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Abstrakt 

Včasná detekce stresů polních plodin vyžaduje sběr dat v mnoha časových bodech 

a zohlednění prostorové variability pole. Měření hyperspektrální odrazivosti lze pro

vádět s velkým časoprostorovým rozlišením, což není praktický postup při použití 

tradičních, náročných a nákladných referenčních laboratorních metod. Tato dizer-

tace průřezově zkoumá potenciál spektroskopického přístupu hodnocení stresových 

faktorů polních plodin. Je studován vliv sucha u dvou odrůd juvenilní řepky olej

né s různými strategiemi hospodaření vodou, které jsou hyperspektrálně snímány 

z blízké vzdálenosti. Bylo pozorováno konzistentní zvětšení hodnot směrodatných 

odchylek mnoha vegetačních indexů v reakci na zhoršení vodního režimu. Byla sna

ha predikovat na základě spektrálního signálu intenzitu nákazy sbírky odrůd pšenice 

ozimé s rozmanitou rezistancí vůči fuzarióze klasů. Pokud byla přijatá racionální tole

rance chyby, přesnost hodnocení se blížila k 100 %. Byla aplikována selekce příznaků 

za účelem minimalizovat počet hyperspektrálních pásem potřebných k odhadu obsa

hu listového chlorofylu u ovsa na základě hyperspektrálního zobrazování. Filtrování 

pásem zvětšilo kvalitu predikce a získaná redukce byla dostačující pro hypotetický 

vývoj cenově přístupného specializovaného snímače. Měření odrazivosti ve středním 

infračerveném spektrálním regionu je hodnoceno jako nástroj pro rychlou diagnózu 

obsahu a lability půdního uhlíku. Studie poskytuje důkazy o pozitivním vlivu spike 

sampling v situaci, kdy je potřeba predikovat vlastnosti půdního uhlíku ve vzorcích, 

pocházejících z lokality, která není zastoupena ve spektrální knihovně. 

Klíčová slova: stres abioticky; stres biotický; hyperspektrální zobrazování; 

strojové učení; Bayesova statistika; Open Science 
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Abstract 

Early crop stress detection requires data collection at multiple time points, while 

accounting for spatial variability of a field. Unlike resource-intensive traditional labo

ratory reference methods, hyperspectral reflectance measurements can be performed 

with high spatiotemporal frequency. This dissertation provides a cross-sectional ex

ploration of the potential of the spectroscopic approach to assess crop stress factors. 

The influence of drought is studied in two juvenile oilseed rape cultivars with dif

ferent water management strategies subjected to proximal hyperspectral imaging. A 

consistent increase in multiple vegetation index standard deviations to worsening of 

the hydric regime was observed. Prediction of fusarium head blight infection inten

sity is attempted from spectral response induced in a collection of winter wheat 

cultivars with varied disease resistance. With reasonable error tolerance, the rating 

accuracies approached 100 %. Feature selection is applied to minimize the number of 

bands needed to estimate oat leaf chlorophyll from airborne hyperspectral imagery. 

Filtering of the bands improved the prediction performance, and the obtained re

duction was sufficient to envision the development of an affordable single-purpose 

imager. Mid-infrared diffuse reflectance spectroscopy is evaluated as a tool for rapid 

soil carbon content and lability diagnosis. The study provides evidence of positive 

influence of spike sampling while predicting soil carbon properties in a locality that 

is not represented in a spectral library. 

Key words: abiotic stress; biotic stress; hyperspectral imaging; machine learn

ing; Bayesian statistics; Open Science 
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Chapter 1 

Introduction 

1.1 Crop stress and the challenge of its early detection 

Excessive biotic and abiotic stress factors impair the crop yield and quality (Mahlein; 

Oerke, et al., 2012; Yang; Duan, et al., 2013), which brings negative consequences 

for profitability of the farming enterprise. The farmer can prevent or mitigate crop 

stress by fertilization, irrigation, or protection measures (Peteinatos et al., 2016). 

Advanced diagnostic methods and modeling techniques are crucial for the optimal 

timing and deciding on the intensity of these interventions (Stafford, 2000; West; 

Bravo, et al., 2003; Mahlein, 2016; Virnodkar et al., 2020). Effective control should, 

in particular, take into account spatial heterogeneity of the field (Ihuoma et al., 

2017). 

Early stress detection reduces the costs of its mitigation, and decreases the odds 

of permanent crop damage (Ihuoma et al., 2017; Lowe et al., 2017). On the other 

hand, it requires continuous monitoring performed at fine spatial scales (Mahlein; 

Oerke, et al., 2012; Gholizadeh; Kopáčková, 2019). Such an undertaking is unfeasi

ble in terms of labor and financial expenditure if traditional methods are involved. 

These include: visual assessment (Martinelli et al., 2015; Mahlein, 2016; Lowe et al., 

2017), taking measurements with hand-held field instruments (Govender et al., 2009; 

Ihuoma et al., 2017; Virnodkar et al., 2020), and performing reference laboratory 

analyzes of collected plant tissue samples (Blackburn, 2007; Govender et al., 2009). 

1.2 Plant reflectance spectra as a source of stress information 

Stressed and healthy vegetation differ with respect to their spectral characteris

tics, and the symptoms of stress can be detectable before they become apparent 

for the naked eye (Knipling, 1970; Carter; Knapp, 2001; K i m et al., 2011; Zovko et 

al., 2019). Laboratory and field spectroscopy aimed at measuring of crop reflectance 

spectra can offer a more cost-effective alternative to the conventional methods (Mar-
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tinelli et al., 2015). Among the reflective spectral regions for which dedicated equip

ment is readily available on the market, visible (VIS, 400-700 nm wavelength range) 

reflectance is affected primarily by plant pigments, near-infrared (NIR, 750-1000 nm) 

by mesophyll structure of the cells, and short-wave infrared (SWIR, 1000-2500 nm) 

- also by their water content (Jacquemoud et al., 2001; Govender et al., 2009; 

Ihuoma et al., 2017; Lowe et al., 2017; Mishra et al., 2017; Morin et al., 2017). 

However, according to Carter (1993), a SWIR response is detectable at a relatively 

late stage, making it less suitable for early stress detection than the visible and 

near-infrared (visNIR) region. This view was contested by Zovko et al. (2019). 

An array of both biotic and abiotic stress factors alter the visNIR spectral pro

file of a crop in a similar way (Carter, 1993; Stafford, 2000; Carter; Knapp, 2001; 

West; Bravo, et al., 2003). Chloroplasts deteriorate in leaf tissues, leading to a de

crease in the content and activity of chlorophyll (Jacquemoud et al., 2001; Din 

et al., 2011; Morin et al., 2017). On the other hand, anthocyanins can be synthe

sized and carotenoid concentrations increase to protect the photosynthetic apparatus 

from oxidative stress (Barton, 2001; Gaspar et al., 2002; Gi l l et al., 2010; Ashraf et 

al., 2013). These changes are detectable in the VIS spectrum, typically in the form 

of overall reflectance increase (Knipling, 1970; Martineiii et al., 2015; Morin et al., 

2017), especially for longer wavelengths (Carter, 1993; Carter; Knapp, 2001). 

As the red reflectance increases under the stress (Govender et al., 2009; Yang; 

Duan, et al., 2013), the red-edge, located at the boundary of the VIS and NIR 

region, shifts towards shorter wavelengths (Carter; Knapp, 2001; Govender et al., 

2009; Martineiii et al., 2015). At the same time, after an initial increase, the NIR 

reflectance decreases due to structural changes related to cell shrinkage (Knipling, 

1970; Behmann; Steinrücken, et al., 2014), making the red-edge less steep (Werff 

et al., 2008; Govender et al., 2009). 

1.3 The value of hyperspectra in the context of early stress 

assessment 

The magnitude of stress can be estimated using vegetation indexes, which are de

rived from small subsets of reflectance bands (Mahlein; Oerke, et al., 2012; Mulla, 

2013; Xue et al., 2017; Virnodkar et al., 2020). These are typically measured us

ing simple hand devices, on-the-go sensors mounted on agricultural machinery, or 

derived from multispectral airborne and satellite sensors (Perry; Davenport, 2007; 

Gnyp et al., 2015). This traditional approach can be insufficient for early stress de

tection (Römer et al., 2012). Accordingly, it has been complemented by methods 
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based on multivariate predictive models, which can exploit the information con

tained in a whole spectral region (Mulla, 2013; Amigo et al., 2015; Martinelli et al., 

2015; Mishra et al., 2017). 

A hyperspectrum offers a satisfactory approximation of a continuous spectral 

signature (Lu et al., 2019; Thenkabail et al., 2021). A number of studies com

pared full-spectrum and index-based approaches or predictive models developed 

using hyperspectral (HS) and multispectral data to estimate plant traits. Consis

tent improvements were noted (Hernandez et al., 2015; Marshall et al., 2015), even 

if slight (Capolupo et al., 2015; Lu et al., 2019) or restricted in magnitude in certain 

developmental phases or experimental conditions (Aguate et al., 2017; Montesinos-

Lopez et al., 2017). Under the traditional approach, high-resolution spectral data 

can foster estimation accuracy by enabling flexible formulation of custom vegeta

tion indexes (Blackburn, 2007; Gnyp et al., 2015). The Mariotto et al. (2013) study 

on crop biophysical parameters is illustrative in this regard. The advantage of hy-

perspectra over multispectral data was recently summarized by Thenkabail et al. 

(2021). 

1.4 The added value of spatial data provided by imaging 

spectroscopy 

A hyperspectrum can be readily obtained by using a spectroradiometer, which inte

grates the reflectance captured in its field of view into a single measurement (Steiner; 

Burling, et al., 2008; Milton et al., 2009; Behmann; Steinriicken, et al., 2014; Mahlein, 

2016). However, the resulting spectra have limited spatial information (Mac Arthur 

et al., 2015; Adao et al., 2017) and resolution (Thomas; Kuska, et al., 2018). For pre

cision agriculture, which involves differentiated interventions (Stafford, 2000; Zhang; 

Kovacs, 2012; Mulla, 2013), it is crucial to know the distribution of the crop status 

across the field (Bullock et al., 2000; Mahlein, 2016; Peteinatos et al., 2016). Because 

of that, there has been an increasing interest in applying HS imaging, also known 

as imaging spectroscopy, to crop stress detection (Adao et al., 2017; Lowe et al., 

2017; Khan et al., 2018). 

HS imaging overcomes limitations of traditional point spectrometry by offering 

minute georeferencing possibilities (Adao et al., 2017) and availability of segmenta

tion methods (Mishra et al., 2017), for example for masking of background (Ge; Bai, 

et al., 2016) or identification of areas affected by unfavorable illumination effects 

(Asaari et al., 2019). When mounted on unmanned aerial vehicles (UAVs), visNIR 

HS cameras can provide readily available, high-quality data at the spatial scale of one 
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or more cultivated fields (Zhang; Kovacs, 2012; Gago et al., 2015; Sankaran et al., 

2015). In proximal applications, individual plant organs can be discerned, and the re

sulting images enable fine distinctions — for example, between parts bearing severe 

disease symptoms and those less affected (Mahlein; Kuska, et al., 2017). 

1.5 The role of soil spectroscopy in crop stress assessment 

Crop health and productivity are closely linked to soil fertility. Just as certain aspects 

of soil quality can be deducted from vegetation health (Gholizadeh; Kopáčková, 

2019), occurrence of crop stress factors, drought for instance (Ihuoma et al., 2017; 

Virnodkar et al., 2020), can be indirectly predicted from the soil status. 

Traditional methods of pedological laboratory evaluations are subject to similar 

limitations as for conventional plant stress assessment (Kuang et al., 2012). As an al

ternative, soils can be characterized with spectroscopic methods indoors and in the 

field (Ge; Thomasson, et al., 2011; Kuang et al., 2012; Nocita et al., 2015; Meer, 

2018). 

1.6 Impediments towards wider adoption of HS stress 

detection 

Unlike numerous modern technologies that are commonly employed in precision 

agriculture — such as guidance systems enabled by satellite navigation, mapping 

of yield spatial variation, or variable rate technology (Stafford, 2000; West; Bravo, 

et al., 2003; Pedersen et al., 2017) — the potential of spectroscopy for site-specific 

farming is far from being fully exploited. Insufficient theoretical grounding is one 

contributing factor. In particular, the current number of findings linking stressors 

to crop characteristics captured by HS patterns is small compared to other tech

niques (Gago et al., 2015; Martinelli et al., 2015; Sankaran et al., 2015; Adáo et 

al., 2017) — even in controlled conditions despite the long history of laboratory 

spectroscopy (Mac Arthur et al., 2015). 

Another notable problem is the high purchase cost of both spectroradiome-

ters (Milton et al., 2009) and HS cameras (Deery et al., 2014). However, the de

vices are predicted to become more affordable in the future (Pedersen et al., 2017). 

Adoption of spectroscopic stress assessment methods does not entirely eliminate 

the need for conventional data collection. Traditional measurements are still relied 

on, to the extent necessary for predictive model calibration and validation purposes 

(Govender et al., 2009; Morin et al., 2017; Virnodkar et al., 2020). The laboriousness 
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and cost of their acquisition can reduce the utility of spectroscopic methods for a 

farmer. 

Finally, there is a challenge involved in analysis of spectral measurements, stem

ming from morphological, anatomical, and physiological differences between crops 

(Jacquemoud et al., 2001; Ihuoma et al., 2017), along with confounding external 

factors that cannot be controlled in field conditions (Milton et al., 2009), as well 

as instrumental noise generated by the acquisition device itself (Geladi et al., 2004). 

Expertise is crucial especially for canopy imaging, due to the variation in leaf area 

index, leaf inclination, and the effects of internal shadowing and light scattering (Kni-

pling, 1970; Blackburn, 2007; Govender et al., 2009; Römer et al., 2012; Behmann; 

Steinrücken, et al., 2014). A separate set of specialized skills is required to deal 

with the large volumes of the captured data (West; Bravo, et al., 2003; Deery et al., 

2014). 
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Chapter 2 

Problem area and literature review 

2.1 Choice criteria of the topics covered by the research 

Early crop stress diagnosis from HS data is a broad subject. Therefore, a cross-

sectional approach has been adopted for this dissertation. 

The studied problems were selected to extend beyond the agronomy context. The 

additional themes comprise field phenotyping, precision farming, and soil quality 

monitoring. Another criterion was to include spectral datasets acquired using more 

than one type of a device and platform. Proximal and remote sensing are covered 

as well as use of imaging and non-imaging equipment in conditions corresponding 

to different degrees of control. Abiotic and biotic stressors are featured; both plants 

and soil are subjected to the measurements. 

On a finer level, the topic choice aimed to focus on parameters that have been dif

ficult to estimate using spectral methods. These include fusarium head blight (FHB) 

infection severity due to localized character of the symptoms on a plant, or soil la

bility due to low concentrations of labile soil carbon (SC) pools in samples. For crop 

stress indicators that are easier to assess, such as leaf chlorophyll content or soil total 

carbon, the focus was shifted towards reducing the costs of employing the existing 

solutions. Here, a possibility to develop an affordable narrow-band imager and to 

reduce the number of samples collected for traditional laboratory analysis are ex

plored, respectively. Although, on par with current trends in research, full-spectrum 

methods are given preference in the studies, one experiment proposes a novel look 

at traditional vegetation indexes. 
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2.2 Quantification of spectra variability as a potential source 

of crop stress information 

This section is adapted from Zelazny; Lukas (2020), previously published by MDPI 

Remote Sensing. 

As highlighted by Kruschke et al. (2017), "stressors [...] can increase the vari

ance of a group because not everyone responds the same way to the stressor". 

In the context of close-range crop HS imaging, the "group" can refer to plant foliage 

or leaf tissue composed of individual leaves and cells, respectively, each responding 

to the change in the environment in a distinct way. Especially characteristic for 

stress-induced leaf senescence is the source-sink differentiation between the older 

and younger leaves (Munne-Bosch et al., 2004). The potential of imaging spectrom

etry to provide an insight into the spatial variation of stress symptoms across crop 

foliage was demonstrated for drought (Nansen, 2012; Römer et al., 2012; Behmann; 

Steinrücken, et al., 2014; Brüning et al., 2019), nitrogen deficiency (Jay et al., 2014), 

pest infestation (Nansen, 2012), and herbicide exposure (Kong et al., 2016). However, 

this effect was typically not quantified. 

Quantitative studies on crop responses to stress conditions frequently employ 

traditional experimental designs, such as a randomized block design, coupled with 

linear modeling for statistical inference (Tesfamariam et al., 2010; Majidi et al., 2015; 

Peteinatos et al., 2016). The frequentist approach prevails in the fitting and evalu

ation of these models. Various authors noted shortcomings of the frequentist statis

tics, and have advocated Bayesian methods as an alternative (Zyphur et al., 2015; 

Kruschke et al., 2017; Zyl, 2018). Historically, first the lack of and then the high 

computational demands of suitable numerical methods posed obstacles towards a 

wider adoption of the Bayesian paradigm (Che et al., 2010). These hindrances have 

been largely removed by an increase in computer speeds (Gelfand, 2000; Che et al., 

2010), followed by improved accessibility of parallel computing (Visser et al., 2015), 

and the availability of software with capabilities suited to the needs of the scientific 

community (Che et al., 2010; Salvatier et al., 2016; Carpenter et al., 2017; Bürkner, 

2018). 

One major appeal of Bayesian statistics is the ease with which interval estimates 

of model parameters can be derived, even for complex models. Notably, it is possi

ble to obtain estimates with respect to not only the mean values but also standard 

deviations, shape factors, or hurdle values — again, also for complex models (Kr

uschke et al., 2017). In the context of stress detection with imaging spectroscopy, 

this capability can be readily exploited to quantify the influence of a stressor on 
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the spectral variation across the foliage of an affected plant. 

Given the continuing increases in average temperatures (Lobeil et al., 2011) 

and projections of more frequent and severe droughts in agricultural regions (Nau

mann et al., 2018; Arnell et al., 2019), water deficiency has been among the most 

extensively studied crop stress factors (Daryanto et al., 2017). In pot experiments, 

crop responses to drought can be investigated by varying the watering regime and 

comparing the obtained plant reactions across the treatments (Linke et al., 2008; 

Behmann; Steinrücken, et al., 2014; Sun et al., 2018; Asaari et al., 2019). A n alterna

tive approach is to exploit the variability of water management strategies exhibited 

by individual genotypes (Gilbert; Zwieniecki, et al., 2011; Buezo et al., 2019). 

Several dehydration avoidance mechanisms have been described in crops (Blum, 

2005; Raza et al., 2017). Plants can rapidly respond to water deficit by closing their 

stomata, which reduces the leaf transpiration. As a trade-off, this reduction leads 

to a simultaneous decrease in the photosynthesis rate, related to limited C 0 2 assimi

lation (Flexas et al., 2004; Ashraf et al., 2013). It has been proposed to differentiate 

crop cultivars with respect to their stomatal conductance regulation. Plants that 

manage their water resources in a conservative way and maintain a steady C 0 2 

fixation rate that is affected by moisture availability only to a limited extent have 

been termed as water-savers. Water-spenders, on the other hand, maximize their 

C 0 2 assimilation, depleting the available water resources at the onset of a drought 

due to delayed closure of the stomata (Nakhforoosh et al., 2016; Urban et al., 2017). 

Cultivars with high baseline stomatal conductance tend to not exhibit a mid-day 

depression in photosynthetic rates. They are capable of sustaining a high photo

synthesis rate and can avoid heat stress due to the cooling action of transpiration, 

provided that water is available (Roche, 2015). 

In addition to physiological parameters, a trace of a drought episode can be 

detectable in a spectral signature of the affected crop, as was demonstrated by Linke 

et al. (2008) for wheat and by Sun et al. (2018) for maize. The authors tested 

the changes of several vegetation indexes in plants exposed to repeated drought 

and recovery cycles. They observed a full recovery after the first cycle, but the second 

recovery was incomplete. As a possible cause, the authors suspected progressing cell 

deterioration due to oxygen radicals, which could not be neutralized in the absence 

of carotenoids, removed in the course of the preceding stress episode. 

Studies devoted to drought effects on crop hyperspectra have been primarily 

focused on the species that dominate the global commodity market. Those include 

maize (Ge; Bai, et al., 2016; Asaari et al., 2019) and other staple cereals (Römer 

et al., 2012; Behmann; Steinrücken, et al., 2014; Brüning et al., 2019). Relatively 
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much attention has also been given to fruit crops (Kim et al., 2011; Zarco-Tejada 

et al., 2012; Zovko et al., 2019). On the other hand, numerous other species have so 

far been largely neglected by the studies, including those of regional importance. 

Due to its nutritional (Din et al., 2011; Xia et al., 2018; Sabagh et al., 2019) and 

technical (Högy et al., 2010; Xia et al., 2018) value, oilseed rape (Brassica napus L.; 

hereafter, OSR) is an important crop in many parts of the world. It is widespread 

in North America (Zhang; Lu, et al., 2014; Bonjean et al., 2016), China (Bonjean 

et al., 2016), Europe (Zhang; Lu, et al., 2014), and India (Kumar et al., 2017). OSR 

is susceptible to drought (Din et al., 2011; Raza et al., 2017) and, along with other 

brassicas, the future cultivation of this species is endangered by dry spells (Zhang; 

Lu, et al., 2014; Majidi et al., 2015). 

OSR has been the subject of various HS imaging studies. Based on field experi

ments, Piekarczyk et al. (2011) and Zhang; He (2013) attempted to predict its yield 

using vegetation indexes and partial least squares (PLS) modeling, respectively. Ku

mar et al. (2017) cite several publications devoted to OSR pests and diseases. Xia 

et al. (2018) analyzed imagery of water-logged plants. Effects of herbicide exposure 

were studied by Kong et al. (2016). In contrast to these stress factors, the possibilities 

of capturing the OSR response to drought using a HS camera remained unaddressed. 

OSR is characterized by relatively large leaves, even in early developmental 

phases. HS imaging that captures leaf-level spectral variation may, therefore, prove 

to be a suitable approach for water deficiency detection in this crop (Brüning et al., 

2019). 

2.3 Discrete crop stress severity predictions using ordinal 

S V M trained to hyperspectra 

This section is adapted from Zelazny; Chrpovd, et al. (2021), previously published by 

Elsevier Biosystems Engineering. 

Data associated with ordinal measurements scales require careful statistical treat

ment. The family of cumulative link models was developed for use in linear modeling 

with this class of data (McCullagh, 1980; Fernandez-Navarro, 2017), and Liddell et 

al. (2018) demonstrated that false conclusions can be obtained when an inappro

priate model family is employed. In the realm of predictive modeling, naive treat

ment of ordinal data can increase computational costs of model training (Behmann; 

Schmitter, et al., 2014), and ordinal extensions of machine learning algorithms have 

been proposed (Fernändez-Navarro, 2017). The Behmann; Schmitter, et al. (2014) 

and Behmann; Steinrücken, et al. (2014) drought studies comprised early application 
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of ordinal machine learning to plant stress evaluation based on HS images. 

Ordinal measurement scales are commonly employed in field phenotyping of cul-

tivar disease resistance, where an expert visually rates disease severity in breeding 

lines (Bock et al., 2010). This traditional approach is a laborious and subjective pro

cess (Bauriegel; Herppich, 2014; Deery et al., 2014; Mahlein, 2016; Su et al., 2021), 

and it constrains progress in breeding programs (McMullen et al., 2012; Steiner; 

Buerstmayr, et al., 2017). Spectroscopic methods can be superior to visual rating 

by providing rapid and unbiased assessment in early infection stages (West; Canning, 

et al., 2017; Thomas; Kuska, et al., 2018). 

F H B is a cereal fungal disease caused by Fusarium spp. (Jaillais et al., 2015; 

Khaledi et al., 2017; Saccon et al., 2017; Mielniczuk et al., 2020). The pathogen 

severely impairs yield, and the grain quality is greatly diminished by mycotoxin 

action (Bauriegel; Herppich, 2014; Cambaza et al., 2019; Mielniczuk et al., 2020). 

Infection occurrences have been increasing because of the high prevalence of maize in 

crop rotations (Dammer et al., 2011; Bauriegel; Herppich, 2014) and due to the adop

tion of reduced tillage systems by farmers (McMullen et al., 2012; Gilbert; Haber, 

2013; Mielniczuk et al., 2020). Climate change may also aggravate this problem 

in the future (Gilbert; Haber, 2013; Vaughan et al., 2016). 

F H B control is based on cultural preventive measures and fungicide applications 

(McMullen et al., 2012; Mielniczuk et al., 2020), the latter of which are scheduled ac

cording to the disease risk levels predicted from weather forecasts (McMullen et al., 

2012; Xiao et al., 2020). There is also ongoing research into biological control agents 

(McMullen et al., 2012; Mielniczuk et al., 2020). However, the progress in F H B con

trol does not remove a need for the development of new resistant cultivars (Gilbert; 

Haber, 2013; Buerstmayr et al., 2020; Mielniczuk et al., 2020), which need to be 

screened in phenotyping trials. 

The primary focus of F H B spectroscopy studies has been post-harvest mycotoxin 

detection in extracted kernels under laboratory conditions. The research has been 

reviewed by Saccon et al. (2017) and Femenias et al. (2020), and findings on this 

topic continue to be published (Zhang; Chen; Zhang, et al., 2020; Zhang; Wang; 

Lin; Weng, et al., 2020; Shen et al., 2022). Less attention, however, has been given 

to whole spikes (Bauriegel; Giebel, et al., 2011; Alisaac et al., 2018; Whetton; Hassall, 

et al., 2018; Huang; Wu, et al., 2019; Mahlein; Alisaac, et al., 2019; Huang; L i , et al., 

2020; Zhang; Wang; Lin; Y in , et al., 2020). 

Field research has also been limited until recent years, as highlighted by Whetton; 

Waine, et al. (2018) and Huang; Wu, et al. (2019). Whetton; Waine, et al. (2018) 

employed a proximal push-broom HS imager coupled with an artificial light source 
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for F H B occurrence density estimation in winter wheat and barley. Sóderstróm et al. 

(2013) predicted the deoxynivalenol Fusarium mycotoxin in oats from data captured 

by three different sensors, including a multispectral satellite imager. Further research 

included the Liu; Dong; Huang; Du; Ren, et al. (2020) proposal of a novel broad-band 

vegetation index to detect the disease from Sentinel-2 multispectral imagery. Xiao 

et al. (2020) augmented a time series of satellite observations with meteorological 

data for the same purpose, and Liu; Dong; Huang; Du; Ma (2020) investigated 

the feasibility of F H B monitoring at the field scale using U A V equipped with HS 

camera. 

Whetton; Waine, et al. (2018) considered that the small number of F H B spec

troscopic field studies may stem from the difficult detection of the disease in a crop 

stand. Unlike well-studied rust and powdery mildew (Franke et al., 2007; Huang; 

Lamb, et al., 2007; Kuckenberg et al., 2009; Cao et al., 2013; Huang; Guan, et al., 

2014; Feng et al., 2016; Zhang; Wang; Yuan, et al., 2017), F H B symptoms affect 

only the spikes, and these constitute a small fraction of the total biomass. More 

recently, Liu; Dong; Huang; Du; Ma (2020) proposed the identification of infected 

field areas based on whole canopy characteristics, but the feasibility of this novel 

and potentially controversial approach requires further scrutiny. 

There is a limited transfer ability of spectrometric disease detection methods 

developed for large-scale farming applications to field phenotyping. Simultaneous 

screening of multiple genotypes constrains the size of experimental plots to a level 

below the spatial resolution attainable with many remote or even proximal sensing 

systems (Rebetzke et al., 2014; Barmeier et al., 2016). Artificial inoculation may 

be limited to a small subset of plants in each plot, thus further limiting the choice 

of spectral data acquisition techniques. The plot size reduction can also modify its 

spectral properties (Barmeier et al., 2016), and this invalidates models which assume 

a continuous canopy. Moreover, disease severity must be estimated when searching 

for tolerant cultivars, rather than mere disease occurrence (Qiu et al., 2019). This 

task has only recently been attempted (Bock et al., 2010; Huang; Wu, et al., 2019; 

Qiu et al., 2019; Zhang; Wang; Gu, et al., 2019). Moreover, the predictions must 

consider masking the disease signal by genotype differences (Pinter et al., 1985). A l l 

these challenges create the need for research programs specifically aimed at F H B 

field phenotyping. 
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2.4 Specialized narrow-band imagers as an alternative for HS 

cameras in crop stress detection 

This section is adapted from Zelazny (2020), previously published by Estonian Agri

cultural University, Faculty of Agronomy Agronomy Research. 

Development of simplified narrow-band imagers has been proposed as a way 

to overcome the problem of high HS camera prices. These products would resem

ble multispectral devices by their limited number of bands, but would be suited 

to specialized applications, including stress mapping (Govender et al., 2009; Deery 

et al., 2014; Mahlein, 2016; Lowe et al., 2017; Alckmin et al., 2020). In addition 

to the lower price (West; Bravo, et al., 2003; Amigo et al., 2015), they would offer 

a high speed of operation (Rapaport et al., 2015). 

The bands for use in the envisioned devices can preselected using feature selec

tion algorithms (Govender et al., 2009; Mishra et al., 2017). These methods remove 

wavelengths associated with redundant information (Mewes et al., 2011; Behmann; 

Steinriicken, et al., 2014). Therefore, the predictive performance of the device would 

remain at a satisfactory level. As demonstrated by the Zhang; He (2013) OSR yield 

study, substantial reduction of data volume can be attained without impairing model 

performance. Discarding of 98 % of HS bands had a minimal effect on the quality of 

nitrogen content prediction in pepper plants, while significantly simplifying the ob

tained model (Yu et al., 2014). Feature selection was even shown to improve the pre

diction accuracy in some applications (Ding et al., 2005; Mehmood et al., 2012). 

Behmann; Steinriicken, et al. (2014) proposed a support vector machine (SVM) 

model for detecting water stress in barley. The model inputs comprised vegetation 

indexes, the combinations of which were determined using wrapper feature selection. 

Increased detection sensitivity was obtained, allowing for earlier drought detection 

relative to the raw indexes. Owing to the reduced number of inputs, fewer com

putations are required to process data subjected to feature selection, and model 

interpretation is facilitated (Ding et al., 2005). 

Mehmood et al. (2012) reviewed current feature selection methods suit

able for PLS modeling. Under the filtering approach, variables are evaluated 

independently of model fitting, according to a measure the value of which deter

mines which of them will be discarded. In the minimum redundancy, maximum 

relevance (MRMR) method, this measure is the mutual information shared 

by the candidate feature and the predicted variable, reduced by the average 

mutual information shared by the candidate feature and the features already 

accepted for inclusion into the model. This mutual information is a function of the 
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correlation coefficient (De Jay et al., 2013). With wrapping, models are fitted to 

multiple preselected feature subsets, and the fit quality itself serves as the selection 

performance criterion, making it a computationally more demanding approach 

(Mehmood et al., 2012). The wrapper forward selection method is analogous to the 

forward selection in the stepwise regression: candidate features are picked one by 

one from the feature pool, and their influence on the performance of the refitted 

model is assessed. The variable associated with the highest performance increase is 

kept in the model, and the process continues iteratively until there is no further 

improvement. 

The indispensability of chlorophyll for plant photosynthesis (Sims et al., 2002; 

Main et al., 2011) and its contribution to crop optical properties (Ollinger, 2011) 

make the estimation of leaf chlorophyll concentration an important remote sens

ing application. In large-scale assessments, leaf chlorophyll remote sensing is use

ful for yield prediction (Moharana et al., 2016). At finer spatial scales, it can be 

used for the delineation of management zones for precision agriculture (Miao et al., 

2009). As chlorophyll breaks down under stress, its monitoring provides information 

about the crop status, and enables a timely intervention to prevent the yield loss 

(Penuelas; Baret, et al., 1995; Sims et al., 2002). 

Numerous studies have been devoted to predicting chlorophyll content from HS 

images. Partial least squares regression (PLSR) was employed to analyze winter 

wheat leaf laboratory samples (Zhang; Wang; Ma, et al., 2012). Scanning of single 

leaves under controlled illumination allowed the authors to evade the challenges in

herent to canopy-level imaging in outdoor conditions, and without doubt contributed 

to extremely accurate (R statistics up to 0.99) predictions. Unfortunately, unclear 

study design description undermines the trustworthiness of the findings. Meij et al. 

(2017) employed PLS to predict chlorophyll content in oats from U A V campaign data. 

Robust leaf chlorophyll content predictions for multiple crops were obtained with 

kernel ridge and Gaussian process regression. On the other hand, artificial neural 

networks, an approach with a comparable level of sophistication, failed to provide 

consistently reliable estimates (Caicedo et al., 2014). By applying S V M to maize 

hyperspectra, Karimi et al. (2008) obtained very good validation estimates for the 

tasseling stage. The prediction quality was worse, but still satisfactory, for the early 

growth stage, which the authors attributed to the soil showing through the crop 

canopy. 

Possibilities of extending these workflows with feature selection to simplify the 

imagers, obtain parsimonious models, and potentially improve their accuracy re

main unexplored. Reliable non-imaging solutions available on the market, such as 

14 



Problem and literature review 

chlorophyll meters (Govender et al., 2009; Miao et al., 2009) working with reduced 

numbers of spectra, justify undertaking research in that direction. 

2.5 Soil lability link to crop stress and its estimation using 

spectroscopic methods 

This section is adapted from Želazny; Šimon (2022), previously published by MDPI 

Agriculture. 

SC is a primary indicator of soil quality (Reeves, 1997; Bunemann et al., 2018), 

and in recent years estimation of atmospheric C 0 2 sequestration has boosted interest 

in SC monitoring (Madari et al., 2005; Stenberg et al., 2010; Batjes et al., 2015; 

Paustian et al., 2019; Smith; Soussana, et al., 2019). In addition to SC quantity, 

its fractional composition can be of interest in evaluating soil status. Research has 

been devoted to the labile fraction, which can give insight into SC turnover processes 

(Kan et al., 2021). Labile C determines the rate of nitrogen release from soil organic 

matter, a factor to be accounted for while fertilizing the soil (Kórschens et al., 1990; 

Thomas; Whalen, et al., 2016), and it can also inform about long-term stability 

of sequestered carbon (Page et al., 2013). Traditional assessment of SC lability is 

costly and time-consuming due to the laboriousness of laboratory SC fractionation 

(Zimmermann et al., 2007; Yang; Xie, et al., 2012; Jaconi et al., 2019). Environmental 

concerns have also been raised (Janik; Skjemstad, et al., 2007; Gredilla et al., 2016). 

Higher throughput and economical viability can be attained with soil spec

troscopy (Viscarra Rossel et al., 2006; Ge; Thomasson, et al., 2011; Paustian et 

al., 2019; Barra et al., 2021). Here, mid-infrared diffuse reflectance infrared Fourier 

transform spectroscopy (MIR-DRIFTS) is one of the methods considered suitable 

for chemical soil analysis (Viscarra Rossel et al., 2006; Janik; Skjemstad, et al., 2007; 

Soriano-Disla et al., 2014) owing to fundamental vibrations of soil molecules arising 

in the MIR spectral region (McCarty et al., 2002; Du et al., 2009; Kuang et al., 

2012; Soriano-Disla et al., 2014). In particular, it can give accurate estimates of SC 

content (Viscarra Rossel et al., 2006; Reeves III, 2010; Bellon-Maurel et al., 2011; 

Kuang et al., 2012; Soriano-Disla et al., 2014; Barra et al., 2021), and according 

to Reeves III (2010), this high performance may extend to SC fraction assessments. 

However, the modest number of publications devoted to SC lability (Zhang; Yang, 

et al., 2018) is in contrast with the extensive literature on total carbon (TC) or the 

large organic carbon (OC) pool estimation with MIR-DRIFTS. 
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2.6 Calibration spiking as a possibility to reduce the number 

of laboratory samples in spectroscopic crop stress 

evaluations 

This section is adapted from Zelazny; Simon (2022), previously published by MDPI 

Agriculture. 

Spectroscopic methods do not completely remove the need for traditional mea

surements, as predictive model training, tuning, and validation depend on their avail

ability. A n approach termed "calibration spiking" was proposed as a way to max

imize reuse of reference data collected in the past while avoiding calibration do

main mismatch when a model is applied in a new setting (Stenberg et al., 2010; 

Cezar et al., 2019). It consists of extending the reference library with a limited num

ber of samples collected at the target site, and recalibrating the predictive model 

to the resulting dataset (Capron et al., 2005). To minimize their number, samples 

for calibration spiking can be picked according to leverage selection (Nocita et al., 

2015). Under leverage selection, an extended number of samples is subjected to spec

tral analysis, after which a subsample is picked to be analyzed in the traditional way, 

based on their spectral dissimilarity. In this way, the resulting library size can be 

reduced while preserving the representativeness of the samples therein with respect 

to the spectral variation of the soils occurring in the target region (Capron et al., 

2005). 

However, even with a modestly-sized reference dataset, an issue of the dispropor

tion between the number of library and spiking samples arises. One way of address

ing this problem is to use a subset of the library samples (Guerrero; Zornoza, et al., 

2010). As an alternative, which does not involve information loss, local samples can 

be given bigger weight relative to the samples in the library (Cezar et al., 2019). 

The weighing is typically performed by multiplying the local sample occurrences in 

the model training dataset (Guerrero; Stenberg, et al., 2014; Cezar et al., 2019). As 

an alternative approach, a model allowing for observation weights to be included 

among its inputs is employed, instead (e.g., Sankey et al., 2008). Indahl et al. (2009) 

proposed combining PLS with canonical correlation analysis, and termed the new 

class of models canonical PLS. Among the features of canonical partial least squares 

regression (CPLSR) that are absent in P L S R is the possibility to weight the individ

ual observations. However, the suitability of C P L S R to calibration spiking has not 

received research attention. 
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2.7 Computational experiments in crop stress detection from 

hyperspectra 

The multivariate character of HS data with autocorrelated bands (Blackburn, 2007) 

frequently demands an application of pre-processing methods to strengthen the stres

sor signal while suppressing confounding factors, instrumental noise, and other arti

facts (Gholizadeh; Borůvka, et al., 2013). Rinnan et al. (2009) provide a comprehen

sive review of available transformations, which they classify into two major groups. 

A n even bigger array of possibilities pertains to the choice of a predictive model 

family that can be trained to the spectral data. These range from traditional chemo-

metrics models (Frank et al., 1993), through machine learning algorithms (Kuhn 

et al., 2013), to the latest deep learning approaches, which have been proliferating 

as a byproduct of artificial intelligence research (Gao; Luo, et al., 2020). Availability 

of leverage sampling (Gani et al., 2016), feature selection, and feature engineering 

(Guyon et al., 2003) methods further compounds the number of data treatment 

possibilities. 

This "garden of forking paths" problem creates a need for computational ex

periments that compare the performance of data processing workflows for individ

ual applications based on data acquired in various settings. Only then a choice 

from the multitude of available options can be made to develop a commercial prod

uct that will be reliable in a broad range of circumstances and can be offered to a 

mainstream consumer. Workers specializing in crop stress sensing have recognized 

this need, and such assessments make a significant share of current research (e.g., 

Buddenbaum et al., 2012; Behmann; Schmitter, et al., 2014; Cezar et al., 2019; 

Huang; Wu, et al., 2019; Liu; Dong; Huang; Du; Ma, 2020; Zhang; Chen; Y in , et al., 

2020). Naive comparisons of single models prevail, and only a minority of authors 

(Verrelst et al., 2012; Ng et al., 2018; Baumann et al., 2021) evaluate model ensem

bles developed with multiple versions of a training dataset. Application of formal 

methods to quantify performance differences between individual approaches is also 

unexplored. 
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Hypotheses and study strategy 

In a proximal-sensing HS imaging study with potted OSR plants, it was hypothesized 

that the variability of responses to drought would provide more reliable separation 

between the experimental treatments than the mean values of spectral indicators. 

In a field phenotyping trial involving both point and imaging spectrometry, predic

tion quality sufficient for genotype screening was hypothesized for models trained 

to FHB-infected spike spectra acquired at a late stage of the disease. Prediction 

performance deterioration was expected in the case of the spectral data obtained 

at an earlier date. A n implicit hypothesis drove a study on leaf chlorophyll content 

estimation from remote HS imagery. Two feature selection methods representing dis

tinctive algorithm families were expected to reduce the number of bands to a number 

typical for multispectral devices without impairing the prediction accuracy. 

One study was devoted to mid-infrared (MIR) soil spectroscopy. Improved predic

tions of SC and its lability were expected with calibration spiking of MIR-DRIFTS 

spectra, as described in the literature. Furthermore, superiority of embedded weigh

ing of P L S R spiking observations to the traditional weighing scheme, under which 

multiple copies thereof are included in a training dataset, was hypothesized. Simul

taneously, it was assumed that the number of samples subjected to traditional lab

oratory analysis could be reduced by proper pre-processing of the spectra or by em

ploying leverage sampling. 

A balance between examination of the questions that are relevant to the current 

state of scientific inquiry and novelty is sought in the dissertation thesis. The novel 

elements include the following: Not only global commodity crops, but also minor and 

less researched species with regional significance, are featured. In two of the three 

crop sensing studies, more than one cultivar is employed to generalize the validity of 

the findings and examine their robustness. The conventional "drought" and "control" 

watering regimes are extended with a "rewatered" regime in the OSR study to find 

out whether a trace of the drought episode will remain in the spectral patterns. 

Field phenotyping and a more challenging disease are the focus of the F H B study 
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instead of leaf diseases studied in the context of precision agriculture, which have 

been prevalent in crop disease spectroscopy. The studies exploit an opportunity to 

compare multiple spectral data pre-processing or processing schemes. Less known 

predictive model families are tested, such as ordinal S V M model ensembles or PLSR 

extensions that generalize the dependent variable to a vector of variables. Multiple 

data partitioning scenarios are generated for more robust assessment of the work

flow performances, and in one study, these are compared in a formal fashion using 

linear models. To this end, Bayesian modeling is attempted instead of the dominant 

but criticized frequentist statistics. Not only SC, but also its lability is investigated 

in the soil spectroscopy study, and the data are analyzed in the compositional data 

analysis framework. 

The collected data and scripts were made available in public repositories to en

able the reproduction of the results and adaptation to future research (Sandve et al., 

2013; Piccolo et al., 2016; Szucs et al., 2017). One of the studies was preregistered 

(Nosek et al., 2018) to address the "researcher degrees of freedom" (Bakker et al., 

2020) and "file drawer" (Rosenthal, 1979) problems. 

In addition to the published material, multiple further HS data acquisition cam

paigns were performed, but the obtained spectra were of insufficient quality to pro

ceed with their analysis. A number of the encountered problems pertained to the ra

diometric dimension of the data, for example, improper artificial lighting introduced 

artifacts into proximal sensing imagery of juvenile plants exposed to low tempera

tures. Two attempts were made to capture airborne imagery of a commercial field 

with variable sowing density from a U A V , one unsuccessful due to technical failure 

resulting in an emergency landing, and the other due unfavorable illumination con

ditions and image pixel saturation. Some of the issues were more related to the ge

ometric dimension of a dataset, as described for the HS camera data in the field 

phenotyping study, for instance. The same experiment was captured from a UAV, 

but since the infection did not spread to the untreated neighboring spikes, the af

fected could not be discerned in the data product. 
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Dissertation objectives 

The presented dissertation is aimed at filling some of the gaps with regard to early 

plant stress diagnosis. It investigates the underexplored relationships between physi

ological status, the degree of tissue damage, and field crop HS characteristics. Apart 

from plant material, studies on soil carbon are included in recognition of the contri

bution of soil properties to crop stress. The secondary goal is to introduce and pop

ularize in plant sciences statistical methods, data analysis tools and workflows 

that to a large degree have been absent in this field — in crop spectroscopy, in partic

ular. Advantages of the most promising of these methods are demonstrated. Finally, 

the dissertation responds to the reproducibility crisis and it contributes to the Open 

Science movement. 

The influence of drought on narrow-band vegetation indexes and principal com

ponent analysis (PCA) scores is studied in juvenile OSR, based on proximal im

agery acquired in semi-controlled conditions (Zelazny; Lukáš, 2020). The objective 

is to determine the spectral response of plants representing two water management 

strategies to three types of watering regimes. In addition, the effect of spectral pre

processing is evaluated in the P C A part of the study. 

The spectral response of a collection of winter wheat cultivars, with varied F H B 

resistance, is investigated after the exposure of the plants to Fusarium culmorum (Ze

lazny; Chrpová, et al., 2021). The aims of the study are: (1) to estimate the infection 

severity prediction accuracy with respect to visual rating by an expert, and (2) to ex

amine the accuracies with respect to the timing of the inoculation and spectral data 

acquisition. Two approaches to spectra aggregation are also compared and, like 

in the preceding study, several spectral pre-processing schemes are tested. 

A possibility of choosing a small set of hyperspectra for the purpose of developing 

a chlorophyll meter with imaging capability is explored based on an analysis of pub

licly available aggregated HS data (Želazny, 2020). The aim is to first reproduce 

selected results from the original study that was based on that dataset, and then 

investigate the effect of two feature selection approaches on the prediction of leaf 
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chlorophyll concentration in oats. 

The feasibility of MIR-DRIFTS for quick diagnosis of SC properties is inves

tigated (Zelazny; Simon, 2022). The study compares SC content and SC lability 

estimates obtained using MIR-DRIFTS spectroscopy followed by three levels of spec

tral pre-processing to those derived with reference laboratory methods. The second 

study objective is to determine the influence of calibration spiking and its intensity 

on the performance of the soil carbon predictions. Internally and externally weighted 

C P L S R models trained to MIR-DRIFTS spectra are also compared, and the perfor

mance of two leverage sampling algorithms is evaluated. Long-term experiments 

serve as the reference library, and two commercial sites — as the prediction targets 

and the sources of the spiking samples. 
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Research methods 

5.1 Drought stress detection in juvenile oilseed rape using HS 

imaging with a focus on spectra variability 

This section is adapted from Želazny; Lukáš (2020), previously published by MDPI 

Remote Sensing. 

The seed of 'Cadeli' and 'Viking' OSR cultivars was obtained from OSEVA PRO 

s.r.o. (Opava, Czech Republic) and started by placing it for two days in a ther

mostat (BT-120, Laboratorní přístroje Praha, Praha, Czechoslovakia), set to 20°C. 

The seedlings were transplanted to pots, at the number of five seedlings per pot, and 

grown in a growth chamber, model Tyler T-16/4 (Budapest, Hungary), in 18-20 °C, 

under 16-hour photo period, exposed to 400 umol m - 2 s _ 1 irradiance. 

The watering regime followed one of the three treatments: Control pots were 

watered daily to 70 % of the substrate water capacity. For pots in the dry treatment, 

after 14 days since sowing, the watering was reduced to 45 % of the water capacity, 

and after 10 more days the watering stopped completely. The pots in the rewatered 

treatment were treated according to the same plan, but one day before the experi

ment termination they were watered to 100 % of the water capacity. 

Images of the plants in the 3-4 leaves growth phase were captured using 

a 2D frame HS camera (Rikola, Senop, Oulu, Finland) in natural light conditions. 

Four pots — two pots per cultivar, placed in a photo tent against a dark background 

were captured in each image. The HS data cubes comprised 41 evenly spaced 

bands from 503 to 903 nm. The spatial resolution was 1010 px x 1010 px, and the 

integration time was set to 30 ms. The pot rims were approximately 0.70 m away 

from the camera lens, and an irradiance sensor was also placed inside the tent. 

The images of the plants were interleaved with images of spectralon. For every 

band, a mixed-effect empirical line model (Smith; Milton, 1999) was fitted, and re

flectance derived from radiance values. The images were then subjected to band 
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registration, and square regions of interest were inscribed inside the pots. 

A sample of 200 px was drawn from all regions of interest. Each was hand-

classified as either background, fresh-leaf, dry-leaf, or edge pixel. The spectra 

of the pixels were partitioned into training and test dataset, in 3:1 proportion. 

A S V M model was fitted, tuned, and applied. The effects of the experimental 

treatments on the dry-leaf pixel proportion were assessed using a Bayesian linear 

mixed-effect model. 

Twenty vegetation indexes (SR, GI, RGI, DVI, NDVI, RDVI , PSRI, PSSR a , 

P S N D a , RNDVI , P R I 5 7 0 , P R I 5 1 2 , P R I n o r m , M T C I , M C A R I , T C A R I , OSAVI, 

T C A R I / O S A V I , C I g r e e n , and CI r e ) were calculated for each leaf pixel except 

for background and edge pixels. From each pot image, 36 pixels were sampled 

on a regular grid. To assess the influence of the experimental treatments on the 

index values, an ensemble of Bayesian linear mixed-effect models were fitted. 

An attempt to exploit the full-spectrum information was made. In addition to an

alyzing raw spectra, Savitzky-Golay filter, multiple scatter correction, derivation, 

and second derivation pre-processing was tested. The spectra were subjected to prin

cipal component analysis, and pixel subsets were grid-sampled analogously to vegeta

tion indexes. The influence of the experimental treatments on P C A scores was then 

assessed using multivariate linear modeling, with the model outcomes consisting of 

the first four score values. 

5.2 Fusarium head blight detection from spectral measurements 

in a field phenotyping setting 

This section is adapted from Zelazny; Chrpovd, et al. (2021), previously published by 

Elsevier Biosystems Engineering. 

Winter wheat was sown on 1-3 October 2019 in 12 parallel blocks, with two 

rows of aligned hill plots per block. Each plot pair represented one cultivar, arranged 

according to the earliness in the first three blocks and the remainder in alphabetic 

order. These cultivar arrangements were replicated three times. In each block, one 

of the rows was inoculated with the isolate B of Fusarium culmorum in the winter 

wheat flowering stage. Suspension of 0.8 x 107 spores m l - 1 was applied from all sides 

to 10 spikes of each hill plot, tied together to form a cluster. Those were covered 

for 24 hours with 40 cm x 60 cm polyethylene bags. Simultaneously, 10 spikes were 

tied and covered with a bag also in the facing hill plots. The plots were maintained 

under irrigation except for rainy and subsequent days. 

Two spectral data acquisition campaigns were planned: (1) soon after the ini-
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tial infection symptoms become visible to a naked eye and (2) once the symptoms 

become severe. These dates coincided with the milk- and dough-ripening develop

mental phases of the plants. The data were collected using the ASD Fieldspec 4 

Hi-Res (Malvern Panalytical, Malvern, UK) spectroradiometer equipped with a con

tact probe. Each spike cluster was subjected to a sequence of five measurements, 

with three spikes were positioned between the probe and a black non-woven textile. 

The device was calibrated at the beginning of each row and then roughly every ten 

minutes using white Spectralon. The resulting dataset comprised complete spectral 

data for 67 hill-plot pairs. Collection of imaging data was also attempted with the 

same HS camera as in the preceding study, mounted on a tripod. The acquisition 

process was slow due to difficult aiming and waiting for proper light conditions, 

and the imagery had to be discarded. 

On the same days, visual symptom scores (VSSs) were assigned to each hill plot 

of the infected rows according to a 9-point scale denoting the percentage of the 

infected spikelets in the spike cluster (9 points: <5%, 8: 5-17%, 7: 18-30%, 6: 31-

43%, 5: 44-56%, 4: 57-69%, 3: 70-82%, 2: 83-95%, 1: >95%). In the case of the 

dough-ripening phase, the facing hill plots were also rated one day later, and the 

hill plot pairs for which that rating was below 9 were excluded from further analysis. 

The final number of retained hill plot pairs was 48. 

The hill plots were 10 times randomly split into calibration and validation 

data partitions, in the 3:1 proportions. For each combination of partitioning, pre

processing, hill plot, and spectral band, the median and mean reflectances across 

multiple measurements or pixels were derived. Seven scenarios of aggregated spec

tra pre-processing were tested: (1) no pre-processing, (2) subtraction of facing hill 

plot spectrum, (3) division by facing hill plot spectrum, (4) standard normal vari-

ate (SNV), (5) subtraction followed by SNV, (6) division followed by SNV, and (7) 

maximum normalization followed by Savitzky-Golay derivative and smoothing to 

approximate the approach of Whetton; Waine, et al. (2018). 

Ordinal SVMs with the radial basis function kernel (Behmann; Steinriicken, et 

al., 2014) were trained for each combination of spectra acquisition campaign, spec

tra aggregation function, plot partitioning, spectra pre-processing, and VSS dataset 

- 560 model ensembles in total. The tuning hyperparameters (C and gamma) were 

determined with an aid of Bayesian optimization according to the leave-one-out 

cross-validation maximum accuracy criterion. Validation accuracies of each model 

were estimated; allowing for misclassification of zero, one, and two class differences. 

The joint effects of spectra acquisition campaign and ground-truth data collec

tion timings, spectra pre-processing scenarios, and magnitudes of error tolerances 
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on the probability of a correct VSS rating were modeled using mixed-effect Bayesian 

generalized linear models (Burkner, 2018). 

5.3 Application of feature selection for predicting leaf 

chlorophyll content in oats from HS imagery 

This section is adapted from Želazny (2020), previously published by Estonian Agri

cultural University, Faculty of Agronomy Agronomy Research. 

The Meij et al. (2018) HS dataset was obtained, and reproduction of the Meij et al. 

(2017) PLS modeling result was prepared. Soil-plant analysis development (SPAD) 

leaf chlorophyll concentration was modeled as the dependent variable, and the re

flectance values as the independent variables. The number of latent variables was 

tuned using leave-one-out cross-validation by calculating the cross-validation root 

mean square error (RMSE) for each value from between 1 and 20. 

Next, two approaches to feature selection were tested: a filter method based 

on the M R M R criterion, and a forward selection wrapper method. For each, the 

study aimed to obtain a series of models with the input feature number ranging 

from 2 to all 94 bands (i.e., no selection). In this way, the influence of feature 

selection intensity on the prediction quality could be investigated. Validation R M S E , 

normalized root mean square error (NRMSE), and R 2 statistics were derived. 

5.4 Calibration spiking of MIR-DRIFTS soil spectra 

for carbon predictions using C P L S R and log-ratio 

transformations 

This section is adapted from Želazny; Šimon (2022), previously published by MDPI 

Agriculture. 

Soil samples were collected at the territory of the Czech Republic: (1) time series 

of archived samples obtained from long-term agricultural trials, and (2) topsoil sam

ples from two commercial sites, a field in Janovice (45 samples) and Ústí nad Orlicí 

district (335 samples). The samples were dried, sieved through 2-mm mesh, and 

milled. MIR-DRIFTS spectra were measured using a Thermo Nicolet Avatar 320 

FTIR spectrometer with a Ge beam splitter and a TGS detector, equipped with a 

Smart Diffuse Reflectance accessory (Nicolet, Madison, USA) in a 1:3 mixture of soil 

and K B r (Sigma-Aldrich, Darmstadt, Germany) prepared by hand in an agate mor

tar. T C content was determined using Vario/CNS analyzer (Elementar Analysensys-
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teme GmbH, Langenselbold, Germany), and hot-water extractable carbon (HWC) 

content was determined according to Korschens et al. (1990). 

For each commercial site, 10 independent sets of 12 samples were picked randomly 

for testing of predictive model quality. The samples in the library part of the dataset 

were the calibration samples in the baseline modeling scenario. The target-site spec

tra not included in a testing partition made a pool from which samples were picked 

for model training in other scenarios. 

Noisy bands up to 600 c m - 1 and the 2268-2389 c m - 1 wavenumber range affected 

by C 0 2 were discarded. The spectra were further processed using a moving-average 

filter with an 11-band window. In addition to analyzing the obtained "raw" spec

tra, five further pre-processing schemes (Rinnan et al., 2009) were tested. First, 

the moving-average smoothing of the spectra was either followed with multiplicative 

scatter correction (MSC) or left unchanged. In the second phase, SNV, derivative 

transformation using the Savitzky-Golay filter with additional third-order polyno

mial smoothing applied over a moving window of 11 bands, or no transformation 

were applied to the result. 

Calibration spiking was introduced, based on increasing spiking sample counts 

to the level of 16 samples with a step of 4 samples. In addition to the random 

scheme, two leverage sampling approaches were assessed for spiking sample selection: 

the Kennard-Stone algorithm preceded by P C A (Ng et al., 2018) and sampling based 

on conditioned Latin Hypercube (Minasny et al., 2006). Scenarios mirroring the 

calibration spiking scenarios, but with no samples from the long-term experiments, 

were also included. 

Three components summing up to the whole soil sample were derived from 

the T C and H W C measurements: (1) H W C , (2) the part of T C resistant to hot-

water extraction (nHWC), (3) and the non-TC part of a sample (1 — TC) . In the 

next step, the component values were transformed into two isometric log-ratio (ilr) 

coordinates (Kynclova et al., 2015): (1) i l r T C , balancing T C and remainder of a 

sample; and (2) i h H W C balancing H W C and nHWC. 

A bivariate PLSR model was trained for predicting the ilr coordinate values 

from MIR-DRIFTS spectra. For data partitionings that included both reference-

library and target area samples, the influence of spiking sample weighing was ex

amined by introducing models with 5-fold and 25-fold weighted local observations, 

in addition to unweighted models. The weighing was performed either by data row 

multiplication (standard approach), in which case a partial least squares regression 

2 (PLSR2) model was used, or by exploiting the internal weighing capability of the 

C P L S R model family (proposed approach). 
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The numbers of P L S R components were tuned using cross-validation according 

to one-sigma heuristics (Dangal et al., 2019; Mevik et al., 2019) with values between 

1 and 12 considered. The performance of each model was evaluated using test data 

partitions in terms of R 2 and root mean square error of prediction (RMSEP) statis

tics, prediction bias, followed by ratio of prediction to deviation (RPD) and ratio of 

prediction to interquartile range (RPIQ) statistics (Baldock et al., 2013; Clairotte 

et al., 2016; Cezar et al., 2019). 
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Chapter 6 

Results and discussion 

6.1 Drought stress detection in juvenile oilseed rape using HS 

imaging with a focus on spectra variability 

This section is adapted from Želazny; Lukáš (2020), previously published by MDPI 

Remote Sensing. 

Accurate classification of the reflectance spectra was obtained with S V M , with all 

but 2 of the 47 pixels in the test set correctly assigned. The high pixel classification 

accuracy and plausible spectral patterns that can be discerned in the obtained classes 

highlight the potential of SVMs to segment OSR images. 

When proportions of pixels identified by the S V M model as dry in a HS image 

were compared using linear model estimates, the narrowest posterior distribution was 

obtained for the cultivar contrast under the dry regime. However, since the distribu

tion was centered close to the value of 1, it fails to provide information on the sign 

of the difference. Wide posterior distributions were obtained for the two remaining 

comparisons in this group. The contrasts involving the watering regime suggested 

an effect of restricted water supply on the dry pixel occurrence, albeit with high 

uncertainty. As expected, all but two comparisons indicated lower dry leaf surface 

area with improved water availability, especially for 'Viking'. Here, the multiplica

tive effect size (ES) along with the 95% credibility interval was E S w a t e r e d / / d r y = 

0.009 [0.00005,1.6], in agreement with the high drought sensitivity of this cultivar. 

'Viking' and 'Cadeli' maintained under the watered treatment clearly differed ac

cording to the M C A R I and M T C I mean index values. M C A R I was higher for 'Viking' 

by E S V i k i n g _ C a d e l i = 0.06 [0.01, 0.11] units. As green reflectance is one of the compo

nents of M C A R I , this effect can be explained by increased photosynthetic activity 

fostered by the favorable hydric conditions. The tendency towards minimizing the 

periods of stomatal closure allows the 'Viking' water-spender to thrive in the control 

watering regime. A link between low water stress and high M C A R I values was demon-
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strated by Peteinatos et al. (2016) in a spring wheat experiment. This interpretation 

can be questioned in the light of an inverse relationship obtained by Haboudane; 

Tremblay, et al. (2008) for corn. However, both these authors and Gitelson (2016) 

had observed a discrepancy pattern between M C A R I and M T C I , which was also ob

tained in the present study. To a limited extent, the cultivars in the control treatment 

differed in terms of T C A R I ( E S V i k i n g _ C a d e l i = 0.04[-0.02, 0.10]) and T C A R I / O S A V I 

( E S V i k i n g _ C a d e l i = 0.10 [—0.02,0.21]). The suitability of these indexes to crop water 

status diagnosis can be linked to pigmentation changes in drought-affected tissues 

(Haboudane; Miller, et al., 2002). Just as for M C A R I , their increased values asso

ciated with the 'Viking' cultivar can be linked to its water-spender management 

strategy. In addition to the vegetation index mean values, their standard deviations 

differed across the two cultivars. A n explanation linking those effects to the differing 

water management strategies seems dubious. More plausibly, they were caused by 

additional cultivar properties, in particular those related to the leaf surface and struc

ture of the forming canopy (Mishra et al., 2017). 

The influence of the watering regimes on the leaf spectra was captured 

by the mean values of several vegetation indexes. Unsurprisingly, particularly 

large differences were obtained for the watered:dry contrast. The RGI index 

exhibited high sensitivity in 'Cadeli', with its values lower in the control plants 

( E S w a t e r e d _ d r y = —0.96 [—2.21,0.21]). The ESs obtained for both cultivars were 

in agreement with RGI increase in maize exposed to drought (Sun et al., 2018). 

The potential usefulness of this index is further illustrated by its strong negative 

correlation to leaf water status indicators investigated by Rodriguez-Pérez et al. 

(2007) in a commercial vineyard. Water availability had a positive influence 

on the M T C I , RNDVI , and GI indexes in the 'Cadeli' cultivar, with the effect 

not as strong as for RGI, but more precisely estimated. The RNDVI difference 

( E S w a t e r e d _ d r y = 0.19 [—0.01,0.41]) was similar in magnitude to the spring wheat 

cultivars responses reported by Gutierrez et al. (2010). Although RNDVI was origi

nally developed for woody species (Gitelson; Merzlyak, 1994), in light of the above 

findings, it seems to be also suited to OSR cultivation. 

The variation in RGI and PSRI vegetation indexes exhibited sensitivity to 

the difference between the dry and control leaf spectra in 'Cadeli'. The esti

mated multiplicative treatment effects were E S w a t e r e d / / d r y ( T = 0.10 [0.07,0.16] 

and 0.10 [0.06,0.17], respectively. They were weaker in 'Viking' plants. The 

variation in the majority of the remaining indexes were affected by the discussed 

treatment contrast for at least one of the cultivars. Several indexes revealed 

the difference between the rewatered and dry treatment, particularly PSRI 
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( E S r e w a t e r e d / / d r y C T = 0.33 [0.16,0.68] for 'Cadeli'). PSRI was proposed by Merzlyak 

et al. (1999) as an indicator index of leaf senescence, and was useful in discerning 

between barley drought senescence classes in the Behmann; Steinriicken, et al. 

(2014) study. The obtained PSRI standard deviation sensitivity to the contrasting 

watering regimes in 'Cadeli' can be linked to the source-sink character of the leaf 

senescence process (Munne-Bosch et al., 2004). 

T C A R I / O S A V I exhibited a strong response to the watered:rewatered contrast 

in both cultivars ( E S w a t e r e d / / r e w a t e r e d ( T = 0.40 [0.28, 0.55] for 'Cadeli'). Its formulation 

allows to disentangle the effect of chlorophyll and L A I (Haboudane; Miller, et al., 

2002), as demonstrated by Haboudane; Tremblay, et al. (2008) and Perry; Roberts 

(2008). This is a valuable property, considering that chlorophyll content can increase 

in leaves as they shrink in drought conditions (Penuelas; Gamon, et al., 1994; Linke et 

al., 2008). As the most striking finding, all of the affected indexes exhibited variation 

decrease with an improving water availability. This remarkable consistency corrob

orates the relationship between the stress level and symptom variability mentioned 

by Kruschke et al. (2017). In the light of this finding, vegetation index standard de

viations appear to be sensitive stress indicators in the context of drought diagnosis 

using proximal HS imaging, perhaps more so than index means. 

Regardless of the spectra pre-processing, no separation of the cultivars was ob

tained using the means of the principal component scores. However, the comparison 

of the first principal component (PCI) score standard deviations revealed less varied 

values for the watered 'Viking' plants relative to the 'Cadeli' cultivar with MSC pre

processing ( E S V i k i n g / / C a d e l i a — 0.53 [0.32,0.96]). This pattern can be explained by 

referring to the higher stress level of the latter genotype (Kosova et al., 2018). MSC 

is known to remove some scatter and baseline shift artifacts (Rinnan et al., 2009). 

In the present study, it might have mitigated the influence of variable illumination 

conditions on the captured HS data cubes. 

A consistent pattern of watering-treatment effect was apparent for the remain

ing pre-processing approaches. The variability of the P C I scores was found to be 

higher in the watered regime than in both dry ('Cadeli') and rewatered plants (both 

cultivars). When the latter two treatments were compared with each other, the dry 

spectra appeared to be more variable. Similarly to the T C A R I / O S A V I standard 

deviation, the observed pattern may reveal a trace of a past severe drought episode 

in a seemingly healthy and well-hydrated crop. 
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6.2 Fusarium head blight detection from spectral measurements 

in a field phenotyping setting 

This section is adapted from Zelazny; Chrpovd, et al. (2021), previously published by 

Elsevier Biosystems Engineering. 

Lower F H B VSSs were associated with increased red reflectance and the low

ered NIR shoulder next to the red edge region. There was a successive blue shift 

as the ratings decreased towards the value of 4, and a qualitative change in the sig

nature shape for the three lowest VSSs. Here, the curves assumed an almost linear 

shape in the VIS and red-edge regions and beyond. The wax-ripening later pheno-

logical phase was characterized by increased green and red reflectance relative to 

the milk-ripening phase. 

The increase in VIS-region indicates pigment breakdown in the presence of fungi 

(West; Bravo, et al., 2003; Morin et al., 2017; Saccon et al., 2017). This agrees 

with the F H B "bleaching" symptoms (McMullen et al., 2012; Bauriegel; Herppich, 

2014; Ma et al., 2020). The observed red-edge displacement towards the shorter 

wavelengths is also well-described (Martinelli et al., 2015; West; Canning, et al., 

2017), as is the NIR reflectance decrease (Hamid Muhammed, 2005; Alisaac et al., 

2018; Mahlein; Alisaac, et al., 2019; Zhang; Wang; Lin; Y in , et al., 2020; Zhang; Chen; 

Yin , et al., 2020). The qualitative change in spectral signature shape in the greatest 

disease severities suggests the onset of a new biological process, in particular the 

spikes becoming dry (Hamid Muhammed, 2005). 

Most pre-processing schemes retained the possibility of discerning at least 

the curves corresponding to the lowest or highest infection levels. Subtraction and 

division resulted in the top-rated spectra following the horizontal line centered 

at 0 and 1 value respectively. The SNV yielded three bundles of curves, while 

prepending it with subtraction amplified the curve separation in the red-edge 

region, while suppressing the SWIR signal and introducing noise. Prepending the 

SNV with division also gave "noisy" signatures, and transformation adapted from 

Whetton; Waine, et al. (2018) resulted in a tight gradient. 

While 100% correct VSS ratings within two-point error tolerance were pre

dicted for large fractions of the test data partitions, predictions were poor in 

all zero-tolerance scenarios. However, relatively high performance was associated 

with the early-date predictions regardless of spectral data timing provided one-point 

VSS error was permitted. One VSS point difference in this study indicates disease 

symptom difference of approximately ten percentage points. Although this error 

allowance is much greater than errors reported in other F H B proximal sensing 
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experiments, some authors (Hamid Muhammed, 2005; Dammer et al., 2011; Jin 

et al., 2018) made no attempt to discriminate between disease severity levels or 

transformed the disease severities to binary scale prior to model training (Liu; 

Dong; Huang; Du; Ma, 2020; Ma et al., 2020). 

A field phenotyping study by Qiu et al. (2019) estimated individual spike sur

face area percentages with visible F H B symptoms from R G B imagery. That process 

closely matched the expert rating procedure. The authors mentioned the "optimum 

performance" of their model but provided no numerical measures to enable compar

ison with other studies. This was followed by Su et al. (2021) proposal of a refined 

approach for application to 55 wheat genotypes. Although the authors reported neg

ative prediction bias when disease severity was quantified on a 14-point scale, some 

performance measures exceeded 70 %. This suggests that R G B imagery combined 

with advanced processing is sufficient to phenotype F H B resistance in the field; at 

least when the disease is visible to the naked eye. However, it is important to note 

that the ground truth in this experiment was obtained by manually labeling the 

images, rather than based on field-rating by an expert, who would examine all sides 

of the spikes. In a deep-learning study with six-point ground-truth scale, Zhang; 

Wang; Gu, et al. (2019) reported accuracies high enough to justify replicating their 

experiment and testing the proposed approach in a phenotyping setting. 

The S V M accuracy approached 100 % when two VSS-levels difference was permit

ted, and this was sufficient to reliably distinguish between low, medium, and heavily-

infected cultivars. This result was similar to the four-level classification tested by 

Huang; Wu, et al. (2019), where the authors had reported greatest accuracies in 

the 85-90 % range. Despite its coarseness, this differentiation is sufficient for certain 

field phenotyping tasks; including the preliminary screening of disease-intolerant 

breeding lines (Bock et al., 2010). 

An attempt was made to resolve the hypothesis of deteriorated model quality 

when late-date spectral signatures are replaced with early-date spectra. To that end, 

the prediction success probabilities corresponding to the different scanning dates 

were compared with the same VSS rating dates maintained. There was a positive 

effect of an earlier spectral campaign when subtraction or division pre-processing was 

applied after median aggregation to determine infection severity with single-point 

tolerance. The classification success odds increase was below 30 % when a predictive 

model was trained to the VSSs collected on the early date. On the other hand, a 

possible greater than 50 % increase was obtained for the late-date ratings. The early 

date corresponded to the milk-ripening stage, which Whetton; Hassall, et al. (2018) 

identified as being optimal for Fusarium infection severity prediction using PLSR 
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in laboratory. However, the diseased spikes have similar color to spikes unaffected 

by F H B as the crop matures, as reflected in temporal difference between spectral 

curves obtained in the present study. This ripening adversely affects spike detection 

in images (Fernandez-Gallego et al., 2018), and is detrimental to disease severity 

estimation accuracy (Bauriegel; Giebel, et al., 2011; Dammer et al., 2011; Qiu et al., 

2019). 

The effects of pre-processing schemes on the S V M prediction quality were exam

ined, with the raw-spectra scenarios forming the baseline for comparison. The pre

diction performance remained almost the same if an error of two VSS points was 

allowed, and the response was weak for models trained to the early-date infection 

ratings when the tolerance was reduced to one point. Slight, but consistent perfor

mance decreases were associated with median aggregation followed by subtraction 

and division combined with SNV, and also with the pre-processing adapted from 

Whetton; Waine, et al. (2018). The detrimental effects of these schemes were con

firmed by the zero-error tolerance scenario, where the probabilities of a correct VSS 

assignment were reduced by 63% [32, 80], 56% [19, 76], and 58% [22, 78] when 

the milk-ripening phenological phase was involved. It was likely due to the "noisy" 

spectra resulting from these combinations. 

Mean spectra aggregation preserved the negative effects of subtraction followed 

by SNV and the scheme adapted from Whetton; Waine, et al. (2018), which yielded a 

tight spectral VSS gradient. Although the ratings were consistently ordered, the sig

natures crossed and overlapped. This effect and the gradient steepness may have 

weakened the disease severity signal. Some evidence of accuracy increase with SNV 

was obtained. This transformation can reduce noise resulting from light beam scat

tering, and it was employed in some studies on Fusarium-affected kernels (Femenias 

et al., 2020). It can be recommended if both spectra acquisition and VSSs ratings 

are performed at the milk-ripening stage, 

6.3 Application of feature selection for predicting leaf 

chlorophyll content in oats from HS imagery 

This section is adapted from Želazny (2020), previously published by Estonian Agri

cultural University, Faculty of Agronomy Agronomy Research. 

When the experimental plot spectra were matched to the ground-truth data, high 

leaf chlorophyll concentration could be associated with increased NIR reflectance 

and a steep red edge. Both these regions have been repeatedly deemed as important 

for chlorophyll prediction by earlier studies (Govender et al., 2009; Main et al., 
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2011). On the other hand, contrary to expectation, no apparent red-edge shift could 

be discerned. 

Despite the variety of existing PLS flavors and implementations, the attempt to 

reproduce the validation results of the Meij et al. (2017) paper was successful. Only 

N R M S E exhibited a slight deviation from the original value. However, the high num

ber of bands contributing to the model made the "full-spectrum" approach infeasible 

for practical application — at least until HS imagers would become affordable (Aasen 

et al., 2018). In addition, model tuning set the number of the latent variables to five, 

making an insight into its workings challenging. 

The cross-validation of models that employed filter feature selection resulted in 

two local error minima. The absolute minimum corresponded to 19 input bands, 

a much lower number than for the reference model, but still too high for developing 

an affordable specialized device. What is more, the model exhibited higher validation 

error and involved even more latent variables (seven) than the reproduction model. 

The second minimum reduced this set to three wavelengths, a seemingly good 

middle-ground between technical feasibility, model interpretability, and its expected 

estimation error. The validation statistics improved, corroborating the positive in

fluence of feature selection on prediction accuracy (Mehmood et al., 2012). The first 

PLS component loading of this tuned model corresponded to the NIR reflectance, 

in accordance with the visual assessment, above. The second component could be in

terpreted as canopy darkness, and linked to the absorbance in the photosynthetically-

active spectral region. The third component value was linked to canopy blueness. 

Wavelength combinations similar to that picked by the filtering algorithm sel

dom occur in vegetation index formulations. They can be found in the Enhanced 

Vegetation Index (Gao; Huete, et al., 2000), the Structure Insensitive Pigment Index 

(Penuelas; Baret, et al., 1995), the Modified Simple Ratio, and the Modified Nor

malized Difference (mND 7 0 5 ) (Sims et al., 2002). In the study by Main et al. (2011), 

the first three indexes fared poorly when used for predicting chlorophyll content 

in maize leaves at various developmental stages. 

Regarding m N D 7 0 5 , it was among the best-performing indexes in Main et al. 

(2011) and in Miao et al. (2009) - - also a maize study. On the other hand, it 

was reported as a poor predictor of chlorophyll content in rice (Moharana et al., 

2016). The m N D 7 0 5 index formula includes a blue band, which accounts for specular 

reflectance (Sims et al., 2002). The third latent variable of the discussed PLS model 

might have played the same role, or it might have adjusted for Rayleigh scattering. 

The forward selection within the wrapper approach stopped after picking 

one band (775 nm), thus reducing the PLS model to a classical regression model 
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with a single independent variable. The selected wavelength lied in the NIR spectral 

region, in agreement with the observation from the visual assessment. According 

to the validation statistics, despite extreme simplicity, the model performed 

surprisingly well in terms of R M S E . However, the low R 2 value put in question its 

practical utility. 

6.4 Calibration spiking of MIR-DRIFTS soil spectra 

for carbon predictions using C P L S R and log-ratio 

transformations 

This section is adapted from Želazny; Šimon (2022), previously published by MDPI 

Agriculture. 

Among the two target sites, Ústí nad Orlicí spectral signatures were highly var

ied. In certain regions, the signatures extended beyond the envelope of the library 

samples regardless of pre-processing, whereas the Janovice spectra were enveloped 

by the library spectra. Also the C measurement variation was high in Ústí nad 

Orlicí, not much smaller than that of the library samples despite the different geo

graphical scales. This pattern indicates high spatial heterogeneity of Ústí nad Orlicí 

district soils. Consequently, it corroborates the need for dense soil sampling to map 

and monitor SC in the conditions of Czech Republic and, arguably, beyond (Paus-

tian et al., 2019; Smith; Soussana, et al., 2019). The need to develop cost-effective 

assessment methods follows this consideration (Paustian et al., 2019). Janovice C 

measurements exhibited an apparent mismatch relative to the reference library mea

surements. Both T C and H W C were high here, and the only library samples with 

similar characteristics were a group of experimental plots assigned to compost fer

tilization treatments. 

Regardless of the data subset, the raw measurements were skewed towards lower 

values. The skew, and to a degree high kurtosis, were reduced after the ilr transfor

mations. As high performance of a P L S R model can be attained when the predicted 

variable has a Gaussian distribution, the obtained effect provides evidence of com

patibility of log-ratios with P L S R predictive modeling. 

The predictive performance of the PLSR models varied substantially. Although 

negative values were obtained for the worst models, models corresponding to R 2 

in excess of 0.80 could be found for each ilr coordinate and target site combination. 

According to Janik; Skjemstad, et al. (2007), this is a high quality result. How

ever, after aggregating the values across all data partitionings, R 2 exceeded 0.50, 

still an unsatisfactory value, only for Janovice while predicting i l r T C , whereas both 
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i l r H W C and Ústí nad Orlicí scenarios gave poor results. The worst negative biases 

and R M S E P values were comparable, amounting to 0.4-0.5 for i l r T C and 0.2-0.3 

for i l r H W C . In terms of raw component values, these correspond to approximately 

1.30 T C percentage points and 0.09-2.79 m g g - 1 H W C , depending on the baseline 

H W C value. The best models had R M S E P of only 0.04 for i l r T C (approximately 

0.12ppTC) and 0.03 for i l r H W C (0.34mgg _ 1 H W C for high value range and less for 

low value range). More conservative estimates, based on partitioning medians, sug

gested a possibility of predicting i l r T C with an error of 0.13 (0.38 ppTC) and 0.08 

(0.23 ppTC) in Ústí nad Orlicí and Janovice, respectively. For i l r H W C , the corre

sponding values were 0.11 and 0.04 (0.04-1.23 and 0.01-0.45 mgg" 1 HWC). Models 

with R P D or RPIQ above 2.5 or even 3.0 were obtained in some scenarios and test 

data partitions, described in literature as good and excellent predictions (Saeys et 

al., 2005). However, typically one could not expect the performance higher than 1.7, 

that is, barely sufficient to estimate the values even as high or low. 

These evaluations do not corroborate the purported potential of MIR-DRIFTS 

to become a cost-effective yet reliable laboratory method for SC assessment (Viscarra 

Rossel et al., 2006; Reeves III, 2010; Kuang et al., 2012; Soriano-Disla et al., 2014; 

Seybold et al., 2019). Bellon-Maurel et al. (2011) and Barra et al. (2021) summarized 

model quality estimates for predicting T C and OC from MIR spectra. Although 

highly-performing models prevail in reported research, a number of SC studies suffer 

from methodological issues that arguably bias the results towards higher accuracy. 

In addition to that, not all models have been reported to perform well. The Bellon-

Maurel et al. (2011) review includes formulations that resulted in modest R P D 

values, similar to those obtained in the present study. In the more recent Page 

et al. (2013) work, MIR-DRIFTS substantially underestimated OC loss over time 

in a long-term experiment. Moreover, the estimated effect of evaluated management 

treatments contradicted that inferred using traditional OC determination. Calderón 

et al. (2017) predicted OC in several crop experiments using PLSR, and obtained 

R M S E P of 0.67-0.80 pp, that is beyond the upper R M S E P conservative bracket 

for T C in the present study. 

P L S R models trained to the spectral library, that is, with zero target-site sam

ples, performed poorly, especially for Janovice. Training of the models to a selection 

of target-site samples, only, while excluding the spectral library, had a clearly pos

itive effect on all measures even with only 4 training samples. This effect can be 

linked to the absence of samples with compost fertilization in the training dataset, 

analogously to the effect observed by Calderón et al. (2017) after training a model 

without an atypical site found in their data. 
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In Janovice scenarios with PLSR2 models, augmenting the library samples 

with 25-fold weighed spike samples yielded results competitive with the local 

approach. R 2 up to 0.71 could be attained with only 4 spiking samples for i l r T C -

in contrast to R 2 of corresponding local-only models, which was always negative. 

This effect is similar to the OC prediction pattern with NIR spectroscopy obtained 

by Guerrero; Stenberg, et al. (2014) while increasing the number of target samples 

from 8 to 16 and 32. It is also in line with the hypothesis on calibration spiking 

potential to reduce the number of necessary reference samples. 

A pattern of Kennard-Stone leverage sampling inferiority could be discerned 

for Ústí nad Orlicí. This leverage sampling scheme tends to pick distant observations, 

located at the edges of a hyperspace. It also operates incrementally, as opposed to 

conditioned Latin hypercube, in the case of which the spectra are picked at once 

and can be more representative of a dataset (Ng et al., 2018). When applied to the 

heterogeneous Ústí nad Orlicí dataset, Kennard-Stone might have picked outlier 

spiking samples, perhaps corresponding to soils with atypical textures (Stumpe et 

al., 2011) or mineralogy (Reeves et al., 2001; Calderón et al., 2017). 

Contrary to the hypothesis, the application of the C P L S R method was clearly 

detrimental for the prediction quality of both i l r T C and i l r H W C in Janovice samples 

compared to the standard approach. Sankey et al. (2008) attempted to predict SC 

from VisNIR spectral data using boosted regression trees for different levels of lo

cal sample weights relative to the weights of the samples in the reference library. 

The authors expressed skepticism with respect to their results, in which the model 

performance decreased substantially for one target site. Although a positive relation

ship was observed for another, the obtained improvement was modest. Still, given 

the limited number of studies devoted to the topic so far, it seems worthwhile to 

further explore effects of embedded weighing with other data and other classes of 

predictive models (Janik; Forrester, et al., 2009; Deiss et al., 2020). 
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Chapter 7 

Conclusions and recommendations 

This chapter is adapted from Želazny; Lukáš (2020), previously published by MDPI 

Remote Sensing; Želazny; Chrpová, et al. (2021), previously published by Elsevier 

Biosystems Engineering; Želazny (2020), previously published by Estonian Agricul

tural University, Faculty of Agronomy Agronomy Research; and Želazny; Šimon 

(2022), previously published by MDPI Agriculture. 

According to the latest literature, the superiority of hyperspectral measurements 

relative to multispectral measurements is unequivocal with respect to crop stress de

tection. However, HS data carry with them the "curse of dimensionality" problem, 

can be more affected by noise, and there is an increased risk of predictive model over-

fitting. Therefore, it is imperative that hyperspectra processing workflows continue 

to be developed, while those already published need to be validated by multiple 

teams in a range of conditions to ensure their robustness. 

In imaging solutions, large volumes of HS data cubes pose a computational chal

lenge, and the acquisition equipment is expensive. Before these issues become ad

dressed, a focus on small sets of pre-selected narrow bands captured by more afford

able specialized devices can be a feasible middle path. In the study with oats, it 

was possible to train a PLSR model that predicted leaf chlorophyll from only three 

spectral inputs. The pigment concentration could be estimated from NIR reflectance, 

canopy darkness, and its blueness. Chlorophyll content estimation is of practical use 

for precision agriculture, as crop stress occurrence triggers pigment deterioration. 

A relatively simple sensor for airborne field mapping or for on-line mapping during 

a tractor operation can, therefore, be envisioned exploiting the model. 

The robustness of the solution remains to be investigated using an ensemble of 

dataset partitionings and ground truth obtained from laboratory analyzes instead 

of a SPAD chlorophyll meter. HS patterns of chlorophyll-deficient oats obtained 

from airborne imagery mostly matched those described in literature for vegetation 

in general. This increases the odds that a model could be subsequently transferred 
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also to other crop species. 

In the study where a HS camera was employed to acquire data cubes of water-

stressed OSR plants, a S V M accurately distinguished between healthy leaf zones, 

those bearing signs of drought discoloration, and the background. At the same time, 

the process required time-consuming pixel labelling to train the classification model, 

and possibilities of reducing this effort still need to be tested. There was an increase 

in the discoloured leaf surface area in the 'Viking' cultivar when subjected to drought 

stress, a pattern that would corroborate the higher susceptibility of this genotype. 

Future studies should include additional cultivars representing each water manage

ment strategy to control for nuisance effects of traits unrelated to OSR drought 

tolerance. 

Several vegetation index means responded to the difference between the control 

and water-deprived plants, especially RGI, M T C I , RNDVI, and GI; but the most 

striking finding was a consistent increase in the multiple index standard deviations to 

worsening of the hydric regime. This result suggests higher sensitivity of the vegeta

tion index variability measures relative to the means for OSR drought stress diagno

sis. Vegetation indexes are frequently derived from only two spectral bands. The pro

posed approach could then, similarly to feature selection, contribute to the develop

ment of affordable crop stress sensors. However, it needs to be noted that imagery 

with high spatial resolution is required to capture within-leaf reflectance variability. 

For this reason, the imager would be primarily suited to proximal applications -

for example, mounted on agricultural machinery or a field phenotyping robot. 

Additional factors can be introduced in follow-up studies to verify the robustness 

of the findings and their application to earlier drought stress detection. A single 

campaign could be replaced by a time series to capture the temporal development 

of the drought stress and of the spectral responses. Another modification would be 

to restrict the watering of the plants at an earlier developmental phase. More insights 

could be obtained by augmenting the new dataset with biochemical and physiological 

measurements. Regardless of the study extensions, the observed patterns need to be 

replicated in an independent experiment with a larger sample. 

In the winter wheat field phenotyping study, the patterns in the acquired spectral 

signatures of FHB-infected spikes could be explained by plant stress biology and 

linked to the disease visual symptoms. These agreed with the spectral patterns 

obtained in other F H B studies, and this supports utility of a spectroradiometer with 

a contact probe for F H B phenotyping applications. Ordinal S V M models applied 

to the raw spectra yielded predictions with confident distinction of low, moderate, 

and high disease severity at the milk-ripening developmental phase. The proposed 
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approach enables screening of unpromising breeding lines while developing new crop 

cultivars. Other predictive models require testing for applications that demand finer 

F H B severity ratings. In the context of precision agriculture, the solution could be 

adapted to facilitate separate harvest of healthy and FHB-infected grains. 

Spike-drying discolor masked the disease signal at the wax-ripening developmen

tal stage. Predictions at this phase can be improved by subtracting healthy-spike re

flectance measurements from the analyzed signatures or by division. However, gains 

from these pre-processing schemes must be compared to the costs of additional scans. 

While deep learning may be a more suitable alternative for F H B severity estimation, 

the current published results require replication with multiple cultivar datasets and 

avoid over-simplification of ground-truth data. Further investigation is also required 

to determine if a single trained model can be applied year-to-year to reduce the 

reference data collection effort. 

In the soil spectroscopy study, conservative estimates of PLSR model perfor

mances were lower than the values typically reported for MIR-DRIFTS SC predic

tions. Introduction of spiking samples combined with heavy weighing and PLSR2 

modeling was associated with an increase of model quality. It, therefore, appears 

to be a promising cost-effective and environmentally-friendly SC monitoring solu

tion. On the other hand, application of Kennard-Stone leverage sampling is not 

recommended, at least for heterogeneous datasets. The evaluated application of 

MIR-DRIFTS spectroscopy is primarily relevant for large-scale SC inventories. How

ever, C lability mapping can also be of interest to precision agriculture practitioners, 

as a factor to be accounted for in variable-rate fertilization. 

Not enough representative training data were available to satisfactorily predict 

SC properties in the more geographically extensive district-scale dataset. The large 

training-dataset requirement calls for international cooperation to standardize data 

collection and treatment workflows, harmonize spectral libraries, and facilitate their 

use. Log-ratio transformation of SC laboratory reference measurements improves 

data distributional properties and, therefore, is compatible with PLSR modelling. 

Accounting for carbon saturation limits, and treating spectral measurements as com

positional are potential further refinements of this approach. 

Early crop stress detection based on HS reflectance is a broad research sub

ject, and as such it could benefit immensely from Open Science practices to avoid 

work duplication, facilitate predictive workflow validation, synthesis of the findings, 

and their transfer to the industry. For this reason, the studies included in this dis

sertation aimed not only to address pertinent research questions and explore novel 

solutions, but also to share the collected data, analyze them in a reproducible fashion, 
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and avoid research bias. In particular, the pre-registered F H B study demonstrates 

that with proper tooling, some of the recommended best Open Science practices 

can be followed without adding excessive burden on researchers. The material ac

companying the publications included in this dissertation thesis can be consulted 

by teams interested in making their work more transparent and accessible to the 

research community. 
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Drought Stress Detection in Juvenile Oilseed Rape 
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« check for updates 

A b s t r a c t : Hyperspectral imaging (HSI) has been gaining recognition as a promising proximal and 
remote sensing technique for crop drought stress detection. A modelling approach accounting 
for the treatment effects on the stress indicators' standard deviations was applied to proximal 
images of oilseed rape—a crop subjected to various HSI studies, with the exception of drought. 
The aim of the present study was to determine the spectral responses of two cultivars, 'Cadeli' and 
'Viking', representing distinctive water management strategies, to three types of watering regimes. 
Hyperspectral data cubes were acquired at the leaf level using a 2D frame camera. The influence of 
the experimental factors on the extent of leaf discolorations, vegetation index values, and principal 
component scores was investigated using Bayesian linear models. Clear treatment effects were 
obtained primarily for the vegetation indexes with respect to the watering regimes. The mean 
values of RGI, MTCI, RNDVI, and GI responded to the difference between the well-watered 
and water-deprived plants. The RGI index excelled among them in terms of effect strengths, 
which amounted to -0.96 [-2.21,0.21] and -0.71 [-1.97,0.49] units for each cultivar. A consistent 
increase in the multiple index standard deviations, especially RGI, PSRI, TCARI, and TCARI/ OSAVI, 
was associated with worsening of the hydric regime. These increases were captured not only for the 
dry treatment but also for the plants subjected to regeneration after a drought episode, particularly by 
PSRI (a multiplicative effect of 0.33 [0.16,0.68] for 'Cadeli'). This result suggests a higher sensitivity 
of the vegetation index variability measures relative to the means in the context of the oilseed rape 
drought stress diagnosis and justifies the application of HSI to capture these effects. RGI is an index 
deserving additional scrutiny in future studies, as both its mean and standard deviation were affected 
by the watering regimes. 

K e y w o r d s : imaging spectroscopy; Rikola; irradiance; Brassica napus L.; pot experiments; reproducibility 

1. I n t r o d u c t i o n 

Given the continuing increases in average temperatures [1] and projections of more frequent and 
severe droughts in agricultural regions [2,3], water deficiency has been among the most extensively 
studied crop stress factors [4]. In pot experiments, crop responses to drought can be investigated by 
varying the watering regime and comparing the obtained plant reactions across the treatments [5-8]. 
A n alternative approach is to exploit the variability of water management strategies exhibited by 
individual genotypes [9,10]. 

Several dehydration avoidance mechanisms have been described in crops [11,12]. Plants can 
rapidly respond to a water deficit by closing their stomata, which reduces the leaf transpiration. As a 
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trade-off, this reduction leads to a simultaneous decrease in the photosynthesis rate, related to limited 
C O 2 assimilation [13,14]. Differentiation of crop cultivars with respect to their stomatal conductance 
regulation has been proposed. Plants that manage their water resources in a conservative way and 
maintain a steady C O 2 fixation rate, affected by moisture availability to a limited extent, have been 
termed as water-savers. Water-spenders, on the other hand, maximise their C O 2 assimilation, depleting 
the available water resources at the onset of a drought due to a delayed closure of the stomata [15,16]. 
Cultivars with a high baseline stomatal conductance tend to not exhibit a mid-day depression in 
photosynthetic rates. They are capable of sustaining a high photosynthesis rate and can avoid heat 
stress due to the cooling action of the transpiration, provided that water is available [17]. 

Stressed and healthy vegetation differ with respect to their spectral reflectances, with the effects 
of stress detectable before they become apparent to the naked eye [18-20]. The visible spectral 
region is affected by stress-induced changes in pigment concentrations and activities. These changes 
include anthocyanin and (relative) carotenoid accumulation aimed at protecting the photosynthetic 
apparatus and pigment breakdown, which accompanies chloroplast deterioration caused by oxidative 
stress [13,21-23]. As leaf mesophyll cells lose their turgor and shrink, there can be a temporary 
increase in the near-infrared reflectance, eventually followed by a decrease below the normal level [19]. 
The red-edge shifts towards shorter wavelengths and becomes less steep [20,24,25]. 

Among the spectral methods, imaging spectrometry (hyperspectral imaging) has been gaining 
recognition as a promising proximal and remote sensing technique for crop status assessment [26-28]. 
Its important advantage over the more traditional point spectrometry is the availability of precise 
spatial information [26], which can address the mixed spectra problem in close-range applications. 
This advantage is accomplished by using spectral segmentation methods [29], which enable the 
separation of the object and background pixels [30], or the identification of pixels affected by 
unfavourable illumination effects [6]. Furthermore, the presence and distribution of geometric features 
can be analysed in the image [29,31]. 

Studies devoted to drought effects on crop hyperspectra have been primarily focused on 
the species that dominate the global commodity market. Those species include maize [6,30] and 
other staple cereals [7,32,33]. A relatively large amount of attention has also been given to fruit 
crops [18,34,35]. On the other hand, numerous other species have so far been largely neglected by the 
studies, including those of regional importance. 

Due to its nutritional [22,36,37] and technical [37,38] value, oilseed rape (Brassica napus L.; hereafter, 
OSR) is an important crop in many parts of the world. It is widespread in North America [39,40], 
China [40], Europe [39], and India [41]. OSR is susceptible to drought [12,22] and, along with other 
brassicas, the future cultivation of this species is endangered by dry spells [39,42]. 

The reproductive phase of OSR has been associated with an especially high sensitivity [22,43], 
but it can also be permanently affected by water deprivation earlier in its development. This possibility 
justifies extending studies to juvenile plants and to crop recovery after conclusion of the drought 
period, which is an underexplored research area [5]. Muller et al. [44] compared the physiological 
status of OSR plants that had been water-deprived at the shooting developmental stage and then 
rewatered with specimens receiving irrigation for the entire duration of the experiment. The treated 
plants exhibited reduced productivity and their physiological profiles were affected. The physiological 
changes in even younger plants were studied by Kosova et al. [45] and Urban et al. [15]. 

In addition to the physiological parameters, a trace of a drought episode can be detectable in 
a spectral signature of the affected crop. Such a possibility was demonstrated by Linke et al. [8] for 
wheat and by Sun et al. [5] for maize. The authors tested the changes of several vegetation indexes in 
plants exposed to repeated drought and recovery cycles. They observed a full recovery after the first 
cycle, but the second recovery was incomplete. As a possible cause, the authors suspected progressing 
cell deterioration due to oxygen radicals, which could not be neutralised in the absence of carotenoids 
due to their removal in the course of the preceding stress episode. 
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OSR has been the subject of various hyperspectral imaging studies. Based on field experiments, 
Piekarczyk et al. [46] and Zhang and He [47] attempted to predict its yield using vegetation indexes 
and partial least squares regression, respectively. Kumar et al. [41] cite several publications devoted 
to OSR pests and diseases. Xia et al. [37] analysed the imagery of water-logged plants. The effects of 
herbicide exposure were studied by Kong et al. [48]. In contrast to these stress factors, the possibilities 
of capturing the OSR response to drought using a hyperspectral camera remain unaddressed. 

As highlighted by Kruschke and Liddell [49], "stressors [... ] can increase the variance of a group 
because not everyone responds the same way to the stressor". In the context of close-range crop 
hyperspectral imaging, the "group" can refer to plant foliage or leaf tissue composed of individual 
leaves and cells, respectively, each responding to the change in the environment in a distinct way. 
Especially characteristic for stress-induced leaf senescence is the source-sink differentiation between 
the older and younger leaves [23]. The potential of imaging spectrometry to provide an insight into 
the spatial variation of stress symptoms across crop foliage was demonstrated for drought [7,32,33,50], 
nitrogen deficiency [51], pest infestation [50], and herbicide exposure [48]. OSR is characterised by 
relatively large leaves, even in early developmental phases. Hyperspectral imaging that captures 
leaf-level spectral variation may, therefore, prove to be a suitable approach for water deficiency 
detection in this crop [32]. 

Studies on crop responses to stress conditions frequently employ traditional experimental designs, 
such as a randomised block design, coupled with linear modelling for statistical inference [42,43,52]. 
The frequentist approach prevails in the fitting and evaluation of these models. Various authors 
noted the shortcomings of the frequentist statistics, and have advocated Bayesian methods as an 
alternative [49,53,54]. Historically, first the lack and then the high computational demands of 
suitable numerical methods posed obstacles towards a wider adoption of the Bayesian paradigm [55]. 
These hindrances have been largely removed by an increase in computer speeds [55,56], followed by 
improved accessibility of parallel computing [57], and the availability of software with capabilities 
suited to the needs of the scientific community [55,58-60]. 

One major appeal of Bayesian statistics is the ease with which interval estimates of model 
parameters can be quantified, even for complex models. Notably, it is possible to obtain estimates 
with respect to not only the mean values but also standard deviations, shape factors, or hurdle 
values—again, also for complex models [49]. In the context of stress detection with imaging 
spectroscopy, this capability can be readily exploited to assess the influence of the stressor on the 
spectral variation across the foliage of the affected plant. 

The aim of the present study is to determine the spectral response of juvenile OSR representing 
two water management strategies to three types of watering regimes. The study is performed at the 
leaf level by employing a high-resolution hyperspectral camera. The influence of the OSR cultivars and 
watering regimes on the extent of leaf discolourations, vegetation indexes, and principal component 
scores are investigated. Bayesian statistics are used to obtain the interval estimates of the treatment 
effects with respect to the mean value and standard deviation differences. 

2. M a t e r i a l a n d M e t h o d s 

2.1. Plant Material and Experimental Factors 

The experiment was based on winter OSR plants of the 'Cadeli' and 'Viking' cultivars. 
The two genotypes differ in terms of their drought-coping strategies, with 'Cadeli' representing 
the "water-saver strategy" and 'Viking' exhibiting the "water-spender strategy", as revealed by their 
physiological [15,45] and proteomic [15] profiles. This difference is related to the origin of the cultivars, 
which is France for 'Cadeli' and Germany for 'Viking' [15]. 

The study was conducted on the premises of the Crop Research Institute in Prague-Ruzyně 
(Czech Republic). The seeds of both cultivars were obtained from OSEVA PRO s.r.o. (Opava, 
Czech Republic). Each seed was started on 11th May 2018 by placing it in a thermostat (Biological 
thermostat BT-120, Laboratorní přístroje Praha, Prague, Czechoslovakia) for two days set to 20 °C 
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The obtained seedlings were transplanted three days later to 14-cm diameter pots filled with 1.01 kg of 
potting mixture produced at the site. The seeds were topped with an additional 0.25 kg of the mixture. 
Each pot contained five seedlings of either of the cultivars. The potted plants were grown in a growth 
chamber (T-64, Tyler, Budapest, Hungary) in 18 °C to 20 °C, under a 16-h photo period, exposed to 
400umolm~ 2 s _ 1 irradiance up to the second leaf (BBCH 12) developmental stage. At that point, 
the watering regime experimental factor was introduced. 

The watering of the pots followed one of the three treatments: The control pots were watered 
daily to 70% of the substrate water capacity (SWC). For the pots in the dry treatment, the watering was 
reduced to 45% of the SWC, starting 14 days after the sowing, and 10 more days later the watering was 
stopped completely. The pots in the rewatered treatment were treated according to the same plan as 
the water-deprived plants, but after 5 days of suspended watering they were watered to 100% of the 
SWC to induct regeneration. The pots were grouped in the growth chamber according to the watering 
regime, which resulted in a lack of true replication of this factor. 

A total of n — 26 pots were used in the study. Table 1 depicts the pot numbers according to the 
two experimental factors. The uneven numbers across the treatment combinations stem from the fact 
that the material was used in another experiment, which involved destructive sampling. 

Table 1. O i l s e e d r a p e p o t c o u n t s u s e d i n t h e e x p e r i m e n t a c c o r d i n g to t h e e x p e r i m e n t a l t r e a t m e n t s . 

T h e p a r e n t h e s i s e d v a l u e s refer to the c o u n t s after e x c l u d i n g a l o w - q u a l i t y i m a g e . 

Watering Reg ime 
Cul t ivar 

C a d e l i V i k i n g 

d r y 6 6 
r e w a t e r e d 3 (2) 3 (2) 

w a t e r e d 5 3 

2.2. Image Acquisition and Pre-processing 

The imaging took place on 27 June 2018. By that time, the plants had attained the phase of 
3 to 4 leaves (BBCH 13, 14), and pigmentation changes due to water deprivation were apparent 
(Figure la). The images were collected between 14:45 and 15:45, outdoors, in natural light 
conditions. The illumination was variable, as illustrated by the radiant exposure measurements 
from a meteorological station located at the site (Figure 2), and there were periods of no direct sunlight. 
A photo tent was used to obtain diffuse illumination and create a wind barrier. 

The imager was a 2D frame hyperspectral camera (Rikola, Senop, Oulu, Finland), mounted on a 
tripod at the tent entrance (Figure lb). A n irradiance sensor was placed inside the tent to account for 
the variation in the illumination conditions. Its readings, expressed in relative units, varied between 
82 and 181 (Figure 2), reflecting the unstable light conditions during the campaign. A dark reference 
was obtained prior to the acquisition of the OSR images with the aid of a 50-mm black masking tape 
(T743-2.0, Thorlabs Inc., Newton, NJ, USA). Four pots—two per cultivar and placed at the tent bottom 
in an alternated manner against a background of black non-woven textile—were captured in each 
image. Since the number of pots in the rewatered treatment was not divisible by four, some of the pots 
were captured for a second time. Those extra pot images were not included in the analysed dataset. 
First, the dry plants were imaged, followed by the watered plants, and then followed by the rewatered 
plants. This ordering reflected the pot grouping in the growth chamber. The images of the plants were 
interleaved with images of Spectralon tiles with 2, 9,23,44, and 75% reflectance factors. The internal 
camera temperature was stable, in the 32.56 °C to 33.81 °C range. 

77 



Wiktor R. Zelazny and Jan Lukas: Drought Stress Detection in Juvenile Oilseed. 

Remote Sens. 2020,12, 3462 5 of 27 

Figure 1. M a t e r i a l u s e d i n t h e e x p e r i m e n t , (a) O i l s e e d r a p e i n p o t s 16 d a y s b e f o r e t h e s p e c t r a l 

d a t a c o l l e c t i o n , (b) I m a g i n g s e t u p w i t h t h e p h o t o t en t a n d t h e h y p e r s p e c t r a l c a m e r a o n the 

t r i p o d , (c) F a l s e - c o l o u r c o m p o s i t e r e n d e r i n g o f o n e o f t h e h y p e r s p e c t r a l d a t a c u b e s e m p l o y e d i n 

the p i x e l l a b e l l i n g . 

14:00 14:30 15:00 15:30 16:00 

Local time 

Figure 2 . R a d i o m e t r i c m e a s u r e m e n t s o f a m b i e n t i l l u m i n a t i o n d u r i n g t h e a c q u i s i t i o n o f the 

h y p e r s p e c t r a l i m a g e r y . T h e b l a c k l i n e represen ts r a d i a n t e x p o s u r e v a l u e s i n t e g r a t e d o v e r 10-s i n t e r v a l s . 

T h e r e d d o t s represen t r e a d i n g s f r o m a r e l a t i v e i r r a d i a n c e senso r a s s o c i a t e d w i t h the i n d i v i d u a l i m a g e s . 

The hyperspectral data cubes comprised 41 evenly spaced bands ranging from 503 to 
903 nm. The spatial resolution was 1010 x 1010 pixels and the radiometric resolution was 12 bits. 
The integration time was set to 30 ms. The pot rims were approximately 0.70 m away from the camera 
lens, resulting in a GSD of approximately 0.43 mm per image pixel. 
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Figure 3 depicts the imagery pre-processing and processing workflow. After the conversion from 
the digital numbers, Spectralon radiance values were sampled on a 20 x 20 pixel grid. The grid 
sampling was intended to reduce the effect of spatial autocorrelation and the computation time. 
For every band, a mixed-effect empirical line model [61] was fitted with a reflectance logit as the 
dependent variable, radiance as the independent variable, and pixel as the grouping variable (f i t ELM 
in Figure 3). The logit transformation accounted for the reflectance values being constrained between 0 
and 100% [62], and the grouping variable was introduced for the possibility of an uneven illumination 
of the scene during the acquisition process. A transformation of the radiance values to the reflectance 
values was performed by applying the obtained models to the individual spectral bands (pred ELM). 

In the next pre-processing step, the reflectance images were subjected to band registration (reg) 
to remove the effect of camera sensor misalignment [63]. The ORB algorithm was used for feature 
detection and description and was coupled with brute-force descriptor matching [64]. The band 
registration failed for one of the images of the rewatered plants, probably because of leaf movements 
from the wind. That image was excluded from the subsequent analyses (Table 1). 

In each of the plant images, the coordinates of three points along each pot circumference were 
identified by hand. From these, the pot centre coordinates and radii were derived. The radii lengths 
were then reduced by a factor of 0.95 to exclude the pot rims from the regions of interest, which were 
delimited as inscribed squares (crop). 

2.3. Pixel Classification and Evaluation of Class Size Proportions 

A random sample of 200 pixels was drawn from across all regions of interest to train and validate 
a classification model aimed at distinguishing between healthy (fresh) leaf zones and those exhibiting 
discolouration, which was attributed to drought. Due to an uneven number of pixels across the pot 
images, stratified sampling was employed. First, a pot was sampled, followed by a pixel within. 
The sampled pixels were subsequently hand-classified as either background, fresh-leaf, dry-leaf, 
or edge pixel, based on pseudo-RGB (R: 647nm, G: 563 nm, B: 503 ran) rendering of the pot images 
(Figure lc). 

The pixels at the leaf edges or zone boundaries were treated as missing data and dropped. 
The reflectance spectra of the remaining pixels (n = 181) were randomly partitioned into the training 
and test dataset at a 3:1 proportion. The partitioning was stratified with respect to the pixel class. 
Using the training dataset, a Support Vector Machine (SVM) classification model with the radial 
basis function kernel [65] was fitted to the pixel hyperspectra ( f i t SVM). The cost hyperparameter of 
the model was tuned to maximise the classification accuracy using 10-fold cross-validation and the 
Bayesian model-based optimisation search algorithm [66]. The performance of the obtained model 
was then assessed using the test dataset. Finally, the model was applied to classify every pixel in the 
pot images (pred SVM). 

The dry-leaf and fresh-leaf classes were merged to create plant masks [67], which were 
subsequently subjected to 3-pixel erosion [63] to remove leaf pedicels and artefacts resulting from 
imperfect band registration. The eroded masks were then applied to the pot images (mask). 

Dry-leaf pixels were counted in each masked pot image, and the effects of the experimental 
treatments on the dry-leaf pixel proportion were assessed using a Bayesian linear mixed-effect model 
(f i t LM1). The model assumed a zero-inflated binomial data generating distribution of the response 
variable (with a logit link) and accounted for the grouping of the leaf pixels within the pots and of the 
pots within the individual images. In addition to reflecting the dataset structure, the inclusion of the 
grouping variables was intended to address the problem of variable illumination conditions during the 
hyperspectral data acquisition campaign. Conservative, yet meaningful priors [54,68] were assumed. 

79 



Wiktor R. Zelazny and Jan Lukas: Drought Stress Detection in Juvenile Oilseed. 

Remote Se;i<. 2020, 12, 3462 

r 
fit E L M 

E L M 

r 
E L M 

pred S V M 
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Figure 3. Pre-processing and processing workflow of the hyperspectral images, f i t ELM - fitting of an empirical line model, pred ELM - application of the empirical 
line model to the spectra, reg - band registration, crop - cropping of the images to the regions of interest, f i t SVM - fitting of a Support Vector Machine model, 
pred SVM - pixel classification using the Support Vector Machine model, mask - background masking, f i t LM1 - linear modelling of dry-leaf pixel proportions, 
vegind - deriving of vegetation indexes, f i t LM2 - linear modelling of the vegetation index values, trans - spectra pre-processing, f i t LM3 - linear modelling of the 
principal component scores of the pre-processed spectra. 
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2.4. Vegetation Index and Full-Spectrum Analyses 

Twenty vegetation-index values (Table 2) were calculated for each pixel of the masked pot images 
(vegind). In cases where the wavelengths present in an index definition did not match the available 
image wavelengths, the closest wavelength was used, instead. 

Table 2 . V e g e t a t i o n i n d e x e s u s e d i n t h e s t u d y , a n d t h e i r r e p o r t e d s e n s i t i v i t i e s t o b i o c h e m i c a l , 

p h y s i o l o g i c a l , a n d s t r u c t u r a l p l a n t p r o p e r t i e s . 

Vegetation Index F o r m u l a Sensit ivity Reference 

SR Chi, flPAR, LAI [69] 

GI S i 
?677 Chi [70] 

RGI ''690 Chi [70] 

DVI r900 - r680 LWC [71] 

NDVI »900_ »680 
»900+»680 Chi, flPAR, LAI [69] 

RDVI V N D V I x DVI fAPAR [72] 

PSRI »678~»500 
»750 Chi, C a r [73] 

PSSRa /'sin 
rim Chi, C a r [74] 

PSND a 
f800—f 680 
»800+»680 Chi, C a r [74] 

RNDVI f750—f 705 
»750 +»705 Chi [75] 

PRI570 
f570—f 531 
»570+»531 A F / F m ' [7ft] 

PRI512 »512-»531 
»512+»531 G s , EPS [77] 

PM570 
RDVI x 2!» 

r670 

G s , * [78] 

MTCI »753.75 — »708.75 
»708.75 —»681.25 Chi [79] 

MCARI [(7-700 - ^67o) - 0 . 2 ( r 7 0 0 - r550)] x (r700 - r670) Chi [SO] 

TCARI 3 [ ( r 7 o o - r670) - 0.2(r700 - r 5 5 o ) ^ ] Chi [ ] 

OSAVI »800—»670 
»800 +»670 LAI [82] 

TCARI/OSAVI TCARI 
OSAVI Chi [ ] 

CIgreen »750 1 
»550 Chi [S3] 

CI r e 

»750 1 
»710 Chi [S3] 

Car = carotenoids, Chi = chlorophyll, EPS = violaxanthin:antheraxanthin:zeaxanthin 
balance, A F / F m ' = fluorescence-based PSII light use efficiency, fAPAR = fractional 
absorbed PAR, flPAR = fractional intercepted PAR, G s = stomatal conductance, LAI = leaf 
area index, LWC = leaf water content, ̂  = leaf water potential. 

From each vegetation index pot image, 36 pixels were sampled on a regular grid to reduce 
the effect of spatial correlation while retaining information on the within-pot index value variation. 
Pixels located in the masked-out areas were discarded. To assess the effect of the experimental 
treatments on the index values, an ensemble of univariate Bayesian linear mixed-effect models was 
fitted (f i t L M 2 ) . The individual model formulations took the sample-pot-image grouping hierarchy of 
the observations into account and relaxed the assumption of index value homoscedasticity across the 
treatment combinations. Because of the variety of the indexes, the modelling assumed uninformative 
priors [55,84]. 

In addition to the vegetation-index approach, an analysis based on the full-spectrum information 
from raw and pre-processed spectra was attempted. The pre-processing scenarios (trans) comprised 
the Savitzky-Golay filter (SGF), multiplicative scatter correction (MSC), finite differences derivation, 
and second derivation [85]. In the next step, the spectra were subjected to dimensionality reduction 
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using PC A to remove redundant radiometric information. The influence of the experimental treatments 
on the first four PCA loading values was then assessed using multivariate linear modelling ( f i t LM3), 
readily available in the Bayesian paradigm [55], to take the correlations between the loadings into 
account. The predictor part of the model was formulated in the same way as for the vegetation indexes. 

2.5. Statistical Inference and Model Diagnostics 

Accuracy of the S V M classification was determined using a confusion matrix. For the linear 
models, the posterior distributions of parameters were derived and visualised to assess the directions, 
magnitudes, and uncertainties of treatment effect estimates. Numerical summaries: posterior mode 
and a 95% credibility interval [49,54] were also computed. The estimated differences among the 
vegetation index means were additionally converted to Cohen's d relative effect sizes, with the watered 
treatment index standard deviations pooled across the cultivars as the standardiser [86]. The fits of 
the linear models were assessed using the R-hat statistics [59], by inspecting posterior trace plots [55], 
and performing predictive posterior checks [54]. 

2.6. Reproducing the Study 

Pre-processed hyperspectral data cubes are available from a Zenodo repository along with 
the scripts that were employed for their analysis (doi:10.5281/zenodo.3975431). A G N U Guix [87] 
manifest file and definitions of extra software packages are also included to recreate the computational 
environment. A Makefile [88] describes and facilitates the execution of individual steps of 
data processing. 

A major part of the analysis was programmed in the R language, and run in the 3.6.1 version of the 
interpreter [89]. The el071 package (version 1.7.2) [90] was employed to fit the SVM model, and mlr 
(2.15.0) [91] was used in combination with mlrMBO (1.1.2) [66] for its tuning. The Bayesian linear models 
were fitted with the aid of the b r m s (2.10.0) [58] interface to Stan (2.19.1) [59]. Tools available in SAGA 
GIS (6.3.0) [92], accessed from the R S A G A package (1.3.0) [93], enabled image masking and erosion. 
Band registration was performed using Python bindings to the OpenCV library (3.4.3) [94]. 

3. R e s u l t s 

3.1. Image Segmentation and Dry Pixel Occurrence 

Accurate classification of the reflectance spectra was obtained with SVM, with all but 2 of the 
47 pixels in the test set correctly assigned (Table 3). The spectra of ten randomly sampled pixels in each 
pot data cube are shown in Figure 4. As expected, the spectra of the pixels identified as dry exhibit a 
decreased red-edge slope and absent chlorophyll absorption features [24,25]. Their spectral variability 
for wavelengths below 700nm appears higher relative to the fresh pixels. The background spectra 
form a slightly curved pattern, which is typically encountered for soil. Some pixels in this class are 
characterised by an increase in the near infrared reflectance, which can be attributed to organic debris 
and sub-pixel effects (spectral mixing). 

Table 3. V a l i d a t i o n r e su l t s o f the S u p p o r t V e c t o r M a c h i n e ( S V M ) p i x e l c l a s s i f i c a t i o n m o d e l . 

O b s e r v e d Classes 
Predicted Classes 

b d £ 

b a c k g r o u n d 

d r y 
f r e sh 

26 
0 
0 

0 
8 
0 

1 
1 

11 
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Figure 4. R e p r e s e n t a t i v e h y p e r s p e c t r a o f t h e p i x e l c l a s s e s o b t a i n e d f r o m S V M s e g m e n t a t i o n o f p o t 

i m a g e s . T h e b l u e a reas d e l i m i t t he i n t e r q u a r t i l e re f lec tance r anges . 

Figure 5 depicts the relationship between the experimental factors and the proportion of pixels 
identified by the S V M model as dry in a hyperspectral image. The narrowest posterior distribution 
was obtained for the cultivar contrast under the dry regime, meaning that the cultivar effect was 
estimated with the highest certainty in this analysis [49]. However, since the distribution is centred 
close to the value of 1, it fails to provide information on the sign of the difference. Wide posterior 
distributions were obtained for the two remaining comparisons in this group. The multiplicative effect 
size along with the 95% credibility interval is E S V i k i n g / C a d e i i

 = 1-06 [0.23,5.12]. The contrasts involving 
the watering regime suggest the dry pixel occurrence having been affected by a restricted water supply, 
albeit with a high uncertainty. As expected, all but two comparisons indicate a lower dry leaf surface 
area with improved water availability, especially for 'Viking' ( E S w a t e r e d / d r y — 0.009 [0.00005,1.6]). 
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Figure 5. P o s t e r i o r d i s t r i b u t i o n s o f the m e a n d r y p i x e l f r e q u e n c y d i f fe rences b e t w e e n the e x p e r i m e n t a l 

fac tors . E a c h c u r v e r ep resen t s o n e con t ras t . T h e d i f f e rences are a s s u m e d to be m u l t i p l i c a t i v e . T h e t o p 

s u b p l o t d e p i c t s c o m p a r i s o n s b e t w e e n the c u l t i v a r s a n d the b o t t o m p l o t c o m p a r i s o n s b e t w e e n w a t e r i n g 

r e g i m e s . T h e effect s i z e s are o n a l o g a r i t h m i c sca le c e n t r e d at the v a l u e o f 1 ( l ack o f effect). 

3.2. Vegetation Indexes 

The influence of the experimental factors on the vegetation index values is shown in Figure 6. 
Because of the different numeric scales associated with individual formulations, the x-axis ranges 
pertaining to the index means are proportional to their standard deviations in the watered treatment, 
and the y-axis ranges are inversely proportional. In this way, not only can treatment effect directions 
and the strength of evidence be assessed for single indexes, but it is also possible to quantify the 
relative effect sizes [86] and to compare them across the formulations. Treatment effects with respect to 
index standard deviations were measured on a multiplicative scale. For this reason, fixed axis ranges 
were employed for the remaining subplots. 
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Figure 6. Posterior distributions of the mean and standard deviation (u) differences between experimental factors for each vegetation index. The mean and 
standard deviation differences are assumed to be additive and multiplicative, respectively. The left-hand and right-hand side subplot columns depict comparisons 
between the cultivars and watering regimes, respectively. The latter are on a semi-logarithmic scale. 
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Regarding the cultivar effect (odd column pairs), 'Viking' and 'Cadeli' maintained under 
the watered treatment clearly differed with respect to the MCARI and MTCI mean index values 
(left-hand column in each odd column pair), as indicated by the value of zero being in the tail of 
the posterior density distribution. For MCARI , the relevant curve extends over the positive values 
of the estimated difference, which indicates that 'Viking' had, on average, higher values of this 
index. The raw effect size is ES Viking-Cadeii = 0.06 [0.01,0.11], and Cohen's d is dviking-Cadeii = 

1.16 [0.22,2.08]. To a limited extent, the cultivars in the control treatment differed in terms of 
TCARI ( E S V i k i n g _ C a d e l i = 0.04 [-0.02,0.10], dviking-Cadeii = 0.84 [-0.33,1.99]) and TCARI/OSAVI 
(ESviking-Cadeii = 0.10 [-0.02,0.21], d v i k i n g _ c a d e i i = 1-20 [-0.24,2.67]) PRInorm appears to be 
insensitive to the cultivar differences, as indicated by the compressed mass of the posterior density 
centred around the value of zero (ESViking-Cadeii = 0.00 [—0.03,0.03]). On the other hand, the Cohen's d 
credibility interval is wide (dviking-Cadeii = 0.02 [—0.99,1.04]). 

In addition to the vegetation index mean values, their standard deviations differed across 
the two cultivars (right-hand columns). Discernible differences occurred in a larger number of 
indexes, primarily for the control treatment. The density distributions of SR, DVI, NDVI, RDVI, 
PSSR a, and TCARI/OSAVI extended below a ratio of one, indicating lower index value variations 
in watered 'Viking' than in 'Cadeli'. A n opposite effect occurred for RGI, MCARI , and C I g r e e n . 
Similar differentiation is not so apparent for the remaining treatments. 

The influence of the watering regimes (even column pairs in Figure 6) on the leaf spectra 
was captured by the mean values of several vegetation indexes. Unsurprisingly, particularly large 
differences were obtained for the watered:dry contrast. The RGI index exhibited a high sensitivity in 
the 'Cadeli' cultivar, with its values lower in the control plants ( E S w a t e r e d _ d r y = —0.96 [—2.21,0.21], 
^watered-dry = —6.94 [—18.01,1.48]). Moreover, the water availability had a positive influence on 
the MTCI, RNDVI, and GI indexes in the 'Cadeli' cultivar, with the effect not as strong as for 
RGI, but more precisely estimated, as indicated by the concentrated mass of the posterior density 
curve. Similarly to the cultivar effect, the PRI n 0 rm mean appears to have been insensitive to the leaf 
spectra differences across the individual watering regimes (e.g., E S w a t e r e d _ d r y = —0.03 [—0.06,0.01], 
^watered-dry = —0.89 [—2.10,0.25] for 'Cadeli'). The PRI index that appears to respond to the 
watering treatments is PRI512, but this pattern is uncertain (e.g., ESwatered-dry — —0.04 [—0.09,0.01], 
dwatered-dry = -1-06 [-2.42,0.22] for 'Cadeli'). 

The variation in RGI and PSRI vegetation indexes exhibited sensitivity to the difference between 
the dry and control leaf spectra in 'Cadeli'. Not only is the observed treatment effect strong, but its 
estimate is fairly precise ( E S w a t e r e d / d r y i ( 7 = 0.10 [0.07,0.16] for RGI and 0.10 [0.06,0.17] for PSRI; 
note that the effects are multiplicative). The same indexes revealed an effect of drought on the 'Viking' 
spectra, albeit to a lesser degree (ES w a t e r ed/dry ,fj — 0.36 [0.21,0.64] and 0.14 [0.07,0.29]). The variations 
in the majority of the remaining indexes were affected by the discussed treatment contrast for at 
least one of the cultivars. Several indexes revealed the difference between the rewatered and dry 
treatment, particularly PSRI (ES r e w a t e r e d/dry , f j — 0.33 [0.16,0.68] for 'Cadeli'). Even more interestingly, 
the variations in TCARI and TCARI/OSAVI responded to the watered:rewatered contrast in both 
cultivars, with the latter index associated with a stronger effect (ESWatered/rewatered,fj — 0.40 [0.28,0.55] 
for 'Cadeli'). What is striking it that all of the affected indexes exhibited the same direction of the water 
regime effect, namely, a variation decrease with an improving water availability (posterior distributions 
extending over values below one). 

3.3. Full Spectrum Information 

The distribution of the leaf pixel spectra in the principal component space did not reveal 
any differences between the investigated cultivars Figure 7. Regarding the watering regime, 
the observations representing the rewatered treatment occur in clusters. For the raw spectra, they form 
a line corresponding to positive PCI or negative PC2 coordinates, and the values in-between. 
According to the loadings plot, both of these directions can be associated with a decreased NIR 
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reflectance. A similar pattern, with the PC2 axis reversed, was obtained for SGR As a matter of fact, 
this pre-processing altered the spectra to a minimal degree. After MSC pre-processing, the rewatered 
pixel spectra become associated with high PCI values, indicative of increased green and decreased 
red and red-edge reflectance, suggesting a red-edge shift towards longer wavelengths. The derivated 
spectra of the rewatered regime are associated with positive PC2 values, indicating a more descending 
slope to the left of the red absorption feature and a more ascending slope towards the longer 
wavelengths; thus more pronounced red light absorption. The double derivation did not result 
in any clustering; however, the pixels representing the dry watering regime appear to extend over a 
larger area of the principal component space, suggesting a higher spectral variation. A n interesting 
pattern, though unrelated to any of the experimental treatments, can be discerned in the MSC PCA 
plot, in which the spectra are separated into two large clusters. 

By using the obtained PCA coordinates of individual pixels as input data for linear modelling, 
the information on grouping of the observations could be incorporated into the analysis. With this 
additional step, patterns suggested by the PCA plots turned out to be largely spurious, but some 
new ones emerged (Figure 8). Regardless of the spectra pre-processing, no separation of the cultivars 
was obtained with respect to the means of the first principal component scores (first subplot column). 
However, the comparison of the PCI score standard deviations (second column) revealed less varied 
values for the watered 'Viking' plants relative to the 'Cadeli' cultivar for MSC (ESviking/Cadeii,<7 = 
0.53 [0.32,0.96]), indicating a higher variation of green, red, and red-edge reflectances in the latter 
(Figure 7). 

Regarding the treatment contrasts, the raw and SGF-filtered spectra exhibit somewhat lower 
PCI mean values of the leaf pixels in the control watering regime compared to the regeneration 
treatment ( E S w a t e r e d _ r e w a t e r e d — —0.33 [—0.81,0.15] and —0.33 [—0.84,0.12], respectively for 'Cadeli'; 
third column in Figure 8). This outcome is in agreement with the clustering of the rewatered pixels 
in the right-hand part of the respective PCA plots (Figure 7), but the evidence is too weak to draw 
any conclusions. 

A consistent pattern of treatment effect posterior distributions is apparent for the remaining 
pre-processing approaches. The variability of the PCI scores was found to be higher in the watered 
regime than in both dry ('Cadeli') and rewatered plants (both cultivars). When the latter two treatments 
are compared, the dry spectra appear to be more variable. The treatments can, thus, be ordered as 
watered > dry > rewatered. The patterns are especially pronounced in the case of derivative spectra 
and spectra subjected to MSC. 
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Figure 7. P r i n c i p a l c o m p o n e n t scores ( l e f t -hand c o l u m n ) a n d l o a d i n g s ( r i g h t - h a n d c o l u m n ) o f the p i x e l 

r e f lec tance v a l u e s a c c o r d i n g to i m a g e p r e t r e a t m e n t . C o l o u r a n d s h a p e d i f f e ren t i a t e o b s e r v a t i o n s w i t h 

r e s p e c t to the e x p e r i m e n t a l t r e a tmen t s . 
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T h e m e a n a n d s t a n d a r d d e v i a t i o n d i f f e r e n c e s a re a s s u m e d to b e a d d i t i v e a n d m u l t i p l i c a t i v e , 

r e s p e c t i v e l y . T h e l e f t - h a n d a n d r i g h t - h a n d s i d e s u b p l o t c o l u m n s d e p i c t c o m p a r i s o n s b e t w e e n the 

c u l t i v a r s a n d w a t e r i n g r e g i m e s , r e s p e c t i v e l y . T h e l a t t e r a re o n a s e m i - l o g a r i t h m i c sca le . 

4. D i s c u s s i o n 

4.1. Image Quality and Patterns Related to Segmentation 

The inconsistency in the irradiance sensor readings with regard to the radiant exposure 
measurements suggest that artefacts were introduced during the conversion of digital numbers 
to radiance values. This problem most likely stems from the directional sensitivity of the sensor, 
which was placed on the flexible photo tent construction. Directional sensitivity of the device delivered 
with a Rikola camera has been reported also by other authors [95]. Other potential nuisance factors 
include the distance from the meteorological station to the spot where the imagery was captured and 
the presence of a building and the camera operators in the proximity of the photo tent. Although the 
formulations of the linear models, employed at later stages of the image analysis, accounted for 
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radiometric differences between the individual data cubes, it is still preferable to acquire data of 
maximum quality in the first place. Therefore, for similar studies, rigid installation of a Rikola 
irradiance sensor is recommended. 

SVMs are a versatile multivariate classification tool due to their non-parametric nature, 
robustness against outliers, reduced risk of training data over-fitting, quick and reliable convergence 
to a global optimum, and the availability of the kernel trick, which can yield non-linear 
hyperplanes [65,96]. The applicability of SVMs to assigning leaf pixels into drought stress classes 
was demonstrated by Asaari et al. [6] and Behmann et al. [7] for cereals. The high pixel classification 
accuracy and plausible spectral patterns that can be discerned in the obtained classes highlight 
the potential of SVMs to segment OSR images, a crop from a different agronomic group and a 
botanical family. 

A n obvious disadvantage of the adopted approach is the laborious pixel labelling. SVMs and 
their extensions give satisfactory predictions even when trained with small datasets. On the other 
hand, the modelling can fail when errors are present in the reference data [96]. Rather than reducing 
the size of the training pool, it would be more desirable to employ a solution that allows for dispensing 
of pixel labelling, especially considering the fact that it is challenging before stress symptoms are 
visible. In a maize drought phenotyping study, Asaari et al. [6] avoided this step by performing 
unsupervised classification on a reduced dataset and labelling the obtained clusters, rather than 
individual pixels, prior to SVM classification. Behmann et al. [7] devised a workflow based on ordinal 
clustering, which further facilitated the process, as only the extreme clusters needed to be labelled. 

Scarce evidence of treatment effects was obtained from pixel counts representing fresh and dry 
pixel classes. The estimation uncertainty can, in part, be attributed to low pot counts in the control and 
regeneration treatments. The stronger reduction of the dry-pixel proportion in well-watered conditions 
estimated for 'Viking' relative to 'Cadeli' would be in agreement with the high drought sensitivity of 
this cultivar [15]. However, additional data are needed to confirm this pattern. 

4.2. Vegetation Indexes 

In a spring wheat experiment by Peteinatos et al. [52], water-stressed plants exhibited decreased 
MCARI values. One of the components on this index is the green reflectance. Consequently, the authors 
linked the observed effect to a reduced chlorophyll content, which is a common stress symptom in 
plants [24,97]. Similarly, in the present study, a higher MCARI in well-watered 'Viking' can be 
explained in terms of increased photosynthetic activity fostered by the favourable hydric conditions. 
The tendency towards minimising the periods of stomatal closure allows this water-spender to thrive 
in the control watering regime. 

However, this interpretation can be questioned in light of the results obtained 
by Haboudane et al. [98] for maize. The authors reported a negative, rather than positive, 
relationship between the chlorophyll content and MCARI. At the same time, the relation was 
positive for MTCI, an index that employs reflectances around the red-edge [79]. The latter result 
was corroborated by Gitelson [99] for maize and soybean. The discrepancy pattern between MCARI 
and MTCI is in agreement with the present study findings. While watered 'Viking' exhibited higher 
MCARI than 'Cadeli' maintained under the same regime, the MTCI values were found to be lower 
(ESvMng-Cadeii = "0-53 [-0.93, -0.12], d v i k i n g _ c a d e i i = "1-18 [-2.09, -0.26]). 

Contradictions of this kind reveal the problematic nature of relying on single vegetation indexes, 
at least as far as index means are concerned. In addition to the property of interest, the index 
value can be affected by additional confounding variables; in particular, the relationships tend to be 
crop-specific [98]. Interpretation of MCARI is especially challenging, given the erratic behaviour of 
this index for samples with a low chlorophyll content. It was shown that below a certain threshold, 
the relationship between MCARI and the pigment becomes reversed [81]. Such reports highlight 
the need for joint interpretation of multiple indexes, either in an informal fashion or by their further 
statistical processing [7,98]. 
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The TCARI and TCARI/OSAVI indexes were originally developed in the context of chlorophyll 
content estimation [81], and their suitability to crop water status diagnosis can be linked to 
pigmentation changes in drought-affected tissues. Both were tested by Perry and Roberts [100] 
in a maize experiment, in which they discriminated between irrigated and unirrigated parts of the 
field. Just as for MCARI, the increased values of these indexes associated with the 'Viking' cultivar can 
be linked to its water-spender management strategy, but more data are needed to verify this finding. 

Some of the index values varied more in values for well-watered 'Viking' than for well-watered 
'Cadeli', while for certain others, the relationship was the opposite. A n explanation linking these 
patterns to the differing water management strategies (a water-saver and a water-spender) seems 
dubious. More plausibly, the observed effects were determined by additional cultivar properties, 
particularly those related to the leaf surface and structure of the forming canopy [29]. Due to the dearth 
of studies comparing crop cultivars with respect to the variability of their spectral characteristics, 
the discussed results cannot be confronted with the findings of other authors. With regard to the 
lack of similar differences under the remaining watering regimes, it can be argued that the severity 
of pigmentation and structural (e.g., leaf shrinkage) changes caused by a drought episode [13,21,22] 
occluded the differences between the genotypes. A n alternative explanation is the lower number of 
plant samples in the drought and regeneration treatments, making the effect estimates less precise, 
and treatment differences less likely detectable, as a further consequence. 

RGI excelled among the vegetation indexes when evaluating their strength of response to restricted 
water availability. In their maize study, Sun et al. [5] associated the occurrence of a drought with 
an RGI increase of approximately 0.05 units on the index scale (point estimate inferred from the 
marginal estimates given in the paper), a value captured by the E S w a t e r e d _ d r y = —0.96 [—2.21,0.21] and 
—0.71 [—1.97,0.49] raw intervals obtained in the present study for 'Cadeli' and 'Viking', respectively. 
The potential usefulness of this index is further illustrated by its strong negative correlation to 
leaf water status indicators investigated by Rodriguez-Perez et al. [101] in a commercial vineyard. 
Water availability revealed a positive influence on MTCI, RNDVI, and GI. The RNDVI difference 
( E S w a t e r e d _ d r y = 0.19 [—0.01,0.41], d w a t e r e d - d r y = 2.10 [—0.05,4.47]) is similar in magnitude to 
the spring wheat cultivars responses reported by Gutierrez et al. [102]. Depending on the crop 
developmental stage and the trial, RNDVI of the control plants exceeded the water-stressed treatment 
by 0.03 to 0.18 units (point estimates based on the marginal estimates mentioned in the paper). 
RNDVI is an NDVI-like index originally developed for woody species [75], and then employed 
to monitor cereal crops grown in areas with drought occurrence [102]. In light of the above 
findings, it seems to also be suited to OSR cultivation. The raw effect estimate obtained for GI, 
E S w a t e r e d - d r y — 0.44 [—0.08,0.95] ( d W a t e r e d - d r y = 1.58 [—0.29,3.48]), is in agreement with the difference 
between treatment means reported by Peteinatos et al. [52] for spring wheat (0.17 units). GI is a 
simple index combining green reflectance with the reflectance near the lower end of the red-edge. 
Despite its name ("greenness index"), in the present study its value seems to have been affected by the 
red-edge shift and flattening, rather than by changes in the green region, which appeared to be limited. 
Main et al. [103] published an extensive comparison of vegetation index performances with respect to 
the chlorophyll content prediction, which provides additional evidence of a weak GI response to the 
pigment signal. 

One of the strengths of Bayesian statistics is the possibility of inferring an absence of a practical 
significance of an effect [49,54]. Surprisingly, the PRI n 0 rm mean appeared to have been insensitive to the 
leaf spectra differences across both cultivars and individual watering regimes. The PRI family detects 
changes in crop photosynthetic radiation use efficiency by providing an insight into xanthophyll 
epoxidation processes [76,104]. According to Penuelas et al. [105], this information is a better proxy of 
physiological status than total chlorophyll content. In a comparison of vegetation indexes by Rossini 
et al. [104], PRI570 turned out to be the best predictor of a range of maize water status indicators. 
In another maize study, the order of PRI570 values reflected the assignment of experimental plots to 
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irrigation levels and the timing of irrigation suppression [106]. The same index exhibited reliable 
correlations with several indicators of the winter wheat water status [107]. 

PRI is known to be sensitive to ambient illumination and other confounding factors [104,106]. 
Although in the present study the samples were placed in a photo tent to obtain diffuse illumination, 
a sensor was employed during the imagery acquisition to compensate for irradiance instability, and the 
linear model accounted for radiometric variability between the data cubes; the obtained correction 
might have been insufficient given the variable external conditions. In the case of the cultivar treatment, 
the examination of Cohen's d points to the overall small variability of this index as an alternative 
explanation of the obtained pattern with respect to P R I n 0 r m . For a drought diagnosis based on proximal 
hyperspectral imaging and vegetation index means, we recommend avoiding days with unstable 
illumination conditions, unless artificial illumination is employed, or one or more calibration panels 
are included in every image. 

Merzlyak et al. [73] proposed PSRI as an indicator index of leaf senescence, which can be 
triggered by water deprivation. This index was among the features discerning between barley drought 
senescence classes in the study by Behmann et al. [7]. Accordingly, the obtained PSRI standard 
deviation sensitivity to the contrasting watering regimes in 'Cadeli' can be linked to the source-sink 
character of the leaf senescence process [23]. TCARI and TCARI/OSAVI responded to the difference 
between the watered and rewatered treatments. Such a separation was not possible with the index 
means, suggesting that analysing the spectral variability is more suited to detecting a trace of a drought 
episode from which a crop did not necessarily fully recover. TCARI/OSAVI can perform better 
than TCARI and OSAVI by disentangling the effect of chlorophyll and LAI [81], as demonstrated 
by Haboudane et al. [98] and Perry and Roberts [100]. It was one of the indexes reported to reflect 
the maize physiological status in the Rossini et al. [104] drought experiment. It may seem that 
LAI plays a limited role in the present study, as the background is filtered out using segmentation. 
However, drought alters the structure of the foliage, leading to LAI modification accompanied by 
increased chlorophyll concentration in shrunken leaves [8,105], both affecting the reflectance spectrum. 
The remarkable overall consistency of the index standard deviations increasing with restricted watering 
corroborates the relationship between the stress level and symptom variability mentioned by Kruschke 
and Liddell [49]. In light of these findings, vegetation index standard deviations appear to be 
sensitive stress indicators in the context of drought diagnosis using proximal hyperspectral imaging, 
perhaps more so than the index means. 

Biochemical and physiological parameters determined in the laboratory from leaf samples 
are reliable indicators of a crop status [108]. Drought stress occurrence is commonly assessed by 
analysing water content [15,24,44,104,107], pigment [5,15,24,108] and nutrient [5,8] concentrations, 
photosynthetic fluorescence [44] and photosynthetic [8,15] and transpiration [15] rates, or stomatal 
conductance [15]. Some measurements are possible in field conditions, such as leaf water 
potential [24,101], stomatal conductance [109], fluorescence [24,104,106,108], SPAD chlorophyll [98]; 
and leaf [104,106,109] and canopy [102] temperature. 

Relationships between the parameter values and vegetation indexes were demonstrated in various 
drought studies. PRI570 and red edge position responded to chlorophyll and carotenoid concentrations 
in maize [5]. The former index was also sensitive to the changes in the pigment concentration ratio 
and leaf fluorescence [106]. In another maize study, PRI570 and TCARI/OSAVI exhibited strong 
relationships to chlorophyll fluorescence and leaf temperature [104]. Several published vegetation 
indexes predicted to a satisfactory degree leaf and canopy water contents of wheat, and further 
improvements were obtained by formulating custom indexes based on raw and derivative spectra [107]. 
Multiple indexes responded to water deficit in wheat caused by a powdery mildew infection [108]. 
Rodriguez-Perez et al. [101] obtained high correlations between grapevine leaf water contents and 
indexes derived from spectra subjected to continuum removal. 

OSR readily responds to drought stress in terms of biochemical and physiological indicators. 
Clear differentiation between control and stressed plants was obtained by Urban et al. [15], with the 
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differences especially pronounced for net photosynthetic rate, stomatal conductance, leaf transpiration 
rate, evapotranspiration change, and proline content. Pasban Eslam [109] reported a consistent 
modification of leaf relative water content, stomatal conductance, and temperature across five OSR 
cultivars over two years of his experiment. In another experiment, water deprivation was associated 
with decreased leaf fluorescence and an osmolarity increase [44]. The present study related the 
patterns of vegetation index values to the experimental treatments: the OSR cultivar and the watering 
regime. In the light of the cited results, it is plausible that a number of the obtained effects could be 
replicated in an observational study, in which the treatments would be replaced with biochemical and 
physiological parameter measurements at the linear modelling step. Further research is needed to 
verify this expectation. 

4.3. Full Spectrum Information 

The distribution of the leaf pixel spectra in the principal component space differentiated the 
regeneration treatment from the remaining investigated watering regimes. The indicated decrease 
in the NIR reflectance for the raw spectra and the spectra subjected to SGF can be linked to leaf 
cell structure alteration by stress [19]. However, this interpretation is contradicted by the redshift 
revealed by the MSC transformation, indicative of good hydration [20]. Similarly, the steep red-edge 
pattern obtained for the finite differences derivation can be associated with an increased chlorophyll 
concentration [24]. These patterns need to be approached with caution, considering the fact that PC A 
does not account for the experimental design resulting in the hierarchical structure of the dataset. 
Moreover, only one data cube representing the rewatered treatment was analysed in the present study, 
as registration failed for the other one, which had to be discarded. The obtained pixel clusters could be 
the result of specific illumination conditions at the moment of image capture, which dominated the 
spectral signal [29]. 

Regarding the double derivation, the apparent differences in pixel extents are in agreement 
with the preceding part of the analysis, which revealed higher standard deviations of vegetation 
indexes derived for the drought treatment relative to the control plants. One could suspect that the 
occurrence of two large clusters for the MSC-transformed spectra is related to changing ambient 
illumination conditions or an uneven distribution of radiant energy inside the photo tent. In that case, 
each cluster would contain pixels associated with individual images or pot positions, respectively. 
However, none of those hypotheses was confirmed by consulting the dataset. 

The little-varied PCI scores obtained for 'Viking' compared to 'Cadeli' can be explained in 
terms of the higher stress level of the latter. 'Cadeli' tends to restrict stomatal conductance [45], 
which is a suboptimal strategy in the conditions of high water availability, as photosynthesis is 
impaired [13]. The discussed treatment separation was apparent only after subjecting the spectra to 
MSC. This pre-processing is known to remove some scatter and baseline shift artefacts [85]. In the 
present study, it might have mitigated the influence of variable illumination conditions on the captured 
hyperspectral data cubes. A question arises whether a similar improvement would have been achieved 
in the vegetation index part of the analysis if they had been derived from the MSC-pre-processed 
rather than the raw spectra. 

The high variation of the dry pixel spectra subjected to double derivation suggested by the 
PCA analysis is absent from the results of the linear modelling. A possible explanation might be a 
high noise characterising derivative spectra [85], and subject to compounding when the operation is 
repeated [105]. The derivation might have also been negatively affected by the low spectral resolution 
of the analysed hyperspectral data cubes, which precluded a detailed reconstruction of the spectra 
shapes. Penuelas et al. [105] reported an improved relationship between the second order derivative 
indexes and sunflower leaf water potential relative to the principal components and indexes derived 
from the raw spectra, but their data were acquired with a fivefold higher spectral resolution than in the 
present study. Finally, the double derivation linear model posed problems for the M C M C sampler [59], 
with detrimental consequences for the reliability of the obtained posterior distributions. In future 
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studies of this kind, it is recommended that the derivation be combined with smoothing [85] and that 
the spectral resolution of the imagery be maximised, even at a price of an increased data volume [110] 
and information redundancy [7]. 

The proximity of the extreme watering regimes in terms of the PCI standard deviations is 
counterintuitive and in disagreement with the results of the vegetation index part of the study. 
The fact that each pre-processing resulted in distinctive PC loading vectors precludes a straightforward 
interpretation in terms of the spectral regions. PCA is an unsupervised dimensionality reduction 
method. Compared to the S V M approach, it does not require pixel labelling, and compared to the 
vegetation index approach, it does not involve an arbitrary choice of indexes, the performance of which 
is site-specific. On the other hand, the obtained principal axes do not necessarily need to be related to 
factors of interest. The obtained result is problematic, but nevertheless interesting. Similarly to the 
TCARI and TCARI/OSAVI standard deviations, it may point to a way of detecting a trace of a severe 
drought episode in a seemingly healthy and well-hydrated crop. The signal attenuation obtained for 
the finite differences derivation can be linked to the capability of this transformation to filter out the 
effects of structural differences between crop cultivars [111]. For MSC, it can be associated with the 
removal of illumination artefacts [85]. 

5. C o n c l u s i o n s 

We investigated the feasibility of a 2D frame hyperspectral camera as a proximal sensor to detect 
drought stress of juvenile plants of two oilseed rape cultivars with different water management 
strategies in semi-controlled, outdoor conditions. A support vector machine accurately distinguished 
between normal leaf pixels and those bearing drought symptoms. Only 2 of the 47 model validation 
pixels were misclassified, though time-consuming labelling was required to train the classifier. Based on 
the pixel assignment, some evidence of leaf discolouration was obtained for the drought-stressed 
'Viking', in accord with the provenance of this cultivar. The ratio between the number of dry-labelled 
pixels in the control and stress watering regimes was estimated as 0.009 [0.00005,1.6]. 

Several vegetation index means responded to the difference between the control and 
water-deprived plants, especially RGI, MTCI, RNDVI, and GI; while none of the tested PRI indexes 
distinguished among the treatments. RGI excelled among the vegetation indexes in terms of effect 
strengths, which amounted to -0.96 [-2.21,0.21] and -0.71 [-1.97,0.49] units for each cultivar with 
respect to the watered-dry treatment contrast. 

The most striking finding was a consistent increase in the multiple index standard deviations 
to worsening of the hydric regime. The increases occurred not only in the dry treatment but also for 
plants subjected to regeneration after a drought episode. This result suggests a higher sensitivity of the 
vegetation index variability measures relative to the means for oilseed rape drought stress diagnosis. 
It also justifies the application of imaging spectroscopy to capture these effects. Especially clear 
responses were obtained for RGI, PSRI, TCARI, and TCARI/OSAVI. Some of the patterns involved 
also the regeneration watering regime. In particular, PSRI standard deviation for 'Cadeli' differed 
by a factor of 0.33 [0.16,0.68] between the rewatered and dry treatments. It seems worthwhile to 
include RGI in similar studies in the future given the fact that both the mean and standard deviation 
(a multiplicative effect of 0.10 [0.07,0.16] for the watered-dry contrast in the case of 'Cadeli') of this 
index were affected by the water availability. 

The drought stress could be discerned in the spectral signatures when regeneration was still 
possible. On the other hand, the symptoms were already visible to the naked eye. Additional factors 
can be introduced in follow-up studies to verify the robustness of the findings and their application 
to earlier drought stress detection. A single campaign could be replaced by a time series to capture 
the temporal development of the drought stress and of the spectral responses. Another modification 
would be to restrict the watering of the plants at an earlier developmental phase and investigate which 
of the spectral stress indicators remain viable for younger plants. Additional insights could be obtained 
by augmenting the new dataset with biochemical and physiological measurements. 
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Despite the unstable light conditions during the imaging campaign, the experimental treatments 
had strong and consistent effects on some of the examined spectral indicators and can be interpreted 
in terms of their robustness. However, although several measures were taken to mitigate the variable 
illumination effects, it cannot be ruled out that the observed patters were artefacts caused by the 
external conditions, instead. For this reason, regardless of the study extensions, the obtained results 
need to be replicated in an independent experiment with a larger sample, an improved design, 
and stricter precautions with respect to illumination stability during imagery acquisition. 
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Nomenclature 

2D t w o - d i m e n s i o n a l 

d a i d a y s after i n o c u l a t i o n 

F H B F u s a r i u m h e a d b l i g h t 

GS B B C H g r o w t h s tage 

G S D g r o u n d s a m p l e d i s t a n c e 

NIR n e a r i n f r a r e d 

N P K n i t r o g e n , p h o s p h o r u s a n d p o t a s s i u m 

R G B r ed , g r e e n a n d b l u e 

S N V s t a n d a r d n o r m a l v a r i a t e 

S V M s u p p o r t v e c t o r m a c h i n e 

S W I R s h o r t - w a v e i n f r a r e d 

U A V u n m a n n e d a e r i a l v e h i c l e 

V i s - N I R v i s i b l e a n d n e a r i n f r a r e d 

V S S v i s u a l s y m p t o m sco re 

1. Introduction 

F u s a r i u m h e a d b l i g h t (FHB, scab) i s a c e r e a l f u n g a l d i s ea se 

c a u s e d b y Fusarium s p p . (Jail lais et a l . , 2015; K h a l e d i et a l . , 

2017; S a c c o n et a l , 2017; M i e l n i c z u k & S k w a r y l o - B e d n a r z , 

2020). T h e p a t h o g e n s e v e r e l y i m p a i r s y i e l d , a n d the g r a i n 

q u a l i t y i s g r e a t l y d i m i n i s h e d b y m y c o t o x i n a c t i o n (Baur i ege l & 

H e r p p i c h , 2014; C a m b a z a et a l . , 2019; M i e l n i c z u k & S k w a r y l o -

B e d n a r z , 2020). A s i n n u m e r o u s o t h e r d i seases , F H B h a s pa t 

c h y d i s t r i b u t i o n i n c r o p s (Jin et a l . , 2018; L i u et a l . , 2020b), a n d 

th i s h i n d e r s i ts m o n i t o r i n g at t h e f i e ld s p a t i a l s ca le . I n f e c t i o n 

o c c u r r e n c e s h a v e b e e n i n c r e a s i n g b e c a u s e o f t h e h i g h p r e v a 

l e n c e o f m a i z e i n c r o p r o t a t i o n s ( D a m m e r et a l . , 2011; 

B a u r i e g e l & H e r p p i c h , 2014) a n d due to t h e a d o p t i o n o f 

r e d u c e d t i l l age s y s t e m s b y f a r m e r s ( M c M u l l e n et a l . , 2012; 

G i l b e r t & H a b e r , 2013; M i e l n i c z u k & S k w a r y l o - B e d n a r z , 2020). 

C l i m a t e c h a n g e m a y a l so aggrava te t h i s p r o b l e m i n t h e fu tu re 

(Gi lber t & H a b e r , 2013; V a u g h a n et a l , 2016). 

F H B c o n t r o l is b a s e d o n c u l t u r a l p r e v e n t i v e m e a s u r e s a n d 

fung ic ide a p p l i c a t i o n s ( M c M u l l e n et a l . , 2012; M i e l n i c z u k & 

S k w a r y l o - B e d n a r z , 2020), the la t te r o f w h i c h are s c h e d u l e d 

a c c o r d i n g to the d isease r i s k l eve l s p r e d i c t e d f r o m w e a t h e r 

forecasts ( M c M u l l e n et a l , 2012; X i a o et a l , 2020). T h e r e is a l so 

o n g o i n g r e s e a r c h in to b i o l o g i c a l c o n t r o l agents ( M c M u l l e n et a l . , 

2012; M i e l n i c z u k & S k w a r y l o - B e d n a r z , 2020). T h e d e v e l o p m e n t 

o f r e s i s t an t c u l t i v a r s is a fu r the r m a j o r i n f l u e n c e i n d e c r e a s i n g 

F H B o c c u r r e n c e (Gi lber t & Haber , 2013; B u e r s t m a y r et a l , 2020; 

M i e l n i c z u k & S k w a r y l o - B e d n a r z , 2020). 

P rogress i n b r e e d i n g p r o g r a m s i s c o n s t r a i n e d b y t h e field 

p h e n o t y p i n g b o t t l e n e c k ( M c M u l l e n et a l . , 2012; S t e i n e r et a l . , 

2017). In p a r t i c u l a r , t h e t r a d i t i o n a l v i s u a l r a t i n g b a s i s o f e v a l 

u a t i n g b r e e d i n g l i n e r e s i s t a n c e i s a l a b o r i o u s a n d sub jec t ive 

p r o c e s s (Bau r i ege l & H e r p p i c h , 2014; D e e r y et a l . , 2014; 

M a h l e i n , 2016; S u et a l . , 2021). S p e c t r o s c o p i c m e t h o d s c a n be 

s u p e r i o r to v i s u a l r a t i n g b y p r o v i d i n g r a p i d a n d u n b i a s e d 

a s s e s s m e n t i n e a r l y i n f e c t i o n stages ( T h o m a s et a l . , 2018; 

W e s t et a l . , 2017), a n d t h e i r s u i t a b i l i t y to de tec t r u s t a n d 

p o w d e r y m i l d e w h a s b e e n i n v e s t i g a t e d i n c e r e a l p a t h o l o g y 

s t u d i e s (as i n F r a n k e & M e n z , 2007; H u a n g et a l . , 2007; 

K u c k e n b e r g e t a l . , 2009; C a o et a l , 2013; H u a n g et a l , 2014; 

F e n g et a l , 2016; Z h a n g et a l . , 2017). 

T h e p r i m a r y focus o f F H B s p e c t r o s c o p y s tud i e s h a s b e e n 

p o s t - h a r v e s t m y c o t o x i n d e t e c t i o n i n e x t r a c t e d k e r n e l s u n d e r 

l a b o r a t o r y c o n d i t i o n s . T h e r e s e a r c h h a s b e e n r e v i e w e d b y 

S a c c o n et a l . (2017) a n d F e m e n i a s et a l . (2020), a n d findings o n 

th i s t o p i c c o n t i n u e to be p u b l i s h e d ( Z h a n g et a l . , 2020a,b; S h e n 

et a l . , 2022). Less a t t e n t i o n , h o w e v e r , h a s b e e n g i v e n to w h o l e 

s p i k e s (Bau r i ege l et a l , 2011; A l i s a a c et a l . , 2018; W h e t t o n 

et a l , 2018a; H u a n g et a l , 2019, 2020; M a h l e i n et a l . , 2019; 

Z h a n g et a l , 2020c). 

F i e l d r e s e a r c h h a s a l so b e e n l i m i t e d u n t i l r e c e n t yea r s , as 

h i g h l i g h t e d b y W h e t t o n et a l . (2018b) a n d H u a n g et a l . (2019). 

W h e t t o n et a l . (2018b) e m p l o y e d a p r o x i m a l p u s h - b r o o m 

h y p e r s p e c t r a l i m a g e r c o u p l e d w i t h a n a r t i f i c i a l l i g h t s o u r c e 

for F H B o c c u r r e n c e d e n s i t y e s t i m a t i o n i n w i n t e r w h e a t a n d 

b a r l e y . S ó d e r s t r o m a n d B o r j e s s o n (2013) p r e d i c t e d the d e o x -

y n i v a l e n o l F u s a r i u m m y c o t o x i n i n oa ts f r o m d a t a c a p t u r e d b y 

th ree d i f f e r en t s enso r s , i n c l u d i n g a m u l t i s p e c t r a l s a t e l l i t e 

i m a g e r . F u r t h e r r e s e a r c h i n c l u d e d the L i u et a l . (2020b) p r o 

p o s a l o f a n o v e l b r o a d - b a n d v e g e t a t i o n i n d e x to de tec t the 

d i s ea se f r o m S e n t i n e l - 2 m u l t i s p e c t r a l i m a g e r y . X i a o et a l . 

(2020) a u g m e n t e d a t i m e se r ies o f s a t e l l i t e o b s e r v a t i o n s w i t h 

m e t e o r o l o g i c a l d a t a fo r the s a m e p u r p o s e , a n d L i u et a l . 

(2020a) i n v e s t i g a t e d t h e f e a s i b i l i t y o f F H B m o n i t o r i n g at the 

field sca le u s i n g U A V e q u i p p e d w i t h h y p e r s p e c t r a l c a m e r a . 

W h e t t o n et a l . (2018b) c o n s i d e r e d t ha t the s m a l l n u m b e r o f 

F H B field s t u d i e s m a y s t e m f r o m the d i f f i cu l t d e t e c t i o n o f the 

d i s ea se i n a c r o p s t a n d . U n l i k e r u s t a n d p o w d e r y m i l d e w , F H B 

s y m p t o m s affect o n l y t h e s p i k e s , a n d these c o n s t i t u t e a s m a l l 

f r a c t i o n o f the t o t a l b i o m a s s . M o r e r e c e n t l y , L i u et a l . (2020a) 

p r o p o s e d t h e i d e n t i f i c a t i o n o f i n f e c t e d field areas b a s e d o n 

w h o l e c a n o p y c h a r a c t e r i s t i c s , b u t the f e a s i b i l i t y o f t h i s n o v e l 

a n d p o t e n t i a l l y c o n t r o v e r s i a l a p p r o a c h r e q u i r e s f u r t he r 

s c r u t i n y . 

T h e r e i s a l i m i t e d t r a n s f e r a b i l i t y o f d i s ea se d e t e c t i o n 

m e t h o d s d e v e l o p e d for l a rge - sca l e f a r m i n g a p p l i c a t i o n s to 

field p h e n o t y p i n g . S i m u l t a n e o u s s c r e e n i n g o f m u l t i p l e geno 

types c o n s t r a i n s the s i z e o f e x p e r i m e n t a l p l o t s to a l e v e l b e l o w 

the s p a t i a l r e s o l u t i o n a t t a i n a b l e w i t h m a n y r e m o t e o r e v e n 

p r o x i m a l s e n s i n g s y s t e m s (Rebe tzke et a l . , 2014; B a r m e i e r & 

S c h m i d h a l t e r , 2016). A r t i f i c i a l i n o c u l a t i o n m a y be l i m i t e d to 

a s m a l l subse t o f p l a n t s i n e a c h p lo t , t h u s f u r t h e r l i m i t i n g the 

c h o i c e o f s p e c t r a l d a t a a c q u i s i t i o n t e c h n i q u e s . T h e p l o t s i ze 

r e d u c t i o n c a n a l so m o d i f y i ts s p e c t r a l p r o p e r t i e s ( B a r m e i e r & 

S c h m i d h a l t e r , 2016), a n d t h i s i n v a l i d a t e s m o d e l s w h i c h as

s u m e a c o n t i n u o u s c a n o p y . 

M o r e o v e r , d i s e a s e s e v e r i t y m u s t be e s t i m a t e d w h e n 

s e a r c h i n g fo r t o l e r a n t c u l t i v a r s , r a t h e r t h a n m e r e d i sease 

o c c u r r e n c e ( Q i u et a l . , 2019). T h i s t a s k h a s o n l y r e c e n t l y b e e n 

a t t e m p t e d (Bock et a l , 2010; H u a n g et a l , 2019; Q i u et a l . , 2019; 

Z h a n g et a l . , 2019). M o r e o v e r , the p r e d i c t i o n s m u s t c o n s i d e r 

m a s k i n g t h e d i s ea se s i g n a l b y g e n o t y p e d i f f e rences (P in ter 

et a l . , 1985). A l l t he se c h a l l e n g e s c rea te the n e e d fo r r e s e a r c h 

p r o g r a m s s p e c i f i c a l l y a i m e d at field p h e n o t y p i n g . 

T h i s s t u d y the re fo re i n v e s t i g a t e s the a c c u r a c y o f w i n t e r 

w h e a t F H B i n f e c t i o n s e v e r i t y a s s e s s m e n t s b a s e d o n re f lec

t a n c e s p e c t r o s c o p y m e a s u r e m e n t s i n a field p h e n o t y p i n g 

s e t t i ng . T h e spec i f i c a i m s are: (1) to e s t i m a t e abso lu t e a c c u 

r a c y o f o r d i n a l s u p p o r t v e c t o r m a c h i n e ( S V M ) p r e d i c t i v e 

m o d e l s b y c o m p a r i n g t h e i r o u t p u t s to v i s u a l r a t i n g s b y a n 

exper t , (2) to e x a m i n e t h e o b t a i n e d a c c u r a c y a c c o r d i n g to the 
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c r o p p h e n o l o g i c a l p h a s e at w h i c h d a t a w e r e a c q u i r e d a n d (3) 

to a n a l y s e the i n f l u e n c e o f s p e c t r a p r e - p r o c e s s i n g o n i n f e c t i o n 

s e v e r i t y p r e d i c t i o n q u a l i t y . W e h y p o t h e s i s e d t ha t the p re 

d i c t i o n s at a la te s tage o f t h e d i sease w o u l d be s a t i s f ac to ry for 

g e n o t y p e s c r e e n i n g . W e e x p e c t e d i n f e r i o r p r e d i c t i o n s w i t h 

s p e c t r a l d a t a o b t a i n e d at a n e a r l i e r stage. 

2 . Material and methods 

2.1. Site and experiment description 

T h e e x p e r i m e n t w a s c o n d u c t e d at the p r e m i s e s o f the C r o p 

R e s e a r c h Ins t i t u t e i n P r a h a R u z y n ě , C z e c h R e p u b l i c , at 50 .085° 

N , 14 .300° E. R u z y n ě l i es at 340 m a s l a n d is a p r e d o m i n a n t l y 

suga r bee t g r o w i n g r e g i o n . T h e s o i l i s O r t h i c L u v i s o l w i t h a 

s i l t y c l a y l o a m t e x t u r e to t h e d e p t h o f 0.7 m . T h e a n n u a l 

average a i r t e m p e r a t u r e s r e g i s t e r e d i n t h e 1 9 9 6 - 2 0 2 0 p e r i o d 

r a n g e d b e t w e e n 7.6 °C a n d 11.0 °C, a n d the a n n u a l p r e c i p i t a 

t i o n s u m s v a r i e d b e t w e e n 344.6 m m a n d 769.1 m m . 

T h e s t u d y w a s b a s e d o n a t r i a l e v a l u a t i n g w i n t e r w h e a t 

c u l t i v a r r e s i s t a n c e to F H B . T h e t r i a l field w a s m a i n t a i n e d i n a 

c r o p r o t a t i o n o f ce rea l s , p e a a n d c e r e a l - l e g u m e c o v e r c r o p s . 

T h e s e e d b e d p r e p a r a t i o n c o m p r i s e d s h a l l o w t i l l age o f the 

p r e c e d i n g c r o p , N P K f e r t i l i s a t i o n (45 k g h a - 1 o f N , P 2 0 5 a n d 

K 2 0 ) a n d p l o u g h i n g . T h e s o i l w a s t h e n l e v e l l e d , w h i c h w a s 

f o l l o w e d b y a pa s s o f a t r a i l e d c o m b i n a t i o n s e e d b e d c u l t i v a t o r . 

T h e w i n t e r w h e a t w a s s o w n b y h a n d b e t w e e n t h e 1st a n d 

the 3 r d o f O c t o b e r 2019 i n 12 p a r a l l e l b l o c k s 1 - m e t r e - w i d e . 

E a c h b l o c k c o m p r i s e d t w o r o w s o f h i l l p l o t s , f a c i n g e a c h o the r . 

T h e g r a i n i n t he se p lo t s w a s s o w n e v e r y 0.25 m i n c i r c u l a r 

areas o f 0 . 10 -0 .15 m d i a m e t e r (Fig. 1). T h e h i l l - p l o t p a i r s 

d i f f e r ed d e p e n d i n g o n t h e s o w n c u l t i v a r , a n d t he se w e r e ar

r a n g e d a c c o r d i n g to e a r l i n e s s i n the first t h r ee b l o c k s , a n d i n 

a l p h a b e t i c o r d e r i n the r e m a i n d e r . T h e c u l t i v a r s i n c l u d e d the 

f o l l o w i n g ; g e n o t y p e s s u b m i t t e d to p r e - r e g i s t r a t i o n t r i a l s , 

s t a n d a r d c u l t i v a r s r e c o m m e n d e d fo r g r o w i n g i n C z e c h R e 

p u b l i c c o n d i t i o n s , b r e e d i n g s t o c k s e l e c t i o n , b r e e d i n g l i n e s 

s u b j e c t e d to g e n o t y p i n g a n d gene t i c m a t e r i a l e v a l u a t e d u n d e r 

the E u r o p e a n F u s a r i u m r i n g tes t f r a m e w o r k . T h e c u l t i v a r ar

r a n g e m e n t s w e r e i n t r i p l i c a t e , w i t h the s a m e c u l t i v a r o r d e r 

u s e d i n e a c h r e p l i c a t i o n . 

P lo t m a i n t e n a n c e after s o w i n g c o m p r i s e d 0.51 h a - 1 C o u g a r 

For te h e r b i c i d e t r e a t m e n t (Bayer A G , L e v e r k u s e n , G e r m a n y ) 

a n d 0.11 h a - 1 M a r k a t e 50 i n s e c t i c i d e ( S u m i a g r o , P r a h a , C z e c h 

R e p u b l i c ) . T h e s e w e r e a p p l i e d o n t h e 2 5 t h o f O c t o b e r 2019, at 

the s e c o n d - l e a f s tage o f t h e p l a n t s ( B B C H GS 12), w h i c h w e r e 

a g a i n t r e a t ed w i t h p e s t i c i d e s o n the 2 3 r d o f A p r i l 2020, d u r i n g 

the flag l e a f d e v e l o p m e n t (GS 3 7 - 3 9 ) . T h e s e c o m p r i s e d 

1.21 h a - 1 A g r i t o x 50 SL ( N u f a r m U K L i m i t e d , B r a d f o r d , U K ) a n d 

0.41 h a - 1 S t a r a n e Fo r t e ( D o w A g r o S c i e n c e s s.r.o., P r a h a , C z e c h 

R e p u b l i c ) h e r b i c i d e s a n d 0.08 1 h a - 1 N e x i d e i n s e c t i c i d e 

( C h e m i n o v a A / S , H a r b o 0 r , D e n m a r k ) . T h e p a t h s s e p a r a t i n g 

the b l o c k s w e r e m a i n t a i n e d free o f v e g e t a t i o n w i t h a m o w e r 

0.25 

#0.10-0.15 

Fig. 1 - T h e arrangement of sowing areas w i th in the hi l l plots. T h e d imens ions are i n metres. 
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Fig. 2 - A row of hill-plot pairs w i th tied a n d bagged infected spikes facing non-infected spikes. 

b l a d e a n d a h a r r o w d r i v e n b y c o m p a c t u t i l i t y t rac tor ; w i t h 

t h ree p a s s e s m a d e d u r i n g t h e v e g e t a t i o n p e r i o d . 

O n e r o w i n e a c h b l o c k o f the h i l l p lo t s w a s i n o c u l a t e d w i t h 

i s o l a t e B o f Fusarium culmorum w h e n t h e y r e a c h e d f l o w e r i n g 

(GS 65). T h i s i n o c u l a t i o n w a s b y h a n d s p r a y e r f i l l e d w i t h 

0.8 x 1 0 7 spores m l - 1 s u s p e n s i o n . T e n s p i k e s w e r e t i e d i n a 

c lus t e r , a n d t h e a p p l i c a t i o n p e r f o r m e d f r o m a l l s ides . E x c e s s 

s u s p e n s i o n w a s i n t e r c e p t e d u s i n g a f o l d e d a l u m i n i u m f o i l 

s c r e e n h e l d b e h i n d t h e c l u s t e r s to m i n i m i s e u n c o n t r o l l e d 

s p r e a d i n g o f the i n o c u l u m b y w i n d c u r r e n t s . T h e c lu s t e r s 

w e r e t h e n k e p t fo r 24 h i n 0.4 b y 0.6 m p o l y e t h y l e n e bags to 

c rea te s tab le i n o c u l a t i o n c o n d i t i o n s (Fig. 2). T h i s w a s f o l l o w e d 

b y t r e a t m e n t i n the b l o c k s f a c i n g t h o s e a l r e a d y t r ea ted . H e r e , 

t e n s p i k e s w e r e a g a i n t i e d a n d c o v e r e d w i t h a b a g fo r c o m 

p a r i s o n . T h i s p r o c e d u r e d i f f e r ed to the K h a l e d i et a l . (2017) 

s t u d y , b e c a u s e these w e r e left d ry , a n d n o t p r e v i o u s l y 

s p r a y e d w i t h w a t e r . A l l p lo t s w e r e m a i n t a i n e d u n d e r i r r i g a 

t i o n i n a l l w e a t h e r c o n d i t i o n s e x c e p t d u r i n g a n d af ter r a i n to 

fos te r i n f e c t i o n d e v e l o p m e n t . 

T h e s t u d y f o c u s e d o n h i l l p l o t s i n o c u l a t e d o n a s i n g l e d a y 

a n d t h e i r f a c i n g p lo t s i n o r d e r to a v o i d the c o n f o u n d i n g effect 

o f e x t e r n a l c o n d i t i o n s v a r i a t i o n o n the m u l t i p l e i n o c u l a t i o n 

a n d d a t a c o l l e c t i o n da tes . T h e a v a i l a b l e s a m p l e s i ze w a s 

m a x i m i s e d b y c h o o s i n g the 3 r d o f J u n e 2020 fo r p l o t i n o c u l a 

t i o n . A n t h e s i s w a s r e c o r d e d i n 176 h i l l p l o t s o n t ha t day . 

2.2. Proximal sensing campaigns 

S p e c t r a l d a t a w e r e c o l l e c t e d b y A S D F i e l d s p e c 4 H i - R e s spec-

t r o r a d i o m e t e r w i t h c o n t a c t p r o b e ( M a l v e r n P a n a l y t i c a l , M a l 

v e r n , U K ) . T h e d e v i c e o p e r a t i o n i n v o l v e d t h r ee de tec to r s , a n d 

p r o v i d e d r a d i o m e t r i c m e a s u r e m e n t s w i t h a 16-bi t r e s o l u t i o n . 

T h e s p e c t r a l r a n g e w a s 3 5 0 - 2 5 0 0 n m , w i t h 3 - n m r e s o l u t i o n i n 

the V i s - N I R a n d 8 - n m i n the S W I R r e g i o n . T h e r e s p e c t i v e 

s a m p l i n g i n t e r v a l s w e r e 1.4 n m a n d 1.8 n m , w i t h m e a s u r e 

m e n t s r e - s a m p l e d to 1 n m . T h e c o n t a c t p r o b e h a d a b u i l t - i n 

h a l o g e n l i g h t s o u r c e to p r o v i d e m e a s u r e m e n t s u n a f f e c t e d b y 

a m b i e n t i l l u m i n a t i o n w h e n f u l l c o n t a c t w i t h the s a m p l e w a s 

a t t a i n e d . 

T w o s p e c t r a l d a t a a c q u i s i t i o n c a m p a i g n s w e r e p l a n n e d : 

the f i rs t t o o k p l a c e b e t w e e n 11.45 a n d 15.30 l o c a l t i m e o n the 

1 7 t h o f June 2020 ,14 da i , s o o n after i n i t i a l i n f e c t i o n s y m p t o m s 

w e r e v i s i b l e to t h e n a k e d eye . T h e s e c o n d w a s p e r f o r m e d 

b e t w e e n 09.15 a n d 12.40 o n the 1st o f J u l y 2020, 28 da i , w h e n 

the s y m p t o m s b e c a m e severe . T h e s e dates c o i n c i d e d w i t h the 

GS 77 m i l k - a n d 87 w a x - r i p e n i n g p l a n t d e v e l o p m e n t a l p h a s e s . 
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E a c h s p i k e c l u s t e r w a s s u b j e c t e d to a s e q u e n c e o f f ive 

m e a s u r e m e n t s , d u r i n g w h i c h t h r ee s p i k e s w e r e p o s i t i o n e d 

b e t w e e n t h e p r o b e a n d a b l a c k n o n - w o v e n t e x t i l e to e l i m i n a t e 

a c c i d e n t a l l i g h t p e n e t r a t i o n f r o m t h e b a c k g r o u n d . T h i s 

a p p r o a c h w a s s i m i l a r to t h e M a et a l . (2020) s t u d y , b u t a d a p t e d 

to c o n t a c t m e a s u r e m e n t s . T h e fabr ic h a d l o w r e f l ec t ance o f 

less t h a n 6% t h r o u g h o u t t h e m e a s u r e d s p e c t r u m , a n d as a 

r e s u l t v e r y l i m i t e d effect o n t h e m e a s u r e d s p e c t r a l c u r v e s . T h e 

b l o c k o r d e r w a s r a n d o m i s e d , b u t t h e m e a s u r e m e n t s i n e a c h 

b l o c k w e r e p e r f o r m e d s y s t e m a t i c a l l y to m i n i m i s e the t i m e 

b e t w e e n s c a n s . N o n - i n o c u l a t e d p l o t s w e r e m e a s u r e d i n a 

b a t c h first , i n o r d e r to a v o i d t h e i r c o n t a m i n a t i o n w i t h the 

p a t h o g e n . T w o m e a s u r e m e n t r u n s w e r e p e r f o r m e d w i t h the 

p r o b e d i s i n f e c t e d i n - b e t w e e n , a n d th i s a v o i d e d r u n n i n g o u t o f 

t i m e before b o t h h i l l p lo t s i n e a c h p a i r w e r e s c a n n e d . T h e 

d e v i c e w a s c a l i b r a t e d u s i n g a w h i t e S p e c t r a l o n w h e n e n t e r i n g 

a n e w r o w , a n d t h e n a p p r o x i m a t e l y e v e r y t e n m i n u t e s . T h e 

r e f l ec t ance f ac to r o f t h e S p e c t r a l o n w a s >99% for v i s i b l e l i g h t 

a n d >98% for NIR . T h e r e s u l t a n t da tase t c o m p r i s e d c o m p l e t e 

s p e c t r a l d a t a fo r 67 h i l l - p l o t p a i r s o u t o f t h e a v a i l a b l e p o o l o f 

176 p a i r s , t h u s e q u i v a l e n t to 1340 s p e c t r a . W i t h t w o e x c e p 

t ions , n o c u l t i v a r a p p e a r e d m o r e t h a n o n c e i n the datase t . A l l 

i n c l u d e d c u l t i v a r s are l i s t e d i n S u p p l e m e n t S I . 

C o l l e c t i o n o f i m a g i n g d a t a s u p p l e m e n t e d p o i n t s p e c t r o m 

etry . T h e i m a g e s w e r e o b t a i n e d f r o m a t r i p o d - m o u n t e d 

h y p e r s p e c t r a l R i k o l a m o d e l F a b r y - P e r o t 2 D f r a m e c a m e r a 

(Senop, O u l u , F i n l a n d ) . T h e d a t a c u b e s c o m p r i s e d 45 b a n d s 

w i t h s p a t i a l r e s o l u t i o n o f 1010 x 648 p x , 12-bi t r a d i o m e t r i c 

r e s o l u t i o n a n d c o v e r i n g 5 0 0 - 9 0 0 n m s p e c t r a l r ange . T h e d i s 

t ance b e t w e e n t h e s p i k e s a n d the c a m e r a l e n s w a s 0 .6 -0 .7 m , 

r e s u l t i n g i n G S D o f a p p r o x i m a t e l y 0 .37 -0 .43 m m p x - 1 . T h e 

i n t e g r a t i o n t i m e w a s se t to 5 m s . D a r k c u r r e n t n o i s e a n d 

i r r a d i a n c e w e r e m e a s u r e d a n d a S p e c t r a l o n p a n e l w i t h 75% 

re f l ec t ance f ac to r p o s i t i o n e d n e x t to the s p i k e s fo r r a d i o m e t r i c 

c o r r e c t i o n . T h e a c q u i s i t i o n p r o c e s s w a s s l o w b e c a u s e o f 

d i f f i cu l t a i m i n g o f t h e device ' s n a r r o w f i e l d o f v i e w o f 36 .5° , t he 

absence o f a v i e w f m d e r a n d s l o w s y s t e m r e s p o n s e to p o s i 

t i o n a l a d j u s t m e n t s . T h e r e w a s a l so a d d i t i o n a l t i m e w a i t i n g for 

a p p r o p r i a t e l i g h t c o n d i t i o n s w i t h o u t c l o u d o b s t r u c t i o n . In the 

e n d , these d a t a w e r e d i s c a r d e d b e c a u s e the e x p e r i m e n t a l 

s p i k e c l u s t e r s w e r e i m p o s s i b l e to d i s t i n g u i s h f r o m the 

r e m a i n i n g s p i k e s i n m o s t o f the c a p t u r e d i m a g e s . T h e r e f o r e 

w e do n o t r e c o m m e n d R i k o l a fo r f i e l d p h e n o t y p i n g a p p l i c a 

t i ons w h e n i n d i v i d u a l , p r e - d e t e r m i n e d p l a n t o r g a n s r e q u i r e 

p r e c i s e c a p t u r e w i t h h i g h s p a t i a l r e s o l u t i o n . A s p e c i a l i s e d 

c a m e r a , s u c h as t ha t u s e d b y B e h m a n n et a l . (2018), m a y be 

m o r e s u i t a b l e fo r t h i s p u r p o s e . 

2.3. Reference data collection 

A v i s u a l s y m p t o m score (VSS) w a s a s s i g n e d to e a c h h i l l p l o t o f 

the i n f e c t e d r o w s 14 ,21 , 28 a n d 35 d a i . T h i s sco re w a s b a s e d o n 

the f o l l o w i n g 9 - p o i n t sca le fo r p e r c e n t a g e o f i n f e c t e d s p i k e l e t s 

i n t h e s p i k e c lus t e r ; 9 p o i n t s : <5%, 8: 5 - 1 7 % , 7: 1 8 - 3 0 % , 6: 

3 1 - 4 3 % , 5: 4 4 - 5 6 % , 4: 5 7 - 6 9 % , 3: 7 0 - 8 2 % , 2: 8 3 - 9 5 % a n d 1: 

>95%. N o t e t ha t the h i g h e r p o i n t v a l u e s h e r e d e n o t e l o w e r 

s e v e r i t y l e v e l . P lo t s w e r e e x a m i n e d l i n e a r l y , n o t at r a n d o m . 

T h e t w o a s s e s s m e n t s c l o s e s t i n t i m e to s p e c t r a l d a t a 

a c q u i s i t i o n s w e r e k e p t fo r f u r t h e r a n a l y s i s . T h e y w e r e the 

17 th o f J u n e 2020, 14 d a i , a n d the 1st o f J u l y 2020, 28 da i ; 

m a t c h i n g e x a c t l y the dates o f t h e s p e c t r a l c a m p a i g n s . 

F H B s y m p t o m s w e r e n o t e d i n s o m e u n i n o c u l a t e d s p i k e 

b u n d l e s d u r i n g the la te p r o x i m a l s e n s i n g c a m p a i g n , a n d 

the re fo re the f a c i n g h i l l p l o t s s t i l l i n the GS 87 w a x - r i p e n i n g 

w e r e a l so r a t e d o n the 2 n d o f J u l y 2020, 29 d a i . T h e h i l l p l o t 

p a i r s w i t h f a c i n g - p l o t r a t i n g b e l o w 9 w e r e e x c l u d e d f r o m 

fu r the r a n a l y s i s , l e a v i n g t h e f i n a l n u m b e r o f 48 r e t a i n e d h i l l 

p l o t p a i r s . T h e a m o u n t o f d i s c a r d e d d a t a is t h o u g h t to h a v e 

b e e n h i g h e r i f t h e n o n - i n o c u l a t e d s p i k e s h a d b e e n s p r a y e d 

w i t h w a t e r p r i o r to t h e i r b a g g i n g , a n d t h e d e v i a t i o n f r o m the 

K h a l e d i et a l . (2017) p r o c e d u r e i s fo r tuna te , a l l o t h e r t h i n g s 

b e i n g e q u a l . 

2.4. Hil l plot partitioning and spectra pre-processing 

T h e h i l l p lo t s w e r e r a n d o m l y s p l i t i n t o t r a i n i n g a n d v a l i d a t i o n 

d a t a p a r t i t i o n s i n 3:1 p r o p o r t i o n . T h e s p l i t w a s r e p e a t e d 10 

t i m e s i n a j a c k - k n i f e m a n n e r ( W e s t a d & M a r i n i , 2015). T h e 

s p e c t r a f r o m e a c h a c q u i s i t i o n c a m p a i g n w e r e t h e n i n d e p e n 

d e n t l y p r e - p r o c e s s e d . T h e y w e r e i n i t i a l l y s u b j e c t e d to p a r a 

b o l i c c o r r e c t i o n to s m o o t h t r a n s i t i o n s b e t w e e n t h e th ree 

F i e l d s p e c de tec to r s ( H u e n i & B i a l e k , 2017) a n d t h e ' n o i s y ' r e 

g ions b e l o w 425 n m a n d above 2275 n m w e r e v i s u a l l y i d e n t i 

f ied a n d r e m o v e d . 

T h e m e d i a n r e f l e c t a n c e w a s d e r i v e d f o r e a c h c o m b i n a t i o n 

o f p a r t i t i o n i n g , p r e - p r o c e s s i n g , h i l l p l o t a n d s p e c t r a l b a n d . 

T h e c h o i c e o f t h e m e d i a n f u n c t i o n w a s m o t i v a t e d b y l a c k o f 

d i s t r i b u t i o n a l a s s u m p t i o n s a n d r o b u s t n e s s t o w a r d s o u t l i e r s . 

T h i s , h o w e v e r , c o u l d a l so r e s u l t i n s p e c t r a f r o m u n i n f e c t e d 

p a r t s o f s o m e s p i k e b u n d l e s d o m i n a t i n g t h e s p e c t r a a f f ec t ed 

b y d i s e a s e a n d c a u s i n g a l a c k o f i n f e c t i o n s i g n a l i n t h e m e 

d i a n s i g n a t u r e . T h e p e r f o r m a n c e o f m e a n v a l u e s w a s t h e r e 

fore e x p l o r e d . T h e f o l l o w i n g s e v e n p r e - p r o c e s s i n g s c h e m e s 

w e r e t e s t e d af ter t h e a g g r e g a t i o n s t ep : (1) n o f u r t h e r p r e 

p r o c e s s i n g , w h i c h p r o v i d e d a ' r a w s p e c t r u m ' , (2) s u b t r a c 

t i o n o f a n a g g r e g a t e d n o n - i n o c u l a t e d c o u n t e r p a r t s p e c t r u m , 

(3) d i v i s i o n b y a n a g g r e g a t e d n o n - i n o c u l a t e d c o u n t e r p a r t 

s p e c t r u m , (4) s t a n d a r d n o r m a l v a r i a t e ( S N V ) , (5) s u b t r a c t i o n 

f o l l o w e d b y S N V , (6) d i v i s i o n f o l l o w e d b y S N V a n d (7) 

m a x i m u m n o r m a l i s a t i o n f o l l o w e d b y t h e S a v i t z k y - G o l a y 

d e r i v a t i v e a n d s m o o t h i n g to a p p r o x i m a t e t h e a p p r o a c h 

u s e d i n W h e t t o n et a l . (2018b). 

2.5. Modelling 

T h e V S S a s s e s s m e n t s w e r e p e r f o r m e d o n a d i s c r e t e i n t e r v a l 

sca le (Bock et a l . , 2010), a n d the c o m p u t a t i o n a l c o m p l e x i t y o f 

the t a sk c a n be r e d u c e d b y a p p l y i n g a n o r d i n a l p r e d i c t i v e 

m o d e l . H e r e , n - 1 i n d e p e n d e n t f u n c t i o n s are su f f i c i en t to 

d i s c r i m i n a t e b e t w e e n n o r d e r e d c l a s ses ( B e h m a n n et a l . , 

2014a). A c c o r d i n g to T h o m a s et a l . (2018), S V M m o d e l l i n g i s 

a s u i t a b l e m e t h o d o f d e t e c t i n g e a r l y p l a n t d i s ea se s y m p t o m s . 

C o n s e q u e n t l y , o r d i n a l c l a s s i f i c a t i o n S V M s w i t h t h e r a d i a l 

b a s i s f u n c t i o n k e r n e l w e r e e m p l o y e d to p r e d i c t the V S S s ; as i n 

B e h m a n n et a l . (2014b). Sepa ra te m o d e l s w e r e f i t t ed fo r e a c h 

c o m b i n a t i o n o f t h e s p e c t r a l a c q u i s i t i o n c a m p a i g n , r e f e r ence 
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V S S da tase t , p l o t p a r t i t i o n i n g , s p e c t r a a g g r e g a t i o n f u n c t i o n 

a n d the s p e c t r a p r e - p r o c e s s i n g s c h e m e . T h i s p r o v i d e d a t o t a l 

o f 560 m o d e l e n s e m b l e s . T h e C a n d g a m m a t u n i n g h y p e r -

p a r a m e t e r s w e r e d e t e r m i n e d b y B a y e s i a n o p t i m i s a t i o n a lgo

r i t h m ( B i s c h l et a l . , 2018), a c c o r d i n g to the l e a v e - o n e - o u t 

c r o s s - v a l i d a t i o n m a x i m u m a c c u r a c y c r i t e r i o n . T h e v a l i d a 

t i o n a c c u r a c i e s o f e a c h m o d e l w e r e t h e n e s t i m a t e d ; a l l o w i n g 

for m i s - c l a s s i f i c a t i o n o f z e r o , o n e a n d t w o c l a s s d i f f e rences ; 

s i m i l a r to B e h m a n n et a l . (2014b). 

T h e j o i n t effects o f the s p e c t r a a c q u i s i t i o n c a m p a i g n a n d 

g r o u n d - t r u t h d a t a c o l l e c t i o n t i m i n g s , s p e c t r a p r e - p r o c e s s i n g 

s c e n a r i o s a n d m a g n i t u d e s o f e r r o r t o l e r a n c e s o n t h e p r o b a 

b i l i t y o f a c o r r e c t V S S r a t i n g w e r e m o d e l e d u s i n g m i x e d - e f f e c t 

B a y e s i a n g e n e r a l i s e d l i n e a r m o d e l s (Burkne r , 2018) s e p a r a t e l y 

for m e d i a n a n d m e a n agg rega t ion . A B e r n o u l l i g e n e r a t i n g 

d i s t r i b u t i o n w i t h a l og i t l i n k w a s a s s u m e d to c o m p l y w i t h t h e 

b i n a r y t ype o f t h e d e p e n d e n t v a r i a b l e ( K r u s c h k e , 2015) — a 

co r r ec t o r i n c o r r e c t V S S p r e d i c t i o n a d j u s t e d fo r e r r o r to l e r 

ance . T h e g r o u p i n g v a r i a b l e s i n t h e m o d e l r e f l ec t ed the da t a -

set s t r uc tu re , a n d t he se c o m p r i s e d the d a t a p a r t i t i o n i d e n t i f i e r 

c r o s s e d w i t h t h e h i l l p l o t p a i r i den t i f i e r . T h e d r a w s f r o m t h e 

p o s t e r i o r d i s t r i b u t i o n s a s s o c i a t e d w i t h i n d i v i d u a l l eve l s o f t h e 

i n d e p e n d e n t v a r i a b l e s a n d t h e i r s e l e c t e d c o n t r a s t s w e r e t h e n 

v i s u a l i s e d , a n d s u m m a r i s e d u s i n g t h e m e d i a n s a n d 95% 

c r e d i b i l i t y i n t e r v a l s i n the v i s u a l i s a t i o n s . 

2.6. Study pre-registration, data availability and 

computational reproducibility 

T h i s w a s a p r e - r e g i s t e r e d s t u d y ( N o s e k et a l . , 2018), w i t h t h e 

p r e - r e g i s t r a t i o n f o r m ( Ž e l a z n y et a l . , 2020) h o s t e d b y t h e 

C e n t e r o f O p e n S c i e n c e . T h e da tase t i s a v a i l a b l e f r o m a Z e n -

o d o r e p o s i t o r y (h t tps : / /do i .o rg /10 .5281/zenodo .4536881) , 

e x c l u d i n g the h y p e r s p e c t r a l d a t a c u b e s b e c a u s e o f t h e i r 

e x c e s s i v e s i z e a n d t h e fact t ha t t h e y w e r e n o t a n a l y s e d . 

T h e a n a l y s i s w a s c o d e d i n the R l anguage (R C o r e T e a m , 

2020). T h e p r o s p e c t r p a c k a g e (Stevens & R a m i r e z - L o p e z , 

2013) w a s e m p l o y e d for the spec t ra p r e - p r o c e s s i n g , e l 0 7 l 

( M e y e r et a l . , 2020) for S V M c l a s s i f i c a t i o n a n d m l r ( B i s c h l et a l . , 

2016) for m o d e l t u n i n g . T h e l i n e a r m o d e l l i n g w a s p e r f o r m e d b y 

b rms (Burkner , 2018) in te r face to S t a n (Carpen te r et a l . , 2017), 

a n d the d r a w s f r o m the p o s t e r i o r d i s t r i b u t i o n s w e r e fu r ther 

p r o c e s s e d u s i n g the t i d y b a y e s p a c k a g e (Kay, 2020). T h e 

da tase t i s a c c o m p a n i e d b y c o m p u t a t i o n a l scr ip ts a n d d o c u 

m e n t a t i o n for r e p r o d u c i n g the a n a l y s i s . A G N U G u i x m a n i f e s t 

file a n d a c h a n n e l spec i f i c a t i on ( C o u r t ě s & W u r m u s , 2015) are 

a l so p r o v i d e d to recrea te the o r i g i n a l so f tware a n a l y s i s 

e n v i r o n m e n t . 

3. Results 

3.1. Exploratory data analysis 

F H B i n f e c t i o n is r e a d i l y d i s c e r n i b l e i n the m e a s u r e d s p e c t r a , 

as d e p i c t e d i n t h e t o p p a n e l o f F i g . 3 fo r m e d i a n agg rega t ion . 

T h e l o w e r V S S s d e n o t e h i g h e r s eve r i t y , a n d t he se are a s s o c i 

a t e d w i t h i n c r e a s e d r e d r e f l ec t ance a n d t h e l o w e r e d N I R 

s h o u l d e r n e x t to the r e d edge r e g i o n . T h e r e m a i n d e r o f t h e N I R 

a n d the S W I R s p e c t r a h a v e i n c r e a s e d r e f l ec t ance . T h e r e is a 

s u c c e s s i v e b l u e sh i f t d i s c e r n a b l e as the r a t i n g s dec rease to

w a r d s the v a l u e o f 4, a n d a q u a l i t a t i v e c h a n g e i n the s i g n a t u r e 

s h a p e fo r t h e t h r ee l o w e s t V S S s . T h e l a t t e r i n v o l v e s a f u r t he r 

i n c r e a s e i n r e d r e f l ec tance , to the e x t e n t t ha t the r e d a b s o r p 

t i o n fea ture a l m o s t d i s a p p e a r s , a n d the c u r v e s a s s u m i n g a n 

a l m o s t l i n e a r s h a p e i n t h e v i s i b l e a n d red-edge r e g i o n s a n d 

b e y o n d . T h e V S S s i n t h e m i d d l e o f t h e sca le w e r e a s s i g n e d to 

the h i l l p lo t s d u r i n g b o t h e a r l y a n d la te r e f e r ence d a t a 

c o l l e c t i o n , t h u s e n a b l i n g c o m p a r i s o n o v e r t i m e . T h e w a x -

r i p e n i n g l a t e r p h e n o l o g i c a l p h a s e is c h a r a c t e r i s e d b y 

i n c r e a s e d g r e e n a n d r e d r e f l ec t ance r e l a t i v e to t h e m i l k -

r i p e n i n g r e f l ec t ance p a t t e r n . S i m i l a r c u r v e s w e r e o b t a i n e d 

for s p e c t r a d e r i v e d u s i n g m e a n a g g r e g a t i o n ( S u p p l e m e n t S2). 

T h e b o t t o m p a n e l s i n F i g . 3 h i g h l i g h t t h a t m o s t p re 

p r o c e s s i n g s c h e m e s r e t a i n e d t h e p o s s i b i l i t y o f d i s c e r n i n g at 

l eas t the c u r v e s c o r r e s p o n d i n g to t h e l o w e s t o r h i g h e s t 

i n f e c t i o n l e v e l s . H o w e v e r , t h e c h a r a c t e r a n d degree o f the 

V S S s s e p a r a t i o n d i f fe r ac ross s c e n a r i o s . A s e x p e c t e d , s u b 

t r a c t i o n a n d d i v i s i o n r e s u l t e d i n the t o p - r a t e d s p e c t r a 

f o l l o w i n g the h o r i z o n t a l l i n e c e n t r e d at 0 a n d 1 v a l u e r e spec 

t i ve ly , w h e r e a s h i g h d i s ea se s eve r i t i e s are a s s o c i a t e d w i t h 

i n c r e a s i n g l y p r o n o u n c e d d e v i a t i o n s . T h e t i m i n g effect w a s 

p r e s e r v e d . T h e S N V y i e l d e d t h r ee b u n d l e s o f c u r v e s a s s o c i a t e d 

w i t h a l l e a r l y - d a t e , l o w l a t e -da te a n d h i g h l a t e -da te r a t i ngs . 

P r e - p e n d i n g i t w i t h s u b t r a c t i o n a m p l i f i e d t h e c u r v e s e p a r a t i o n 

i n the r ed -edge r e g i o n , w h i l e s u p p r e s s i n g the S W I R s i g n a l a n d 

i n t r o d u c i n g n o i s e . P r e - p e n d i n g t h e S N V w i t h d i v i s i o n a l so 

gave ' n o i s y ' s i g n a t u r e s , a n d t r a n s f o r m a t i o n a d a p t e d f r o m 

W h e t t o n et a l . (2018b) r e s u l t e d i n a t i gh t g rad ien t . U n d e r t h i s 

s c h e m e , p l a n t h e a l t h d e t e r i o r a t i o n is a s s o c i a t e d w i t h less 

p r o n o u n c e d fea tures , e x c e p t fo r t h e l o n g e s t w a v e l e n g t h s , 

w h e r e the r e l a t i o n s h i p is r e v e r s e d . T h i s p r e - p r o c e s s i n g 

a c c e n t u a t e d t h e effect o f the i n f e c t i o n o n the left s h o u l d e r 

o f the NIR p l a t e a u . A l l o f t he se p a t t e r n s o c c u r r e d a l so after 

t r a n s f o r m i n g m e a n - a g g r e g a t e d s p e c t r a ( S u p p l e m e n t S2). 

F i g u r e 4 s h o w s t h a t the l a t e -da te V S S s t e n d e d to be l o w e r 

t h a n t h o s e o b t a i n e d f r o m t h e first v i s u a l a s s e s s m e n t , t h u s 

r e f l e c t i n g i n f e c t i o n s p r e a d . T h e y a l so e x h i b i t a s l i g h t l y w i d e r 

r ange . A s m a l l n u m b e r o f t h e tes t d a t a - p o i n t s e x t e n d b e y o n d 

the m o d e l c a l i b r a t i o n d o m a i n s . T h e a f fec ted p a r t i t i o n s are 1, 3 

a n d 9; the l a t t e r i n la te a s s e s s m e n t , o n l y . 

3.2. S V M model performances 

W h i l e 100% c o r r e c t V S S r a t i n g s w i t h i n t w o - p o i n t e r r o r to l e r 

a n c e w e r e p r e d i c t e d fo r l a rge f r a c t i o n s o f t h e tes t d a t a p a r t i 

t i o n s , p r e d i c t i o n s w e r e p o o r i n a l l z e r o - t o l e r a n c e s c e n a r i o s 

(Fig. 5). H o w e v e r , r e l a t i v e l y h i g h p e r f o r m a n c e i s a s s o c i a t e d 

w i t h t h e e a r l y - d a t e p r e d i c t i o n s r ega rd l e s s o f s p e c t r a l d a t a 

t i m i n g p r o v i d e d o n e - p o i n t V S S e r r o r i s p e r m i t t e d . T h i s does 

n o t h o l d fo r the l a t e -da te r a t i n g s , w h e r e t h e a c c u r a c i e s 

s e l d o m e x c e e d e d 75%. T h e effects o f t h e i n d i v i d u a l s p e c t r a 

p r e - p r o c e s s i n g s c h e m e s are less c l e a r t h a n t h o s e o f the t i m 

i n g s . T h e p a t t e r n s are i n c o n s i s t e n t a n d n o o b v i o u s l y a d v a n 

t ageous o r f a i l i n g s t r a t egy c a n be i d e n t i f i e d . 

A g g r e g a t e d c o n f u s i o n m a t r i c e s w e r e d e r i v e d to e x p l o r e the 

p o s s i b l e d e t e r m i n a n t s o f a c c u r a c y d i f fe rences at t h e da t a -

p o i n t l e v e l . T h e c o n f u s i o n m a t r i c e s c o r r e s p o n d i n g to i n d i 

v i d u a l p a r t i t i o n i n g s w e r e e x t r a c t e d a n d s u b j e c t e d to m a t h e 

m a t i c a l a d d i t i o n o f t h e i r e l e m e n t c o n t e n t s . F i g u r e 6 d e p i c t s 
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Fig. 3 - Spectral signatures from the two measurement campaigns according to V S S , and the influence of the pre-processing 

strategies. A m e d i a n of median-aggregated spectra is displayed for each rating. A lower rating denotes higher infection 

severity. 
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Fig. 4 - T h e distributions of V S S s across the training and test data subsets according to the dataset partitioning and V S S 

rating t iming. A lower rating denotes higher infection severity. 
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Fig. 5 - Distributions of S V M m o d e l accuracies across the dataset partitions according to the t iming of spectral and ground-

truth data collection, spectra pre-processing, spectra aggregation and allowed prediction error. 

t ha t the p r e d i c t i o n s a p p e a r to s p r e a d s y m m e t r i c a l l y f r o m t h e 

m a t r i x d i a g o n a l s , t h u s s u g g e s t i n g t h a t the o b s e r v e d a c c u r a c y 

v a r i a t i o n s h o u l d be a t t r i b u t e d p r i m a r i l y to d i f f e r en t m o d e l 

p r e c i s i o n s , r a t h e r t h a n b i a ses (Bock et a l . , 2010). F o r c e r t a i n 

p r e - p r o c e s s i n g s c h e m e s t h e r ange o f the e a r l y V S S p r e d i c t i o n s 

is c o m p r e s s e d r e l a t i v e to t h o s e g e n e r a t e d fo r t h e l a t e r date , 

de sp i t e o n l y s l i g h t d i f f e rences i n the a c t u a l r a t i n g r anges 

(Fig. 4). T h i s p a t t e r n m a y be e x p l a i n e d b y the e a r l y - d a t e S V M 

m o d e l s r e t u r n i n g t h e s a m e r a t i n g r ega rd l e s s o f i n p u t s p e c t r a 

d i f f e rences . H o w e v e r , a m o n g the a f fec ted m o d e l s t h e s i n g l e -

p r e d i c t i o n o c c u r r e n c e fo r s p e c t r a s u b j e c t e d to s u b t r a c t i o n or 

d i v i s i o n is 25%, a n d n o m o d e l t r a i n e d to t h e r a w s p e c t r a be

h a v e s i n t h i s m a n n e r . 

3.3. Linear modelling 

F i g u r e 7 d e p i c t s p o s t e r i o r d r a w s d e r i v e d fo r the l i n e a r m o d e l 

f i t t ed to the S V M m o d e l p r e d i c t i o n h i t s a n d m i s s e s . It p r e sen t s 

g e n e r a l i s e d i n f e r e n c e s o n p r e d i c t i v e m o d e l p o p u l a t i o n p r o p 

er t ies , r a t h e r t h a n s u m m a r i s i n g t h e p e r f o r m a n c e s o f a 

p a r t i c u l a r s a m p l e o f p r e d i c t i v e m o d e l s as s e e n i n F ig . 5. T h e 

m e a n i n g o f the y a x i s sh i f t s f r o m c a l c u l a t e d p r e d i c t i o n a c c u 

r a c y to p o t e n t i a l p r o b a b i l i t y o f c o r r e c t p r e d i c t i o n . T h e pat 

te rns , h o w e v e r , are s i m i l a r fo r the b o t h f igures , as e x p e c t e d . 

C r e d i b i l i t y i n t e r v a l s c o r r e s p o n d i n g to e x p e r i m e n t a l t r e a t m e n t 

c o m b i n a t i o n s c a n be d e r i v e d f r o m the d r a w s . A c c o r d i n g to 

t h i s c r i t e r i o n , p e r f o r m i n g n o s p e c t r a t r a n s f o r m a t i o n c a n 

r e s u l t i n s a t i s f ac to ry e a r l y - d a t e r a t i ngs , e v e n i f t h e s p e c t r a are 

a c q u i r e d at a l a t e r date . M o r e o v e r , S N V c a n be a d v a n t a g e o u s 

w h e n the m e a n f u n c t i o n i s e m p l o y e d to aggregate t h e s p e c t r a 

a n d a l l d a t a are c o l l e t e d o n t h e e a r l i e r da te . 

A f i t t ed l i n e a r m o d e l e n a b l e s effect s i z e e s t i m a t i o n for 

e x p e r i m e n t a l t r e a t m e n t c o n t r a s t s ( K r u s c h k e & L i d d e l l , 2017). 

T h e p r e d i c t i o n s u c c e s s p r o b a b i l i t i e s c o r r e s p o n d i n g to t h e 

d i f f e ren t s c a n n i n g da tes w e r e c o m p a r e d w i t h the s a m e V S S 

r a t i n g da tes m a i n t a i n e d to r e s o l v e the h y p o t h e s i s o f de t e r io 

r a t e d m o d e l q u a l i t y w h e n l a t e -da te s p e c t r a l s i gna tu r e s are 

r e p l a c e d w i t h e a r l y - d a t e spec t r a . T h e p r o b a b i l i t y o f a c o r r e c t 

r a t i n g b y a S V M m o d e l i s v i r t u a l l y u n a f f e c t e d b y the s p e c t r a l 

c a m p a i g n t i m i n g i f a n e r r o r o f t w o V S S p o i n t s is a c c e p t e d . In 

con t r a s t , t h e r e is p o s i t i v e effect o f a n e a r l i e r s p e c t r a l 

c a m p a i g n w h e n s u b t r a c t i o n o r d i v i s i o n p r e - p r o c e s s i n g i s 

a p p l i e d after m e d i a n a g g r e g a t i o n to d e t e r m i n e i n f e c t i o n 

s e v e r i t y w i t h s i n g l e - p o i n t t o l e r a n c e (Table 1). T h e c l a s s i f i c a 

t i o n s u c c e s s p r o b a b i l i t y i n c r e a s e i s b e l o w 30% w h e n a p re 

d i c t i v e m o d e l is t r a i n e d to t h e V S S s c o l l e c t e d o n t h e e a r l y date . 

T h i s c o n t r a s t s w i t h a p o s s i b l e g rea te r t h a n 50% i n c r e a s e for 

the l a t e -da te r a t i ngs , c h a r a c t e r i s e d b y l o w e r b a s e l i n e e s t i 

m a t e s (Figs. 5 a n d 7). A l t h o u g h t h e effect s i z e s are h i g h l y u n 

c e r t a i n w h e n n o p r e d i c t i o n e r r o r i s a l l o w e d , p o s i t i v e e a r l y 

s p e c t r a i n f l u e n c e c a n be i n f e r r e d fo r the s a m e t r a n s 

f o r m a t i o n s w h e n e a r l y V S S r a t i n g s are c o n s i d e r e d . T h i s 

p a t t e r n e x t e n d s to a d d i t i o n a l p r e - p r o c e s s i n g s c h e m e s w h e n 

the m e a n f u n c t i o n i s e m p l o y e d fo r s p e c t r a agg rega t ion . In 

p a r t i c u l a r , t h e p r e d i c t i o n p e r f o r m a n c e i n c r e a s e s b y m o r e t h a n 

100% w i t h S N V (Table 2). 

T h e effects o f p r e - p r o c e s s i n g s c h e m e s o n the S V M p r e d i c 

t i o n q u a l i t y w e r e e x a m i n e d , w i t h the r a w - s p e c t r a s c e n a r i o s 

f o r m i n g t h e b a s e l i n e fo r c o m p a r i s o n . T h e p r e d i c t i o n per fo r 

m a n c e r e m a i n s a l m o s t the s a m e i f a n e r r o r o f t w o V S S p o i n t s i s 

a l l o w e d (Tables 3 a n d 4). T h e r e s p o n s e i s w e a k fo r m o d e l s 

t r a i n e d to the e a r l y - d a t e i n f e c t i o n r a t i n g s w h e n t h e t o l e r a n c e i s 

r e d u c e d to o n e p o i n t . T h e effect d i f fers fo r s u b t r a c t i o n a n d 

d i v i s i o n d e p e n d i n g o n t h e t i m i n g a n d s p e c t r a a g g r e g a t i o n 

f u n c t i o n . S l igh t , b u t m o r e c o n s i s t e n t p e r f o r m a n c e dec reases 

are a s s o c i a t e d w i t h m e d i a n a g g r e g a t i o n f o l l o w e d b y s u b t r a c 

t i o n a n d d i v i s i o n c o m b i n e d w i t h S N V , a n d a l so w i t h t h e p re 

p r o c e s s i n g a d a p t e d f r o m W h e t t o n et a l . (2018b). T h e d e t r i 

m e n t a l effects o f t he se s c h e m e s are c o n f i r m e d b y the z e r o -

e r r o r t o l e r a n c e s c e n a r i o , w h e r e t h e p r o b a b i l i t i e s o f a c o r r e c t 
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Fig. 6 - Aggregated confusion matrices according to spectral a n d ground-truth collection t iming and spectra pre-processing 

scheme. T h e matrix labels explain m e a n accuracies corresponding to the prediction error tolerance levels (0-2 V S S points) 

and the partitioning count for w h i c h all mode l predictions h a d the same value. A lower rating denotes higher infection 

severity. Only S V M models trained to the spectra subjected to m e d i a n aggregation were included i n the analysis . 

V S S a s s i g n m e n t are r e d u c e d b y ( m e d i a n e s t i m a t e s a n d 95% s p e c t r a a g g r e g a t i o n p r e se rves the n e g a t i v e effects o f s u b t r a c -

c r e d i b i l i t y i n t e r v a l s ) 63% [32, 80], 56% [19, 76] a n d 58% [22, 78] t i o n f o l l o w e d b y S N V a n d the s c h e m e a d a p t e d f r o m W h e t t o n 

w h e n t h e m i l k - r i p e n i n g p h e n o l o g i c a l p h a s e is i n v o l v e d . B o t h et a l . (2018b). H o w e v e r , s o m e e v i d e n c e o f a c c u r a c y i n c r e a s e 

S N V a n d the r e m a i n i n g t w o t r a n s f o r m a t i o n s a l so e x h i b i t t h i s w i t h S N V (40% [-9 ,125]) w a s o b t a i n e d fo r e a r l y d a t a c o l l e c t i o n 

p a t t e r n , b u t the l a t t e r o n l y fo r o n e t i m i n g c o m b i n a t i o n . M e a n s c e n a r i o , as sugges t ed b y F i g . 7. 
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Pre-processing 

Fig. 7 - Posterior distributions, medians and 95% credibility intervals of S V M mode l correct V S S prediction m e a n 

probabilities according to the t iming of spectral a n d ground-truth data collection, spectra pre-processing and al lowed 

prediction error. Each panel corresponds to a separate l inear model , wi th a distinct underly ing spectra aggregation function. 

Table 1 - Medians and 95% credibility intervals of the multiplicative effects o n S V M mode l correct prediction m e a n 
probabilities according to median-aggregated spectra pre-processing and allowed prediction error, w h e n a late spectral 
campaign is replaced by a n early campaign and the V S S rating date remains fixed. 

Contrast Pre-processing 

0 

VSS tolerance 

1 2 

early spectra late spectra | early VSSs raw spectrum 0.97 [0.56, 1.66] 1.04 [1.00, 1.13] 1.00 [0.99, 1.01] 
subtraction 2.00 [1.10, 3.62] 1.04 [0.99, 1.16] 1.00 [0.99, 1.01] 
division 2.50 [1.41, 4.60] 1.09 [1.03, 1.26] 1.00 [0.99, 1.01] 
SNV 0.72 [0.37, 1.41] 1.00 [0.92, 1.08] 1.00 [0.99, 1.01] 
subtraction + SNV 0.82 [0.43, 1.59] 1.05 [0.96, 1.21] 1.00 [0.99, 1.01] 
division + SNV 0.94 [0.50, 1.78] 1.10 [1.01, 1.32] 1.00 [0.99, 1.01] 
Whetton et al. 1.07 [0.56, 2.13] 1.00 [0.88, 1.13] 1.00 [0.99, 1.01] 

early spectra late spectra | late VSSs raw spectrum 0.87 [0.45, 1.71] 0.92 [0.73, 1.09] 1.01 [0.99, 1.04] 
subtraction 1.20 [0.63, 2.35] 1.18 [1.00, 1.58] 1.03 [1.01, 1.10] 
division 0.88 [0.44, 1.72] 1.21 [1.01, 1.64] 1.03 [1.01, 1.09] 
SNV 1.13 [0.59, 2.24] 0.91 [0.72, 1.07] 0.98 [0.93, 0.99] 
subtraction + SNV 1.07 [0.53, 2.15] 1.04 [0.84, 1.30] 1.01 [0.98, 1.05] 
division + SNV 1.15 [0.58, 2.24] 1.04 [0.83, 1.33] 1.00 [0.97, 1.04] 
Whetton et al. 1.00 [0.51, 1.92] 1.00 [0.80, 1.26] 1.00 [0.97, 1.03] 

4. Discussion 

4.1. Spectral patterns associated with VSS values, and 

the ejject of pre-processing 

The increase in visible-region reflectance when the spike 

infection becomes more severe (Fig. 3) indicates pigment 

breakdown and photosynthetic apparatus damage in the 

presence of fungi (West et al., 2003; Morin et al., 2017; Saccon 

et al., 2017). This agrees with the FHB 'bleaching' symptoms 

(McMullen et a l , 2012; Bauriegel & Herppich, 2014; M a et al., 

2020). The observed red-edge displacement towards the 

shorter wavelengths is also well-described (Martinelli et al., 

2015; West et a l , 2017), as is the NIR reflectance decrease 

(Hamid M u h a m m e d , 2005; Alisaac et a l , 2018; Mahlein et al., 

2019; Zhang et a l , 2020c,d). The qualitative change in spec

tral signature shape in the greatest disease severities suggests 

the onset of a new biological process, where the increase in 

red reflectance may indicate symptoms of fungus conidia 

formation, when pathogen tissue has a pink hue (Qiu et al., 

2019; Mielniczuk & Skwarylo-Bednarz, 2020). However, 

Bauriegel et al. (2011) linked propagation to a different spectral 

pattern, which was not observed in this study, and an alter

native explanation m a y b e that the spikes become dry (Hamid 

Muhammed, 2005). 

VSSs differentiation is apparent in raw and pre-processed 

spectra. Although distinguishing features in the schemes 

differ, the rating separation is preserved at least to some de

gree. This may explain the limited consistency of pre

processing effects across the examined t iming combinations 

(Fig. 5). If both spectra acquisition and VSSs ratings are 

111 



Wiktor R. Želazny, Jana Chrpová, and Pavel Hamouz: Fusarium head blight. 

B I O S Y S T E M S E N G I N E E R I N G 2 1 1 ( 2 0 2 l) 97—113 107 

Table 2 - Medians and 95% credibility intervals of the multiplicative effects on S V M m o d e l correct prediction m e a n 
probabilities according to mean- aggregated spectra pre-processing and allowed prediction error, w h e n a late spectral 
campaign is replaced b y a n early campaign a n d the V S S rating date remains fixed. 

Contrast Pre-processing V S S tolerance 

0 1 2 

early spectra : late spectra | early VSSs raw spectrum 1.70 [1.06, 3.03] 1.12 [1.04, 1.32] 1.00 [1.00, 1.00] 
subtraction 1.87 [1.13, 3.31] 1.00 [0.95, 1.04] 1.00 [1.00, 1.01] 
division 1.57 [0.94, 2.66] 1.00 [0.94, 1.04] 1.00 [0.99, 1.01] 
SNV 3.84 [2.19, 7.23] 1.13 [1.04, 1.37] 1.00 [1.00, 1.01] 
subtraction + SNV 1.50 [0.80, 2.80] 1.06 [0.98, 1.22] 1.00 [1.00, 1.01] 
division + SNV 1.87 [1.07, 3.31] 1.12 [1.04, 1.36] 1.00 [1.00, 1.01] 
Whetton et al. 1.35 [0.72, 2.53] 1.08 [0.99, 1.27] 1.00 [0.99, 1.00] 

early spectra : late spectra | late VSSs raw spectrum 1.21 [0.60, 2.39] 1.08 [0.90, 1.38] 1.00 [0.97, 1.04] 
subtraction 1.14 [0.59, 2.24] 1.14 [0.96, 1.50] 1.02 [1.00, 1.07] 
division 1.48 [0.75, 3.06] 1.26 [1.05, 1.76] 1.03 [1.01, 1.09] 
SNV 0.85 [0.41, 1.78] 1.02 [0.79, 1.34] 0.99 [0.96, 1.01] 
subtraction + SNV 1.47 [0.75, 2.85] 1.00 [0.80, 1.24] 1.01 [0.97, 1.06] 
division + SNV 0.75 [0.36, 1.59] 0.87 [0.66, 1.04] 0.99 [0.95, 1.02] 
Whetton et al. 1.00 [0.51, 1.98] 1.00 [0.80, 1.24] 1.00 [0.97, 1.04] 

Table 3 - Medians and 95% credibility intervals of the multiplicative effects of the median-aggregated spectra pre
processing schemes on S V M mode l correct prediction m e a n probabilities according to the spectral campaign and V S S 
assessment t iming and allowed prediction error. 

T i m i n g Pre-processing V S S tolerance 

0 1 2 

early spectra, early VSSs subtraction 0.95 [0.54, 1.62] 0.98 [0.92, 1.01] 1.00 [0.99, 1.01] 
division 1.05 [0.61, 1.76] 1.00 [0.98, 1.03] 1.00 [0.99, 1.01] 
SNV 0.33 [0.17, 0.60] 0.95 [0.86, 0.99] 1.00 [0.99, 1.01] 
subtraction + SNV 0.37 [0.20, 0.68] 0.93 [0.82, 0.98] 1.00 [0.99, 1.00] 
division + SNV 0.44 [0.24, 0.81] 0.95 [0.86, 0.99] 1.00 [0.99, 1.01] 
Whetton et al. 0.42 [0.22, 0.78] 0.88 [0.74, 0.96] 1.00 [0.99, 1.01] 

early spectra, late VSSs subtraction 1.29 [0.67, 2.57] 1.10 [0.93, 1.38] 1.01 [1.00, 1.03] 
division 1.01 [0.51, 1.97] 1.10 [0.94, 1.38] 1.01 [1.00, 1.03] 
SNV 1.21 [0.62, 2.37] 0.98 [0.79, 1.21] 0.98 [0.94, 1.00] 
subtraction + SNV 1.02 [0.51, 2.01] 1.00 [0.81, 1.23] 0.99 [0.95, 1.00] 
division + SNV 1.07 [0.56, 2.04] 0.98 [0.80, 1.20] 0.99 [0.95, 1.00] 
Whetton et al. 1.07 [0.56, 2.07] 0.98 [0.78, 1.20] 0.99 [0.95, 1.00] 

late spectra, early VSSs subtraction 0.45 [0.25, 0.85] 0.97 [0.88, 1.04] 1.00 [0.99, 1.01] 
division 0.40 [0.21, 0.73] 0.96 [0.85, 1.02] 1.00 [0.99, 1.01] 
SNV 0.43 [0.23, 0.80] 0.99 [0.91, 1.05] 1.00 [0.99, 1.01] 
subtraction + SNV 0.43 [0.23, 0.78] 0.92 [0.78, 0.99] 1.00 [0.99, 1.01] 
division + SNV 0.46 [0.25, 0.83] 0.90 [0.74, 0.98] 1.00 [0.99, 1.01] 
Whetton et al. 0.38 [0.20, 0.70] 0.92 [0.79, 1.00] 1.00 [0.99, 1.01] 

late spectra, late VSSs subtraction 0.93 [0.46, 1.85] 0.85 [0.65, 1.02] 0.98 [0.93, 1.01] 
division 0.99 [0.51, 1.89] 0.84 [0.61, 1.01] 0.99 [0.94, 1.01] 
SNV 0.93 [0.47, 1.79] 1.00 [0.84, 1.18] 1.01 [1.00, 1.05] 
subtraction + SNV 0.81 [0.42, 1.61] 0.89 [0.69, 1.05] 0.99 [0.95, 1.01] 
division + SNV 0.82 [0.40, 1.65] 0.87 [0.67, 1.03] 0.99 [0.95, 1.02] 
Whetton et al. 0.93 [0.48, 1.83] 0.91 [0.71, 1.06] 0.99 [0.96, 1.02] 

performed at the milk-ripening stage, S N V can be recom

mended, but only if the spectra are aggregated using the mean 

function (Table 4). This transformation can reduce noise 

resulting from light beam scattering and it was employed in 

some studies on Fusarium-affected kernels (Femenias et al., 

2020). W i t h median aggregation no pre-processing scheme 

appears superior to raw spectra for S V M model training (Table 

3). There is some advantage in subtraction or division by an 

uninfected spike spectrum when one point error-difference is 

accepted, but this is only in certain combinations of data 

acquisition timings and spectra aggregation schemes. The low 

probability of these scenarios and the modest gain in predic

tion performance do not justify doubling the spectral 

campaign effort required to measure the healthy-spike 

spectra. 

The negative effect of following these two trans

formations with S N V is likely due to the 'noisy' spectra 

resulting from these combinations (Fig. 3). A similar effect is 

obtained for the pre-processing scheme adapted from 

W h e t t o n et al. (2018b), wh ich yielded a tight V S S gradient. 

Although the ratings are consistently ordered, the signatures 

cross and overlap because of order-inversion along the 
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Table 4 - Medians a n d 95% credibility intervals of the multiplicative effects of the mean-aggregated spectra pre-processing 
schemes on S V M mode l correct prediction m e a n probabilities according to the spectral campaign and V S S assessment 
t iming a n d allowed prediction error. 

T i m i n g Pre-processing VSS tolerance 

0 1 2 

early spectra, early VSSs subtraction 1.00 [0.63, 1.60] 0.97 [0.91, 1.00] 1.00 [1.00, 1.00] 
division 0.96 [0.59, 1.54] 0.97 [0.90, 0.99] 1.00 [0.99, 1.00] 
SNV 1.40 [0.91, 2.25] 0.98 [0.93, 1.00] 1.00 [1.00, 1.00] 
subtraction + SNV 0.41 [0.23, 0.70] 0.94 [0.84, 0.98] 1.00 [1.00, 1.00] 
division + SNV 0.81 [0.49, 1.33] 0.97 [0.91, 1.00] 1.00 [1.00, 1.00] 
Whetton et al. 0.37 [0.20, 0.64] 0.93 [0.83, 0.98] 1.00 [0.99, 1.00] 

early spectra, late VSSs subtraction 1.07 [0.56, 2.07] 1.01 [0.86, 1.22] 1.01 [0.99, 1.05] 
division 1.06 [0.55, 2.07] 1.04 [0.90, 1.26] 1.01 [1.00, 1.05] 
SNV 0.62 [0.31, 1.23] 0.85 [0.63, 1.02] 1.00 [0.97, 1.03] 
subtraction + SNV 1.20 [0.63, 2.32] 0.94 [0.75, 1.12] 1.00 [0.96, 1.03] 
division + SNV 0.62 [0.31, 1.26] 0.89 [0.68, 1.07] 0.99 [0.95, 1.02] 
Whetton et al. 0.94 [0.47, 1.87] 0.92 [0.72, 1.10] 1.00 [0.96, 1.03] 

late spectra, early VSSs subtraction 0.92 [0.52, 1.58] 1.09 [1.02, 1.27] 1.00 [0.99, 1.00] 
division 1.05 [0.61, 1.81] 1.08 [1.02, 1.25] 1.00 [0.99, 1.00] 
SNV 0.63 [0.35, 1.13] 0.97 [0.84, 1.08] 1.00 [0.99, 1.00] 
subtraction + SNV 0.47 [0.25, 0.85] 0.99 [0.87, 1.11] 1.00 [0.99, 1.00] 
division + SNV 0.74 [0.43, 1.33] 0.97 [0.84, 1.08] 1.00 [0.99, 1.00] 
Whetton et al. 0.47 [0.25, 0.85] 0.97 [0.84, 1.08] 1.00 [0.99, 1.00] 

late spectra, late VSSs subtraction 1.13 [0.58, 2.28] 0.96 [0.75, 1.20] 1.00 [0.96, 1.03] 
division 0.87 [0.42, 1.79] 0.91 [0.67, 1.14] 0.99 [0.94, 1.02] 
SNV 0.87 [0.42, 1.77] 0.90 [0.67, 1.13] 1.01 [0.99, 1.05] 
subtraction + SNV 0.99 [0.48, 2.03] 1.02 [0.82, 1.26] 0.99 [0.95, 1.03] 
division + SNV 1.00 [0.49, 2.05] 1.10 [0.93, 1.41] 1.00 [0.97, 1.04] 
Whetton et al. 1.13 [0.57, 2.28] 1.00 [0.80, 1.26] 1.00 [0.97, 1.04] 

wavelength dimension. This effect and the gradient steep

ness may have weakened the disease severity signal, and 

this could also explain the lack of S V M model sensitivity to 

variations in input spectra (Fig. 6). 

4.2. S V M model accuracies, and their relationship to 

field phenotyping requirements 

On most occasions, the models failed to predict the test data 

VSSs when no error was allowed (Figs. 5 and 7). This unsat

isfactory performance can be linked to the high number of 

rating levels. The accuracy of the early visual assessment was 

acceptable only with one point permitted error, and not for 

models trained to late expert ratings. This result does not 

confirm the hypothesis for accurate late-stage disease 

severity estimation with reflectance spectra and S V M . 

One VSS point difference in this study indicates disease 

symptom difference of approximately ten percentage 

points. Al though this error allowance needed to obtain 

satisfactory predictions is m u c h greater than errors re

ported in other FHB proximal sensing experiments, some 

authors made no attempt to discriminate between disease 

severity levels. These researchers performed binary classi

fication experiments, where high success rates are expected 

with both hyperspectral and multispectral images (Dammer 

et al., 2011; H a m i d M u h a m m e d , 2005; Jin et al., 2018). Other 

work collected data on infected spikelet counts within 

spikes, but transformed the calculated disease severities to 

binary scale prior to model training, and reported around 

90% prediction accuracy (Ma et al., 2020). Liu et al. (2020a) 

performed similar dichotomy in their U A V study. 

Moreover, the test dataset employed by these authors was 

not independent of training and validation datasets, and 

this may explain the 90-98% accuracy obtained with their 

six multivariate models. 

Combining deep learning and feature selection was studied 

extensively by Zhang et al. (2020d). While these authors re

ported close to 100% accuracy using R-squared statistics, they 

used a relatively simple threshold algorithm rather than 

employing a ground-truthing expert. A n earlier publication by 

Zhang et al. (2019) records a six-point ground-truth scale, 

which is a typical scoring resolution employed by human 

rating (Bock et al., 2010). The reported accuracies of the deep 

learning models are lower there, but still high enough to 

justify replicating the experiment and testing the proposed 

approach in a phenotyping setting. 

A rare field phenotyping study of three cultivars by Qiu 

et al. (2019) used a region-growing algorithm to estimate in

dividual spike surface area percentages with visible FHB 

symptoms, a process which closely matches the expert rating 

procedure. The very high spatial resolution of the analysed 

imagery compensated for the low spectral resolution, an in

verse relationship as in our work. The authors mention the 

'optimum performance' of their model but provide no nu

merical measures to enable comparison with other studies. 

This was followed by Su et al. (2021) proposal of a refined 

approach for application to 55 wheat genotypes. This research 

was based on individual spike segmentation, and the post-

binary accuracy was also near 100%. Although the authors 

reported a negative prediction bias when disease severity was 

quantified on a 14-point scale, some performance measures 

exceeded 70%. This suggests that RGB imagery combined with 
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a d v a n c e d p r o c e s s i n g is su f f i c i en t to p h e n o t y p e F H B r e s i s t a n c e 

i n t h e f ie ld ; at l eas t w h e n the d i s ea se is v i s i b l e to t h e n a k e d 

eye. H o w e v e r , i t is i m p o r t a n t to n o t e t h a t the g r o u n d t r u t h i n 

th i s e x p e r i m e n t w a s o b t a i n e d b y m a n u a l l y l a b e l l i n g t h e i m 

ages, r a t h e r t h a n b a s e d o n f i e l d - r a t i n g b y a n expe r t , w h o 

w o u l d e x a m i n e a l l s ides o f the s p i k e s . 

T h e l o w p e r f o r m a n c e o f the S V M m o d e l s w a s a t t r i b u t e d to 

l o w p r e d i c t i o n p r e c i s i o n r a t h e r t h a n b i a s . A l t h o u g h p r e c i s i o n 

c a n be i m p r o v e d b y i n c r e a s i n g t h e s i z e o f the t r a i n i n g dataset , 

the h i g h n u m b e r o f e x p e r t r a t i n g s r e q u i r e d nega tes the 

a d v a n t a g e o f s p e c t r o s c o p y o v e r t h e t r a d i t i o n a l a p p r o a c h . T h e 

w o r k l o a d h e r e c o u l d be r e d u c e d b y e x p e n d i n g e x t e n s i v e effort 

o n l y o n c e a n d b u i l d i n g a s p e c t r a l s i g n a t u r e l i b r a r y fo r m u l t i p l e 

t r i a l s . T h e a d d i t i o n a l c o l l e c t e d r a t i n g s c o u l d t h e n be l i m i t e d 

for v a l i d a t i o n . 

R e s e a r c h b y H u a n g et a l . (2019) a t t e m p t e d to gene ra l i s e 

F H B s e v e r i t y p r e d i c t i o n s to v a r i o u s a c q u i s i t i o n da tes a n d l o 

ca l i t i e s . T h e a u t h o r s d i v i d e d t h e r e f l ec t ance o f a h e a l t h y - s p i k e 

s p e c t r u m i n a n e w l y l o c a t e d s i te b y t h o s e a c q u i r e d at the 

r e fe rence s i te , a n d t h e n a p p l i e d the o b t a i n e d ra t ios to a l l 

ta rget -s i te m e a s u r e m e n t s . T h i s a p p r o a c h s u p p o r t s o u r p re 

p r o c e s s i n g d i v i s i o n , w h i c h h a d a s l i g h t l y p o s i t i v e effect o n 

S V M m o d e l p e r f o r m a n c e fo r s o m e s p e c t r a l a g g r e g a t i o n a n d 

t i m i n g c o m b i n a t i o n s (Table 3). 

T h e p r e d i c t i o n s m i g h t a l so be i m p r o v e d b y t e s t i n g o t h e r 

c l a s s i f i c a t i o n s m o d e l f a m i l i e s i n a d d i t i o n to S V M . Fo r 

e x a m p l e , H u a n g et a l . (2019) c o m p a r e d t h e p e r f o r m a n c e o f 

S V M w i t h b o t h F i she r ' s l i n e a r d i s c r i m i n a n t a n a l y s i s o u t c o m e s 

a n d c o m b i n e d S V M - a n d - F i s h e r effect, a n d f o u n d t h e r e s u l t a n t 

c o m b i n a t i o n s u p e r i o r to t h e i n d i v i d u a l m o d e l s . A n a l t e rna te 

o p t i o n to i m p r o v e t h e m o d e l p e r f o r m a n c e w o u l d be fea ture 

s e l e c t i o n (Jin et a l , 2018; W e s t et a l , 2017; Z h a n g et a l , 2020b). 

A l t h o u g h the V S S s w e r e p r o v i d e d b y a n expe r t w i t h 20 years ' 

e x p e r i e n c e i n F H B f i e ld p h e n o t y p i n g , i n c o r r e c t l a b e l l i n g o f s o m e 

sp ike c lus te r s c a n n o t be d i s c o u n t e d (Bock et a l . , 2010; D a m m e r 

et a l , 2011; W h e t t o n et a l , 2018b). Be t te r p r e d i c t i o n s m a y also 

h a v e b e e n e x p e c t e d i f the a c t u a l i n f e c t i o n seve r i ty v a l u e s h a d 

b e e n k n o w n . M u l t i p l e V S S g r o u n d - t r u t h i n g b y s e v e r a l t e c h n i 

c ians , c o m b i n e d w i t h a p h o t o i n t e r p r e t a t i o n a p p r o a c h , w o u l d 

h a v e b e e n e s s e n t i a l to m i t i g a t e th i s s t u d y w e a k n e s s (Bock et a l . , 

2010; W h e t t o n et a l . , 2018b), b u t the a d d i t i o n a l h u m a n a n d 

c o m p u t a t i o n a l w o r k l o a d d i d n o t j u s t i f y t h i s i n c l u s i o n c o n s i d 

e r i n g the e a r l y s tages o f F H B f i e ld s e n s i n g r e sea rch . 

T h e p r e d i c t i o n q u a l i t y i m p r o v e d d r a m a t i c a l l y w h e n s o m e 

r a t i n g e r r o r w a s a l l o w e d . T h e a c c u r a c y a p p r o a c h e d 100% 

w h e n t w o V S S - l e v e l s d i f f e r ence w a s p e r m i t t e d , a n d t h i s w a s 

su f f i c i en t to r e l i a b l y d i s t i n g u i s h b e t w e e n l o w , m e d i u m a n d 

h e a v i l y - i n f e c t e d c u l t i v a r s . T h i s r e s u l t is s i m i l a r to t h e fou r -

l e v e l c l a s s i f i c a t i o n t e s t e d b y H u a n g et a l . (2019), w h e r e the 

a u t h o r s r e p o r t e d t h e i r grea tes t a c c u r a c i e s i n t h e 8 5 - 9 0 % 

range . D e s p i t e i ts c o a r s e n e s s , t h i s d i f f e r e n t i a t i o n is su f f i c i en t 

for c e r t a i n f i e l d p h e n o t y p i n g t asks ; i n c l u d i n g t h e p r e l i m i n a r y 

s c r e e n i n g o f d i s e a s e - i n t o l e r a n t b r e e d i n g l i n e s (Bock et a l . , 

2010). 

4.3. Significance for commercial large-scale farming, 

and the timing effects 

T h e da tes c o r r e s p o n d i n g to t h e V S S s fo r S V M t r a i n i n g a l w a y s 

agree w i t h t h o s e o f the V S S s tes t subse t s . H e r e i n , w e f o c u s e d 

o n p h e n o t y p i n g , w h e r e p l a n t s are i n t e n t i o n a l l y e x p o s e d to 

s t ress w i t h o u t m a n a g e m e n t a d j u s t m e n t ( M a h l e i n , 2016). In 

con t r a s t , c o m m e r c i a l f a r m i n g r e l i e s o n c o n t i n u o u s p l a n t s t a 

tus m o n i t o r i n g , a n d i t is i n the f a rmer ' s i n t e r e s t to p r e d i c t t h e 

i n f e c t i o n r i s k a n d its s e v e r i t y i n a d v a n c e (L iu et a l . , 2020b). A 

q u e s t i o n a r i ses w h e t h e r a n S V M m o d e l t r a i n e d to a n e a r l y 

s p e c t r a l a n d t r a i n i n g V S S da tase t c a n be e m p l o y e d fo r p r e 

d i c t i n g l a t e -da te V S S s . F i g u r e 8 s h o w s t h a t t h e b u l k o f the 

i n f e c t e d h i l l p lo t s h a d 2 to 3 p o i n t s r a t i n g d e t e r i o r a t i o n b e 

t w e e n the t w o d a t a c o l l e c t i o n c a m p a i g n s . T h i s is s u r p r i s i n g 

c o n s i s t e n c y , b e c a u s e t h e p r e s e n c e o f m u l t i p l e c u l t i v a r s c o u l d 

be e x p e c t e d to h a v e a h i g h e r v a r i e t y o f i n f e c t i o n r e s p o n s e s . 

T h i s p a t t e r n s h o u l d the re fo re e n a b l e the s p e c t r a l c a m p a i g n at 

the m i l k - r i p e n i n g p h a s e to p r o v i d e d a t a fo r s a t i s f ac to ry p re 

d i c t i o n o f i n f e c t i o n s e v e r i t y at t h e w a x - r i p e n i n g p h a s e . 

O u r s t u d y does n o t c o r r o b o r a t e the h y p o t h e s i s o f m o d e l 

p e r f o r m a n c e d e t e r i o r a t i o n a s s o c i a t e d w i t h s p e c t r a l d a t a 

c o l l e c t i o n e a r l y i n w h e a t s p i k e d e v e l o p m e n t . E v i d e n c e o f the 

c o n t r a r y w a s f o u n d e s p e c i a l l y fo r p r e - p r o c e s s i n g s c h e m e s 

i n v o l v i n g a s u b t r a c t i o n o r d i v i s i o n b y a s i g n a t u r e o f h e a l t h y 

s p i k e s (Tables 1 a n d 2). T h e e a r l y date c o r r e s p o n d e d to the 

m i l k - r i p e n i n g stage, w h i c h W h e t t o n et a l . (2018a) i d e n t i f i e d as 

b e i n g o p t i m a l fo r F u s a r i u m i n f e c t i o n s e v e r i t y p r e d i c t i o n u s i n g 

p a r t i a l l eas t s q u a r e s r e g r e s s i o n i n l a b o r a t o r y . H o w e v e r , the 

d i s e a s e d s p i k e s h a v e s i m i l a r c o l o u r to s p i k e s u n a f f e c t e d b y 

F H B as the c r o p m a t u r e s , as d e p i c t e d i n t e m p o r a l d i f f e r ence 

b e t w e e n s p e c t r a l c u r v e s i n F i g . 3. T h i s r i p e n i n g a d v e r s e l y af

fects s p i k e d e t e c t i o n i n i m a g e s ( F e r n a n d e z - G a l l e g o et a l . , 2018), 

a n d is d e t r i m e n t a l to d i s ea se s e v e r i t y e s t i m a t i o n a c c u r a c y 

(Baur i ege l et a l . , 2011; D a m m e r et a l . , 2011; Q i u et a l . , 2019). 

F H B d e t e c t i o n at the m i l k - r i p e n i n g d e v e l o p m e n t a l p h a s e i s 

s t i l l n o t e a r l y e n o u g h for f u n g i c i d e t r e a t m e n t , w h i c h t y p i c a l l y 

o c c u r s n o t l a t e r t h a n d u r i n g f l o w e r i n g ( M c M u l l e n et a l . , 2012). 

P r e l i m i n a r y e v i d e n c e f a v o u r i n g d i s ea se p r e d i c t i o n f e a s i b i l i t y 

w i t h l a t e - a n t h e s i s d a t a w a s o b t a i n e d i n a n i n d o o r e x p e r i m e n t 

( Z h a n g et a l . , 2020c) a n d r e c e n t field w o r k , b y S u et a l . (2021), 

i n c l u d e d la te a n t h e s i s as o n e o f the d e v e l o p m e n t a l p h a s e s 

c o v e r e d b y t h e i m a g i n g c a m p a i g n s . T h e l a t t e r a u t h o r s , 
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Fig. 8 - Infected hi l l plots counts according to their 

assigned early- and late-date VSSs . T h e highlighted 

background area corresponds to 2-or-3 point rating 

difference. A lower rating denotes higher infection 

severity. 
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h o w e v e r , d i d n o t e x a m i n e the i n f l u e n c e o f t i m i n g f ac to r i n 

t h e i r e x p e r i m e n t . B a u r i e g e l et a l . (2011) c o n s i d e r e d t ha t s u c 

c e s s f u l d i a g n o s i s c a n n o t be e x p e c t e d w h e n the h y p e r s p e c t r a l 

F H B a s s e s s m e n t is p e r f o r m e d at e a r l y f l o w e r i n g , a n d f luo res 

c e n c e i m a g i n g m a y be r e q u i r e d to o b t a i n the d i a g n o s i s at t h i s 

p h a s e ( r e v i e w e d i n B a u r i e g e l & H e r p p i c h , 2014). H o w e v e r , 

f l u o r e s c e n c e d i a g n o s i s h a s g rea te r r e q u i r e m e n t s to e x t e r n a l 

c o n d i t i o n s d u r i n g d a t a a c q u i s i t i o n ( K u c k e n b e r g et a l . , 2009; 

B a u r i e g e l & H e r p p i c h , 2014; M a h l e i n , 2016). W e s t et a l . (2017) 

t h e n a d d e d t ha t o n l y i n f e c t e d s p i k e s c a n be d e t e c t e d w i t h 

t h i s m e t h o d . 

S u b s t a n t i a l m y c o t o x i n p r o d u c t i o n o c c u r s i n e a r l y i n f e c 

t i o n , a n d t h i s c o n t r i b u t e s to F u s a r i u m a g g r e s s i o n ( K h a l e d i 

et a l . , 2017). T h e ra te o f p a t h o g e n s p i k e p e n e t r a t i o n i n h i g h 

( K a n g & B u c h e n a u e r , 2000), w h i c h n a r r o w s t h e f u n g i c i d e 

t r e a t m e n t t i m e w i n d o w . C o n s e q u e n t l y , i t i s i n s u f f i c i e n t to j u s t 

de tec t i n i t i a t e d i n f e c t i o n w h e n s c h e d u l i n g t r e a t m e n t or 

p l a n n i n g v a r i a b l e f u n g i c i d e a p p l i c a t i o n ra te . Ins tead , t he r e 

m u s t be i d e n t i f i c a t i o n o f f ie lds a n d f i e l d z o n e s a f fec ted b y 

o t h e r s t ress fac to rs a n d s u s c e p t i b l e to d e v e l o p i n g F H B i n g i v e n 

w e a t h e r c o n d i t i o n s ( M c M u l l e n et a l . , 2012). S y m p t o m s e v e r i t y 

i n f o r m a t i o n o b t a i n e d after i n f e c t i o n t o o k p l a c e e n a b l e s eff i

c a c y a s s e s s m e n t o f p r i o r f u n g i c i d e i n t e r v e n t i o n (Qiu et a l . , 

2019). M o r e o v e r , areas fo r s epa ra t e h a r v e s t o f t h e 

m y c o t o x i n - c o n t a m i n a t e d g r a i n c a n be i d e n t i f i e d ( D a m m e r 

et a l , 2011; B a u r i e g e l & H e r p p i c h , 2014; W e s t et a l , 2017), 

a n d c o n t a m i n a t i o n - l e v e l a s says c a n be t h e n l i m i t e d to t h o s e 

l a t t e r g r a i n s (Bau r i ege l et a l . , 2011; D a m m e r et a l . , 2011; S a c c o n 

et a l . , 2017; b u t see S h e n et a l , 2022). 

4.4. Deviations from the pre-registration 

N o s e k et a l . (2018) c o n t e n d t ha t i t i s r a re fo r a s t u d y to f o l l o w 

a n u n a d j u s t e d p r e - r e g i s t r a t i o n p r o t o c o l fo r d a t a c o l l e c t i o n 

a n d a n a l y s i s . T h e y r e c o m m e n d a d i s c u s s i o n o f d e v i a t i o n s a n d 

t h e i r c o n s e q u e n c e s to p r e s e r v e s t u d y t r a n s p a r e n c y a n d 

d e m o n s t r a t e the v a l i d i t y o f r e su l t s . 

H e r e i n , s e v e r a l c h a n g e s to t h e m e t h o d s d e c l a r e d i n t h e 

s t u d y p r e - r e g i s t r a t i o n f o r m ( Z e l a z n y et a l . , 2020) w e r e 

n e c e s s a r y : H y p e r s p e c t r a l d a t a c u b e s w e r e c o l l e c t e d , b u t i t 

w a s n o t p o s s i b l e to a n a l y s e t h e m so t h e h y p o t h e s i s fo r 

c o m p a r i s o n o f t h e h y p e r s p e c t r a l c a m e r a a n d p o i n t s p e c 

t r o m e t e r c o u l d n o t be a d d r e s s e d . S h a d i n g o f t h e a r e a 

m e a s u r e d b y s p e c t r o r a d i o m e t e r w a s a b a n d o n e d f o r o r g a 

n i s a t i o n r e a s o n s . H o w e v e r , s h a d o w s c a s t b y t h e o p e r a t o r 

a n d c o n t a c t p r o b e w e r e a r g u a b l y s u f f i c i e n t to b l o c k d i r e c t 

i l l u m i n a t i o n . O p e r a t o r f a t i gue f r o m e q u i p m e n t l o a d a n d 

f r e q u e n t b e n d i n g to r e a c h t h e s p i k e s w a s t h e p r i m a r y f a c t o r 

l i m i t i n g t h e n u m b e r o f c o l l e c t e d s p e c t r a , w h i c h w a s n o t 

e n v i s a g e d as a p o s s i b l e s t o p i n g c r i t e r i o n i n p r e - r e g i s t r a t i o n . 

In a d d i t i o n , m e a s u r e m e n t s f r o m s e v e r a l p l o t s c o u l d n o t be 

i n c l u d e d b e c a u s e o f u n d e t e c t e d e r r o r s d u r i n g s p i k e -

b u n d l i n g , w h i c h w o u l d h a v e p r o v i d e d i n c o m p l e t e s p e c t r a l 

d a t a . T h e d e c l a r e d o r d e r o f t h e s c a n s w a s a l so s l i g h t l y 

a d j u s t e d to a v o i d a c q u i r i n g s p e c t r a l s i g n a t u r e s o f i n f e c t e d 

s p i k e s w i t h o u t m a t c h i n g h e a l t h y - s p i k e s p e c t r a . T h e d e v e l 

o p m e n t o f d i s e a s e s y m p t o m s o n n o n - i n o c u l a t e d s p i k e s w a s 

n o t a n t i c i p a t e d , a n d t h e r a t i o n a l e f o r d i s c a r d i n g t h e 

a f f e c t e d p l o t p a i r s w a s to a v o i d i n t r o d u c i n g a r t e f ac t s d u r i n g 

s p e c t r a s u b t r a c t i o n a n d d i v i s i o n . T h e o r d e r o f s p e c t r a 

a g g r e g a t i o n a n d p r e - p r o c e s s i n g w a s t h e n e x c h a n g e d 

b e c a u s e p a i r e d s i g n a t u r e s w e r e r e q u i r e d f o r t h e s u b t r a c t i o n 

a n d d i v i s i o n o p e r a t i o n s , a n d a n y p a i r i n g i n v o l v i n g o r i g i n a l 

s p e c t r a w o u l d h a v e b e e n a r b i t r a r y . P e r f o r m a n c e o f t h e 

p r e d i c t i v e m o d e l b a s e d o n a g g r e g a t e d a c c u r a c y v a l u e s 

c o u l d n o t be c o m p a r e d , b e c a u s e t h e 0% a n d 100% v a l u e s i n 

t h e d a t a s e t p r e c l u d e d l o g i t - l i n k a p p l i c a t i o n . T h i s w a s 

s o l v e d b y a d d i n g a f u r t h e r g r o u p i n g l e v e l to t h e m o d e l s , a n d 

t r e a t i n g t h e i n d i v i d u a l V S S p r e d i c t i o n h i t s a n d m i s s e s as 

d a t a p o i n t s . T h i s r e v i s e d a p p r o a c h b e t t e r r e f l e c t e d t h e d a t a 

g e n e r a t i o n p r o c e s s , a n d p o t e n t i a l l y c o n t r i b u t e d to l i n e a r 

m o d e l v a l i d i t y . 

T h e r e w e r e a l so t w o e x t e n s i o n s to the o r i g i n a l p l a n : T h e 

u s e m e a n fo r s p e c t r a a g g r e g a t i o n w a s c o n s i d e r e d p r i o r to 

s t u d y p r e - r e g i s t r a t i o n , b u t i t w a s d e c i d e d to e m p l o y the m e 

d i a n . T h a t d e c i s i o n w a s r e c o n s i d e r e d d u r i n g t h e s p e c t r a 

a c q u i s i t i o n b a s e d o n the p a t t e r n s s e e n i n t h e da ta . A l t h o u g h 

b o t h a p p r o a c h e s a p p e a r i n the s tudy , t h e m e a n s p e c t r a a n a l 

y s i s r e s u l t s s h o u l d be c o n s i d e r e d e x p l o r a t o r y . F i n a l l y , t he 

F i g . 6 c o n f u s i o n m a t r i c e s a n d F i g . 8 c o n t i n g e n c y t ab le w e r e 

c o m p u t e d p o s t - h o c to f ac i l i t a t e r e s u l t d i s c u s s i o n . 

5. Conclusions 

T h e pa t t e rn s i n the a c q u i r e d s p e c t r a l s i gna tu r e s c a n be 

e x p l a i n e d b y p l a n t s t ress b i o l o g y a n d l i n k e d to F H B v i s u a l 

s y m p t o m s . T h e s e agree w i t h t h e s p e c t r a l p a t t e r n s o b t a i n e d i n 

o t h e r F H B s tud ie s , a n d t h i s s u p p o r t s the s u i t a b i l i t y o f a spec

t r o r a d i o m e t e r w i t h a c o n t a c t p robe fo r F H B p h e n o t y p i n g 

a p p l i c a t i o n s . 

O r d i n a l S V M m o d e l s a p p l i e d to the r a w s p e c t r a y i e l d e d 

p r e d i c t i o n s w i t h c o n f i d e n t d i s t i n c t i o n o f l o w , m o d e r a t e a n d 

h i g h d i sease s e v e r i t y at the m i l k - r i p e n i n g d e v e l o p m e n t a l 

p h a s e . T h e p r o p o s e d a p p r o a c h e n a b l e s s c r e e n i n g u n p r o m i s 

i n g b r e e d i n g l i n e s , b u t o t h e r p r e d i c t i v e m o d e l s r e q u i r e t e s t i n g 

for a p p l i c a t i o n s t ha t d e m a n d f ine r F H B s e v e r i t y r a t i n g s . T h i s is 

e s p e c i a l l y t r ue fo r m o d e l s t r a i n e d to s p e c t r a c o l l e c t e d at the 

w a x - r i p e n i n g d e v e l o p m e n t a l s tage due to s p i k e - d r y i n g d i s 

c o l o u r m a s k i n g t h e d i s ea se s i g n a l . W h i l e deep l e a r n i n g m a y 

be su i t ab l e , the c u r r e n t p u b l i s h e d r e s u l t s r e q u i r e r e p l i c a t i o n 

w i t h m u l t i p l e c u l t i v a r da tase t s a n d e l i m i n a t e d o v e r 

s i m p l i f i c a t i o n o f g r o u n d - t r u t h da ta . 

P r e d i c t i o n s c a n i n s o m e s i t ua t ions be i m p r o v e d b y sub

t r a c t i n g h e a l t h y - s p i k e re f lec tance m e a s u r e m e n t s f r o m the 

a n a l y s e d s igna tu re s o r b y d i v i s i o n . H o w e v e r , ga ins f r o m these 

p r e - p r o c e s s i n g s c h e m e s m u s t be c o m p a r e d to the cos ts o f 

a d d i t i o n a l scans . F u r t h e r i n v e s t i g a t i o n i s a lso r e q u i r e d to 

d e t e r m i n e i f a p r e d i c t i v e t r a i n e d m o d e l c a n be a p p l i e d yea r - to -

y e a r to r educe th i s effort. S N V p r e - p r o c e s s i n g c a n be bene f i c i a l 

for m i l k - r i p e n i n g p h a s e p r e d i c t i o n s b a s e d o n mean -agg rega t ed 

spec t r a a c q u i r e d at the s a m e c r o p d e v e l o p m e n t a l stage. 

T h e d i s e a s e s e v e r i t y scores p r o v i d e d b y o r d i n a l S V M c a n 

h e l p c o m m e r c i a l f a r m e r s i d e n t i f y f i e ld z o n e s fo r separa te 

g r a i n h a r v e s t i n g a n d e v a l u a t e t h e effects o f f u n g i c i d e a p p l i e d 

i n a g i v e n y e a r u s i n g t he se m o d e l s . H o w e v e r , t h e y are u n 

s u i t a b l e fo r s c h e d u l i n g p r o t e c t i v e m e a s u r e s b e c a u s e o f Fusa 

r i u m s p p . spec i f i c m o d e o f i n f e c t i o n . T h i s a p p l i e s e q u a l l y to a l l 

a p p r o a c h e s t h a t r e q u i r e s p e c t r a l s i g n a t u r e s f r o m a l r e a d y 

d i s e a s e d p l a n t s . 
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Abstract. Feature selection can improve predictions generated by partial least squares models. 
In the context of hyperspectral imaging, it can also enable the development of affordable devices 
with specialized applications. The feasibility of feature selection for oat leaf chlorophyll 
estimation from hyperspectral imagery was assessed using a public domain dataset. A wrapper 
approach resulted in a simplistic model with poor predictive performance. The number of model 
inputs decreased from 94 to 3 bands when a filter approach based on the minimum redundancy, 
maximum relevance criterion was attempted. The filtering led to improved prediction quality, 
with the root mean square error decreasing from 0.17 to 0.16 g m 2 and R2 increasing from 0.57 
to 0.62. Accurate predictions were obtained especially for low chlorophyll levels. The obtained 
model estimated leaf chlorophyll concentration from near infra-red reflectance, canopy darkness, 
and its blueness. The prediction robustness needs to be investigated, which can be done by 
employing an ensemble methodology and testing the model on a new dataset with improved 
ground-truth measurements and additional crop species. 

Key words: remote sensing, imaging spectroscopy, unmanned aerial vehicles, partial least 
squares, reproducibility. 

INTRODUCTION 

The indispensability of chlorophyll for plant photosynthesis (Sims & Gamon, 2002; 
Main et al., 2011) and its contribution to crop optical properties (Ollinger, 2011) make 
the estimation of leaf chlorophyll concentration an important remote sensing application. 
In large-scale assessments, leaf chlorophyll remote sensing is useful for yield prediction 
(Moharana & Dutta, 2016). At finer spatial scales, it can be used for the delineation of 
management zones for precision agriculture (Miao et al., 2009). As chlorophyll breaks 
down under stress, its monitoring provides information about the crop status, and enables 
a timely intervention to prevent the yield loss (Pefluelas et al., 1995; Sims & Gamon, 2002). 

Traditional broad-band optical remote sensing relies on vegetation indexes for 
assessing crop status (e.g., Basso et al., 2016; Dominguez et al., 2017; Barbosa et al., 
2019). Consequently, it is of limited use for estimating the concentrations of individual 
pigments, such as leaf chlorophyll. Many of these indexes have been adapted for use 

2665 

120 

https://doi.Org/l
mailto:wzelazny@vurv.cz


Wiktor R. Zelazny: Application of feature selection for predicting leaf chlorophyll. 

with hyperspectral imaging products (Miao et al., 2009; Verrelst et al., 2019, often 
leading to improved results (e.g., Miao et al., 2009). Moharana & Dutta (2016) evaluated 
ten indexes in terms of rice chlorophyll prediction from proximal spectroradiometric 
data. Some of the band combinations gave unsatisfactory estimates despite their high 
performance in other experimental settings, which is a common problem for vegetation 
indexes. On the other hand, the formulations that excelled during the screening provided 
realistic maps of rice chlorophyll concentration when applied to EO-1 Hyperion imagery. 
The limited index transferability across crops can be in part related to differences 
between plant architectures (Ollinger, 2011). A study involving six crop species evaluated 
the robustness of relationships between vegetation indexes and leaf chlorophyll with 
respect to canopy structural parameters. A total of 58 formulations were tested; of this 
number, only 2 were considered truly robust when applied to both measured and simulated 
spectra (Zou et al., 2015). Corti et al. (2018) published a meta-analysis intended to 
identify factors that foster accurate estimation of maize biochemical parameters from 
optical measurements. Their results suggest that satisfactory predictions can be obtained 
by avoiding certain families of vegetation indexes-regardless of sensor type, acquisition 
model, and crop developmental stage. The article indicates that only statistically 
significant relationships were included in the study, which means that this finding needs 
to be approached with caution. A recent review by Hatfield et al. (2019) cites additional 
studies devoted to vegetation indexes suitable for chlorophyll estimation. According to 
the authors, vegetation indexes should be a first choice in remote sensing applications, 
as they avoid computational challenges of more sophisticated approaches. 

Yet, the main advantage of hyperspectral imagery lies in the possibility of applying 
'full-spectrum' methods borrowed from chemometrics and machine learning (Corti et 
al., 2018; Verrelst et al., 2019). Partial least squares (PLS) regression was employed to 
diagnose chlorophyll levels in winter wheat leaf laboratory samples (Zhang et al., 2012). 
Scanning of single leaves under controlled illumination allowed the authors to evade the 
challenges inherent to canopy-level imaging in outdoor conditions, and without doubt 
contributed to extremely accurate (R statistics up to 0.99) predictions. Unfortunately, 
unclear study design description undermines the trustworthiness of the findings. 
Kanning et al. (2018) tested a pushbroom system as a way to overcome some limitations 
of 2D frame hyperspectral cameras. An experimental winter wheat field was scanned 
using a U A V , and the measurements subjected to PLS modelling. When the model was 
applied to the pixels of the field orthoimage, the individual nitrogen fertilization 
treatment levels could be discerned. The estimation quality was sufficient to fit a model 
for predicting grain yield from the obtained values. Meij et al. (2017) employed PLS to 
predict chlorophyll content in oats from unmanned aerial vehicle (UAV) campaign data. 
The study also included 25 published vegetation indexes. The PLS approach yielded 
validation predictions inferior to the estimates obtained by using the best of the indexes. 
Still, according to Verrelst et al. (2019), chemometric methods are in principle more 
powerful than vegetation indexes for estimating canopy biophysical parameters. The 
chemometric approach tends, in turn, to be surpassed by machine learning methods, 
capable of modelling non-linear relationships. A comparison of selected algorithms from 
both groups demonstrated substantial performance variability within the machine learning 
family. Robust leaf chlorophyll content predictions for multiple crops were obtained 
with kernel ridge and Gaussian process regression. On the other hand, artificial neural 
networks, an approach with a comparable level of sophistication, failed to provide 
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consistently reliable estimates (Caicedo et at, 2014). By applying support vector machines 
(SVM) to maize hyperspectra, Karimi et al. (2008) obtained very good validation estimates 
for the tasseling stage. The prediction quality was worse, but still satisfactory, for the early 
growth stage, which the authors attributed to the soil showing through the crop canopy. 

Despite its potential, the adoption of imaging spectroscopy remains hindered, in 
part by the high investment costs involved (Corti et al., 2018). Scene acquisition using a 
modern 2D camera tends to be slow due to sequential capture of a large number of bands. 
As a consequence, the speeds of airborne platforms become constrained (Honkavaara et 
al., 2017) and band registration needs to be performed during the imagery post
processing (Jakob et al., 2017). The voluminous data contained in hyperspectral data 
cubes require substantial computational capacities and specialized knowledge to process 
(Yang et al., 2017; Aasen et al., 2018). In the realm of field point spectrometry, similar 
challenges have been overcome by the development and commercialization of 
specialized proximity sensors, such as chlorophyll meters (Govender et al., 2009; Miao 
et al., 2009). These sensors exploit information from limited numbers of pre-selected 
bands, and have a predictive model embedded in the firmware to perform the 
computations. A similar route could be taken for imaging spectrometers in order to make 
the technology more accessible (Govender et al., 2009). One can envision an affordable 
specialized device capable of capturing narrow-band imagery, as hyperspectral cameras 
do, comprising bands that were pre-selected to optimize for accurate remote chlorophyll 
content estimation. 

Feature selection methods have proven to be useful for the screening of spectral 
bands for a variety of applications. In addition to reducing the number of required model 
inputs, they were shown to improve the prediction accuracy (Ding & Peng, 2005; 
Mehmood et al., 2012). Fewer computations are required to process data subjected to 
feature selection, and model interpretation is facilitated (Ding & Peng, 2005). Band pre
selection prior to data acquisition can also address the problem of slow operation of 
hyperspectral cameras (Yang et al., 2013; Zhang & He, 2013). As demonstrated by the 
Zhang & He (2013) oilseed rape yield study, substantial reduction of data volume can 
be attained without impairing model performance. Discarding of 98% of hyperspectral 
bands had a minimal effect on the quality of nitrogen content prediction in pepper plants, 
while significantly simplifying the obtained model (Yu et al., 2014). Behmann et al. 
(2014) proposed an SVM model for detecting water stress in barley. The model inputs 
comprised vegetation indexes, the combinations of which were determined using 
wrapper feature selection. Increased detection sensitivity was obtained, allowing for 
earlier drought detection relative to the raw indexes. The aim of the present study is to 
investigate the effect of two feature selection approaches on the prediction of leaf 
chlorophyll concentration in oats from hyperspectral imaging data. 

MATERIALS AND METHODS 

Experimental data 
The present study partially replicates and extends the results of Meij et al. (2017), 

using the same experimental data. Their experiment evaluated the soil-mediated carry
over effects of preceding and cover crops on crop-of-interest status. The data collection 
took place in summer 2015, which was the second year of the study, and was focused on 
experimental plots with oats in the grain-filling developmental stage. 
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The dataset includes narrow-band reflectance spectra of the experimental plots (one 
averaged spectrum per plot) obtained from U A V imagery. The spectra cover the range 
of wavelengths from 450 to 915 nm, i.e., between visible blue and near infra-red. The 
spectral resolution is 5 nm, thus yielding 94 bands. The spectra are accompanied by 
ground-truth measurements describing the crop's physiological status. They include, 
among others, SPAD-estimates of leaf chlorophyll concentrations (one averaged 
estimate per plot), which are the focus of the present study. There are 56 data points in 
total, labelled as either calibration or validation data in 1:1 proportion. The dataset is in 
the public domain, and for the purpose of this study, it was downloaded from the Dryad 
repository (Meij et al., 2018). 

Reproduction of the original analysis 
In order to obtain a baseline for the assessment of feature selection performance, a 

reproduction of the Meij et al. (2017) result was prepared. The original study employed 
vegetation indexes and PLS modelling for predicting leaf chlorophyll from the imaging 
spectra. This paper focuses on the latter approach. 

The data partitioning from the original dataset was preserved, and a PLS regression 
model was fitted to the calibration subset. Leaf chlorophyll concentration was modelled 
as the dependent variable, and the reflectance values for the whole range of the 
wavelengths as the independent variables. The number of latent variables was tuned 
using leave-one-out cross-validation by calculating the cross-validation root mean 
square error (RMSE) for each value from between 1 and 20. The validation spectra were 
then fed to the model exhibiting the lowest error, and the generated predictions compared 
with the SPAD chlorophyll estimates to obtain validation RMSE, normalized RMSE 
(NRMSE), and the R2 statistics. To reproduce the original validation results, RMSE had 
to be normalized by dividing it by the mean chlorophyll concentration, rather than the 
standard deviation or range. Likewise, R2 had to be calculated as the square of the 
correlation coefficient between the predicted and observed values, rather than derived 
from the sums of squares. 

Application of feature selection 
Next, the fitting of the PLS model to the calibration dataset was repeated, but in 

addition to the tuning of the latent variable number, feature selection was performed. 
Two approaches to feature selection were tested: a filter method based on the minimum 
redundancy, maximum relevance (MRMR) criterion, and a forward selection wrapper 
method. 

Under the filtering approach, variables are evaluated independently of model 
fitting, according to a measure the value of which determines which of them will be 
discarded (Mehmood et al., 2012). In the MRMR method, this measure is the mutual 
information shared by the candidate feature and the predicted variable, reduced by the 
average mutual information shared by the candidate feature and the features already 
accepted for inclusion into the model. The mutual information is a function of the 
correlation coefficient (De Jay et al., 2013). 

With wrapping, models are fitted to multiple pre-selected feature subsets, and the 
fit quality itself serves as the selection performance criterion, making it a computationally 
more demanding approach (Mehmood et al., 2012). The wrapper forward selection 
method is analogous to the forward selection in the stepwise regression: candidate 
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features are picked one by one from the feature pool, and their influence on the 
performance of the refitted model is assessed. The variable associated with the highest 
performance increase is kept in the model, and the process continues iteratively- until 
there is no further improvement. 

For each method, the present study aimed to obtain a series of models with the input 
feature number ranging from 2 to all 94 bands (i.e., no selection). In this way, the 
influence of feature selection intensity on the prediction quality could be investigated. 

Computational reproducibility 
The analysis was prepared with reproducibility in mind (Piccolo & Frampton, 

2016). It was programmed in the R language (R Core Team, 2019), using the packages 
pis (Mevik et al., 2019) for model fitting, mRMRe (De Jay et al., 2013) for assessing the 
MRMR criterion, and mlr (Bischl et al., 2016) for model tuning. G N U Make (Stallman 
et al., 2016) was used as the build tool, and G N U Guix enabled isolation and 
reproducibility of the software environment for performing the analysis (Courtes & 
Wurmus, 2015). The computational scripts are available from a Zenodo repository 
(Zelazny, 2020). On an IA-64 machine-; the analysis took approximately 100 minutes 
without parallelization and excluding the time needed to set up the environment. The 
latter can last hours on the first run, depending on the state of a the Guix store (Courtes 
& Wurmus, 2015) and availability of pre-compiled package substitutes. It is reduced to 
minutes on subsequent runs. 

RESULTS AND DISCUSSION 

Visual data assessment 

Leaf chlorophyll (g rrf2) n ^ ^ ^ ^ ^ ™ w i 

Data partition - - calibration — validation p[_g i 3) 

500 S00 700 800 S 00 , 500 600 700 800 S00 
3) Wavelength (nm) D) Wavelength (nm) 

F i g u r e 1. a) Narrow-band spectra of experimental oat plots in the calibration and validation data 
subsets acquired using an unmanned aerial vehicle. Line hues reflect the differences in SPAD-
estimated leaf chlorophyll concentrations. The figure can be rendered in color by running the 
computational scripts that accompany the article; b) Loadings in the partial least squares model 
for predicting leaf chlorophyll concentrations from the narrow-band spectra. The model is based 
on three bands obtained from minimum redundancy, maximum relevance filtering. Latent variable 
loadings are given in the parentheses, wavelength loadings are given on the y axis. 

Fig. 1, a depicts the experimental plot spectra matched to the ground-truth data, 
analogously to Fig. 4 in Meij et al. (2017). High leaf chlorophyll concentration appears 
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to be associated with increased near infra-red reflectance and a steep red edge-both 
regions repeatedly considered important for chlorophyll prediction by earlier studies 
(Govender et al., 2009; Main et al., 2011). On the other hand, contrary to expectation, 
no apparent red-edge shift can be discerned. The calibration and validation spectra are 
well mixed in terms of the chlorophyll measurements, as can be expected from the 
stratified random partitioning, employed by the original study. Regarding the 
reflectance, the validation subset seems to cover a wider range of values than the 
calibration subset, but the difference is too small to raise concerns about a mismatch 
between the partitions. 

Reproduction of Meij (Meij et al. (2017) 
Despite the variety of existing PLS flavours and implementations, the attempt to 

reproduce the validation results of the Meij et al. (2017) paper turned out to be 
successful, with only NRMSE showing a slight deviation (Table 1, row 'Reproduction'). 
However, as discussed above, the high number of bands contributing to the model make 
the 'full-spectrum' approach infeasible for practical application - at least until 
hyperspectral imagers become affordable (Aasen et al., 2018). In addition, the result of 
model tuning, which set the number of the latent variables to five, makes an insight into 
its workings challenging. 

T a b l e 1. Tuning parameters and validation statistics of the partial least squares models. Each 
model was calibrated using 28 spectra and validated using another set of 28 spectra 

Study Input 
bands 

Latent 
variables 

RMSE 
(g m-2) 

NRMSE 
(%) 

R2 

Meij etal. (2017) 94 5 0.17 23.82 0.57 
Reproduction 94 5 0.17 23.75 0.57 
Filter feature selection 19 7 0.21 28.36 0.52 
Filter feature selection (truncated) 3 3 0.16 21.84 0.62 
Wrapper feature selection 1 1 0.20 28.23 0.43 
RMSE = root mean square error, NRMSE = normalized root mean square error. 

Feature selection 
The cross-validation results of models employing filter feature selection exhibit 

two local error minima (Fig. 2). The absolute minimum corresponds to 19 input bands, 
a much lower number than for the reference model, but still too high for developing 
reasonably priced specialized device. What is more, the model shows higher validation 
error and involves even more latent variables (seven) than the reproduction model 
(Table 1, 'Filter feature selection'). 

Conversely, three wavelengths, as in the second minimum, seem a good middle-
ground between technical feasibility and expected estimation error. The fact that the 
number of latent variables in PLS regression cannot exceed the number of inputs 
contributes to the model interpretability. Notable is the improvement of the validation 
statistics (Table 1, 'Filter feature selection (truncated)'), which corroborates the positive 
influence of feature selection on prediction accuracy (Mehmood et al., 2012). Although 
the obtained gains may seem modest, one should consider other advantages offered by 
feature selection, such as the reduced cost of a specialized imager (Govender et al., 
2009), more efficient data acquisition (Yang et al., 2013; Zhang & He, 2013), and 

2670 

125 



Wiktor R. Zelazny: Application of feature selection for predicting leaf chlorophyll. 

smaller volumes of the collected data (Zhang & He, 2013). On a closer examination, the 
model appears to give accurate predictions for low levels of chlorophyll, but its 
performance deteriorates above the level of about 0.75 g m 2 (Fig. 3). A similar pattern 
occurred in the Kanning et al. (2018) pushbroom imager study. An attempt to further 
improve the prediction quality could be made by log-transforming the chlorophyll 
content values prior to modelling. 

Fig. 1, b depicts the band 
loadings for each latent variable and 
the latent variable loadings of this 
model. The chlorophyll content is, 
thus, predicted as LCC = 6.3 PLSi + 
4.0 PLS2 + 7.5 PLS3. The value of 
the first component PLSi = 0.0 r^s -
0.1 mo +1.0 r775 corresponds to the 
near infra-red reflectance, in 
accordance with the visual assessment, 
above. The second component PLS2 
= - 0.7 r455 -1.0 nio -0.1 r775 includes 
the bottom part of the red edge and, 
interestingly, a blue band., it can be 
interpreted as canopy darkness (low 
visible albedo), and linked to the 
absorbance in the photosynthetically-
active spectral region. The third 
component value PLS3 = 1.0 r«5 + 
0.0 rno +0.0 rns is determined by 
canopy blueness (blue hue intensity). 

Wavelength combinations similar to the one picked by the filtering algorithm 
seldom occur in vegetation index formulations. They can be found in the Enhanced 
Vegetation Index (Gao et al., 2000), the Structure Insensitive Pigment Index (Penuelas 
et al., 1995), the Modified Simple Ratio, and the Modified Normalized Difference 
(mND705) (Sims & Gamon, 2002). No such index was investigated by Meij et al. (2017). 
In the study by Main et al. (2011), the first three indexes fared poorly when used for 
predicting chlorophyll content in maize leaves at various developmental stages. The 
authors attribute this to the weak relationship between the blue spectral region and the 
leaf chlorophyll concentration. 

Regarding mND705, it was among the best-performing indexes in Main et al. (2011), 
and in Miao et al. (2009) - also a maize study. On the other hand, it occurred to be a poor 
predictor of chlorophyll content in rice (Moharana & Dutta, 2016). The mND705 index 
formula includes blue reflectance as a way to account for specular reflectance (Sims & 
Gamon, 2002). The third latent variable of the discussed PLS model may play the same 
role. 

Alternatively, it may adjust for Rayleigh scattering. According to Beisl et al. 
(2008), atmospheric effects occur even in low-altitude airborne remote sensing 
applications. Although the analysed dataset has been subjected to atmospheric 
correction, it was based on a single reference panel measurement (Meij et al., 2017). The 
weakness of this approach is the assumption of constant illumination conditions as 
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individual images are acquired. The blue band information may account for the residual 
error that still remained after the correction. 

The forward selection within the wrapper approach stopped after picking one band 
(775 nm), thus reducing the PLS model to a classical regression model with a single 
independent variable. The selected wavelength lies in the near infra-red spectral region, 
which agrees with the observation from the visual assessment, above. According to the 
validation statistics (Table 1 'Wrapper feature selection'), despite its extreme simplicity, 
the model performs surprisingly well in terms of RMSE. However, the low R2 value puts 
in question the feasibility of its practical use. Moreover, like the preceding model, it 
exhibits uneven prediction quality for various levels of chlorophyll (Fig. 3). 

Data partition ° calibration • validation 

Reproduction Filterfs 

1.0 

CL. 
O 
O 
ö 
1c 

0.5 

Filterfs (truncated) 

S 

9 O ? ' 
* / 

Wrapper fs 

0.5 1.0 0.5 1.0 
Predicted leaf chlorophyll (g m"2) 

F i g u r e 3. P r e d i c t i o n e r r o r pa t terns o f the s t u d i e d m o d e l s w i t h r e s p e c t to the g r o u n d - t r u t h da ta . 

In the light of this finding, it can be recommended to avoid wrapper selection for 
chlorophyll content prediction, especially considering the substantial computational 
demands of this approach (Ding & Peng, 2005; Mehmood et at, 2012). Conversely, the 
encouraging results attained with MRMR suggest high potential of the filter strategy 
towards picking highly predictive spectral bands. The MRMR criterion seems 
particularly well-suited to data acquired using optical remote sensing methods. As 
reflectance measurements exhibit substantial spectral autocorrelation (Karimi et at, 
2008; Verrelst et at, 2019), a naive algorithm could pick a set of neighbouring bands, 
with information content barely exceeding that of a single band. The 'minimum 
redundancy' aspect of MRMR avoids this issue by taking correlations between features 
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into consideration (Ding & Peng, 2005). Still future research might consider examination 
of feature selection methods from the filter family. The performance of the three classes 
of methods reviewed by Mehmood et al. (2012): based on loading weights, regression 
coefficients, and variable importance in projection; could be compared, for instance. 

Possibilities of assessing and improving study generalizability 
The present study illustrates the application of feature selection for obtaining a 

parsimonious predictive model with high interpretability. Just as omitting model cross-
validation can lead to over-fitting, a model that performs well on a single validation 
dataset does not necessarily generalize to new circumstances. This is especially true for 
unstable models, whose parameters change radically in response to even slight 
modification of the training data. 

In the present study, an improvement of validation statistics was obtained after 
filtering the spectral bands using the MRMR algorithm. As highlighted by De Jay et al. 
(2013), the algorithm in its original form produces results that are unstable with respect 
to data modifications. The cited authors proposed an ensemble extension of the filter to 
stabilize its output. 

Ensemble modelling has been shown to improve prediction accuracy, as 
exemplified by random forests (Breiman, 2001), and enable interval estimation, as 
exemplified by bootstrap methods (Wood, 2005). Its obvious application in the 
discussed study would be to abandon the fixed data partitioning, which was inherited 
from Meij et al. (2017), in favour of multiple analyses, each based on a different 
assignment of the data points to the calibration and validation subsets. By the subsequent 
aggregation of the obtained partial results, the stability of the best performing models 
could be assessed - not only with respect to the selected wavelengths, but also to their 
loadings and validation statistics. 

Two candidate models fitted to filtered bands were elected by hand for further 
evaluation based on CV RMSE and feature selection intensity as an auxiliary criterion. 
Repeated data partitioning would result in proliferation of models, making the manual 
approach unfeasible. Replacing it with an algorithm would necessitate taking both 
optimization criteria into account, which can be accomplished with aid of model-based 
multi-objective optimization (Horn et al., 2015). 

These avenues could not have been taken due to high computational complexity 
involved, especially if wrapper feature selection were also included. In the future, an 
adaptation of the analysis for an execution in a high-performance computing 
environment might be attempted. At that point, an extension of the study to include 
ensemble modelling would become feasible. 

An evident weakness of both the present and the original Meij et al. (2017) study 
is the fact that the ground-truth data were obtained using a SPAD chlorophyll meter, and 
thus include spectroscopic estimation errors (Uddling et al., 2007). It is possible that 
similar errors present in the discussed PLS results become masked in the consequence, 
leading to overoptimistic validation statistics. Therefore, it would be desirable to 
replicate the study using laboratory analyses for the ground truth, instead. 

Spectral responses of leaf pigments differ across plant genotypes. Although the 
chlorophyll signal is readily discernible in a leaf or canopy spectrum (Ollinger, 2011), 
the reflectance is modified by additional factors. They include leaf and canopy anatomy 
and morphology (Asner, 1998; Jacquemoud & Ustin, 2001; Ollinger, 2011) and spectral 
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properties of additional foliar pigments present in the tissues (Jacquemoud & Ustin, 
2001; Ollinger, 2011). Research is needed to establish whether feature selection can 
yield a set of bands that enable calibration of models for chlorophyll content estimation 
in multiple crops, and how big this set needs to be for the models to be accurate. 

CONCLUSIONS 

Filtering of bands according to the minimum redundancy, maximum relevance 
criterion can improve the performance of a partial least squares model aimed at oat leaf 
chlorophyll prediction from airborne hyperspectral imagery. Chlorophyll concentration 
can be estimated from near infra-red reflectance, canopy darkness, and its blueness. The 
obtained size of the feature space (three bands in the present study) is sufficiently small 
for the development of affordable single-purpose imagers. Although a wrapper approach 
based on forward feature selection can yield an even more parsimonious model, the 
resulting prediction quality is not satisfactory. The robustness of the findings remains to 
be investigated using an ensemble of dataset partitionings and ground truth obtained 
from laboratory analyses based on samples collected from multiple crops. 
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Abstract: T h e r e i s a n e e d to r n i n i m i z e the u s a g e o f t r a d i t i o n a l l a b o r a t o r y re ference m e t h o d s i n f a v o r 

o f s p e c t r o s c o p y for r o u t i n e s o i l c a r b o n m o n i t o r i n g , w i t h p o t e n t i a l cost s a v i n g s e x i s t i n g e s p e c i a l l y for 

l a b i l e p o o l s . M i d - i n f r a r e d s p e c t r o s c o p y h a s b e e n a s s o c i a t e d w i t h a c c u r a t e s o i l c a r b o n p r e d i c t i o n s , 

b u t the m e t h o d h a s n o t b e e n r e s e a r c h e d e x t e n s i v e l y i n c o n n e c t i o n to C l a b i l i t y . M o r e s t u d i e s are a l so 

n e e d e d o n r e d u c i n g the n u m b e r s o f s a m p l e s a n d o n h o w to a c c o u n t for the c o m p o s i t i o n a l n a t u r e o f C 

p o o l s . T h i s s t u d y c o m p a r e s p e r f o r m a n c e o f t w o c lasses o f p a r t i a l l eas t s q u a r e s r e g r e s s i o n m o d e l s to 

p r e d i c t s o i l c a r b o n i n a g l o b a l ( m o d e l s t r a i n e d to d a t a f r o m a s p e c t r a l l i b r a r y ) , l o c a l ( m o d e l s t r a i n e d 

to d a t a f r o m a t a rge t a rea) , a n d c a l i b r a t i o n - s p i k i n g ( s p e c t r a l l i b r a r y a u g m e n t e d w i t h t a rge t - a r ea 

spec t ra ) s c h e m e . T o p s o i l s a m p l e s w e r e + s c a n n e d w i t h a F o u r i e r - t r a n s f o r m i n f r a r e d s p e c t r o m e t e r , 

t o t a l a n d h o t - w a t e r e x t r a c t a b l e c a r b o n d e t e r m i n e d , a n d i s o m e t r i c l o g - r a t i o c o o r d i n a t e s d e r i v e d 

f r o m t h e l a t t e r m e a s u r e m e n t s . T h e b e s t R M S E P w a s e s t i m a t e d as 0.38 a n d 0.23 p e r c e n t a g e p o i n t s 

T C f o r t h e d i s t r i c t a n d f i e l d s ca l e , r e s p e c t i v e l y — v a l u e s s u f f i c i e n t l y l o w to m a k e o n l y q u a l i t a t i v e 

p r e d i c t i o n s a c c o r d i n g to the R P D a n d R P I Q c r i t e r i a . M o d e l s e s t i m a t i n g s o i l c a r b o n l a b i l i t y p e r f o r m e d 

u n s a t i s f a c t o r i l y , p r e s u m a b l y d u e to l o w l a b i l e p o o l c o n c e n t r a t i o n . T r a d i t i o n a l w e i g h i n g o f s p i k i n g 

s a m p l e s b y i n c l u d i n g m u l t i p l e c o p i e s t h e r e o f i n t r a i n i n g d a t a y i e l d e d be t t e r r e s u l t s t h a n c a n o n i c a l 

p a r t i a l l eas t s q u a r e s r e g r e s s i o n m o d e l i n g w i t h e m b e d d e d w e i g h i n g . A l t h o u g h l o c a l m o d e l i n g w a s 

a s s o c i a t e d w i t h t h e m o s t a c c u r a t e p r e d i c t i o n s , c a l i b r a t i o n s p i k i n g a d d r e s s e d be t t e r t h e t r a d e - o f f 

b e t w e e n d a t a a c q u i s i t i o n cos t s a n d m o d e l q u a l i t y . C a l i b r a t i o n s p i k i n g w i t h c o m p o s i t i o n a l d a t a 

a n a l y s i s i s , therefore , r e c o m m e n d e d fo r r o u t i n e m o n i t o r i n g . 

Keywords : s o i l o rgan ic matter; M I R - D R I F T S ; chemomet r i c s ; c o m p o s i t i o n a l da ta ana lys is ; r e p r o d u c i b i l i t y 

1. Introduction 
SC is a primary indicator of soil quality [1,2], and in recent years, estimation of 

atmospheric C O 2 sequestration has boosted interest in SC monitoring [3-6]. In addition to 
SC quantity, its fractional composition can be of interest in evaluating soil status. Research 
has been devoted to the labile fraction, which can give insight into SC turnover processes [7]. 
Labile C determines the rate of nitrogen release from soil organic matter, a factor to be 
accounted for while fertilizing the soil [8,9], and it can also inform about the long-term 
stability of sequestered carbon [10]. 

Changes in SC content occur over long time frames [5,11]—in certain conditions 
also on arable land despite higher risk of depletion by mineralization [1,12]. Although it 
suffices to sample soil every ten years for monitoring [3,5], SC can exhibit high spatial 
variability [3,4], which increases the necessary sampling effort [13]. Additional collection 
campaigns are needed to capture the dynamics of SC labile pools, which, on arable land, 
are readily influenced by fertilizer and soil amendment inputs, crop residue management, 
and soil tillage [11,14,15]. Traditional analysis of samples collected for this purpose is 
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costly and time consuming due to the laboriousness of laboratory SC fractionation [16-19]. 
Environmental concerns have also been raised [20,21]. 

Higher throughput and economical viability can be attained with soil spectroscopy [4,22]. 
Here, MIR-DRIFTS is one of the methods considered suitable for chemical soil analysis [13,20,23] 
owing to fundamental vibrations of soil molecules arising in the MIR spectral region [6,13,24]. 
In particular, it can give accurate estimates of SC content [13,22,25,26], and according to 
Reeves HI [25], this high performance may extend to SC fraction assessments. However, the mod
est number of publications devoted to SC lability [27] is in contrast with the extensive literature 
on total C (TC) or the large organic C (OC) pool estimation with MIR-DRIFTS. 

Quantitative assessment of soil properties from spectral measurements requires a 
predictive model trained to a reference dataset, in which spectra are paired with reference 
laboratory data [4,28]. Bellon-Maurel and McBratney [26] and Gholizadeh et al. [29] stress 
an importance of a large calibration library for satisfactory accuracy. In particular, the num
ber of samples corresponding to soil properties similar to those in the target area should 
be sufficient to avoid a prediction bias with the trained model [13,30,31]. Applications 
of libraries have been limited in MIR spectroscopy [32], and although large collections 
are increasingly available [16,32-34], many regions remain not represented. A n important 
prerequisite is to follow the sample collection and analysis methodology that was employed 
for building the library [25,28,35]. This is problematic given the fact that even different 
units of one spectrometer model can yield MIR scans that do not match [29]. 

For scenarios with an insufficient library size or coverage, calibration spiking can be 
employed [6,36]. The library is augmented with a limited number of samples collected at 
the target site prior to the training of a predictive model [37,38]. Samples for calibration 
spiking can be picked according to leverage selection to minimize their number or spiking 
intensity [28]. This process preserves the representativeness of the resulting subset by 
taking into account spectral similarities of the samples in the available pool [37]. According 
to Guerrero et al. [39], a reference library does not need to be large to obtain satisfactory 
predictions with calibration spiking. However, even with a modestly sized reference dataset, 
there is going to be a disproportion between the number of spiking and library samples. 
One way of addressing this problem is to use a subset of the latter [38]. As an alternative, 
which does not incur information loss, local samples can be given bigger weight relative to 
the samples in the library. Such weighing is typically performed by multiplying the local 
sample occurrences in a model training dataset [36,39,40]. However, another approach 
is also possible, where a model allowing for specification of case weights is employed 
instead [41]. 

Partial least squares regression (PLSR) continues to be the most common approach 
for analyzing soil spectra and predictive model calibration [3,13], including MIR-DRIFTS 
SC studies [22,26]. When estimating multiple properties, accuracy can be improved by 
accounting for their correlations [42], and utility of multiresponse PLSR (PLSR2) models 
in pedology has been demonstrated before [43-46]. Indahl et al. [47] proposed combining 
PLSR with canonical correlation analysis and developed the canonical PLSR (CPLSR) 
class of models. Like PLSR2, this method permits a multivariate response variable, but in 
addition to that, it offers a possibility to weigh the individual observations. 

Baumann et al. [34] hypothesized that library samples "would stabilize and reduce the 
errors" associated with spike samples. However, spiking a reference library that does not 
match the target calibration domain can lead to less satisfactory results than the training of 
a model to local samples only [37,41]. Guerrero et al. [38] and Wetterlind and Stenberg [48] 
questioned the necessity of a reference library at all by pointing to superior model calibra
tions obtained with samples from the vicinity of a target area, exclusively. 

The aim of this study is to investigate the influence of calibration spiking and local 
modeling on SC content and lability prediction performance of PLSR2 and CPLSR models 
trained to MIR-DRIFTS spectra corresponding to crop farming localities with different soil 
and climatic conditions. We hypothesized that the spiking of a library with observations 
from several long-term experiments would reduce the number of samples subjected to 

135 



Wiktor R. Zelazny and Tomas Simon: Calibration spiking of MIR-DRIFTS soil. 

Agriculture 2022,12, 682 3 of 26 

traditional laboratory analysis compared to relying only on target-site spectra. Furthermore, 
CPLSR models with embedded sample weighing were expected to perform better than 
weighing by multiplication followed with PLSR2 modeling. The study also explores the 
influence of spectra pre-processing schemes and leverage sampling algorithms on the 
model predictions. 

2. Materials and Methods 
2.1. Site Description and Data Collection 

Two groups of soil samples were collected at the territory of the Czech Republic: 
(1) time series of archived samples obtained from long-term crop trials, which served as a 
reference library and (2) samples from two commercial sites, Ústí nad Orlicí and Janovice, 
as prediction targets of interest (Figure 1). The long-term experiments were maintained by 
the Crop Research Institute Praha-Ruzyně (CRI) and the Central Institute for Supervising 
and Testing in Agriculture; their primary focus was fertilization. A brief description can 
be found in Table 1. As seen in Table SI, the library was unbalanced with respect to the 
sample, year, and experimental treatment counts. Topsoil samples from the upper 20 cm 
were collected using a field shovel following a uniform protocol. The soil was collected 
from three spots of each plot, and the partial samples were combined into approximately 
2 kg lots and homogenized. 

Ústí nad Orlicí comprises multiple localities scattered over one district (Figure 1), 
making it a heterogeneous site. The fields were managed with conventional tillage and 
sown with winter wheat, winter and spring barley, silage maize, and oilseed rape. The het
erogeneity was additionally augmented by an extended timing of the soil sample collection, 
which took place every spring and fall between 2012 and 2015. About 40 topsoil samples 
from fields with winter wheat and winter barley were collected by the farmers or their 
designated persons during each campaign, yielding a total of 335 samples. The commercial 
site Janovice denotes a single conventionally tilled field, with a crop rotation of silage 
maize, winter wheat, potatoes, and clover-grass mixture. It contributed 45 topsoil (0-20 cm) 
samples collected by CRI employees in fall 2017, after the sowing of winter wheat. The sam
pling points were delimited every 120 m in a way to obtain roughly uniform coverage of 
the field. There were six partial samples per composite sample of approximately 0.5 kg, 
which was then homogenized. 

Figure 1. L o c a t i o n s , a l t i t u d e s , m e a n a n n u a l t e m p e r a t u r e s , a n d p r e c i p i t a t i o n s u m s i n the y e a r s o f d a t a 

c o l l e c t i o n , a n d s o i l t y p e s a n d t ex tu res at the e x p e r i m e n t a l s i tes . T h e ta rge t s i tes are m a r k e d w i t h r e d 

co lo r . F o r Ú s t í n a d O r l i c í , i n d i v i d u a l s o i l s a m p l i n g l o c a t i o n s are d i s p l a y e d , a n d t h e i r m e a n a l t i t u d e 

is p r o v i d e d . 
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Table 1. C h a r a c t e r i s t i c s o f the l o n g - t e r m f i e l d e x p e r i m e n t s . 

Experiment a Est. L a y o u t b C r o p R o t a t i o n c Reference 

C R E 1956 l b X 3t v a r i o u s (25%)-(WW o r TR)-(POT o r SB o r SM)-(SBA o r WW) [49] 
C R T 1984 5b X I t WW a n d SBA (50-100%) c o m p l e m e n t e d w i t h CL, o , PEA, SB, SM u n p u b l i s h e d 

F E 1958 l b X 7t f a l l o w [50] 

F F F E 1979 l b X 6t (AL o r CL)-WW-SM-WW-SBA-(SB o r POT)-SBA [51] 

I O S D V 1983 l b X 4t (SB o r POT)-SBA-WBA [52] 

O a M N F E ( d c ) 2011 l b X 5t POT-WW-SM-SBA-OSR-WW [ ] 
O a M N F E ( s f ) 1965 l b X 6t WW-POT-SBA-LCM-WW-POT-O-CL [54] 

R F E 1955 2b X 8t SW-SB o r AL-AL-WW-SB-SBA-POT-WW-SB-SBA [55] 

a C R E — C r o p Rota t ion Exper iment , C R T — C r o p Rota t ion Tria l , F E — F a l l o w Exper iment , F F F E — F r a c t i o n Fac

tor ial Fer t i l i za t ion Exper iment , IOSDV—Inte rna t iona l L o n g - T e r m Organ ic N i t r o g e n N u t r i t i o n Exper iments , 

O a M N F E ( d c ) — O r g a n i c (digestate, compost) a n d M i n e r a l N Fer t i l i za t ion Exper iment , O a M N F E ( s f ) — O r g a n i c 

(straw, fa rmyard manure) a n d M i n e r a l N Fer t i l i za t ion Exper iment , R F E — R u z y n e Fer t i l izer Exper iment ; b The 

number of blocks and treatments per block at each site; c A L — a l f a l f a (Medicago sativa L.) , C L — r e d clover (Trifolium 

pratense L . ) , L C M — l e g u m e - c e r e a l mixture, O — o a t (Avena sativa L . ) , O S R — w i n t e r oilseed rape (Brassica napus L . ) , 

P E A — c u l t i v a t e d pea (Pisnm sativum subsp. sativum L . ) , P O T — p o t a t o (Solanum tuberosum L . ) , S B — s u g a r beet (Beta 

vulgaris subsp. vulgaris L . ) , S B A — s p r i n g barley (Hordeum vulgare conv. disticnon (L.) Alef . ) , S M — m a i z e for silage 

(Zea mays subsp. mays L . ) , s w — s p r i n g whea t (Triticum aestivum L . ) , T R — t r i t i c a l e ( x Triticosecale W i t t m . ex A . 

Camus.) , W B A — w i n t e r barley (Hordeum vulgare conv. vulgare L . ) , W W — w i n t e r wheat (Triticum aestivum L . ) . 

The soil samples were dried, sieved through 2 mm mesh, and milled. MIR-DRIFTS 
spectra were measured using a Thermo Nicolet Avatar 320 FTIR spectrometer with a Ge 
beam splitter and a TGS detector, equipped with a Smart Diffuse Reflectance accessory 
(Nicolet, Madison, WI, USA) in a homogeneous mixture of 300 mg bulk soil and 900 mg 
FTIR grade KBr (Sigma-Aldrich, Darmstadt, Germany) prepared by hand in an agate 
mortar. Each sample was transferred to a 12 mm diameter diffuse reflectance cup and 
levelled with a microscope glass slide in a way to avoid compressing mechanically the 
mixture. Three scans comprising 1869 equidistant bands in the 4002-399 c m - 1 wavenumber 
range were performed, each spectrum was corrected against pure KBr as a background 
spectrum, and the obtained apparent absorbance (hereafter, absorbance) values averaged 
to obtain a spectrum with reduced noise [35]. TC content was determined by dry com
bustion using Vario/CNS analyzer (Elementar Analysensysteme GmbH, Langenselbold, 
Germany), and hot-water extractable carbon (HWC) content was determined according to 
Korschens et al. [8] as a measure of SC lability [27,56]. 

2.2. Data Partitioning and Pre-Processing of MIR-DRIFTS Spectra 
The collected data were subjected to a number of pre-processing and subsetting 

operations, the character of which was differentiated according to the study questions; 
depending on the scenario, one or more operations could also be omitted. PLSR models 
for predicting TC and HWC contents from MIR-DRIFTS spectra were then trained, tuned, 
and validated using the derived datasets. Figure 2 depicts the data processing workflow. 

The samples in the library part of the dataset served as the calibration samples in 
the global (library only) modeling scenario (Figure 3a), equivalent to removal of the "raw 
non-test target pool"-"sample weighing by multiplication" workflow branch in Figure 2. 
For each commercial site, 10 independent sets of 12 samples were picked randomly for 
testing of predictive model quality. The target-site spectra not included in a testing parti
tion made a pool from which samples were picked for model training in other scenarios 
(Figure 3b,c). The order of samples within these pools was randomized. 
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Figure 2. D a t a p r o c e s s i n g w o r k f l o w . 

Spectral pre-processing was performed before the selection of target-site training 
samples from the training pools. Noisy bands up to 600cm~1 [17] and CC>2-affected 
measurements in the 2268-2389 c m - 1 wavenumber range [32] were discarded. For ad
ditional signal recovery, the spectra were processed using a moving-average filter with an 
11-band window. 

In addition to analyzing the resulting spectra, hereafter "raw spectra", we tested five 
further pre-processing schemes [57], with each scheme comprising two phases. In the 
first phase, the moving-average smoothing was either followed with multiplicative scatter 
correction (MSC) or left unchanged. In the second phase, (1) standard normal variate (SNV), 
(2) derivative transformation using the Savitzky-Golay filter with third-order polynomial 
smoothing applied over a moving window of 11 bands, or (3) no transformations were 
applied to the result. No change to the spectra in both phases was equivalent to removal of 
the "further pre-processing" box in Figure 2. Initially, continuum removal by dividing the 
spectrum by its convex hull was also attempted, but it had to be abandoned as extreme 
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outliers were generated. Unlike the remaining transformations, MSC employs information 
from multiple spectra to derive a common reference spectrum. We were careful to perform 
this operation using the data in the training spectra pools, exclusively [6,58]. 

library samples target-site samples 

(a) 

(b) 

(c) 

training samples 

non-test target pools 

test 
samples 

. . . . test training samples \ , ° f ] samples 
^— )> spiking intensity 

training [ test 
samples ] samples 

^— )> sampling intensity 

Figure 3. T h e p o s s i b i l i t i e s o f d a t a s u b s e t t i n g c o m p a r e d i n t h e s t u d y : (a) L i b r a r y - o n l y p a r t i t i o n i n g 

w i t h o u t c a l i b r a t i o n s p i k i n g , (b) T h e l i b r a r y d a t a are a u g m e n t e d w i t h ta rge t s a m p l e s f r o m a t r a i n i n g 

p o o l , the n u m b e r o f w h i c h is g i v e n b y the s p i k i n g in tens i ty , (c) L o c a l - o n l y m o d e l s t r a i n e d e x c l u s i v e l y 

to ta rge t -s i te s a m p l e s , the n u m b e r o f w h i c h i s g i v e n b y the s a m p l i n g i n t ens i t y . 

2.3. Calibration Spiking 
Calibration spiking was introduced, based on increasing spiking sample counts to 

the level of 16 samples with a step of 4 samples (Figure 3b). The pre-randomized calibra
tion sample pools were trimmed while preserving the sample orders. In addition to this 
random scheme, two leverage sampling approaches were assessed: the Kennard-Stone 
algorithm [59] and conditioned Latin hypercube [60]. The spectra were subjected to PCA 
prior to the Kennard-Stone algorithm application to reduce the number of dimensions 
below the sample pool size level. 

In order to test for the possibility of a local modeling superiority with respect to 
models trained both to global and spiked datasets, additional scenarios mirroring the 
calibration-spiking scenarios but without samples from the long-term experiments were 
included (Figure 3c). This was equivalent to omitting the "library samples" branch in 
Figure 2. The training sample selection followed the same three schemes as for calibration 
spiking, with the same sampling intensity levels. 

2.4. Reference Laboratory Data Pre-Processing 
TC content cannot exceed a certain level of SC saturation [61,62], whereas HWC cannot 

be larger than TC. While applying statistical methods to measurements of sample con
stituents' concentrations, such as TC and HWC, it is recommended to follow the principles 
of compositional data analysis. Otherwise, models can yield nonphysical predictions, such 
as those of negative concentrations, a problem encountered by Baldock et al. [16] and 
Janik et al. [63], or component sizes the sum of which exceeds 100 %. 

Classical statistical tools can be employed to compositional data after subjecting them 
to log-ratio transformations. Accordingly, three components summing up to the whole soil 
sample were derived from the TC and HWC measurements: (1) HWC, (2) the part of TC 
resistant to hot-water extraction (nHWC), and (3) the non-TC part of a sample (1 — TC). 
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In the next step, the component values were transformed into two isometric log-ratio (ilr) 
coordinates according to the formulas [64]: 

[2, (HWC-nHWC )2 
l l r T C = V 3 l 0 g 1 - T C ' ( 1 ) 

fl, HWC 
l W = V 2 l 0 8 ^ H W C - ( 2 ) 

The ilrxc coordinate is closely related to TC but accounts for the finite size of a sample, 
while ihewc c a n be interpreted as transformed C lability [65]. The latter formulation not 
only respects the compositional character of the reference data but also avoids confounding 
lability with TC, thus facilitating their independent analysis. This is unlike raw HWC, 
the value of which can be affected by both factors [9]. 

2.5. PLSR Modeling with Unweighed and Weighed Training Samples 
The relationship between ilr values and MIR-DRIFTS spectral patterns was modeled 

using PLSR. Two multiresponse PLSR extensions were trained to both coordinates to 
account for multivariate character of compositional data [66]. For data partitionings that 
included both reference-library and target-area samples, the influence of spiking sample 
weighing was examined by introducing models with 5-fold and 25-fold weighted local 
observations, in addition to unweighted models. The weighing was performed either in 
the standard way by data row multiplication—in which case a PLSR2 model [42] was 
used—or by exploiting the internal weighing capability of the CPLSR model family [47] as 
a proposed approach. The latter case detoured the "sample weighing by multiplication" 
Figure 2 workflow step. Obviously, the weighing was restricted to the calibration-spiking 
scenarios, as the remainder, that is library-only and local-only scenarios, involved only 
single sources of samples. 

Centered values of ilr coordinates were the dependent variables (responses) and 
centered MIR-DRIFTS intensity values were the independent variables (features) in these 
models. Like for MSC, the centering was based on information in the training data only. 
The numbers of PLSR components were tuned using leave-one-out cross-validation with 
values between 1 and 12 considered. The number of components to keep was determined 
using one standard error heuristics [67] applied separately to ilr-rc and ihewc RMSECV. In 
this way, 12 240 bivariate models were calibrated and twice as many tuned models obtained. 

The performance of each model was evaluated using test data partitions in terms of 
R 2 , prediction bias, and RMSEP, followed with R P D P and RPIQp statistics: 

2 _ VRes (0) — RMSEP 2 

VRes(0) ' ( 3 )  

b i a s = E k ( y L z M , ( 4 ) 

RMSEP = J V i ) 2 , (5) 
V n 

RPD P - J p , (6) 

where VRes (0)—mean square ground truth value, y,-—predicted zfh value, y,—zfh ground 
truth value, n—test sample count, sp—standard deviation of ground-truth values, IQRp— 
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interquartile range of ground-truth values, and SEP—standard error of prediction, which 
was defined as: 

These were summarized, and the relative influence of the experimental factors on the 
model performance measures was also examined visually after plotting the relationships. 

2.6. Reproducing the Study 
The analysis was coded using the R language and executed in the 3.6.2 version of 

the interpreter [68]. The package vegan (version 2.5.6) [69] was used for PCA, prospectr 
(0.1.3) [70] and pis (2.7.2) [71] for spectra pre-processing, prospectr and clhs (0.7.2) [72] 
for leverage sampling, compositions (1.40.3) [73] for ilr transformations, and pis for 
PLSR modeling. G N U Make [74] was employed for workflow control, and G N U Guix 
functional package management and containerization capabilities [75] were exploited to 
obtain reproducible results. The data and code are available from a Zenodo repository 
(doi:10.5281 /zenodo.6337394). Reproduction of the study is going to require the availability 
of HPC infrastructure. It took approximately three weeks of operation of a 16-CPU virtual 
machine to complete a full computation cycle and obtain the results. 

3. Results 
3.1. Patterns in the Raw and Pre-Processed Data 

Ústí nad Orlicí spectral signatures were highly varied and, in certain regions, extended 
beyond the envelope of the library samples regardless of pre-processing (Figures 4 and SI). 
The scans were subjected to PCA to obtain more insight into the spectral dissimilarity [39]. 
According to the first two principal component scores, there is substantial overlap between 
the reference library spectra and Ústí nad Orlicí soil samples, but a significant fraction of 
the observations occupy the area of the PCA space devoid of library data points due to 
high PC2 scores (Figure 5). As could be expected, the bulk of high-PC2 library observations 
represent experimental stations located close to the discussed district, namely Hněvčeves, 
Svitavy, Čáslav, and Kostelec nad Orlicí (Figure 1). Notable are the large ranges of Ústí nad 
Orlicí PCA scores, comparable to those of the long-term experiments. In contrast to that 
pattern, Janovice spectra were enveloped by the library spectra (Figure 4), and the data 
points form a compact cluster in Figure 5, similar in extent to several individual library 
sites, as shown using convex-hull polygons. 

In addition, the C measurement variation was high in Ústí nad Orlicí and not much 
smaller than that of the library samples despite the different geographical scales (Table 2 
and left-hand plot in Figure 6). Both TC and HWC are somewhat shifted upwards relative 
to the bulk of the reference library. Unlike the PCA scores, the mismatch between target-site 
C measurements and reference library measurements is more apparent for Janovice. Both 
TC and HWC are high here, and the only library samples with similar characteristics are 
a group of Praha-Ruzyně Fallow Experiment experimental plots. A closer examination 
revealed that those had been assigned to compost fertilization treatments. 

Regardless of the data subset, the raw measurements were skewed towards lower 
values (left-hand plot in Figure 6). The skew, and to a degree high kurtosis, were reduced 
after the ilr transformations (right-hand plot in Figure 6 and Table S2). Figure 7 depicts 
the relationships between the raw component values and ilr coordinates. While the T C -
ilrxc relationship is smooth and close to linear, a broken stick pattern was obtained for 
HWC-ilrnwc- Th e outlying samples with HWC in excess of 1.2 mg g - 1 all came from Praha-
Ruzyně Fallow Experiment plots where compost was applied. Although ilrxc and ilrewc 
are not simple transformations of, respectively, TC and HWC, as additional components 
were accounted for in their derivation (Equations (1) and (2)), the relationships are strong 
enough to permit comparing our results with those reported by authors who had not 
considered the compositional nature of SC pools. 

(8) 
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Figure 4. Pre-processed library and target-site spectra. The reference spectrum for the multiplicative scatter correction (MSC) transformation is based on the first 
training-pool-test partitioning. 
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D a t a subse t 

A a library 

Ústí nad Orlicí 

P C I (71 %) 

Figure 5. P r o j e c t i o n o f the p r i n c i p a l c o m p o n e n t s p a c e d e r i v e d f r o m M I R - D R I F T S s p e c t r a after b a s i c 

p r e - p r o c e s s i n g . C o n v e x h u l l s o f t h e l i b r a r y s i t es s i m i l a r t o l a n o v i c e a re d i s p l a y e d . T h e s m a l l e s t , 

c e n t r a l p o l y g o n represen ts J a r o m ě ř i c e . C a — Č á s l a v , H n — H n ě v č e v e s , H u — H u m p o l e c , I v — I v a n o v i c e 

n a H a n é , J a — J a r o m ě ř i c e , K o — K o s t e l e c n a d O r l i c í , L i — L í p a , L u — L u k a v e c , P e — P e r n o l e c , R u — P r a h a -

R u z y n ě , S v — S v i t a v y , T r — T r u t n o v , V y — V y s o k é n a d J i z e r o u . 

Table 2. L o c a t i o n a n d sca le s t a t i s t i c s d e s c r i b i n g the d i s t r i b u t i o n s o f s o i l c a r b o n ( S C ) m e a s u r e m e n t s 

be fo re a n d after i s o m e t r i c l o g - r a t i o ( i l r ) t r a n s f o r m a t i o n s . 

C Measurement 

Statistics Sample Partit ion R a w i lr-Transformed 

T C H W C i l r T C Í l r H W C 

r a n g e 
l i b r a r y 

Ú s t í n a d O r l i c í 

(%) 
0 .73-1.45 
0 .94-3.68 

( m g g - 1 ) 
0 .13-2 .55 
0 .27-1.09 

- 5 . 6 3 — 3 . 7 0 
- 5 . 2 2 — 4 . 1 9 

- 3 . 2 5 — 1 . 9 7 

- 2 . 8 3 — 2 . 0 4 

J a n o v i c e 1.35-3.04 0 .46-1.16 - 4 . 8 9 — 4 . 2 1 - 2 . 4 7 — 2 . 1 5 

m e d i a n 
l i b r a r y 

Ú s t í n a d O r l i c í 

(%) 
1.41 
1.65 

( m g g - 1 ) 
0.38 
0.51 

- 4 . 9 8 
- 4 . 7 7 

- 2 . 5 4 

- 2 . 4 3 

J a n o v i c e 2.10 0.77 - 4 . 5 1 - 2 . 3 1 

I Q R 
l i b r a r y 

Ú s t í n a d O r l i c í 

(PP) 
0.45 
0.46 

( m g g - 1 ) 
0.16 
0.17 

0.27 

0.23 

0.29 
0.17 

J a n o v i c e 0.32 0.16 0.14 0.09 

n 
l i b r a r y 

Ú s t í n a d O r l i c í 

603 

335 

J a n o v i c e 45 
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1.0 2.0 3.0 4.0 0.5 1.0 1.5 2.0 2.5 

TC (%) HWC (mg g : ) 

Figure 7. T h e r e l a t i o n s h i p s b e t w e e n r a w S C r e f e r e n c e m e a s u r e m e n t s a n d i l r - t r a n s f o r m e d v a l u e s , 

w i t h o v e r l a i d loess s m o o t h e r s . 

3.2. Accuracy and Precision of the PLSR Models 
The predictive performance of the PLSR models varied substantially, as illustrated by 

the R 2 statistics (Table 3). Although negative values were obtained for the worst models, 
models corresponding to R 2 in excess of 0.80 could be found for each ilr coordinate and 
target site combination, which is a high quality result according to Janik et al. [20]. How
ever, after aggregating the values across all data partitionings, R 2 exceeded 0.50, still an 
unsatisfactory value, only for Janovice while predicting ilr-ro whereas both i l r H wc arid 
Ústí nad Orlicí scenarios gave poor results. 

Table 3. R a n g e s o f P L S R m o d e l p e r f o r m a n c e m e a s u r e s a c c o r d i n g to t h e d e p e n d e n t v a r i a b l e a n d 

the t a rge t s i te . T h e v a l u e s o u t s i d e a n d i n s i d e the b r a c k e t s c o r r e s p o n d to p e r f o r m a n c e s o b t a i n e d for 

i n d i v i d u a l d a t a p a r t i t i o n i n g s a n d p e r f o r m a n c e s t ha t w e r e m e d i a n a g g r e g a t e d a c r o s s t h e p a r t i t i o n 

i n g s , r e s p e c t i v e l y . 

i l r T C i l iHWC 
Performance Measure ; ; 

Ú s t í n a d O r l i c í Janovice Ú s t í n a d O r l i c í Janovice 

R 2 
- 9 . 1 0 [ - 3 . 9 7 , 0.33] - 1 8 . 7 9 [ - 8 . 7 6 , 0.57] - 6 . 9 0 [ - 1 . 3 6 , 0.18] - 3 7 . 4 3 [ - 1 8 . 9 8 , 0.35] 

R 2 

0.81 0.88 0.85 0.82 

b i a s 
- 0 . 4 2 [ - 0 . 3 0 , 0.16] 

0.32 
- 0 . 4 9 [ - 0 . 4 7 , 0.07] 

0.21 
- 0 . 1 9 [ - 0 . 1 3 , 0.07] 

0.14 
- 0 . 2 8 [ - 0 . 2 4 , 0.04] 0.09 

R M S E P 0.07 [0.13, 0.35] 0.51 0.04 [0.08, 0.48] 0.51 0.05 [0.11, 0.19] 0.24 0.03 [0.04, 0.26] 0.29 
R P D 0.33 [0.47, 1.27] 2.42 0.23 [0.33, 1.60] 3.01 0.37 [0.68, 1.15] 2.73 0.17 [0.23, 1.29] 2.45 
R P I Q 0.30 [0.62, 1.70] 3.09 0.13 [0.26, 1.45] 2.52 0.38 [0.69, 1.26] 2.84 0.18 [0.30, 1.59] 3.79 

The worst negative biases and RMSEP values were comparable, amounting to 0.4-0.5 
for ilrxc and 0.2-0.3 for ilrnwc- m terms of raw component values, these correspond to 
approximately 1.30 TC percentage points and 0.09-2.79 m g g - 1 HWC, depending on the 
baseline HWC value (Figure 7). The best models had RMSEP of only 0.04 for ilrxc (approxi
mately 0.12 pp TC) and 0.03 for ilrnwc (0-34 mg g _ 1 HWC for high value range and less for 
low value range). More conservative estimates, based on partitioning medians, suggested 
a possibility of predicting i l r T C with an error of 0.13 (0.38 pp TC) and 0.08 (0.23 pp TC) in 
Ústí nad Orlicí and Janovice, respectively, while for ilrnwc/ the corresponding values were 
0.11 and 0.04 (0.04-1.23 and 0.01-0.45mgg"1 HWC). 

145 



Wiktor R. Zelazny and Tomas Simon: Calibration spiking of MIR-DRIFTS soil. 

Agriculture 2022,12, 682 13 of 26 

Models with R P D P or RPIQp above 2.5 or even 3.0 were obtained in some scenarios 
and test data partitions, described in literature as good and excellent predictions [76]. 
However, typically one should not expect the performance to be higher than 1.7, that is, 
barely sufficient to estimate the values even as high or low. Unlike for the other measures, 
Janovice models did not yield consistently superior RPDp and RPIQp relative to Ústí 
nad Orlicí. 

There is an agreement between PLSR regression coefficients of the best Janovice 
models for predicting ilr-r/c regardless of the performance measure in which a model 
excelled (Figure 8). The pattern is similar to that presented for Baldock et al. [16] square-
root transformed TC model, including the presence of aliphatic C - H (at approximately 
2890cm - 1), C=0 (1740cm - 1), and negative carbonate (1810cm - 1) peaks. In contrast, the 
coefficients for Ústí nad Orlicí disagree and the pattern is malformed, which may suggest 
model overfitting. Regression coefficient values are comparable among two of the best-
performing Janovice ilrewc models. Their patterns do not resemble those published by 
Zimmermann et al. [17] for labile OC, but these authors modeled raw component sizes, 
rather than lability, and presented individual PLSR loadings, rather than regression coeffi
cients. There is a major negative peak in the 3700-3600 c m - 1 wavenumber range, which 
corresponds to O - H stretching of clay minerals [77,78]. Other peaks occur at approxi
mately 1000cm - 1 and below. Here, notable is the positive 1050cm - 1 peak, assigned to 
quartz reflectance [19]. However, according to Nocita et al. [28], the interpretation for the 
<1000 c m - 1 region is challenging due to mineral species vibrations interfering with those 
of organic molecules. These include iron compounds [13] and carbonates [79]. The peaks 
do not include 2930 c m - 1 and 1620 c m - 1 wavenumbers proposed by Demyan et al. [80] 
for lability assessment. The model minimizing bias behaved differently, and for Ústí nad 
Orlicí, the smallest-bias model happened to be insensitive to input data variation, which 
indicates that models should not be selected according to the bias criterion. As with ilr-ro 
the pattern is unstable for this latter target site. 

3.3. Factors Affecting PLSR Model Performance 
The relationships between the modeling approaches and performance measure values 

were visualized to identify factors contributing to prediction quality. We present a selection 
that illustrates the most clear patterns, which, with the exception of the final comparison, is 
restricted to the models trained to the raw spectra, as the effect of spectra pre-processing 
was limited. The complete set of visualizations along with input data points can be found 
in Figure S2. 

PLSR models trained to the spectral library, that is, with zero target-site samples, 
performed poorly, especially for Janovice, as can be seen at the left edge of all plots in 
Figure 9. Note that this and subsequent figures for legibility depict confidence intervals, 
whereas ranges are referred to in this section. The R 2 statistic was negative with the ex
ception of Ústí nad Orlicí ilrnwc models, in the case of which it ranged between —6.24 
and 0.47. The generated predictions were negatively biased, while their imprecision mea
sured by RMSEP exceeded 0.17 units for ílr-r/c (about 0.49 pp TC) and 0.08 units for i l r H wc 
(0.03-0.89mgg - 1HWC). 

Training of PLSR models to a selection of target-site samples only, while excluding the 
spectral library, had a clearly positive effect on all measures even with only four training 
samples, as illustrated by the black lines in Figure 9. However, R 2 was still negative at this 
sampling intensity level. Here, predictions for Janovice appear superior to those obtained 
for Ústí nad Orlicí, especially in terms of RMSEP. Further additions of samples led to more 
accurate ilr-r/c predictions in Janovice, as depicted in more detail in Figure 10. In particular, 
R 2 exhibited an increasing trend, with positive values up to 0.88, obtained in a number of 
scenarios with 16 samples. Prediction improvement of ilr-rc with higher sampling intensity 
is not so clear for Ústí nad Orlicí. Instead, a pattern of Kennard-Stone leverage sampling 
inferiority could be discerned, especially in terms of high bias, up to 0.32 units (0.92 pp TC). 
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Figure 8. S C p r e d i c t i o n s c o r r e s p o n d i n g to the t o p - p e r f o r m i n g m o d e l s . T h e p e r f o r m a n c e m e a s u r e s ac

c o r d i n g to w h i c h i n d i v i d u a l f o r m u l a t i o n s p e r f o r m e d best are m a r k e d w i t h as te r i sks . P L S R r e g r e s s i o n 

c o e f f i c i e n t s a re s h o w n f o r e a c h m o d e l o n a r e l a t i v e s c a l e d u e to t h e c o e f f i c i e n t r a n g e s d i f f e r i n g b y 

o r d e r s o f m a g n i t u d e b e t w e e n the m o d e l s . 
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Target site and its sample weight 
Ústí nad Orlicí local-only Ústí nad Orlicí weight 1 Ústí nad Orlicí weight 5 Ústí nad Orlicí weight 25 

Janovice local-only Janovice weight 1 Janovice weight 5 Janovice weight 25 

i l r T C 

n r H W C 

Target-area samples 

Figure 9. The influence of calibration spiking, weighing of the spiking samples, and removal of library spectra from the training dataset on partial least squares 
2 regression (PLSR2) model performances. Only scenarios with basic and no further spectra pre-processing are included. Each line represents one combination of 
levels of the remaining experimental variables: leverage sampling strategy and predictive model family. A mean across 10 test datasets is drawn along with its 95% 
confidence interval. 
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Figure 10. T h e i n f l u e n c e o f s a m p l i n g i n t e n s i t y a n d l e v e r a g e s a m p l i n g o n p r e d i c t i v e l o c a l - o n l y m o d e l 

p e r f o r m a n c e s . O n l y s c e n a r i o s w i t h b a s i c a n d n o f u r t h e r s p e c t r a p r e - p r o c e s s i n g a re i n c l u d e d . E a c h 

l i n e r e p r e s e n t s a n e n s e m b l e o f e i t h e r p a r t i a l l eas t s q u a r e s 2 r e g r e s s i o n ( P L S R 2 ) m o d e l s o r c a n o n i c a l 

p a r t i a l least squa res r e g r e s s i o n ( C P L S R ) m o d e l s w i t h the s a m e l e v e l o f s p i k e s a m p l e w e i g h t s . A m e a n 

ac ross 10 test da tase t s i s d r a w n a l o n g w i t h i ts 9 5 % c o n f i d e n c e i n t e r v a l . 

RMSEP of ilrnwc w a s hardly affected by increasing sampling intensity. On the other 
hand, a trend towards increased bias can be discerned for Janovice under the random 
sampling and Kennard-Stone leverage sampling scenarios, but these strategies still do not 
appear consistently inferior to conditioned Latin hypercube. Positive R 2 was attained by 
few and apparently random Janovice models and almost no Ústí nad Orlicí models even at 
maximum sampling intensity, suggesting a general unsuitability of the local approach to 
estimating this ilr coordinate. 

In Janovice scenarios with PLSR2 models, augmenting the library samples with spike 
samples yielded results competitive with the local approach when the target-site training 
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samples were given a weight of 25, as shown using red lines in Figure 9. R 2 up to 0.71 could 
be attained with only four spiking samples for ilr-rc—in contrast to R 2 of corresponding 
local-only models, which was always negative. A notable exception was prediction bias, 
in the case of which about 85 % of the models still underestimated the value of this coordi
nate. Models with the weight of five (green lines) were competitive with local-only models 
only in predicting ilrnwc and only in terms of R 2 and RMSEP. More spiking samples were 
required to obtain a desirable effect than with 25-fold spiking sample weighing. The superi
ority of global Ústí nad Orlicí models relative to Janovice vanished or became inversed as 
spike samples were added to training datasets. The performance remained better only in 
scenarios without spike sample weighing (blue lines), but here the prediction quality was 
poor for both target sites, making this class of scenarios not interesting. 

Leverage sampling had little effect on the quality of models that involved spiked 
library spectra, but the performance measures responded to the choice between PLSR2 and 
CPLSR family (Figure S3). The application of the CPLSR method was clearly detrimental 
for the prediction quality of both ilr^c and ilrnwc m Janovice samples compared to the 
standard approach. In the case of Ústí nad Orlicí, the effect of replacing PLSR2 with 
CPLSR was not so strong, but it still appears negative. The limited sensitivity of model 
performance to spectra pre-processing can be illustrated by two favorable combinations of 
spectra selection and weighing strategies. As depicted in Figure S3, systematic prediction 
quality differences are hard to discern except for the uninteresting library-only scenario, 
where all models failed. 

4. Discussion 
4.1. Distributional Data Properties and the Effect of Log-Ratio Transformation 

The high scatter of observations in PCA (Figure 5) and SC (Figure 6) measurements, 
comparable in extents to those of long-term experiments, indicates high spatial hetero
geneity of Ústí nad Orlicí district soils. This pattern corroborates the need for dense soil 
sampling to map and monitor SC in the conditions of the Czech Republic and, arguably, 
beyond [3,4], from which the need to develop cost-effective assessment methods follows [4]. 
However, in addition to the variability of soil properties, non-uniform sampling techniques 
might have also been a contributing factor, as unlike in the remaining campaigns, the task 
was relegated to farmers. In contrast to that, the relative compactness of the Janovice PCA 
cluster corresponds to the fact that the data collection was constrained to a single field. 
The high TC and HWC contents encountered at this locality might have been related to 
long-term organic fertilization of this field. 

High performance of a PLSR model can be attained when the predicted variable has 
a Gaussian distribution, and in chemometric studies, it is common to transform target 
measurements [13]. Stenberg et al. [6] highlighted skewness of organic matter concentra
tions in cropland soil samples towards low values, a common pattern that can contribute 
to prediction bias [34]. Normalization of such data can be attained by applying a square-
root [16,20,39] or a logarithmic [81-83] transformation. However, while these bound the 
predictions to be above zero [16], the maximum values remain unbounded. 

A log-ratio affects the shape of data distribution like the above transformations, but in 
addition to that, back-transformed predictions correspond to physical reality for composi
tional components [64]. The present study demonstrates improved skewness and kurtosis 
of ilr coordinates relative to raw component concentrations (Figure 6) and provides evi
dence of compatibility of log-ratios with PLSR predictive modeling. The proposed data 
analysis approach could be refined in the future by accounting for carbon saturation lim
its [61,62] in the ilr transformation. Another potential extension would be to consider also 
the spectral measurements as compositional [84]. 

4.2. Absolute Performance of the Predictive Models 
The top R 2 conservative estimate of only 0.57 when predicting ilr-rc and low R P D P 

and RPIQp evaluations (Table 3) do not corroborate the purported potential of MIR-DRIFTS 
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to become a cost-effective yet reliable laboratory method for SC assessment [13,25,35]. The 
agreement between the PLSR regression coefficient patterns obtained in the present study 
(Figure 8) and reported in literature [16,33,81] rules out major errors during both reference 
data collection and sample scanning and subsequent data analysis. Barra et al. [22] and 
Bellon-Maurel and McBratney [26] summarized model quality estimates for predicting OC 
and TC from MIR spectra. Although high-performing models prevail in reported research, 
a number of SC studies suffer from methodological issues that arguably bias the results 
towards higher accuracy. For example, Zimmermann et al. [17] employed a systematic 
rather than random validation sample and, moreover, included the validation data in 
PLSR model tuning dataset. More recently, Zhang et al. [18] erroneously [23] considered 
optimistic bias of model cross-validation results as an advantage and did not present the 
obtained independent validation statistics. It can be presumed that the models performed 
not so satisfactorily on the test datasets. Deiss et al. [31] contrasted the performance of 
PLSR and support vector machine models to predict OC in soil samples from two sites. 
Despite testing multiple combinations of spectral pre-processing and modeling scenarios, 
the authors presented only the performance measures of their best models. Those happened 
to be comparable to our top-rated results. In addition, their selection was based on full-
validation statistics, which draws an over-optimistic picture of MIR-DRIFTS potential for 
real-life applications, where only few or even no validation samples would be available. 

Methodological issues aside, not all models have been reported to perform well. 
The Bellon-Maurel and McBratney [26] review includes formulations that resulted in 
modest RPDp values, similar to those obtained in the present study. In the more recent 
Page et al. [10] work, MIR-DRIFTS substantially underestimated OC loss over time in a 
long-term experiment, similar to our negative ilrxc biases. Moreover, the estimated effect of 
evaluated management treatments contradicted that which was inferred using traditional 
OC determination. Calderón et al. [85] predicted OC in several crop experiments using PLSR 
and obtained RMSEP of 0.67-0.80 pp; that is beyond our upper RMSEP conservative bracket 
for TC. More research, preferably based on cooperation between multiple spectroscopy 
laboratories, is needed to determine to what degree different prediction performance results 
across studies can be attributed to the training samples at hand [29], sample preparation 
and scanning process differences [13,25,29], reference laboratory effect [13,29], or predictive 
model family and calibration workflow [13,25]. 

The fragility of MIR-DRIFTS to assess SC is further illustrated by C lability prediction 
performance. The negative 3650-3600 c m - 1 and positive 1050 c m - 1 lanovice PLSR regres
sion coefficient peaks (Figure 8) can be related to the protective function of clay minerals 
with respect to soil organic matter [7,62]. However, with the majority of the remaining ma
jor peaks located in the <1000cm _ 1 region, the predictions are prone to noise introduced 
by variation in soil mineralogy [28]. Also in the area of lability assessment, studies with 
over-optimistic results can be found. Our best ilrnwc calibrations performed similarly in 
terms of R 2 and R P D P to the PLSR models developed by Zhang et al. [27] for predicting 
raw HWC. Like Deiss et al. [31], these authors presented only their top-performing models 
for each investigated scenario, and in addition to that, they did not employ an independent 
test dataset, reporting only cross-validation statistics. Yang et al. [86] adopted a similar 
approach for the prediction of particulate organic carbon (POC), with comparable outcomes. 
Zimmermann et al. [17] attempted to predict two labile pools and reported RPDp of only 
2.0 for dissolved OC. Although the correlation between predicted and measured values was 
satisfactory and particulate organic matter was predicted with high accuracy, there was an 
information leak from the validation dataset while training of their models. A similar error 
was made by Calderón et al. [85] while tuning PLSR models for permanganate oxidizable 
carbon (POXC) predictions in a study that reported a high R 2 of about 0.8. 

One factor contributing to prediction performance deterioration of all of the present 
study's models was probably the noise introduced to the spectra by grinding the soil sam
ples by hand. Stumpe et al. [87] demonstrated that long grinding can reduce undesirable 
MIR spectra random variability. However, uniform grinding, a condition not attainable 
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with a manual operation, turned out to be even more important for OC prediction quality. 
The importance of controlled grinding in a MIR spectroscopy workflow is acknowledged 
also by other authors [13,16,33]. Particle size differences, a problem related to soil sample 
grinding [26,87], generate undesirable baseline shifts [88]. Many workers [80,85,86], in
cluding those reporting highly accurate predictions [16,27,32,63], routinely apply baseline 
correction to their measurements. Although we tested several combinations of spectral 
pre-processing workflows, this step was not included in the present study, which might 
have contributed to scanning artifacts remaining in the data. However, methods such as 
MSC and Savitzky-Golay derivation also address baseline variations [58], yet we were 
unable to associate them with systematic prediction improvement (Figure S4). According 
to Du and Zhou [24], moving average can diminish information in absorbance features, so 
perhaps we should have avoided it as a routine pre-processing step to remove noise. 

The attempt to predict total, rather than organic, C probably also impaired the obtained 
results. In addition to OC, TC includes carbonates as a major C source, which have a 
different spectral profile, potentially interfering with the OC signal [17,25,88]. In the present 
study, the Praha-Ruzyně is a site with moderate carbonate content. Although average 
topsoil p H does not exceed seven, carbonates are visible by eye in a deeper soil layer. 
Moreover, the locality included experimental plots with compost amendments, which were 
associated with atypical C patterns (Figure 6). A compost fertilization experiment disrupted 
PLSR prediction quality also in the Calderón et al. [85] study. The authors reported an 
improvement after removing the problematic site from the dataset, and it is possible that a 
similar effect would be obtained in the present study. Perhaps, with OC being modeled 
instead of TC, PLSR regression coefficient peaks would have avoided the < 1000 c m - 1 

region, hypothesized to interfere with ilrewc predictions (Figure 8). 
Some errors might have been related to insufficient sample dilution with KBr [89], especially 

for Ústí nad Orlicí spectra, which lied outside of the long-term experiments envelope primarily in 
the high-absorbance zone (Figure 4). This region coincided with the 1280-1070 cmT1 wavelength 
range associated with the silicate inversion feature that can interfere with carbonates signal 
below a certain dilution level [88]. However, Demyanetal. [80] did not confirm this effect 
and, instead, associated strong dilutions with the absence of certain absorption features. The 
traditional view on the need to mix soil samples with KBr for MIR-DRIFTS has been put into 
question also by Reeves III [25], and according to Tinti et al. [89] and Reeves [90], it can even 
have a negative effect. Perhaps, then, it would have been preferable to use neat samples in the 
present experiment. 

Inferior ilrnvvc fit relative to ilr-rc might have been related to low HWC concentrations 
in the soil samples. Measurements of such minute pools tend to be more affected by external 
conditions than those of major components [17,27]. Although HWC appears in both ilr 
formulas, one can argue that a ratio, as employed for ilrnwc (Equation (2)), is more sensitive 
to error than a geometric mean in the ilr-rc formula (Equation (1)). 

4.3. Model Performance with Individual Training Data Subsets 
In addition to the Praha-Ruzyně issue, the obtained poor performance of global sce

narios can be attributed to the calibration domain mismatch between the library samples col
lected from long-term experiments and those collected at the target sites 
(Figures 5 and 6). Especially in the case of Janovice, notable are the high TC and HWC con
tents, which explain the strong negative bias in the predictions [26]. The negative influence 
of OC mismatch across datasets on its predictions was demonstrated by Seidel et al. [30] 
with VisNIR and by Guerrero et al. [39] with NIR spectroscopy. 

The reference spectra in the experiment comprise long time series of observations 
but represent a limited number of locations. Similarly, Zhang et al. [27] obtained their 
samples from a limited number of long-term experiments, and their reported results 
are similar to ours. Various authors stress an importance of long-term experiments for 
studying SC, especially in the context of the low rates of its quantitative changes [3,5,11]. 
Nevertheless, maximizing the geographical extent of the reference data should apparently 
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be prioritized for predicting a factor with a high spatial variability, as it is the case for 
SC and its fractions [3-5]. A number of studies that adopted this strategy [16,20,33,35,82] 
demonstrate that high-quality predictive models can be developed in this way. 

These issues do not apply to the local-only models, which do not involve any library 
spectra and a possibility of calibration domain mismatch is largely eliminated. Superior 
predictions characterizing locally calibrated PLSR models in the present study can be in 
part linked to the absence of Praha-Ruzyně samples in the training dataset, analogously 
to the effect observed by Calderón et al. [85] after training a model without an atypical 
site found in their data. This strategy largely removed ilr-rc prediction bias in our study 
(Figure 9), corroborating the calibration domain mismatch problem related to the reference 
library. However, the model quality was still unsatisfactory, especially for ilrnwo perhaps 
due to the limited sizes of the training data. The importance of a sufficient sample size was 
demonstrated by Guerrero et al. [39] in a NIR study and by Brown [91] in a VisNIR study, 
where the obtained performance approached that of calibration-spiking models only when 
large numbers of training samples were available. The costs and uncertain results involved 
in such a scenario make the advantage of spectroscopic estimation over standard oxidation 
methods questionable. According to Soriano-Disla et al. [13], local models are particularly 
suitable at small spatial scales with homogeneous sites. This condition may explain why the 
predictions for Janovice were superior and responded better to sampling intensity increase 
(Figure 10) relative to Ústí nad Orlicí. In particular, it might have been related to the smaller 
range of C measurements from this more homogeneous target site. After accounting for 
this effect, the prediction quality superiority was not apparent, anymore, as illustrated by 
the RPDp and R P I Q P statistics. 

Calibration spiking avoids an excessive reduction of training dataset sizes, and some 
of the best models in the present study could be associated with this strategy. A generally 
consistent positive relationship between the sampling and spiking intensity and PLSR 
model performance was obtained across the scenarios. It is similar to the OC prediction 
pattern with NIR spectroscopy obtained by Guerrero et al. [39] while increasing the number 
of target samples from 8 to 16 and 32. Analogously to the ihewc pattern in the present study, 
Janik et al. [20] reported improved POC prediction quality with both calibration-spiking and 
local post-hoc models relative to unsatisfactory library-only predictions. The weaker effect 
of spiking on the performance of Ústí nad Orlicí models than for Janovice can, again, be 
explained by the high spectral variation of the geographically scattered samples, a situation 
described by Cezar et al. [36] in an experiment with ASD Fieldspec measurements. 

A n interest in calibration spiking is motivated by economical and environmental 
reasons [36]. Accordingly, satisfactory results should be expected even with a modest 
number of spiking samples [38]. The prediction improvement equivalent to maximizing the 
spiking intensity, but obtained by mere introduction of additional copies of the target-site 
data points, as observed for Janovice, is encouraging in this regard. It is also in line with 
our hypothesis on the potential of calibration spiking to reduce the number of samples 
for which laboratory reference data need to be obtained. Similarly, Guerrero et al. [39] 
reported that, for some target sites and a baseline spiking intensity of 8 samples, 25-fold 
weighing had a stronger positive effect on OC prediction quality than increasing the spiking 
sample number to 16 or 32. Perhaps further improvement would have been obtained with 
even heavier weights. However, Stork and Kowalski [40] tested weights up to 70 and 
determined an optimal number of spike sample copies as 24 in one scenario and less in 
the remainder, according to the Hotelling's T 2 statistics. In recent years, possibilities of 
predicting SC from MIR spectra collected in field rather than laboratory conditions without 
sample pretreatment have been explored [92]. Studies are needed to find out whether the 
positive influence of calibration spiking replicates in this more challenging setting. 
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4.4. The Effect of Leverage Sampling and Evidence against the CPLSR Internal Weighing 
Superiority Hypothesis 

Clairotte et al. [33] and D'acqui et al. [81] reported OC prediction improvement with 
MIR-DPJFTS spectroscopy when leverage sampling was employed. In the present study, no 
apparent systematic differences were obtained with respect to the prediction performance 
among the random spiking and the spiking spectra selection based on conditioned Latin 
hypercube. The Kennard-Stone algorithm, on the other hand, was associated with biased 
ilrxc predictions in Ústí nad Orlicí scenarios. This leverage sampling scheme tends to pick 
distant observations, located at the edges of a hyperspace (Figure S5). It also operates incre
mentally, as opposed to conditioned Latin hypercube, in the case of which the spectra are 
picked at once and can be more representative of a dataset [83]. Kennard-Stone application 
to the heterogeneous Ústí nad Orlicí dataset might have yielded outlier spiking samples, 
perhaps corresponding to soils with atypical textures [87] or mineralogy [85]. Ng et al. [83] 
obtained unstable calibrations involving this scheme except for large training samples. This 
apparent unreliability of the Kennard-Stone algorithm for small sample sizes relative to 
the size and heterogeneity of a target area puts in question its usability in campaigns aimed 
at minimizing reference data collection effort to obtain cost-effective predictions. 

Internal weighing capability of the CPLSR extension of PLSR [47] was tested as an 
alternative to the spiking set augmentation by data point copies. Contrary to our hypothesis, 
the obtained models performed poorly, especially for Janovice. Sankey et al. [41] attempted 
to predict SC from VisNIR spectral data using boosted regression trees for different levels 
of local sample weights relative to the weights of the samples in the reference library. The 
authors expressed skepticism with respect to their results, in which the model performance 
decreased substantially for one target site, and while a positive relationship was observed 
for another, the obtained improvement was modest. Still, given the limited number of stud
ies devoted to the topic so far, it seems worthwhile to further explore effects of embedded 
weighing with other data and other classes of predictive models [31,63]. 

5. Conclusions 
Log-ratio transformation of laboratory reference measurements is recommended to 

avoid non-physical predictions, separate confounding factors, and improve data distribu
tional properties. Accounting for carbon saturation limits and treating spectral measure
ments as compositional are potential further refinements of this approach. 

Conservative estimates of PLSR model performances were lower than the values 
typically reported for MIR-DRIFTS SC predictions. This discrepancy could be attributed 
to the noise in the data introduced by manual sample grinding, their inadequate dilution 
with KBr, presence of an atypical site with carbonate soil and compost fertilization in the 
spectral library, the library's insufficient geographical coverage, and calibration domain 
mismatch relative to the validation samples. It was also in part explained by optimistic 
bias encountered in the literature due to preference of cross-validation over independent 
model validation, information leaks from training to testing datasets, and presenting only 
top-performing validated models by certain authors. There is a need for international 
cooperation to identify leverage points that could improve reliability of MIR-DRIFTS SC 
assessments, standardize data collection and treatment workflows, harmonize spectral 
libraries, and facilitate their use. 

Target-site comparison revealed differences in sample heterogeneity related to uneven 
geographical extents and, possibly, varied soil sampling protocols where farmers were 
involved. Not enough representative training data were available to satisfactorily predict 
soil C properties in the more geographically extensive district-scale dataset. Here, spectral 
and reference laboratory data variation was similar to that of the data from more scattered 
long-term experiments, corroborating a need for a dense sampling grid to monitor soil C 
and concerns about potential costs involved. 

Predicting soil properties at a field scale removed the issues related to the reference 
library. Although some models performed very well, the quality was unstable with respect 

154 



Wiktor R. Zelazny and Tomas Simon: Calibration spiking of MIR-DRIFTS soil. 

Agriculture 2022,12, 682 22 of 26 

to the choice of validation data even with an application of leverage selection algorithms. 
C lability predictions were especially fragile, presumably due to the small size of the hot-
water extractable pool. The quality of field-scale models responded positively to increasing 
sampling intensity in local-only scenarios, but further additions of samples in an attempt to 
obtain more representative training datasets would have been incompatible with the aim 
of reducing reference laboratory analysis expenses. 

Calibration spiking combined with PLSR2 modeling was associated with a steep in
crease of model quality as additional target-site calibration samples were added, especially 
in combination with heavy weighing. It, therefore, appears to be a promising cost-effective 
and environmentally friendly SC monitoring solution but only under the assumption that 
the available spectral library accounts to a sufficient degree for soil variability. A similar 
effect could not be obtained with CPLSR models and embedded weighing enabled by this 
PLSR extension. Although prediction performance was poor in the present study, the inter
nal weighing approach may still be worth testing with other multivariate model families. 
A training-sample size constraint was encountered while applying Kennard-Stone leverage 
sampling to the heterogeneous district-scale dataset, and it appears that application of this 
algorithm is not compatible with the aim of reducing costs of SC assessments. 
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