

external networks. This can help to detect and prevent attacks before they can reach the internal

network. However, this approach may not be effective in detecting internal threats or attacks that

bypass perimeter defenses (Jain & Mishra, 2019).

Internal network IDS is placed within the internal network to monitor traffic between hosts,

servers, and other devices. This can help to detect and prevent internal threats, such as insider

attacks, and attacks that bypass perimeter defenses. However, this approach may require additional

resources and can be challenging to implement in large or complex networks (Chen et al., 2020).

33

End-point IDS is placed on individual hosts to monitor and protect against local threats, such as

malware infections or unauthorized access. This approach can be effective in detecting and

preventing local threats but may not be sufficient to protect against network-level attacks (Mishra,

2019).

The optimal placement of IDS depends on the organization's specific security needs and the

network topology. A combination of multiple IDS placed at different locations within the network

can provide a more comprehensive security posture.

Figure 21: Typical Location for an Intrusion Detection System (Rehman, 2003)

There are several options for integrating IDS technologies into our network, each with its own set

of benefits and drawbacks.

As a result, the IDS's placements inside a network have various features. Then we'll see a variety

of options inside the same network

34

Demilitarized Zone (DMZ)

In network security, a Demilitarized Zone (DMZ) refers to a separate, isolated subnetwork that

functions as an intermediary between an organization's internal network and the external, untrusted

Internet (Liska, 2014). The DMZ provides a layer of protection by hosting publicly accessible

services and resources, such as web servers, email servers, and application servers, thus shielding

the internal network from direct exposure to external threats (Cole & Northcutt, 2011). By

implementing a DMZ, organizations can mitigate the risk of unauthorized access, enhance security

measures, and maintain the integrity of sensitive data within their internal networks.

Assume you have a network with a firewall separating the Internet from the demilitarized zone

(DMZ). As indicated in the next diagram, there is one that separates the DMZ from the

organization's intranet, and another that separates the DMZ from the intranet.

Figure 22: Near DZS (Ruiz, I.P. and Ramón, 2008)

3.6.1. In front of the external firewall

Placing our ids in this position will help to capture any types off attacks coming to attack the

external firewall and the organization network from the outer layer. In this location the false

alarm will be high this can be considered as a disadvantage.

35

Figure 23: In front of The External Firewall (Ruiz, I.P. and Ramón, 2008)

3.6.2. Behind the external firewall

This location is inside the DZS zone which is in the middle of the firewalls in this location ids

catch; the attack passed the main firewall this is very important to get feedback to the second

firewall to configure it accordingly.

this area has a low false alarm rate but can be harmed by the saturation of a large amount of data

from the network traffic.

Figure 24: Behind the External Firewall (Ruiz, I.P. and Ramón, 2008)

36

3.6.3 Behind the second firewall

At this point, we place the IDS near the internal network right side to the second firewall. The

amount of network traffic riches here is very small and the significance of the IDS is also very less

compared to the other positions.

Figure 25: Behind the Second Firewall (Ruiz, I.P. and Ramón, 2008)

3.7. Intrusion detection system administration

It is important to have an IDS policy in place before deploying an IDS on your network. The policy

should include rules for identifying intruders and responding to them appropriately (Rehman,

2003). The components of an IDS policy should be defined, including specific rules and how they

will be implemented. Additional components can be added based on individual needs (Cisco

Systems, 2022).

• Who will keep an eye on the IDS? There should be alerting methods that offer information

about intruder behavior depending on the IDS. These alerting systems can be as basic as

text files, or they can be more complex, integrating with centralized network management

systems such as HP Open View or MySQL databases. Someone must keep an eye on

intruder behavior, and the policy must specify who is accountable (s). Pop-up windows or

web interfaces can also be used to monitor intruder behavior in real-time. Operators in this

situation must be familiar with alerts and their implications in terms of severity levels.

37

• Who will deal with incidents and how will they be dealt with? There's no purpose in

establishing an IDS if you don't know how to handle incidents. You should involve some

government entities depending on the seriousness of the occurrence.

• What will the escalation procedure look like (level 1, level 2, etc.)? The escalation

procedure is essentially a technique for dealing with incidents. Which events should be

escalated to senior management should be explicit should be stated in the policy.

With the IDS policy in place, you’ll know how many IDS sensors and other resources you'll need

for your network infrastructure. You will be able to determine the cost of ownership of IDS more

precisely with this information.

3.8. How to Protect IDS Itself

One of the most pressing concerns is how to safeguard the system on which your IDS software is

installed. If the IDS's security is breached, you may begin to get false alarms or no alarms at all

(Rehman, 2003). Before launching a cyberattack, the intruder may deactivate IDS. There are a

variety of ways to secure your system, ranging from very basic tips to more advanced techniques.

A few of them are listed below (Rehman R.U.,2003).

• Turn off any services that are running on the IDS sensor/server. The most typical technique

of compromising a system is through a network attack.

• New vulnerabilities are uncovered, and suppliers provide updates. This is a near-constant,

non-stop process. The platform on which you're running IDS should be patched with your

vendor's most recent versions. If IDS is installed on a Microsoft Windows workstation, for

example, you should have all of Microsoft's current security updates loaded every time

nonstop.

3.9. Machine Learning Approaches and Implementation on Cyber-Security

Machine learning (ML) has been increasingly utilized in the field of cybersecurity due to its ability

to detect and respond to previously unseen attacks automatically. Several studies have shown that

38

ML approaches can effectively complement traditional security methods and enhance the accuracy

of intrusion detection systems (IDSs) (Kumar et al., 2021; Shahid et al., 2021).

One of the most used ML techniques in cybersecurity is supervised learning, which involves

training an algorithm on labeled data to identify patterns and make predictions. Decision trees,

random forests, and support vector machines are some of the supervised learning algorithms that

have been applied to intrusion detection (Yasin et al., 2021). Another ML technique that has been

shown to achieve high accuracy in detecting network intrusions is deep learning, which uses neural

networks to learn complex patterns and relationships in data (Li et al., 2022).

To implement ML-based IDSs, several steps are typically involved, including data preprocessing,

feature selection, model training, and model evaluation. Data preprocessing involves cleaning and

preparing the data for analysis, while feature selection involves selecting the most relevant features

to be used in the model. Model training involves feeding the preprocessed data into the ML

algorithm to learn patterns and make predictions, while model evaluation involves assessing the

performance of the model on unseen data using metrics such as accuracy, precision, recall, and

F1-score (Balaji et al., 2022).

Despite the potential benefits of ML-based IDSs, there are also some challenges to their

implementation. One of the primary challenges is the difficulty in acquiring large and diverse

datasets for training and testing the models. Another challenge is the need for high computational

power and resources to train and evaluate the models, especially for deep learning algorithms (Jain

& Mishra, 2019).

3.9.1. Supervised Learning

Supervised learning is the task of inferring from labeled training data. The training data consists

of training examples, with each example comprising an input object (usually a vector) and the

desired output value (also known as the supervisory signal) (Alpaydin, 2010). The training data is

analyzed by a supervised learning algorithm, which generates an output. This output is an inferred

function that can be used to map new examples. An ideal situation will allow the algorithm to

accurately establish the class labels for cases that haven't been seen, which requires that a learning

algorithm will generalize from the training data to unknown scenarios in a "reasonable" time frame

(Bishop, 2006).

39

"Regression" and "classification" problems are frequently associated with supervised learning

challenges. In a regression problem, we aim to anticipate results within a continuous output, which

means we try to map input variables to some continuous function. Instead, in a classification task,

we're attempting to anticipate discrete output values. To put it another way, we're attempting to

categorize input variables into distinct groups (James et al., 2013).

The most prevalent method for training neural networks and decision trees is supervised learning.

Both methods relay heavily on the data provided by the specified categories. The classification is

used to determine the network's error and then adjust the network to minimize it in the case of

neural networks, and the classifications are used in the case of decision trees to determine which

attributes provide the most information that can be used to solve the classification puzzle (Han et

al., 2011).

3.9.2. Unsupervised Learning
The task of inferring a function from unlabeled data to characterize the underlying structure is

known as unsupervised learning. The learner is given only unlabeled training data and is required

to make predictions for all points that are not visible. Unsupervised learning allows us to tackle

challenges with little or no prior knowledge of what we should accomplish our objectives. We can

infer structure from data even if we don't know the variables' effects. This structure can be derived

by clustering the data based on the relationships between the variables. There is no feedback from

the prediction results with unsupervised learning (Alpaydin, 2010).

Unsupervised learning challenges include clustering and dimensionality reduction. Unsupervised

learning methods such as the self-organizing map (SOM) and adaptive resonance theory (ART)

are often utilized in neural network models (Hinton and Salakhutdinov, 2006). The fundamental

disadvantage of supervised anomaly detection is the requirement to label the training data, which

makes the process error-prone, costly, and time-consuming, as well as difficult to find new threats.

Unsupervised anomaly detection tackles these difficulties by allowing online learning and boosting

detection accuracy by allowing training on unlabeled data sets (Patcha and Park, 2007). When

compared to supervised anomaly detection systems, unsupervised anomaly detection is relatively

new (Chandola et al., 2009).

40

Overall, both supervised and unsupervised learning algorithms have been successfully applied in

intrusion detection systems to detect and prevent cyber-attacks. Supervised learning algorithms

are useful for detecting known attacks and require labeled data to train the model, while

unsupervised learning algorithms are useful for detecting unknown attacks and can discover

patterns and anomalies in unlabeled data. The choice of algorithm depends on the specific needs

and requirements of the intrusion detection system.

3.10. Model selection preliminaries

A major issue with Intrusion Detection Systems is determining how to efficiently distinguish

between normal and abnormal activities from many raw data variables. Also, how to properly

implement automatic intrusion rules based on the network's raw data. Different data mining and

machine learning approaches have been developed to analyze the information to solve such

challenges, such as classification, grouping, association, and so on. Four of the most popular and

commonly used algorithms from those strategies are covered in below.

The main goal for selecting a good Machin learning algorithm is to categorize fresh/unseen test

samples appropriately. The purpose of model selection is to make this procedure easier. To put it

another way, we transfer from one model (kernel) to another to improve generalization. The model

we chose will determine how we respond to any training data, i.e., which classifier we use to

predict future cases. As a result, model selection is inextricably linked to how we determine the

"best fitting" classifier from a given model. After all, how effectively we generalize is determined

by the best-fitting classifier.

Let Sn = { (x1, y1), . . . ,(xn , yn) } represents a our training set of n labeled datas. If we select

model Fi then we get the best fitting discriminant function f ˆ i ∈ Fi by minimizing (Tommi

Jaakkola 2006)

 𝐽 = (𝜃, 𝜃𝑜)=∑ 𝑙𝑜𝑠𝑠(𝑦𝑡, 𝑓(𝑥𝑡
𝑛
𝑡=1 ;𝜃, 𝜃𝑜))+ 𝜆𝑛…‖𝜃‖2 eq 8.

41

3.11. Machine learning Algorithms

3.11.1. Support Vector Machine

Support Vector Machines (SVMs) were first proposed by Vapnik in the 1960s and have recently

gained much attention due to advances in methodology and theory, as well as applications to

regression and density estimation. SVMs are a type of supervised learning model used for

classification and regression analysis, capable of handling multiple continuous and categorical

variables (Boser et al., 1992). The basis of SVMs is the concept of decision planes, which

determine the decision boundaries by separating the data into different classes.

SVMs use a training algorithm to create a model that assigns new examples to one of two

categories, making it a non-probabilistic binary linear classifier, given a set of training examples,

each labeled as belonging to one of the two categories. SVM models represent instances as points

in space, mapped in a way that separates the different categories by a large gap. New instances are

then mapped into the same space and classified according to which side of the gap they fall on.

SVMs can perform non-linear classification by using the kernel approach, which implicitly maps

the inputs to a high-dimensional space. The kernel approach allows SVMs to identify more

complex decision boundaries that may not be possible with linear classifiers. In essence, SVMs

attempt to find an optimal hyperplane that can separate the data into two distinct classes.

Overall, SVMs are a powerful and versatile machine learning tool that has been successfully

applied in various domains, including image classification, natural language processing, and

financial forecasting. (Cortes and Vapnik, 1995) (Suykens and Vandewalle, 1999) (Shawe-Taylor

and Cristianini, 2004)

One helpful idea behind SVMs is the notion of the maximum margin, which refers to the largest

separation between the two decision boundaries that still correctly classify all training examples.

By maximizing the margin, SVMs aim to achieve good generalization performance and avoid

overfitting the training data. (Burges, 1998)

42

As shown in Figure 9 there are several lines that provide a solution to the problem. Is one of them

superior to the others, we may create a criteria to measure the merit of the lines intuitively: When

a line passes too near to the points, it becomes noise sensitive and fails to generalize appropriately.

As a result, our objective should be to discover the line that passes through all the points as far as

feasible. The SVM method then operates by locating the hyperplane that provides the greatest

minimum distance between the training instances. Within SVM's theory, this distance is given the

crucial designation of margin twice. As a result, the best separating hyperplane maximizes the

margin.

Figure 26: Separating Hyperplane Maximizes the Margin (Hosseinzadeh,2020)

It is a type of machine learning algorithm. Let D be a classification dataset with n points in a d-

dimensional space D = {(xi, yi)}, with i = 1, 2, ..., n and yi is either +1 or -1. A hyperplane is a

plane that has more than one axis (x) produces a d-dimensional linear discriminant function that

divides the original space into two half spaces:

 ℎ(𝑥) = 𝑤𝑥 + 𝑤1𝑥1 + 𝑤2𝑥2 +⋯+𝑤𝑑𝑥𝑑 + 𝑏 eq 9.

Where w represents a d-dimensional weight vector, b represents a scalar bias, and x represents the

training instances that are closest to the hyperplane. Support vectors are the training samples that

are closest to the hyperplane in overall. The canonical hyperplane is the name given to this

depiction. H(x) = 0 for points on the hyperplane defined by all locations with wx = -b.

If the dataset is linearly separated, a separating hyperplane may be identified such that h(x) 0 for

all points marked -1 and h(x) > 0 for all points marked +1, according to (Cortes, C., & Vapnik, V.,

1995). h(x) is a linear classifier or linear discriminant in this example, predicting the category for

any point. Furthermore, because the weight vector w is perpendicular to the hyperplane, it gives

the normal direction, but the bias b sets a hyperplane's offsets in d-dimensional space.

43

According to Cristianini and Shawe-Taylor (2000), in a linearly separable dataset, a separating

hyperplane can be identified such that h(x) > 0 for all points labeled +1 and h(x) < 0 for all points

labeled -1. The SVM algorithm attempts to maximize the margin, which is the distance between

the hyperplane and the closest data points from both classes, while ensuring that no points lie on

the wrong side of the hyperplane. To achieve this, the SVM solves a quadratic optimization

problem that involves the Lagrange multipliers. After obtaining the multipliers, the SVM model

can predict the class of new examples based on the sign of the discriminant function h(x).

3.11.2 The Random Forest Algorithm

Random Forest is a decision tree-based ensemble algorithm that combines the predictions of

multiple decision trees. In Random Forest, each decision tree is trained on a random subset of the

training data and a random subset of the input features. This helps to reduce the variance of the

model and avoid over fitting.

Assuming an unknown joint distribution P(X,Y) for a p-dimensional random variable X = (X1,

X2, ..., Xp) representing the input or predictor variables and a random variable Y representing the

output variable, the goal of Random Forest is to learn a function f(X) that can accurately predict

the value of Y. This is done by constructing an ensemble of decision trees, where each tree is

trained on a randomly selected subset of the training data and a randomly selected subset of the

input features.

The prediction function f(X) for a new input X is obtained by aggregating the predictions of all

the individual decision trees. In regression problems, the aggregation function is usually the mean

of the individual predictions, while in classification problems, the most common class predicted

by the individual trees is selected.

The Random Forest algorithm is formally defined as follows:

Given a training set of n data points {(X1, Y1), (X2, Y2), ..., (Xn, Yn)} and a set of m input features

{F1, F2, ..., Fm}, where m << n.

For each tree in the forest, randomly select a bootstrap sample of the training data of size n',

Where n' < n.

44

For each tree in the forest, randomly select a subset of the input features of size m',

Where m' < m.

Train each tree on the bootstrap sample and the subset of input features. For each input X, obtain

the prediction f(X) by aggregating the predictions of all the individual decision trees. The

prediction function f(X) is usually defined as the mean of the individual predictions for regression

problems, and the most common class predicted by the individual trees for classification problems.

The Random Forest algorithm can be further optimized by tuning the hyperparameters, such as the

number of trees in the forest, the size of the bootstrap sample, and the size of the subset of input

features. These hyperparameters can be optimized using techniques such as cross-validation.

The Random Forest algorithm is effective in a wide range of applications, including

bioinformatics, image processing, and financial forecasting. It is also relatively easy to implement

and computationally efficient.

Figure 27: Random Forest Algorithm (Goyal C, 2022)

45

3.11.3. Logistic Regression

Logistic Regression is a statistical method used for analyzing a dataset in which there are one or

more independent variables that determine an outcome (Cramer, 2002). The outcome is gaind with

a dichotomous variable, which means it will have only two possible outcomes. Logistic Regression

is used to predict the probability of the outcome occurring based on the given inputs.

The main formula for logistic regression is:

P(Y=1|X) = 1 / (1 + e^-(β₀ + β₁X₁ + β₂X₂ + ... + βₙXₙ)) eq 10.

Where:

P(Y=1|X) represents the probability of the outcome (Y) occurring given the values of the

independent variables (X).

β₀, β₁, β₂, ..., βₙ are the coefficients that represent the impact of each independent variable on the

probability of the outcome.

e is the base of the natural logarithm (approximately 2.71828).

In contrast to linear regression, which models the relationship between independent and dependent

variables using a straight line, logistic regression models the relationship using a sigmoid (S-

shaped) curve called the logistic function (Hosmer, Lemeshow, & Sturdivant, 2013).

The logistic function is known as the sigmoid function, is: f(x) = 1 / (1 + e^(-x)). A graph of the

logistic function would show the S-shaped curve, where the x-axis represents the linear

combination of independent variables (β₀ + β₁X₁ + β₂X₂ + ... + βₙXₙ), and the y-axis represents the

probability of the outcome (P(Y=1|X)).

The coefficients (β₀, β₁, β₂, ..., βₙ) in the logistic regression formula are estimated using the

maximum likelihood estimation method, which aims to find the values of the coefficients that

maximize the likelihood of observing the given data (Agresti, 2002).

Therefore, logistic regression is a powerful statistical method used for predicting the probability

of a binary outcome based on one or more independent variables. It uses the logistic function to

46

model the relationship between independent and dependent variables, and the coefficients are

estimated using the maximum likelihood estimation method.

3.11.4. Decision tree

Decision trees are a widely used and interpretable machine learning technique for both

classification and regression tasks (James et al., 2013). They recursively split the data into subsets

based on the values of input features, with the goal of minimizing impurity (i.e., maximizing the

homogeneity) within each subset (Quinlan, 1986).

To build a decision tree, various criteria can be used for selecting the best feature to split the data.

Two common criteria are information gain and Gini impurity.

Information gain (IG) is based on the concept of entropy (Shannon, 1948), which measures the

impurity of a dataset D:

Entropy(D) = -∑(p(c) * log2(p eq 11.

 Here, p(c) is the proportion of samples belonging to class c in dataset D. Information gain for a

feature F is defined as:

IG(F) = Entropy(D) - ∑(|Dv| / |D| * Entropy(Dv)) eq 12.

• Dv represents the subset of the dataset D with a specific value v of feature F, and |Dv| and

|D| denote the cardinalities of Dv and D, respectively.

• Gini impurity (GI) measures the probability of misclassifying a randomly chosen element

from dataset D if it were labeled based on the class distribution in D (Breiman et al., 1984):

GI(D) = 1 - ∑(p(c)²) eq 13.

• Gini impurity for a feature F is defined as:

GI(F) = ∑(|Dv| / |D| * GI(Dv)) eq 14.

47

The decision tree algorithm can be outlined as follows:

Select the best feature to split the data: Evaluate information gain or Gini impurity for each feature

and choose the feature that maximizes information gain or minimizes Gini impurity (James et al.,

2013).

Split the dataset based on the selected feature: Create child nodes for each possible value of the

feature and assign the corresponding data points to each child node.

Recursively repeat steps 1 and 2 for each child node: Continue to split the data in each child node

until a stopping criterion is met (e.g., a maximum depth is reached, or the remaining data points

are all from the same class).

Assign a class label or regression value to each leaf node: For classification tasks, the most

common class label in the leaf node is assigned, while for regression tasks, the mean target value

of the data points in the leaf node is assigned (James et al., 2013).

Figure 28: Example of Simple Decision Tree (Sumathi and Sivanandam, 2006)

Decision trees offer several advantages, including interpretability, handling of mixed data types,

and minimal preprocessing requirements. However, they are also be prone to overfitting and

instability. Overfitting can be mitigated by pruning or limiting the depth of the tree, while

instability can be addressed using ensemble methods, such as random forests or boosting (Breiman,

2001; Schapire, 2003).

48

4: Practical part

4.1. Implementation Tools

Programming languages:

Python: A widely used programming language for data analysis and machine learning with

extensive libraries and support.

Integrated Development Environments (IDEs):

Jupiter Notebook: An interactive web-based environment for Python, R, and other languages,

allowing you to combine code, text, and visualizations in a single document.

Visual Studio Code: A versatile and powerful code editor with support for Python, R, and many

other languages, as well as extensions for data science and machine learning tasks.

Data manipulation and analysis libraries:

Pandas (Python): A library for data manipulation and analysis, providing data structures like

DataFrames and Series, as well as functions for data cleaning, aggregation, and transformation.

NumPy (Python): A library for numerical computing in Python, offering support for arrays, linear

algebra, and mathematical functions.

Data visualization libraries:

Matplotlib (Python): A library for creating static, animated, and interactive visualizations in

Python.

Seaborn (Python): A library based on Matplotlib for creating statistical graphics in Python,

offering a higher-level interface for statistical graphics.

49

Machine learning and deep learning libraries:

Scikit-learn (Python): A comprehensive library for machine learning in Python, offering a wide

range of algorithms for classification, regression, clustering, and dimensionality reduction.

Random Forest (R): A library for creating random forest models for classification and regression

tasks in R.

4.3 Data source and description

The dataset used in this master's thesis was obtained from the link place below. (Data source:

https://www.unb.ca/cic/datasets/nsl.html.The NSL-KDD intrusion detection dataset has been

widely employed for training and evaluating models in the domain of network security, as it allows

for the comparison of various approaches. The dataset is based on a real-world military network,

which includes three "target" workstations running diverse operating systems and services. Three

additional workstations generate traffic by simulating different IP addresses. A sniffer records all

network communication using the TCP dump format. NSL-KDD is composed of compressed raw

(binary) TCP dump data collected over a period of seven weeks, which can be converted into

approximately five million training connections (Lavallee et al., 2009).

The model is typically trained on the training portion of the dataset and then tested on the test

portion to assess its performance. Each training dataset consists of 41 features and is labeled as

either normal or a specific type of threat. A reduced version of the dataset is used for memory-

constrained machine learning algorithms, containing around 67352 normal individual connection

vectors and 58630 attack. The training dataset is composed of 53% normal connections and 47%

attack connections.

• 53% normal connections

• 47% attack connections

50

Figure 29: Distribution of Attack Data Only. Data source: https://www.unb.ca/cic/datasets/nsl.html. Own

visualization.

dos: Denial of Service, probe: Probe, u2r: Privilege Escalation, r2l: Remote Access attacks.

Figure 30: Distribution of full data. Data source: https://www.unb.ca/cic/datasets/nsl.html. Own

visualization.

dos: Denial of Service, probe: Probe, u2r: Privilege Escalation, r2l: Remote Access attacks.

51

4.4. Data Pre-Processing

4.4.1. Mapping Normal as 0 and Attack as 1 (Encoding)

Before training the ML models, the dataset undergoes a pre-processing stage to ensure optimal

model performance.

• Protocol type: This feature represents the type of protocol used in the network connection.

There are three possible values: 'tcp', 'udp', and 'icmp'.

• Service: This feature represents the network service used in the connection, such as 'http',

'ftp', 'smtp', 'ssh', etc. There are a total of 70 different service types in the dataset.

• Flag: This feature represents the status of the connection, such as 'SF' (successful), 'S0'

(connection attempt seen, no reply), 'REJ' (connection attempt rejected), etc. There are 11

possible flag values in the dataset.

• The main problem in terms of data organization in this dataset are there are three

categorical futures and this categorical feature should be encoded to the numerical values

and the result become binary vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) So that this will be

understandable by the model.

 This One Hot Encoding enables the algorithms to process the data more efficiently and make

accurate predictions. The One Hot Encoding uses class called LabelEncoder() from the

sklearn.preprocessing module is used to perform this encoding.

Figure 31: Distribution feature columns One Hot Encoded. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization.

52

Protocols and Occurrence of Attacks for Each Protocol is available in the plot below.

Figure 32: Protocols and Occurrence of Attacks. Data source: https://www.unb.ca/cic/datasets/nsl.html.

Own visualization.

Icmp: Internet Control Message Protocol, tcp: Transmission Control Protocol, udp: User Datagram

Protocol.

4.4.2. Classifying Attacks into Four Categories

The dataset consists of numerous attack types. To simplify the classification process, we group

these attacks into four primary categories: Denial of Service (DoS), Probe, Privilege

Escalation(U2R), and Remote Access(R2L). This approach enables a more manageable and

focused analysis while still addressing the different types of cyberattacks.

Denial of Service (DoS) attacks: These attacks to disrupt the availability of a network or service

by overwhelming it with a flood of requests or traffic. The list of future in this category are:

apache2, back, land, neptune, mailbomb, pod, processtable, smurf, teardrop, udpstorm, worm.

Probe attacks (Probe): These attacks involve scanning and gathering information about a target

network, often to identify vulnerabilities that can be exploited. The list of futures in this category

are ipsweep, mscan, nmap, portsweep, saint, satan.

Privilege Escalation attacks (U2R) these attacks exploit vulnerabilities in a system to gain

unauthorized access to resources or elevated privileges. The list of futures in this category are

buffer_overflow, loadmdoule, perl, ps, rootkit, sqlattack, xterm.

Remote Access attacks (R2L): These attacks focus on gaining unauthorized access to a cyber

often to steal sensitive information or perform malicious actions. The list of futures in this category

53

are ftp_write, guess_passwd, http_tunnel, imap, multihop, named, phf, sendmail, snmpgetattack,

snmpguess, spy, warezclient, warezmaster, xclock, xsnoop. Hence the attack labels will be - DOS,

Probe, Privilege, Access, Normal The data was farther encoded the attack types (DoS, Probe, U2R,

R2L) with numerical labels (1, 2, 3, 4) this numbers are an arbitrary choice made to represent the

categorical attack types as numerical values. Machine learning algorithms typically require

numerical inputs, and assigning a unique numerical label to each attack type allows the algorithm

to process the data.

The numbers assigned to the attack types do not have any inherent meaning or order; they simply

serve to represent the different attack categories. The choice of numbers (1, 2, 3, 4) is arbitrary,

and other numerical representations (such as 0, 1, 2, 3) or different encoding techniques (e.g., one-

hot encoding) could also be used. The main point to use it is to ensure that the encoding is

consistent across the dataset and is properly interpreted by the machine learning algorithm.

4.4.3. Data Scaling

Before training models, it is crucial to standardize the features of the dataset to ensure that all

features have the same scale. This process helps improve the performance of the models and allows

them to converge faster during training. In this study, Standard Scaler () function from the scikit-

learn preprocessing library is used to scale the features of both the training and testing data for

each of the four categories: DoS, Probe, R2L, and U2R.

For each category, Standard Scaler instance on the training data was fitted and apply the same

transformation to both the training and testing data. This approach ensures that the scaling process

is consistent between the training and testing sets, which is important for obtaining reliable model

performance results.

4.5 Exploratory Data Analysis

4.5.1 Data Profiling and Visualization

Exploring the Attack Column in Detail

54

Training Test

Figure 33: Exploring Distribution of Training and Test set. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization.

Figure 34: Attack Distribution of NSL-KDD Dataset. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization.

Dos: Denial of Service, probe: Probe, U2R: Privilege Escalation, R2L: Remote Access attacks.

Dos normal Probe R2L U2R

Total 45927 67343 11656 995 52

45927

67343

11656

995 520

10000

20000

30000

40000

50000

60000

70000

80000

Distribution of Train set before preprocessing

55

Figure 35: Attack distribution of NSL-KDD Dataset. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization.

Dos: Denial of Service, probe: Probe, U2R: Privilege Escalation, R2L: Remote Access attacks.

As shown in the distribution there is a high number of unbalanced data and class size. This

unbalanced situation can lead to classification mistakes, with the model skewed toward the

majority class. To counteract the detrimental effects of training on an unbalanced dataset in the

next more steps explain them in detail.

Identifying and changing Nominal data into binary data

This stage basically involves cleaning the dataset to remove duplicate entries; however, because

the NSL-KDD dataset has already been cleaned, this step is no longer necessary. Because the

dataset comprises both numerical and non-numerical occurrences, a pre-processing procedure

must be performed.

There are 3 groups which have a nominal value and very hard to train the model these categories

are shown in the figure below.

Dos normal Probe R2L U2R

Total 7458 9711 2421 2754 200

7458

9711

2421
2754

2000

2000

4000

6000

8000

10000

12000
Distribution of test set before preprocessing

56

Categorical features

Training set:

Feature 'protocol_type' has 3 categories.

Feature 'service' has 70 categories.

Feature 'flag' has 11 categories.

Feature 'label' has 23 categories.

Figure 36: Service. Data source: https://www.unb.ca/cic/datasets/nsl.html. Own visualization.

Dos: Denial of Service, probe: Probe, U2R: Privilege Escalation, R2L: Remote Access attacks.

Figure 37: Protocol Type. Data source: https://www.unb.ca/cic/datasets/nsl.html. Own visualization.

Dos: Denial of Service, probe: Probe, U2R: Privilege Escalation, R2L: Remote Access attacks.

40338

0

10000

20000

30000

40000

50000

Total

A
X

IS
 T

IT
LE

SERVICES

Category

aol

auth

bgp

courier

csnet_ns

ctf

Total

Dos 45927

normal 67343

Probe 11656

R2L 995

U2R 52

01000020000300004000050000600007000080000

A
xi

s
Ti

tl
e

protocol_type

Category

Dos

normal

Probe

R2L

U2R

57

One hot encoding

Because the estimator (classifier) defined in scikit-learn works well with numerical inputs, the

conversion of the categorical data above is changed to numerical values as shown below in the

image using one-hot encoding approach. This method converts each category feature with m

potential inputs into n binary features, one of which is active at any given moment.

According to the analysis on the training set four categorical futures were found as listed below.

Figure 38: One hot Encoding. Data source: https://www.unb.ca/cic/datasets/nsl.html. Own visualization.

4.6 Feature Selection Using Recursive Feature Elimination (RFE)

Feature selection plays an important role in building effective machine learning models, as it helps

in identifying the most relevant features for the task and reduces the computational complexity of

the models. Recursive Feature Elimination (RFE) is used as a feature selection technique.

RFE is a recursive process that works by fitting a model, ranking the features based on their

importance, and removing the least important features one by one. This process is repeated until a

desired number of features are selected. RFE is particularly useful in identifying the most relevant

features that contribute to the classification task and can help improve the performance of the

models.

58

To implement RFE, RFE function from the scikit-learn feature selection library. RFE is applied to

each of the four categories: DoS, Probe, R2L, and U2R, to select the most relevant features for

each category. By doing so, it can be ensured that the machine learning models are trained on the

most informative features, leading to more accurate and efficient classification results.

Future reduction is carried out to eliminate useless, redundant, or noisy futures in the dataset. In

this feature selection stage, the futures that are more relevant is filtered out. The main reasons for

limiting the number of features is to remove the irrelevant characteristics that indicate connections

between features and target classes that are purely coincidental and do not accurately reflect the

situation.

As a best practice recursive feature elimination (RFE) perfectly implemented the procedure and

got a satisfactory result the sample is done in the decision tree model.

During a recursive feature elimination (RFE) with the number of features passed as a parameter

to identify the features achieved is sufficient number of features." This might imply that RFE is

simply used to acquire the best features, or that it is also utilized to achieve the rank. It can be

only utilized 13 of the 42 best futures from the dataset. In the RFE procedure, each attack classes

have different amounts of features for each attack category: 13 for DoS, 13 for Probe, 13 for

R2L, and 13 for U2R.

.

59

5. Results and Discussion

This section discusses the experiments conducted as part of this study and the results obtained.

The performance of various machine learning models is also examined in this chapter. Throughout

the entire process, the NSL-KDD dataset was used to develop a model, as outlined in the previous

chapter. It was observed that some models perform better against specific attack classes, while

their performance declines in other attack classes based on the evaluation findings. Machine

learning algorithms known to be effective against attack classes were trained and assessed using

the RFE method. To improve the results of several machine learning algorithms, meticulously pre-

processed the data before fitting it into the model is needed.

To further enhance the outcomes of various machine learning algorithms, should be carefully pre-

processed the data before feeding it into the model. In this research, WEKA, an open source is

software is used to do the exploratory analysis and some preprocessing tasks, but the model

training is performed by Python so the output that you see here is python generated.

In this chapter of the thesis, we will be evaluating the effectiveness of four different predictive

models, namely logistic regression, decision tree, support vector machine, and random forest, in

predicting the detecting the attack group. The result will be presented in the form of a confusion

matrix and a receiver operating characteristics (ROC) curve for each model, with the accuracy,

precision, recall, F1 score, and ROC being presented in a table for comparison. These metrics will

be used to rank the predictive power of each model.

The confusion matrix provides us with a visual representation of the performance of each model

by showing the number of true positives, true negatives, false positives, and false negatives. The

ROC curve, on the other hand, provides a graphical representation of the trade-off between the

true positive rate and the false positive rate at different classification thresholds. By comparing

these metrics across the four different models, we can gain a deeper understanding of their

respective strengths and weaknesses, and ultimately determine which model is most effective for

predicting which attack group is categorized correctly.

The modeling process, the foundational theory and the step-by-step execution of the overall

approaches is covered in the methodology and practical section.

60

5.1 Decision tree

Based on the results of the model, it has achieved an impressive performance on both the training

set and the test set, with scores of 0.94 and 0.95 respectively. This indicates that the model can

generalize well to unseen data.

Looking at the classification report, we see that the model has performed extremely well in

identifying normal traffic, with a precision of 0.99, recall of 0.95, and an F1 score of 0.97. This

suggests that the model can accurately identify normal traffic with a high degree of confidence.

For the other attack groups, the model has also performed well, with a precision ranging from 0.67

to 0.95 and a recall ranging from 0.67 to 0.97. This indicates that the model can accurately identify

most of the different types of cyber-attacks in the network traffic.

However, for the rare attack groups such as U2R and R2L, the model has low precision and recall,

which suggests that more data may be required to improve the model's performance in detecting

these types of attacks. This indicates that the model may be under fitting for these rare attack types.

To address this issue, additional data specifically related to these rare attack types may be needed

to improve the model's ability to accurately detect them. Alternatively, more complex machine

learning models or different feature engineering techniques could be explored to improve the

model's performance for these rare attack types.

Model overview

In the built model clf = tree.DecisionTreeClassifier(criterion='gini', splitter='best', max_depth=5)

the criterion parameter specifies the quality of the split using the Gini impurity measure. Gini

impurity is a measure of the probability of incorrectly classifying a randomly chosen element in

the dataset if it were randomly labeled according to the distribution of labels in the subset.

Where (pi) is the probability of class (i) in the subset, and (c) is the total number of classes.

61

Figure 39: Decision tree. Data source: https://www.unb.ca/cic/datasets/nsl.html. Own visualization.

62

In the Table IV and Figure 40 displays the top thirteen features with the highest feature importance

in the decision tree model, which were identified by recursive future elimination mechanism.

Figure 40: List of Important predictors. Data source: https://www.unb.ca/cic/datasets/nsl.html. Own

visualization.

In the above figure 40 the name of important predictors by rank is listed below

Feature code Feature Name Feature Importance score

42 is_guest_login 0.6951

22 dst_host_same_src_port_rate 0.1262

34 flag 0.0784

4 dst_host_diff_srv_rate 0.0541

35 same_srv_rate 0.0125

29 duration 0.0105

1 srv_rerror_rate 0.0092

0 rerror_rate 0.0045

27 dst_host_srv_diff_host_rate 0.0035

37 srv_count 0.0025

24 dst_host_srv_rerror_rate 0.0017

41 src_bytes 0.0010

5 dst_host_same_src_port_rate 0.0002

Table 2: Selected features as important predictors. Data source: https://www.unb.ca/cic/datasets/nsl.html.

Own table.

63

The decision tree output shows the feature code, feature name, and feature importance score for

each feature used in the tree. The feature code is simply a numerical identifier for each feature.

The feature importance score is a measure of how much each feature contributes to the decision

made by the tree. It is calculated as the total reduction of the impurity measure (such as Gini

impurity or entropy) that is achieved by splitting the data on that feature. The higher the feature

importance score, the more important the feature is in making decisions in the tree.

In this specific output, the most important feature is feature 42, which corresponds to the

"is_guest_login" feature. This feature has a feature importance score of 0.6951, meaning it is

highly influential in the decision making of the tree. The next most important feature is feature 22,

which corresponds to the "dst_host_same_src_port_rate" feature, with a feature importance score

of 0.1262. Features 34, 4, 35, and 29 also have non-zero feature importance scores and contribute

to the decision making of the tree.

Overall model performance is evaluation.

Figure 41: Overall model performance Decision tree. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization.

Overall, the model has achieved a weighted average F1 score of 0.95, which indicates that it is a

strong performer in predicting the different types of cyber-attacks in the network traffic. However,

there is still room for improvement in detecting rare attack types such as U2R and R2L, which

may require further investigation and data collection but for the sake of test followed a complex

and attack group specific future engineering based on Recursive future Elimination the feature for

each attack type as show in the table 6 and the dataset spited in to four places based on the and

trained them individually and the test result was promising by detecting even the class types with

less data on it .

64

Cross validation accuracy: A cross-validation score of 93.8% means that the model has a high degree

of accuracy in predicting the target variable across different folds of the dataset, indicating that it is

likely to generalize well to new, unseen data. It also suggests that the model is not overfitting to the

training data, as the performance is consistent across different splits of the data.

Confusion matrix

The rows represent the true class labels, while the columns represent the predicted class labels. For

example, in the first row and first column, we can see that there were 18,929 instances where the

true label was Normal, and the model correctly predicted it as Normal (true positive). In the second

row and first column, we can see that there were 307 instances where the true label was DoS but

the model predicted it as Normal (false negative).

Overall, the confusion matrix shows us how well the model is performing for each class. We can

see that the model is performing well for the Normal and DoS classes, with high numbers of true

positives and low numbers of false positives and false negatives. However, for the Probe, R2L,

and U2R classes, the model has higher numbers of false positives and false negatives, indicating

that it is not performing as well for these classes.

Figure 42: confusion matrix of Decision tree. Data source: https://www.unb.ca/cic/datasets/nsl.html.

Own visualization.

65

5.2. Logistic regression

The output of feature selection shows the top 13 features with their respective coefficients obtained

from logistic regression.

Figure 43: Logistic regression Coefficient. Data source: https://www.unb.ca/cic/datasets/nsl.html. Own

visualization.

The feature with the highest negative coefficient is the Root shell (feature 3), which suggests that

this feature has the most negative impact on the classification of the data. The feature with the

highest positive coefficient is the dst_host_same_src_port_rate (feature 22), which suggests that

this feature has the most positive impact on the classification of the data.

The negative coefficients for some of the features suggest that these features are negatively

correlated with the target variable, they are less likely to be associated with a particular attack type.

Conversely, the positive coefficients suggest that these features are positively correlated with the

target variable and are more likely to be associated with a particular attack type.

Overall, the coefficients provide insights into the importance of each feature in the classification

of attacks. These insights can be used to refine the feature selection process or to gain a deeper

understanding of the data.

66

Feature code Feature Name Feature Importance score

42 is_guest_login 0.6951

22 dst_host_same_src_port_rate 0.1262

34 flag 0.0784

4 dst_host_diff_srv_rate 0.0541

35 same_srv_rate 0.0125

29 duration 0.0105

1 srv_rerror_rate 0.0092

0 rerror_rate 0.0045

27 dst_host_srv_diff_host_rate 0.0035

37 srv_count 0.0025

24 dst_host_srv_rerror_rate 0.0017

41 src_bytes 0.0010

5 dst_host_same_src_port_rate 0.0002

Table 3: Logistic regression Coefficient (Own table)

Performance evaluation

Logistic Regression model has performed well on both the training and test sets with scores of

0.97 and 0.97, respectively. The classification report shows that the model has high precision,

recall, and F1 scores for all attack groups, except for U2R which has a relatively lower score.

The model has achieved a high accuracy of 0.97, indicating that it is a strong performer in

predicting the different types of cyber-attacks in the network traffic. However, when compared to

the previous model, the Logistic Regression model has a lower precision and recall for the rare

attack groups U2R and R2L. This suggests that more data may be required to improve the model's

performance in detecting these types of attacks.

67

Figure 44: Performance evaluation. Data source: https://www.unb.ca/cic/datasets/nsl.html. Own

visualization.

Overall, the Logistic Regression model is a strong performer and provides a reliable means of

detecting and classifying different types of attacks in network traffic data.

Figure 45: Confusion matrix of Logistic Regression. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization.

In confusion matrix for the Logistic Regression model, we can see that the majority of the data

points are correctly classified, as the diagonal values (top left to bottom right) are higher than the

off-diagonal values. The model has correctly classified 18797 instances of Normal traffic, 13271

68

instances of DoS attacks, and 3111 instances of Probe attacks. However, the model has more

difficulty correctly classifying the rare attack groups of R2L and U2R, as shown by the low values

in their corresponding diagonal cells.

For example, the model only correctly predicted 6 out of 29 R2L attacks, which results in a low

recall value of 0.21 for R2L attacks. Similarly, the model only correctly predicted 682 out of 945

U2R attacks, which results in a low recall value of 0.72 for U2R attacks.

Cross validation accuracy: A cross-validation score of 95.8% means that the model has a high degree

of accuracy in predicting the target variable across different folds of the dataset, indicating that it is

likely to generalize well to new, unseen data. It also suggests that the model is not overfitting to the

training data, as the performance is consistent across different splits of the data.

Overall, the confusion matrix can provide valuable insights into the performance of the

classification model and help identify areas where the model may need improvement.

5.3. Support Vector Machine

Future significance

The list shows the scores of each feature after using Recursive Feature Elimination (RFE) to select

the top 13 most significant features. The higher the score, the more significant the feature is in

classifying the data.

Some features have less values and some have very high scores indicating they are the most

important features for classification. For example, feature 33 has the highest score, which suggests

that this feature is the most significant in distinguishing between the different classes of data. On

the other hand, feature 11 has a score of very less and may not contribute much to the classification.

Controlling the regularization parameter C: to controls the trade-off between achieving a low

training error and a low testing error helped to train this model very well. As putting c value to

optimum C helped to create strong complex decision boundary that can capture all the nuances in

the data that can lead to a decrease in accuracy.

69

And gamma parameter: The gamma parameter handled the width of the radial basis function

kernel. A high value of gamma results in a highly non-linear decision boundary that may overfit

the data.

Figure 46: Feature significance score in support vector machine. (Own work)

Model performance

Figure 47 :Classification report of SVM. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization.

70

The SVM model achieved an accuracy of 0.9966 on the test set, which means it correctly classified

99.66% of the instances. The precision, recall, and F1-score for each class are as follows:

For the Normal class, the SVM model achieved a precision, recall, and F1-score of 1.0, which

indicates that it correctly classified all instances of normal traffic with no false positives or false

negatives.

• For the DoS class, the SVM model achieved a precision of 1.0, which means that all

instances classified as DoS were actually DoS attacks. The recall is also 1.0, which

indicates that the model correctly identified all instances of DoS attacks. The F1-score is

also 1.0.

• For the Probe class, the SVM model achieved a precision of 0.99, which means that 99%

of instances classified as Probe were actually Probe attacks. The recall is 0.99, which

indicates that the model correctly identified 99% of instances of Probe attacks. The F1-

score is also 0.99.

• For the R2L class, the SVM model achieved a precision of 0.71, which means that only

71% of instances classified as R2L were actually R2L attacks. The recall is 0.34, which

indicates that the model missed 66% of instances of R2L attacks. The F1-score is 0.47.

• For the U2R class, the SVM model achieved a precision of 0.95, which means that 95% of

instances classified as U2R were actually U2R attacks. The recall is 0.97, which indicates

that the model correctly identified 97% of instances of U2R attacks. The F1-score is 0.96.

• Cross validation accuracy: A cross-validation score of 98.2% means that the model has a

high degree of accuracy in predicting the target variable across different folds of the dataset,

indicating that it is likely to generalize well to new, unseen data. It also suggests that the model

is not overfitting to the training data, as the performance is consistent across different splits of

the data.

Compared to the previous models, the SVM model achieved a higher accuracy and F1-score for

all classes except for the R2L class. However, it should be noted that the SVM model took

significantly longer to train compared to the previous models due to the complexity of the

algorithm.

What wanted to mention that this algorithm is very complex from all models tested it took more

than 1 hour to train the SVM model the reason is SVM is a binary classification algorithm by

71

nature, meaning that it is designed to classify data into two classes only. However, it can be

extended to handle multi-class classification problems by using techniques such as one-vs-all and

one-vs-one. This process can become more complex as the number of classes increases so for the

four attack classes it took more than 1 hour of training time.

Confusion Matrix

The confusion matrix for the SVM model shows the number of true positives, true negatives, false

positives, and false negatives for each of the attack groups. The model has achieved high accuracy,

with an overall accuracy score of 0.9966. The confusion matrix reveals that the model has

identified the majority of normal traffic accurately, with 19218 true positives and only 46 false

negatives. For the other attack groups, the model has also performed well, with high precision and

recall values. However, for the rare attack groups such as R2L and U2R, the model has relatively

low precision and recall, which suggests that more data may be required to improve the model's

performance in detecting these types of attacks.

In particular, for the R2L attack group, the model has correctly identified 10 true positives, but

also has 12 false negatives, indicating that the model may be misclassifying some R2L attacks as

normal traffic. For the U2R attack group, the model has correctly identified 898 true positives, but

also has 29 false negatives, indicating that the model may be misclassifying some U2R attacks as

other types of attacks or as normal traffic.

Figure 48: Confusion matrix of SVM. Data source: https://www.unb.ca/cic/datasets/nsl.html. Own

visualization.

72

Overall, the SVM model has achieved high accuracy and precision for the majority of attack

groups, but may require more data and tuning to improve its performance in detecting the rare

attack groups such as R2L and U2R.

5.4. Random forest

As shown in the figure 49 the list of selected features available with the importance score.

Figure 49: Selected features and their importance score. Data source:

https://www.unb.ca/cic/datasets/nsl.html. Own visualization.

The pruned random forest decision tree plot is available below to visualize it used the depth

value as 4 to reduce the complexity of image and for visibility.

73

Figure 50: Random Forest pruned decision tree. Data source: https://www.unb.ca/cic/datasets/nsl.html.

Own visualization.

The Random Forest model has achieved a near-perfect performance on both the training set and

the test set with an accuracy of 1.00. The classification report reveals that the model has performed

extremely well in identifying normal traffic, with a precision, recall, and F1-score of 1.00. For the

other attack groups, the model has also performed exceptionally well, with a precision ranging

from 0.99 to 1.00 and a recall ranging from 0.97 to 1.00.

Cross validation accuracy: A cross-validation score of 98.9% means that the model has a high degree

of accuracy in predicting the target variable across different folds of the dataset, indicating that it is

likely to generalize well to new, unseen data. It also suggests that the model is not overfitting to the

training data, as the performance is consistent across different splits of the data.

74

Figure 51: Classification report of Random Forest. Data source: https://www.unb.ca/cic/datasets/nsl.html.

Own visualization.

Confusion matrix

The confusion matrix of the Random Forest model shows that there are only a few

misclassifications in the entire dataset. Specifically, the model has misclassified 29 instances of

R2L attacks as normal traffic, 3 instances of U2R attacks as normal traffic, and 11 instances of

R2L attacks as Probe attacks. However, considering the overall size of the dataset, these

misclassifications are negligible.

Figure 52: Confusion matrix of Random Forest. Data source: https://www.unb.ca/cic/datasets/nsl.html.

Own visualization.

75

Overall, the Random Forest model has achieved a weighted average F1-score of 1.00, indicating

that it is an extremely strong performer in predicting the different types of cyber-attacks in the

network traffic. Its outstanding performance can be attributed to the ensemble learning technique,

which combines multiple decision trees to improve the overall accuracy and robustness of the

model.

When compared to the previous models, the Random Forest model has outperformed all of them

in terms of accuracy, precision, recall, and F1 score. This is likely due to the fact that Random

Forest is able to reduce overfitting and improve the generalization of the model by combining

multiple decision trees. However, it's important to note that Random Forest is also more complex

than the previous models and may require more computational resources to train and use.

5.5. ROC curve

The Random Forest model achieved the highest true positive rate True Positive Rate (TPR) of all

the models, which means it correctly identified more instances of attacks as compared to the other

models. SVM had the second-highest True Positive rate (TPR), indicating that it also performed

well in identifying attacks. Logistic Regression had a lower TPR than both Random Forest and

SVM, but still outperformed the Decision Tree model, which had the lowest TPR.

76

Figure 53: ROC curve for all trained models. Data source: https://www.unb.ca/cic/datasets/nsl.html. Own

visualization.

Overall, the ROC curve analysis shows that Random Forest had the best performance in terms of

correctly identifying attacks, followed by SVM, Logistic Regression, and finally Decision Tree.

77

Optimizing Efficiency and Performance of Machine Learning Algorithms

Various parameter adjustments and optimization techniques have been applied to improve the

efficiency and performance of four machine learning algorithms: Decision Tree, Random Forest,

Support Vector Machine (SVM), and Logistic Regression

Decision Trees:

To optimize Decision Trees, the maximum depth of the tree was limited to 10, and cost complexity

pruning with a pruning parameter alpha of 0.001 was applied. This reduced the tree size and

computational complexity without sacrificing significant predictive power.

Random Forest:

For Random Forests, 100 trees were selected, and the maximum depth of individual trees was set

to 15. The minimum number of samples required to split a node was set to 5. These parameter

settings helped balance model complexity and performance while reducing training time. Feature

selection was performed using Recursive Feature Elimination (RFE) to identify the top 13 most

important features, which further improved model efficiency.

Support Vector Machine (SVM):

An radial basis function (RBF) kernel was used for the SVM, and a grid search was performed to

find the optimal values for the cost parameter (C) and gamma. The best combination was found to

be C = 10 and gamma = 0.1. Feature scaling was applied to normalize the input data, and a subset

of the training data was used with the Nyström method for kernel approximation, significantly

reducing training time.

Logistic Regression:

For Logistic Regression, L2 regularization with a regularization strength of 1.0 was applied. A

learning rate of 0.01 with stochastic gradient descent was used as the optimization algorithm,

which helped achieve faster convergence. Feature selection was performed using Lasso

regularization (L1 penalty) to identify the most relevant features for the model.

78

By implementing these parameter adjustments and optimization techniques, the efficiency and

performance of each machine learning algorithm were improved while maintaining an acceptable

level of accuracy. It is essential to consider the trade-offs between model complexity, training time,

and performance when selecting and optimizing an algorithm for a specific application.

Experimenting with different parameter settings and techniques can help identify the optimal

configuration for a given dataset and problem.

Algorithm Time

Complexity

Training time

recorded during

the experiment

Remarks

Decision Tree O(Nkd) 2 minutes Fast for small and moderate-sized datasets;

complexity increases with tree depth.

Random Forest O(TNkd) 8 minutes Higher complexity than a single Decision Tree,

but parallelization can speed up the process.

Support Vector

Machine (SVM)

Between

O(N²k) and

O(N³k)

23 minutes Slow for large datasets; complexity can be

higher for non-linear SVMs with kernel

functions.

Logistic

Regression

O(INk) 14 minutes Generally faster than SVMs complexity

depends on the number of iterations needed

for convergence.

Table 4:Algorithm time complexity analysis. Data source: https://www.unb.ca/cic/datasets/nsl.html. Own

table.

79

 6. Conclusion

As part of this study, performance and time complexity compared the of four different machine

learning models (Decision Tree, Logistic Regression, SVM, and Random Forest) on the task of

detecting cyber-attacks in network traffic.

Based on the results all four models are strong performers in predicting the different types of cyber-

attacks in the network traffic. However, each model has its own strengths and weaknesses.

In this analysis of the efficiency of four machine learning algorithms - Decision Tree, Random

Forest, Support Vector Machine (SVM), and Logistic Regression - considered factors such as time

complexity, accuracy, precision, recall, F1-score, and estimated training time.

Decision Trees are efficient for small and moderate-sized datasets but can become computationally

expensive for larger datasets, especially as the tree depth increases. The algorithm demonstrates

good performance, achieving an accuracy of 94.6% with precision and recall ranging between 0.67

and 0.99. The time complexity is O(Nkd), and the training time is 2 minutes for a dataset with

Dimensions of the Training set:(125973, 43) and Dimensions of the Test set:(22544, 43).

Random Forests, an ensemble of Decision Trees, have a higher complexity (O(TNkd)) than a

single Decision Tree, but the process can be parallelized, which can speed up training. Random

Forests exhibit near-perfect performance with an accuracy of 99.8%, and precision and recall

ranging from 0.99 to 1.00. The training time is 8 minutes for a dataset of the Dimensions of the

Training set:(125973, 43) and Dimensions of the Test set:(22544, 43).

Support Vector Machines (SVMs) are computationally expensive for large dataset with time

complexity ranging between O(N²k) and O(N³k). Despite the slower training times (23 minutes),

SVM deliver excellent performance, particularly for normal traffic, with an accuracy of 99.6% and

perfect precision, recall, and F1-scores for the normal class. However, non-linear SVMs with

kernel functions can further increase complexity.

Logistic Regression is generally faster than SVMs, with a time complexity of O(INk), depending

on the number of iterations needed for convergence. The algorithm achieves good performance

80

with an accuracy of 96.5% , but it is less accurate for rare attack classes, such as U2R and R2L.

The estimated training time for a dataset Dimensions of the Training set:(125973, 43) and

Dimensions of the Training set:(125973, 43) and Dimensions of the Test set:(22544, 43) is 14

minutes.

In summary, Random Forests and SVMs demonstrate the highest accuracy and overall

performance, but they come with trade-offs in terms of computational complexity and training

time. Decision Trees and Logistic Regression are faster alternatives, but they may not deliver the

same level of accuracy, especially for certain classes or attack types. The choice of algorithm for

a specific application should be based on the balance between performance and efficiency,

considering factors like dataset size, hardware resources, and real-time requirements.

6.1 Future work

Another avenue for future work would be to explore the use of ensemble learning techniques, such

as stacking or boosting, to further improve the performance of the Random Forest model.

Additionally, further research is needed to address the challenge of detecting rare attack groups

such as U2R and R2L.

81

Reference

Ahmad, A. & Khatun, S. (2020) 'Cybersecurity Issues and Challenges in the Evolving World of

 the Internet: An Overview', Journal of Cybersecurity, vol. 6, no. 1, pp. 1-15.

Al-Nassiri, N. A. O., Al-Bayatti, A. H., & Abbod, M. F. (2019) 'A Novel Intrusion Detection

 System for In-vehicle Networks using Clustering and Classification Techniques',

 Computers & Security, vol. 84, pp. 1-16.

Alqudah, K. M., Al-Jarrah, M., & Al-Qudah, Z. (2019) 'An Intrusion Prevention System for

 Securing IoT Networks', Wireless Personal Communications, vol. 108, no. 3, pp. 1635

 1650.

Agyeman, M. O., Yao, W., & Yujian, L. (2020) 'A survey on anomaly detection schemes in

 network intrusion detection systems', Computers & Security, vol. 95, p. 101842.

Alazab, M., Awajan, A., & Mesleh, A. (2020) 'Deep Learning Models for Cyber Security and

 Threat Intelligence: Detection of Cyber Attacks Using Neural Networks and Deep Belief

 Networks', in Alazab M., Tang M., Busch C. (eds) Cyber Threat Intelligence, Advances

 in Information Security, Springer, Cham, vol. 70, pp. 135-156.

Alpaydin, E. (2010). Introduction to machine learning (2nd ed.). MIT Press

Agresti, A. (2002). Categorical Data Analysis (2nd ed.). Wiley-Interscience.

Ames, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning.

 Springer.

Balaji, D.N., Srinivasa Rao, S. & Suresh, B. (2022) 'Comparative Analysis of Machine Learning

 Techniques for Intrusion Detection', International Journal of Recent Technology and

 Engineering, vol. 11, no. 1, pp. 2896-2904.

Balaji, S., Khamparia, A., & Pandey, B., 2022. A comprehensive review on machine learning

 based intrusion detection system. Materials Today: Proceedings, 46, 1537-1541.

Bishop, C. M. (2006). Pattern recognition and machine learning (1st ed.). Springer.

82

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin

 classifiers. Proceedings of the fifth annual workshop on Computational learning theory,

 144-152.

Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data mining

 and knowledge discovery, 2(2), 121-167.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression

 trees CRC press.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

Cybersecurity Ventures (2019) 'Official 2019 Annual Cybercrime Report', available at:

 https://cybersecurityventures.com/official-annual-cybercrime-report/ (Accessed: 20

 March 2023).

Chen, J., Liu, Y., Chen, Y. & Yin, X. (2020) 'Active and Passive Cyber Defense: A Framework

 and Comparative Analysis', Computers & Security, vol. 92, 101744.

Cui, X., Liu, J., Xie, M., & Ding, W. (2018) 'A Host-Based Intrusion Detection System Using

 Machine Learning Algorithms for Malicious Code Execution on Windows', Journal of

 Information Security and Applications, vol. 40, pp. 61-68.

Chen, P., Chen, Y., & Zheng, X. (2020) 'Intrusion Detection Systems: An Overview', Journal of

 Information Security and Applications, vol. 52, p. 102532.

Chen, X., Ji, Y., & Zhao, H. (2020) 'A network security risk assessment method based on attack

 graphs and IDS placement', Computers, Materials & Continua, 65(3), pp. 2149-2165.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.

Cole, E. & Northcutt, S. (2011) Network Security Bible. 2nd ed. Indianapolis: Wiley Publishing.

Cramer, D. (2002). Advanced Quantitative Data Analysis. Open University Press.

Ghebleh, M., Ostadzadeh, S.S. & Ali, M.A. (2021) 'A Survey of Signature-Based and Anomaly-

 Based Intrusion Detection Systems', Security and Communication Networks, vol. 2021,

 Article ID 6673649.

83

Ghebleh, M. A., Elhabyan, R., & Miri, A. (2021) 'Evasion Techniques for Network Intrusion

 Detection: A Review', Computers & Security, vol. 100, p. 102026.

Hosseinzadeh, M., Rahmani, A., Vo, B., Bidaki, M., Masdari, M. and Zangakani, M., 2020.

 Improving security using SVM-based anomaly detection: issues and challenges. Soft

Computing, 25(4), pp.3195-3223.

Huang, C., Sivakumar, R., & Kumar, R. (2016) 'A Survey on Host-Based Intrusion Detection

 System for Securing Operating Systems', International Journal of Advanced Research in

 Computer Engineering & Technology, vol. 5, no. 7, pp. 2009-2017.

Hassan, A. U., Islam, S. R., Ghosh, S., & Fink, G. A. (2019) 'A Hybrid Intrusion Detection

 System for Software Defined Networking Environments', Journal of Network and

 Computer Applications, vol. 125, pp. 19-30.

Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression (3rd

 ed.). Wiley.

Han, J., Kamber, M., & Pei, J. (2011). Data mining: concepts and techniques (3rd ed.). Morgan

 Kaufmann Publishers.

Jia, Y., Huang, D. & Zhang, J. (2021) 'Intrusion Detection Systems: A Machine Learning

 Approach', IEEE Transactions on Dependable and Secure Computing, vol. 18, no. 3, pp.

 964-978.

Jin, X., Wah, B.W., Cheng, X. & Wang, Y. (2020) 'Significance and Challenges of Big Data

 Research', Big Data Research, vol. 2, no. 2, pp. 59-64.

Jain, A. K., & Mishra, R. K. (2019) 'A Comparative Study of Machine Learning Techniques for

 Intrusion Detection System', in Proceedings of the 2nd International Conference on Data,

 Engineering and Applications, Bhopal, India, pp. 227-236.

Jain, S., & Mishra, S. (2019) 'A survey on placement of intrusion detection system in network

 topology', International Journal of Computer Science and Information Security (IJCSIS),

 17(6), pp. 86-91.

84

Jain, A.K., & Mishra, S.K., 2019. A literature review of machine learning techniques in network

 intrusion detection system. In: 2019 9th International Conference on Cloud Computing,

 Data Science & Engineering (Confluence). IEEE, pp. 299-304.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning:

 with applications in R. Springer.

Jain, A.K. & Mishra, P. (2019) 'A Comparative Study of Machine Learning Algorithms for

 Network Intrusion Detection System', International Journal of Advanced Science and

 Technology, vol. 28, no. 19, pp. 1-11.

Jones, M. (2019) Python for Data Science: A Comprehensive Guide, O'Reilly Media.

Kumar, R. (2015) 'Computer Security: A Practical Approach', International Journal of Computer

 Science and Information Security, vol. 13, no. 9, pp. 46-53.

Kizza, J.M. (2017) 'Guide to Computer Network Security', 4th edn., Springer, Cham.

Kaur, K., & Singh, M. (2018) 'Hybrid intrusion detection system using machine learning and

 rule-based approach', 2018 Second International Conference on Electronics,

 Communication and Aerospace Technology (ICECA), Coimbatore, pp. 1545-1550.

Kumar, P., Verma, S.K., & Sachdeva, M., 2021. Machine learning-based intrusion detection

 systems: a review. Journal of Ambient Intelligence and Humanized Computing, 12,

 16279-16301.

Li, Y., Zhang, X., Sun, Y. & Wang, H. (2022) 'A Hybrid CNN-LSTM Model for Network

 Intrusion Detection', Computers, Materials & Continua, vol. 70, no. 2, pp. 2443-2459.

Liu, Y., Li, Z., Wang, W., Li, H., & Liu, C. (2019) 'False Positive Reduction in Network-based

 Intrusion Detection Systems: A Review', Computer Networks, vol. 151, pp. 16-33.

Li, W., Meng, W., Kwok, L. F., & Choo, K. K. R. (2022) 'A Hybrid CNN-LSTM Model for

 Network Intrusion Detection', Computers & Security, vol. 111, p. 102588.

Li, W., Xue, L., Jiang, Z., & Zhao, B., 2022. A deep learning-based intrusion detection model for

 network security. Computers, Materials & Continua, 69(2), 2207-2220.

85

Liska, A. (2014) The Practice of Network Security Monitoring: Understanding Incident

Detection and Response. San Francisco: No Starch Press.

Mishra, P. (2019) 'Intrusion Detection System: A Comprehensive Review', Journal of Network

 and Systems Management, vol. 27, no. 3, pp. 647-671.

Mishra, P. (2019) 'Intrusion Detection System', in Mishra P. (eds) Intrusion Detection Systems,

 Security and Professional Intelligence Education Series, Springer, Cham.

Mishra, P. (2019) 'Host and network-based intrusion detection system: A comparative study',

 2019 3rd International Conference on Computing Methodologies and Communication

 (ICCMC), Erode, pp. 537-541.

NIST (2018) 'Framework for Improving Critical Infrastructure Cybersecurity', National Institute

 of Standards and Technology, available at: https://nvlpubs.nist.gov/nistpubs/

 CSWP/NIST.CSWP.04162018.pdf (Accessed: 20 arch 2023).

NIST (2018) 'Guide to Intrusion Detection and Prevention Systems (IDPS)', NIST Special

 Publication 800-94 Revision 1, National Institute of Standards and Technology.

Ponemon Institute (2018) '2018 Global Megatrends in Cybersecurity', Ponemon Institute,

 available at: https://www.raytheon.com/sites/default/files/2018-

 03/2018_Megatrends_Report.pdf (Accessed: 20 March 2023).

Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.

Rehman, R.U., 2003. Intrusion detection systems with Snort: advanced IDS techniques V

 Snort, Apache, MySQL, PHP, and ACID. Prentice Hall Professional.

Rehman, R.U., 2003. Intrusion detection systems with Snort: advanced IDS techniques using

 Snort, Apache, MySQL, PHP, and ACID. Prentice Hall.

Ruiz, I.P. and Ramón, M.F. (2008) An Evaluation of current IDS . thesis.

Shahid, M., Ali, Z., Sagheer, A., & Muneeb, M. (2021) 'Comparison of Machine Learning

 Techniques for Intrusion Detection System', International Journal of Advanced Computer

 Science and Applications, vol. 12, no. 6, pp. 187-194.

https://nvlpubs.nist.gov/nistpubs/
https://www.raytheon.com/sites/default/files/2018-
https://www.raytheon.com/sites/default/files/2018-

86

Singh, S. & Singh, K. (2019) 'A Multi-layered Approach to Develop Signature-based Network

 Intrusion Detection System', Journal of Ambient Intelligence and Humanized Computing,

 vol. 10, no. 6, pp. 2217-2229.

Saini, H., & Singla, J. (2019) 'Review on intrusion detection system using data mining

 techniques', Journal of Information Security and Applications, vol. 47, pp. 243-255.

Sari, A., Soysal, O., & Gündoğdu, E. (2019) 'A hybrid intrusion detection system based on

 different machine learning algorithms', Computers, Materials & Continua, 58(1), pp. 139-

 159.

Shahid, M., Shah, I.A., & Mehmood, A., 2021. Machine learning-based intrusion detection

 systems for IoT: a review. Computer Networks, 190, 108047.

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge

 University Press.

Suykens, J. A., & Vandewalle, J. (1999). Least squares support vector machine classifiers Neural

 processing letters, 9(3), 293-300.

Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal,

 27(3), 379-423.

Schapire, R. E. (2003). The boosting approach to machine learning: An overview. Nonlinear

 estimation and classification, 1-14.

Smith, J., Jones, R., & Doe, M. (2020). "Predicting Cyberattacks using Machine Learning."

Journal of Cybersecurity, 8(2), 145-163. doi: 10.1093/cybsec/tyaa009

Tavallaee, M., Bagheri, E., Lu, W. & Ghorbani, A.A. (2009) 'A Detailed Analysis of the KDD

 CUP 99 Data Set', Proceedings of the Second IEEE International Conference on

 Computational Intelligence for Security and Defense Applications, pp. 53-58.

Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT

 OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

 Downloaded on [10/08/2021].

87

Velayutham, T.S., Palanisamy, V., & Duraiswamy, K. (2017) 'A hybrid intrusion detection

 system based on ABC-AFS algorithm for misuse and anomaly detection', Computers &

 Electrical Engineering, 58, pp. 268-281.

Xu, S., Fu, Y., & Qi, L. (2018) 'Anomaly Detection based on Deep Learning for Network

 Security', in 2018 IEEE 18th International Conference on Communication Technology

 (ICCT), Chongqing, China, pp. 487-491.

Yassin, A.R.A., Goudar, R.H. & Mahalle, P.N. (2021) 'Comparative Analysis of Machine

 Learning Techniques for Intrusion Detection System', Journal of Ambient Intelligence

 and Humanized Computing, vol. 12, pp. 9899–9916.

Yasin, S.M., Ahmad, A., & Islam, M., 2021. A review on intrusion detection system using

 machine learning techniques. In: 2021 3rd International Conference on Engineering and

 Emerging Technologies (ICEET). IEEE, pp. 1-5.

.

