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Abstrakt

Včasná detekce stresů polních plodin vyžaduje sběr dat v mnoha časových bodech
a zohlednění prostorové variability pole. Měření hyperspektrální odrazivosti lze pro-
vádět s velkým časoprostorovým rozlišením, což není praktický postup při použití
tradičních, náročných a nákladných referenčních laboratorních metod. Tato dizer-
tace průřezově zkoumá potenciál spektroskopického přístupu hodnocení stresových
faktorů polních plodin. Je studován vliv sucha u dvou odrůd juvenilní řepky olej-
né s různými strategiemi hospodaření vodou, které jsou hyperspektrálně snímány
z blízké vzdálenosti. Bylo pozorováno konzistentní zvětšení hodnot směrodatných
odchylek mnoha vegetačních indexů v reakci na zhoršení vodního režimu. Byla sna-
ha predikovat na základě spektrálního signálu intenzitu nákazy sbírky odrůd pšenice
ozimé s rozmanitou rezistancí vůči fuzarióze klasů. Pokud byla přijatá racionální tole-
rance chyby, přesnost hodnocení se blížila k 100 %. Byla aplikována selekce příznaků
za účelem minimalizovat počet hyperspektrálních pásem potřebných k odhadu obsa-
hu listového chlorofylu u ovsa na základě hyperspektrálního zobrazování. Filtrování
pásem zvětšilo kvalitu predikce a získaná redukce byla dostačující pro hypotetický
vývoj cenově přístupného specializovaného snímače. Měření odrazivosti ve středním
infračerveném spektrálním regionu je hodnoceno jako nástroj pro rychlou diagnozu
obsahu a lability půdního uhlíku. Studie poskytuje důkazy o pozitivním vlivu spike
sampling v situaci, kdy je potřeba predikovat vlastnosti půdního uhlíku ve vzorcích,
pocházejících z lokality, která není zastoupena ve spektrální knihovně.

Klíčová slova: stres abiotický; stres biotický; hyperspektrální zobrazování;
strojové učení; Bayesova statistika; Open Science
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Abstract

Early crop stress detection requires data collection at multiple time points, while
accounting for spatial variability of a field. Unlike resource-intensive traditional labo-
ratory reference methods, hyperspectral reflectance measurements can be performed
with high spatiotemporal frequency. This dissertation provides a cross-sectional ex-
ploration of the potential of the spectroscopic approach to assess crop stress factors.
The influence of drought is studied in two juvenile oilseed rape cultivars with dif-
ferent water management strategies subjected to proximal hyperspectral imaging. A
consistent increase in multiple vegetation index standard deviations to worsening of
the hydric regime was observed. Prediction of fusarium head blight infection inten-
sity is attempted from spectral response induced in a collection of winter wheat
cultivars with varied disease resistance. With reasonable error tolerance, the rating
accuracies approached 100 %. Feature selection is applied to minimize the number of
bands needed to estimate oat leaf chlorophyll from airborne hyperspectral imagery.
Filtering of the bands improved the prediction performance, and the obtained re-
duction was sufficient to envision the development of an affordable single-purpose
imager. Mid-infrared diffuse reflectance spectroscopy is evaluated as a tool for rapid
soil carbon content and lability diagnosis. The study provides evidence of positive
influence of spike sampling while predicting soil carbon properties in a locality that
is not represented in a spectral library.

Key words: abiotic stress; biotic stress; hyperspectral imaging; machine learn-
ing; Bayesian statistics; Open Science
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Chapter 1

Introduction

1.1 Crop stress and the challenge of its early detection

Excessive biotic and abiotic stress factors impair the crop yield and quality (Mahlein;
Oerke, et al., 2012; Yang; Duan, et al., 2013), which brings negative consequences
for profitability of the farming enterprise. The farmer can prevent or mitigate crop
stress by fertilization, irrigation, or protection measures (Peteinatos et al., 2016).
Advanced diagnostic methods and modeling techniques are crucial for the optimal
timing and deciding on the intensity of these interventions (Stafford, 2000; West;
Bravo, et al., 2003; Mahlein, 2016; Virnodkar et al., 2020). Effective control should,
in particular, take into account spatial heterogeneity of the field (Ihuoma et al.,
2017).

Early stress detection reduces the costs of its mitigation, and decreases the odds
of permanent crop damage (Ihuoma et al., 2017; Lowe et al., 2017). On the other
hand, it requires continuous monitoring performed at fine spatial scales (Mahlein;
Oerke, et al., 2012; Gholizadeh; Kopačková, 2019). Such an undertaking is unfeasi-
ble in terms of labor and financial expenditure if traditional methods are involved.
These include: visual assessment (Martinelli et al., 2015; Mahlein, 2016; Lowe et al.,
2017), taking measurements with hand-held field instruments (Govender et al., 2009;
Ihuoma et al., 2017; Virnodkar et al., 2020), and performing reference laboratory
analyzes of collected plant tissue samples (Blackburn, 2007; Govender et al., 2009).

1.2 Plant reflectance spectra as a source of stress information

Stressed and healthy vegetation differ with respect to their spectral characteris-
tics, and the symptoms of stress can be detectable before they become apparent
for the naked eye (Knipling, 1970; Carter; Knapp, 2001; Kim et al., 2011; Zovko et
al., 2019). Laboratory and field spectroscopy aimed at measuring of crop reflectance
spectra can offer a more cost-effective alternative to the conventional methods (Mar-
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tinelli et al., 2015). Among the reflective spectral regions for which dedicated equip-
ment is readily available on the market, visible (VIS, 400–700 nm wavelength range)
reflectance is affected primarily by plant pigments, near-infrared (NIR, 750–1000 nm)
by mesophyll structure of the cells, and short-wave infrared (SWIR, 1000–2500 nm)

— also by their water content (Jacquemoud et al., 2001; Govender et al., 2009;
Ihuoma et al., 2017; Lowe et al., 2017; Mishra et al., 2017; Morin et al., 2017).
However, according to Carter (1993), a SWIR response is detectable at a relatively
late stage, making it less suitable for early stress detection than the visible and
near-infrared (visNIR) region. This view was contested by Zovko et al. (2019).

An array of both biotic and abiotic stress factors alter the visNIR spectral pro-
file of a crop in a similar way (Carter, 1993; Stafford, 2000; Carter; Knapp, 2001;
West; Bravo, et al., 2003). Chloroplasts deteriorate in leaf tissues, leading to a de-
crease in the content and activity of chlorophyll (Jacquemoud et al., 2001; Din
et al., 2011; Morin et al., 2017). On the other hand, anthocyanins can be synthe-
sized and carotenoid concentrations increase to protect the photosynthetic apparatus
from oxidative stress (Barton, 2001; Gaspar et al., 2002; Gill et al., 2010; Ashraf et
al., 2013). These changes are detectable in the VIS spectrum, typically in the form
of overall reflectance increase (Knipling, 1970; Martinelli et al., 2015; Morin et al.,
2017), especially for longer wavelengths (Carter, 1993; Carter; Knapp, 2001).

As the red reflectance increases under the stress (Govender et al., 2009; Yang;
Duan, et al., 2013), the red-edge, located at the boundary of the VIS and NIR
region, shifts towards shorter wavelengths (Carter; Knapp, 2001; Govender et al.,
2009; Martinelli et al., 2015). At the same time, after an initial increase, the NIR
reflectance decreases due to structural changes related to cell shrinkage (Knipling,
1970; Behmann; Steinrücken, et al., 2014), making the red-edge less steep (Werff
et al., 2008; Govender et al., 2009).

1.3 The value of hyperspectra in the context of early stress
assessment

The magnitude of stress can be estimated using vegetation indexes, which are de-
rived from small subsets of reflectance bands (Mahlein; Oerke, et al., 2012; Mulla,
2013; Xue et al., 2017; Virnodkar et al., 2020). These are typically measured us-
ing simple hand devices, on-the-go sensors mounted on agricultural machinery, or
derived from multispectral airborne and satellite sensors (Perry; Davenport, 2007;
Gnyp et al., 2015). This traditional approach can be insufficient for early stress de-
tection (Römer et al., 2012). Accordingly, it has been complemented by methods
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based on multivariate predictive models, which can exploit the information con-
tained in a whole spectral region (Mulla, 2013; Amigo et al., 2015; Martinelli et al.,
2015; Mishra et al., 2017).

A hyperspectrum offers a satisfactory approximation of a continuous spectral
signature (Lu et al., 2019; Thenkabail et al., 2021). A number of studies com-
pared full-spectrum and index-based approaches or predictive models developed
using hyperspectral (HS) and multispectral data to estimate plant traits. Consis-
tent improvements were noted (Hernandez et al., 2015; Marshall et al., 2015), even
if slight (Capolupo et al., 2015; Lu et al., 2019) or restricted in magnitude in certain
developmental phases or experimental conditions (Aguate et al., 2017; Montesinos-
López et al., 2017). Under the traditional approach, high-resolution spectral data
can foster estimation accuracy by enabling flexible formulation of custom vegeta-
tion indexes (Blackburn, 2007; Gnyp et al., 2015). The Mariotto et al. (2013) study
on crop biophysical parameters is illustrative in this regard. The advantage of hy-
perspectra over multispectral data was recently summarized by Thenkabail et al.
(2021).

1.4 The added value of spatial data provided by imaging
spectroscopy

A hyperspectrum can be readily obtained by using a spectroradiometer, which inte-
grates the reflectance captured in its field of view into a single measurement (Steiner;
Bürling, et al., 2008; Milton et al., 2009; Behmann; Steinrücken, et al., 2014; Mahlein,
2016). However, the resulting spectra have limited spatial information (Mac Arthur
et al., 2015; Adão et al., 2017) and resolution (Thomas; Kuska, et al., 2018). For pre-
cision agriculture, which involves differentiated interventions (Stafford, 2000; Zhang;
Kovacs, 2012; Mulla, 2013), it is crucial to know the distribution of the crop status
across the field (Bullock et al., 2000; Mahlein, 2016; Peteinatos et al., 2016). Because
of that, there has been an increasing interest in applying HS imaging, also known
as imaging spectroscopy, to crop stress detection (Adão et al., 2017; Lowe et al.,
2017; Khan et al., 2018).

HS imaging overcomes limitations of traditional point spectrometry by offering
minute georeferencing possibilities (Adão et al., 2017) and availability of segmenta-
tion methods (Mishra et al., 2017), for example for masking of background (Ge; Bai,
et al., 2016) or identification of areas affected by unfavorable illumination effects
(Asaari et al., 2019). When mounted on unmanned aerial vehicles (UAVs), visNIR
HS cameras can provide readily available, high-quality data at the spatial scale of one
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or more cultivated fields (Zhang; Kovacs, 2012; Gago et al., 2015; Sankaran et al.,
2015). In proximal applications, individual plant organs can be discerned, and the re-
sulting images enable fine distinctions — for example, between parts bearing severe
disease symptoms and those less affected (Mahlein; Kuska, et al., 2017).

1.5 The role of soil spectroscopy in crop stress assessment

Crop health and productivity are closely linked to soil fertility. Just as certain aspects
of soil quality can be deducted from vegetation health (Gholizadeh; Kopačková,
2019), occurrence of crop stress factors, drought for instance (Ihuoma et al., 2017;
Virnodkar et al., 2020), can be indirectly predicted from the soil status.

Traditional methods of pedological laboratory evaluations are subject to similar
limitations as for conventional plant stress assessment (Kuang et al., 2012). As an al-
ternative, soils can be characterized with spectroscopic methods indoors and in the
field (Ge; Thomasson, et al., 2011; Kuang et al., 2012; Nocita et al., 2015; Meer,
2018).

1.6 Impediments towards wider adoption of HS stress
detection

Unlike numerous modern technologies that are commonly employed in precision
agriculture — such as guidance systems enabled by satellite navigation, mapping
of yield spatial variation, or variable rate technology (Stafford, 2000; West; Bravo,
et al., 2003; Pedersen et al., 2017) — the potential of spectroscopy for site-specific
farming is far from being fully exploited. Insufficient theoretical grounding is one
contributing factor. In particular, the current number of findings linking stressors
to crop characteristics captured by HS patterns is small compared to other tech-
niques (Gago et al., 2015; Martinelli et al., 2015; Sankaran et al., 2015; Adão et
al., 2017) — even in controlled conditions despite the long history of laboratory
spectroscopy (Mac Arthur et al., 2015).

Another notable problem is the high purchase cost of both spectroradiome-
ters (Milton et al., 2009) and HS cameras (Deery et al., 2014). However, the de-
vices are predicted to become more affordable in the future (Pedersen et al., 2017).
Adoption of spectroscopic stress assessment methods does not entirely eliminate
the need for conventional data collection. Traditional measurements are still relied
on, to the extent necessary for predictive model calibration and validation purposes
(Govender et al., 2009; Morin et al., 2017; Virnodkar et al., 2020). The laboriousness
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and cost of their acquisition can reduce the utility of spectroscopic methods for a
farmer.

Finally, there is a challenge involved in analysis of spectral measurements, stem-
ming from morphological, anatomical, and physiological differences between crops
(Jacquemoud et al., 2001; Ihuoma et al., 2017), along with confounding external
factors that cannot be controlled in field conditions (Milton et al., 2009), as well
as instrumental noise generated by the acquisition device itself (Geladi et al., 2004).
Expertise is crucial especially for canopy imaging, due to the variation in leaf area
index, leaf inclination, and the effects of internal shadowing and light scattering (Kni-
pling, 1970; Blackburn, 2007; Govender et al., 2009; Römer et al., 2012; Behmann;
Steinrücken, et al., 2014). A separate set of specialized skills is required to deal
with the large volumes of the captured data (West; Bravo, et al., 2003; Deery et al.,
2014).
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Chapter 2

Problem area and literature review

2.1 Choice criteria of the topics covered by the research

Early crop stress diagnosis from HS data is a broad subject. Therefore, a cross-
sectional approach has been adopted for this dissertation.

The studied problems were selected to extend beyond the agronomy context. The
additional themes comprise field phenotyping, precision farming, and soil quality
monitoring. Another criterion was to include spectral datasets acquired using more
than one type of a device and platform. Proximal and remote sensing are covered
as well as use of imaging and non-imaging equipment in conditions corresponding
to different degrees of control. Abiotic and biotic stressors are featured; both plants
and soil are subjected to the measurements.

On a finer level, the topic choice aimed to focus on parameters that have been dif-
ficult to estimate using spectral methods. These include fusarium head blight (FHB)
infection severity due to localized character of the symptoms on a plant, or soil la-
bility due to low concentrations of labile soil carbon (SC) pools in samples. For crop
stress indicators that are easier to assess, such as leaf chlorophyll content or soil total
carbon, the focus was shifted towards reducing the costs of employing the existing
solutions. Here, a possibility to develop an affordable narrow-band imager and to
reduce the number of samples collected for traditional laboratory analysis are ex-
plored, respectively. Although, on par with current trends in research, full-spectrum
methods are given preference in the studies, one experiment proposes a novel look
at traditional vegetation indexes.
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2.2 Quantification of spectra variability as a potential source
of crop stress information

This section is adapted from Żelazny; Lukáš (2020), previously published by MDPI
Remote Sensing.

As highlighted by Kruschke et al. (2017), “stressors […] can increase the vari-
ance of a group because not everyone responds the same way to the stressor”.
In the context of close-range crop HS imaging, the “group” can refer to plant foliage
or leaf tissue composed of individual leaves and cells, respectively, each responding
to the change in the environment in a distinct way. Especially characteristic for
stress-induced leaf senescence is the source–sink differentiation between the older
and younger leaves (Munné-Bosch et al., 2004). The potential of imaging spectrom-
etry to provide an insight into the spatial variation of stress symptoms across crop
foliage was demonstrated for drought (Nansen, 2012; Römer et al., 2012; Behmann;
Steinrücken, et al., 2014; Bruning et al., 2019), nitrogen deficiency (Jay et al., 2014),
pest infestation (Nansen, 2012), and herbicide exposure (Kong et al., 2016). However,
this effect was typically not quantified.

Quantitative studies on crop responses to stress conditions frequently employ
traditional experimental designs, such as a randomized block design, coupled with
linear modeling for statistical inference (Tesfamariam et al., 2010; Majidi et al., 2015;
Peteinatos et al., 2016). The frequentist approach prevails in the fitting and evalu-
ation of these models. Various authors noted shortcomings of the frequentist statis-
tics, and have advocated Bayesian methods as an alternative (Zyphur et al., 2015;
Kruschke et al., 2017; Zyl, 2018). Historically, first the lack of and then the high
computational demands of suitable numerical methods posed obstacles towards a
wider adoption of the Bayesian paradigm (Che et al., 2010). These hindrances have
been largely removed by an increase in computer speeds (Gelfand, 2000; Che et al.,
2010), followed by improved accessibility of parallel computing (Visser et al., 2015),
and the availability of software with capabilities suited to the needs of the scientific
community (Che et al., 2010; Salvatier et al., 2016; Carpenter et al., 2017; Bürkner,
2018).

One major appeal of Bayesian statistics is the ease with which interval estimates
of model parameters can be derived, even for complex models. Notably, it is possi-
ble to obtain estimates with respect to not only the mean values but also standard
deviations, shape factors, or hurdle values — again, also for complex models (Kr-
uschke et al., 2017). In the context of stress detection with imaging spectroscopy,
this capability can be readily exploited to quantify the influence of a stressor on

8



Problem area and literature review

the spectral variation across the foliage of an affected plant.
Given the continuing increases in average temperatures (Lobell et al., 2011)

and projections of more frequent and severe droughts in agricultural regions (Nau-
mann et al., 2018; Arnell et al., 2019), water deficiency has been among the most
extensively studied crop stress factors (Daryanto et al., 2017). In pot experiments,
crop responses to drought can be investigated by varying the watering regime and
comparing the obtained plant reactions across the treatments (Linke et al., 2008;
Behmann; Steinrücken, et al., 2014; Sun et al., 2018; Asaari et al., 2019). An alterna-
tive approach is to exploit the variability of water management strategies exhibited
by individual genotypes (Gilbert; Zwieniecki, et al., 2011; Buezo et al., 2019).

Several dehydration avoidance mechanisms have been described in crops (Blum,
2005; Raza et al., 2017). Plants can rapidly respond to water deficit by closing their
stomata, which reduces the leaf transpiration. As a trade-off, this reduction leads
to a simultaneous decrease in the photosynthesis rate, related to limited CO2 assimi-
lation (Flexas et al., 2004; Ashraf et al., 2013). It has been proposed to differentiate
crop cultivars with respect to their stomatal conductance regulation. Plants that
manage their water resources in a conservative way and maintain a steady CO2

fixation rate that is affected by moisture availability only to a limited extent have
been termed as water-savers. Water-spenders, on the other hand, maximize their
CO2 assimilation, depleting the available water resources at the onset of a drought
due to delayed closure of the stomata (Nakhforoosh et al., 2016; Urban et al., 2017).
Cultivars with high baseline stomatal conductance tend to not exhibit a mid-day
depression in photosynthetic rates. They are capable of sustaining a high photo-
synthesis rate and can avoid heat stress due to the cooling action of transpiration,
provided that water is available (Roche, 2015).

In addition to physiological parameters, a trace of a drought episode can be
detectable in a spectral signature of the affected crop, as was demonstrated by Linke
et al. (2008) for wheat and by Sun et al. (2018) for maize. The authors tested
the changes of several vegetation indexes in plants exposed to repeated drought
and recovery cycles. They observed a full recovery after the first cycle, but the second
recovery was incomplete. As a possible cause, the authors suspected progressing cell
deterioration due to oxygen radicals, which could not be neutralized in the absence
of carotenoids, removed in the course of the preceding stress episode.

Studies devoted to drought effects on crop hyperspectra have been primarily
focused on the species that dominate the global commodity market. Those include
maize (Ge; Bai, et al., 2016; Asaari et al., 2019) and other staple cereals (Römer
et al., 2012; Behmann; Steinrücken, et al., 2014; Bruning et al., 2019). Relatively
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much attention has also been given to fruit crops (Kim et al., 2011; Zarco-Tejada
et al., 2012; Zovko et al., 2019). On the other hand, numerous other species have so
far been largely neglected by the studies, including those of regional importance.

Due to its nutritional (Din et al., 2011; Xia et al., 2018; Sabagh et al., 2019) and
technical (Högy et al., 2010; Xia et al., 2018) value, oilseed rape (Brassica napus L.;
hereafter, OSR) is an important crop in many parts of the world. It is widespread
in North America (Zhang; Lu, et al., 2014; Bonjean et al., 2016), China (Bonjean
et al., 2016), Europe (Zhang; Lu, et al., 2014), and India (Kumar et al., 2017). OSR
is susceptible to drought (Din et al., 2011; Raza et al., 2017) and, along with other
brassicas, the future cultivation of this species is endangered by dry spells (Zhang;
Lu, et al., 2014; Majidi et al., 2015).

OSR has been the subject of various HS imaging studies. Based on field experi-
ments, Piekarczyk et al. (2011) and Zhang; He (2013) attempted to predict its yield
using vegetation indexes and partial least squares (PLS) modeling, respectively. Ku-
mar et al. (2017) cite several publications devoted to OSR pests and diseases. Xia
et al. (2018) analyzed imagery of water-logged plants. Effects of herbicide exposure
were studied by Kong et al. (2016). In contrast to these stress factors, the possibilities
of capturing the OSR response to drought using a HS camera remained unaddressed.

OSR is characterized by relatively large leaves, even in early developmental
phases. HS imaging that captures leaf-level spectral variation may, therefore, prove
to be a suitable approach for water deficiency detection in this crop (Bruning et al.,
2019).

2.3 Discrete crop stress severity predictions using ordinal
SVM trained to hyperspectra

This section is adapted from Żelazny; Chrpová, et al. (2021), previously published by
Elsevier Biosystems Engineering.

Data associated with ordinal measurements scales require careful statistical treat-
ment. The family of cumulative link models was developed for use in linear modeling
with this class of data (McCullagh, 1980; Fernández-Navarro, 2017), and Liddell et
al. (2018) demonstrated that false conclusions can be obtained when an inappro-
priate model family is employed. In the realm of predictive modeling, naive treat-
ment of ordinal data can increase computational costs of model training (Behmann;
Schmitter, et al., 2014), and ordinal extensions of machine learning algorithms have
been proposed (Fernández-Navarro, 2017). The Behmann; Schmitter, et al. (2014)
and Behmann; Steinrücken, et al. (2014) drought studies comprised early application
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of ordinal machine learning to plant stress evaluation based on HS images.
Ordinal measurement scales are commonly employed in field phenotyping of cul-

tivar disease resistance, where an expert visually rates disease severity in breeding
lines (Bock et al., 2010). This traditional approach is a laborious and subjective pro-
cess (Bauriegel; Herppich, 2014; Deery et al., 2014; Mahlein, 2016; Su et al., 2021),
and it constrains progress in breeding programs (McMullen et al., 2012; Steiner;
Buerstmayr, et al., 2017). Spectroscopic methods can be superior to visual rating
by providing rapid and unbiased assessment in early infection stages (West; Canning,
et al., 2017; Thomas; Kuska, et al., 2018).

FHB is a cereal fungal disease caused by Fusarium spp. (Jaillais et al., 2015;
Khaledi et al., 2017; Saccon et al., 2017; Mielniczuk et al., 2020). The pathogen
severely impairs yield, and the grain quality is greatly diminished by mycotoxin
action (Bauriegel; Herppich, 2014; Cambaza et al., 2019; Mielniczuk et al., 2020).
Infection occurrences have been increasing because of the high prevalence of maize in
crop rotations (Dammer et al., 2011; Bauriegel; Herppich, 2014) and due to the adop-
tion of reduced tillage systems by farmers (McMullen et al., 2012; Gilbert; Haber,
2013; Mielniczuk et al., 2020). Climate change may also aggravate this problem
in the future (Gilbert; Haber, 2013; Vaughan et al., 2016).

FHB control is based on cultural preventive measures and fungicide applications
(McMullen et al., 2012; Mielniczuk et al., 2020), the latter of which are scheduled ac-
cording to the disease risk levels predicted from weather forecasts (McMullen et al.,
2012; Xiao et al., 2020). There is also ongoing research into biological control agents
(McMullen et al., 2012; Mielniczuk et al., 2020). However, the progress in FHB con-
trol does not remove a need for the development of new resistant cultivars (Gilbert;
Haber, 2013; Buerstmayr et al., 2020; Mielniczuk et al., 2020), which need to be
screened in phenotyping trials.

The primary focus of FHB spectroscopy studies has been post-harvest mycotoxin
detection in extracted kernels under laboratory conditions. The research has been
reviewed by Saccon et al. (2017) and Femenias et al. (2020), and findings on this
topic continue to be published (Zhang; Chen; Zhang, et al., 2020; Zhang; Wang;
Lin; Weng, et al., 2020; Shen et al., 2022). Less attention, however, has been given
to whole spikes (Bauriegel; Giebel, et al., 2011; Alisaac et al., 2018; Whetton; Hassall,
et al., 2018; Huang; Wu, et al., 2019; Mahlein; Alisaac, et al., 2019; Huang; Li, et al.,
2020; Zhang; Wang; Lin; Yin, et al., 2020).

Field research has also been limited until recent years, as highlighted by Whetton;
Waine, et al. (2018) and Huang; Wu, et al. (2019). Whetton; Waine, et al. (2018)
employed a proximal push-broom HS imager coupled with an artificial light source
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for FHB occurrence density estimation in winter wheat and barley. Söderström et al.
(2013) predicted the deoxynivalenol Fusarium mycotoxin in oats from data captured
by three different sensors, including a multispectral satellite imager. Further research
included the Liu; Dong; Huang; Du; Ren, et al. (2020) proposal of a novel broad-band
vegetation index to detect the disease from Sentinel-2 multispectral imagery. Xiao
et al. (2020) augmented a time series of satellite observations with meteorological
data for the same purpose, and Liu; Dong; Huang; Du; Ma (2020) investigated
the feasibility of FHB monitoring at the field scale using UAV equipped with HS
camera.

Whetton; Waine, et al. (2018) considered that the small number of FHB spec-
troscopic field studies may stem from the difficult detection of the disease in a crop
stand. Unlike well-studied rust and powdery mildew (Franke et al., 2007; Huang;
Lamb, et al., 2007; Kuckenberg et al., 2009; Cao et al., 2013; Huang; Guan, et al.,
2014; Feng et al., 2016; Zhang; Wang; Yuan, et al., 2017), FHB symptoms affect
only the spikes, and these constitute a small fraction of the total biomass. More
recently, Liu; Dong; Huang; Du; Ma (2020) proposed the identification of infected
field areas based on whole canopy characteristics, but the feasibility of this novel
and potentially controversial approach requires further scrutiny.

There is a limited transfer ability of spectrometric disease detection methods
developed for large-scale farming applications to field phenotyping. Simultaneous
screening of multiple genotypes constrains the size of experimental plots to a level
below the spatial resolution attainable with many remote or even proximal sensing
systems (Rebetzke et al., 2014; Barmeier et al., 2016). Artificial inoculation may
be limited to a small subset of plants in each plot, thus further limiting the choice
of spectral data acquisition techniques. The plot size reduction can also modify its
spectral properties (Barmeier et al., 2016), and this invalidates models which assume
a continuous canopy. Moreover, disease severity must be estimated when searching
for tolerant cultivars, rather than mere disease occurrence (Qiu et al., 2019). This
task has only recently been attempted (Bock et al., 2010; Huang; Wu, et al., 2019;
Qiu et al., 2019; Zhang; Wang; Gu, et al., 2019). Moreover, the predictions must
consider masking the disease signal by genotype differences (Pinter et al., 1985). All
these challenges create the need for research programs specifically aimed at FHB
field phenotyping.
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2.4 Specialized narrow-band imagers as an alternative for HS
cameras in crop stress detection

This section is adapted from Żelazny (2020), previously published by Estonian Agri-
cultural University, Faculty of Agronomy Agronomy Research.

Development of simplified narrow-band imagers has been proposed as a way
to overcome the problem of high HS camera prices. These products would resem-
ble multispectral devices by their limited number of bands, but would be suited
to specialized applications, including stress mapping (Govender et al., 2009; Deery
et al., 2014; Mahlein, 2016; Lowe et al., 2017; Alckmin et al., 2020). In addition
to the lower price (West; Bravo, et al., 2003; Amigo et al., 2015), they would offer
a high speed of operation (Rapaport et al., 2015).

The bands for use in the envisioned devices can preselected using feature selec-
tion algorithms (Govender et al., 2009; Mishra et al., 2017). These methods remove
wavelengths associated with redundant information (Mewes et al., 2011; Behmann;
Steinrücken, et al., 2014). Therefore, the predictive performance of the device would
remain at a satisfactory level. As demonstrated by the Zhang; He (2013) OSR yield
study, substantial reduction of data volume can be attained without impairing model
performance. Discarding of 98 % of HS bands had a minimal effect on the quality of
nitrogen content prediction in pepper plants, while significantly simplifying the ob-
tained model (Yu et al., 2014). Feature selection was even shown to improve the pre-
diction accuracy in some applications (Ding et al., 2005; Mehmood et al., 2012).
Behmann; Steinrücken, et al. (2014) proposed a support vector machine (SVM)
model for detecting water stress in barley. The model inputs comprised vegetation
indexes, the combinations of which were determined using wrapper feature selection.
Increased detection sensitivity was obtained, allowing for earlier drought detection
relative to the raw indexes. Owing to the reduced number of inputs, fewer com-
putations are required to process data subjected to feature selection, and model
interpretation is facilitated (Ding et al., 2005).

Mehmood et al. (2012) reviewed current feature selection methods suit-
able for PLS modeling. Under the filtering approach, variables are evaluated
independently of model fitting, according to a measure the value of which deter-
mines which of them will be discarded. In the minimum redundancy, maximum
relevance (MRMR) method, this measure is the mutual information shared
by the candidate feature and the predicted variable, reduced by the average
mutual information shared by the candidate feature and the features already
accepted for inclusion into the model. This mutual information is a function of the
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correlation coefficient (De Jay et al., 2013). With wrapping, models are fitted to
multiple preselected feature subsets, and the fit quality itself serves as the selection
performance criterion, making it a computationally more demanding approach
(Mehmood et al., 2012). The wrapper forward selection method is analogous to the
forward selection in the stepwise regression: candidate features are picked one by
one from the feature pool, and their influence on the performance of the refitted
model is assessed. The variable associated with the highest performance increase is
kept in the model, and the process continues iteratively until there is no further
improvement.

The indispensability of chlorophyll for plant photosynthesis (Sims et al., 2002;
Main et al., 2011) and its contribution to crop optical properties (Ollinger, 2011)
make the estimation of leaf chlorophyll concentration an important remote sens-
ing application. In large-scale assessments, leaf chlorophyll remote sensing is use-
ful for yield prediction (Moharana et al., 2016). At finer spatial scales, it can be
used for the delineation of management zones for precision agriculture (Miao et al.,
2009). As chlorophyll breaks down under stress, its monitoring provides information
about the crop status, and enables a timely intervention to prevent the yield loss
(Peñuelas; Baret, et al., 1995; Sims et al., 2002).

Numerous studies have been devoted to predicting chlorophyll content from HS
images. Partial least squares regression (PLSR) was employed to analyze winter
wheat leaf laboratory samples (Zhang; Wang; Ma, et al., 2012). Scanning of single
leaves under controlled illumination allowed the authors to evade the challenges in-
herent to canopy-level imaging in outdoor conditions, and without doubt contributed
to extremely accurate (R statistics up to 0.99) predictions. Unfortunately, unclear
study design description undermines the trustworthiness of the findings. Meij et al.
(2017) employed PLS to predict chlorophyll content in oats from UAV campaign data.
Robust leaf chlorophyll content predictions for multiple crops were obtained with
kernel ridge and Gaussian process regression. On the other hand, artificial neural
networks, an approach with a comparable level of sophistication, failed to provide
consistently reliable estimates (Caicedo et al., 2014). By applying SVM to maize
hyperspectra, Karimi et al. (2008) obtained very good validation estimates for the
tasseling stage. The prediction quality was worse, but still satisfactory, for the early
growth stage, which the authors attributed to the soil showing through the crop
canopy.

Possibilities of extending these workflows with feature selection to simplify the
imagers, obtain parsimonious models, and potentially improve their accuracy re-
main unexplored. Reliable non-imaging solutions available on the market, such as
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chlorophyll meters (Govender et al., 2009; Miao et al., 2009) working with reduced
numbers of spectra, justify undertaking research in that direction.

2.5 Soil lability link to crop stress and its estimation using
spectroscopic methods

This section is adapted from Żelazny; Šimon (2022), previously published by MDPI
Agriculture.

SC is a primary indicator of soil quality (Reeves, 1997; Bünemann et al., 2018),
and in recent years estimation of atmospheric CO2 sequestration has boosted interest
in SC monitoring (Madari et al., 2005; Stenberg et al., 2010; Batjes et al., 2015;
Paustian et al., 2019; Smith; Soussana, et al., 2019). In addition to SC quantity,
its fractional composition can be of interest in evaluating soil status. Research has
been devoted to the labile fraction, which can give insight into SC turnover processes
(Kan et al., 2021). Labile C determines the rate of nitrogen release from soil organic
matter, a factor to be accounted for while fertilizing the soil (Körschens et al., 1990;
Thomas; Whalen, et al., 2016), and it can also inform about long-term stability
of sequestered carbon (Page et al., 2013). Traditional assessment of SC lability is
costly and time-consuming due to the laboriousness of laboratory SC fractionation
(Zimmermann et al., 2007; Yang; Xie, et al., 2012; Jaconi et al., 2019). Environmental
concerns have also been raised (Janik; Skjemstad, et al., 2007; Gredilla et al., 2016).

Higher throughput and economical viability can be attained with soil spec-
troscopy (Viscarra Rossel et al., 2006; Ge; Thomasson, et al., 2011; Paustian et
al., 2019; Barra et al., 2021). Here, mid-infrared diffuse reflectance infrared Fourier
transform spectroscopy (MIR-DRIFTS) is one of the methods considered suitable
for chemical soil analysis (Viscarra Rossel et al., 2006; Janik; Skjemstad, et al., 2007;
Soriano-Disla et al., 2014) owing to fundamental vibrations of soil molecules arising
in the MIR spectral region (McCarty et al., 2002; Du et al., 2009; Kuang et al.,
2012; Soriano-Disla et al., 2014). In particular, it can give accurate estimates of SC
content (Viscarra Rossel et al., 2006; Reeves III, 2010; Bellon-Maurel et al., 2011;
Kuang et al., 2012; Soriano-Disla et al., 2014; Barra et al., 2021), and according
to Reeves III (2010), this high performance may extend to SC fraction assessments.
However, the modest number of publications devoted to SC lability (Zhang; Yang,
et al., 2018) is in contrast with the extensive literature on total carbon (TC) or the
large organic carbon (OC) pool estimation with MIR-DRIFTS.
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2.6 Calibration spiking as a possibility to reduce the number
of laboratory samples in spectroscopic crop stress
evaluations

This section is adapted from Żelazny; Šimon (2022), previously published by MDPI
Agriculture.

Spectroscopic methods do not completely remove the need for traditional mea-
surements, as predictive model training, tuning, and validation depend on their avail-
ability. An approach termed “calibration spiking” was proposed as a way to max-
imize reuse of reference data collected in the past while avoiding calibration do-
main mismatch when a model is applied in a new setting (Stenberg et al., 2010;
Cezar et al., 2019). It consists of extending the reference library with a limited num-
ber of samples collected at the target site, and recalibrating the predictive model
to the resulting dataset (Capron et al., 2005). To minimize their number, samples
for calibration spiking can be picked according to leverage selection (Nocita et al.,
2015). Under leverage selection, an extended number of samples is subjected to spec-
tral analysis, after which a subsample is picked to be analyzed in the traditional way,
based on their spectral dissimilarity. In this way, the resulting library size can be
reduced while preserving the representativeness of the samples therein with respect
to the spectral variation of the soils occurring in the target region (Capron et al.,
2005).

However, even with a modestly-sized reference dataset, an issue of the dispropor-
tion between the number of library and spiking samples arises. One way of address-
ing this problem is to use a subset of the library samples (Guerrero; Zornoza, et al.,
2010). As an alternative, which does not involve information loss, local samples can
be given bigger weight relative to the samples in the library (Cezar et al., 2019).
The weighing is typically performed by multiplying the local sample occurrences in
the model training dataset (Guerrero; Stenberg, et al., 2014; Cezar et al., 2019). As
an alternative approach, a model allowing for observation weights to be included
among its inputs is employed, instead (e.g., Sankey et al., 2008). Indahl et al. (2009)
proposed combining PLS with canonical correlation analysis, and termed the new
class of models canonical PLS. Among the features of canonical partial least squares
regression (CPLSR) that are absent in PLSR is the possibility to weight the individ-
ual observations. However, the suitability of CPLSR to calibration spiking has not
received research attention.
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2.7 Computational experiments in crop stress detection from
hyperspectra

The multivariate character of HS data with autocorrelated bands (Blackburn, 2007)
frequently demands an application of pre-processing methods to strengthen the stres-
sor signal while suppressing confounding factors, instrumental noise, and other arti-
facts (Gholizadeh; Borůvka, et al., 2013). Rinnan et al. (2009) provide a comprehen-
sive review of available transformations, which they classify into two major groups.
An even bigger array of possibilities pertains to the choice of a predictive model
family that can be trained to the spectral data. These range from traditional chemo-
metrics models (Frank et al., 1993), through machine learning algorithms (Kuhn
et al., 2013), to the latest deep learning approaches, which have been proliferating
as a byproduct of artificial intelligence research (Gao; Luo, et al., 2020). Availability
of leverage sampling (Gani et al., 2016), feature selection, and feature engineering
(Guyon et al., 2003) methods further compounds the number of data treatment
possibilities.

This “garden of forking paths” problem creates a need for computational ex-
periments that compare the performance of data processing workflows for individ-
ual applications based on data acquired in various settings. Only then a choice
from the multitude of available options can be made to develop a commercial prod-
uct that will be reliable in a broad range of circumstances and can be offered to a
mainstream consumer. Workers specializing in crop stress sensing have recognized
this need, and such assessments make a significant share of current research (e.g.,
Buddenbaum et al., 2012; Behmann; Schmitter, et al., 2014; Cezar et al., 2019;
Huang; Wu, et al., 2019; Liu; Dong; Huang; Du; Ma, 2020; Zhang; Chen; Yin, et al.,
2020). Naive comparisons of single models prevail, and only a minority of authors
(Verrelst et al., 2012; Ng et al., 2018; Baumann et al., 2021) evaluate model ensem-
bles developed with multiple versions of a training dataset. Application of formal
methods to quantify performance differences between individual approaches is also
unexplored.
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Chapter 3

Hypotheses and study strategy

In a proximal-sensing HS imaging study with potted OSR plants, it was hypothesized
that the variability of responses to drought would provide more reliable separation
between the experimental treatments than the mean values of spectral indicators.
In a field phenotyping trial involving both point and imaging spectrometry, predic-
tion quality sufficient for genotype screening was hypothesized for models trained
to FHB-infected spike spectra acquired at a late stage of the disease. Prediction
performance deterioration was expected in the case of the spectral data obtained
at an earlier date. An implicit hypothesis drove a study on leaf chlorophyll content
estimation from remote HS imagery. Two feature selection methods representing dis-
tinctive algorithm families were expected to reduce the number of bands to a number
typical for multispectral devices without impairing the prediction accuracy.

One study was devoted to mid-infrared (MIR) soil spectroscopy. Improved predic-
tions of SC and its lability were expected with calibration spiking of MIR-DRIFTS
spectra, as described in the literature. Furthermore, superiority of embedded weigh-
ing of PLSR spiking observations to the traditional weighing scheme, under which
multiple copies thereof are included in a training dataset, was hypothesized. Simul-
taneously, it was assumed that the number of samples subjected to traditional lab-
oratory analysis could be reduced by proper pre-processing of the spectra or by em-
ploying leverage sampling.

A balance between examination of the questions that are relevant to the current
state of scientific inquiry and novelty is sought in the dissertation thesis. The novel
elements include the following: Not only global commodity crops, but also minor and
less researched species with regional significance, are featured. In two of the three
crop sensing studies, more than one cultivar is employed to generalize the validity of
the findings and examine their robustness. The conventional “drought” and “control”
watering regimes are extended with a “rewatered” regime in the OSR study to find
out whether a trace of the drought episode will remain in the spectral patterns.
Field phenotyping and a more challenging disease are the focus of the FHB study
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instead of leaf diseases studied in the context of precision agriculture, which have
been prevalent in crop disease spectroscopy. The studies exploit an opportunity to
compare multiple spectral data pre-processing or processing schemes. Less known
predictive model families are tested, such as ordinal SVM model ensembles or PLSR
extensions that generalize the dependent variable to a vector of variables. Multiple
data partitioning scenarios are generated for more robust assessment of the work-
flow performances, and in one study, these are compared in a formal fashion using
linear models. To this end, Bayesian modeling is attempted instead of the dominant
but criticized frequentist statistics. Not only SC, but also its lability is investigated
in the soil spectroscopy study, and the data are analyzed in the compositional data
analysis framework.

The collected data and scripts were made available in public repositories to en-
able the reproduction of the results and adaptation to future research (Sandve et al.,
2013; Piccolo et al., 2016; Szucs et al., 2017). One of the studies was preregistered
(Nosek et al., 2018) to address the “researcher degrees of freedom” (Bakker et al.,
2020) and “file drawer” (Rosenthal, 1979) problems.

In addition to the published material, multiple further HS data acquisition cam-
paigns were performed, but the obtained spectra were of insufficient quality to pro-
ceed with their analysis. A number of the encountered problems pertained to the ra-
diometric dimension of the data, for example, improper artificial lighting introduced
artifacts into proximal sensing imagery of juvenile plants exposed to low tempera-
tures. Two attempts were made to capture airborne imagery of a commercial field
with variable sowing density from a UAV, one unsuccessful due to technical failure
resulting in an emergency landing, and the other due unfavorable illumination con-
ditions and image pixel saturation. Some of the issues were more related to the ge-
ometric dimension of a dataset, as described for the HS camera data in the field
phenotyping study, for instance. The same experiment was captured from a UAV,
but since the infection did not spread to the untreated neighboring spikes, the af-
fected areas could not be discerned in the data product.
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Dissertation objectives

The presented dissertation is aimed at filling some of the gaps with regard to early
plant stress diagnosis. It investigates the underexplored relationships between physi-
ological status, the degree of tissue damage, and field crop HS characteristics. Apart
from plant material, studies on soil carbon are included in recognition of the contri-
bution of soil properties to crop stress. The secondary goal is to introduce and pop-
ularize in plant sciences statistical methods, data analysis tools and workflows
that to a large degree have been absent in this field — in crop spectroscopy, in partic-
ular. Advantages of the most promising of these methods are demonstrated. Finally,
the dissertation responds to the reproducibility crisis and it contributes to the Open
Science movement.

The influence of drought on narrow-band vegetation indexes and principal com-
ponent analysis (PCA) scores is studied in juvenile OSR, based on proximal im-
agery acquired in semi-controlled conditions (Żelazny; Lukáš, 2020). The objective
is to determine the spectral response of plants representing two water management
strategies to three types of watering regimes. In addition, the effect of spectral pre-
processing is evaluated in the PCA part of the study.

The spectral response of a collection of winter wheat cultivars, with varied FHB
resistance, is investigated after the exposure of the plants to Fusarium culmorum (Że-
lazny; Chrpová, et al., 2021). The aims of the study are: (1) to estimate the infection
severity prediction accuracy with respect to visual rating by an expert, and (2) to ex-
amine the accuracies with respect to the timing of the inoculation and spectral data
acquisition. Two approaches to spectra aggregation are also compared and, like
in the preceding study, several spectral pre-processing schemes are tested.

A possibility of choosing a small set of hyperspectra for the purpose of developing
a chlorophyll meter with imaging capability is explored based on an analysis of pub-
licly available aggregated HS data (Żelazny, 2020). The aim is to first reproduce
selected results from the original study that was based on that dataset, and then
investigate the effect of two feature selection approaches on the prediction of leaf
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chlorophyll concentration in oats.
The feasibility of MIR-DRIFTS for quick diagnosis of SC properties is inves-

tigated (Żelazny; Šimon, 2022). The study compares SC content and SC lability
estimates obtained using MIR-DRIFTS spectroscopy followed by three levels of spec-
tral pre-processing to those derived with reference laboratory methods. The second
study objective is to determine the influence of calibration spiking and its intensity
on the performance of the soil carbon predictions. Internally and externally weighted
CPLSR models trained to MIR-DRIFTS spectra are also compared, and the perfor-
mance of two leverage sampling algorithms is evaluated. Long-term experiments
serve as the reference library, and two commercial sites — as the prediction targets
and the sources of the spiking samples.
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Research methods

5.1 Drought stress detection in juvenile oilseed rape using HS
imaging with a focus on spectra variability

This section is adapted from Żelazny; Lukáš (2020), previously published by MDPI
Remote Sensing.

The seed of ‘Cadeli’ and ‘Viking’ OSR cultivars was obtained from OSEVA PRO
s.r.o. (Opava, Czech Republic) and started by placing it for two days in a ther-
mostat (BT-120, Laboratorní přístroje Praha, Praha, Czechoslovakia), set to 20 °C.
The seedlings were transplanted to pots, at the number of five seedlings per pot, and
grown in a growth chamber, model Tyler T-16/4 (Budapest, Hungary), in 18–20 °C,
under 16-hour photo period, exposed to 400 µmol m−2 s−1 irradiance.

The watering regime followed one of the three treatments: Control pots were
watered daily to 70 % of the substrate water capacity. For pots in the dry treatment,
after 14 days since sowing, the watering was reduced to 45 % of the water capacity,
and after 10 more days the watering stopped completely. The pots in the rewatered
treatment were treated according to the same plan, but one day before the experi-
ment termination they were watered to 100 % of the water capacity.

Images of the plants in the 3–4 leaves growth phase were captured using
a 2D frame HS camera (Rikola, Senop, Oulu, Finland) in natural light conditions.
Four pots — two pots per cultivar, placed in a photo tent against a dark background
were captured in each image. The HS data cubes comprised 41 evenly spaced
bands from 503 to 903 nm. The spatial resolution was 1010 px × 1010 px, and the
integration time was set to 30 ms. The pot rims were approximately 0.70 m away
from the camera lens, and an irradiance sensor was also placed inside the tent.

The images of the plants were interleaved with images of spectralon. For every
band, a mixed-effect empirical line model (Smith; Milton, 1999) was fitted, and re-
flectance derived from radiance values. The images were then subjected to band
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registration, and square regions of interest were inscribed inside the pots.
A sample of 200 px was drawn from all regions of interest. Each was hand-

classified as either background, fresh-leaf, dry-leaf, or edge pixel. The spectra
of the pixels were partitioned into training and test dataset, in 3:1 proportion.
A SVM model was fitted, tuned, and applied. The effects of the experimental
treatments on the dry-leaf pixel proportion were assessed using a Bayesian linear
mixed-effect model.

Twenty vegetation indexes (SR, GI, RGI, DVI, NDVI, RDVI, PSRI, PSSRa,
PSNDa, RNDVI, PRI570, PRI512, PRInorm, MTCI, MCARI, TCARI, OSAVI,
TCARI/OSAVI, CIgreen, and CIre) were calculated for each leaf pixel except
for background and edge pixels. From each pot image, 36 pixels were sampled
on a regular grid. To assess the influence of the experimental treatments on the
index values, an ensemble of Bayesian linear mixed-effect models were fitted.

An attempt to exploit the full-spectrum information was made. In addition to an-
alyzing raw spectra, Savitzky–Golay filter, multiple scatter correction, derivation,
and second derivation pre-processing was tested. The spectra were subjected to prin-
cipal component analysis, and pixel subsets were grid-sampled analogously to vegeta-
tion indexes. The influence of the experimental treatments on PCA scores was then
assessed using multivariate linear modeling, with the model outcomes consisting of
the first four score values.

5.2 Fusarium head blight detection from spectral measurements
in a field phenotyping setting

This section is adapted from Żelazny; Chrpová, et al. (2021), previously published by
Elsevier Biosystems Engineering.

Winter wheat was sown on 1–3 October 2019 in 12 parallel blocks, with two
rows of aligned hill plots per block. Each plot pair represented one cultivar, arranged
according to the earliness in the first three blocks and the remainder in alphabetic
order. These cultivar arrangements were replicated three times. In each block, one
of the rows was inoculated with the isolate B of Fusarium culmorum in the winter
wheat flowering stage. Suspension of 0.8 × 107 spores ml−1 was applied from all sides
to 10 spikes of each hill plot, tied together to form a cluster. Those were covered
for 24 hours with 40 cm × 60 cm polyethylene bags. Simultaneously, 10 spikes were
tied and covered with a bag also in the facing hill plots. The plots were maintained
under irrigation except for rainy and subsequent days.

Two spectral data acquisition campaigns were planned: (1) soon after the ini-
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tial infection symptoms become visible to a naked eye and (2) once the symptoms
become severe. These dates coincided with the milk- and dough-ripening develop-
mental phases of the plants. The data were collected using the ASD Fieldspec 4
Hi-Res (Malvern Panalytical, Malvern, UK) spectroradiometer equipped with a con-
tact probe. Each spike cluster was subjected to a sequence of five measurements,
with three spikes were positioned between the probe and a black non-woven textile.
The device was calibrated at the beginning of each row and then roughly every ten
minutes using white Spectralon. The resulting dataset comprised complete spectral
data for 67 hill-plot pairs. Collection of imaging data was also attempted with the
same HS camera as in the preceding study, mounted on a tripod. The acquisition
process was slow due to difficult aiming and waiting for proper light conditions,
and the imagery had to be discarded.

On the same days, visual symptom scores (VSSs) were assigned to each hill plot
of the infected rows according to a 9-point scale denoting the percentage of the
infected spikelets in the spike cluster (9 points: <5 %, 8: 5–17 %, 7: 18–30 %, 6: 31–
43 %, 5: 44–56 %, 4: 57–69 %, 3: 70–82 %, 2: 83–95 %, 1: >95 %). In the case of the
dough-ripening phase, the facing hill plots were also rated one day later, and the
hill plot pairs for which that rating was below 9 were excluded from further analysis.
The final number of retained hill plot pairs was 48.

The hill plots were 10 times randomly split into calibration and validation
data partitions, in the 3:1 proportions. For each combination of partitioning, pre-
processing, hill plot, and spectral band, the median and mean reflectances across
multiple measurements or pixels were derived. Seven scenarios of aggregated spec-
tra pre-processing were tested: (1) no pre-processing, (2) subtraction of facing hill
plot spectrum, (3) division by facing hill plot spectrum, (4) standard normal vari-
ate (SNV), (5) subtraction followed by SNV, (6) division followed by SNV, and (7)
maximum normalization followed by Savitzky–Golay derivative and smoothing to
approximate the approach of Whetton; Waine, et al. (2018).

Ordinal SVMs with the radial basis function kernel (Behmann; Steinrücken, et
al., 2014) were trained for each combination of spectra acquisition campaign, spec-
tra aggregation function, plot partitioning, spectra pre-processing, and VSS dataset

— 560 model ensembles in total. The tuning hyperparameters (C and gamma) were
determined with an aid of Bayesian optimization according to the leave-one-out
cross-validation maximum accuracy criterion. Validation accuracies of each model
were estimated; allowing for misclassification of zero, one, and two class differences.
The joint effects of spectra acquisition campaign and ground-truth data collec-
tion timings, spectra pre-processing scenarios, and magnitudes of error tolerances
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on the probability of a correct VSS rating were modeled using mixed-effect Bayesian
generalized linear models (Bürkner, 2018).

5.3 Application of feature selection for predicting leaf
chlorophyll content in oats from HS imagery

This section is adapted from Żelazny (2020), previously published by Estonian Agri-
cultural University, Faculty of Agronomy Agronomy Research.

The Meij et al. (2018) HS dataset was obtained, and reproduction of the Meij et al.
(2017) PLS modeling result was prepared. Soil-plant analysis development (SPAD)
leaf chlorophyll concentration was modeled as the dependent variable, and the re-
flectance values as the independent variables. The number of latent variables was
tuned using leave-one-out cross-validation by calculating the cross-validation root
mean square error (RMSE) for each value from between 1 and 20.

Next, two approaches to feature selection were tested: a filter method based
on the MRMR criterion, and a forward selection wrapper method. For each, the
study aimed to obtain a series of models with the input feature number ranging
from 2 to all 94 bands (i.e., no selection). In this way, the influence of feature
selection intensity on the prediction quality could be investigated. Validation RMSE,
normalized root mean square error (NRMSE), and R2 statistics were derived.

5.4 Calibration spiking of MIR-DRIFTS soil spectra
for carbon predictions using CPLSR and log-ratio
transformations

This section is adapted from Żelazny; Šimon (2022), previously published by MDPI
Agriculture.

Soil samples were collected at the territory of the Czech Republic: (1) time series
of archived samples obtained from long-term agricultural trials, and (2) topsoil sam-
ples from two commercial sites, a field in Janovice (45 samples) and Ústí nad Orlicí
district (335 samples). The samples were dried, sieved through 2-mm mesh, and
milled. MIR-DRIFTS spectra were measured using a Thermo Nicolet Avatar 320
FTIR spectrometer with a Ge beam splitter and a TGS detector, equipped with a
Smart Diffuse Reflectance accessory (Nicolet, Madison, USA) in a 1:3 mixture of soil
and KBr (Sigma-Aldrich, Darmstadt, Germany) prepared by hand in an agate mor-
tar. TC content was determined using Vario/CNS analyzer (Elementar Analysensys-
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teme GmbH, Langenselbold, Germany), and hot-water extractable carbon (HWC)
content was determined according to Körschens et al. (1990).

For each commercial site, 10 independent sets of 12 samples were picked randomly
for testing of predictive model quality. The samples in the library part of the dataset
were the calibration samples in the baseline modeling scenario. The target-site spec-
tra not included in a testing partition made a pool from which samples were picked
for model training in other scenarios.

Noisy bands up to 600 cm−1 and the 2268–2389 cm−1 wavenumber range affected
by CO2 were discarded. The spectra were further processed using a moving-average
filter with an 11-band window. In addition to analyzing the obtained “raw” spec-
tra, five further pre-processing schemes (Rinnan et al., 2009) were tested. First,
the moving-average smoothing of the spectra was either followed with multiplicative
scatter correction (MSC) or left unchanged. In the second phase, SNV, derivative
transformation using the Savitzky–Golay filter with additional third-order polyno-
mial smoothing applied over a moving window of 11 bands, or no transformation
were applied to the result.

Calibration spiking was introduced, based on increasing spiking sample counts
to the level of 16 samples with a step of 4 samples. In addition to the random
scheme, two leverage sampling approaches were assessed for spiking sample selection:
the Kennard–Stone algorithm preceded by PCA (Ng et al., 2018) and sampling based
on conditioned Latin Hypercube (Minasny et al., 2006). Scenarios mirroring the
calibration spiking scenarios, but with no samples from the long-term experiments,
were also included.

Three components summing up to the whole soil sample were derived from
the TC and HWC measurements: (1) HWC, (2) the part of TC resistant to hot-
water extraction (nHWC), (3) and the non-TC part of a sample (1 − TC). In the
next step, the component values were transformed into two isometric log-ratio (ilr)
coordinates (Kynčlová et al., 2015): (1) ilrTC, balancing TC and remainder of a
sample; and (2) ilrHWC balancing HWC and nHWC.

A bivariate PLSR model was trained for predicting the ilr coordinate values
from MIR-DRIFTS spectra. For data partitionings that included both reference-
library and target area samples, the influence of spiking sample weighing was ex-
amined by introducing models with 5-fold and 25-fold weighted local observations,
in addition to unweighted models. The weighing was performed either by data row
multiplication (standard approach), in which case a partial least squares regression
2 (PLSR2) model was used, or by exploiting the internal weighing capability of the
CPLSR model family (proposed approach).
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The numbers of PLSR components were tuned using cross-validation according
to one-sigma heuristics (Dangal et al., 2019; Mevik et al., 2019) with values between
1 and 12 considered. The performance of each model was evaluated using test data
partitions in terms of R2 and root mean square error of prediction (RMSEP) statis-
tics, prediction bias, followed by ratio of prediction to deviation (RPD) and ratio of
prediction to interquartile range (RPIQ) statistics (Baldock et al., 2013; Clairotte
et al., 2016; Cezar et al., 2019).
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Chapter 6

Results and discussion

6.1 Drought stress detection in juvenile oilseed rape using HS
imaging with a focus on spectra variability

This section is adapted from Żelazny; Lukáš (2020), previously published by MDPI
Remote Sensing.

Accurate classification of the reflectance spectra was obtained with SVM, with all
but 2 of the 47 pixels in the test set correctly assigned. The high pixel classification
accuracy and plausible spectral patterns that can be discerned in the obtained classes
highlight the potential of SVMs to segment OSR images.

When proportions of pixels identified by the SVM model as dry in a HS image
were compared using linear model estimates, the narrowest posterior distribution was
obtained for the cultivar contrast under the dry regime. However, since the distribu-
tion was centered close to the value of 1, it fails to provide information on the sign
of the difference. Wide posterior distributions were obtained for the two remaining
comparisons in this group. The contrasts involving the watering regime suggested
an effect of restricted water supply on the dry pixel occurrence, albeit with high
uncertainty. As expected, all but two comparisons indicated lower dry leaf surface
area with improved water availability, especially for ‘Viking’. Here, the multiplica-
tive effect size (ES) along with the 95% credibility interval was ESwatered/dry =
0.009 [0.00005, 1.6], in agreement with the high drought sensitivity of this cultivar.

‘Viking’ and ‘Cadeli’ maintained under the watered treatment clearly differed ac-
cording to the MCARI and MTCI mean index values. MCARI was higher for ‘Viking’
by ESViking−Cadeli = 0.06 [0.01, 0.11] units. As green reflectance is one of the compo-
nents of MCARI, this effect can be explained by increased photosynthetic activity
fostered by the favorable hydric conditions. The tendency towards minimizing the
periods of stomatal closure allows the ‘Viking’ water-spender to thrive in the control
watering regime. A link between low water stress and high MCARI values was demon-
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strated by Peteinatos et al. (2016) in a spring wheat experiment. This interpretation
can be questioned in the light of an inverse relationship obtained by Haboudane;
Tremblay, et al. (2008) for corn. However, both these authors and Gitelson (2016)
had observed a discrepancy pattern between MCARI and MTCI, which was also ob-
tained in the present study. To a limited extent, the cultivars in the control treatment
differed in terms of TCARI (ESViking−Cadeli = 0.04[−0.02, 0.10]) and TCARI/OSAVI
(ESViking−Cadeli = 0.10 [−0.02, 0.21]). The suitability of these indexes to crop water
status diagnosis can be linked to pigmentation changes in drought-affected tissues
(Haboudane; Miller, et al., 2002). Just as for MCARI, their increased values asso-
ciated with the ‘Viking’ cultivar can be linked to its water-spender management
strategy. In addition to the vegetation index mean values, their standard deviations
differed across the two cultivars. An explanation linking those effects to the differing
water management strategies seems dubious. More plausibly, they were caused by
additional cultivar properties, in particular those related to the leaf surface and struc-
ture of the forming canopy (Mishra et al., 2017).

The influence of the watering regimes on the leaf spectra was captured
by the mean values of several vegetation indexes. Unsurprisingly, particularly
large differences were obtained for the watered:dry contrast. The RGI index
exhibited high sensitivity in ‘Cadeli’, with its values lower in the control plants
(ESwatered−dry = −0.96 [−2.21, 0.21]). The ESs obtained for both cultivars were
in agreement with RGI increase in maize exposed to drought (Sun et al., 2018).
The potential usefulness of this index is further illustrated by its strong negative
correlation to leaf water status indicators investigated by Rodrı́guez-Pérez et al.
(2007) in a commercial vineyard. Water availability had a positive influence
on the MTCI, RNDVI, and GI indexes in the ‘Cadeli’ cultivar, with the effect
not as strong as for RGI, but more precisely estimated. The RNDVI difference
(ESwatered−dry = 0.19 [−0.01, 0.41]) was similar in magnitude to the spring wheat
cultivars responses reported by Gutierrez et al. (2010). Although RNDVI was origi-
nally developed for woody species (Gitelson; Merzlyak, 1994), in light of the above
findings, it seems to be also suited to OSR cultivation.

The variation in RGI and PSRI vegetation indexes exhibited sensitivity to
the difference between the dry and control leaf spectra in ‘Cadeli’. The esti-
mated multiplicative treatment effects were ESwatered/dry,𝜎 = 0.10 [0.07, 0.16]
and 0.10 [0.06, 0.17], respectively. They were weaker in ‘Viking’ plants. The
variation in the majority of the remaining indexes were affected by the discussed
treatment contrast for at least one of the cultivars. Several indexes revealed
the difference between the rewatered and dry treatment, particularly PSRI
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(ESrewatered/dry,𝜎 = 0.33 [0.16, 0.68] for ‘Cadeli’). PSRI was proposed by Merzlyak
et al. (1999) as an indicator index of leaf senescence, and was useful in discerning
between barley drought senescence classes in the Behmann; Steinrücken, et al.
(2014) study. The obtained PSRI standard deviation sensitivity to the contrasting
watering regimes in ‘Cadeli’ can be linked to the source–sink character of the leaf
senescence process (Munné-Bosch et al., 2004).

TCARI/OSAVI exhibited a strong response to the watered:rewatered contrast
in both cultivars (ESwatered/rewatered,𝜎 = 0.40[0.28, 0.55] for ‘Cadeli’). Its formulation
allows to disentangle the effect of chlorophyll and LAI (Haboudane; Miller, et al.,
2002), as demonstrated by Haboudane; Tremblay, et al. (2008) and Perry; Roberts
(2008). This is a valuable property, considering that chlorophyll content can increase
in leaves as they shrink in drought conditions (Peñuelas; Gamon, et al., 1994; Linke et
al., 2008). As the most striking finding, all of the affected indexes exhibited variation
decrease with an improving water availability. This remarkable consistency corrob-
orates the relationship between the stress level and symptom variability mentioned
by Kruschke et al. (2017). In the light of this finding, vegetation index standard de-
viations appear to be sensitive stress indicators in the context of drought diagnosis
using proximal HS imaging, perhaps more so than index means.

Regardless of the spectra pre-processing, no separation of the cultivars was ob-
tained using the means of the principal component scores. However, the comparison
of the first principal component (PC1) score standard deviations revealed less varied
values for the watered ‘Viking’ plants relative to the ‘Cadeli’ cultivar with MSC pre-
processing (ESViking/Cadeli,𝜎 = 0.53 [0.32, 0.96]). This pattern can be explained by
referring to the higher stress level of the latter genotype (Kosová et al., 2018). MSC
is known to remove some scatter and baseline shift artifacts (Rinnan et al., 2009).
In the present study, it might have mitigated the influence of variable illumination
conditions on the captured HS data cubes.

A consistent pattern of watering-treatment effect was apparent for the remain-
ing pre-processing approaches. The variability of the PC1 scores was found to be
higher in the watered regime than in both dry (‘Cadeli’) and rewatered plants (both
cultivars). When the latter two treatments were compared with each other, the dry
spectra appeared to be more variable. Similarly to the TCARI/OSAVI standard
deviation, the observed pattern may reveal a trace of a past severe drought episode
in a seemingly healthy and well-hydrated crop.
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6.2 Fusarium head blight detection from spectral measurements
in a field phenotyping setting

This section is adapted from Żelazny; Chrpová, et al. (2021), previously published by
Elsevier Biosystems Engineering.

Lower FHB VSSs were associated with increased red reflectance and the low-
ered NIR shoulder next to the red edge region. There was a successive blue shift
as the ratings decreased towards the value of 4, and a qualitative change in the sig-
nature shape for the three lowest VSSs. Here, the curves assumed an almost linear
shape in the VIS and red-edge regions and beyond. The wax-ripening later pheno-
logical phase was characterized by increased green and red reflectance relative to
the milk-ripening phase.

The increase in VIS-region indicates pigment breakdown in the presence of fungi
(West; Bravo, et al., 2003; Morin et al., 2017; Saccon et al., 2017). This agrees
with the FHB “bleaching” symptoms (McMullen et al., 2012; Bauriegel; Herppich,
2014; Ma et al., 2020). The observed red-edge displacement towards the shorter
wavelengths is also well-described (Martinelli et al., 2015; West; Canning, et al.,
2017), as is the NIR reflectance decrease (Hamid Muhammed, 2005; Alisaac et al.,
2018; Mahlein; Alisaac, et al., 2019; Zhang; Wang; Lin; Yin, et al., 2020; Zhang; Chen;
Yin, et al., 2020). The qualitative change in spectral signature shape in the greatest
disease severities suggests the onset of a new biological process, in particular the
spikes becoming dry (Hamid Muhammed, 2005).

Most pre-processing schemes retained the possibility of discerning at least
the curves corresponding to the lowest or highest infection levels. Subtraction and
division resulted in the top-rated spectra following the horizontal line centered
at 0 and 1 value respectively. The SNV yielded three bundles of curves, while
prepending it with subtraction amplified the curve separation in the red-edge
region, while suppressing the SWIR signal and introducing noise. Prepending the
SNV with division also gave “noisy” signatures, and transformation adapted from
Whetton; Waine, et al. (2018) resulted in a tight gradient.

While 100% correct VSS ratings within two-point error tolerance were pre-
dicted for large fractions of the test data partitions, predictions were poor in
all zero-tolerance scenarios. However, relatively high performance was associated
with the early-date predictions regardless of spectral data timing provided one-point
VSS error was permitted. One VSS point difference in this study indicates disease
symptom difference of approximately ten percentage points. Although this error
allowance is much greater than errors reported in other FHB proximal sensing
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experiments, some authors (Hamid Muhammed, 2005; Dammer et al., 2011; Jin
et al., 2018) made no attempt to discriminate between disease severity levels or
transformed the disease severities to binary scale prior to model training (Liu;
Dong; Huang; Du; Ma, 2020; Ma et al., 2020).

A field phenotyping study by Qiu et al. (2019) estimated individual spike sur-
face area percentages with visible FHB symptoms from RGB imagery. That process
closely matched the expert rating procedure. The authors mentioned the “optimum
performance” of their model but provided no numerical measures to enable compar-
ison with other studies. This was followed by Su et al. (2021) proposal of a refined
approach for application to 55 wheat genotypes. Although the authors reported neg-
ative prediction bias when disease severity was quantified on a 14-point scale, some
performance measures exceeded 70 %. This suggests that RGB imagery combined
with advanced processing is sufficient to phenotype FHB resistance in the field; at
least when the disease is visible to the naked eye. However, it is important to note
that the ground truth in this experiment was obtained by manually labeling the
images, rather than based on field-rating by an expert, who would examine all sides
of the spikes. In a deep-learning study with six-point ground-truth scale, Zhang;
Wang; Gu, et al. (2019) reported accuracies high enough to justify replicating their
experiment and testing the proposed approach in a phenotyping setting.

The SVM accuracy approached 100 % when two VSS-levels difference was permit-
ted, and this was sufficient to reliably distinguish between low, medium, and heavily-
infected cultivars. This result was similar to the four-level classification tested by
Huang; Wu, et al. (2019), where the authors had reported greatest accuracies in
the 85–90 % range. Despite its coarseness, this differentiation is sufficient for certain
field phenotyping tasks; including the preliminary screening of disease-intolerant
breeding lines (Bock et al., 2010).

An attempt was made to resolve the hypothesis of deteriorated model quality
when late-date spectral signatures are replaced with early-date spectra. To that end,
the prediction success probabilities corresponding to the different scanning dates
were compared with the same VSS rating dates maintained. There was a positive
effect of an earlier spectral campaign when subtraction or division pre-processing was
applied after median aggregation to determine infection severity with single-point
tolerance. The classification success odds increase was below 30 % when a predictive
model was trained to the VSSs collected on the early date. On the other hand, a
possible greater than 50 % increase was obtained for the late-date ratings. The early
date corresponded to the milk-ripening stage, which Whetton; Hassall, et al. (2018)
identified as being optimal for Fusarium infection severity prediction using PLSR

33



Results and discussion

in laboratory. However, the diseased spikes have similar color to spikes unaffected
by FHB as the crop matures, as reflected in temporal difference between spectral
curves obtained in the present study. This ripening adversely affects spike detection
in images (Fernandez-Gallego et al., 2018), and is detrimental to disease severity
estimation accuracy (Bauriegel; Giebel, et al., 2011; Dammer et al., 2011; Qiu et al.,
2019).

The effects of pre-processing schemes on the SVM prediction quality were exam-
ined, with the raw-spectra scenarios forming the baseline for comparison. The pre-
diction performance remained almost the same if an error of two VSS points was
allowed, and the response was weak for models trained to the early-date infection
ratings when the tolerance was reduced to one point. Slight, but consistent perfor-
mance decreases were associated with median aggregation followed by subtraction
and division combined with SNV, and also with the pre-processing adapted from
Whetton; Waine, et al. (2018). The detrimental effects of these schemes were con-
firmed by the zero-error tolerance scenario, where the probabilities of a correct VSS
assignment were reduced by 63 % [32, 80], 56 % [19, 76], and 58 % [22, 78] when
the milk-ripening phenological phase was involved. It was likely due to the “noisy”
spectra resulting from these combinations.

Mean spectra aggregation preserved the negative effects of subtraction followed
by SNV and the scheme adapted from Whetton; Waine, et al. (2018), which yielded a
tight spectral VSS gradient. Although the ratings were consistently ordered, the sig-
natures crossed and overlapped. This effect and the gradient steepness may have
weakened the disease severity signal. Some evidence of accuracy increase with SNV
was obtained. This transformation can reduce noise resulting from light beam scat-
tering, and it was employed in some studies on Fusarium-affected kernels (Femenias
et al., 2020). It can be recommended if both spectra acquisition and VSSs ratings
are performed at the milk-ripening stage,

6.3 Application of feature selection for predicting leaf
chlorophyll content in oats from HS imagery

This section is adapted from Żelazny (2020), previously published by Estonian Agri-
cultural University, Faculty of Agronomy Agronomy Research.

When the experimental plot spectra were matched to the ground-truth data, high
leaf chlorophyll concentration could be associated with increased NIR reflectance
and a steep red edge. Both these regions have been repeatedly deemed as important
for chlorophyll prediction by earlier studies (Govender et al., 2009; Main et al.,
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2011). On the other hand, contrary to expectation, no apparent red-edge shift could
be discerned.

Despite the variety of existing PLS flavors and implementations, the attempt to
reproduce the validation results of the Meij et al. (2017) paper was successful. Only
NRMSE exhibited a slight deviation from the original value. However, the high num-
ber of bands contributing to the model made the “full-spectrum” approach infeasible
for practical application — at least until HS imagers would become affordable (Aasen
et al., 2018). In addition, model tuning set the number of the latent variables to five,
making an insight into its workings challenging.

The cross-validation of models that employed filter feature selection resulted in
two local error minima. The absolute minimum corresponded to 19 input bands,
a much lower number than for the reference model, but still too high for developing
an affordable specialized device. What is more, the model exhibited higher validation
error and involved even more latent variables (seven) than the reproduction model.

The second minimum reduced this set to three wavelengths, a seemingly good
middle-ground between technical feasibility, model interpretability, and its expected
estimation error. The validation statistics improved, corroborating the positive in-
fluence of feature selection on prediction accuracy (Mehmood et al., 2012). The first
PLS component loading of this tuned model corresponded to the NIR reflectance,
in accordance with the visual assessment, above. The second component could be in-
terpreted as canopy darkness, and linked to the absorbance in the photosynthetically-
active spectral region. The third component value was linked to canopy blueness.

Wavelength combinations similar to that picked by the filtering algorithm sel-
dom occur in vegetation index formulations. They can be found in the Enhanced
Vegetation Index (Gao; Huete, et al., 2000), the Structure Insensitive Pigment Index
(Peñuelas; Baret, et al., 1995), the Modified Simple Ratio, and the Modified Nor-
malized Difference (mND705) (Sims et al., 2002). In the study by Main et al. (2011),
the first three indexes fared poorly when used for predicting chlorophyll content
in maize leaves at various developmental stages.

Regarding mND705, it was among the best-performing indexes in Main et al.
(2011) and in Miao et al. (2009) — also a maize study. On the other hand, it
was reported as a poor predictor of chlorophyll content in rice (Moharana et al.,
2016). The mND705 index formula includes a blue band, which accounts for specular
reflectance (Sims et al., 2002). The third latent variable of the discussed PLS model
might have played the same role, or it might have adjusted for Rayleigh scattering.

The forward selection within the wrapper approach stopped after picking
one band (775 nm), thus reducing the PLS model to a classical regression model
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with a single independent variable. The selected wavelength lied in the NIR spectral
region, in agreement with the observation from the visual assessment. According
to the validation statistics, despite extreme simplicity, the model performed
surprisingly well in terms of RMSE. However, the low R2 value put in question its
practical utility.

6.4 Calibration spiking of MIR-DRIFTS soil spectra
for carbon predictions using CPLSR and log-ratio
transformations

This section is adapted from Żelazny; Šimon (2022), previously published by MDPI
Agriculture.

Among the two target sites, Ústí nad Orlicí spectral signatures were highly var-
ied. In certain regions, the signatures extended beyond the envelope of the library
samples regardless of pre-processing, whereas the Janovice spectra were enveloped
by the library spectra. Also the C measurement variation was high in Ústí nad
Orlicí, not much smaller than that of the library samples despite the different geo-
graphical scales. This pattern indicates high spatial heterogeneity of Ústí nad Orlicí
district soils. Consequently, it corroborates the need for dense soil sampling to map
and monitor SC in the conditions of Czech Republic and, arguably, beyond (Paus-
tian et al., 2019; Smith; Soussana, et al., 2019). The need to develop cost-effective
assessment methods follows this consideration (Paustian et al., 2019). Janovice C
measurements exhibited an apparent mismatch relative to the reference library mea-
surements. Both TC and HWC were high here, and the only library samples with
similar characteristics were a group of experimental plots assigned to compost fer-
tilization treatments.

Regardless of the data subset, the raw measurements were skewed towards lower
values. The skew, and to a degree high kurtosis, were reduced after the ilr transfor-
mations. As high performance of a PLSR model can be attained when the predicted
variable has a Gaussian distribution, the obtained effect provides evidence of com-
patibility of log-ratios with PLSR predictive modeling.

The predictive performance of the PLSR models varied substantially. Although
negative values were obtained for the worst models, models corresponding to R2

in excess of 0.80 could be found for each ilr coordinate and target site combination.
According to Janik; Skjemstad, et al. (2007), this is a high quality result. How-
ever, after aggregating the values across all data partitionings, R2 exceeded 0.50,
still an unsatisfactory value, only for Janovice while predicting ilrTC, whereas both
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ilrHWC and Ústí nad Orlicí scenarios gave poor results. The worst negative biases
and RMSEP values were comparable, amounting to 0.4–0.5 for ilrTC and 0.2–0.3
for ilrHWC. In terms of raw component values, these correspond to approximately
1.30 TC percentage points and 0.09–2.79 mg g−1 HWC, depending on the baseline
HWC value. The best models had RMSEP of only 0.04 for ilrTC (approximately
0.12 pp TC) and 0.03 for ilrHWC (0.34 mg g−1 HWC for high value range and less for
low value range). More conservative estimates, based on partitioning medians, sug-
gested a possibility of predicting ilrTC with an error of 0.13 (0.38 pp TC) and 0.08
(0.23 pp TC) in Ústí nad Orlicí and Janovice, respectively. For ilrHWC, the corre-
sponding values were 0.11 and 0.04 (0.04–1.23 and 0.01–0.45 mg g−1 HWC). Models
with RPD or RPIQ above 2.5 or even 3.0 were obtained in some scenarios and test
data partitions, described in literature as good and excellent predictions (Saeys et
al., 2005). However, typically one could not expect the performance higher than 1.7,
that is, barely sufficient to estimate the values even as high or low.

These evaluations do not corroborate the purported potential of MIR-DRIFTS
to become a cost-effective yet reliable laboratory method for SC assessment (Viscarra
Rossel et al., 2006; Reeves III, 2010; Kuang et al., 2012; Soriano-Disla et al., 2014;
Seybold et al., 2019). Bellon-Maurel et al. (2011) and Barra et al. (2021) summarized
model quality estimates for predicting TC and OC from MIR spectra. Although
highly-performing models prevail in reported research, a number of SC studies suffer
from methodological issues that arguably bias the results towards higher accuracy.
In addition to that, not all models have been reported to perform well. The Bellon-
Maurel et al. (2011) review includes formulations that resulted in modest RPD
values, similar to those obtained in the present study. In the more recent Page
et al. (2013) work, MIR-DRIFTS substantially underestimated OC loss over time
in a long-term experiment. Moreover, the estimated effect of evaluated management
treatments contradicted that inferred using traditional OC determination. Calderón
et al. (2017) predicted OC in several crop experiments using PLSR, and obtained
RMSEP of 0.67–0.80 pp, that is beyond the upper RMSEP conservative bracket
for TC in the present study.

PLSR models trained to the spectral library, that is, with zero target-site sam-
ples, performed poorly, especially for Janovice. Training of the models to a selection
of target-site samples, only, while excluding the spectral library, had a clearly pos-
itive effect on all measures even with only 4 training samples. This effect can be
linked to the absence of samples with compost fertilization in the training dataset,
analogously to the effect observed by Calderón et al. (2017) after training a model
without an atypical site found in their data.
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In Janovice scenarios with PLSR2 models, augmenting the library samples
with 25-fold weighed spike samples yielded results competitive with the local
approach. R2 up to 0.71 could be attained with only 4 spiking samples for ilrTC —
in contrast to R2 of corresponding local-only models, which was always negative.
This effect is similar to the OC prediction pattern with NIR spectroscopy obtained
by Guerrero; Stenberg, et al. (2014) while increasing the number of target samples
from 8 to 16 and 32. It is also in line with the hypothesis on calibration spiking
potential to reduce the number of necessary reference samples.

A pattern of Kennard–Stone leverage sampling inferiority could be discerned
for Ústí nad Orlicí. This leverage sampling scheme tends to pick distant observations,
located at the edges of a hyperspace. It also operates incrementally, as opposed to
conditioned Latin hypercube, in the case of which the spectra are picked at once
and can be more representative of a dataset (Ng et al., 2018). When applied to the
heterogeneous Ústí nad Orlicí dataset, Kennard–Stone might have picked outlier
spiking samples, perhaps corresponding to soils with atypical textures (Stumpe et
al., 2011) or mineralogy (Reeves et al., 2001; Calderón et al., 2017).

Contrary to the hypothesis, the application of the CPLSR method was clearly
detrimental for the prediction quality of both ilrTC and ilrHWC in Janovice samples
compared to the standard approach. Sankey et al. (2008) attempted to predict SC
from VisNIR spectral data using boosted regression trees for different levels of lo-
cal sample weights relative to the weights of the samples in the reference library.
The authors expressed skepticism with respect to their results, in which the model
performance decreased substantially for one target site. Although a positive relation-
ship was observed for another, the obtained improvement was modest. Still, given
the limited number of studies devoted to the topic so far, it seems worthwhile to
further explore effects of embedded weighing with other data and other classes of
predictive models (Janik; Forrester, et al., 2009; Deiss et al., 2020).
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Chapter 7

Conclusions and recommendations

This chapter is adapted from Żelazny; Lukáš (2020), previously published by MDPI
Remote Sensing; Żelazny; Chrpová, et al. (2021), previously published by Elsevier
Biosystems Engineering; Żelazny (2020), previously published by Estonian Agricul-
tural University, Faculty of Agronomy Agronomy Research; and Żelazny; Šimon
(2022), previously published by MDPI Agriculture.

According to the latest literature, the superiority of hyperspectral measurements
relative to multispectral measurements is unequivocal with respect to crop stress de-
tection. However, HS data carry with them the “curse of dimensionality” problem,
can be more affected by noise, and there is an increased risk of predictive model over-
fitting. Therefore, it is imperative that hyperspectra processing workflows continue
to be developed, while those already published need to be validated by multiple
teams in a range of conditions to ensure their robustness.

In imaging solutions, large volumes of HS data cubes pose a computational chal-
lenge, and the acquisition equipment is expensive. Before these issues become ad-
dressed, a focus on small sets of pre-selected narrow bands captured by more afford-
able specialized devices can be a feasible middle path. In the study with oats, it
was possible to train a PLSR model that predicted leaf chlorophyll from only three
spectral inputs. The pigment concentration could be estimated from NIR reflectance,
canopy darkness, and its blueness. Chlorophyll content estimation is of practical use
for precision agriculture, as crop stress occurrence triggers pigment deterioration.
A relatively simple sensor for airborne field mapping or for on-line mapping during
a tractor operation can, therefore, be envisioned exploiting the model.

The robustness of the solution remains to be investigated using an ensemble of
dataset partitionings and ground truth obtained from laboratory analyzes instead
of a SPAD chlorophyll meter. HS patterns of chlorophyll-deficient oats obtained
from airborne imagery mostly matched those described in literature for vegetation
in general. This increases the odds that a model could be subsequently transferred
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also to other crop species.
In the study where a HS camera was employed to acquire data cubes of water-

stressed OSR plants, a SVM accurately distinguished between healthy leaf zones,
those bearing signs of drought discoloration, and the background. At the same time,
the process required time-consuming pixel labelling to train the classification model,
and possibilities of reducing this effort still need to be tested. There was an increase
in the discoloured leaf surface area in the ‘Viking’ cultivar when subjected to drought
stress, a pattern that would corroborate the higher susceptibility of this genotype.
Future studies should include additional cultivars representing each water manage-
ment strategy to control for nuisance effects of traits unrelated to OSR drought
tolerance.

Several vegetation index means responded to the difference between the control
and water-deprived plants, especially RGI, MTCI, RNDVI, and GI; but the most
striking finding was a consistent increase in the multiple index standard deviations to
worsening of the hydric regime. This result suggests higher sensitivity of the vegeta-
tion index variability measures relative to the means for OSR drought stress diagno-
sis. Vegetation indexes are frequently derived from only two spectral bands. The pro-
posed approach could then, similarly to feature selection, contribute to the develop-
ment of affordable crop stress sensors. However, it needs to be noted that imagery
with high spatial resolution is required to capture within-leaf reflectance variability.
For this reason, the imager would be primarily suited to proximal applications —
for example, mounted on agricultural machinery or a field phenotyping robot.

Additional factors can be introduced in follow-up studies to verify the robustness
of the findings and their application to earlier drought stress detection. A single
campaign could be replaced by a time series to capture the temporal development
of the drought stress and of the spectral responses. Another modification would be
to restrict the watering of the plants at an earlier developmental phase. More insights
could be obtained by augmenting the new dataset with biochemical and physiological
measurements. Regardless of the study extensions, the observed patterns need to be
replicated in an independent experiment with a larger sample.

In the winter wheat field phenotyping study, the patterns in the acquired spectral
signatures of FHB-infected spikes could be explained by plant stress biology and
linked to the disease visual symptoms. These agreed with the spectral patterns
obtained in other FHB studies, and this supports utility of a spectroradiometer with
a contact probe for FHB phenotyping applications. Ordinal SVM models applied
to the raw spectra yielded predictions with confident distinction of low, moderate,
and high disease severity at the milk-ripening developmental phase. The proposed
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approach enables screening of unpromising breeding lines while developing new crop
cultivars. Other predictive models require testing for applications that demand finer
FHB severity ratings. In the context of precision agriculture, the solution could be
adapted to facilitate separate harvest of healthy and FHB-infected grains.

Spike-drying discolor masked the disease signal at the wax-ripening developmen-
tal stage. Predictions at this phase can be improved by subtracting healthy-spike re-
flectance measurements from the analyzed signatures or by division. However, gains
from these pre-processing schemes must be compared to the costs of additional scans.
While deep learning may be a more suitable alternative for FHB severity estimation,
the current published results require replication with multiple cultivar datasets and
avoid over-simplification of ground-truth data. Further investigation is also required
to determine if a single trained model can be applied year-to-year to reduce the
reference data collection effort.

In the soil spectroscopy study, conservative estimates of PLSR model perfor-
mances were lower than the values typically reported for MIR-DRIFTS SC predic-
tions. Introduction of spiking samples combined with heavy weighing and PLSR2
modeling was associated with an increase of model quality. It, therefore, appears
to be a promising cost-effective and environmentally-friendly SC monitoring solu-
tion. On the other hand, application of Kennard–Stone leverage sampling is not
recommended, at least for heterogeneous datasets. The evaluated application of
MIR-DRIFTS spectroscopy is primarily relevant for large-scale SC inventories. How-
ever, C lability mapping can also be of interest to precision agriculture practitioners,
as a factor to be accounted for in variable-rate fertilization.

Not enough representative training data were available to satisfactorily predict
SC properties in the more geographically extensive district-scale dataset. The large
training-dataset requirement calls for international cooperation to standardize data
collection and treatment workflows, harmonize spectral libraries, and facilitate their
use. Log-ratio transformation of SC laboratory reference measurements improves
data distributional properties and, therefore, is compatible with PLSR modelling.
Accounting for carbon saturation limits, and treating spectral measurements as com-
positional are potential further refinements of this approach.

Early crop stress detection based on HS reflectance is a broad research sub-
ject, and as such it could benefit immensely from Open Science practices to avoid
work duplication, facilitate predictive workflow validation, synthesis of the findings,
and their transfer to the industry. For this reason, the studies included in this dis-
sertation aimed not only to address pertinent research questions and explore novel
solutions, but also to share the collected data, analyze them in a reproducible fashion,
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and avoid research bias. In particular, the pre-registered FHB study demonstrates
that with proper tooling, some of the recommended best Open Science practices
can be followed without adding excessive burden on researchers. The material ac-
companying the publications included in this dissertation thesis can be consulted
by teams interested in making their work more transparent and accessible to the
research community.
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Abstract: Hyperspectral imaging (HSI) has been gaining recognition as a promising proximal and
remote sensing technique for crop drought stress detection. A modelling approach accounting
for the treatment effects on the stress indicators’ standard deviations was applied to proximal
images of oilseed rape—a crop subjected to various HSI studies, with the exception of drought.
The aim of the present study was to determine the spectral responses of two cultivars, ‘Cadeli‘ and
‘Viking’, representing distinctive water management strategies, to three types of watering regimes.
Hyperspectral data cubes were acquired at the leaf level using a 2D frame camera. The influence of
the experimental factors on the extent of leaf discolorations, vegetation index values, and principal
component scores was investigated using Bayesian linear models. Clear treatment effects were
obtained primarily for the vegetation indexes with respect to the watering regimes. The mean
values of RGI, MTCI, RNDVI, and GI responded to the difference between the well-watered
and water-deprived plants. The RGI index excelled among them in terms of effect strengths,
which amounted to −0.96 [−2.21, 0.21] and −0.71 [−1.97, 0.49] units for each cultivar. A consistent
increase in the multiple index standard deviations, especially RGI, PSRI, TCARI, and TCARI/OSAVI,
was associated with worsening of the hydric regime. These increases were captured not only for the
dry treatment but also for the plants subjected to regeneration after a drought episode, particularly by
PSRI (a multiplicative effect of 0.33 [0.16, 0.68] for ‘Cadeli’). This result suggests a higher sensitivity
of the vegetation index variability measures relative to the means in the context of the oilseed rape
drought stress diagnosis and justifies the application of HSI to capture these effects. RGI is an index
deserving additional scrutiny in future studies, as both its mean and standard deviation were affected
by the watering regimes.

Keywords: imaging spectroscopy; Rikola; irradiance; Brassica napus L.; pot experiments; reproducibility

1. Introduction

Given the continuing increases in average temperatures [1] and projections of more frequent and
severe droughts in agricultural regions [2,3], water deficiency has been among the most extensively
studied crop stress factors [4]. In pot experiments, crop responses to drought can be investigated by
varying the watering regime and comparing the obtained plant reactions across the treatments [5–8].
An alternative approach is to exploit the variability of water management strategies exhibited by
individual genotypes [9,10].

Several dehydration avoidance mechanisms have been described in crops [11,12]. Plants can
rapidly respond to a water deficit by closing their stomata, which reduces the leaf transpiration. As a
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trade-off, this reduction leads to a simultaneous decrease in the photosynthesis rate, related to limited
CO2 assimilation [13,14]. Differentiation of crop cultivars with respect to their stomatal conductance
regulation has been proposed. Plants that manage their water resources in a conservative way and
maintain a steady CO2 fixation rate, affected by moisture availability to a limited extent, have been
termed as water-savers. Water-spenders, on the other hand, maximise their CO2 assimilation, depleting
the available water resources at the onset of a drought due to a delayed closure of the stomata [15,16].
Cultivars with a high baseline stomatal conductance tend to not exhibit a mid-day depression in
photosynthetic rates. They are capable of sustaining a high photosynthesis rate and can avoid heat
stress due to the cooling action of the transpiration, provided that water is available [17].

Stressed and healthy vegetation differ with respect to their spectral reflectances, with the effects
of stress detectable before they become apparent to the naked eye [18–20]. The visible spectral
region is affected by stress-induced changes in pigment concentrations and activities. These changes
include anthocyanin and (relative) carotenoid accumulation aimed at protecting the photosynthetic
apparatus and pigment breakdown, which accompanies chloroplast deterioration caused by oxidative
stress [13,21–23]. As leaf mesophyll cells lose their turgor and shrink, there can be a temporary
increase in the near-infrared reflectance, eventually followed by a decrease below the normal level [19].
The red-edge shifts towards shorter wavelengths and becomes less steep [20,24,25].

Among the spectral methods, imaging spectrometry (hyperspectral imaging) has been gaining
recognition as a promising proximal and remote sensing technique for crop status assessment [26–28].
Its important advantage over the more traditional point spectrometry is the availability of precise
spatial information [26], which can address the mixed spectra problem in close-range applications.
This advantage is accomplished by using spectral segmentation methods [29], which enable the
separation of the object and background pixels [30], or the identification of pixels affected by
unfavourable illumination effects [6]. Furthermore, the presence and distribution of geometric features
can be analysed in the image [29,31].

Studies devoted to drought effects on crop hyperspectra have been primarily focused on
the species that dominate the global commodity market. Those species include maize [6,30] and
other staple cereals [7,32,33]. A relatively large amount of attention has also been given to fruit
crops [18,34,35]. On the other hand, numerous other species have so far been largely neglected by the
studies, including those of regional importance.

Due to its nutritional [22,36,37] and technical [37,38] value, oilseed rape (Brassica napus L.; hereafter,
OSR) is an important crop in many parts of the world. It is widespread in North America [39,40],
China [40], Europe [39], and India [41]. OSR is susceptible to drought [12,22] and, along with other
brassicas, the future cultivation of this species is endangered by dry spells [39,42].

The reproductive phase of OSR has been associated with an especially high sensitivity [22,43],
but it can also be permanently affected by water deprivation earlier in its development. This possibility
justifies extending studies to juvenile plants and to crop recovery after conclusion of the drought
period, which is an underexplored research area [5]. Müller et al. [44] compared the physiological
status of OSR plants that had been water-deprived at the shooting developmental stage and then
rewatered with specimens receiving irrigation for the entire duration of the experiment. The treated
plants exhibited reduced productivity and their physiological profiles were affected. The physiological
changes in even younger plants were studied by Kosová et al. [45] and Urban et al. [15].

In addition to the physiological parameters, a trace of a drought episode can be detectable in
a spectral signature of the affected crop. Such a possibility was demonstrated by Linke et al. [8] for
wheat and by Sun et al. [5] for maize. The authors tested the changes of several vegetation indexes in
plants exposed to repeated drought and recovery cycles. They observed a full recovery after the first
cycle, but the second recovery was incomplete. As a possible cause, the authors suspected progressing
cell deterioration due to oxygen radicals, which could not be neutralised in the absence of carotenoids
due to their removal in the course of the preceding stress episode.
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OSR has been the subject of various hyperspectral imaging studies. Based on field experiments,
Piekarczyk et al. [46] and Zhang and He [47] attempted to predict its yield using vegetation indexes
and partial least squares regression, respectively. Kumar et al. [41] cite several publications devoted
to OSR pests and diseases. Xia et al. [37] analysed the imagery of water-logged plants. The effects of
herbicide exposure were studied by Kong et al. [48]. In contrast to these stress factors, the possibilities
of capturing the OSR response to drought using a hyperspectral camera remain unaddressed.

As highlighted by Kruschke and Liddell [49], “stressors [. . . ] can increase the variance of a group
because not everyone responds the same way to the stressor”. In the context of close-range crop
hyperspectral imaging, the “group” can refer to plant foliage or leaf tissue composed of individual
leaves and cells, respectively, each responding to the change in the environment in a distinct way.
Especially characteristic for stress-induced leaf senescence is the source–sink differentiation between
the older and younger leaves [23]. The potential of imaging spectrometry to provide an insight into
the spatial variation of stress symptoms across crop foliage was demonstrated for drought [7,32,33,50],
nitrogen deficiency [51], pest infestation [50], and herbicide exposure [48]. OSR is characterised by
relatively large leaves, even in early developmental phases. Hyperspectral imaging that captures
leaf-level spectral variation may, therefore, prove to be a suitable approach for water deficiency
detection in this crop [32].

Studies on crop responses to stress conditions frequently employ traditional experimental designs,
such as a randomised block design, coupled with linear modelling for statistical inference [42,43,52].
The frequentist approach prevails in the fitting and evaluation of these models. Various authors
noted the shortcomings of the frequentist statistics, and have advocated Bayesian methods as an
alternative [49,53,54]. Historically, first the lack and then the high computational demands of
suitable numerical methods posed obstacles towards a wider adoption of the Bayesian paradigm [55].
These hindrances have been largely removed by an increase in computer speeds [55,56], followed by
improved accessibility of parallel computing [57], and the availability of software with capabilities
suited to the needs of the scientific community [55,58–60].

One major appeal of Bayesian statistics is the ease with which interval estimates of model
parameters can be quantified, even for complex models. Notably, it is possible to obtain estimates
with respect to not only the mean values but also standard deviations, shape factors, or hurdle
values—again, also for complex models [49]. In the context of stress detection with imaging
spectroscopy, this capability can be readily exploited to assess the influence of the stressor on the
spectral variation across the foliage of the affected plant.

The aim of the present study is to determine the spectral response of juvenile OSR representing
two water management strategies to three types of watering regimes. The study is performed at the
leaf level by employing a high-resolution hyperspectral camera. The influence of the OSR cultivars and
watering regimes on the extent of leaf discolourations, vegetation indexes, and principal component
scores are investigated. Bayesian statistics are used to obtain the interval estimates of the treatment
effects with respect to the mean value and standard deviation differences.

2. Material and Methods

2.1. Plant Material and Experimental Factors

The experiment was based on winter OSR plants of the ‘Cadeli’ and ‘Viking’ cultivars.
The two genotypes differ in terms of their drought-coping strategies, with ‘Cadeli’ representing
the “water-saver strategy” and ‘Viking’ exhibiting the “water-spender strategy”, as revealed by their
physiological [15,45] and proteomic [15] profiles. This difference is related to the origin of the cultivars,
which is France for ‘Cadeli’ and Germany for ‘Viking’ [15].

The study was conducted on the premises of the Crop Research Institute in Prague-Ruzyně
(Czech Republic). The seeds of both cultivars were obtained from OSEVA PRO s.r.o. (Opava,
Czech Republic). Each seed was started on 11th May 2018 by placing it in a thermostat (Biological
thermostat BT-120, Laboratorní přístroje Praha, Prague, Czechoslovakia) for two days set to 20 ◦C.
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The obtained seedlings were transplanted three days later to 14-cm diameter pots filled with 1.01 kg of
potting mixture produced at the site. The seeds were topped with an additional 0.25 kg of the mixture.
Each pot contained five seedlings of either of the cultivars. The potted plants were grown in a growth
chamber (T-64, Tyler, Budapest, Hungary) in 18 ◦C to 20 ◦C, under a 16-h photo period, exposed to
400 µmol m−2 s−1 irradiance up to the second leaf (BBCH 12) developmental stage. At that point,
the watering regime experimental factor was introduced.

The watering of the pots followed one of the three treatments: The control pots were watered
daily to 70% of the substrate water capacity (SWC). For the pots in the dry treatment, the watering was
reduced to 45% of the SWC, starting 14 days after the sowing, and 10 more days later the watering was
stopped completely. The pots in the rewatered treatment were treated according to the same plan as
the water-deprived plants, but after 5 days of suspended watering they were watered to 100% of the
SWC to induct regeneration. The pots were grouped in the growth chamber according to the watering
regime, which resulted in a lack of true replication of this factor.

A total of n = 26 pots were used in the study. Table 1 depicts the pot numbers according to the
two experimental factors. The uneven numbers across the treatment combinations stem from the fact
that the material was used in another experiment, which involved destructive sampling.

Table 1. Oilseed rape pot counts used in the experiment according to the experimental treatments.
The parenthesised values refer to the counts after excluding a low-quality image.

Watering Regime Cultivar

Cadeli Viking

dry 6 6
rewatered 3 (2) 3 (2)
watered 5 3

2.2. Image Acquisition and Pre-processing

The imaging took place on 27 June 2018. By that time, the plants had attained the phase of
3 to 4 leaves (BBCH 13, 14), and pigmentation changes due to water deprivation were apparent
(Figure 1a). The images were collected between 14:45 and 15:45, outdoors, in natural light
conditions. The illumination was variable, as illustrated by the radiant exposure measurements
from a meteorological station located at the site (Figure 2), and there were periods of no direct sunlight.
A photo tent was used to obtain diffuse illumination and create a wind barrier.

The imager was a 2D frame hyperspectral camera (Rikola, Senop, Oulu, Finland), mounted on a
tripod at the tent entrance (Figure 1b). An irradiance sensor was placed inside the tent to account for
the variation in the illumination conditions. Its readings, expressed in relative units, varied between
82 and 181 (Figure 2), reflecting the unstable light conditions during the campaign. A dark reference
was obtained prior to the acquisition of the OSR images with the aid of a 50-mm black masking tape
(T743-2.0, Thorlabs Inc., Newton, NJ, USA). Four pots—two per cultivar and placed at the tent bottom
in an alternated manner against a background of black non-woven textile—were captured in each
image. Since the number of pots in the rewatered treatment was not divisible by four, some of the pots
were captured for a second time. Those extra pot images were not included in the analysed dataset.
First, the dry plants were imaged, followed by the watered plants, and then followed by the rewatered
plants. This ordering reflected the pot grouping in the growth chamber. The images of the plants were
interleaved with images of Spectralon tiles with 2, 9, 23, 44, and 75% reflectance factors. The internal
camera temperature was stable, in the 32.56 ◦C to 33.81 ◦C range.
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Figure 1. Material used in the experiment. (a) Oilseed rape in pots 16 days before the spectral
data collection. (b) Imaging setup with the photo tent and the hyperspectral camera on the
tripod. (c) False-colour composite rendering of one of the hyperspectral data cubes employed in
the pixel labelling.
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Figure 2. Radiometric measurements of ambient illumination during the acquisition of the
hyperspectral imagery. The black line represents radiant exposure values integrated over 10-s intervals.
The red dots represent readings from a relative irradiance sensor associated with the individual images.

The hyperspectral data cubes comprised 41 evenly spaced bands ranging from 503 to
903 nm. The spatial resolution was 1010 × 1010 pixels and the radiometric resolution was 12 bits.
The integration time was set to 30 ms. The pot rims were approximately 0.70 m away from the camera
lens, resulting in a GSD of approximately 0.43 mm per image pixel.
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Figure 3 depicts the imagery pre-processing and processing workflow. After the conversion from
the digital numbers, Spectralon radiance values were sampled on a 20 × 20 pixel grid. The grid
sampling was intended to reduce the effect of spatial autocorrelation and the computation time.
For every band, a mixed-effect empirical line model [61] was fitted with a reflectance logit as the
dependent variable, radiance as the independent variable, and pixel as the grouping variable (fit ELM
in Figure 3). The logit transformation accounted for the reflectance values being constrained between 0
and 100% [62], and the grouping variable was introduced for the possibility of an uneven illumination
of the scene during the acquisition process. A transformation of the radiance values to the reflectance
values was performed by applying the obtained models to the individual spectral bands (pred ELM).

In the next pre-processing step, the reflectance images were subjected to band registration (reg)
to remove the effect of camera sensor misalignment [63]. The ORB algorithm was used for feature
detection and description and was coupled with brute-force descriptor matching [64]. The band
registration failed for one of the images of the rewatered plants, probably because of leaf movements
from the wind. That image was excluded from the subsequent analyses (Table 1).

In each of the plant images, the coordinates of three points along each pot circumference were
identified by hand. From these, the pot centre coordinates and radii were derived. The radii lengths
were then reduced by a factor of 0.95 to exclude the pot rims from the regions of interest, which were
delimited as inscribed squares (crop).

2.3. Pixel Classification and Evaluation of Class Size Proportions

A random sample of 200 pixels was drawn from across all regions of interest to train and validate
a classification model aimed at distinguishing between healthy (fresh) leaf zones and those exhibiting
discolouration, which was attributed to drought. Due to an uneven number of pixels across the pot
images, stratified sampling was employed. First, a pot was sampled, followed by a pixel within.
The sampled pixels were subsequently hand-classified as either background, fresh-leaf, dry-leaf,
or edge pixel, based on pseudo-RGB (R: 647 nm, G: 563 nm, B: 503 nm) rendering of the pot images
(Figure 1c).

The pixels at the leaf edges or zone boundaries were treated as missing data and dropped.
The reflectance spectra of the remaining pixels (n = 181) were randomly partitioned into the training
and test dataset at a 3:1 proportion. The partitioning was stratified with respect to the pixel class.
Using the training dataset, a Support Vector Machine (SVM) classification model with the radial
basis function kernel [65] was fitted to the pixel hyperspectra (fit SVM). The cost hyperparameter of
the model was tuned to maximise the classification accuracy using 10-fold cross-validation and the
Bayesian model-based optimisation search algorithm [66]. The performance of the obtained model
was then assessed using the test dataset. Finally, the model was applied to classify every pixel in the
pot images (pred SVM).

The dry-leaf and fresh-leaf classes were merged to create plant masks [67], which were
subsequently subjected to 3-pixel erosion [63] to remove leaf pedicels and artefacts resulting from
imperfect band registration. The eroded masks were then applied to the pot images (mask).

Dry-leaf pixels were counted in each masked pot image, and the effects of the experimental
treatments on the dry-leaf pixel proportion were assessed using a Bayesian linear mixed-effect model
(fit LM1). The model assumed a zero-inflated binomial data generating distribution of the response
variable (with a logit link) and accounted for the grouping of the leaf pixels within the pots and of the
pots within the individual images. In addition to reflecting the dataset structure, the inclusion of the
grouping variables was intended to address the problem of variable illumination conditions during the
hyperspectral data acquisition campaign. Conservative, yet meaningful priors [54,68] were assumed.
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LM1

PCA

fit ELM

pred ELM

reg crop

fit SVM

pred SVM

mask fit LM1

vegind
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fit LM2

fit LM3

LM2

LM3

Figure 3. Pre-processing and processing workflow of the hyperspectral images. fit ELM = fitting of an empirical line model, pred ELM = application of the empirical
line model to the spectra, reg = band registration, crop = cropping of the images to the regions of interest, fit SVM = fitting of a Support Vector Machine model,
pred SVM = pixel classification using the Support Vector Machine model, mask = background masking, fit LM1 = linear modelling of dry-leaf pixel proportions,
vegind = deriving of vegetation indexes, fit LM2 = linear modelling of the vegetation index values, trans = spectra pre-processing, fit LM3 = linear modelling of the
principal component scores of the pre-processed spectra.
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2.4. Vegetation Index and Full-Spectrum Analyses

Twenty vegetation-index values (Table 2) were calculated for each pixel of the masked pot images
(vegind). In cases where the wavelengths present in an index definition did not match the available
image wavelengths, the closest wavelength was used, instead.

Table 2. Vegetation indexes used in the study, and their reported sensitivities to biochemical,
physiological, and structural plant properties.

Vegetation Index Formula Sensitivity Reference

SR r900
r680

Chl, fIPAR, LAI [69]

GI r554
r677

Chl [70]

RGI r690
r550

Chl [70]

DVI r900 − r680 LWC [71]

NDVI r900−r680
r900+r680

Chl, fIPAR, LAI [69]

RDVI
√

NDVI×DVI fAPAR [72]

PSRI r678−r500
r750

Chl, Car [73]

PSSRa
r800
r680

Chl, Car [74]

PSNDa
r800−r680
r800+r680

Chl, Car [74]

RNDVI r750−r705
r750+r705

Chl [75]

PRI570
r570−r531
r570+r531

ΔF/Fm’ [76]

PRI512
r512−r531
r512+r531

Gs, Ψ, EPS [77]

PRInorm
PRI570

RDVI× r700
r670

Gs, Ψ [78]

MTCI r753.75−r708.75
r708.75−r681.25

Chl [79]

MCARI [(r700 − r670)− 0.2(r700 − r550)]× (r700 − r670) Chl [80]

TCARI 3
[
(r700 − r670)− 0.2(r700 − r550)

r700
r670

]
Chl [81]

OSAVI r800−r670
r800+r670

LAI [82]

TCARI/OSAVI TCARI
OSAVI Chl [81]

CIgreen
r750
r550
− 1 Chl [83]

CIre
r750
r710
− 1 Chl [83]

Car = carotenoids, Chl = chlorophyll, EPS = violaxanthin:antheraxanthin:zeaxanthin
balance, ΔF/Fm’ = fluorescence-based PSII light use efficiency, fAPAR = fractional
absorbed PAR, fIPAR = fractional intercepted PAR, Gs = stomatal conductance, LAI = leaf
area index, LWC = leaf water content, Ψ = leaf water potential.

From each vegetation index pot image, 36 pixels were sampled on a regular grid to reduce
the effect of spatial correlation while retaining information on the within-pot index value variation.
Pixels located in the masked-out areas were discarded. To assess the effect of the experimental
treatments on the index values, an ensemble of univariate Bayesian linear mixed-effect models was
fitted (fitL̃M2). The individual model formulations took the sample–pot–image grouping hierarchy of
the observations into account and relaxed the assumption of index value homoscedasticity across the
treatment combinations. Because of the variety of the indexes, the modelling assumed uninformative
priors [55,84].

In addition to the vegetation-index approach, an analysis based on the full-spectrum information
from raw and pre-processed spectra was attempted. The pre-processing scenarios (trans) comprised
the Savitzky–Golay filter (SGF), multiplicative scatter correction (MSC), finite differences derivation,
and second derivation [85]. In the next step, the spectra were subjected to dimensionality reduction
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using PCA to remove redundant radiometric information. The influence of the experimental treatments
on the first four PCA loading values was then assessed using multivariate linear modelling (fit LM3),
readily available in the Bayesian paradigm [55], to take the correlations between the loadings into
account. The predictor part of the model was formulated in the same way as for the vegetation indexes.

2.5. Statistical Inference and Model Diagnostics

Accuracy of the SVM classification was determined using a confusion matrix. For the linear
models, the posterior distributions of parameters were derived and visualised to assess the directions,
magnitudes, and uncertainties of treatment effect estimates. Numerical summaries: posterior mode
and a 95% credibility interval [49,54] were also computed. The estimated differences among the
vegetation index means were additionally converted to Cohen’s d relative effect sizes, with the watered
treatment index standard deviations pooled across the cultivars as the standardiser [86]. The fits of
the linear models were assessed using the R-hat statistics [59], by inspecting posterior trace plots [55],
and performing predictive posterior checks [54].

2.6. Reproducing the Study

Pre-processed hyperspectral data cubes are available from a Zenodo repository along with
the scripts that were employed for their analysis (doi:10.5281/zenodo.3975431). A GNU Guix [87]
manifest file and definitions of extra software packages are also included to recreate the computational
environment. A Makefile [88] describes and facilitates the execution of individual steps of
data processing.

A major part of the analysis was programmed in the R language, and run in the 3.6.1 version of the
interpreter [89]. The e1071 package (version 1.7.2) [90] was employed to fit the SVM model, and mlr
(2.15.0) [91] was used in combination with mlrMBO (1.1.2) [66] for its tuning. The Bayesian linear models
were fitted with the aid of the brms (2.10.0) [58] interface to Stan (2.19.1) [59]. Tools available in SAGA
GIS (6.3.0) [92], accessed from the RSAGA package (1.3.0) [93], enabled image masking and erosion.
Band registration was performed using Python bindings to the OpenCV library (3.4.3) [94].

3. Results

3.1. Image Segmentation and Dry Pixel Occurrence

Accurate classification of the reflectance spectra was obtained with SVM, with all but 2 of the
47 pixels in the test set correctly assigned (Table 3). The spectra of ten randomly sampled pixels in each
pot data cube are shown in Figure 4. As expected, the spectra of the pixels identified as dry exhibit a
decreased red-edge slope and absent chlorophyll absorption features [24,25]. Their spectral variability
for wavelengths below 700 nm appears higher relative to the fresh pixels. The background spectra
form a slightly curved pattern, which is typically encountered for soil. Some pixels in this class are
characterised by an increase in the near infrared reflectance, which can be attributed to organic debris
and sub-pixel effects (spectral mixing).

Table 3. Validation results of the Support Vector Machine (SVM) pixel classification model.

Observed Classes Predicted Classes

b d f

background 26 0 1
dry 0 8 1
fresh 0 0 11

Wiktor R. Żelazny and Jan Lukáš: Drought Stress Detection in Juvenile Oilseed…

82



Remote Sens. 2020, 12, 3462 10 of 27

Healthy (fresh) pixels

Discolored (dry) pixels

Background pixels

500 600 700 800 900

0.25

0.50

0.75

0.25

0.50

0.75

0.25

0.50

0.75

Wavelength (nm)

R
ef

le
ct

an
ce

Figure 4. Representative hyperspectra of the pixel classes obtained from SVM segmentation of pot
images. The blue areas delimit the interquartile reflectance ranges.

Figure 5 depicts the relationship between the experimental factors and the proportion of pixels
identified by the SVM model as dry in a hyperspectral image. The narrowest posterior distribution
was obtained for the cultivar contrast under the dry regime, meaning that the cultivar effect was
estimated with the highest certainty in this analysis [49]. However, since the distribution is centred
close to the value of 1, it fails to provide information on the sign of the difference. Wide posterior
distributions were obtained for the two remaining comparisons in this group. The multiplicative effect
size along with the 95% credibility interval is ESViking/Cadeli = 1.06 [0.23, 5.12]. The contrasts involving
the watering regime suggest the dry pixel occurrence having been affected by a restricted water supply,
albeit with a high uncertainty. As expected, all but two comparisons indicate a lower dry leaf surface
area with improved water availability, especially for ‘Viking’ (ESwatered/dry = 0.009 [0.00005, 1.6]).
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Figure 5. Posterior distributions of the mean dry pixel frequency differences between the experimental
factors. Each curve represents one contrast. The differences are assumed to be multiplicative. The top
subplot depicts comparisons between the cultivars and the bottom plot comparisons between watering
regimes. The effect sizes are on a logarithmic scale centred at the value of 1 (lack of effect).

3.2. Vegetation Indexes

The influence of the experimental factors on the vegetation index values is shown in Figure 6.
Because of the different numeric scales associated with individual formulations, the x-axis ranges
pertaining to the index means are proportional to their standard deviations in the watered treatment,
and the y-axis ranges are inversely proportional. In this way, not only can treatment effect directions
and the strength of evidence be assessed for single indexes, but it is also possible to quantify the
relative effect sizes [86] and to compare them across the formulations. Treatment effects with respect to
index standard deviations were measured on a multiplicative scale. For this reason, fixed axis ranges
were employed for the remaining subplots.
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Figure 6. Posterior distributions of the mean (µ) and standard deviation (σ) differences between experimental factors for each vegetation index. The mean and
standard deviation differences are assumed to be additive and multiplicative, respectively. The left-hand and right-hand side subplot columns depict comparisons
between the cultivars and watering regimes, respectively. The latter are on a semi-logarithmic scale.
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Regarding the cultivar effect (odd column pairs), ‘Viking’ and ‘Cadeli’ maintained under
the watered treatment clearly differed with respect to the MCARI and MTCI mean index values
(left-hand column in each odd column pair), as indicated by the value of zero being in the tail of
the posterior density distribution. For MCARI, the relevant curve extends over the positive values
of the estimated difference, which indicates that ‘Viking’ had, on average, higher values of this
index. The raw effect size is ESViking−Cadeli = 0.06 [0.01, 0.11], and Cohen’s d is dViking−Cadeli =

1.16 [0.22, 2.08]. To a limited extent, the cultivars in the control treatment differed in terms of
TCARI (ESViking−Cadeli = 0.04 [−0.02, 0.10], dViking−Cadeli = 0.84 [−0.33, 1.99]) and TCARI/OSAVI
(ESViking−Cadeli = 0.10 [−0.02, 0.21], dViking−Cadeli = 1.20 [−0.24, 2.67]) PRInorm appears to be
insensitive to the cultivar differences, as indicated by the compressed mass of the posterior density
centred around the value of zero (ESViking−Cadeli = 0.00 [−0.03, 0.03]). On the other hand, the Cohen’s d
credibility interval is wide (dViking−Cadeli = 0.02 [−0.99, 1.04]).

In addition to the vegetation index mean values, their standard deviations differed across
the two cultivars (right-hand columns). Discernible differences occurred in a larger number of
indexes, primarily for the control treatment. The density distributions of SR, DVI, NDVI, RDVI,
PSSRa, and TCARI/OSAVI extended below a ratio of one, indicating lower index value variations
in watered ‘Viking’ than in ‘Cadeli’. An opposite effect occurred for RGI, MCARI, and CIgreen.
Similar differentiation is not so apparent for the remaining treatments.

The influence of the watering regimes (even column pairs in Figure 6) on the leaf spectra
was captured by the mean values of several vegetation indexes. Unsurprisingly, particularly large
differences were obtained for the watered:dry contrast. The RGI index exhibited a high sensitivity in
the ‘Cadeli’ cultivar, with its values lower in the control plants (ESwatered−dry = −0.96 [−2.21, 0.21],
dwatered−dry = −6.94 [−18.01, 1.48]). Moreover, the water availability had a positive influence on
the MTCI, RNDVI, and GI indexes in the ‘Cadeli’ cultivar, with the effect not as strong as for
RGI, but more precisely estimated, as indicated by the concentrated mass of the posterior density
curve. Similarly to the cultivar effect, the PRInorm mean appears to have been insensitive to the leaf
spectra differences across the individual watering regimes (e.g., ESwatered−dry = −0.03 [−0.06, 0.01],
dwatered−dry = −0.89 [−2.10, 0.25] for ‘Cadeli’). The PRI index that appears to respond to the
watering treatments is PRI512, but this pattern is uncertain (e.g., ESwatered−dry = −0.04 [−0.09, 0.01],
dwatered−dry = −1.06 [−2.42, 0.22] for ‘Cadeli’).

The variation in RGI and PSRI vegetation indexes exhibited sensitivity to the difference between
the dry and control leaf spectra in ‘Cadeli’. Not only is the observed treatment effect strong, but its
estimate is fairly precise (ESwatered/dry,σ = 0.10 [0.07, 0.16] for RGI and 0.10 [0.06, 0.17] for PSRI;
note that the effects are multiplicative). The same indexes revealed an effect of drought on the ‘Viking’
spectra, albeit to a lesser degree (ESwatered/dry,σ = 0.36 [0.21, 0.64] and 0.14 [0.07, 0.29]). The variations
in the majority of the remaining indexes were affected by the discussed treatment contrast for at
least one of the cultivars. Several indexes revealed the difference between the rewatered and dry
treatment, particularly PSRI (ESrewatered/dry,σ = 0.33 [0.16, 0.68] for ‘Cadeli’). Even more interestingly,
the variations in TCARI and TCARI/OSAVI responded to the watered:rewatered contrast in both
cultivars, with the latter index associated with a stronger effect (ESwatered/rewatered,σ = 0.40 [0.28, 0.55]
for ‘Cadeli’). What is striking it that all of the affected indexes exhibited the same direction of the water
regime effect, namely, a variation decrease with an improving water availability (posterior distributions
extending over values below one).

3.3. Full Spectrum Information

The distribution of the leaf pixel spectra in the principal component space did not reveal
any differences between the investigated cultivars Figure 7. Regarding the watering regime,
the observations representing the rewatered treatment occur in clusters. For the raw spectra, they form
a line corresponding to positive PC1 or negative PC2 coordinates, and the values in-between.
According to the loadings plot, both of these directions can be associated with a decreased NIR
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reflectance. A similar pattern, with the PC2 axis reversed, was obtained for SGF. As a matter of fact,
this pre-processing altered the spectra to a minimal degree. After MSC pre-processing, the rewatered
pixel spectra become associated with high PC1 values, indicative of increased green and decreased
red and red-edge reflectance, suggesting a red-edge shift towards longer wavelengths. The derivated
spectra of the rewatered regime are associated with positive PC2 values, indicating a more descending
slope to the left of the red absorption feature and a more ascending slope towards the longer
wavelengths; thus more pronounced red light absorption. The double derivation did not result
in any clustering; however, the pixels representing the dry watering regime appear to extend over a
larger area of the principal component space, suggesting a higher spectral variation. An interesting
pattern, though unrelated to any of the experimental treatments, can be discerned in the MSC PCA
plot, in which the spectra are separated into two large clusters.

By using the obtained PCA coordinates of individual pixels as input data for linear modelling,
the information on grouping of the observations could be incorporated into the analysis. With this
additional step, patterns suggested by the PCA plots turned out to be largely spurious, but some
new ones emerged (Figure 8). Regardless of the spectra pre-processing, no separation of the cultivars
was obtained with respect to the means of the first principal component scores (first subplot column).
However, the comparison of the PC1 score standard deviations (second column) revealed less varied
values for the watered ‘Viking’ plants relative to the ‘Cadeli’ cultivar for MSC (ESViking/Cadeli,σ =

0.53 [0.32, 0.96]), indicating a higher variation of green, red, and red-edge reflectances in the latter
(Figure 7).

Regarding the treatment contrasts, the raw and SGF-filtered spectra exhibit somewhat lower
PC1 mean values of the leaf pixels in the control watering regime compared to the regeneration
treatment (ESwatered−rewatered = −0.33 [−0.81, 0.15] and −0.33 [−0.84, 0.12], respectively for ‘Cadeli’;
third column in Figure 8). This outcome is in agreement with the clustering of the rewatered pixels
in the right-hand part of the respective PCA plots (Figure 7), but the evidence is too weak to draw
any conclusions.

A consistent pattern of treatment effect posterior distributions is apparent for the remaining
pre-processing approaches. The variability of the PC1 scores was found to be higher in the watered
regime than in both dry (‘Cadeli’) and rewatered plants (both cultivars). When the latter two treatments
are compared, the dry spectra appear to be more variable. The treatments can, thus, be ordered as
watered > dry > rewatered. The patterns are especially pronounced in the case of derivative spectra
and spectra subjected to MSC.
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Figure 7. Principal component scores (left-hand column) and loadings (right-hand column) of the pixel
reflectance values according to image pretreatment. Colour and shape differentiate observations with
respect to the experimental treatments.
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Figure 8. Posterior distributions of the mean (µ) and standard deviation (σ) differences between
experimental factors for first principal component loading values according to spectra pre-processing.
The mean and standard deviation differences are assumed to be additive and multiplicative,
respectively. The left-hand and right-hand side subplot columns depict comparisons between the
cultivars and watering regimes, respectively. The latter are on a semi-logarithmic scale.

4. Discussion

4.1. Image Quality and Patterns Related to Segmentation

The inconsistency in the irradiance sensor readings with regard to the radiant exposure
measurements suggest that artefacts were introduced during the conversion of digital numbers
to radiance values. This problem most likely stems from the directional sensitivity of the sensor,
which was placed on the flexible photo tent construction. Directional sensitivity of the device delivered
with a Rikola camera has been reported also by other authors [95]. Other potential nuisance factors
include the distance from the meteorological station to the spot where the imagery was captured and
the presence of a building and the camera operators in the proximity of the photo tent. Although the
formulations of the linear models, employed at later stages of the image analysis, accounted for
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radiometric differences between the individual data cubes, it is still preferable to acquire data of
maximum quality in the first place. Therefore, for similar studies, rigid installation of a Rikola
irradiance sensor is recommended.

SVMs are a versatile multivariate classification tool due to their non-parametric nature,
robustness against outliers, reduced risk of training data over-fitting, quick and reliable convergence
to a global optimum, and the availability of the kernel trick, which can yield non-linear
hyperplanes [65,96]. The applicability of SVMs to assigning leaf pixels into drought stress classes
was demonstrated by Asaari et al. [6] and Behmann et al. [7] for cereals. The high pixel classification
accuracy and plausible spectral patterns that can be discerned in the obtained classes highlight
the potential of SVMs to segment OSR images, a crop from a different agronomic group and a
botanical family.

An obvious disadvantage of the adopted approach is the laborious pixel labelling. SVMs and
their extensions give satisfactory predictions even when trained with small datasets. On the other
hand, the modelling can fail when errors are present in the reference data [96]. Rather than reducing
the size of the training pool, it would be more desirable to employ a solution that allows for dispensing
of pixel labelling, especially considering the fact that it is challenging before stress symptoms are
visible. In a maize drought phenotyping study, Asaari et al. [6] avoided this step by performing
unsupervised classification on a reduced dataset and labelling the obtained clusters, rather than
individual pixels, prior to SVM classification. Behmann et al. [7] devised a workflow based on ordinal
clustering, which further facilitated the process, as only the extreme clusters needed to be labelled.

Scarce evidence of treatment effects was obtained from pixel counts representing fresh and dry
pixel classes. The estimation uncertainty can, in part, be attributed to low pot counts in the control and
regeneration treatments. The stronger reduction of the dry-pixel proportion in well-watered conditions
estimated for ‘Viking’ relative to ‘Cadeli’ would be in agreement with the high drought sensitivity of
this cultivar [15]. However, additional data are needed to confirm this pattern.

4.2. Vegetation Indexes

In a spring wheat experiment by Peteinatos et al. [52], water-stressed plants exhibited decreased
MCARI values. One of the components on this index is the green reflectance. Consequently, the authors
linked the observed effect to a reduced chlorophyll content, which is a common stress symptom in
plants [24,97]. Similarly, in the present study, a higher MCARI in well-watered ‘Viking’ can be
explained in terms of increased photosynthetic activity fostered by the favourable hydric conditions.
The tendency towards minimising the periods of stomatal closure allows this water-spender to thrive
in the control watering regime.

However, this interpretation can be questioned in light of the results obtained
by Haboudane et al. [98] for maize. The authors reported a negative, rather than positive,
relationship between the chlorophyll content and MCARI. At the same time, the relation was
positive for MTCI, an index that employs reflectances around the red-edge [79]. The latter result
was corroborated by Gitelson [99] for maize and soybean. The discrepancy pattern between MCARI
and MTCI is in agreement with the present study findings. While watered ‘Viking’ exhibited higher
MCARI than ‘Cadeli’ maintained under the same regime, the MTCI values were found to be lower
(ESViking−Cadeli = −0.53 [−0.93,−0.12], dViking−Cadeli = −1.18 [−2.09,−0.26]).

Contradictions of this kind reveal the problematic nature of relying on single vegetation indexes,
at least as far as index means are concerned. In addition to the property of interest, the index
value can be affected by additional confounding variables; in particular, the relationships tend to be
crop-specific [98]. Interpretation of MCARI is especially challenging, given the erratic behaviour of
this index for samples with a low chlorophyll content. It was shown that below a certain threshold,
the relationship between MCARI and the pigment becomes reversed [81]. Such reports highlight
the need for joint interpretation of multiple indexes, either in an informal fashion or by their further
statistical processing [7,98].
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The TCARI and TCARI/OSAVI indexes were originally developed in the context of chlorophyll
content estimation [81], and their suitability to crop water status diagnosis can be linked to
pigmentation changes in drought-affected tissues. Both were tested by Perry and Roberts [100]
in a maize experiment, in which they discriminated between irrigated and unirrigated parts of the
field. Just as for MCARI, the increased values of these indexes associated with the ‘Viking’ cultivar can
be linked to its water-spender management strategy, but more data are needed to verify this finding.

Some of the index values varied more in values for well-watered ‘Viking’ than for well-watered
‘Cadeli’, while for certain others, the relationship was the opposite. An explanation linking these
patterns to the differing water management strategies (a water-saver and a water-spender) seems
dubious. More plausibly, the observed effects were determined by additional cultivar properties,
particularly those related to the leaf surface and structure of the forming canopy [29]. Due to the dearth
of studies comparing crop cultivars with respect to the variability of their spectral characteristics,
the discussed results cannot be confronted with the findings of other authors. With regard to the
lack of similar differences under the remaining watering regimes, it can be argued that the severity
of pigmentation and structural (e.g., leaf shrinkage) changes caused by a drought episode [13,21,22]
occluded the differences between the genotypes. An alternative explanation is the lower number of
plant samples in the drought and regeneration treatments, making the effect estimates less precise,
and treatment differences less likely detectable, as a further consequence.

RGI excelled among the vegetation indexes when evaluating their strength of response to restricted
water availability. In their maize study, Sun et al. [5] associated the occurrence of a drought with
an RGI increase of approximately 0.05 units on the index scale (point estimate inferred from the
marginal estimates given in the paper), a value captured by the ESwatered−dry = −0.96 [−2.21, 0.21] and
−0.71 [−1.97, 0.49] raw intervals obtained in the present study for ‘Cadeli’ and ‘Viking’, respectively.
The potential usefulness of this index is further illustrated by its strong negative correlation to
leaf water status indicators investigated by Rodríguez-Pérez et al. [101] in a commercial vineyard.
Water availability revealed a positive influence on MTCI, RNDVI, and GI. The RNDVI difference
(ESwatered−dry = 0.19 [−0.01, 0.41], dwatered−dry = 2.10 [−0.05, 4.47]) is similar in magnitude to
the spring wheat cultivars responses reported by Gutierrez et al. [102]. Depending on the crop
developmental stage and the trial, RNDVI of the control plants exceeded the water-stressed treatment
by 0.03 to 0.18 units (point estimates based on the marginal estimates mentioned in the paper).
RNDVI is an NDVI-like index originally developed for woody species [75], and then employed
to monitor cereal crops grown in areas with drought occurrence [102]. In light of the above
findings, it seems to also be suited to OSR cultivation. The raw effect estimate obtained for GI,
ESwatered−dry = 0.44 [−0.08, 0.95] (dwatered−dry = 1.58 [−0.29, 3.48]), is in agreement with the difference
between treatment means reported by Peteinatos et al. [52] for spring wheat (0.17 units). GI is a
simple index combining green reflectance with the reflectance near the lower end of the red-edge.
Despite its name (“greenness index”), in the present study its value seems to have been affected by the
red-edge shift and flattening, rather than by changes in the green region, which appeared to be limited.
Main et al. [103] published an extensive comparison of vegetation index performances with respect to
the chlorophyll content prediction, which provides additional evidence of a weak GI response to the
pigment signal.

One of the strengths of Bayesian statistics is the possibility of inferring an absence of a practical
significance of an effect [49,54]. Surprisingly, the PRInorm mean appeared to have been insensitive to the
leaf spectra differences across both cultivars and individual watering regimes. The PRI family detects
changes in crop photosynthetic radiation use efficiency by providing an insight into xanthophyll
epoxidation processes [76,104]. According to Peñuelas et al. [105], this information is a better proxy of
physiological status than total chlorophyll content. In a comparison of vegetation indexes by Rossini
et al. [104], PRI570 turned out to be the best predictor of a range of maize water status indicators.
In another maize study, the order of PRI570 values reflected the assignment of experimental plots to
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irrigation levels and the timing of irrigation suppression [106]. The same index exhibited reliable
correlations with several indicators of the winter wheat water status [107].

PRI is known to be sensitive to ambient illumination and other confounding factors [104,106].
Although in the present study the samples were placed in a photo tent to obtain diffuse illumination,
a sensor was employed during the imagery acquisition to compensate for irradiance instability, and the
linear model accounted for radiometric variability between the data cubes; the obtained correction
might have been insufficient given the variable external conditions. In the case of the cultivar treatment,
the examination of Cohen’s d points to the overall small variability of this index as an alternative
explanation of the obtained pattern with respect to PRInorm. For a drought diagnosis based on proximal
hyperspectral imaging and vegetation index means, we recommend avoiding days with unstable
illumination conditions, unless artificial illumination is employed, or one or more calibration panels
are included in every image.

Merzlyak et al. [73] proposed PSRI as an indicator index of leaf senescence, which can be
triggered by water deprivation. This index was among the features discerning between barley drought
senescence classes in the study by Behmann et al. [7]. Accordingly, the obtained PSRI standard
deviation sensitivity to the contrasting watering regimes in ‘Cadeli’ can be linked to the source–sink
character of the leaf senescence process [23]. TCARI and TCARI/OSAVI responded to the difference
between the watered and rewatered treatments. Such a separation was not possible with the index
means, suggesting that analysing the spectral variability is more suited to detecting a trace of a drought
episode from which a crop did not necessarily fully recover. TCARI/OSAVI can perform better
than TCARI and OSAVI by disentangling the effect of chlorophyll and LAI [81], as demonstrated
by Haboudane et al. [98] and Perry and Roberts [100]. It was one of the indexes reported to reflect
the maize physiological status in the Rossini et al. [104] drought experiment. It may seem that
LAI plays a limited role in the present study, as the background is filtered out using segmentation.
However, drought alters the structure of the foliage, leading to LAI modification accompanied by
increased chlorophyll concentration in shrunken leaves [8,105], both affecting the reflectance spectrum.
The remarkable overall consistency of the index standard deviations increasing with restricted watering
corroborates the relationship between the stress level and symptom variability mentioned by Kruschke
and Liddell [49]. In light of these findings, vegetation index standard deviations appear to be
sensitive stress indicators in the context of drought diagnosis using proximal hyperspectral imaging,
perhaps more so than the index means.

Biochemical and physiological parameters determined in the laboratory from leaf samples
are reliable indicators of a crop status [108]. Drought stress occurrence is commonly assessed by
analysing water content [15,24,44,104,107], pigment [5,15,24,108] and nutrient [5,8] concentrations,
photosynthetic fluorescence [44] and photosynthetic [8,15] and transpiration [15] rates, or stomatal
conductance [15]. Some measurements are possible in field conditions, such as leaf water
potential [24,101], stomatal conductance [109], fluorescence [24,104,106,108], SPAD chlorophyll [98];
and leaf [104,106,109] and canopy [102] temperature.

Relationships between the parameter values and vegetation indexes were demonstrated in various
drought studies. PRI570 and red edge position responded to chlorophyll and carotenoid concentrations
in maize [5]. The former index was also sensitive to the changes in the pigment concentration ratio
and leaf fluorescence [106]. In another maize study, PRI570 and TCARI/OSAVI exhibited strong
relationships to chlorophyll fluorescence and leaf temperature [104]. Several published vegetation
indexes predicted to a satisfactory degree leaf and canopy water contents of wheat, and further
improvements were obtained by formulating custom indexes based on raw and derivative spectra [107].
Multiple indexes responded to water deficit in wheat caused by a powdery mildew infection [108].
Rodríguez-Pérez et al. [101] obtained high correlations between grapevine leaf water contents and
indexes derived from spectra subjected to continuum removal.

OSR readily responds to drought stress in terms of biochemical and physiological indicators.
Clear differentiation between control and stressed plants was obtained by Urban et al. [15], with the
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differences especially pronounced for net photosynthetic rate, stomatal conductance, leaf transpiration
rate, evapotranspiration change, and proline content. Pasban Eslam [109] reported a consistent
modification of leaf relative water content, stomatal conductance, and temperature across five OSR
cultivars over two years of his experiment. In another experiment, water deprivation was associated
with decreased leaf fluorescence and an osmolarity increase [44]. The present study related the
patterns of vegetation index values to the experimental treatments: the OSR cultivar and the watering
regime. In the light of the cited results, it is plausible that a number of the obtained effects could be
replicated in an observational study, in which the treatments would be replaced with biochemical and
physiological parameter measurements at the linear modelling step. Further research is needed to
verify this expectation.

4.3. Full Spectrum Information

The distribution of the leaf pixel spectra in the principal component space differentiated the
regeneration treatment from the remaining investigated watering regimes. The indicated decrease
in the NIR reflectance for the raw spectra and the spectra subjected to SGF can be linked to leaf
cell structure alteration by stress [19]. However, this interpretation is contradicted by the redshift
revealed by the MSC transformation, indicative of good hydration [20]. Similarly, the steep red-edge
pattern obtained for the finite differences derivation can be associated with an increased chlorophyll
concentration [24]. These patterns need to be approached with caution, considering the fact that PCA
does not account for the experimental design resulting in the hierarchical structure of the dataset.
Moreover, only one data cube representing the rewatered treatment was analysed in the present study,
as registration failed for the other one, which had to be discarded. The obtained pixel clusters could be
the result of specific illumination conditions at the moment of image capture, which dominated the
spectral signal [29].

Regarding the double derivation, the apparent differences in pixel extents are in agreement
with the preceding part of the analysis, which revealed higher standard deviations of vegetation
indexes derived for the drought treatment relative to the control plants. One could suspect that the
occurrence of two large clusters for the MSC-transformed spectra is related to changing ambient
illumination conditions or an uneven distribution of radiant energy inside the photo tent. In that case,
each cluster would contain pixels associated with individual images or pot positions, respectively.
However, none of those hypotheses was confirmed by consulting the dataset.

The little-varied PC1 scores obtained for ‘Viking’ compared to ‘Cadeli’ can be explained in
terms of the higher stress level of the latter. ‘Cadeli’ tends to restrict stomatal conductance [45],
which is a suboptimal strategy in the conditions of high water availability, as photosynthesis is
impaired [13]. The discussed treatment separation was apparent only after subjecting the spectra to
MSC. This pre-processing is known to remove some scatter and baseline shift artefacts [85]. In the
present study, it might have mitigated the influence of variable illumination conditions on the captured
hyperspectral data cubes. A question arises whether a similar improvement would have been achieved
in the vegetation index part of the analysis if they had been derived from the MSC-pre-processed
rather than the raw spectra.

The high variation of the dry pixel spectra subjected to double derivation suggested by the
PCA analysis is absent from the results of the linear modelling. A possible explanation might be a
high noise characterising derivative spectra [85], and subject to compounding when the operation is
repeated [105]. The derivation might have also been negatively affected by the low spectral resolution
of the analysed hyperspectral data cubes, which precluded a detailed reconstruction of the spectra
shapes. Peñuelas et al. [105] reported an improved relationship between the second order derivative
indexes and sunflower leaf water potential relative to the principal components and indexes derived
from the raw spectra, but their data were acquired with a fivefold higher spectral resolution than in the
present study. Finally, the double derivation linear model posed problems for the MCMC sampler [59],
with detrimental consequences for the reliability of the obtained posterior distributions. In future
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studies of this kind, it is recommended that the derivation be combined with smoothing [85] and that
the spectral resolution of the imagery be maximised, even at a price of an increased data volume [110]
and information redundancy [7].

The proximity of the extreme watering regimes in terms of the PC1 standard deviations is
counterintuitive and in disagreement with the results of the vegetation index part of the study.
The fact that each pre-processing resulted in distinctive PC loading vectors precludes a straightforward
interpretation in terms of the spectral regions. PCA is an unsupervised dimensionality reduction
method. Compared to the SVM approach, it does not require pixel labelling, and compared to the
vegetation index approach, it does not involve an arbitrary choice of indexes, the performance of which
is site-specific. On the other hand, the obtained principal axes do not necessarily need to be related to
factors of interest. The obtained result is problematic, but nevertheless interesting. Similarly to the
TCARI and TCARI/OSAVI standard deviations, it may point to a way of detecting a trace of a severe
drought episode in a seemingly healthy and well-hydrated crop. The signal attenuation obtained for
the finite differences derivation can be linked to the capability of this transformation to filter out the
effects of structural differences between crop cultivars [111]. For MSC, it can be associated with the
removal of illumination artefacts [85].

5. Conclusions

We investigated the feasibility of a 2D frame hyperspectral camera as a proximal sensor to detect
drought stress of juvenile plants of two oilseed rape cultivars with different water management
strategies in semi-controlled, outdoor conditions. A support vector machine accurately distinguished
between normal leaf pixels and those bearing drought symptoms. Only 2 of the 47 model validation
pixels were misclassified, though time-consuming labelling was required to train the classifier. Based on
the pixel assignment, some evidence of leaf discolouration was obtained for the drought-stressed
‘Viking’, in accord with the provenance of this cultivar. The ratio between the number of dry-labelled
pixels in the control and stress watering regimes was estimated as 0.009 [0.00005, 1.6].

Several vegetation index means responded to the difference between the control and
water-deprived plants, especially RGI, MTCI, RNDVI, and GI; while none of the tested PRI indexes
distinguished among the treatments. RGI excelled among the vegetation indexes in terms of effect
strengths, which amounted to −0.96 [−2.21, 0.21] and −0.71 [−1.97, 0.49] units for each cultivar with
respect to the watered–dry treatment contrast.

The most striking finding was a consistent increase in the multiple index standard deviations
to worsening of the hydric regime. The increases occurred not only in the dry treatment but also for
plants subjected to regeneration after a drought episode. This result suggests a higher sensitivity of the
vegetation index variability measures relative to the means for oilseed rape drought stress diagnosis.
It also justifies the application of imaging spectroscopy to capture these effects. Especially clear
responses were obtained for RGI, PSRI, TCARI, and TCARI/OSAVI. Some of the patterns involved
also the regeneration watering regime. In particular, PSRI standard deviation for ‘Cadeli’ differed
by a factor of 0.33 [0.16, 0.68] between the rewatered and dry treatments. It seems worthwhile to
include RGI in similar studies in the future given the fact that both the mean and standard deviation
(a multiplicative effect of 0.10 [0.07, 0.16] for the watered–dry contrast in the case of ‘Cadeli’) of this
index were affected by the water availability.

The drought stress could be discerned in the spectral signatures when regeneration was still
possible. On the other hand, the symptoms were already visible to the naked eye. Additional factors
can be introduced in follow-up studies to verify the robustness of the findings and their application
to earlier drought stress detection. A single campaign could be replaced by a time series to capture
the temporal development of the drought stress and of the spectral responses. Another modification
would be to restrict the watering of the plants at an earlier developmental phase and investigate which
of the spectral stress indicators remain viable for younger plants. Additional insights could be obtained
by augmenting the new dataset with biochemical and physiological measurements.
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Despite the unstable light conditions during the imaging campaign, the experimental treatments
had strong and consistent effects on some of the examined spectral indicators and can be interpreted
in terms of their robustness. However, although several measures were taken to mitigate the variable
illumination effects, it cannot be ruled out that the observed patters were artefacts caused by the
external conditions, instead. For this reason, regardless of the study extensions, the obtained results
need to be replicated in an independent experiment with a larger sample, an improved design,
and stricter precautions with respect to illumination stability during imagery acquisition.
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drought stress. Precis. Agric. 2019, 20, 335–347. [CrossRef]

36. Sabagh, A.E.; Hossain, A.; Barutçular, C.; Islam, M.S.; Ratnasekera, D.; Kumar, N.; Meena, R.S.; Gharib, H.S.;
Saneoka, H.; da Silva, J.A.T. Drought and salinity stress management for higher and sustainable canola
(‘Brassica napus’ L.) production: A critical review. Aust. J. Crop. Sci. 2019, 13, 88–96. [CrossRef]

37. Xia, J.; Yang, Y.W.; Cao, H.X.; Zhang, W.; Xu, L.; Wang, Q.; Ke, Y.; Zhang, W.; Ge, D.; Huang, B. Hyperspectral
Identification and Classification of Oilseed Rape Waterlogging Stress Levels Using Parallel Computing.
IEEE Access 2018, 6, 57663–57675. [CrossRef]

38. Högy, P.; Franzaring, J.; Schwadorf, K.; Breuer, J.; Schütze, W.; Fangmeier, A. Effects of free-air CO2

enrichment on energy traits and seed quality of oilseed rape. Agric. Ecosyst. Environ. 2010, 139, 239–244.
[CrossRef]

39. Zhang, X.; Lu, G.; Long, W.; Zou, X.; Li, F.; Nishio, T. Recent progress in drought and salt tolerance studies
in Brassica crops. Breed. Sci. 2014, 64, 60–73. [CrossRef] [PubMed]

40. Bonjean, A.P.; Dequidt, C.; Sang, T. Rapeseed in China. OCL 2016, 23, D605. [CrossRef]
41. Kumar, A.; Bharti, V.; Kumar, V.; Meena, P.; Suresh, G. Hyperspectral imaging applications in rapeseed and

mustard farming. J. Oilseeds Res. 2017, 34, 1–8.
42. Majidi, M.; Rashidi, F.; Sharafi, Y. Physiological traits related to drought tolerance in Brassica. Int. J.

Plant Prod. 2015, 9, 4.
43. Tesfamariam, E.H.; Annandale, J.G.; Steyn, J.M. Water Stress Effects on Winter Canola Growth and Yield.

Agron. J. 2010, 102, 658–666. [CrossRef]
44. Müller, T.; Lüttschwager, D.; Lentzsch, P. Recovery from drought stress at the shooting stage in oilseed rape

(Brassica napus). J. Agron. Crop. Sci. 2010, 196, 81–89. [CrossRef]
45. Kosová, K.; Klíma, M.; Vítamvás, P.; Prášil, I.T. Odezva vybraných odrůd řepky na sucho a následná
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Spectroscopic methods can contribute to addressing the field phenotyping bottleneck

problem in crop breeding programs. In disease resistance phenotyping, spectral signatures

can be analysed to derive infection severity scores and to screen breeding lines. Hyper-

spectra of winter wheat spikes were acquired in a Fusarium head blight phenotyping trial

at the milk- and wax-ripening phenological phases. Disease severity ratings were simul-

taneously performed by an expert on a 9-point visual scale. Ordinal support vector ma-

chine models were then trained to assign hill plots to the individual severity levels. The

predictive models' performance was evaluated for data collection timing, spectral pre-

processing and permitted rating-error tolerance. The models trained to spectra acquired

at the milk-ripening phase were sufficiently accurate to reliably distinguish between low,

medium and high symptom severity; with accuracy approaching 100% for two-point error

tolerance. However, deterioration in prediction quality was noted for the wax-ripening

campaign, presumably due to spike-drying. After aggregation of the spectra using the

median function no gain could be associated with further pre-processing. Modest perfor-

mance improvements obtained with two schemes do not justify the additional data

acquisition costs involved, but standard normal variate could be advantageous for some

scenarios with mean-aggregated spectra. In addition to phenotyping, the results are dis-

cussed in relation to large-scale farming applications. Elevated infection risk detection

prior to anthesis is recommended for fungicide treatment, considering the pathogen

biology. The study is accompanied by a publicly-available dataset and the computational

scripts employed to obtain the results.
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1. Introduction

Fusarium head blight (FHB, scab) is a cereal fungal disease

caused by Fusarium spp. (Jaillais et al., 2015; Khaledi et al.,

2017; Saccon et al., 2017; Mielniczuk & Skwaryło-Bednarz,
2020). The pathogen severely impairs yield, and the grain

quality is greatly diminished bymycotoxin action (Bauriegel&

Herppich, 2014; Cambaza et al., 2019; Mielniczuk & Skwaryło-
Bednarz, 2020). As in numerous other diseases, FHB has pat-

chy distribution in crops (Jin et al., 2018; Liu et al., 2020b), and

this hinders its monitoring at the field spatial scale. Infection

occurrences have been increasing because of the high preva-

lence of maize in crop rotations (Dammer et al., 2011;

Bauriegel & Herppich, 2014) and due to the adoption of

reduced tillage systems by farmers (McMullen et al., 2012;

Gilbert & Haber, 2013; Mielniczuk & Skwaryło-Bednarz, 2020).
Climate change may also aggravate this problem in the future

(Gilbert & Haber, 2013; Vaughan et al., 2016).

FHB control is based on cultural preventive measures and

fungicide applications (McMullen et al., 2012; Mielniczuk &

Skwaryło-Bednarz, 2020), the latter of which are scheduled

according to the disease risk levels predicted from weather

forecasts (McMullen et al., 2012; Xiao et al., 2020). There is also

ongoing research into biological control agents (McMullen et al.,

2012; Mielniczuk & Skwaryło-Bednarz, 2020). The development

of resistant cultivars is a further major influence in decreasing

FHB occurrence (Gilbert & Haber, 2013; Buerstmayr et al., 2020;

Mielniczuk & Skwaryło-Bednarz, 2020).
Progress in breeding programs is constrained by the field

phenotyping bottleneck (McMullen et al., 2012; Steiner et al.,

2017). In particular, the traditional visual rating basis of eval-

uating breeding line resistance is a laborious and subjective

process (Bauriegel & Herppich, 2014; Deery et al., 2014;

Mahlein, 2016; Su et al., 2021). Spectroscopic methods can be

superior to visual rating by providing rapid and unbiased

assessment in early infection stages (Thomas et al., 2018;

West et al., 2017), and their suitability to detect rust and

powdery mildew has been investigated in cereal pathology

studies (as in Franke & Menz, 2007; Huang et al., 2007;

Kuckenberg et al., 2009; Cao et al., 2013; Huang et al., 2014;

Feng et al., 2016; Zhang et al., 2017).

The primary focus of FHB spectroscopy studies has been

post-harvest mycotoxin detection in extracted kernels under

laboratory conditions. The research has been reviewed by

Saccon et al. (2017) and Femenias et al. (2020), and findings on

this topic continue to be published (Zhang et al., 2020a,b; Shen

et al., 2022). Less attention, however, has been given to whole

spikes (Bauriegel et al., 2011; Alisaac et al., 2018; Whetton

et al., 2018a; Huang et al., 2019, 2020; Mahlein et al., 2019;

Zhang et al., 2020c).

Field research has also been limited until recent years, as

highlighted by Whetton et al. (2018b) and Huang et al. (2019).

Whetton et al. (2018b) employed a proximal push-broom

hyperspectral imager coupled with an artificial light source

for FHB occurrence density estimation in winter wheat and

barley. S€oderstr€om and B€orjesson (2013) predicted the deox-

ynivalenol Fusariummycotoxin in oats from data captured by

three different sensors, including a multispectral satellite

imager. Further research included the Liu et al. (2020b) pro-

posal of a novel broad-band vegetation index to detect the

disease from Sentinel-2 multispectral imagery. Xiao et al.

(2020) augmented a time series of satellite observations with

meteorological data for the same purpose, and Liu et al.

(2020a) investigated the feasibility of FHB monitoring at the

field scale using UAV equipped with hyperspectral camera.

Whetton et al. (2018b) considered that the small number of

FHB field studies may stem from the difficult detection of the

disease in a crop stand. Unlike rust and powdery mildew, FHB

symptoms affect only the spikes, and these constitute a small

fraction of the total biomass. More recently, Liu et al. (2020a)

proposed the identification of infected field areas based on

whole canopy characteristics, but the feasibility of this novel

and potentially controversial approach requires further

scrutiny.

There is a limited transfer ability of disease detection

methods developed for large-scale farming applications to

field phenotyping. Simultaneous screening of multiple geno-

types constrains the size of experimental plots to a level below

the spatial resolution attainable with many remote or even

proximal sensing systems (Rebetzke et al., 2014; Barmeier &

Schmidhalter, 2016). Artificial inoculation may be limited to

a small subset of plants in each plot, thus further limiting the

choice of spectral data acquisition techniques. The plot size

reduction can also modify its spectral properties (Barmeier &

Schmidhalter, 2016), and this invalidates models which as-

sume a continuous canopy.

Moreover, disease severity must be estimated when

searching for tolerant cultivars, rather than mere disease

occurrence (Qiu et al., 2019). This task has only recently been

attempted (Bock et al., 2010; Huang et al., 2019; Qiu et al., 2019;

Zhang et al., 2019). Moreover, the predictions must consider

masking the disease signal by genotype differences (Pinter

et al., 1985). All these challenges create the need for research

programs specifically aimed at field phenotyping.

This study therefore investigates the accuracy of winter

wheat FHB infection severity assessments based on reflec-

tance spectroscopy measurements in a field phenotyping

setting. The specific aims are: (1) to estimate absolute accu-

racy of ordinal support vector machine (SVM) predictive

models by comparing their outputs to visual ratings by an

expert, (2) to examine the obtained accuracy according to the

Nomenclature

2D two-dimensional

dai days after inoculation

FHB Fusarium head blight

GS BBCH growth stage

GSD ground sample distance

NIR near infrared

NPK nitrogen, phosphorus and potassium

RGB red, green and blue

SNV standard normal variate

SVM support vector machine

SWIR short-wave infrared

UAV unmanned aerial vehicle

Vis-NIR visible and near infrared

VSS visual symptom score
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crop phenological phase at which data were acquired and (3)

to analyse the influence of spectra pre-processing on infection

severity prediction quality. We hypothesised that the pre-

dictions at a late stage of the disease would be satisfactory for

genotype screening. We expected inferior predictions with

spectral data obtained at an earlier stage.

2. Material and methods

2.1. Site and experiment description

The experiment was conducted at the premises of the Crop

Research Institute in Praha Ruzyn�e, Czech Republic, at 50.085�

N, 14.300� E. Ruzyn�e lies at 340 m asl and is a predominantly

sugar beet growing region. The soil is Orthic Luvisol with a

silty clay loam texture to the depth of 0.7 m. The annual

average air temperatures registered in the 1996e2020 period

ranged between 7.6 �C and 11.0 �C, and the annual precipita-

tion sums varied between 344.6 mm and 769.1 mm.

The study was based on a trial evaluating winter wheat

cultivar resistance to FHB. The trial field was maintained in a

crop rotation of cereals, pea and cereal-legume cover crops.

The seedbed preparation comprised shallow tillage of the

preceding crop, NPK fertilisation (45 kg ha�1 of N, P2O5 and

K2O) and ploughing. The soil was then levelled, which was

followed by a pass of a trailed combination seedbed cultivator.

The winter wheat was sown by hand between the 1st and

the 3rd of October 2019 in 12 parallel blocks 1-metre-wide.

Each block comprised two rows of hill plots, facing each other.

The grain in these plots was sown every 0.25 m in circular

areas of 0.10e0.15 m diameter (Fig. 1). The hilleplot pairs

differed depending on the sown cultivar, and these were ar-

ranged according to earliness in the first three blocks, and in

alphabetic order in the remainder. The cultivars included the

following; genotypes submitted to pre-registration trials,

standard cultivars recommended for growing in Czech Re-

public conditions, breeding stock selection, breeding lines

subjected to genotyping and genetic material evaluated under

the European Fusarium ring test framework. The cultivar ar-

rangements were in triplicate, with the same cultivar order

used in each replication.

Plot maintenance after sowing comprised 0.5 l ha�1 Cougar

Forte herbicide treatment (Bayer AG, Leverkusen, Germany)

and 0.1 l ha�1 Markate 50 insecticide (Sumiagro, Praha, Czech

Republic). These were applied on the 25th of October 2019, at

the second-leaf stage of the plants (BBCH GS 12), which were

again treated with pesticides on the 23rd of April 2020, during

the flag leaf development (GS 37e39). These comprised

1.2 l ha�1 Agritox 50 SL (NufarmUK Limited, Bradford, UK) and

0.4 l ha�1 Starane Forte (Dow AgroSciences s.r.o., Praha, Czech

Republic) herbicides and 0.08 l ha�1 Nexide insecticide

(Cheminova A/S, Harboør, Denmark). The paths separating

the blocks were maintained free of vegetation with a mower

Fig. 1 e The arrangement of sowing areas within the hill plots. The dimensions are in metres.
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blade and a harrow driven by compact utility tractor; with

three passes made during the vegetation period.

One row in each block of the hill plots was inoculated with

isolate B of Fusarium culmorum when they reached flowering

(GS 65). This inoculation was by hand sprayer filled with

0.8 � 107 spores ml�1 suspension. Ten spikes were tied in a

cluster, and the application performed from all sides. Excess

suspension was intercepted using a folded aluminium foil

screen held behind the clusters to minimise uncontrolled

spreading of the inoculum by wind currents. The clusters

were then kept for 24 h in 0.4 by 0.6 m polyethylene bags to

create stable inoculation conditions (Fig. 2). This was followed

by treatment in the blocks facing those already treated. Here,

ten spikes were again tied and covered with a bag for com-

parison. This procedure differed to the Khaledi et al. (2017)

study, because these were left dry, and not previously

sprayed with water. All plots were maintained under irriga-

tion in all weather conditions except during and after rain to

foster infection development.

The study focused on hill plots inoculated on a single day

and their facing plots in order to avoid the confounding effect

of external conditions variation on the multiple inoculation

and data collection dates. The available sample size was

maximised by choosing the 3rd of June 2020 for plot inocula-

tion. Anthesis was recorded in 176 hill plots on that day.

2.2. Proximal sensing campaigns

Spectral data were collected by ASD Fieldspec 4 Hi-Res spec-

troradiometer with contact probe (Malvern Panalytical, Mal-

vern, UK). The device operation involved three detectors, and

provided radiometric measurements with a 16-bit resolution.

The spectral range was 350e2500 nm, with 3-nm resolution in

the ViseNIR and 8-nm in the SWIR region. The respective

sampling intervals were 1.4 nm and 1.8 nm, with measure-

ments re-sampled to 1 nm. The contact probe had a built-in

halogen light source to provide measurements unaffected by

ambient illumination when full contact with the sample was

attained.

Two spectral data acquisition campaigns were planned:

the first took place between 11.45 and 15.30 local time on the

17th of June 2020, 14dai, soon after initial infection symptoms

were visible to the naked eye. The second was performed

between 09.15 and 12.40 on the 1st of July 2020, 28dai, when

the symptoms became severe. These dates coincided with the

GS 77 milk- and 87 wax-ripening plant developmental phases.

Fig. 2 e A row of hill-plot pairs with tied and bagged infected spikes facing non-infected spikes.
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Each spike cluster was subjected to a sequence of five

measurements, during which three spikes were positioned

between the probe and a black non-woven textile to eliminate

accidental light penetration from the background. This

approachwas similar to the Ma et al. (2020) study, but adapted

to contact measurements. The fabric had low reflectance of

less than 6% throughout the measured spectrum, and as a

result very limited effect on themeasured spectral curves. The

block order was randomised, but the measurements in each

block were performed systematically to minimise the time

between scans. Non-inoculated plots were measured in a

batch first, in order to avoid their contamination with the

pathogen. Two measurement runs were performed with the

probe disinfected in-between, and this avoided running out of

time before both hill plots in each pair were scanned. The

device was calibrated using a white Spectralon when entering

a new row, and then approximately every ten minutes. The

reflectance factor of the Spectralon was >99% for visible light

and >98% for NIR. The resultant dataset comprised complete

spectral data for 67 hilleplot pairs out of the available pool of

176 pairs, thus equivalent to 1340 spectra. With two excep-

tions, no cultivar appeared more than once in the dataset. All

included cultivars are listed in Supplement S1.

Collection of imaging data supplemented point spectrom-

etry. The images were obtained from a tripod-mounted

hyperspectral Rikola model FabryeP�erot 2D frame camera

(Senop, Oulu, Finland). The data cubes comprised 45 bands

with spatial resolution of 1010 � 648px, 12-bit radiometric

resolution and covering 500e900 nm spectral range. The dis-

tance between the spikes and the camera lens was 0.6e0.7 m,

resulting in GSD of approximately 0.37e0.43 mm px�1. The

integration time was set to 5 ms. Dark current noise and

irradiance were measured and a Spectralon panel with 75%

reflectance factor positioned next to the spikes for radiometric

correction. The acquisition process was slow because of

difficult aiming of the device's narrow field of view of 36.5�, the
absence of a viewfinder and slow system response to posi-

tional adjustments. Therewas also additional timewaiting for

appropriate light conditions without cloud obstruction. In the

end, these data were discarded because the experimental

spike clusters were impossible to distinguish from the

remaining spikes in most of the captured images. Therefore

we do not recommend Rikola for field phenotyping applica-

tions when individual, pre-determined plant organs require

precise capture with high spatial resolution. A specialised

camera, such as that used by Behmann et al. (2018), may be

more suitable for this purpose.

2.3. Reference data collection

A visual symptom score (VSS) was assigned to each hill plot of

the infected rows 14, 21, 28 and 35dai. This scorewas based on

the following 9-point scale for percentage of infected spikelets

in the spike cluster; 9 points: <5%, 8: 5e17%, 7: 18e30%, 6:

31e43%, 5: 44e56%, 4: 57e69%, 3: 70e82%, 2: 83e95% and 1:

>95%. Note that the higher point values here denote lower

severity level. Plots were examined linearly, not at random.

The two assessments closest in time to spectral data

acquisitions were kept for further analysis. They were the

17th of June 2020, 14dai, and the 1st of July 2020, 28dai;

matching exactly the dates of the spectral campaigns.

FHB symptoms were noted in some uninoculated spike

bundles during the late proximal sensing campaign, and

therefore the facing hill plots still in the GS 87 wax-ripening

were also rated on the 2nd of July 2020, 29dai. The hill plot

pairs with facing-plot rating below 9 were excluded from

further analysis, leaving the final number of 48 retained hill

plot pairs. The amount of discarded data is thought to have

been higher if the non-inoculated spikes had been sprayed

with water prior to their bagging, and the deviation from the

Khaledi et al. (2017) procedure is fortunate, all other things

being equal.

2.4. Hill plot partitioning and spectra pre-processing

The hill plots were randomly split into training and validation

data partitions in 3:1 proportion. The split was repeated 10

times in a jack-knife manner (Westad & Marini, 2015). The

spectra from each acquisition campaign were then indepen-

dently pre-processed. They were initially subjected to para-

bolic correction to smooth transitions between the three

Fieldspec detectors (Hueni & Bialek, 2017) and the ‘noisy’ re-

gions below 425 nm and above 2275 nm were visually identi-

fied and removed.

Themedian reflectance was derived for each combination

of partitioning, pre-processing, hill plot and spectral band.

The choice of the median function was motivated by lack of

distributional assumptions and robustness towards outliers.

This, however, could also result in spectra from uninfected

parts of some spike bundles dominating the spectra affected

by disease and causing a lack of infection signal in the me-

dian signature. The performance of mean values was there-

fore explored. The following seven pre-processing schemes

were tested after the aggregation step: (1) no further pre-

processing, which provided a ‘raw spectrum’, (2) subtrac-

tion of an aggregated non-inoculated counterpart spectrum,

(3) division by an aggregated non-inoculated counterpart

spectrum, (4) standard normal variate (SNV), (5) subtraction

followed by SNV, (6) division followed by SNV and (7)

maximum normalisation followed by the SavitzkyeGolay

derivative and smoothing to approximate the approach

used in Whetton et al. (2018b).

2.5. Modelling

The VSS assessments were performed on a discrete interval

scale (Bock et al., 2010), and the computational complexity of

the task can be reduced by applying an ordinal predictive

model. Here, n � 1 independent functions are sufficient to

discriminate between n ordered classes (Behmann et al.,

2014a). According to Thomas et al. (2018), SVM modelling is

a suitable method of detecting early plant disease symptoms.

Consequently, ordinal classification SVMs with the radial

basis function kernel were employed to predict the VSSs; as in

Behmann et al. (2014b). Separate models were fitted for each

combination of the spectral acquisition campaign, reference
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VSS dataset, plot partitioning, spectra aggregation function

and the spectra pre-processing scheme. This provided a total

of 560 model ensembles. The C and gamma tuning hyper-

parameters were determined by Bayesian optimisation algo-

rithm (Bischl et al., 2018), according to the leave-one-out

cross-validation maximum accuracy criterion. The valida-

tion accuracies of each model were then estimated; allowing

for mis-classification of zero, one and two class differences;

similar to Behmann et al. (2014b).

The joint effects of the spectra acquisition campaign and

ground-truth data collection timings, spectra pre-processing

scenarios and magnitudes of error tolerances on the proba-

bility of a correct VSS rating were modeled using mixed-effect

Bayesian generalised linear models (Bürkner, 2018) separately

for median and mean aggregation. A Bernoulli generating

distribution with a logit link was assumed to comply with the

binary type of the dependent variable (Kruschke, 2015) d a

correct or incorrect VSS prediction adjusted for error toler-

ance. The grouping variables in the model reflected the data-

set structure, and these comprised the data partition identifier

crossed with the hill plot pair identifier. The draws from the

posterior distributions associated with individual levels of the

independent variables and their selected contrasts were then

visualised, and summarised using the medians and 95%

credibility intervals in the visualisations.

2.6. Study pre-registration, data availability and
computational reproducibility

This was a pre-registered study (Nosek et al., 2018), with the

pre-registration form ( _Zelazny et al., 2020) hosted by the

Center of Open Science. The dataset is available from a Zen-

odo repository (https://doi.org/10.5281/zenodo.4536881),

excluding the hyperspectral data cubes because of their

excessive size and the fact that they were not analysed.

The analysis was coded in the R language (R Core Team,

2020). The prospectr package (Stevens & Ramirez-Lopez,

2013) was employed for the spectra pre-processing, e1071

(Meyer et al., 2020) for SVM classification and mlr (Bischl et al.,

2016) for model tuning. The linear modelling was performed by

brms (Bürkner, 2018) interface to Stan (Carpenter et al., 2017),

and the draws from the posterior distributions were further

processed using the tidybayes package (Kay, 2020). The

dataset is accompanied by computational scripts and docu-

mentation for reproducing the analysis. A GNU Guix manifest

file and a channel specification (Court�es & Wurmus, 2015) are

also provided to recreate the original software analysis

environment.

3. Results

3.1. Exploratory data analysis

FHB infection is readily discernible in the measured spectra,

as depicted in the top panel of Fig. 3 for median aggregation.

The lower VSSs denote higher severity, and these are associ-

ated with increased red reflectance and the lowered NIR

shoulder next to the red edge region. The remainder of the NIR

and the SWIR spectra have increased reflectance. There is a

successive blue shift discernable as the ratings decrease to-

wards the value of 4, and a qualitative change in the signature

shape for the three lowest VSSs. The latter involves a further

increase in red reflectance, to the extent that the red absorp-

tion feature almost disappears, and the curves assuming an

almost linear shape in the visible and red-edge regions and

beyond. The VSSs in the middle of the scale were assigned to

the hill plots during both early and late reference data

collection, thus enabling comparison over time. The wax-

ripening later phenological phase is characterised by

increased green and red reflectance relative to the milk-

ripening reflectance pattern. Similar curves were obtained

for spectra derived using mean aggregation (Supplement S2).

The bottom panels in Fig. 3 highlight that most pre-

processing schemes retained the possibility of discerning at

least the curves corresponding to the lowest or highest

infection levels. However, the character and degree of the

VSSs separation differ across scenarios. As expected, sub-

traction and division resulted in the top-rated spectra

following the horizontal line centred at 0 and 1 value respec-

tively, whereas high disease severities are associated with

increasingly pronounced deviations. The timing effect was

preserved. The SNV yielded three bundles of curves associated

with all early-date, low late-date and high late-date ratings.

Pre-pending it with subtraction amplified the curve separation

in the red-edge region, while suppressing the SWIR signal and

introducing noise. Pre-pending the SNV with division also

gave ‘noisy’ signatures, and transformation adapted from

Whetton et al. (2018b) resulted in a tight gradient. Under this

scheme, plant health deterioration is associated with less

pronounced features, except for the longest wavelengths,

where the relationship is reversed. This pre-processing

accentuated the effect of the infection on the left shoulder

of the NIR plateau. All of these patterns occurred also after

transforming mean-aggregated spectra (Supplement S2).

Figure 4 shows that the late-date VSSs tended to be lower

than those obtained from the first visual assessment, thus

reflecting infection spread. They also exhibit a slightly wider

range. A small number of the test data-points extend beyond

themodel calibration domains. The affected partitions are 1, 3

and 9; the latter in late assessment, only.

3.2. SVM model performances

While 100% correct VSS ratings within two-point error toler-

ance were predicted for large fractions of the test data parti-

tions, predictions were poor in all zero-tolerance scenarios

(Fig. 5). However, relatively high performance is associated

with the early-date predictions regardless of spectral data

timing provided one-point VSS error is permitted. This does

not hold for the late-date ratings, where the accuracies

seldom exceeded 75%. The effects of the individual spectra

pre-processing schemes are less clear than those of the tim-

ings. The patterns are inconsistent and no obviously advan-

tageous or failing strategy can be identified.

Aggregated confusionmatrices were derived to explore the

possible determinants of accuracy differences at the data-

point level. The confusion matrices corresponding to indi-

vidual partitionings were extracted and subjected to mathe-

matical addition of their element contents. Figure 6 depicts

b i o s y s t em s e n g i n e e r i n g 2 1 1 ( 2 0 2 1 ) 9 7e1 1 3102

Wiktor R. Żelazny, Jana Chrpová, and Pavel Hamouz: Fusarium head blight…

107



Fig. 3 e Spectral signatures from the twomeasurement campaigns according to VSS, and the influence of the pre-processing

strategies. A median of median-aggregated spectra is displayed for each rating. A lower rating denotes higher infection

severity.

Fig. 4 e The distributions of VSSs across the training and test data subsets according to the dataset partitioning and VSS

rating timing. A lower rating denotes higher infection severity.
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that the predictions appear to spread symmetrically from the

matrix diagonals, thus suggesting that the observed accuracy

variation should be attributed primarily to different model

precisions, rather than biases (Bock et al., 2010). For certain

pre-processing schemes the range of the early VSS predictions

is compressed relative to those generated for the later date,

despite only slight differences in the actual rating ranges

(Fig. 4). This pattern may be explained by the early-date SVM

models returning the same rating regardless of input spectra

differences. However, among the affected models the single-

prediction occurrence for spectra subjected to subtraction or

division is 25%, and no model trained to the raw spectra be-

haves in this manner.

3.3. Linear modelling

Figure 7 depicts posterior draws derived for the linear model

fitted to the SVMmodel prediction hits andmisses. It presents

generalised inferences on predictive model population prop-

erties, rather than summarising the performances of a

particular sample of predictive models as seen in Fig. 5. The

meaning of the y axis shifts from calculated prediction accu-

racy to potential probability of correct prediction. The pat-

terns, however, are similar for the both figures, as expected.

Credibility intervals corresponding to experimental treatment

combinations can be derived from the draws. According to

this criterion, performing no spectra transformation can

result in satisfactory early-date ratings, even if the spectra are

acquired at a later date. Moreover, SNV can be advantageous

when the mean function is employed to aggregate the spectra

and all data are colleted on the earlier date.

A fitted linear model enables effect size estimation for

experimental treatment contrasts (Kruschke & Liddell, 2017).

The prediction success probabilities corresponding to the

different scanning dates were compared with the same VSS

rating dates maintained to resolve the hypothesis of deterio-

rated model quality when late-date spectral signatures are

replaced with early-date spectra. The probability of a correct

rating by a SVM model is virtually unaffected by the spectral

campaign timing if an error of two VSS points is accepted. In

contrast, there is positive effect of an earlier spectral

campaign when subtraction or division pre-processing is

applied after median aggregation to determine infection

severity with single-point tolerance (Table 1). The classifica-

tion success probability increase is below 30% when a pre-

dictivemodel is trained to the VSSs collected on the early date.

This contrasts with a possible greater than 50% increase for

the late-date ratings, characterised by lower baseline esti-

mates (Figs. 5 and 7). Although the effect sizes are highly un-

certain when no prediction error is allowed, positive early

spectra influence can be inferred for the same trans-

formations when early VSS ratings are considered. This

pattern extends to additional pre-processing schemes when

the mean function is employed for spectra aggregation. In

particular, the prediction performance increases bymore than

100% with SNV (Table 2).

The effects of pre-processing schemes on the SVM predic-

tion quality were examined, with the raw-spectra scenarios

forming the baseline for comparison. The prediction perfor-

mance remains almost the same if an error of twoVSSpoints is

allowed (Tables 3 and 4). The response is weak for models

trained to theearly-date infectionratingswhen the tolerance is

reduced to one point. The effect differs for subtraction and

division depending on the timing and spectra aggregation

function. Slight, but more consistent performance decreases

are associated with median aggregation followed by subtrac-

tion and division combined with SNV, and also with the pre-

processing adapted from Whetton et al. (2018b). The detri-

mental effects of these schemes are confirmed by the zero-

error tolerance scenario, where the probabilities of a correct

Fig. 5 e Distributions of SVM model accuracies across the dataset partitions according to the timing of spectral and ground-

truth data collection, spectra pre-processing, spectra aggregation and allowed prediction error.
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VSS assignment are reduced by (median estimates and 95%

credibility intervals) 63% [32, 80], 56% [19, 76] and 58% [22, 78]

when the milk-ripening phenological phase is involved. Both

SNV and the remaining two transformations also exhibit this

pattern, but the latter only for one timing combination. Mean

spectra aggregation preserves the negative effects of subtrac-

tion followed by SNV and the scheme adapted from Whetton

et al. (2018b). However, some evidence of accuracy increase

with SNV (40% [�9, 125]) was obtained for early data collection

scenario, as suggested by Fig. 7.

Fig. 6 e Aggregated confusion matrices according to spectral and ground-truth collection timing and spectra pre-processing

scheme. The matrix labels explain mean accuracies corresponding to the prediction error tolerance levels (0e2 VSS points)

and the partitioning count for which all model predictions had the same value. A lower rating denotes higher infection

severity. Only SVM models trained to the spectra subjected to median aggregation were included in the analysis.
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4. Discussion

4.1. Spectral patterns associated with VSS values, and
the effect of pre-processing

The increase in visible-region reflectance when the spike

infection becomes more severe (Fig. 3) indicates pigment

breakdown and photosynthetic apparatus damage in the

presence of fungi (West et al., 2003; Morin et al., 2017; Saccon

et al., 2017). This agrees with the FHB ‘bleaching’ symptoms

(McMullen et al., 2012; Bauriegel & Herppich, 2014; Ma et al.,

2020). The observed red-edge displacement towards the

shorter wavelengths is also well-described (Martinelli et al.,

2015; West et al., 2017), as is the NIR reflectance decrease

(Hamid Muhammed, 2005; Alisaac et al., 2018; Mahlein et al.,

2019; Zhang et al., 2020c,d). The qualitative change in spec-

tral signature shape in the greatest disease severities suggests

the onset of a new biological process, where the increase in

red reflectance may indicate symptoms of fungus conidia

formation, when pathogen tissue has a pink hue (Qiu et al.,

2019; Mielniczuk & Skwaryło-Bednarz, 2020). However,

Bauriegel et al. (2011) linked propagation to a different spectral

pattern, which was not observed in this study, and an alter-

native explanation may be that the spikes become dry (Hamid

Muhammed, 2005).

VSSs differentiation is apparent in raw and pre-processed

spectra. Although distinguishing features in the schemes

differ, the rating separation is preserved at least to some de-

gree. This may explain the limited consistency of pre-

processing effects across the examined timing combinations

(Fig. 5). If both spectra acquisition and VSSs ratings are

Fig. 7 e Posterior distributions, medians and 95% credibility intervals of SVM model correct VSS prediction mean

probabilities according to the timing of spectral and ground-truth data collection, spectra pre-processing and allowed

prediction error. Each panel corresponds to a separate linear model, with a distinct underlying spectra aggregation function.

Table 1 e Medians and 95% credibility intervals of the multiplicative effects on SVM model correct prediction mean
probabilities according to median-aggregated spectra pre-processing and allowed prediction error, when a late spectral
campaign is replaced by an early campaign and the VSS rating date remains fixed.

Contrast Pre-processing VSS tolerance

0 1 2

early spectra : late spectra | early VSSs raw spectrum 0.97 [0.56, 1.66] 1.04 [1.00, 1.13] 1.00 [0.99, 1.01]

subtraction 2.00 [1.10, 3.62] 1.04 [0.99, 1.16] 1.00 [0.99, 1.01]

division 2.50 [1.41, 4.60] 1.09 [1.03, 1.26] 1.00 [0.99, 1.01]

SNV 0.72 [0.37, 1.41] 1.00 [0.92, 1.08] 1.00 [0.99, 1.01]

subtraction þ SNV 0.82 [0.43, 1.59] 1.05 [0.96, 1.21] 1.00 [0.99, 1.01]

division þ SNV 0.94 [0.50, 1.78] 1.10 [1.01, 1.32] 1.00 [0.99, 1.01]

Whetton et al. 1.07 [0.56, 2.13] 1.00 [0.88, 1.13] 1.00 [0.99, 1.01]

early spectra : late spectra | late VSSs raw spectrum 0.87 [0.45, 1.71] 0.92 [0.73, 1.09] 1.01 [0.99, 1.04]

subtraction 1.20 [0.63, 2.35] 1.18 [1.00, 1.58] 1.03 [1.01, 1.10]

division 0.88 [0.44, 1.72] 1.21 [1.01, 1.64] 1.03 [1.01, 1.09]

SNV 1.13 [0.59, 2.24] 0.91 [0.72, 1.07] 0.98 [0.93, 0.99]

subtraction þ SNV 1.07 [0.53, 2.15] 1.04 [0.84, 1.30] 1.01 [0.98, 1.05]

division þ SNV 1.15 [0.58, 2.24] 1.04 [0.83, 1.33] 1.00 [0.97, 1.04]

Whetton et al. 1.00 [0.51, 1.92] 1.00 [0.80, 1.26] 1.00 [0.97, 1.03]
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performed at the milk-ripening stage, SNV can be recom-

mended, but only if the spectra are aggregated using themean

function (Table 4). This transformation can reduce noise

resulting from light beam scattering and it was employed in

some studies on Fusarium-affected kernels (Femenias et al.,

2020). With median aggregation no pre-processing scheme

appears superior to raw spectra for SVMmodel training (Table

3). There is some advantage in subtraction or division by an

uninfected spike spectrum when one point error-difference is

accepted, but this is only in certain combinations of data

acquisition timings and spectra aggregation schemes. The low

probability of these scenarios and the modest gain in predic-

tion performance do not justify doubling the spectral

campaign effort required to measure the healthy-spike

spectra.

The negative effect of following these two trans-

formations with SNV is likely due to the ‘noisy’ spectra

resulting from these combinations (Fig. 3). A similar effect is

obtained for the pre-processing scheme adapted from

Whetton et al. (2018b), which yielded a tight VSS gradient.

Although the ratings are consistently ordered, the signatures

cross and overlap because of order-inversion along the

Table 2 e Medians and 95% credibility intervals of the multiplicative effects on SVM model correct prediction mean
probabilities according to mean-aggregated spectra pre-processing and allowed prediction error, when a late spectral
campaign is replaced by an early campaign and the VSS rating date remains fixed.

Contrast Pre-processing VSS tolerance

0 1 2

early spectra : late spectra | early VSSs raw spectrum 1.70 [1.06, 3.03] 1.12 [1.04, 1.32] 1.00 [1.00, 1.00]

subtraction 1.87 [1.13, 3.31] 1.00 [0.95, 1.04] 1.00 [1.00, 1.01]

division 1.57 [0.94, 2.66] 1.00 [0.94, 1.04] 1.00 [0.99, 1.01]

SNV 3.84 [2.19, 7.23] 1.13 [1.04, 1.37] 1.00 [1.00, 1.01]

subtraction þ SNV 1.50 [0.80, 2.80] 1.06 [0.98, 1.22] 1.00 [1.00, 1.01]

division þ SNV 1.87 [1.07, 3.31] 1.12 [1.04, 1.36] 1.00 [1.00, 1.01]

Whetton et al. 1.35 [0.72, 2.53] 1.08 [0.99, 1.27] 1.00 [0.99, 1.00]

early spectra : late spectra | late VSSs raw spectrum 1.21 [0.60, 2.39] 1.08 [0.90, 1.38] 1.00 [0.97, 1.04]

subtraction 1.14 [0.59, 2.24] 1.14 [0.96, 1.50] 1.02 [1.00, 1.07]

division 1.48 [0.75, 3.06] 1.26 [1.05, 1.76] 1.03 [1.01, 1.09]

SNV 0.85 [0.41, 1.78] 1.02 [0.79, 1.34] 0.99 [0.96, 1.01]

subtraction þ SNV 1.47 [0.75, 2.85] 1.00 [0.80, 1.24] 1.01 [0.97, 1.06]

division þ SNV 0.75 [0.36, 1.59] 0.87 [0.66, 1.04] 0.99 [0.95, 1.02]

Whetton et al. 1.00 [0.51, 1.98] 1.00 [0.80, 1.24] 1.00 [0.97, 1.04]

Table 3 e Medians and 95% credibility intervals of the multiplicative effects of the median-aggregated spectra pre-
processing schemes on SVM model correct prediction mean probabilities according to the spectral campaign and VSS
assessment timing and allowed prediction error.

Timing Pre-processing VSS tolerance

0 1 2

early spectra, early VSSs subtraction 0.95 [0.54, 1.62] 0.98 [0.92, 1.01] 1.00 [0.99, 1.01]

division 1.05 [0.61, 1.76] 1.00 [0.98, 1.03] 1.00 [0.99, 1.01]

SNV 0.33 [0.17, 0.60] 0.95 [0.86, 0.99] 1.00 [0.99, 1.01]

subtraction þ SNV 0.37 [0.20, 0.68] 0.93 [0.82, 0.98] 1.00 [0.99, 1.00]

division þ SNV 0.44 [0.24, 0.81] 0.95 [0.86, 0.99] 1.00 [0.99, 1.01]

Whetton et al. 0.42 [0.22, 0.78] 0.88 [0.74, 0.96] 1.00 [0.99, 1.01]

early spectra, late VSSs subtraction 1.29 [0.67, 2.57] 1.10 [0.93, 1.38] 1.01 [1.00, 1.03]

division 1.01 [0.51, 1.97] 1.10 [0.94, 1.38] 1.01 [1.00, 1.03]

SNV 1.21 [0.62, 2.37] 0.98 [0.79, 1.21] 0.98 [0.94, 1.00]

subtraction þ SNV 1.02 [0.51, 2.01] 1.00 [0.81, 1.23] 0.99 [0.95, 1.00]

division þ SNV 1.07 [0.56, 2.04] 0.98 [0.80, 1.20] 0.99 [0.95, 1.00]

Whetton et al. 1.07 [0.56, 2.07] 0.98 [0.78, 1.20] 0.99 [0.95, 1.00]

late spectra, early VSSs subtraction 0.45 [0.25, 0.85] 0.97 [0.88, 1.04] 1.00 [0.99, 1.01]

division 0.40 [0.21, 0.73] 0.96 [0.85, 1.02] 1.00 [0.99, 1.01]

SNV 0.43 [0.23, 0.80] 0.99 [0.91, 1.05] 1.00 [0.99, 1.01]

subtraction þ SNV 0.43 [0.23, 0.78] 0.92 [0.78, 0.99] 1.00 [0.99, 1.01]

division þ SNV 0.46 [0.25, 0.83] 0.90 [0.74, 0.98] 1.00 [0.99, 1.01]

Whetton et al. 0.38 [0.20, 0.70] 0.92 [0.79, 1.00] 1.00 [0.99, 1.01]

late spectra, late VSSs subtraction 0.93 [0.46, 1.85] 0.85 [0.65, 1.02] 0.98 [0.93, 1.01]

division 0.99 [0.51, 1.89] 0.84 [0.61, 1.01] 0.99 [0.94, 1.01]

SNV 0.93 [0.47, 1.79] 1.00 [0.84, 1.18] 1.01 [1.00, 1.05]

subtraction þ SNV 0.81 [0.42, 1.61] 0.89 [0.69, 1.05] 0.99 [0.95, 1.01]

division þ SNV 0.82 [0.40, 1.65] 0.87 [0.67, 1.03] 0.99 [0.95, 1.02]

Whetton et al. 0.93 [0.48, 1.83] 0.91 [0.71, 1.06] 0.99 [0.96, 1.02]
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wavelength dimension. This effect and the gradient steep-

ness may have weakened the disease severity signal, and

this could also explain the lack of SVM model sensitivity to

variations in input spectra (Fig. 6).

4.2. SVM model accuracies, and their relationship to
field phenotyping requirements

On most occasions, the models failed to predict the test data

VSSs when no error was allowed (Figs. 5 and 7). This unsat-

isfactory performance can be linked to the high number of

rating levels. The accuracy of the early visual assessment was

acceptable only with one point permitted error, and not for

models trained to late expert ratings. This result does not

confirm the hypothesis for accurate late-stage disease

severity estimation with reflectance spectra and SVM.

One VSS point difference in this study indicates disease

symptom difference of approximately ten percentage

points. Although this error allowance needed to obtain

satisfactory predictions is much greater than errors re-

ported in other FHB proximal sensing experiments, some

authors made no attempt to discriminate between disease

severity levels. These researchers performed binary classi-

fication experiments, where high success rates are expected

with both hyperspectral and multispectral images (Dammer

et al., 2011; Hamid Muhammed, 2005; Jin et al., 2018). Other

work collected data on infected spikelet counts within

spikes, but transformed the calculated disease severities to

binary scale prior to model training, and reported around

90% prediction accuracy (Ma et al., 2020). Liu et al. (2020a)

performed similar dichotomy in their UAV study.

Moreover, the test dataset employed by these authors was

not independent of training and validation datasets, and

this may explain the 90e98% accuracy obtained with their

six multivariate models.

Combining deep learning and feature selectionwas studied

extensively by Zhang et al. (2020d). While these authors re-

ported close to 100% accuracy using R-squared statistics, they

used a relatively simple threshold algorithm rather than

employing a ground-truthing expert. An earlier publication by

Zhang et al. (2019) records a six-point ground-truth scale,

which is a typical scoring resolution employed by human

rating (Bock et al., 2010). The reported accuracies of the deep

learning models are lower there, but still high enough to

justify replicating the experiment and testing the proposed

approach in a phenotyping setting.

A rare field phenotyping study of three cultivars by Qiu

et al. (2019) used a region-growing algorithm to estimate in-

dividual spike surface area percentages with visible FHB

symptoms, a process which closely matches the expert rating

procedure. The very high spatial resolution of the analysed

imagery compensated for the low spectral resolution, an in-

verse relationship as in our work. The authors mention the

‘optimum performance’ of their model but provide no nu-

merical measures to enable comparison with other studies.

This was followed by Su et al. (2021) proposal of a refined

approach for application to 55 wheat genotypes. This research

was based on individual spike segmentation, and the post-

binary accuracy was also near 100%. Although the authors

reported a negative prediction bias when disease severity was

quantified on a 14-point scale, some performance measures

exceeded 70%. This suggests that RGB imagery combined with

Table 4eMedians and 95% credibility intervals of themultiplicative effects of themean-aggregated spectra pre-processing
schemes on SVM model correct prediction mean probabilities according to the spectral campaign and VSS assessment
timing and allowed prediction error.

Timing Pre-processing VSS tolerance

0 1 2

early spectra, early VSSs subtraction 1.00 [0.63, 1.60] 0.97 [0.91, 1.00] 1.00 [1.00, 1.00]

division 0.96 [0.59, 1.54] 0.97 [0.90, 0.99] 1.00 [0.99, 1.00]

SNV 1.40 [0.91, 2.25] 0.98 [0.93, 1.00] 1.00 [1.00, 1.00]

subtraction þ SNV 0.41 [0.23, 0.70] 0.94 [0.84, 0.98] 1.00 [1.00, 1.00]

division þ SNV 0.81 [0.49, 1.33] 0.97 [0.91, 1.00] 1.00 [1.00, 1.00]

Whetton et al. 0.37 [0.20, 0.64] 0.93 [0.83, 0.98] 1.00 [0.99, 1.00]

early spectra, late VSSs subtraction 1.07 [0.56, 2.07] 1.01 [0.86, 1.22] 1.01 [0.99, 1.05]

division 1.06 [0.55, 2.07] 1.04 [0.90, 1.26] 1.01 [1.00, 1.05]

SNV 0.62 [0.31, 1.23] 0.85 [0.63, 1.02] 1.00 [0.97, 1.03]

subtraction þ SNV 1.20 [0.63, 2.32] 0.94 [0.75, 1.12] 1.00 [0.96, 1.03]

division þ SNV 0.62 [0.31, 1.26] 0.89 [0.68, 1.07] 0.99 [0.95, 1.02]

Whetton et al. 0.94 [0.47, 1.87] 0.92 [0.72, 1.10] 1.00 [0.96, 1.03]

late spectra, early VSSs subtraction 0.92 [0.52, 1.58] 1.09 [1.02, 1.27] 1.00 [0.99, 1.00]

division 1.05 [0.61, 1.81] 1.08 [1.02, 1.25] 1.00 [0.99, 1.00]

SNV 0.63 [0.35, 1.13] 0.97 [0.84, 1.08] 1.00 [0.99, 1.00]

subtraction þ SNV 0.47 [0.25, 0.85] 0.99 [0.87, 1.11] 1.00 [0.99, 1.00]

division þ SNV 0.74 [0.43, 1.33] 0.97 [0.84, 1.08] 1.00 [0.99, 1.00]

Whetton et al. 0.47 [0.25, 0.85] 0.97 [0.84, 1.08] 1.00 [0.99, 1.00]

late spectra, late VSSs subtraction 1.13 [0.58, 2.28] 0.96 [0.75, 1.20] 1.00 [0.96, 1.03]

division 0.87 [0.42, 1.79] 0.91 [0.67, 1.14] 0.99 [0.94, 1.02]

SNV 0.87 [0.42, 1.77] 0.90 [0.67, 1.13] 1.01 [0.99, 1.05]

subtraction þ SNV 0.99 [0.48, 2.03] 1.02 [0.82, 1.26] 0.99 [0.95, 1.03]

division þ SNV 1.00 [0.49, 2.05] 1.10 [0.93, 1.41] 1.00 [0.97, 1.04]

Whetton et al. 1.13 [0.57, 2.28] 1.00 [0.80, 1.26] 1.00 [0.97, 1.04]
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advanced processing is sufficient to phenotype FHB resistance

in the field; at least when the disease is visible to the naked

eye. However, it is important to note that the ground truth in

this experiment was obtained by manually labelling the im-

ages, rather than based on field-rating by an expert, who

would examine all sides of the spikes.

The low performance of the SVM models was attributed to

low prediction precision rather than bias. Although precision

can be improved by increasing the size of the training dataset,

the high number of expert ratings required negates the

advantage of spectroscopy over the traditional approach. The

workload here could be reduced by expending extensive effort

only once and building a spectral signature library formultiple

trials. The additional collected ratings could then be limited

for validation.

Research by Huang et al. (2019) attempted to generalise

FHB severity predictions to various acquisition dates and lo-

calities. The authors divided the reflectance of a healthy-spike

spectrum in a newly located site by those acquired at the

reference site, and then applied the obtained ratios to all

target-site measurements. This approach supports our pre-

processing division, which had a slightly positive effect on

SVM model performance for some spectral aggregation and

timing combinations (Table 3).

The predictions might also be improved by testing other

classifications model families in addition to SVM. For

example, Huang et al. (2019) compared the performance of

SVMwith both Fisher's linear discriminant analysis outcomes

and combined SVM-and-Fisher effect, and found the resultant

combination superior to the individual models. An alternate

option to improve the model performance would be feature

selection (Jin et al., 2018; West et al., 2017; Zhang et al., 2020b).

Although theVSSswere provided by an expertwith 20 years'
experience in FHBfieldphenotyping, incorrect labelling of some

spike clusters cannot be discounted (Bock et al., 2010; Dammer

et al., 2011; Whetton et al., 2018b). Better predictions may also

have been expected if the actual infection severity values had

been known. Multiple VSS ground-truthing by several techni-

cians, combined with a photo interpretation approach, would

have been essential tomitigate this studyweakness (Bock et al.,

2010; Whetton et al., 2018b), but the additional human and

computational workload did not justify this inclusion consid-

ering the early stages of FHB field sensing research.

The prediction quality improved dramatically when some

rating error was allowed. The accuracy approached 100%

when two VSS-levels difference was permitted, and this was

sufficient to reliably distinguish between low, medium and

heavily-infected cultivars. This result is similar to the four-

level classification tested by Huang et al. (2019), where the

authors reported their greatest accuracies in the 85e90%

range. Despite its coarseness, this differentiation is sufficient

for certain field phenotyping tasks; including the preliminary

screening of disease-intolerant breeding lines (Bock et al.,

2010).

4.3. Significance for commercial large-scale farming,
and the timing effects

The dates corresponding to the VSSs for SVM training always

agree with those of the VSSs test subsets. Herein, we focused

on phenotyping, where plants are intentionally exposed to

stress without management adjustment (Mahlein, 2016). In

contrast, commercial farming relies on continuous plant sta-

tus monitoring, and it is in the farmer's interest to predict the

infection risk and its severity in advance (Liu et al., 2020b). A

question arises whether an SVM model trained to an early

spectral and training VSS dataset can be employed for pre-

dicting late-date VSSs. Figure 8 shows that the bulk of the

infected hill plots had 2 to 3 points rating deterioration be-

tween the two data collection campaigns. This is surprising

consistency, because the presence of multiple cultivars could

be expected to have a higher variety of infection responses.

This pattern should therefore enable the spectral campaign at

the milk-ripening phase to provide data for satisfactory pre-

diction of infection severity at the wax-ripening phase.

Our study does not corroborate the hypothesis of model

performance deterioration associated with spectral data

collection early in wheat spike development. Evidence of the

contrary was found especially for pre-processing schemes

involving a subtraction or division by a signature of healthy

spikes (Tables 1 and 2). The early date corresponded to the

milk-ripening stage, whichWhetton et al. (2018a) identified as

being optimal for Fusarium infection severity prediction using

partial least squares regression in laboratory. However, the

diseased spikes have similar colour to spikes unaffected by

FHB as the crop matures, as depicted in temporal difference

between spectral curves in Fig. 3. This ripening adversely af-

fects spikedetection in images (Fernandez-Gallego et al., 2018),

and is detrimental to disease severity estimation accuracy

(Bauriegel et al., 2011; Dammer et al., 2011; Qiu et al., 2019).

FHB detection at the milk-ripening developmental phase is

still not early enough for fungicide treatment, which typically

occurs not later than during flowering (McMullen et al., 2012).

Preliminary evidence favouring disease prediction feasibility

with late-anthesis data was obtained in an indoor experiment

(Zhang et al., 2020c) and recent field work, by Su et al. (2021),

included late anthesis as one of the developmental phases

covered by the imaging campaigns. The latter authors,
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assigned early- and late-date VSSs. The highlighted

background area corresponds to 2-or-3 point rating

difference. A lower rating denotes higher infection

severity.
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however, did not examine the influence of timing factor in

their experiment. Bauriegel et al. (2011) considered that suc-

cessful diagnosis cannot be expected when the hyperspectral

FHB assessment is performed at early flowering, and fluores-

cence imaging may be required to obtain the diagnosis at this

phase (reviewed in Bauriegel & Herppich, 2014). However,

fluorescence diagnosis has greater requirements to external

conditions during data acquisition (Kuckenberg et al., 2009;

Bauriegel & Herppich, 2014; Mahlein, 2016). West et al. (2017)

then added that only infected spikes can be detected with

this method.

Substantial mycotoxin production occurs in early infec-

tion, and this contributes to Fusarium aggression (Khaledi

et al., 2017). The rate of pathogen spike penetration in high

(Kang & Buchenauer, 2000), which narrows the fungicide

treatment timewindow. Consequently, it is insufficient to just

detect initiated infection when scheduling treatment or

planning variable fungicide application rate. Instead, there

must be identification of fields and field zones affected by

other stress factors and susceptible to developing FHB in given

weather conditions (McMullen et al., 2012). Symptom severity

information obtained after infection took place enables effi-

cacy assessment of prior fungicide intervention (Qiu et al.,

2019). Moreover, areas for separate harvest of the

mycotoxin-contaminated grain can be identified (Dammer

et al., 2011; Bauriegel & Herppich, 2014; West et al., 2017),

and contamination-level assays can be then limited to those

latter grains (Bauriegel et al., 2011; Dammer et al., 2011; Saccon

et al., 2017; but see Shen et al., 2022).

4.4. Deviations from the pre-registration

Nosek et al. (2018) contend that it is rare for a study to follow

an unadjusted pre-registration protocol for data collection

and analysis. They recommend a discussion of deviations and

their consequences to preserve study transparency and

demonstrate the validity of results.

Herein, several changes to the methods declared in the

study pre-registration form ( _Zelazny et al., 2020) were

necessary: Hyperspectral data cubes were collected, but it

was not possible to analyse them so the hypothesis for

comparison of the hyperspectral camera and point spec-

trometer could not be addressed. Shading of the area

measured by spectroradiometer was abandoned for orga-

nisation reasons. However, shadows cast by the operator

and contact probe were arguably sufficient to block direct

illumination. Operator fatigue from equipment load and

frequent bending to reach the spikes was the primary factor

limiting the number of collected spectra, which was not

envisaged as a possible stoping criterion in pre-registration.

In addition, measurements from several plots could not be

included because of undetected errors during spike-

bundling, which would have provided incomplete spectral

data. The declared order of the scans was also slightly

adjusted to avoid acquiring spectral signatures of infected

spikes without matching healthy-spike spectra. The devel-

opment of disease symptoms on non-inoculated spikes was

not anticipated, and the rationale for discarding the

affected plot pairs was to avoid introducing artefacts during

spectra subtraction and division. The order of spectra

aggregation and pre-processing was then exchanged

because paired signatures were required for the subtraction

and division operations, and any pairing involving original

spectra would have been arbitrary. Performance of the

predictive model based on aggregated accuracy values

could not be compared, because the 0% and 100% values in

the dataset precluded logit-link application. This was

solved by adding a further grouping level to the models, and

treating the individual VSS prediction hits and misses as

data points. This revised approach better reflected the data

generation process, and potentially contributed to linear

model validity.

There were also two extensions to the original plan: The

use mean for spectra aggregation was considered prior to

study pre-registration, but it was decided to employ the me-

dian. That decision was reconsidered during the spectra

acquisition based on the patterns seen in the data. Although

both approaches appear in the study, the mean spectra anal-

ysis results should be considered exploratory. Finally, the

Fig. 6 confusion matrices and Fig. 8 contingency table were

computed post-hoc to facilitate result discussion.

5. Conclusions

The patterns in the acquired spectral signatures can be

explained by plant stress biology and linked to FHB visual

symptoms. These agree with the spectral patterns obtained in

other FHB studies, and this supports the suitability of a spec-

troradiometer with a contact probe for FHB phenotyping

applications.

Ordinal SVM models applied to the raw spectra yielded

predictions with confident distinction of low, moderate and

high disease severity at the milk-ripening developmental

phase. The proposed approach enables screening unpromis-

ing breeding lines, but other predictive models require testing

for applications that demand finer FHB severity ratings. This is

especially true for models trained to spectra collected at the

wax-ripening developmental stage due to spike-drying dis-

colour masking the disease signal. While deep learning may

be suitable, the current published results require replication

with multiple cultivar datasets and eliminated over-

simplification of ground-truth data.

Predictions can in some situations be improved by sub-

tracting healthy-spike reflectance measurements from the

analysed signatures or by division. However, gains from these

pre-processing schemes must be compared to the costs of

additional scans. Further investigation is also required to

determine if a predictive trained model can be applied year-to-

year to reduce this effort. SNV pre-processing can be beneficial

for milk-ripening phase predictions based onmean-aggregated

spectra acquired at the same crop developmental stage.

The disease severity scores provided by ordinal SVM can

help commercial farmers identify field zones for separate

grain harvesting and evaluate the effects of fungicide applied

in a given year using these models. However, they are un-

suitable for scheduling protective measures because of Fusa-

rium spp. specific mode of infection. This applies equally to all

approaches that require spectral signatures from already

diseased plants.
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Abstract. Feature selection can improve predictions generated by partial least squares models.
In the context of hyperspectral imaging, it can also enable the development of affordable devices
with specialized applications. The feasibility of feature selection for oat leaf chlorophyll
estimation from hyperspectral imagery was assessed using a public domain dataset. A wrapper
approach resulted in a simplistic model with poor predictive performance. The number of model
inputs decreased from 94 to 3 bands when a filter approach based on the minimum redundancy,
maximum relevance criterion was attempted. The filtering led to improved prediction quality,
with the root mean square error decreasing from 0.17 to 0.16 g m-2 and R2 increasing from 0.57
to 0.62. Accurate predictions were obtained especially for low chlorophyll levels. The obtained
model estimated leaf chlorophyll concentration from near infra-red reflectance, canopy darkness,
and its blueness. The prediction robustness needs to be investigated, which can be done by
employing an ensemble methodology and testing the model on a new dataset with improved
ground-truth measurements and additional crop species.

Key words: remote sensing, imaging spectroscopy, unmanned aerial vehicles, partial least
squares, reproducibility.

INTRODUCTION

The indispensability of chlorophyll for plant photosynthesis (Sims & Gamon, 2002;
Main et al., 2011) and its contribution to crop optical properties (Ollinger, 2011) make
the estimation of leaf chlorophyll concentration an important remote sensing application.
In large-scale assessments, leaf chlorophyll remote sensing is useful for yield prediction
(Moharana & Dutta, 2016). At finer spatial scales, it can be used for the delineation of
management zones for precision agriculture (Miao et al., 2009). As chlorophyll breaks
down under stress, its monitoring provides information about the crop status, and enables

Traditional broad-band optical remote sensing relies on vegetation indexes for
assessing crop status (e.g., Basso et al., 2016; Dom nguez et al., 2017; Barbosa et al.,
2019). Consequently, it is of limited use for estimating the concentrations of individual
pigments, such as leaf chlorophyll. Many of these indexes have been adapted for use
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with hyperspectral imaging products (Miao et al., 2009; Verrelst et al., 2019, often
leading to improved results (e.g., Miao et al., 2009). Moharana & Dutta (2016) evaluated
ten indexes in terms of rice chlorophyll prediction from proximal spectroradiometric
data. Some of the band combinations gave unsatisfactory estimates despite their high
performance in other experimental settings, which is a common problem for vegetation
indexes. On the other hand, the formulations that excelled during the screening provided
realistic maps of rice chlorophyll concentration when applied to EO-1 Hyperion imagery.
The limited index transferability across crops can be in part related to differences
between plant architectures (Ollinger, 2011). A study involving six crop species evaluated
the robustness of relationships between vegetation indexes and leaf chlorophyll with
respect to canopy structural parameters. A total of 58 formulations were tested; of this
number, only 2 were considered truly robust when applied to both measured and simulated
spectra (Zou et al., 2015). Corti et al. (2018) published a meta-analysis intended to
identify factors that foster accurate estimation of maize biochemical parameters from
optical measurements. Their results suggest that satisfactory predictions can be obtained
by avoiding certain families of vegetation indexes-regardless of sensor type, acquisition
model, and crop developmental stage. The article indicates that only statistically
significant relationships were included in the study, which means that this finding needs
to be approached with caution. A recent review by Hatfield et al. (2019) cites additional
studies devoted to vegetation indexes suitable for chlorophyll estimation. According to
the authors, vegetation indexes should be a first choice in remote sensing applications,
as they avoid computational challenges of more sophisticated approaches.

Yet, the main advantage of hyperspectral imagery lies in the possibility of applying
- borrowed from chemometrics and machine learning (Corti et

al., 2018; Verrelst et al., 2019). Partial least squares (PLS) regression was employed to
diagnose chlorophyll levels in winter wheat leaf laboratory samples (Zhang et al., 2012).
Scanning of single leaves under controlled illumination allowed the authors to evade the
challenges inherent to canopy-level imaging in outdoor conditions, and without doubt
contributed to extremely accurate (R statistics up to 0.99) predictions. Unfortunately,
unclear study design description undermines the trustworthiness of the findings.
Kanning et al. (2018) tested a pushbroom system as a way to overcome some limitations
of 2D frame hyperspectral cameras. An experimental winter wheat field was scanned
using a UAV, and the measurements subjected to PLS modelling. When the model was
applied to the pixels of the field orthoimage, the individual nitrogen fertilization
treatment levels could be discerned. The estimation quality was sufficient to fit a model
for predicting grain yield from the obtained values. Meij et al. (2017) employed PLS to
predict chlorophyll content in oats from unmanned aerial vehicle (UAV) campaign data.
The study also included 25 published vegetation indexes. The PLS approach yielded
validation predictions inferior to the estimates obtained by using the best of the indexes.
Still, according to Verrelst et al. (2019), chemometric methods are in principle more
powerful than vegetation indexes for estimating canopy biophysical parameters. The
chemometric approach tends, in turn, to be surpassed by machine learning methods,
capable of modelling non-linear relationships. A comparison of selected algorithms from
both groups demonstrated substantial performance variability within the machine learning
family. Robust leaf chlorophyll content predictions for multiple crops were obtained
with kernel ridge and Gaussian process regression. On the other hand, artificial neural
networks, an approach with a comparable level of sophistication, failed to provide
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consistently reliable estimates (Caicedo et al., 2014). By applying support vector machines
(SVM) to maize hyperspectra, Karimi et al. (2008) obtained very good validation estimates
for the tasseling stage. The prediction quality was worse, but still satisfactory, for the early
growth stage, which the authors attributed to the soil showing through the crop canopy.

Despite its potential, the adoption of imaging spectroscopy remains hindered, in
part by the high investment costs involved (Corti et al., 2018). Scene acquisition using a
modern 2D camera tends to be slow due to sequential capture of a large number of bands.
As a consequence, the speeds of airborne platforms become constrained (Honkavaara et
al., 2017) and band registration needs to be performed during the imagery post-
processing (Jakob et al., 2017). The voluminous data contained in hyperspectral data
cubes require substantial computational capacities and specialized knowledge to process
(Yang et al., 2017; Aasen et al., 2018). In the realm of field point spectrometry, similar
challenges have been overcome by the development and commercialization of
specialized proximity sensors, such as chlorophyll meters (Govender et al., 2009; Miao
et al., 2009). These sensors exploit information from limited numbers of pre-selected
bands, and have a predictive model embedded in the firmware to perform the
computations. A similar route could be taken for imaging spectrometers in order to make
the technology more accessible (Govender et al., 2009). One can envision an affordable
specialized device capable of capturing narrow-band imagery, as hyperspectral cameras
do, comprising bands that were pre-selected to optimize for accurate remote chlorophyll
content estimation.

Feature selection methods have proven to be useful for the screening of spectral
bands for a variety of applications. In addition to reducing the number of required model
inputs, they were shown to improve the prediction accuracy (Ding & Peng, 2005;
Mehmood et al., 2012). Fewer computations are required to process data subjected to
feature selection, and model interpretation is facilitated (Ding & Peng, 2005). Band pre-
selection prior to data acquisition can also address the problem of slow operation of
hyperspectral cameras (Yang et al., 2013; Zhang & He, 2013). As demonstrated by the
Zhang & He (2013) oilseed rape yield study, substantial reduction of data volume can
be attained without impairing model performance. Discarding of 98% of hyperspectral
bands had a minimal effect on the quality of nitrogen content prediction in pepper plants,
while significantly simplifying the obtained model (Yu et al., 2014). Behmann et al.
(2014) proposed an SVM model for detecting water stress in barley. The model inputs
comprised vegetation indexes, the combinations of which were determined using
wrapper feature selection. Increased detection sensitivity was obtained, allowing for
earlier drought detection relative to the raw indexes. The aim of the present study is to
investigate the effect of two feature selection approaches on the prediction of leaf
chlorophyll concentration in oats from hyperspectral imaging data.

MATERIALS AND METHODS

Experimental data
The present study partially replicates and extends the results of Meij et al. (2017),

using the same experimental data. Their experiment evaluated the soil-mediated carry-
over effects of preceding and cover crops on crop-of-interest status. The data collection
took place in summer 2015, which was the second year of the study, and was focused on
experimental plots with oats in the grain-filling developmental stage.
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The dataset includes narrow-band reflectance spectra of the experimental plots (one
averaged spectrum per plot) obtained from UAV imagery. The spectra cover the range
of wavelengths from 450 to 915 nm, i.e., between visible blue and near infra-red. The
spectral resolution is 5 nm, thus yielding 94 bands. The spectra are accompanied by
ground-
among others, SPAD-estimates of leaf chlorophyll concentrations (one averaged
estimate per plot), which are the focus of the present study. There are 56 data points in
total, labelled as either calibration or validation data in 1:1 proportion. The dataset is in
the public domain, and for the purpose of this study, it was downloaded from the Dryad
repository (Meij et al., 2018).

Reproduction of the original analysis
In order to obtain a baseline for the assessment of feature selection performance, a

reproduction of the Meij et al. (2017) result was prepared. The original study employed
vegetation indexes and PLS modelling for predicting leaf chlorophyll from the imaging
spectra. This paper focuses on the latter approach.

The data partitioning from the original dataset was preserved, and a PLS regression
model was fitted to the calibration subset. Leaf chlorophyll concentration was modelled
as the dependent variable, and the reflectance values for the whole range of the
wavelengths as the independent variables. The number of latent variables was tuned
using leave-one-out cross-validation by calculating the cross-validation root mean
square error (RMSE) for each value from between 1 and 20. The validation spectra were
then fed to the model exhibiting the lowest error, and the generated predictions compared
with the SPAD chlorophyll estimates to obtain validation RMSE, normalized RMSE
(NRMSE), and the R2 statistics. To reproduce the original validation results, RMSE had
to be normalized by dividing it by the mean chlorophyll concentration, rather than the
standard deviation or range. Likewise, R2 had to be calculated as the square of the
correlation coefficient between the predicted and observed values, rather than derived
from the sums of squares.

Application of feature selection
Next, the fitting of the PLS model to the calibration dataset was repeated, but in

addition to the tuning of the latent variable number, feature selection was performed.
Two approaches to feature selection were tested: a filter method based on the minimum
redundancy, maximum relevance (MRMR) criterion, and a forward selection wrapper
method.

Under the filtering approach, variables are evaluated independently of model
fitting, according to a measure the value of which determines which of them will be
discarded (Mehmood et al., 2012). In the MRMR method, this measure is the mutual
information shared by the candidate feature and the predicted variable, reduced by the
average mutual information shared by the candidate feature and the features already
accepted for inclusion into the model. The mutual information is a function of the
correlation coefficient (De Jay et al., 2013).

With wrapping, models are fitted to multiple pre-selected feature subsets, and the
fit quality itself serves as the selection performance criterion, making it a computationally
more demanding approach (Mehmood et al., 2012). The wrapper forward selection
method is analogous to the forward selection in the stepwise regression: candidate
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features are picked one by one from the feature pool, and their influence on the
performance of the refitted model is assessed. The variable associated with the highest
performance increase is kept in the model, and the process continues iteratively, until
there is no further improvement.

For each method, the present study aimed to obtain a series of models with the input
feature number ranging from 2 to all 94 bands (i.e., no selection). In this way, the
influence of feature selection intensity on the prediction quality could be investigated.

Computational reproducibility
The analysis was prepared with reproducibility in mind (Piccolo & Frampton,

2016). It was programmed in the R language (R Core Team, 2019), using the packages
pls (Mevik et al., 2019) for model fitting, mRMRe (De Jay et al., 2013) for assessing the
MRMR criterion, and mlr (Bischl et al., 2016) for model tuning. GNU Make (Stallman
et al., 2016) was used as the build tool, and GNU Guix enabled isolation and

Wurmus, 2015). The computational scripts are available from a Zenodo repository
-64 machine, the analysis took approximately 100 minutes

without parallelization and excluding the time needed to set up the environment. The
latter can last hours on the first run, depending on the state of a
& Wurmus, 2015) and availability of pre-compiled package substitutes. It is reduced to
minutes on subsequent runs.

RESULTS AND DISCUSSION

Visual data assessment

Figure 1. a) Narrow-band spectra of experimental oat plots in the calibration and validation data
subsets acquired using an unmanned aerial vehicle. Line hues reflect the differences in SPAD-
estimated leaf chlorophyll concentrations. The figure can be rendered in color by running the
computational scripts that accompany the article; b) Loadings in the partial least squares model
for predicting leaf chlorophyll concentrations from the narrow-band spectra. The model is based
on three bands obtained from minimum redundancy, maximum relevance filtering. Latent variable
loadings are given in the parentheses, wavelength loadings are given on the y axis.

Fig. 1, a depicts the experimental plot spectra matched to the ground-truth data,
analogously to Fig. 4 in Meij et al. (2017). High leaf chlorophyll concentration appears

a) b)
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to be associated with increased near infra-red reflectance and a steep red edge both
regions repeatedly considered important for chlorophyll prediction by earlier studies
(Govender et al., 2009; Main et al., 2011). On the other hand, contrary to expectation,
no apparent red-edge shift can be discerned. The calibration and validation spectra are
well mixed in terms of the chlorophyll measurements, as can be expected from the
stratified random partitioning, employed by the original study. Regarding the
reflectance, the validation subset seems to cover a wider range of values than the
calibration subset, but the difference is too small to raise concerns about a mismatch
between the partitions.

Reproduction of Meij (Meij et al. (2017)
Despite the variety of existing PLS flavours and implementations, the attempt to

reproduce the validation results of the Meij et al. (2017) paper turned out to be
successful, with only NRMSE showing a slight deviation (Table
However, as discussed above, the high number of bands contributing to the model make

- - at least until
hyperspectral imagers become affordable (Aasen et al., 2018). In addition, the result of
model tuning, which set the number of the latent variables to five, makes an insight into
its workings challenging.

Table 1. Tuning parameters and validation statistics of the partial least squares models. Each
model was calibrated using 28 spectra and validated using another set of 28 spectra

Study
Input
bands

Latent
variables

RMSE
(g m-2)

NRMSE
(%)

R2

Meij et al. (2017) 94 5 0.17 23.82 0.57
Reproduction 94 5 0.17 23.75 0.57
Filter feature selection 19 7 0.21 28.36 0.52
Filter feature selection (truncated) 3 3 0.16 21.84 0.62
Wrapper feature selection 1 1 0.20 28.23 0.43
RMSE = root mean square error, NRMSE = normalized root mean square error.

Feature selection
The cross-validation results of models employing filter feature selection exhibit

two local error minima (Fig. 2). The absolute minimum corresponds to 19 input bands,
a much lower number than for the reference model, but still too high for developing
reasonably priced specialized device. What is more, the model shows higher validation
error and involves even more latent variables (seven) than the reproduction model
(Table

Conversely, three wavelengths, as in the second minimum, seem a good middle-
ground between technical feasibility and expected estimation error. The fact that the
number of latent variables in PLS regression cannot exceed the number of inputs
contributes to the model interpretability. Notable is the improvement of the validation
statistics (Table
influence of feature selection on prediction accuracy (Mehmood et al., 2012). Although
the obtained gains may seem modest, one should consider other advantages offered by
feature selection, such as the reduced cost of a specialized imager (Govender et al.,
2009), more efficient data acquisition (Yang et al., 2013; Zhang & He, 2013), and
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smaller volumes of the collected data (Zhang & He, 2013). On a closer examination, the
model appears to give accurate predictions for low levels of chlorophyll, but its
performance deteriorates above the level of about 0.75 g m-2 (Fig. 3). A similar pattern
occurred in the Kanning et al. (2018) pushbroom imager study. An attempt to further
improve the prediction quality could be made by log-transforming the chlorophyll
content values prior to modelling.

Fig. 1, b depicts the band
loadings for each latent variable and
the latent variable loadings of this
model. The chlorophyll content is,
thus, predicted as LCC = 6.3 PLS1 +
4.0 PLS2 + 7.5 PLS3. The value of
the first component PLS1 = 0.0 r455

0.1 r710 + 1.0 r775 corresponds to the
near infra-red reflectance, in
accordance with the visual assessment,
above. The second component PLS2

= 0.7 r455 1.0 r710 0.1 r775 includes
the bottom part of the red edge and,
interestingly, a blue band., it can be
interpreted as canopy darkness (low
visible albedo), and linked to the
absorbance in the photosynthetically-
active spectral region. The third
component value PLS3 = 1.0 r455 +
0.0 r710 +0.0 r775 is determined by
canopy blueness (blue hue intensity).

Figure 2. Cross-validation prediction performance
and tuning results of the oat leaf chlorophyll
prediction models according to the number of
features selected using the minimum redundancy,
maximum relevance filter. CV RMSE = cross-
validation root mean square error.

Wavelength combinations similar to the one picked by the filtering algorithm
seldom occur in vegetation index formulations. They can be found in the Enhanced

et al., 1995), the Modified Simple Ratio, and the Modified Normalized Difference
(mND705) (Sims & Gamon, 2002). No such index was investigated by Meij et al. (2017).
In the study by Main et al. (2011), the first three indexes fared poorly when used for
predicting chlorophyll content in maize leaves at various developmental stages. The
authors attribute this to the weak relationship between the blue spectral region and the
leaf chlorophyll concentration.

Regarding mND705, it was among the best-performing indexes in Main et al. (2011),
and in Miao et al. (2009) - also a maize study. On the other hand, it occurred to be a poor
predictor of chlorophyll content in rice (Moharana & Dutta, 2016). The mND705 index
formula includes blue reflectance as a way to account for specular reflectance (Sims &
Gamon, 2002). The third latent variable of the discussed PLS model may play the same
role.

Alternatively, it may adjust for Rayleigh scattering. According to Beisl et al.
(2008), atmospheric effects occur even in low-altitude airborne remote sensing
applications. Although the analysed dataset has been subjected to atmospheric
correction, it was based on a single reference panel measurement (Meij et al., 2017). The
weakness of this approach is the assumption of constant illumination conditions as
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individual images are acquired. The blue band information may account for the residual
error that still remained after the correction.

The forward selection within the wrapper approach stopped after picking one band
(775 nm), thus reducing the PLS model to a classical regression model with a single
independent variable. The selected wavelength lies in the near infra-red spectral region,
which agrees with the observation from the visual assessment, above. According to the
validation statistics (Table
the model performs surprisingly well in terms of RMSE. However, the low R2 value puts
in question the feasibility of its practical use. Moreover, like the preceding model, it
exhibits uneven prediction quality for various levels of chlorophyll (Fig. 3).

Figure 3. Prediction error patterns of the studied models with respect to the ground-truth data.

In the light of this finding, it can be recommended to avoid wrapper selection for
chlorophyll content prediction, especially considering the substantial computational
demands of this approach (Ding & Peng, 2005; Mehmood et al., 2012). Conversely, the
encouraging results attained with MRMR suggest high potential of the filter strategy
towards picking highly predictive spectral bands. The MRMR criterion seems
particularly well-suited to data acquired using optical remote sensing methods. As
reflectance measurements exhibit substantial spectral autocorrelation (Karimi et al.,
2008; Verrelst et al., 2019), a naive algorithm could pick a set of neighbouring bands,

MRMR avoids this issue by taking correlations between features
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into consideration (Ding & Peng, 2005). Still future research might consider examination
of feature selection methods from the filter family. The performance of the three classes
of methods reviewed by Mehmood et al. (2012): based on loading weights, regression
coefficients, and variable importance in projection; could be compared, for instance.

Possibilities of assessing and improving study generalizability
The present study illustrates the application of feature selection for obtaining a

parsimonious predictive model with high interpretability. Just as omitting model cross-
validation can lead to over-fitting, a model that performs well on a single validation
dataset does not necessarily generalize to new circumstances. This is especially true for
unstable models, whose parameters change radically in response to even slight
modification of the training data.

In the present study, an improvement of validation statistics was obtained after
filtering the spectral bands using the MRMR algorithm. As highlighted by De Jay et al.
(2013), the algorithm in its original form produces results that are unstable with respect
to data modifications. The cited authors proposed an ensemble extension of the filter to
stabilize its output.

Ensemble modelling has been shown to improve prediction accuracy, as
exemplified by random forests (Breiman, 2001), and enable interval estimation, as
exemplified by bootstrap methods (Wood, 2005). Its obvious application in the
discussed study would be to abandon the fixed data partitioning, which was inherited
from Meij et al. (2017), in favour of multiple analyses, each based on a different
assignment of the data points to the calibration and validation subsets. By the subsequent
aggregation of the obtained partial results, the stability of the best performing models
could be assessed - not only with respect to the selected wavelengths, but also to their
loadings and validation statistics.

Two candidate models fitted to filtered bands were elected by hand for further
evaluation based on CV RMSE and feature selection intensity as an auxiliary criterion.
Repeated data partitioning would result in proliferation of models, making the manual
approach unfeasible. Replacing it with an algorithm would necessitate taking both
optimization criteria into account, which can be accomplished with aid of model-based
multi-objective optimization (Horn et al., 2015).

These avenues could not have been taken due to high computational complexity
involved, especially if wrapper feature selection were also included. In the future, an
adaptation of the analysis for an execution in a high-performance computing
environment might be attempted. At that point, an extension of the study to include
ensemble modelling would become feasible.

An evident weakness of both the present and the original Meij et al. (2017) study
is the fact that the ground-truth data were obtained using a SPAD chlorophyll meter, and
thus include spectroscopic estimation errors (Uddling et al., 2007). It is possible that
similar errors present in the discussed PLS results become masked in the consequence,
leading to overoptimistic validation statistics. Therefore, it would be desirable to
replicate the study using laboratory analyses for the ground truth, instead.

Spectral responses of leaf pigments differ across plant genotypes. Although the
chlorophyll signal is readily discernible in a leaf or canopy spectrum (Ollinger, 2011),
the reflectance is modified by additional factors. They include leaf and canopy anatomy
and morphology (Asner, 1998; Jacquemoud & Ustin, 2001; Ollinger, 2011) and spectral
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properties of additional foliar pigments present in the tissues (Jacquemoud & Ustin,
2001; Ollinger, 2011). Research is needed to establish whether feature selection can
yield a set of bands that enable calibration of models for chlorophyll content estimation
in multiple crops, and how big this set needs to be for the models to be accurate.

CONCLUSIONS

Filtering of bands according to the minimum redundancy, maximum relevance
criterion can improve the performance of a partial least squares model aimed at oat leaf
chlorophyll prediction from airborne hyperspectral imagery. Chlorophyll concentration
can be estimated from near infra-red reflectance, canopy darkness, and its blueness. The
obtained size of the feature space (three bands in the present study) is sufficiently small
for the development of affordable single-purpose imagers. Although a wrapper approach
based on forward feature selection can yield an even more parsimonious model, the
resulting prediction quality is not satisfactory. The robustness of the findings remains to
be investigated using an ensemble of dataset partitionings and ground truth obtained
from laboratory analyses based on samples collected from multiple crops.
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Abstract: There is a need to minimize the usage of traditional laboratory reference methods in favor
of spectroscopy for routine soil carbon monitoring, with potential cost savings existing especially for
labile pools. Mid-infrared spectroscopy has been associated with accurate soil carbon predictions,
but the method has not been researched extensively in connection to C lability. More studies are also
needed on reducing the numbers of samples and on how to account for the compositional nature of C
pools. This study compares performance of two classes of partial least squares regression models to
predict soil carbon in a global (models trained to data from a spectral library), local (models trained
to data from a target area), and calibration-spiking (spectral library augmented with target-area
spectra) scheme. Topsoil samples were+ scanned with a Fourier-transform infrared spectrometer,
total and hot-water extractable carbon determined, and isometric log-ratio coordinates derived
from the latter measurements. The best RMSEP was estimated as 0.38 and 0.23 percentage points
TC for the district and field scale, respectively—values sufficiently low to make only qualitative
predictions according to the RPD and RPIQ criteria. Models estimating soil carbon lability performed
unsatisfactorily, presumably due to low labile pool concentration. Traditional weighing of spiking
samples by including multiple copies thereof in training data yielded better results than canonical
partial least squares regression modeling with embedded weighing. Although local modeling was
associated with the most accurate predictions, calibration spiking addressed better the trade-off
between data acquisition costs and model quality. Calibration spiking with compositional data
analysis is, therefore, recommended for routine monitoring.

Keywords: soil organic matter; MIR-DRIFTS; chemometrics; compositional data analysis; reproducibility

1. Introduction

SC is a primary indicator of soil quality [1,2], and in recent years, estimation of
atmospheric CO2 sequestration has boosted interest in SC monitoring [3–6]. In addition to
SC quantity, its fractional composition can be of interest in evaluating soil status. Research
has been devoted to the labile fraction, which can give insight into SC turnover processes [7].
Labile C determines the rate of nitrogen release from soil organic matter, a factor to be
accounted for while fertilizing the soil [8,9], and it can also inform about the long-term
stability of sequestered carbon [10].

Changes in SC content occur over long time frames [5,11]—in certain conditions
also on arable land despite higher risk of depletion by mineralization [1,12]. Although it
suffices to sample soil every ten years for monitoring [3,5], SC can exhibit high spatial
variability [3,4], which increases the necessary sampling effort [13]. Additional collection
campaigns are needed to capture the dynamics of SC labile pools, which, on arable land,
are readily influenced by fertilizer and soil amendment inputs, crop residue management,
and soil tillage [11,14,15]. Traditional analysis of samples collected for this purpose is
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costly and time consuming due to the laboriousness of laboratory SC fractionation [16–19].
Environmental concerns have also been raised [20,21].

Higher throughput and economical viability can be attained with soil spectroscopy [4,22].
Here, MIR-DRIFTS is one of the methods considered suitable for chemical soil analysis [13,20,23]
owing to fundamental vibrations of soil molecules arising in the MIR spectral region [6,13,24].
In particular, it can give accurate estimates of SC content [13,22,25,26], and according to
Reeves III [25], this high performance may extend to SC fraction assessments. However, the mod-
est number of publications devoted to SC lability [27] is in contrast with the extensive literature
on total C (TC) or the large organic C (OC) pool estimation with MIR-DRIFTS.

Quantitative assessment of soil properties from spectral measurements requires a
predictive model trained to a reference dataset, in which spectra are paired with reference
laboratory data [4,28]. Bellon-Maurel and McBratney [26] and Gholizadeh et al. [29] stress
an importance of a large calibration library for satisfactory accuracy. In particular, the num-
ber of samples corresponding to soil properties similar to those in the target area should
be sufficient to avoid a prediction bias with the trained model [13,30,31]. Applications
of libraries have been limited in MIR spectroscopy [32], and although large collections
are increasingly available [16,32–34], many regions remain not represented. An important
prerequisite is to follow the sample collection and analysis methodology that was employed
for building the library [25,28,35]. This is problematic given the fact that even different
units of one spectrometer model can yield MIR scans that do not match [29].

For scenarios with an insufficient library size or coverage, calibration spiking can be
employed [6,36]. The library is augmented with a limited number of samples collected at
the target site prior to the training of a predictive model [37,38]. Samples for calibration
spiking can be picked according to leverage selection to minimize their number or spiking
intensity [28]. This process preserves the representativeness of the resulting subset by
taking into account spectral similarities of the samples in the available pool [37]. According
to Guerrero et al. [39], a reference library does not need to be large to obtain satisfactory
predictions with calibration spiking. However, even with a modestly sized reference dataset,
there is going to be a disproportion between the number of spiking and library samples.
One way of addressing this problem is to use a subset of the latter [38]. As an alternative,
which does not incur information loss, local samples can be given bigger weight relative to
the samples in the library. Such weighing is typically performed by multiplying the local
sample occurrences in a model training dataset [36,39,40]. However, another approach
is also possible, where a model allowing for specification of case weights is employed
instead [41].

Partial least squares regression (PLSR) continues to be the most common approach
for analyzing soil spectra and predictive model calibration [3,13], including MIR-DRIFTS
SC studies [22,26]. When estimating multiple properties, accuracy can be improved by
accounting for their correlations [42], and utility of multiresponse PLSR (PLSR2) models
in pedology has been demonstrated before [43–46]. Indahl et al. [47] proposed combining
PLSR with canonical correlation analysis and developed the canonical PLSR (CPLSR)
class of models. Like PLSR2, this method permits a multivariate response variable, but in
addition to that, it offers a possibility to weigh the individual observations.

Baumann et al. [34] hypothesized that library samples “would stabilize and reduce the
errors” associated with spike samples. However, spiking a reference library that does not
match the target calibration domain can lead to less satisfactory results than the training of
a model to local samples only [37,41]. Guerrero et al. [38] and Wetterlind and Stenberg [48]
questioned the necessity of a reference library at all by pointing to superior model calibra-
tions obtained with samples from the vicinity of a target area, exclusively.

The aim of this study is to investigate the influence of calibration spiking and local
modeling on SC content and lability prediction performance of PLSR2 and CPLSR models
trained to MIR-DRIFTS spectra corresponding to crop farming localities with different soil
and climatic conditions. We hypothesized that the spiking of a library with observations
from several long-term experiments would reduce the number of samples subjected to
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traditional laboratory analysis compared to relying only on target-site spectra. Furthermore,
CPLSR models with embedded sample weighing were expected to perform better than
weighing by multiplication followed with PLSR2 modeling. The study also explores the
influence of spectra pre-processing schemes and leverage sampling algorithms on the
model predictions.

2. Materials and Methods
2.1. Site Description and Data Collection

Two groups of soil samples were collected at the territory of the Czech Republic:
(1) time series of archived samples obtained from long-term crop trials, which served as a
reference library, and (2) samples from two commercial sites, Ústí nad Orlicí and Janovice,
as prediction targets of interest (Figure 1). The long-term experiments were maintained by
the Crop Research Institute Praha-Ruzyně (CRI) and the Central Institute for Supervising
and Testing in Agriculture; their primary focus was fertilization. A brief description can
be found in Table 1. As seen in Table S1, the library was unbalanced with respect to the
sample, year, and experimental treatment counts. Topsoil samples from the upper 20 cm
were collected using a field shovel following a uniform protocol. The soil was collected
from three spots of each plot, and the partial samples were combined into approximately
2 kg lots and homogenized.

Ústí nad Orlicí comprises multiple localities scattered over one district (Figure 1),
making it a heterogeneous site. The fields were managed with conventional tillage and
sown with winter wheat, winter and spring barley, silage maize, and oilseed rape. The het-
erogeneity was additionally augmented by an extended timing of the soil sample collection,
which took place every spring and fall between 2012 and 2015. About 40 topsoil samples
from fields with winter wheat and winter barley were collected by the farmers or their
designated persons during each campaign, yielding a total of 335 samples. The commercial
site Janovice denotes a single conventionally tilled field, with a crop rotation of silage
maize, winter wheat, potatoes, and clover–grass mixture. It contributed 45 topsoil (0–20 cm)
samples collected by CRI employees in fall 2017, after the sowing of winter wheat. The sam-
pling points were delimited every 120 m in a way to obtain roughly uniform coverage of
the field. There were six partial samples per composite sample of approximately 0.5 kg,
which was then homogenized.
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Figure 1. Locations, altitudes, mean annual temperatures, and precipitation sums in the years of data
collection, and soil types and textures at the experimental sites. The target sites are marked with red
color. For Ústí nad Orlicí, individual soil sampling locations are displayed, and their mean altitude
is provided.
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Table 1. Characteristics of the long-term field experiments.

Experiment a Est. Layout b Crop Rotation c Reference

CRE 1956 1b × 3t various (25%)–(WW or TR)–(POT or SB or SM)–(SBA or WW) [49]
CRT 1984 5b × 1t WW and SBA (50–100%) complemented with CL, O, PEA, SB, SM unpublished
FE 1958 1b × 7t fallow [50]

FFFE 1979 1b × 6t (AL or CL)–WW–SM–WW–SBA–(SB or POT)–SBA [51]
IOSDV 1983 1b × 4t (SB or POT)–SBA–WBA [52]

OaMNFE(dc) 2011 1b × 5t POT–WW–SM–SBA–OSR–WW [53]
OaMNFE(sf) 1965 1b × 6t WW–POT–SBA–LCM–WW–POT–O–CL [54]

RFE 1955 2b × 8t SW–SB or AL–AL–WW–SB–SBA–POT–WW–SB–SBA [55]
a CRE—Crop Rotation Experiment, CRT—Crop Rotation Trial, FE—Fallow Experiment, FFFE—Fraction Fac-
torial Fertilization Experiment, IOSDV—International Long-Term Organic Nitrogen Nutrition Experiments,
OaMNFE(dc)—Organic (digestate, compost) and Mineral N Fertilization Experiment, OaMNFE(sf)—Organic
(straw, farmyard manure) and Mineral N Fertilization Experiment, RFE—Ruzyně Fertilizer Experiment; b The
number of blocks and treatments per block at each site; c AL—alfalfa (Medicago sativa L.), CL—red clover (Trifolium
pratense L.), LCM—legume–cereal mixture, O—oat (Avena sativa L.), OSR—winter oilseed rape (Brassica napus L.),
PEA—cultivated pea (Pisum sativum subsp. sativum L.), POT—potato (Solanum tuberosum L.), SB—sugar beet (Beta
vulgaris subsp. vulgaris L.), SBA—spring barley (Hordeum vulgare conv. distichon (L.) Alef.), SM—maize for silage
(Zea mays subsp. mays L.), SW—spring wheat (Triticum aestivum L.), TR—triticale (× Triticosecale Wittm. ex A.
Camus.), WBA—winter barley (Hordeum vulgare conv. vulgare L.), WW—winter wheat (Triticum aestivum L.).

The soil samples were dried, sieved through 2 mm mesh, and milled. MIR-DRIFTS
spectra were measured using a Thermo Nicolet Avatar 320 FTIR spectrometer with a Ge
beam splitter and a TGS detector, equipped with a Smart Diffuse Reflectance accessory
(Nicolet, Madison, WI, USA) in a homogeneous mixture of 300 mg bulk soil and 900 mg
FTIR grade KBr (Sigma-Aldrich, Darmstadt, Germany) prepared by hand in an agate
mortar. Each sample was transferred to a 12 mm diameter diffuse reflectance cup and
levelled with a microscope glass slide in a way to avoid compressing mechanically the
mixture. Three scans comprising 1869 equidistant bands in the 4002–399 cm−1 wavenumber
range were performed, each spectrum was corrected against pure KBr as a background
spectrum, and the obtained apparent absorbance (hereafter, absorbance) values averaged
to obtain a spectrum with reduced noise [35]. TC content was determined by dry com-
bustion using Vario/CNS analyzer (Elementar Analysensysteme GmbH, Langenselbold,
Germany), and hot-water extractable carbon (HWC) content was determined according to
Körschens et al. [8] as a measure of SC lability [27,56].

2.2. Data Partitioning and Pre-Processing of MIR-DRIFTS Spectra

The collected data were subjected to a number of pre-processing and subsetting
operations, the character of which was differentiated according to the study questions;
depending on the scenario, one or more operations could also be omitted. PLSR models
for predicting TC and HWC contents from MIR-DRIFTS spectra were then trained, tuned,
and validated using the derived datasets. Figure 2 depicts the data processing workflow.

The samples in the library part of the dataset served as the calibration samples in
the global (library only) modeling scenario (Figure 3a), equivalent to removal of the “raw
non-test target pool”–“sample weighing by multiplication” workflow branch in Figure 2.
For each commercial site, 10 independent sets of 12 samples were picked randomly for
testing of predictive model quality. The target-site spectra not included in a testing parti-
tion made a pool from which samples were picked for model training in other scenarios
(Figure 3b,c). The order of samples within these pools was randomized.
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raw library
samples

raw non-test
target pool

raw test
samples

trimming
or leverage
sampling

sample
weighing by

multiplication

raw target-
site samples

partitioning

10 partitionings

basic pre-processing basic pre-processing

further pre-processing further pre-processing

training samples test samples

training of PLSR2 model or CPLSR
model with embedded sample weighing

PLSR model validation

MSC
reference

centering reference

Figure 2. Data processing workflow.

Spectral pre-processing was performed before the selection of target-site training
samples from the training pools. Noisy bands up to 600 cm−1 [17] and CO2-affected
measurements in the 2268–2389 cm−1 wavenumber range [32] were discarded. For ad-
ditional signal recovery, the spectra were processed using a moving-average filter with an
11-band window.

In addition to analyzing the resulting spectra, hereafter “raw spectra”, we tested five
further pre-processing schemes [57], with each scheme comprising two phases. In the
first phase, the moving-average smoothing was either followed with multiplicative scatter
correction (MSC) or left unchanged. In the second phase, (1) standard normal variate (SNV),
(2) derivative transformation using the Savitzky–Golay filter with third-order polynomial
smoothing applied over a moving window of 11 bands, or (3) no transformations were
applied to the result. No change to the spectra in both phases was equivalent to removal of
the “further pre-processing” box in Figure 2. Initially, continuum removal by dividing the
spectrum by its convex hull was also attempted, but it had to be abandoned as extreme
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outliers were generated. Unlike the remaining transformations, MSC employs information
from multiple spectra to derive a common reference spectrum. We were careful to perform
this operation using the data in the training spectra pools, exclusively [6,58].

library samples target-site samples

(a) training samples
test

samples

(b) training samples
test

samples

(c)
test

samples
training
samples

non-test target pools

spiking intensity

sampling intensity

Figure 3. The possibilities of data subsetting compared in the study: (a) Library-only partitioning
without calibration spiking. (b) The library data are augmented with target samples from a training
pool, the number of which is given by the spiking intensity. (c) Local-only models trained exclusively
to target-site samples, the number of which is given by the sampling intensity.

2.3. Calibration Spiking

Calibration spiking was introduced, based on increasing spiking sample counts to
the level of 16 samples with a step of 4 samples (Figure 3b). The pre-randomized calibra-
tion sample pools were trimmed while preserving the sample orders. In addition to this
random scheme, two leverage sampling approaches were assessed: the Kennard–Stone
algorithm [59] and conditioned Latin hypercube [60]. The spectra were subjected to PCA
prior to the Kennard–Stone algorithm application to reduce the number of dimensions
below the sample pool size level.

In order to test for the possibility of a local modeling superiority with respect to
models trained both to global and spiked datasets, additional scenarios mirroring the
calibration-spiking scenarios but without samples from the long-term experiments were
included (Figure 3c). This was equivalent to omitting the “library samples” branch in
Figure 2. The training sample selection followed the same three schemes as for calibration
spiking, with the same sampling intensity levels.

2.4. Reference Laboratory Data Pre-Processing

TC content cannot exceed a certain level of SC saturation [61,62], whereas HWC cannot
be larger than TC. While applying statistical methods to measurements of sample con-
stituents’ concentrations, such as TC and HWC, it is recommended to follow the principles
of compositional data analysis. Otherwise, models can yield nonphysical predictions, such
as those of negative concentrations, a problem encountered by Baldock et al. [16] and
Janik et al. [63], or component sizes the sum of which exceeds 100 %.

Classical statistical tools can be employed to compositional data after subjecting them
to log-ratio transformations. Accordingly, three components summing up to the whole soil
sample were derived from the TC and HWC measurements: (1) HWC, (2) the part of TC
resistant to hot-water extraction (nHWC), and (3) the non-TC part of a sample (1 − TC).
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In the next step, the component values were transformed into two isometric log-ratio (ilr)
coordinates according to the formulas [64]:

ilrTC =

√
2
3

log
(HWC · nHWC)

1
2

1 − TC
, (1)

ilrHWC =

√
1
2

log
HWC

nHWC
. (2)

The ilrTC coordinate is closely related to TC but accounts for the finite size of a sample,
while ilrHWC can be interpreted as transformed C lability [65]. The latter formulation not
only respects the compositional character of the reference data but also avoids confounding
lability with TC, thus facilitating their independent analysis. This is unlike raw HWC,
the value of which can be affected by both factors [9].

2.5. PLSR Modeling with Unweighed and Weighed Training Samples

The relationship between ilr values and MIR-DRIFTS spectral patterns was modeled
using PLSR. Two multiresponse PLSR extensions were trained to both coordinates to
account for multivariate character of compositional data [66]. For data partitionings that
included both reference-library and target-area samples, the influence of spiking sample
weighing was examined by introducing models with 5-fold and 25-fold weighted local
observations, in addition to unweighted models. The weighing was performed either in
the standard way by data row multiplication—in which case a PLSR2 model [42] was
used—or by exploiting the internal weighing capability of the CPLSR model family [47] as
a proposed approach. The latter case detoured the “sample weighing by multiplication”
Figure 2 workflow step. Obviously, the weighing was restricted to the calibration-spiking
scenarios, as the remainder, that is library-only and local-only scenarios, involved only
single sources of samples.

Centered values of ilr coordinates were the dependent variables (responses) and
centered MIR-DRIFTS intensity values were the independent variables (features) in these
models. Like for MSC, the centering was based on information in the training data only.
The numbers of PLSR components were tuned using leave-one-out cross-validation with
values between 1 and 12 considered. The number of components to keep was determined
using one standard error heuristics [67] applied separately to ilrTC and ilrHWC RMSECV. In
this way, 12 240 bivariate models were calibrated and twice as many tuned models obtained.

The performance of each model was evaluated using test data partitions in terms of
R2, prediction bias, and RMSEP, followed with RPDP and RPIQP statistics:

R2 =
VRes(0)− RMSEP2

VRes(0)
, (3)

bias =
∑n

i=1(ŷi − yi)

n
, (4)

RMSEP =

√
∑n

i=1(ŷi − yi)2

n
, (5)

RPDP =
sP

SEP
, (6)

RPIQP =
IQRP

SEP
, (7)

where VRes(0)—mean square ground truth value, ŷi—predicted ith value, yi—ith ground
truth value, n—test sample count, sP—standard deviation of ground-truth values, IQRP—
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interquartile range of ground-truth values, and SEP—standard error of prediction, which
was defined as:

SEP =

√
∑n

i=1(ŷi − yi − bias)2

n − 1
. (8)

These were summarized, and the relative influence of the experimental factors on the
model performance measures was also examined visually after plotting the relationships.

2.6. Reproducing the Study

The analysis was coded using the R language and executed in the 3.6.2 version of
the interpreter [68]. The package vegan (version 2.5.6) [69] was used for PCA, prospectr
(0.1.3) [70] and pls (2.7.2) [71] for spectra pre-processing, prospectr and clhs (0.7.2) [72]
for leverage sampling, compositions (1.40.3) [73] for ilr transformations, and pls for
PLSR modeling. GNU Make [74] was employed for workflow control, and GNU Guix
functional package management and containerization capabilities [75] were exploited to
obtain reproducible results. The data and code are available from a Zenodo repository
(doi:10.5281/zenodo.6337394). Reproduction of the study is going to require the availability
of HPC infrastructure. It took approximately three weeks of operation of a 16-CPU virtual
machine to complete a full computation cycle and obtain the results.

3. Results
3.1. Patterns in the Raw and Pre-Processed Data

Ústí nad Orlicí spectral signatures were highly varied and, in certain regions, extended
beyond the envelope of the library samples regardless of pre-processing (Figures 4 and S1).
The scans were subjected to PCA to obtain more insight into the spectral dissimilarity [39].
According to the first two principal component scores, there is substantial overlap between
the reference library spectra and Ústí nad Orlicí soil samples, but a significant fraction of
the observations occupy the area of the PCA space devoid of library data points due to
high PC2 scores (Figure 5). As could be expected, the bulk of high-PC2 library observations
represent experimental stations located close to the discussed district, namely Hněvčeves,
Svitavy, Čáslav, and Kostelec nad Orlicí (Figure 1). Notable are the large ranges of Ústí nad
Orlicí PCA scores, comparable to those of the long-term experiments. In contrast to that
pattern, Janovice spectra were enveloped by the library spectra (Figure 4), and the data
points form a compact cluster in Figure 5, similar in extent to several individual library
sites, as shown using convex-hull polygons.

In addition, the C measurement variation was high in Ústí nad Orlicí and not much
smaller than that of the library samples despite the different geographical scales (Table 2
and left-hand plot in Figure 6). Both TC and HWC are somewhat shifted upwards relative
to the bulk of the reference library. Unlike the PCA scores, the mismatch between target-site
C measurements and reference library measurements is more apparent for Janovice. Both
TC and HWC are high here, and the only library samples with similar characteristics are
a group of Praha-Ruzyně Fallow Experiment experimental plots. A closer examination
revealed that those had been assigned to compost fertilization treatments.

Regardless of the data subset, the raw measurements were skewed towards lower
values (left-hand plot in Figure 6). The skew, and to a degree high kurtosis, were reduced
after the ilr transformations (right-hand plot in Figure 6 and Table S2). Figure 7 depicts
the relationships between the raw component values and ilr coordinates. While the TC–
ilrTC relationship is smooth and close to linear, a broken stick pattern was obtained for
HWC–ilrHWC. The outlying samples with HWC in excess of 1.2 mg g−1 all came from Praha-
Ruzyně Fallow Experiment plots where compost was applied. Although ilrTC and ilrHWC
are not simple transformations of, respectively, TC and HWC, as additional components
were accounted for in their derivation (Equations (1) and (2)), the relationships are strong
enough to permit comparing our results with those reported by authors who had not
considered the compositional nature of SC pools.
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Figure 4. Pre-processed library and target-site spectra. The reference spectrum for the multiplicative scatter correction (MSC) transformation is based on the first
training-pool–test partitioning.
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Figure 5. Projection of the principal component space derived from MIR-DRIFTS spectra after basic
pre-processing. Convex hulls of the library sites similar to Janovice are displayed. The smallest,
central polygon represents Jaroměřice. Ca—Čáslav, Hn—Hněvčeves, Hu—Humpolec, Iv—Ivanovice
na Hané, Ja—Jaroměřice, Ko—Kostelec nad Orlicí, Li—Lípa, Lu—Lukavec, Pe—Pernolec, Ru—Praha-
Ruzyně, Sv—Svitavy, Tr—Trutnov, Vy—Vysoké nad Jizerou.

Table 2. Location and scale statistics describing the distributions of soil carbon (SC) measurements
before and after isometric log-ratio (ilr) transformations.

Statistics Sample Partition
C Measurement

Raw ilr-Transformed

TC HWC ilrTC ilrHWC

range

(%) (mg g−1)
library 0.73–4.45 0.13–2.55 −5.63–−3.70 −3.25–−1.97

Ústí nad Orlicí 0.94–3.68 0.27–1.09 −5.22–−4.19 −2.83–−2.04
Janovice 1.35–3.04 0.46–1.16 −4.89–−4.21 −2.47–−2.15

median

(%) (mg g−1)
library 1.41 0.38 −4.98 −2.54

Ústí nad Orlicí 1.65 0.51 −4.77 −2.43
Janovice 2.10 0.77 −4.51 −2.31

IQR

(pp) (mg g−1)
library 0.45 0.16 0.27 0.29

Ústí nad Orlicí 0.46 0.17 0.23 0.17
Janovice 0.32 0.16 0.14 0.09

n
library 603

Ústí nad Orlicí 335
Janovice 45
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Figure 6. Joint and marginal distributions of SC raw and ilr-transformed measurements. The convex hull depicts the extent of Praha-Ruzyně observations. Ca—Čáslav,
Hn—Hněvčeves, Hu—Humpolec, Iv—Ivanovice na Hané, Ja—Jaroměřice, Ko—Kostelec nad Orlicí, Li—Lípa, Lu—Lukavec, Pe—Pernolec, Ru—Praha-Ruzyně,
Sv—Svitavy, Tr—Trutnov, Vy—Vysoké nad Jizerou.
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Figure 7. The relationships between raw SC reference measurements and ilr-transformed values,
with overlaid loess smoothers.

3.2. Accuracy and Precision of the PLSR Models

The predictive performance of the PLSR models varied substantially, as illustrated by
the R2 statistics (Table 3). Although negative values were obtained for the worst models,
models corresponding to R2 in excess of 0.80 could be found for each ilr coordinate and
target site combination, which is a high quality result according to Janik et al. [20]. How-
ever, after aggregating the values across all data partitionings, R2 exceeded 0.50, still an
unsatisfactory value, only for Janovice while predicting ilrTC, whereas both ilrHWC and
Ústí nad Orlicí scenarios gave poor results.

Table 3. Ranges of PLSR model performance measures according to the dependent variable and
the target site. The values outside and inside the brackets correspond to performances obtained for
individual data partitionings and performances that were median aggregated across the partition-
ings, respectively.

Performance Measure
ilrTC ilrHWC

Ústí nad Orlicí Janovice Ústí nad Orlicí Janovice

R2 −9.10 [−3.97, 0.33]
0.81

−18.79 [−8.76, 0.57]
0.88

−6.90 [−1.36, 0.18]
0.85

−37.43 [−18.98, 0.35]
0.82

bias −0.42 [−0.30, 0.16]
0.32

−0.49 [−0.47, 0.07]
0.21

−0.19 [−0.13, 0.07]
0.14 −0.28 [−0.24, 0.04] 0.09

RMSEP 0.07 [0.13, 0.35] 0.51 0.04 [0.08, 0.48] 0.51 0.05 [0.11, 0.19] 0.24 0.03 [0.04, 0.26] 0.29
RPD 0.33 [0.47, 1.27] 2.42 0.23 [0.33, 1.60] 3.01 0.37 [0.68, 1.15] 2.73 0.17 [0.23, 1.29] 2.45
RPIQ 0.30 [0.62, 1.70] 3.09 0.13 [0.26, 1.45] 2.52 0.38 [0.69, 1.26] 2.84 0.18 [0.30, 1.59] 3.79

The worst negative biases and RMSEP values were comparable, amounting to 0.4–0.5
for ilrTC and 0.2–0.3 for ilrHWC. In terms of raw component values, these correspond to
approximately 1.30 TC percentage points and 0.09–2.79 mg g−1 HWC, depending on the
baseline HWC value (Figure 7). The best models had RMSEP of only 0.04 for ilrTC (approxi-
mately 0.12 pp TC) and 0.03 for ilrHWC (0.34 mg g−1 HWC for high value range and less for
low value range). More conservative estimates, based on partitioning medians, suggested
a possibility of predicting ilrTC with an error of 0.13 (0.38 pp TC) and 0.08 (0.23 pp TC) in
Ústí nad Orlicí and Janovice, respectively, while for ilrHWC, the corresponding values were
0.11 and 0.04 (0.04–1.23 and 0.01–0.45 mg g−1 HWC).
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Models with RPDP or RPIQP above 2.5 or even 3.0 were obtained in some scenarios
and test data partitions, described in literature as good and excellent predictions [76].
However, typically one should not expect the performance to be higher than 1.7, that is,
barely sufficient to estimate the values even as high or low. Unlike for the other measures,
Janovice models did not yield consistently superior RPDP and RPIQP relative to Ústí
nad Orlicí.

There is an agreement between PLSR regression coefficients of the best Janovice
models for predicting ilrTC regardless of the performance measure in which a model
excelled (Figure 8). The pattern is similar to that presented for Baldock et al. [16] square-
root transformed TC model, including the presence of aliphatic C – H (at approximately
2890 cm−1), C –– O (1740 cm−1), and negative carbonate (1810 cm−1) peaks. In contrast, the
coefficients for Ústí nad Orlicí disagree and the pattern is malformed, which may suggest
model overfitting. Regression coefficient values are comparable among two of the best-
performing Janovice ilrHWC models. Their patterns do not resemble those published by
Zimmermann et al. [17] for labile OC, but these authors modeled raw component sizes,
rather than lability, and presented individual PLSR loadings, rather than regression coeffi-
cients. There is a major negative peak in the 3700–3600 cm−1 wavenumber range, which
corresponds to O – H stretching of clay minerals [77,78]. Other peaks occur at approxi-
mately 1000 cm−1 and below. Here, notable is the positive 1050 cm−1 peak, assigned to
quartz reflectance [19]. However, according to Nocita et al. [28], the interpretation for the
<1000 cm−1 region is challenging due to mineral species vibrations interfering with those
of organic molecules. These include iron compounds [13] and carbonates [79]. The peaks
do not include 2930 cm−1 and 1620 cm−1 wavenumbers proposed by Demyan et al. [80]
for lability assessment. The model minimizing bias behaved differently, and for Ústí nad
Orlicí, the smallest-bias model happened to be insensitive to input data variation, which
indicates that models should not be selected according to the bias criterion. As with ilrTC,
the pattern is unstable for this latter target site.

3.3. Factors Affecting PLSR Model Performance

The relationships between the modeling approaches and performance measure values
were visualized to identify factors contributing to prediction quality. We present a selection
that illustrates the most clear patterns, which, with the exception of the final comparison, is
restricted to the models trained to the raw spectra, as the effect of spectra pre-processing
was limited. The complete set of visualizations along with input data points can be found
in Figure S2.

PLSR models trained to the spectral library, that is, with zero target-site samples,
performed poorly, especially for Janovice, as can be seen at the left edge of all plots in
Figure 9. Note that this and subsequent figures for legibility depict confidence intervals,
whereas ranges are referred to in this section. The R2 statistic was negative with the ex-
ception of Ústí nad Orlicí ilrHWC models, in the case of which it ranged between −6.24
and 0.47. The generated predictions were negatively biased, while their imprecision mea-
sured by RMSEP exceeded 0.17 units for ilrTC (about 0.49 pp TC) and 0.08 units for ilrHWC
(0.03–0.89 mg g−1 HWC).

Training of PLSR models to a selection of target-site samples only, while excluding the
spectral library, had a clearly positive effect on all measures even with only four training
samples, as illustrated by the black lines in Figure 9. However, R2 was still negative at this
sampling intensity level. Here, predictions for Janovice appear superior to those obtained
for Ústí nad Orlicí, especially in terms of RMSEP. Further additions of samples led to more
accurate ilrTC predictions in Janovice, as depicted in more detail in Figure 10. In particular,
R2 exhibited an increasing trend, with positive values up to 0.88, obtained in a number of
scenarios with 16 samples. Prediction improvement of ilrTC with higher sampling intensity
is not so clear for Ústí nad Orlicí. Instead, a pattern of Kennard–Stone leverage sampling
inferiority could be discerned, especially in terms of high bias, up to 0.32 units (0.92 pp TC).
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Figure 8. SC predictions corresponding to the top-performing models. The performance measures ac-
cording to which individual formulations performed best are marked with asterisks. PLSR regression
coefficients are shown for each model on a relative scale due to the coefficient ranges differing by
orders of magnitude between the models.
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Figure 9. The influence of calibration spiking, weighing of the spiking samples, and removal of library spectra from the training dataset on partial least squares
2 regression (PLSR2) model performances. Only scenarios with basic and no further spectra pre-processing are included. Each line represents one combination of
levels of the remaining experimental variables: leverage sampling strategy and predictive model family. A mean across 10 test datasets is drawn along with its 95%
confidence interval.
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Figure 10. The influence of sampling intensity and leverage sampling on predictive local-only model
performances. Only scenarios with basic and no further spectra pre-processing are included. Each
line represents an ensemble of either partial least squares 2 regression (PLSR2) models or canonical
partial least squares regression (CPLSR) models with the same level of spike sample weights. A mean
across 10 test datasets is drawn along with its 95% confidence interval.

RMSEP of ilrHWC was hardly affected by increasing sampling intensity. On the other
hand, a trend towards increased bias can be discerned for Janovice under the random
sampling and Kennard–Stone leverage sampling scenarios, but these strategies still do not
appear consistently inferior to conditioned Latin hypercube. Positive R2 was attained by
few and apparently random Janovice models and almost no Ústí nad Orlicí models even at
maximum sampling intensity, suggesting a general unsuitability of the local approach to
estimating this ilr coordinate.

In Janovice scenarios with PLSR2 models, augmenting the library samples with spike
samples yielded results competitive with the local approach when the target-site training
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samples were given a weight of 25, as shown using red lines in Figure 9. R2 up to 0.71 could
be attained with only four spiking samples for ilrTC—in contrast to R2 of corresponding
local-only models, which was always negative. A notable exception was prediction bias,
in the case of which about 85 % of the models still underestimated the value of this coordi-
nate. Models with the weight of five (green lines) were competitive with local-only models
only in predicting ilrHWC and only in terms of R2 and RMSEP. More spiking samples were
required to obtain a desirable effect than with 25-fold spiking sample weighing. The superi-
ority of global Ústí nad Orlicí models relative to Janovice vanished or became inversed as
spike samples were added to training datasets. The performance remained better only in
scenarios without spike sample weighing (blue lines), but here the prediction quality was
poor for both target sites, making this class of scenarios not interesting.

Leverage sampling had little effect on the quality of models that involved spiked
library spectra, but the performance measures responded to the choice between PLSR2 and
CPLSR family (Figure S3). The application of the CPLSR method was clearly detrimental
for the prediction quality of both ilrTC and ilrHWC in Janovice samples compared to the
standard approach. In the case of Ústí nad Orlicí, the effect of replacing PLSR2 with
CPLSR was not so strong, but it still appears negative. The limited sensitivity of model
performance to spectra pre-processing can be illustrated by two favorable combinations of
spectra selection and weighing strategies. As depicted in Figure S3, systematic prediction
quality differences are hard to discern except for the uninteresting library-only scenario,
where all models failed.

4. Discussion
4.1. Distributional Data Properties and the Effect of Log-Ratio Transformation

The high scatter of observations in PCA (Figure 5) and SC (Figure 6) measurements,
comparable in extents to those of long-term experiments, indicates high spatial hetero-
geneity of Ústí nad Orlicí district soils. This pattern corroborates the need for dense soil
sampling to map and monitor SC in the conditions of the Czech Republic and, arguably,
beyond [3,4], from which the need to develop cost-effective assessment methods follows [4].
However, in addition to the variability of soil properties, non-uniform sampling techniques
might have also been a contributing factor, as unlike in the remaining campaigns, the task
was relegated to farmers. In contrast to that, the relative compactness of the Janovice PCA
cluster corresponds to the fact that the data collection was constrained to a single field.
The high TC and HWC contents encountered at this locality might have been related to
long-term organic fertilization of this field.

High performance of a PLSR model can be attained when the predicted variable has
a Gaussian distribution, and in chemometric studies, it is common to transform target
measurements [13]. Stenberg et al. [6] highlighted skewness of organic matter concentra-
tions in cropland soil samples towards low values, a common pattern that can contribute
to prediction bias [34]. Normalization of such data can be attained by applying a square-
root [16,20,39] or a logarithmic [81–83] transformation. However, while these bound the
predictions to be above zero [16], the maximum values remain unbounded.

A log-ratio affects the shape of data distribution like the above transformations, but in
addition to that, back-transformed predictions correspond to physical reality for composi-
tional components [64]. The present study demonstrates improved skewness and kurtosis
of ilr coordinates relative to raw component concentrations (Figure 6) and provides evi-
dence of compatibility of log-ratios with PLSR predictive modeling. The proposed data
analysis approach could be refined in the future by accounting for carbon saturation lim-
its [61,62] in the ilr transformation. Another potential extension would be to consider also
the spectral measurements as compositional [84].

4.2. Absolute Performance of the Predictive Models

The top R2 conservative estimate of only 0.57 when predicting ilrTC and low RPDP
and RPIQP evaluations (Table 3) do not corroborate the purported potential of MIR-DRIFTS
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to become a cost-effective yet reliable laboratory method for SC assessment [13,25,35]. The
agreement between the PLSR regression coefficient patterns obtained in the present study
(Figure 8) and reported in literature [16,33,81] rules out major errors during both reference
data collection and sample scanning and subsequent data analysis. Barra et al. [22] and
Bellon-Maurel and McBratney [26] summarized model quality estimates for predicting OC
and TC from MIR spectra. Although high-performing models prevail in reported research,
a number of SC studies suffer from methodological issues that arguably bias the results
towards higher accuracy. For example, Zimmermann et al. [17] employed a systematic
rather than random validation sample and, moreover, included the validation data in
PLSR model tuning dataset. More recently, Zhang et al. [18] erroneously [23] considered
optimistic bias of model cross-validation results as an advantage and did not present the
obtained independent validation statistics. It can be presumed that the models performed
not so satisfactorily on the test datasets. Deiss et al. [31] contrasted the performance of
PLSR and support vector machine models to predict OC in soil samples from two sites.
Despite testing multiple combinations of spectral pre-processing and modeling scenarios,
the authors presented only the performance measures of their best models. Those happened
to be comparable to our top-rated results. In addition, their selection was based on full-
validation statistics, which draws an over-optimistic picture of MIR-DRIFTS potential for
real-life applications, where only few or even no validation samples would be available.

Methodological issues aside, not all models have been reported to perform well.
The Bellon-Maurel and McBratney [26] review includes formulations that resulted in
modest RPDP values, similar to those obtained in the present study. In the more recent
Page et al. [10] work, MIR-DRIFTS substantially underestimated OC loss over time in a
long-term experiment, similar to our negative ilrTC biases. Moreover, the estimated effect of
evaluated management treatments contradicted that which was inferred using traditional
OC determination. Calderón et al. [85] predicted OC in several crop experiments using PLSR
and obtained RMSEP of 0.67–0.80 pp; that is beyond our upper RMSEP conservative bracket
for TC. More research, preferably based on cooperation between multiple spectroscopy
laboratories, is needed to determine to what degree different prediction performance results
across studies can be attributed to the training samples at hand [29], sample preparation
and scanning process differences [13,25,29], reference laboratory effect [13,29], or predictive
model family and calibration workflow [13,25].

The fragility of MIR-DRIFTS to assess SC is further illustrated by C lability prediction
performance. The negative 3650–3600 cm−1 and positive 1050 cm−1 Janovice PLSR regres-
sion coefficient peaks (Figure 8) can be related to the protective function of clay minerals
with respect to soil organic matter [7,62]. However, with the majority of the remaining ma-
jor peaks located in the <1000 cm−1 region, the predictions are prone to noise introduced
by variation in soil mineralogy [28]. Also in the area of lability assessment, studies with
over-optimistic results can be found. Our best ilrHWC calibrations performed similarly in
terms of R2 and RPDP to the PLSR models developed by Zhang et al. [27] for predicting
raw HWC. Like Deiss et al. [31], these authors presented only their top-performing models
for each investigated scenario, and in addition to that, they did not employ an independent
test dataset, reporting only cross-validation statistics. Yang et al. [86] adopted a similar
approach for the prediction of particulate organic carbon (POC), with comparable outcomes.
Zimmermann et al. [17] attempted to predict two labile pools and reported RPDP of only
2.0 for dissolved OC. Although the correlation between predicted and measured values was
satisfactory and particulate organic matter was predicted with high accuracy, there was an
information leak from the validation dataset while training of their models. A similar error
was made by Calderón et al. [85] while tuning PLSR models for permanganate oxidizable
carbon (POXC) predictions in a study that reported a high R2 of about 0.8.

One factor contributing to prediction performance deterioration of all of the present
study’s models was probably the noise introduced to the spectra by grinding the soil sam-
ples by hand. Stumpe et al. [87] demonstrated that long grinding can reduce undesirable
MIR spectra random variability. However, uniform grinding, a condition not attainable
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with a manual operation, turned out to be even more important for OC prediction quality.
The importance of controlled grinding in a MIR spectroscopy workflow is acknowledged
also by other authors [13,16,33]. Particle size differences, a problem related to soil sample
grinding [26,87], generate undesirable baseline shifts [88]. Many workers [80,85,86], in-
cluding those reporting highly accurate predictions [16,27,32,63], routinely apply baseline
correction to their measurements. Although we tested several combinations of spectral
pre-processing workflows, this step was not included in the present study, which might
have contributed to scanning artifacts remaining in the data. However, methods such as
MSC and Savitzky–Golay derivation also address baseline variations [58], yet we were
unable to associate them with systematic prediction improvement (Figure S4). According
to Du and Zhou [24], moving average can diminish information in absorbance features, so
perhaps we should have avoided it as a routine pre-processing step to remove noise.

The attempt to predict total, rather than organic, C probably also impaired the obtained
results. In addition to OC, TC includes carbonates as a major C source, which have a
different spectral profile, potentially interfering with the OC signal [17,25,88]. In the present
study, the Praha-Ruzyně is a site with moderate carbonate content. Although average
topsoil pH does not exceed seven, carbonates are visible by eye in a deeper soil layer.
Moreover, the locality included experimental plots with compost amendments, which were
associated with atypical C patterns (Figure 6). A compost fertilization experiment disrupted
PLSR prediction quality also in the Calderón et al. [85] study. The authors reported an
improvement after removing the problematic site from the dataset, and it is possible that a
similar effect would be obtained in the present study. Perhaps, with OC being modeled
instead of TC, PLSR regression coefficient peaks would have avoided the <1000 cm−1

region, hypothesized to interfere with ilrHWC predictions (Figure 8).
Some errors might have been related to insufficient sample dilution with KBr [89], especially

for Ústí nad Orlicí spectra, which lied outside of the long-term experiments envelope primarily in
the high-absorbance zone (Figure 4). This region coincided with the 1280–1070 cm−1 wavelength
range associated with the silicate inversion feature that can interfere with carbonates signal
below a certain dilution level [88]. However, Demyan et al. [80] did not confirm this effect
and, instead, associated strong dilutions with the absence of certain absorption features. The
traditional view on the need to mix soil samples with KBr for MIR-DRIFTS has been put into
question also by Reeves III [25], and according to Tinti et al. [89] and Reeves [90], it can even
have a negative effect. Perhaps, then, it would have been preferable to use neat samples in the
present experiment.

Inferior ilrHWC fit relative to ilrTC might have been related to low HWC concentrations
in the soil samples. Measurements of such minute pools tend to be more affected by external
conditions than those of major components [17,27]. Although HWC appears in both ilr
formulas, one can argue that a ratio, as employed for ilrHWC (Equation (2)), is more sensitive
to error than a geometric mean in the ilrTC formula (Equation (1)).

4.3. Model Performance with Individual Training Data Subsets

In addition to the Praha-Ruzyně issue, the obtained poor performance of global sce-
narios can be attributed to the calibration domain mismatch between the library samples col-
lected from long-term experiments and those collected at the target sites
(Figures 5 and 6). Especially in the case of Janovice, notable are the high TC and HWC con-
tents, which explain the strong negative bias in the predictions [26]. The negative influence
of OC mismatch across datasets on its predictions was demonstrated by Seidel et al. [30]
with VisNIR and by Guerrero et al. [39] with NIR spectroscopy.

The reference spectra in the experiment comprise long time series of observations
but represent a limited number of locations. Similarly, Zhang et al. [27] obtained their
samples from a limited number of long-term experiments, and their reported results
are similar to ours. Various authors stress an importance of long-term experiments for
studying SC, especially in the context of the low rates of its quantitative changes [3,5,11].
Nevertheless, maximizing the geographical extent of the reference data should apparently
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be prioritized for predicting a factor with a high spatial variability, as it is the case for
SC and its fractions [3–5]. A number of studies that adopted this strategy [16,20,33,35,82]
demonstrate that high-quality predictive models can be developed in this way.

These issues do not apply to the local-only models, which do not involve any library
spectra and a possibility of calibration domain mismatch is largely eliminated. Superior
predictions characterizing locally calibrated PLSR models in the present study can be in
part linked to the absence of Praha-Ruzyně samples in the training dataset, analogously
to the effect observed by Calderón et al. [85] after training a model without an atypical
site found in their data. This strategy largely removed ilrTC prediction bias in our study
(Figure 9), corroborating the calibration domain mismatch problem related to the reference
library. However, the model quality was still unsatisfactory, especially for ilrHWC, perhaps
due to the limited sizes of the training data. The importance of a sufficient sample size was
demonstrated by Guerrero et al. [39] in a NIR study and by Brown [91] in a VisNIR study,
where the obtained performance approached that of calibration-spiking models only when
large numbers of training samples were available. The costs and uncertain results involved
in such a scenario make the advantage of spectroscopic estimation over standard oxidation
methods questionable. According to Soriano-Disla et al. [13], local models are particularly
suitable at small spatial scales with homogeneous sites. This condition may explain why the
predictions for Janovice were superior and responded better to sampling intensity increase
(Figure 10) relative to Ústí nad Orlicí. In particular, it might have been related to the smaller
range of C measurements from this more homogeneous target site. After accounting for
this effect, the prediction quality superiority was not apparent, anymore, as illustrated by
the RPDP and RPIQP statistics.

Calibration spiking avoids an excessive reduction of training dataset sizes, and some
of the best models in the present study could be associated with this strategy. A generally
consistent positive relationship between the sampling and spiking intensity and PLSR
model performance was obtained across the scenarios. It is similar to the OC prediction
pattern with NIR spectroscopy obtained by Guerrero et al. [39] while increasing the number
of target samples from 8 to 16 and 32. Analogously to the ilrHWC pattern in the present study,
Janik et al. [20] reported improved POC prediction quality with both calibration-spiking and
local post-hoc models relative to unsatisfactory library-only predictions. The weaker effect
of spiking on the performance of Ústí nad Orlicí models than for Janovice can, again, be
explained by the high spectral variation of the geographically scattered samples, a situation
described by Cezar et al. [36] in an experiment with ASD Fieldspec measurements.

An interest in calibration spiking is motivated by economical and environmental
reasons [36]. Accordingly, satisfactory results should be expected even with a modest
number of spiking samples [38]. The prediction improvement equivalent to maximizing the
spiking intensity, but obtained by mere introduction of additional copies of the target-site
data points, as observed for Janovice, is encouraging in this regard. It is also in line with
our hypothesis on the potential of calibration spiking to reduce the number of samples
for which laboratory reference data need to be obtained. Similarly, Guerrero et al. [39]
reported that, for some target sites and a baseline spiking intensity of 8 samples, 25-fold
weighing had a stronger positive effect on OC prediction quality than increasing the spiking
sample number to 16 or 32. Perhaps further improvement would have been obtained with
even heavier weights. However, Stork and Kowalski [40] tested weights up to 70 and
determined an optimal number of spike sample copies as 24 in one scenario and less in
the remainder, according to the Hotelling’s T2 statistics. In recent years, possibilities of
predicting SC from MIR spectra collected in field rather than laboratory conditions without
sample pretreatment have been explored [92]. Studies are needed to find out whether the
positive influence of calibration spiking replicates in this more challenging setting.
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4.4. The Effect of Leverage Sampling and Evidence against the CPLSR Internal Weighing
Superiority Hypothesis

Clairotte et al. [33] and D’acqui et al. [81] reported OC prediction improvement with
MIR-DRIFTS spectroscopy when leverage sampling was employed. In the present study, no
apparent systematic differences were obtained with respect to the prediction performance
among the random spiking and the spiking spectra selection based on conditioned Latin
hypercube. The Kennard–Stone algorithm, on the other hand, was associated with biased
ilrTC predictions in Ústí nad Orlicí scenarios. This leverage sampling scheme tends to pick
distant observations, located at the edges of a hyperspace (Figure S5). It also operates incre-
mentally, as opposed to conditioned Latin hypercube, in the case of which the spectra are
picked at once and can be more representative of a dataset [83]. Kennard–Stone application
to the heterogeneous Ústí nad Orlicí dataset might have yielded outlier spiking samples,
perhaps corresponding to soils with atypical textures [87] or mineralogy [85]. Ng et al. [83]
obtained unstable calibrations involving this scheme except for large training samples. This
apparent unreliability of the Kennard–Stone algorithm for small sample sizes relative to
the size and heterogeneity of a target area puts in question its usability in campaigns aimed
at minimizing reference data collection effort to obtain cost-effective predictions.

Internal weighing capability of the CPLSR extension of PLSR [47] was tested as an
alternative to the spiking set augmentation by data point copies. Contrary to our hypothesis,
the obtained models performed poorly, especially for Janovice. Sankey et al. [41] attempted
to predict SC from VisNIR spectral data using boosted regression trees for different levels
of local sample weights relative to the weights of the samples in the reference library. The
authors expressed skepticism with respect to their results, in which the model performance
decreased substantially for one target site, and while a positive relationship was observed
for another, the obtained improvement was modest. Still, given the limited number of stud-
ies devoted to the topic so far, it seems worthwhile to further explore effects of embedded
weighing with other data and other classes of predictive models [31,63].

5. Conclusions

Log-ratio transformation of laboratory reference measurements is recommended to
avoid non-physical predictions, separate confounding factors, and improve data distribu-
tional properties. Accounting for carbon saturation limits and treating spectral measure-
ments as compositional are potential further refinements of this approach.

Conservative estimates of PLSR model performances were lower than the values
typically reported for MIR-DRIFTS SC predictions. This discrepancy could be attributed
to the noise in the data introduced by manual sample grinding, their inadequate dilution
with KBr, presence of an atypical site with carbonate soil and compost fertilization in the
spectral library, the library’s insufficient geographical coverage, and calibration domain
mismatch relative to the validation samples. It was also in part explained by optimistic
bias encountered in the literature due to preference of cross-validation over independent
model validation, information leaks from training to testing datasets, and presenting only
top-performing validated models by certain authors. There is a need for international
cooperation to identify leverage points that could improve reliability of MIR-DRIFTS SC
assessments, standardize data collection and treatment workflows, harmonize spectral
libraries, and facilitate their use.

Target-site comparison revealed differences in sample heterogeneity related to uneven
geographical extents and, possibly, varied soil sampling protocols where farmers were
involved. Not enough representative training data were available to satisfactorily predict
soil C properties in the more geographically extensive district-scale dataset. Here, spectral
and reference laboratory data variation was similar to that of the data from more scattered
long-term experiments, corroborating a need for a dense sampling grid to monitor soil C
and concerns about potential costs involved.

Predicting soil properties at a field scale removed the issues related to the reference
library. Although some models performed very well, the quality was unstable with respect
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to the choice of validation data even with an application of leverage selection algorithms.
C lability predictions were especially fragile, presumably due to the small size of the hot-
water extractable pool. The quality of field-scale models responded positively to increasing
sampling intensity in local-only scenarios, but further additions of samples in an attempt to
obtain more representative training datasets would have been incompatible with the aim
of reducing reference laboratory analysis expenses.

Calibration spiking combined with PLSR2 modeling was associated with a steep in-
crease of model quality as additional target-site calibration samples were added, especially
in combination with heavy weighing. It, therefore, appears to be a promising cost-effective
and environmentally friendly SC monitoring solution but only under the assumption that
the available spectral library accounts to a sufficient degree for soil variability. A similar
effect could not be obtained with CPLSR models and embedded weighing enabled by this
PLSR extension. Although prediction performance was poor in the present study, the inter-
nal weighing approach may still be worth testing with other multivariate model families.
A training-sample size constraint was encountered while applying Kennard–Stone leverage
sampling to the heterogeneous district-scale dataset, and it appears that application of this
algorithm is not compatible with the aim of reducing costs of SC assessments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture12050682/s1, Table S1: Experimental year ranges
of the analyzed observations, and sample counts along with their annual ranges (in parentheses)
corresponding to the individual site and long-term experiment combinations; Table S2: Shape statistics
describing the distributions of soil carbon (SC) measurements before and after ilr transformations;
Figure S1: The spectra employed in the study after subjecting to the investigated pre-processing
schemes for all train–test partitionings. Global and calibration-spiking scenarios; Figure S2: Visual
comparison of CPLSR model performance with respect to various experimental factor combinations
for each target site and ilr coordinate; Figure S3: The influence of spiking intensity and model family
on predictive performances of models trained to library spectra. Only scenarios with basic and no
further spectra pre-processing and 25-fold spike sample weighing are included. Each line represents
an ensemble of models associated with one leverage sampling strategy. A mean across 10 test datasets
is drawn along with its 95% confidence interval; Figure S4: The influence of spiking intensity and
spectra pre-processing on predictive performances of partial least squares regression (PLSR) models
trained to library spectra picked using the conditioned Latin hypercube. Only local scenarios and
global scenarios with 25-fold spike sample weighing are included. A mean across 10 test datasets
is drawn along with its 95% confidence interval; Figure S5: Representative raw training spectra
associated with the target sites for different selection algorithms and increasing sampling intensity.
The picked spectra are in gray color.
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T.Š. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Agriculture of the Czech Republic research
project “Soil organic matter—evaluating of quality parameters” grant number QK21010124 and the
Ministry of Agriculture of the Czech Republic institutional support grant number MZE-RO0418.
The APC was funded by the Ministry of Agriculture of the Czech Republic research project “Soil
organic matter—evaluating of quality parameters” grant number QK21010124 and the Ministry of
Education, Youth, and Sports “Strengthening strategic management of science and research in the
CRI” project grant number CZ.02.2.69/0.0/0.0/18_054/0014700.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in Zenodo at
doi:10.5281/zenodo.6337394.

Wiktor R. Żelazny and Tomáš Šimon: Calibration spiking of MIR-DRIFTS soil…

155



Agriculture 2022, 12, 682 23 of 26

Acknowledgments: The work of Michaela Friedlová on reference laboratory measurements is kindly
acknowledged. We thank Michaela Smatanová for selecting suitable field trials within the Central
Institute for Supervising and Testing in Agriculture.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Reeves, D. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res. 1997,

43, 131–167. [CrossRef]
2. Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; De Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder,

P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [CrossRef]
3. Smith, P.; Soussana, J.F.; Angers, D.; Schipper, L.; Chenu, C.; Rasse, D.P.; Batjes, N.H.; Van Egmond, F.; McNeill, S.; Kuhnert, M.;

et al. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric
greenhouse gas removal. Glob. Chang. Biol. 2019, 26, 219–241. [CrossRef] [PubMed]

4. Paustian, K.; Collier, S.; Baldock, J.; Burgess, R.; Creque, J.; DeLonge, M.; Dungait, J.; Ellert, B.; Frank, S.; Goddard, T.; et al.
Quantifying carbon for agricultural soil management: From the current status toward a global soil information system. Carbon
Manag. 2019, 10, 567–587. [CrossRef]

5. Batjes, N.H.; Van Wesemael, B. Chapter Measuring and Monitoring Soil Carbon. In Soil Carbon: Science, Management and Policy
for Multiple Benefits; Banwart, S.A., Noellemeyer, E., Milne, E., Eds.; CAB International: Wallingford, UK, 2015; Volume 71,
pp. 188–201.

6. Stenberg, B.; Rossel, R.A.V.; Mouazen, A.M.; Wetterlind, J. Visible and Near Infrared Spectroscopy in Soil Science. In Advances in
Agronomy; Elsevier: Amsterdam, The Netherlands, 2010; Volume 107, pp. 163–215. [CrossRef]

7. Kan, Z.R.; Liu, W.X.; Liu, W.S.; Lal, R.; Dang, Y.P.; Zhao, X.; Zhang, H.L. Mechanisms of soil organic carbon stability and its
response to no-till: A global synthesis and perspective. Glob. Chang. Biol. 2021, 28, 693–710. [CrossRef]

8. Körschens, M.; Schulz, E.; Behm, R. Heißwasserlöslicher C und N im Boden als Kriterium für das N-Nachlieferungsvermögen.
Zentralblatt Für Mikrobiol. 1990, 145, 305–311. [CrossRef]

9. Thomas, B.W.; Whalen, J.K.; Sharifi, M.; Chantigny, M.; Zebarth, B.J. Labile organic matter fractions as early-season nitrogen
supply indicators in manure-amended soils. J. Plant Nutr. Soil Sci. 2016, 179, 94–103. [CrossRef]

10. Page, K.; Dalal, R.; Dang, Y. How useful are MIR predictions of total, particulate, humus, and resistant organic carbon for
examining changes in soil carbon stocks in response to different crop management? A case study. Soil Res. 2013, 51, 719–725.
[CrossRef]

11. Haynes, R. Labile Organic Matter Fractions as Central Components of the Quality of Agricultural soils: An Overview. Adv. Agron.
2005, 85, 221–268. [CrossRef]

12. Sanderman, J.; Hengl, T.; Fiske, G.J. Soil carbon debt of 12,000 years of human land use. Proc. Natl. Acad. Sci. USA 2017,
114, 9575–9580. [CrossRef]

13. Soriano-Disla, J.M.; Janik, L.J.; Viscarra Rossel, R.A.; Macdonald, L.M.; McLaughlin, M.J. The Performance of Visible, Near-, and
Mid-Infrared Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties. Appl. Spectrosc. Rev.
2014, 49, 139–186. [CrossRef]

14. Bongiorno, G.; Bünemann, E.K.; Oguejiofor, C.U.; Meier, J.; Gort, G.; Comans, R.; Mäder, P.; Brussaard, L.; De Goede, R. Sensitivity
of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators
across pedoclimatic conditions in Europe. Ecol. Indic. 2019, 99, 38–50. [CrossRef]

15. Gregorich, E.; Carter, M.; Angers, D.; Monreal, C.; Ellert, B. Towards a minimum data set to assess soil organic matter quality in
agricultural soils. Can. J. Soil Sci. 1994, 74, 367–385. [CrossRef]

16. Baldock, J.; Hawke, B.; Sanderman, J.; Macdonald, L. Predicting contents of carbon and its component fractions in Australian
soils from diffuse reflectance mid-infrared spectra. Soil Res. 2013, 51, 577–595. [CrossRef]

17. Zimmermann, M.; Leifeld, J.; Fuhrer, J. Quantifying soil organic carbon fractions by infrared-spectroscopy. Soil Biol. Biochem.
2007, 39, 224–231. [CrossRef]

18. Zhang, L.; Yang, X.; Drury, C.; Chantigny, M.; Gregorich, E.; Miller, J.; Bittman, S.; Reynolds, D.; Yang, J. Infrared spectroscopy
prediction of organic carbon and total nitrogen in soil and particulate organic matter from diverse Canadian agricultural regions.
Can. J. Soil Sci. 2018, 98, 77–90. [CrossRef]

19. Calderón, F.J.; Reeves, J.B.; Collins, H.P.; Paul, E.A. Chemical Differences in Soil Organic Matter Fractions Determined by
Diffuse-Reflectance Mid-Infrared Spectroscopy. Soil Sci. Soc. Am. J. 2011, 75, 568–579. [CrossRef]

20. Janik, L.J.; Skjemstad, J.; Shepherd, K.; Spouncer, L. The prediction of soil carbon fractions using mid-infrared-partial least square
analysis. Soil Res. 2007, 45, 73–81. [CrossRef]

21. Gredilla, A.; de Vallejuelo, S.F.O.; Elejoste, N.; De Diego, A.; Madariaga, J.M. Non-destructive Spectroscopy combined with
chemometrics as a tool for Green Chemical Analysis of environmental samples: A review. TrAC Trends Anal. Chem. 2016, 76, 30–39.
[CrossRef]

22. Barra, I.; Haefele, S.M.; Sakrabani, R.; Kebede, F. Soil spectroscopy with the use of chemometrics, machine learning and
pre-processing techniques in soil diagnosis: Recent advances–A review. TrAC Trends Anal. Chem. 2021, 135, 116166. [CrossRef]

Wiktor R. Żelazny and Tomáš Šimon: Calibration spiking of MIR-DRIFTS soil…

156



Agriculture 2022, 12, 682 24 of 26

23. Armenta, S.; De la Guardia, M. Vibrational spectroscopy in soil and sediment analysis. Trends Environ. Anal. Chem. 2014, 2, 43–52.
[CrossRef]

24. Du, C.; Zhou, J. Evaluation of Soil Fertility Using Infrared Spectroscopy—A Review. In Climate Change, Intercropping, Pest Control
and Beneficial Microorganisms; Springer: Dordrecht, The Netherlands, 2009; pp. 453–483._16. [CrossRef]

25. Reeves III, J.B. Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory
versus on-site analysis: Where are we and what needs to be done? Geoderma 2010, 158, 3–14. [CrossRef]

26. Bellon-Maurel, V.; McBratney, A. Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount
of carbon stock in soils—Critical review and research perspectives. Soil Biol. Biochem. 2011, 43, 1398–1410. [CrossRef]

27. Zhang, L.; Yang, X.; Drury, C.; Chantigny, M.; Gregorich, E.; Miller, J.; Bittman, S.; Reynolds, W.D.; Yang, J. Infrared spectroscopy
estimation methods for water-dissolved carbon and amino sugars in diverse Canadian agricultural soils. Can. J. Soil Sci. 2018,
98, 484–499. [CrossRef]

28. Nocita, M.; Stevens, A.; van Wesemael, B.; Aitkenhead, M.; Bachmann, M.; Barthès, B.; Dor, E.B.; Brown, D.J.; Clairotte, M.; Csorba,
A.; et al. Chapter Four-Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring. Adv. Agron. 2015, 132, 139–159.
[CrossRef]
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