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1 Introduction

Wheat is one of the most widely grown crops in the world and is critical for human nutrition.
With the rapidly growing world population and changing climate, the demand for wheat is
increasing and high-yielding and stress-resistant cultivars will be required more than ever
before.

Diploid einkorn wheat, Triticum monococcum L., is closely related to T. urartu,
the donor of the A genome of common wheat, and was among the first cereals domesticated by
Neolithic farmers more than 10,000 years ago in the Fertile Crescent. However, its popularity
started to decrease during the Bronze Age when higher-yielding free-threshing tetraploid and
hexaploid wheats became cultivated more extensively and einkorn grew in its natural
environment without selection for thousands of years. Therefore, einkorn’s diploid nature,
a high level of gene collinearity with other Triticum species, and a large number of phenotypic
variations make it a useful model for wheat genomic studies and a valuable source of genes for
an enrichment of common wheat gene pool.

To assess the genetic architecture of agronomically important traits, a recombinant
inbred line population of cultivated and wild einkorn was employed to map loci underlying

agronomically important traits.



2 Aims and objectives

This thesis builds on previous studies (Dubcovsky et al., 1996; Vanzurova, 2013;
Lampar, 2018) and aims to finish mapping of QTLs for agronomically important traits in
T. monococcum L. using a linkage map developed from a cross of cultivated T. monococcum
ssp. monococcum ‘DV92’ and wild T. monococcum ssp. boeoticum ‘G3116°. It especially aims
to map QTLs for grain traits, which have not been previously assessed by Vanzurova (2013),

and verify and fine map QTLs for leaf pubescence.

The objectives were set as follows:
1) Phenotyping of grain traits
2) Linkage map construction
3) QTL analysis
4) Marker saturation of two chromosomal regions with the QTLs for leaf pubescence

5) Literature review, data evaluation and interpretation of results



3 Literature background

3.1 Wheat
Global food production will have to be increased by about 60% by 2050 to satisfy the world’s

growing population (Alexandratos & Bruinsma, 2012). An additional 593 million hectares of
agricultural land would be needed to achieve this goal. It would come at a heavy price of
deforestation causing massive habitat loss. Additionally, it would release carbon stored in the
soils and further enhance the climate change (Searchinger et al., 2019). Plenty of other measures
will have to be taken to minimize such undesirable events. One of the solutions could be
improved high-yielding crop breeding.

Cereals, such as wheat, maize, and rice, provide more than 50% of calories and
proteins for the world's population. In 2019, global cereal production reached 2.72 billion tons,
out of which global wheat production accounted for 762 million tons (fao.org/faostat; FAO:
Cereal Supply and Demand Brief, May 2020). The expected consumption of wheat will reach
858 million tons in 2050 (Alexandratos & Bruinsma, 2012) which will require a 12% increase
in production. Therefore, new high-yielding wheat cultivars more resistant to pests and diseases

and capable of withstanding climate change will be necessary.

3.1.1 Common wheat

The most widely cultivated wheat species is common wheat or bread wheat
(Triticum aestivum L.). It has a large (1C = 15.5 Gbp; IWGSC, 2018) and complex
allohexaploid genome (2n = 6x = 42) that is composed of three closely related subgenomes A,
B and D (A"A"BBDD). The genome resulted from two successive hybridization events.

About 0.5-0.3 million years ago in the Fertile Crescent, two diploid wheats hybridized
resulting in the wild emmer wheat, T. turgidum ssp. dicoccoides (Korn. ex Asch. et Graebn.)
Thell. (A"A"BB; Dvorak et al., 1988; Dvoiak & Zhang, 1990; Dvorak et al., 1993; Huang et al.,
2002).

The diploid T. urartu Tuman ex Gand. contributed the genome A" and some undefined
species of genus Aegilops contributed the genome B (Huang et al., 2002; Dvoiak & Akhunov,
2005; Chalupska et al., 2008). Aegilops speltoides Tausch is believed to be the B genome donor
(Sarkar & Stebbins, 1956; Riley et al., 1958; Zohary & Feldman, 1962; Zhang et al., 2017a).

More than 9000 years ago, T. turgidum ssp. dicoccoides was domesticated
by Neolithic farmers in the Diyarbakir region in today’s Turkey (Nesbitt & Samuel, 1996;
Ozkan et al., 2010). The domestication and cultivation gave rise to at least two distinct lineages
of domesticated tetraploids: T.turgidum L. ssp. dicoccum (Schrank) Thell. (domesticated
emmer) and T. turgidum spp. durum (Schrank) Thell. (domesticated durum or hard/pasta wheat;

Pont et al., 2019) Both domesticated subspecies have mutated Br loci (Nalam et al., 2006); thus,
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they have non-brittle rachises that do not disarticulate before harvest. The major difference
between the domesticated emmer and durum is a mutation in Q gene (or domestication gene) on
chromosome 5AL (Faris & Gill, 2002; Simons et al., 2006) and in tg2 (tenacious glume gene)
on 2BS and 2DS (Simonetti etal., 1999; Jantasuriyarat etal., 2003; Nalam etal., 2007).
Compared with the domesticated emmer with the g and Tg2 alleles, the domesticated durum has
soft glumes and is free-threshing (seeds are released from rachises at threshing).

Subsequently, about 8000 years ago in the southwestern Caspian Sea region,
T. turgidum (possibly ssp. durum) hybridized with the diploid Ae. tauschii Coss. (genome DD)
resulting in the hexaploid T. aestivum (Kihara, 1944; McFadden & Sears, 1946; Dvoiak et al.,
2012; Wang etal., 2013; Pont etal.,, 2019). Nowadays, common and durum wheat
account for about 95% and 5% of the global wheat production, respectively (Kadkol & Sissons,
2016).

A small number of hybridization events, that led to bread wheat, limited the resulted
gene pool, which was further narrowed down by intensive breeding (Feuillet et al., 2008).
Therefore, the amount of alleles for desired traits (such as disease resistance genes) is limited.
Wheat’s diploid and tetraploid progenitors and other related species (including Aegilops,
T. turgidum, T. monococcum, rye, or Haynaldia villosa) are attractive sources of new and
desired genes that can be used for the gene pool enrichment (Sando, 1935). The best example is
the substitution of the wheat 1AS/1BS chromosomal arms with the rye 1RS chromosomal arm
improving resistance to diseases and drought and increasing seed size, which became the base

for many cultivars grown around the world (Rabinovich, 1998).

3.1.2 Einkorn wheat

Einkorn wheat (T. monococcum L.), literally ‘single grain’ because domesticated varieties
usually produce one grain per spikelet, is a diploid wheat species (2n = 2x = 14; A™A™) closely
related to T. urartu, the donor of the A genome of common wheat. Einkorn has two
morphologically different forms (Tutin et al., 1980), the domesticated form T. monococcum L.
and the wild form T. boeoticum Boiss. emend. Schiem (Schiemann, 1948). The main differences

between T. boeoticum and T. monococcum are shown in Figure 1.



Figure 1. The difference between wild and domesticated einkorn wheat.

Wild einkorn Triticum boeoticum Boiss. emend. Schiem.: A) ear, B) shattering spikelet with upper and
lower disarticulation scar, and C) grain. Domesticated einkorn Triticum monococcum L.
ssp. monococcum: D) ear, E) non-shattering spikelet, and F) grain (Schiemann, 1948).

The domesticated einkorn was derived from T. boeoticum through the acquisition
of a non-brittle rachis more than 10 000 years ago in the Turkish Karacadag Mountains (Dvoifak
etal., 1988; Tanno & Willcox, 2006; Haldorsen etal., 2011; Brandolini etal., 2016).
T. monococcum is not free-threshing as it has tough glumes, which do not allow the grains to be
easily released from the spikelets (Taenzler et al., 2002; Sood et al., 2009). It is a relatively

low-yielding crop but can survive on poor soils where other wheats cannot. It was among
5



the first cultivated cereals and an important source of food, but its popularity gradually
decreased during the Bronze Age when high-yielding free-threshing wheats became cultivated
more extensively (Harlan & Zohary, 1966; Heun, 1997; Zohary et al., 2013). Einkorn was then
left growing in its natural habitats without selection for thousands of years. Nowadays, einkorn
is just sporadically grown in mountainous areas (Zaharieva & Monneveux, 2014). Its flour has
poor rising qualities; thus, einkorn has been usually consumed as cooked whole grains or
porridge. However, the flour is rich in protein, resistant-starch, fiber, minerals, and
phytochemicals (carotenoids, flavonoids, phytosterols, and phenolic compounds) and has been
recently ‘rediscovered’ by the organic food industry in Europe (Arzani & Ashraf, 2017).
Nevertheless, there is just a little to no added nutritional value from consuming einkorn instead
of bread wheat for a healthy person with a balanced diet (\Van Boxstael et al., 2020).

The availability of both domesticated and wild forms is the reason why there is
a greater variability compared to common wheat (Kilian et al., 2007). Coupled with einkorn’s
diploid genome and collinearity with other Triticum species (Dubcovsky et al., 1996; Marino
etal., 2018), it makes it an ideal model for agronomically important gene mapping (Yu et al.,
2019), gene cloning (Yan et al., 2003; Yan et al., 2004), or functional gene validation
(Loukoianov et al., 2005).

Wheat breeding programs are mainly focused on high and stable yield, and resistance
to biotic and abiotic stress factors (Lumpkin, 2015). Yield is a result of expression of multiple
traits that can be qualitative or quantitative in nature. It is also strongly influenced by the
environment. This causes low heritability of yield per se and makes it more challenging to be
improved (Wu et al., 2012). However, yield can be divided into less environmentally sensitive
yield components: number of plants per square meter, spike number per plant, grain number per
spike, and grain weight (Cuthbert et al., 2008). These main components are directly or indirectly
affected by many other related traits such as plant height, the number of tillers, plant shape,
pubescence, spike length, spikelet number per spike, spikelet fertility, flowering time, the
number of grains per spikelet, and grain size. Many of them exhibit high heritability; therefore,
it is useful to focus on single components when trying to improve yield as a whole (Slafer,
2003).



3.2 Leaf pubescence

In light of global warming and climate change, leaf pubescence becomes one of the traits that
could help breeders develop new cultivars better adapted to stress conditions. Trichomes are
specialized plant structures extending from the epidermal layer of aerial tissue that vary greatly
in size, shape, number, composition, location, and function (Levin, 1973). The presence
of epidermal trichomes on different plant organs, including leaves, stems, flowers, and seeds,
is a useful phenotypic character that is widely spread in the plant kingdom. They are usually
classified into two main types: glandular and non-glandular. Non-glandular trichomes provide
mechanical protection against unfavorable weather, herbivores, and pests. The effects depend
on density, length, erectness, and shape of trichomes. Whereas glandular trichomes produce,
store, and secrete different types of secondary metabolites (Fahn, 2000; Glas et al., 2012) that
provide protection against phytopathogens and herbivores and limit water evaporation and
damage caused by UV irradiation. Some of the commonly found plant metabolites are
terpenoids (Gershenzon et al., 1992; Gershenzon & Dudareva, 2007), methyl ketones (Dimock
& Kennedy, 1983), phenylpropanoids (Deschamps et al., 2006), flavonoids (Voirin et al., 1993),
and acyl sugars (Weinhold & Baldwin, 2011). Many of them are commercially important
(Schilmiller et al., 2008).

Leaf pubescence is linked to drought tolerance because a layer of trichomes creates
a microclimate that reduces the air movement and therefore transpiration (Ghorashy et al., 1971)
and helps to accumulate water (Konrad et al., 2014). A dense layer of trichomes also increases
spectral reflectance within the range of 400-700 nm; therefore, it reduces net radiation and leaf
temperatures. Moreover, it protects cells from damage by UV radiation (Karabourniotis et al.,
1995; Tattini et al., 2000). In low-temperature environments, the trichomes protect the layers
underneath from frost. Some plants can tolerate high levels of heavy metals in the soil through
trichome secretion of metal compounds (Choi et al., 2001; Sarret et al., 2006). For a review
of the influence of leaf pubescence in plant-environment interactions, see Bickford (2016).

Trichomes also provide mechanical protection against small herbivores like insects,
because they find it difficult for their feeding organs to reach the leaves (Cardoso, 2008). Even
larger herbivores can be put off as stiff trichomes irritate their palates. Glandular trichomes
produce metabolites that can be sticky and toxic; thus, both glandular and non-glandular
trichomes affect attachment, movement, shelter, feeding, digestion, oviposition, and viability
of insects (Webster, 1975; Norris & Kogan, 1980; Simmons et al., 2004).



3.2.1 Leaf pubescence in wheat

In wheat, trichomes can be found on glumes, nodes, leaf sheath, and blade. There is a great
variability of leaf trichome density and length among the Triticum species (Pshenichnikova
etal., 2016). The pubescence of hexaploid wheats varies greatly, e.g., T. aestivum ssp. spelta
and T. aestivum cv. ‘Chinese Spring’ have a very low number of short trichomes (~30 pm),
whereas cv. ‘Hong-mang-mai’ and ‘Saratovskaya 29’ have a moderate number of long
trichomes (~150 um; Pshenichnikova etal.,, 2016); thus, while they all have straight
non-glandular unbranched unicellular trichomes (Figure 2), the trichome density and length are
characteristic of a cultivar. Drought-resistant cultivars have a higher density of trichomes, which
positively influence water retention, whereas cultivars grown in humid climate have only weak
pubescence (Pshenichnikova et al., 2018). Therefore, leaf pubescence could be one of the

important targets in breeding drought-resistant cultivars.

Figure 2. A leaf trichome of common wheat.

Colored scanning electron micrograph by Stefan Diller. Reprinted with the author’s permission.
Scale bar =100 um.



Besides the protection against abiotic stresses, leaf trichomes provide resistance to
certain insects. Greater hair density and hair length is responsible for a significant reduction
in the number and viability of laid eggs and larval growth and survival of cereal leaf beetle
(Oulema melanopus L.; Gallun etal., 1966; Schillinger & Gallun, 1968). Trichomes also
provide protection against hessian fly in common wheat (Mayetiola destructor Say; Roberts
etal., 1979) but, interestingly, not in diploid wheat (Sharma etal., 1992). However, the
pubescent wheats were found to be more susceptible to air-borne wheat curl mite (Aceria
tosichella Keifer) which is the only known vector of wheat streak mosaic virus (Slykhuis,
1955). Therefore, the occurrence of this virus is higher on pubescent than on glabrous wheats
because of the more favorable landing site facilitated by the leaf hairs (Harvey & Martin, 1980).

The inheritance of leaf pubescence in wheat has not been clearly explained yet.
The phenotypic analysis of mapping populations has been problematic because some methods
are less accurate (counting with optical magnification) or efficient (scanning electron
microscopy) but computational analysis of digital images has solved some of the issues since
then (wheatdb.org/Ihdetect2; Genaev et al., 2012). The density of leaf trichomes is different

both at the seedling and the adult stage and is variable on different leaves within lines. It might
be controlled by different genes and affected by many modifiers at each of the stages
(Maystrenko, 1976; Taketa et al., 2002).

Several genes controlling wheat leaf pubescence have been mapped in common
wheat: HI1 (leaf hairiness 1, syn. Pa; Maystrenko, 1976) on chromosome 4BL (Dobrovolskaya
etal., 2007), HI2 on 7BS (Taketa et al., 2002), and QTLs for hairy leaf margins and auricles
on chromosomes 4BL and 4DL (Dobrovolskaya etal., 2007). Later, additional loci were
detected on 7A (Shahinnia et al., 2013, as cited in Doroshkov et al., 2015) and 7D (Doroshkov
et al., 2014); therefore, Doroshkov et al. (2015) suggest a presence of a homoeologous series of
genes on chromosomes of the 7th homoeologous group of T. aestivum.

HI2%*" introgressed from Ae. speltoides was mapped on chromosome 7BS
in the wheat/Aegilops speltoides introgression line 102/00' (Pshenichnikova etal., 2006;
Dobrovolskaya et al., 2007), and a QTL associated with leaf sheath hairiness introgressed from
Ae. speltoides was mapped on 4DL in synthetic hexaploid wheat (Wan etal., 2015).
Interestingly, the QTL on 4DL appeared to be in a tight linkage with a QTL for grain yield and
grain weight (Wan et al., 2015).

Another gene detected by Maystrenko (1976) and Dobrovolskaya et al. (2007) has not
been localized yet; thus, Doroshkov etal. (2015) temporarily named it HI3, and described
a model of how HI1, HI2** and HI3 affect the phenotype: both HI1 and HI3 seem to positively
regulate trichome initiation and growth, while HI2%* is responsible for the growth of longer
trichomes. Their effects appear to be independent and other genes must be controlling the trait

because recessive homozygotes still have slightly pubescent leaves. Therefore, HI genes seem
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to be controlling the intensity of hairiness rather than the presence-absence (Taketa et al., 2002;
Dobrovolskaya et al., 2007).

Besides genes controlling leaf pubescence, a gene for glume pubescence (Hg;
Khlestkina etal., 2002) and a QTL for node pubescence (Hn; Sourdille etal., 2002) were
mapped on 1AS and 5AL, respectively.

Genes controlling pubescence were identified in other cereals as well. In barley
(Hordeum vulgare L.), a gene for leaf blade pubescence (Pub) was mapped on 3HL (Pickering
etal., 1997), a gene for hairs on lemma nerves/hairy leaf sheath (HIn/Hsh) together with QTLs
controlling leaf sheath pubescence were mapped on 4HL (Takahashi & Hayashi, 1966; Saade
etal., 2017), a gene for large trichomes (Ltc/Ltr) was mapped on 5H (Franckowiak, 1997), and
a gene for glume pubescence (pbg) was mapped on 7H (Hor, 1924, as cited in Franckowiak,
1997). Hshy, derived from Hordeum bulbosum L., is allelic to HIn/Hsh and homologous
to the gene for peduncle and leaf sheath pubescence Hpl on 5RL in rye (Secale cereale L.;
Pickering et al., 1997; Korzun et al., 1999; Cockram et al., 2010).

Dobrovolskaya et al. (2007) reported that genes and QTLs on 4BL and 4DL (HI1 and
QTLs for leaf margins and auricles pubescence) are colinear to genes for barley pubescence
HIn/Hsh and Hs, on 4HL (Korzun et al., 1999) and for rye pubescence Hpl on 5RL (Devos
etal., 1993; Korzun etal., 1996); thus, the locus might be pleiotropically controlling
the pubescence of different plant organs in different Triticeae species.

Diploid wheat T. boeoticum has pubescent leaves, while domesticated
T. monococcum is glabrous (Tutin etal., 1980). The Fi hybrids of a cross of T. boeoticum
and T. monococcum are pubescent and the F, plants segregate into 1 densely
pubescent : 2 intermediate : 1 glabrous (meaning that leaf pubescence is dominant over leaf
glabrousness). However, as Sharma & Waines (1994) noticed, there is a wide range of trichome
density and length within intermediate and densely pubescent classes. Thus, if scored in terms
of the presence-absence of trichomes, the trait appears to be controlled by one dominant gene,
but if the character is scored on the actual number and length, the trait seems to be controlled by
a polygene. The trait was reported to be controlled by two dominant genes without chromosome
assignment (Smith, 1936 and Smith, 1939, as cited in Sharma & Waines, 1994), by one
dominant gene without chromosome assignment (Kuspira etal., 1989; Sharma & Waines,
1994), by one dominant gene on 5A™L (Jing et al., 2007; Jing et al., 2009), and by one QTL on
5A™L (Hori et al., 2007; Yu et al., 2016).
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3.3 Quantitative trait loci

Agriculturally important traits, such as tolerance to biotic and abiotic stress factors, or yield and
quality are very often a result of more than one gene effect and are called quantitative traits
(also complex, continuous, or polygenic traits). The phenotypic variation of quantitative traits is
continuously distributed in natural populations. The genetic variation of a quantitative trait is
controlled by the collective effects of multiple genes (a polygene) and their potential interaction
with the environment (e.g., sunlight, temperature, rainfall, humidity, and soil degradation).
Non-genetic quantitative traits are not controlled by genetic factors and their variation
in a population is caused only by environmental factors, while genetic quantitative traits are
affected by both genetic and environmental factors (Chen, 2014). The effect of each of the
multiple genes is usually relatively small. The effects are also influenced by the individual
genetic background and sex.

The genomic regions containing genes contributing to the variability of the
quantitative traits are called quantitative trait loci (QTLs). A single quantitative trait locus
(QTL) might be a single gene or a cluster of linked genes. QTLs could be either minor or major.
Minor QTLs explain less than 10% of the total phenotypic variation while major QTLs explain
more than 10%. In extreme cases, major QTLs can be treated as qualitative traits (Chen, 2014).

Besides the interaction of genes with the environment, the genes themselves interact
with each other. Usually, a phenotype of a quantitative trait is a sum of the effects of individual
QTLs. However, an individual QTL might not have its own effect, but together with other
QTLs, it contributes to the phenotype as a net effect. This deviation from the sum of the
independent effects of the individual genes is called epistasis and these QTLs are epistatic
QTLs (Falconer & Mackay, 1996). Some QTLs are pleiotropic, which means that they affect
more than one trait. If more QTLs for different traits cluster within a small genomic region, it
might be caused by the presence of a single pleiotropic QTL (Peng et al., 2003). Pleiotropic
QTLs should not be mistaken with two or more linked QTLs that affect different traits. That is
difficult because in linkage mapping studies, the intervals to which QTL maps usually contain
multiple genes.

The gene expression levels can be modified by polymorphisms in regulatory loci and
therefore treated as quantitative traits. These loci are called expression QTLs (eQTLs).
Regulatory genes responsible for the variability in the expression of a specific protein are
described as protein quantity loci (pQLs). Similarly, metabolite QTLs (mQTLs) can be
mapped by measuring the abundance of a specific metabolite in all lines of a mapping
population and using it as a phenotypic trait. The combined analysis can lead to a better

understanding of the regulatory network of genes (Wang et al., 2014).
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Identification of agronomically important traits in wheat and their further exploitation
in crop breeding requires mapping of the corresponding QTLs in the crop genomes. Two main

approaches are available: linkage-based mapping and association mapping.

3.4 Linkage-based mapping of quantitative trait loci

QTL mapping is a statistical analysis that allows finding of genomic regions that affect the trait
of interest and describing their contribution to trait variability. It uses segregating mapping
populations (derived from a cross of parental lines that are contrasting for the trait of interest)
and their linkage maps. The mapping resolution depends on the number of recombinations in
the mapping population. Higher mapping resolution and precision require larger mapping
populations (Members of the Complex Trait Consortium, 2003).

For a reliable assessment of mapped QTLs and their contribution, QTL-environment
effects need to be minimized. Interactions with the environment may manifest as QTL effects
detected only in a subset of the total number of environments, significant changes
in the magnitude of QTL effects across environments, and opposite favorable alleles at a QTL
in specific environments (Hayes et al., 1993). QTL analyses performed in multiple replicates
reduce environmental effects and increase statistical power. Additionally, by replicating the
trials in multiple environments and over time, it becomes possible to estimate QTL-environment
interactions.

Linkage-based mapping uses the principle that QTLs can be traced down via their
genetic linkage to marker loci or interval that can be readily classified. Generally, a linkage
map, that provides the positions of markers on all chromosomes of the genome and the genetic

distances between them, is required.

3.4.1 Linkage maps
Genetic maps are an essential tool in genetics and breeding. Maps can be divided into two types:
linkage maps and physical maps. Linkage maps are based on recombination frequencies
between genetic markers that form linkage groups showing their order and distances. Physical
maps show the physical locations of DNA sequences of interest with distances typically
measured in base pairs. The most advanced physical maps are whole genome sequences.
Linkage maps facilitate QTL mapping, gene cloning, marker-assisted selection, and
comparative genomics. Linkage mapping is used to determine a relative linear order and
distances of molecular markers and to assign them to particular chromosomal regions.
Molecular markers rely on polymorphisms between parental lines. Polymorphisms can be
detected using markers including restriction fragment length polymorphism (RFLP; Botstein
etal., 1980), random amplified polymorphic DNA (RAPD; Williams et al., 1990), amplified
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fragment length polymorphism (AFLP; Vos etal., 1995), cleaved amplified polymorphic
sequence (CAPS; Neff et al., 1998), sequence-tagged site (STS; Olson et al., 1989) or expressed
sequence tag (EST; Adams etal., 1991), simple sequence repeats (SSR; Hearne et al., 1992),
and single nucleotide polymorphism (SNP).

During meiosis, homologous chromosomes pair and recombine at various positions,
which is the basis for linkage mapping. Therefore, markers are ordered, and genetic distances
are calculated based on the amount of meiotic recombination that occurs between them
(Sturtevant, 1913). In general, the probability that recombination occurs between two markers
on a chromosome depends on their physical distance. The nearer the markers are located to each
other, the more they will tend to co-segregate together during meiosis. With an increasing
distance between them, the probability for recombination increases as well and genetic linkage
gets weaker. Therefore, genetic linkage can be interpreted as a measure of physical distance.

The relationship between recombination fraction and genetic distance is approximated
by mapping functions. A mapping function relates recombination fraction and genetic distance
in units of Morgans (M), or more commonly used centiMorgans (cM; 1 M = 100 cM), named
in honor of Thomas Hunt Morgan. 1 cM represents a recombination frequency of 1%. Various
mapping functions are available, e.g., Haldane mapping function (Haldane, 1919), Kosambi
mapping function (Kosambi, 1943), Carter-Falconer mapping function (Carter & Falconer,
1951), and Felsenstein mapping function (Felsenstein, 1979). The latter three capture a certain
degree of crossover interference, which refers to asituation in which the occurrence of
a crossover at a locus affects either positively or negatively the chance of a second crossover in
the vicinity of the locus. With a high number of markers, the computation of marker order and
distances becomes complicated; therefore, algorithms and programs have been developed based
on maximum likelihood (Morton, 1955). There are many programs to determine the order of
markers and their distances, e.g., MapMaker (Lander etal., 1987), JoinMap (Stam, 1993),
MapManager (Manly et al., 2001), MultiPoint (Mester et al., 2003), R/qgtl (Broman et al., 2003),
and IciMapping (Meng et al., 2015). Linked markers are grouped into linkage groups, that
represent chromosomal segments or entire chromosomes.

The resolution of a linkage map depends on the number of recombinations scored
in an experimental population. Recombinations are not evenly distributed across the
chromosome as recombination is suppressed around the centromeric regions. This affects the
resolving power of linkage analysis, so markers that are physically far apart may appear at the
same position on the map. The size of mapping populations determines the resolution of linkage
mapping. About 80-120 lines are used to construct an initial genetic map. This provides an
acceptable level of precision, while the cost and labor are still manageable. However, in order to

separate markers much closer to the target gene for map-based gene cloning, thousands of
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individuals are used to get the required level of precision (Tiwari et al., 2016a). Multiple types

of mapping populations can be used for linkage map construction and QTL mapping.

3.4.2 Mapping populations

The first step in linkage map construction for linkage-based QTL analysis is the preparation of
biparental mapping populations that are developed from a cross of two divergent lines selected
from either natural or mutant populations. Some types of mapping populations are more suitable
for QTL mapping than the others.

The simplest type of biparental mapping population is an F, population. Two
homozygous inbred plants or doubled haploid plants are selected as parents. It is desirable to
obtain contrasting parental lines in all traits of interest. The polymorphism can be evaluated
both at the phenotypic level and by molecular markers. Due to Mendel’s law of dominance and
uniformity, all plants of the F1 generation will have the same genotype and similar phenotype.
The F; population is then self-pollinated (or sib-mated in the case of allogamous species) and
the F, population segregates for the traits of interest. The number of recombinations is limited
because F, populations are the outcome of a single meiosis. Another disadvantage is that F»
populations can hardly be preserved because Fs lines are not identical to F; lines. Thus, they
cannot be used for repeated experiments under various environments (Acquaah, 2012).
Compared with recombinant inbred lines, doubled haploid lines, and near-isogenic lines,
F. populations are less suitable for QTL mapping because genes are not yet fixed and only
QTLs with large effects and stable expression can be detected (Tian et al., 2015).

Recombinant inbred lines (RILS) are obtained by a single-seed descent method, i.e.
by repeated selfing of the same lines for at least 6 generations. At that point, less than 2% of the
genome remains in heterozygotic composition and further segregation in the progeny of RILs is
insignificant. In comparison with F, or doubled haploid lines, the degree of recombination is
higher because RILs go through more rounds of meiosis. RILs are useful for high-resolution
genetic mapping and ideal for QTL mapping. They are permanent and can be easily used in
replicates. However, their preparation is time-consuming (Schneider, 2005; Acquaah, 2012).

Doubled haploid lines (DH lines) have two identical sets of chromosomes in their
nuclei. Therefore, they are utterly homozygous. DH lines are developed by androgenesis
(microspore and anther culture), gynogenesis (ovary and ovule culture), or wide hybridization
(pollination of the F; floret with maize pollen and embryo rescue), followed by colchicine
treatment (Laurie & Bennett, 1988). The wide hybridization method is considered to be the
most efficient one (Niu etal., 2014). DH lines are used for high-resolution QTL mapping as
their genetic structures represent the segregations and recombinations of alleles during F1
gamete formation, but the recombination is limited similarly to F, populations because there is

only one round of meiosis (Tian et al., 2015). Thus, the preparation of DH lines is timesaving,
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but genetic mapping using DH lines cannot reach the same resolution as with RILs. Similarly to
RILs, DH lines are permanent.

Backcross (BC) populations are used to analyze specific DNA fragments from
a donor in the genetic background of a recipient. A hybrid F; plant, the donor, is backcrossed to
the recipient. During meiosis, unlinked donor DNA fragments are separated by segregation
while linked donor fragments are reduced because of recombination. Compared to F»
populations, BC; populations provide better QTL mapping efficiency, but they cannot be
maintained for the long term; therefore, their usage in QTL mapping is limited (Tian etal.,
2015).

The amount and size of donor fragments in BC lines are reduced with every round of
backcrossing. After several rounds, the BC lines and the recipient differ only in one
chromosomal fragment. Such BC lines are called near-isogenic lines (NILs). NILs allow to
Mendelize the guantitative traits (such that only the QTL of interest segregates) affecting the
same trait, so the interference derived from the genetic background and the masking effects of
major QTLs over minor QTLs are removed (Schneider, 2005; Tian et al., 2015). NILs are
permanent as well.

Besides the mapping populations mentioned above, there are plenty of other designs,
e.g., residues of alloplasmic lines (RHLs), QTL isogenic lines (QIRs), single-segment
substitution lines (SSSLs), and chromosome segment substitution lines (CSSLs; Tian etal.,
2015).

3.4.3 Statistical methods of quantitative trait loci mapping

QTL mapping is an analysis aimed at detecting and then locating QTLs. Measurements of
phenotypic traits need to be obtained for all individuals in the mapping population. Once
a linkage map is constructed and the population is phenotyped, it is possible to proceed with the
QTL mapping. Statistical methods are used to assess the correlation between the values of the
phenotypic trait of all individuals and different marker locus genotypes.

Many statistical software packages can be employed, e.g., MapMaker/QTL (Lincoln
etal., 1993), MultiQTL (Korol etal., 2001), R/qgtl (Broman et al., 2003), QGene (Joehanes
& Nelson, 2008), QTLCartographer (Wang et al., 2012a), and IciMapping (Meng et al., 2015).
Several statistical methods of linkage-based QTL mapping are available, some of them are
outlined below.

The simplest and oldest one is a single-marker analysis that tests the marker’s
statistical influence on the trait by finding a relationship between markers and phenotype.
A variety of statistical analyses is available, including t-test (Gosset, 1908), analysis of variance
(ANOVA; Fisher, 1918), or regression (Kearsey & Hyne, 1994). Single-marker analysis tests

the marker’s linkage to a QTL one at a time. Therefore, the advantage is that a complete genetic
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map is not needed, and the computation is relatively straightforward and possible to do using
statistical software like Microsoft Excel (Microsoft Corp.). The disadvantages are low detection
power and accuracy of QTL positions relative to markers. Also, close weak QTLs and distant
strong QTLs cannot be told apart (Chen, 2014).

For simple (or single) interval mapping (IM), a constructed linkage map is required.
IM is based on maximum likelihood parameter estimation and provides a likelihood ratio test
for a QTL position between a pair of adjacent mapped (flanking) markers to detect a QTL in
between them. Genetic distances between the markers are utilized to explore loci between the
markers which is not possible using single-marker analysis. IM method supposes that there is
only one QTL over the whole genome for the studied trait, but quantitative traits are usually
affected by many QTLs. Therefore, all QTLs, except the strongest one, are ignored. IM is not
effective for complete QTL models because each QTL is taken into consideration one at a time
and logarithm of the odds ratio (LOD score) is calculated like it is the true QTL. Thus, QTLs
outside the interval can interfere and compromise the positions and effects of QTLs within the
interval (Lander & Botstein, 1989). A similar approach uses regression mapping instead of ML
(Haley & Knott, 1992) but both still have issues with separating multiple QTLs on the same
chromosome (Martinez & Curnow, 1994).

Composite interval mapping (CIM) is a method that combines IM with multiple
marker regression; thus, it detects QTLs in multiple intervals using multiple marker
information. In comparison with IM, other interacting QTLs are taken into consideration and
variation associated with them is removed using additional cofactor (background) markers
outside the window of analysis (Jansen, 1994; Zeng, 1994). An improved version of CIM is
called inclusive composite interval mapping (ICIM). It employs stepwise regression to select
significant cofactor markers and estimate their corresponding effects. After that, the phenotypic
values are adjusted by all markers retained in the regression equation except the pair of markers
flanking the current scanning position. The adjusted phenotypic values are then used in interval
mapping. Compared with CIM, ICIM has increased detection power and precision and removes
the arbitrariness of cofactor selection (L.i et al., 2006).

Multiple interval mapping (MIM) assumes the presence of one or more QTLs in the
genome and accommodates interaction effects among QTLs, i.e. reduces the residual variation
(while previous one-dimensional QTL mapping methods suppose that only one QTL and
additive effects are present). MIM creates a CIM model and adds and removes QTLs by
stepwise selection. Then, an iterative expectation-maximization algorithm estimates the QTL
likelihoods and searches for epistatic effects between them (Kao & Zeng, 1999; Zeng et al.,
1999).
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An output from interval mapping is usually a graph with markers and their genetic
distances on the x-axis and corresponding LOD (logarithm of the odds) scores on the y-axis.
A significance threshold can be visualized as well.

A LOD score is traditionally used for summarizing the evidence for a QTL. It is the
log base 10 of the ratio of the maximum likelihoods under the alternative (a linkage is present)
and null hypotheses (no linkage), which indicates how much more probable the data are to have
arisen assuming the presence of a QTL than assuming its absence (Morton, 1955). Traditionally,
the QTLs are considered to be significant above the threshold LOD score 3 (Lander & Botstein,
1989), which means that the odds that the QTL is present are 1000 times greater than the odds
that it is absent (it corresponds to a genome-wide false positive rate in the neighborhood of 5%;
Lander & Kruglyak, 1995). However, significance thresholds in QTL mapping are usually
obtained by permutation tests (Fisher, 1935) as proposed by Churchill & Doerge (1994).
Permutation tests maintain the linkage maps with marker genotypes but shuffle the values of the
phenotypic traits across the experiment lines. After that, the same QTL mapping methods are
applied to the shuffled data to reveal the level of false-positive marker-trait associations. This is
repeated at least 1000 times and the resulting threshold is given based on the level of false
positives (Chen, 2014). Another resampling method that is widely used is bootstrapping. The
phenotypic traits are shuffled as well but with replacement such that after an experiment line
receives a random trait assignment, some other line may receive the same random trait
assignment. Thus, the difference is that the permutation test keeps the summary information of
the trait while bootstrapping changes the mean and variance (Doerge, 2002).

Markers linked to a QTL segregate together which is disrupted by recombination and
only closely linked markers eventually remain in proximity of the locus. To precisely localize
a QTL, individuals in which recombination took place in the proximity of the QTL are needed
because then only closely linked markers remain linked. For high-resolution mapping (or fine-
mapping; in the intervals of 0.1-1 cM), thousands of individuals and high marker density are
needed. Therefore, QTL mapping usually localizes the QTLs in broad intervals (10-20 cM)
using asparse skeletal (or framework) map and then the chromosomal regions containing
the QTLs are further narrowed down (Mackay et al., 2009). This is done by using individuals
in which recombination occurred between the markers flanking (surrounding) the QTL. This
part needs time-consuming breeding of more individuals to acquire the required recombination

and designing markers within the region.

3.4.4 Verification of quantitative trait loci and identification of genes
When significant QTLs are mapped, it is essential to verify them by doing a replication study.
That is a QTL analysis on an independent population made by a cross of the same parental

genotypes, closely related genotypes, or important cultivars. Nevertheless, unverifying QTLs
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does not necessarily mean that they are false positives because linkages often involve weak
effects that may not manifest in replication studies (Lander & Kruglyak, 1995; Mackay et al.,
2009). Then, once chromosomal regions are verified, it is possible to identify the genes.

QTL mapping is just the first step in the process of identifying the genes controlling
a quantitative trait. The results of high-resolution QTL mapping are sufficient for selective
breeding programs (through marker-assisted selection) but not for identifying alleles at a locus
responsible for the difference in phenotypes, which is essential for describing the genetic basis
of quantitative variation and application of transgenic technology to agronomically important
traits.

Positional cloning through high-resolution mapping is used for the identification of
genes explaining the observed QTL. It provides areduced number of candidate genes
for validation analysis and it is feasible for loci defined by mutant alleles of large effects
(Falconer & Mackay, 1996). The increase in mapping resolution can be achieved by producing
a new large mapping population derived from a cross of two NILs differing only for the alleles
at the target QTL which is then considered to be Mendelized (segregating in 1:2:1 or 1:3 ratios).
Flanking markers are used for anchoring the genetic map to the physical map (a genomic
sequence or at least a contig containing the QTL region). New markers are then designed for
map saturation and candidate genes identification.

The validation of candidate genes can be done through both forward and reverse
genetic approaches, e.g., complementation test (Liu et al., 1999), insertional mutagenesis using
T-DNA and transposable elements (Maes et al., 1999; Meissner et al., 2000), RNA interference
(Waterhouse etal.,, 1998; Waterhouse & Helliwell, 2003; Kusaba, 2004), homologous
recombination-mediated gene transfer (Hanin & Paszkowski, 2003), TILLING (targeting
induced local lesions in genomes; McCallum etal., 2000; Chen etal., 2012), VIGS (virus-
induced gene silencing; Baulcombe et al., 1999; Liu et al., 2002; Hosseini Tafreshi, 2011), and
CRISPR/Cas9 (Jinek et al., 2012; Cong et al., 2013; Mali et al., 2013).

3.5 Association mapping

Alternatively, QTLs affecting the trait variation can be identified using natural populations by
association mapping (AM). AM is based on linkage disequilibrium (LD), which relates to
a non-random association (distorted segregation) of alleles at different loci. Two loci are in LD
when an allele at one locus is found together with an allele at a second locus more often than
expected if alleles were combining independently. AM searches for an association between
allelic variants at marker loci and the mean of the trait within a set of unrelated genotypes. The
marker-trait association indicates that there is a connection between the genes controlling the
trait and the marker locus (Flint-Garcia et al., 2003). The number of markers needed for AM

depends on the scale and pattern of LD. It is necessary to genotype just one marker in the block
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as a proxy for the rest of them. As the size of LD blocks increases, the total number of required
markers decreases (Mackay et al., 2009). AM takes advantage of associations created in the
relatively distant past. Many generations have elapsed since then; therefore, recombination has
removed the association between QTLs and markers not tightly linked to them. Thus, AM
allows for much finer QTL mapping than traditional linkage-based QTL mapping.

Multi-parent populations developed by the crossing of multiple parents, multiple
biparental populations, breeding pools, or diverse natural populations can be used for the
identification of QTLs by AM. A set of diverse genotypes is thus used to create an association
panel, which covers most of the variability available in a gene pool for desired traits. Therefore,
more alleles at a locus take part in the detection of a QTL instead of two alleles in biparental
populations that have the disadvantage of reduced genetic diversity. Therefore, AM can
effectively utilize conserved natural genetic diversity of worldwide crop germplasm resources.

AM uses diverse heterogeneous populations; therefore, smaller populations are needed
for QTL mapping because they contain more recombinant individuals. However, this
heterogeneity leads to a problem with a specific population genetic structure. Since
the population is a combination of diverse lines with different pedigree relationships,
subpopulations vary in allele frequencies at many loci and mean trait values. This can lead to
false detection of marker-trait associations, but it is possible to reduce the false-positive rate
with statistical methods (Yu etal., 2005; Larsson etal., 2013). AM can identify phenotypic
effects of alleles with relatively high frequency in the population. Thus, linkage-based mapping
is more suitable for rare alleles which can be hardly assessed by AM unless they have large
penetrance and significant effects (Alvarez et al., 2014).

The problems with rare alleles and population structure may be solved by some
specialized types of populations, such as multiparent advanced generation inter-cross (MAGIC)
populations (Cavanagh et al., 2008) and nested association mapping (NAM) populations (Yu
etal., 2008). In a MAGIC population, 4, 8, or 16 parents are crossed in biparental fashion and
then the F1 hybrids are crossed in subsequent generations followed by few rounds of selfing. In
the NAM population, multiple diverse founder parental inbred lines are crossed with one
common parental inbred line followed by several rounds of selfing.

Two main approaches of AM are genome-wide association studies (GWAS) and
candidate gene-based approach (Sehgal et al., 2016). GWAS requires a substantial number of
densely distributed molecular markers across the genome to test association for various
quantitative traits. Whereas the candidate gene approach requires amore complex
understanding of the trait of interest, i.e. the selection of markers depends on previous QTL
studies or biochemical and regulatory pathways (Lander & Schork, 1994; Pflieger et al., 2001).

Linkage-based QTL analysis and AM are complementary to each other. Linkage-

based QTL mapping identifies large chromosomal regions with a rather low marker coverage
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and has an increased power to detect QTLs as all segregating alleles are at
an intermediate frequency. Since the resolution of linkage maps used for locating QTLs is on
the order of 5-10 cM, each interval with a detected QTL can contain several hundreds of genes
(Buckler & Thornsberry, 2002; Mackay etal., 2009). On the contrary, AM needs prior
information about candidate genes or a genome-wide scan with a high marker coverage but
provides precise locations of QTLs with high resolution (Fulker et al., 1999). Linkage-based
QTL mapping and AM can be simultaneously combined into one approach called joint linkage
association mapping (JLAM) which can be even more efficient for QTL mapping. JLAM uses
random parents from a natural population and their F; offspring to assess the association of
different markers in the original population and co-transmission of marker alleles
in a Mendelian fashion from parents to their offspring (Wu & Zeng, 2001; Wu et al., 2002).

Since both linkage-based QTL mapping and AM are time-consuming and expensive,
a modification called selective genotyping might be used. It is based on the genotyping
of selected individuals with extreme phenotypes of one chosen trait. Only these individuals are
used for the construction of a linkage map and interval QTL mapping (Lander & Botstein,
1989). This decreases the price of genotyping. The disadvantage is that the effects of QTLs
cannot be properly assessed. Multiple strategies are available, such as truncation selection
(Slatkin, 1999), truncation selection I1, and extreme rank selection (Chen et al., 2005).

An alternative to linkage-based QTL mapping and AM called QTL-seq is a recently
adopted next-generation sequencing (NGS) based strategy that allows a rapid high-resolution
genome-wide QTL mapping. One of the approaches is a variation of bulked segregant analysis
(Michelmore et al., 1991). It is based on selecting two groups of 20-50 individuals with extreme
phenotypic values from the mapping population, resequencing them with a sufficient genome
coverage and then identifying the QTLs by counting and comparing the index SNPs between
the two groups (Takagi et al., 2013; Das et al., 2015).
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4 Materials and methods

4.1 Biological material

Triticum monococcum L. mapping populations:

o A mapping population that comprised 81 Fi, recombinant inbred lines (RILS)
developed from a cross of ‘DV92’ and ‘G3116° — DV92 is a cultivated
T. monococcum ssp. monococcum from Titograd, Montenegro, while G3116 is a wild
T. monococcum ssp. boeoticum from Lebanon. The Fg.12 generations were prepared
and phenotyped by Monika Skopova, Barbora Balcarkova (Klocova, 2010), Lucia
Hluskova (Gallova, 2011), and Hana Vanzurova (Vanzurova, 2013). The Fs
generation was provided by Prof. Jorge Dubcovsky, Ph.D., University of California
(Dubcovsky etal., 1996). The mapping populations were grown in 2009-2012
(8 treatments in total; Table 1). Phenotyping methods are described in Vanzurova
(2013) and summarized in Table 1.

o Four ‘verification’ mapping populations created by a reciprocal cross of lines ‘144’
and ‘246’ (203 lines in total), a cross of DV92 and ‘113’ (102 lines in total), and
across of DV92 and ‘165” (102 lines in total). Lines 144, 246, 113, and 165 belong to
the F12 mapping population. These populations were prepared by Barbora Balcarkova
and Hana Vanzurova. The plant phenotyping was done by Hana Vanzurova, Eva
Maleckova, Zuzana Korchanova, and Romana Nesnadna.

A low path sequence of T. monococcum line TA4342-96 provided by Prof. Bikram S. Gill,

Ph.D., Kansas State University, USA (personal communication, unpublished).

Linkage map of T. monococcum DV92xG3116 constructed using the wheat 90K Infinium

iSelect SNP array by Prof. Rudi Appels, Ph.D., Murdoch University, Australia (personal

communication, unpublished).
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Table 1. Traits and treatments in which they were evaluated.

Season 2009 2010 2011 2012
Treatment | Stupice Spring | Spring | Fall Spring | Fall Spring Italy
Trait 2009 2009 2010 | 2010 2011 | 2011 2012 2012
Plant height v v v v v v v v

measured as the distance from the ground to the tip of the longest spike (excluding
awns) at the milk ripening stage [cm]

Number of tillers

| v | v v | v v
measured as the number of culms 20 to 30 cm above the ground at the milk ripening
stage

Tillering pattern | v | v v | v v v
visually evaluated and classified according to Bares et al. (1985)
Leaf pubescence v v | v | v v | v v v

in 2009, the leaf pubescence was evaluated as the presence/absence of trichomes on
the adaxial side of flag leaves; in 2010, the number of trichomes was counted at the
beginning, middle and end of a flag leaf in areas 0.8 cm x leaf width; in 2011 and
2012, the number of trichomes was counted on a randomly selected vein (1 cm) in
the middle part of a flag leaf

Ear emergence time

| v | v v | v v
calculated as days from planting to a glasshouse to the date when 50% of the spikes
had emerged above the flag leaf collar

Spike length

v | v | v v | v v
the length of the five longest spikes (excluding awns) was measured at the milk
ripening stage [cm]

Number of spikelets per spike

v v | v | v v | v v
the number of spikelets was counted on the five oldest spikes at the milk ripening
stage

Spike compactness v | v | v v | v v
calculated as the ratio of spike length to the number of spikelets
Rachis brittleness v | v | v v | v v

the degree of shattering was determined on dried spikes by a comparison with their
parents (G3116 has a brittle rachis, DV92 has a non-brittle rachis)

Number of grains per spikelet

| v | v v | v v v
the grains were randomly dehusked until the number of both 1 in 1 and 2 in 1 grains
reached at least the number of 50; the number of grains per spikelet was calculated
as the ratio of the number of 1 in 1 grains to the total number of grains

Grain weight (1 in 1) v v v v v v
Grain weight (2 in 1) v v v v v v
Grain weight (not differentiated) v v
determined by weighing the 1 in 1 and 2 in 1 grains separately (they were not
differentiated in 2009), transformed to a single 1 in 1 and 2 in 1 grain weight [g]
Grainarea (1in 1) v v v v v v
Grain area (2 in 1) v v v v v v
Grain length (1 in 1) v v v v v v
Grain length (2 in 1) v v v v v v
Grain width (1 in 1) v v v v v v
Grain width (2 in 1) v v v v v v
measured on the MARVIN seed analyzer (see Chapter 4.4.1) [mm]
Grain roundness (1 in 1) v v v v v v
Grain roundness (2 in 1) v v v v v v
calculated as the ratio of grain length to grain width
Grain thickness (1 in 1) v v v v v v
Grain thickness (2 in 1) v v v v v v
calculated as the ratio of grain weight to grain area [g/mm?]
Grain protein content v | v | v v

determined on the whole-grain dry matter by Fourier transform near-infrared (FT-
NIR) spectroscopy

Only some traits were assessed in each of the treatments as indicated by checkmarks; 1 in 1 — grains from
spikelets that contained only one grain; 2 in 1 — grains from spikelets that contained two grains.
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4.2 List of chemicals, kits, and solutions

4.2.1 Chemicals

3-methacryloxypropyltrimethoxysilane (Serva; Heidelberg, DEU)

40% acrylamide/bis-acrylamide solution 19:1 (5% crosslinker; Bio-Rad; Hercules, USA)
agarose | (VWR; Radnor, USA)

ammonium persulfate (APS; Sigma-Aldrich; St. Louis, USA)

distilled water

ethidium bromide (Sigma-Aldrich; St. Louis, USA)

magnesium chloride, hexahydrate (Lach-Ner; Neratovice, CZE)
N,N,N’,N'-tetramethylethylenediamine (TEMED; Bio-Rad; Hercules, USA)

nucleotides; dATP, dCTP, dGTP, dTTP (VWR; Radnor, USA)

primers (Eurofins Genomics; Luxembourg, LUX, and Integrated DNA Technologies;

Coralville, USA)
Taq polymerase (BioLabs; Ipswich, USA)

4.2.2 Kits

Agencourt CleanSEQ (Beckman Coulter; Brea, USA)

BDX64 Big Dye Enhancing Buffer (MCLAB; San Francisco, USA)

BigDye Terminator 5x Sequencing Buffer (Applied Biosystems; Foster City, USA)
BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems; Foster City, USA)
Ex0SAP (Applied Biosystems; Foster City, USA)
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4.2.3 Solutions
e 10x PCR buffer (without Mg®*):
o 100 mM Tris-HCI, pH = 8,2 (Sigma-Aldrich; St. Louis, USA)
o 500 mM potassium chloride (Lach-Ner; Neratovice, CZE)
o 1% Triton X-100 (Sigma-Aldrich; St. Louis, USA)
e 10x PCR buffer (with Mg?):
o 100 mM Tris-HCI, pH = 8,2 (Sigma-Aldrich; St. Louis, USA)
o 500 mM potassium chloride (Lach-Ner; Neratovice, CZE)
o 15mM magnesium chloride, hexahydrate (Lach-Ner; Neratovice, CZE)
o 1% Triton X-100 (Sigma-Aldrich; St. Louis, USA)
e 100 bp DNA molecular weight marker (520 ul):
o 20ul Gene Ruler 100 bp DNA Ladder Plus (Thermo Fisher Scientific;
Waltham, USA)
o 200 pl 6x STOP C DNA gel loading dye:
e 100mM  EDTA (Sigma-Aldrich; St. Louis, USA)
o 1% SDS (Sigma-Aldrich; St. Louis, USA)
e 0,05% bromophenol blue (Sigma-Aldrich; St. Louis, USA)
o 0,05% xylene cyanol (Sigma-Aldrich; St. Louis, USA)
o 425% glycerol (Sigma-Aldrich; St. Louis, USA)
o 300 ul distilled water
e Sx cresol red:
o 0,01% o-cresolsulfonephthalein (Sigma-Aldrich; St. Louis, USA)
o 1,5% sucrose (Lach-Ner; Neratovice, CZE)
¢ 5x TBE buffer:
o 450 mM Tris (Sigma-Aldrich; St. Louis, USA)
o 450 mM boric acid (Lach-Ner; Neratovice, CZE)
o 10mM EDTA, pH = 8,0 (Sigma-Aldrich; St. Louis, USA)

24



4.3 List of equipment

automated liquid handler, Biomek NXP (Beckman Coulter; Brea, USA)

centrifuge, MiniStar Silverline (VWR; Radnor, USA)

centrifuge, PlateFuge MicroCentrifuge (Benchmark Scientific; Edison, USA)
horizontal electrophoresis system, Owl A6 (Thermo Fisher Scientific; Waltham, USA)
laboratory scale, Vibra AJ-820CE (Shinko Denshi; Tokyo, JPN)

microwave oven, KOR-6C2B (DAEWOO; Soul, KOR)

optical grain analyzer, MARVIN (GTA Sensorik; Neubrandenburg, DEU)

power supplies, MP-300V and MP-500V (Major Science; Saratoga, USA)

Sanger sequencer, 3730xI DNA Analyzer (Applied Biosystems; Foster City, USA)
thermocycler, C-1000 Touch (Bio-Rad; Hercules, USA)

UV transilluminator, InGenius system (Syngene; Bengaluru, IND)

vertical electrophoresis system, C-DASG-400-50 (C.B.S. Scientific; San Diego, USA

vortex shaker, Reax Control (Heidolph Instruments; Schwabach, DEU)
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4.4 Methods

4.4.1 Measurement of grain properties

For each line of the T. monococcum DV92xG3116 mapping population, randomly selected
spikelets were trashed until both variants (1 in 1 = one grain per spikelet and 2 in 1 = two grains
per spikelet) reached at least 50 seeds. Grains were measured using the MARVIN seed analyzer
(GTA Sensorik; Neubrandenburg, DEU) and the average values of grain area (mm?), grain
length (mm), and grain width (mm) were obtained.

grain length

Then, the roundness of 1 in 1 and 2 in 1 grains was calculated as and grain

grain width’

. in weight
thickness as Em 81 (

erainarea (&/MM)
4.4.2 Marker design
Markers were designed based on either SNP markers or annotated gene sequences.

Sequences of SNP markers were selected by manual integration of DArT markers into
the T.monococcum SNP map (wheat 90K Infinium iSelect SNP map provided by
Prof. Rudi Appels).

The annotated gene sequences were obtained by anchoring the chosen marker
sequences to the syntenic regions of the cv. ‘Chinese Spring’ reference genome sequence
(IWGSC RefSeq v1.0; IWGSC, 2018) using BLASTN (BLASTN v2.2.26; Altschul et al.,
1997).

The sequences of SNP markers or the candidate gene sequences were searched in the
database of T. monococcum low path sequence of line TA4342-96 using the BLASTN tool.
The scaffolds producing significant alignments were checked for repetitive sequences using the
non-redundant TREP (TRansposable Elements Platform) database (release 16;
wheat.pw.usda.gov/cgi-bin/segserve/blast_more.cgi).

FGENESH HMM-based gene structure prediction (Solovyev etal.,, 2006) with

provided Triticum aestivum specific gene-finding parameters (softberry.com) was used to

predict genes in the low copy regions. In silico translated proteins of the predicted genes were
tested for  uniqueness  using  BLASTP  against the  Triticum  proteins

(blast.ncbi.nlm.nih.gov/Blast.cgi). Genes for repetitive and common proteins (e.g.,

ribonuclease H, kinases, ...) were discarded.
Primer pairs were designed using Primer3’s default settings (v0.4.0; Untergasser et al.,

2012) preferentially to conserved exon regions and their neighboring introns.
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4.4.3 Polymerase chain reaction

PCRs were done in 96- or 384-well plates (VWR; Radnor, USA). Each PCR mixture (a total
volume of 15 pL) consisted of 1x PCR buffer (without Mg®"), 2 mM MgCl,, 1x cresol red,
200 uM of each dNTP, 0.7 uM of each primer, 0.6 U of Taq polymerase and 15 ng of genomic
DNA. Amplification was performed according to the touchdown PCR protocol presented in
Table 2.

Table 2. Touchdown PCR protocol

Step Temperature [°C]  Duration Cycles
1 initial denaturation 95 °C 5 min 1
2 denaturation 95 °C 40 sec
3 annealing 65 °C (-0,7 °Clcycle) 40 sec 16
4  extension 72 °C 1 min
5 denaturation 95°C 40 sec
6 annealing 53°C 40 sec 17
7 extension 72 °C 1 min
8 final extension 72 °C 10 min 1

4.4.4 Agarose gel electrophoresis
PCR products were separated by electrophoresis on 1.5% agarose gels in 0.5x TBE buffer

at 130 V for 70 minutes and visualized by ethidium bromide staining.

4.4.5 Polyacrylamide gel electrophoresis
Alternatively, PCR products with small length polymorphism were separated by polyacrylamide
gel electrophoresis in 0.5x TBE buffer at a constant 350 V for 90 minutes and visualized by
ethidium bromide staining.

The 4%  non-denaturing  polyacrylamide  gels  consisted of 4%
acrylamide/bis-acrylamide 19:1, 0.5x TBE buffer, 0.073% TEMED, 0.066% APS, and distilled

water. The gels were run in 0.5x TBE buffer with 0.1%. ethidium bromide.

4.4.6 Sanger sequencing
PCR products were purified by ExoSAP and then sequenced using Sanger sequencing method.
Firstly, the concentrations of PCR products were estimated by visually comparing
the intensity of PCR products with bands of 200 ng/ul 100 bp DNA molecular weight marker
(Gene Ruler; Thermo Fisher Scientific; Waltham, USA) separated by gel electrophoresis.
Then, 20-40 ng of PCR product, 0,25 U of thermosensitive alkaline phosphatase
(FastAP; Applied Biosystems; Foster City, USA), 0,05 U of exonuclease | (Exo I; Applied

27



Biosystems; Foster City, USA), and 1x PCR buffer were incubated at 37 °C for 30 minutes and
then denatured at 95 °C for 5 minutes.

The purified PCR products (5-20 ng) were sequenced using BigDye Terminator v3.1
Cycle Sequencing Kit. Each sequencing reaction (a total volume of 10 pL) contained
1x sequencing buffer, 0.875 ul of BDX64 (MCLAB; San Francisco, USA), 0.125 ul of BigDye
(Applied Biosystems; Foster City, USA), and 1 M of primer. The cycle sequencing was
performed in 96-well semi-skirted plates (Gel Company; San Francisco, USA) according to the

following protocol (Table 3).

Table 3. Sequencing reaction protocol

Step Temperature Duration Cycles
[°C]
1 98 5 min 1
2 96 10 sec
3 50 5sec 60
4 60 4 min

Finally, the products were purified on Biomek NX" automated liquid handler
(Beckman Coulter; Brea, USA) using CleanSEQ magnetic beads (Beckman Coulter; Brea,
USA) and separated by capillary electrophoresis on ABI 3730xlI DNA Analyzer (Applied
Biosystems; Foster City, USA).

4.4.7 Genotyping
Presence-absence and length polymorphism markers were assessed by agarose and
polyacrylamide gel electrophoresis. Marker genotypes were obtained by comparing the PCR
profiles of parents with the profiles of their progeny.

PCR products of SNP markers were sequenced and electropherograms were aligned
by MUSCLE algorithm (Edgar, 2004) in Geneious 6.1.8 (Biomatters Ltd.; Kearse et al., 2012).
The genotypes were obtained by comparing the electropherograms of parents with their
progeny.

Marker genotypes were typed into tables in Microsoft Excel (Microsoft Corp.).
Experimental lines carrying the DV92 alleles were designated as A, and lines carrying the

G3116 alleles were designated as B. Heterozygotes were designated as H.
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4.4.8 Linkage map construction

Marker genotype data were loaded to Multipoint Ultradense (v4.1) mapping software
(multigtl.com; Ronin et al., 2017) and were processed as a RIL population with default settings.
Markers were clustered into seven linkage groups (LGs) corresponding to seven T. monococcum
chromosomes.

Local map stability and monotonicity of each LG were visually inspected and tested
by jackknife resampling. Markers that were causing disarray were manually checked for
segregation ratios, linkage distances, and marker associations and were eventually discarded
to stabilize the map until the value of global variation decreased below 1.1.

LGs were assigned to chromosomes based on positions of known markers (according
to Vanzurova, 2013) and then they were exported to Microsoft Excel with recombination
frequencies converted into centiMorgans (cM) using the Kosambi mapping function (Kosambi,
1943). Exported LGs were visualized in MapChart 2.32 (Voorrips, 2002).

4.4.9 Quantitative trait loci analysis
Quantitative trait loci (QTL) analysis was performed by single-trait multiple environment
multiple interval mapping (MIM) with marker restoration option in MultiQTL (v2.6) software
(multigtl.com; Korol et al., 2001). The skeleton linkage map was used for the analysis because
skeleton markers are the most informative and less reliable attached markers caused disarray.
Prior to the QTL analysis, trait values of each environment were normalized by dividing each
trait value by standard deviation of the trait in Microsoft Excel.

LOD threshold values were determined by a global permutation test (1000 iterations).
QTLs were declared significant when their LOD scores exceeded the 99% (p < 0.01) critical
LOD threshold and highly significant when their LOD scores exceeded the 99.9% (p < 0.001)
critical LOD threshold. Standard errors for the positions of the QTLs and 95% confidence
intervals of the QTL spans were estimated using a bootstrap method (1000 iterations; Lebreton
& Visscher, 1998). QTL effects were estimated as the percentage of explained variance (PEV)
of the trait relative to its phenotypic variation. QTLs with PEV > 10% in at least half of the

environments were considered to be major.
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5 Results

5.1 Phenotyping of grain traits

T. monococcum is also called ‘einkorn’, which refers to the fact that the domesticated form has
usually one grain per spikelet. The wild form, T. boeoticum, usually bears two grains per
spikelet.

The experimental lines of the DV92xG3116 mapping population have either one or
two grains per spikelet. The presence of two grains per one spikelet alters grain shapes
compared to grains originating from spikelets with only one grain. For this reason, grains from
spikelets with a different number of grains were analyzed separately.

For each line and each spikelet type from each treatment of the DV92xG3116
mapping population (except for the 2009 season), at least 50 grains (if available) were
previously trashed. It was distinguished whether there was one (1 in 1) or two grains (2 in 1) per
spikelet. An example of the difference in size between 1 in 1 and 2 in 1 grains can be illustrated
on the parental lines DV92 and G3116 (Figure 3).

DV92,1in1 DV92,2in1

0660000 LM

G3116,1in1 G3116,2in1

A0

Figure 3. The differences in grain size and shape of the parental lines DV92 and G3116.

Grains from spikelets that contained just one grain are bigger and rounder compared to grains from
spikelets with two grains. DVV92 — cultivated T. monococcum; G3116 — wild T. boeoticum; 1 in 1 — grains
from spikelets that contained just one grain; 2 in 1 — grains from spikelets that contained two grains. Scale
bar=1cm.
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Grain area (mm?), grain length (mm), and grain width (mm) were measured on the
MARVIN seed analyzer (GTA Sensorik; Neubrandenburg, DEU). Then, grain roundness

grain weight

(Grain length . g/mm?) were calculated for 1 in 1 and 2 in 1

erain wi Clth) and grain thickness (

grain area
grains separately.

Grain area and length are closely correlated. The longest grains (11.6 mm) also have
the largest area (22.4 mm?) and the shortest grains (3.9 mm) have the smallest area (7.6 mm?).
The most and least round grains have asimilar length but a significantly different width
(1.0 mm/4.6 mm). Thick grains are characterized by an increased weight, and thereafter volume,

while thin grains are nearly flat.

5.2 Linkage map construction

A refined linkage map of Triticum monococcum DV92xG3116 included 699 markers composed
of DArT (Jaccoud et al., 2001), SSR, STS, and IRAP markers, markers derived from BAC ends,
and gene-based markers — previously used by Vanzurova (2013) — and another 17 markers
designed in the present study (Owm405, Owm406, Owm407, Owm411l, Owm412, Owm413,
Owm41l7, Owm419, Owm421, Owm423, Owm426, Owm429, Owm432, Owm433, Owm440,
Owm441, and Owm445; Appendix 6).

The resulting linkage map consisted of 676 markers (338 skeleton markers with 338
attached markers) and spanned 1033.1 cM on seven linkage groups, with one marker per
1.53 cM on average (Table 4).

5.3 QTL analysis

A total of 129 QTLs for 17 quantitative traits (Table 1) were mapped by multiple environment
multiple interval mapping using the DV92xG3116 skeleton linkage map. QTLs are summarized
in Appendix 2 and their location on chromosomes visualized in Appendix 1.

Out of all QTLs, 58 major QTLs are highly significant, 59 minor QTLs are highly
significant, 1 major QTL is significant, and 11 minor QTLSs are significant (Table 4).

The highest number of QTLs was mapped on 5A™ (22), while the lowest on 6A™ (10).
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Table 4. Distribution of mapped markers and QTLs on seven T. monococcum chromosomes.

Average . . -
Highly sign. Significant

Length  No.of  marker ahly sig 4 Total

Chr. . QTLs no. of
[cM]  markers density QTLs

[cM] Minor Major Minor Major

1A™ 1152 87 1.32 15 5 1 21

2A™  158.7 100 1.59 4 16 1 21

3A™  153.6 118 1.30 12 4 1 17

4A™ 73.8 52 1.42 6 3 17

5A™  192.6 107 1.80 9 11 2 22

6A™  164.8 74 2.23 8 1 1 10

TA™  174.4 138 1.26 5 13 3 21

Total 1033.1 676 1.53 59 58 11 1 129

Highly significant QTLs — LOD scores exceeded the 99.9% (p < 0.001) LOD threshold;
significant QTLs — LOD scores exceeded the 99% (p < 0.01) LOD threshold.

5.4 Marker saturation of regions containing the QTLs for leaf

pubescence

Two QTLs for leaf pubescence were initially mapped on chromosomes 3A™ and 5A™
(Vanzurova, 2013) and had one of the highest LOD scores out of all QTLs. That is why we
further focused on the characterization of the pubescence loci. Sequences of most of the wPt
(DArT) markers developed for the T. monococcum mapping population are unavailable
Therefore, linked markers (wPt-470276, wPt-860735, and wPt-376043 on 3A™ and wPt-
470451, wPt-860900, wPt-862154, and wPt-470407 on 5A™) were integrated into the 90K
iSelect SNP map constructed using 47 lines of our mapping population by comparing the
genotypes and finding the best fitting positions in Microsoft Excel.

Then, 49 PCR markers (designated Owm400-Owm448) were designed to regions near
the integrated markers on both chromosomes (Owm400-Owm424 on 3A™ and Owm425-
Owm448 on 5A™) using available sequences of linked SNP markers (Appendix 6).

Markers Owm405, Owm406, Owm407, Owm41l, Owm412, Owm41l3, Owm4l7,
Owm419, Owm421, Owm423, Owm426, Owm429, Owm432, Owm433, Owm440, Owm441, and
Owm445 were polymorphic in the Triticum monococcum DV92xG3116 F12 mapping population
and were added to the linkage map (Chapter 5.1).

Markers Owm407, Owm412, Owm419, Owm421, Owm423, Owm426, Owm432,
Owm433, Owm440, Owm441, and Owm445 were also found to be polymorphic on the F,
verification mapping populations (144x246, 246x144, DV92x113, and DV92x165).

The final QTL analysis confirmed that the QTLs for leaf pubescence map close to the
markers wPt-860735 (3A™) and wPt-470407 (5A™, allelic to wPt-376529; Appendix 3).
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The closest markers with known sequences were anchored to the reference sequence of Triticum
aestivum cv. ‘Chinese Spring” (IWGSC RefSeq v1.0; IWGSC, 2018).

Alignments located the 3A™ markers Owm405, Owm407, Owm412, Owm4l7,
Owm421, Owm423, wPt-9638, and D_contig33074_133 (SNP marker near wPt-470276 from
the DV92xG3116 SNP linkage map) in the physical region of ~30 Mbp on chromosome 3A,
~42 Mbp region on 3B, and ~28 Mbp region on 3D, with the most significant alignments being
on 3B. According to the constructed linkage map, marker wPt-860735 was located between
markers wPt-470276 and Owm405 (Appendix 3), so a new set of markers designated Owm449—
Owm466 was designed in the region between 660 and 690 Mbp on 3B (Appendix 7).

In a similar way to the 3A™ markers, the 5A™ markers Owm426, Owm433, Owm440,
Owm441, Owm445, wPt-862154, wPt-470407 (wPt-376529), and wPt-469600 were located in
the region of ~34 Mbp on chromosome 5A. Marker wPt-470407 (wPt-376529) was located
between markers Owm445 and wPt-469600 (Appendix 3), and new markers designated
Owm467-Owm484 were designed in the region between 688 and 691 Mbp on 5A (Appendix 7).

Markers Owm453, Owm457, Owm462, Owm463, Owm466, Owm467, Owm471l,
Owm476, Owm478, Owm480, and Owm483 were polymorphic in the T. monococcum
DV92xG3116 Fi2 mapping population and were integrated into the final DV92xG3116 linkage
map. The marker loci order in the regions with the newly added markers on 3A™ and 5A™ was
adjusted (Appendix 4). Then, a leaf pubescence QTL analysis was done using the global linkage
map (with both skeleton and attached markers) and refined QTL positions were obtained.

The QTL for leaf pubescence on 3A™ was mapped within a marker interval between
Owm412 and Owm421 (~709-729 Mbp region on 3B, IWGSC RefSeq v1.0; IWGSC, 2018)
near markers wPt-860851 and wPt-9638 (Appendix 4).

The QTL for leaf pubescence on 5A™ was mapped within a marker interval between
Owm471 and Owm476 (~688.7—-689.9 Mbp region on 5A, IWGSC RefSeq v1.0; IWGSC, 2018)
between markers wPt-470407 (wPt-376529) and wPt-469153 (wPt-469591; Appendix 4).

The positions of QTLs on 3A™ and 5A™ were verified on the verification mapping
populations by single environment multiple interval mapping. The QTL on 3A™ was verified
within the marker interval between Owm412 and Owm421 and the QTL on 5A™ was verified
near wPt-862154 (Appendix 5).
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6 Discussion

Triticum monococcum (or einkorn wheat) is an ancient small grain cereal that has played
a major role in the origins of Neolithic agriculture and its expansion beyond the area of Fertile
Crescent. Einkorn is a good model for wheat genomic studies because of its diploid genome and
good collinearity with other Triticum species (Dubcovsky et al., 1996; Marino et al., 2018;
Yu et al., 2019).

Previously constructed T. monococcum linkage maps showed varying lengths
(Table 5). The length of the linkage map constructed in the present study (Appendix 1) is

comparable to them considering the type and number of markers used.

Table 5. A comparison of various T. monococcum linkage maps.

Length  No. of

Reference Pop. Cross [cM]  markers Type of markers
RFLP, isozymes, seed storage-
Dubcovsky et al. (1996) F2 DV92xG3116 1067 335 protein markers, morphological trait
loci
Kojima et al. (1998) Fs KT3-5xKT1-1 862 81 RFLP, RAPD, ISSR
1D69x1D49, RFLP, AFLP, morphological trait
Taenzler etal. (2002) RIL 1D362x1D1331 856 ATt loci, seed storage-protein markers
Singh et al. (2007) RIL  paul4087xpau5088 1262 176 RFLP, SSR, EST
Hori et al. (2007) RIL KT3-5xKT1-1 1038 341 RFLP, EST
Jing et al. (2009) F MDR308xMDR002 1063 356 DArT, SSR, morphological trait loci
Yu etal. (2016) RIL  KT3-5xKTI-1 1377 926  DATT. SSR, gene markers, seed
storage-protein markers
. 1D228x1D752,
Marino et al. (2018) F2 ID396xID752 1562 2988 DArT-seq
Yuetal. (2019) RIL KT3-5xKT1-1 1873 9937 RAD-seq, DAIT, SSR
DArT, SSR, STS, IRAP, markers
The present study RIL DV92xG3116 1033 716 derived from BAC ends, gene
markers

Pop. — type of population that was used for linkage map construction.
Accessions:
DV92 (MDR308), KT3-5, ID69, 1D362, ID396, 1D1331, MDR002, and paul4087 — cultivated
T. monococcum:;
G3116, KT1-1, ID49, ID752, and pau5088 — wild T. boeoticum;
1D228 — feral T. monococcum ssp. aegilopoides sensu Schiemann
RFLP — restriction fragment length polymorphism; RAPD — random amplified polymorphic DNA; ISSR —
inter-simple sequence repeat; AFLP — amplified fragment length polymorphism; SSR —simple sequence
repeats; EST — expressed sequence tag; DArT — Diversity Arrays Technology; RAD — restriction site-
associated DNA; STS — sequence-tagged site; IRAP — inter-retrotransposon amplified polymorphism; BAC —
bacterial artificial chromosome.

A multiple environment multiple interval QTL mapping analysis of our mapping
population revealed 129 QTLs for 17 quantitative traits (Appendix 1 and 2).

Most of the QTLs for plant height, tillering pattern, leaf pubescence, ear emergence
time, spike length, the number of spikelets per spike, rachis brittleness, the number of grains per
spikelet, grain weight, and grain protein content mapped by Vanzurova (2013) were also

detected in the present study. However, some of them were identified in different positions.
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The differences may be caused by the employment of different statistical methods.
Vanzurova (2013) used single environment simple interval mapping, while multiple
environment multiple interval mapping was used in the present study.

In our case, the QTL contribution (an average percentage of variance explained by
QTLs; or PEV) ranged from 31% (the number of grains per spikelet) to 72% (leaf pubescence).
Therefore, a significant portion of the PEV remains undetected. There are several possible
reasons why this is the case, e.g., (a) minor QTLs that have not been detected above LOD
threshold, (b) environmental (or residual) variance that can arise from both environmental
factors and genetic background, and (c) epistatic interactions.

Most of the QTLs were mapped in chromosomal regions similar to those in which
QTLs were previously reported. A comparison of QTL positions mapped in the present study
between QTLs mapped in other studies is problematic as different mapping populations grown
in various environments and different types of markers are used. Therefore, approximate
relative QTL positions (a ratio of the QTL position to a total length of a chromosome) were
compared.

6.1 Plant height

Plant height directly affects yield because tall plants easily lodge, which causes yield loss.
However, if the plants are too short, ventilation and light are limited in the lower part due to the
close packing, which reduces the photosynthetic efficiency and yield. Thus, the optimal height
is essential for a high yield. Plant height is influenced by both Mendelian and quantitative
genes. Two major QTLs for plant height were mapped on 2A™ and 7A™, and five minor QTLs
on chromosomes 1A™, 3A™ 4A™ 5A™ and 6A™.

The QTLs mapped on 1A™, 3A™, 5A™ 6A™, and 7A™ are in similar positions as QTLs
mapped in diploid wheat on 5A™L (Hori et al., 2007) and in hexaploid wheat on 1BL (Lu et al.;
2012), 3A and 3D (Liu et al., 2014; Zhang et al., 2017b; Zhou et al., 2017; Zhao et al., 2019),
5AL and 5BL (Lyra etal., 2020), 6AL and 6BL (Wiirschum et al., 2017; Zhang et al., 2017b;
Zhao etal., 2019), and 7A and 7B (Huang et al., 2004; Liu etal., 2014; Gao etal., 2015).
According to Wiirschum et al. (2017), the identified QTL on 6AL might be the Reduced height
gene Rht24 (Tian et al., 2017).

The QTL on 2A™ has the highest PEV (21%) among the QTLs for plant height and
was mapped in the same region as QTLs mapped in T. monococcum (Hori et al., 2007; Yu et al.,
2016) and QTLs mapped on 2A, 2B, and 2D in hexaploid wheat (Liu et al., 2014; Gao et al.,
2015; Wiirschum et al., 2017). Yu et al. (2016) suppose that the QTL might be homoeologous to
Rht8 (Reduced height 8) in T. aestivum (Korzun et al., 1998; Gasperini et al., 2012).

Reduced height dwarfing genes Rht-B1 and Rht-D1 (Peng et al., 1999) are located on

chromosomes 4B and 4D. Their exploitation in breeding is one of the reasons why the ‘Green
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Revolution” was so successful (Borlaug, 1971). The QTL mapped on 4A™ appears to be in
a similar region and it might be homoeologous to Rht-1. Furthermore, Yu et al. (2016) mapped
a QTL for plant height on 4A™ in the same position and confirmed by markers that Rht-1 is

most likely an underlying gene.

6.2 The number of tillers and tillering pattern

The number of tillers is an agronomically important trait because it directly affects the number
of spikes per plant, a key component of grain yield, and it also determines plant canopy size and
photosynthetic area. High tillering is not desired as it leads to yield reduction because tillers
drain nutrients from the main shoot but undergo senescence before achieving maturity (Kebrom
etal., 2012). Furthermore, free-tillering cultivars are less productive compared with low
tillering ones under drought conditions (Richards, 1988). Two major QTLs for the number of
tillers were mapped on 1A™ and 7A™ (PEV = 9% and 10%, respectively), and two minor QTLs
on 2A™ and 4A™.

The QTLs mapped on 2A™, 4A™, and 7A™ are in similar positions as QTLs reported
on 2B and 2D (Li et al., 2002; Wang et al., 2016a; Xu et al., 2016), 4DS (Ren et al., 2018), and
7A (Huang et al., 2004) in T. aestivum.

Tiller inhibition 1 (tinl) gene was mapped on 1AS (Richards, 1988; Spielmeyer et al.,
2004); however, the QTL mapped in the present study is on 1A™L. A QTL was mapped in
a similar region on 1BL in hexaploid wheat by Liu et al. (2018a).

No QTL was mapped on 3A™ where tin3, a recessive gene that inhibits tillering, was
identified in T. monococcum by Kuraparthy et al. (2006). The mapping population used by
Kuraparthy et al. (2006) was prepared using mutagenesis and selected for tin3 mutants;
therefore, it was not expected that tin3 would manifest in our mapping population.

A sufficient number of tillers and their shape is one of the characteristics responsible
for weed competitiveness and reduced soil water evaporation. Ground cover at early tillering is
strongly correlated with weed suppression throughout the season (Kruepl etal., 2006).
However, plants with prostrate shape are susceptible to diseases (such as powdery mildew,
Blumeria graminis (DC.) Speer); therefore, drooping or loosely spreading tillering pattern
(also plant shape or architecture) might be the most optimal. A major QTL for tillering pattern
was mapped on 2A™ (PEV = 21%), and four minor QTLs were mapped on 1A™, 4A™, 5A™ and
7A™. The QTLs for the number and shape of tillers on 1A™, 2A™, and 7A™ mapped in the same
region; thus, the underlying genes might be controlling both the number and pattern of tillers.
That is in agreement with Li et al. (2002) who mapped a QTL for the number of tillers in
a similar region on 2D in T. aestivum, which also influenced tillering pattern. Yu et al. (2016)

mapped QTLs for plant architecture on 2A™ and 7A™ in syntenic positions.
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Both traits appear to be heavily influenced by the environment as the QTLs for the
number of tillers and tillering pattern explained only 49% and 33% of the total variance,

respectively.

6.3 Leaf pubescence

Leaf pubescence (or hairiness) provides a protection against both biotic and abiotic stress
factors. It might be an important target in breeding drought-resistant cultivars. A major QTL for
leaf pubescence (PEV =57%) was mapped on 3A™, and two minor QTLs were mapped on 5A™
(PEV = 13%) and 7A™ (PEV = 2%). The QTLs on both 3A™ and 5A™ were selected for
verification and were saturated with markers as one of the most statistically significant QTLs
detected in our population (Appendix 2).

A QTL for leaf pubescence has not been previously mapped on chromosome 3 of
wheat.

The QTL on 5A™ was mapped in a syntenic position in diploid wheat by Hori et al.
(2007), Jing et al. (2007, 2009), and Yu et al. (2016).

The QTL on 7A™ has not been previously mapped in diploid wheat but HI2 (leaf
hairiness 2) and two other QTLs were detected in T. aestivum on 7B, and 7A and 7D,
respectively (Taketa et al., 2002, Doroshkov et al., 2015). However, this QTL on 7A™ was not
further pursued as its effects are minor (PEV = 2%) and is statistically less significant compared
to the highly significant QTLs on 3A™ and 5A™ (Appendix 2).

The QTL on 3A™ was located within a marker interval between Owm412 and
Owm421 corresponding to a physical interval of ~20 Mbp on 3B (~709-729 Mbp; IWGSC
RefSeq v1.0; IWGSC, 2018), which was narrowed down from the initial ~42 Mbp interval.
Nevertheless, the ~20 Mbp interval still represents a large part of the chromosome and contains
84 predicted genes (high-confidence genes, IWGSC RefSeq v1.0; IWGSC, 2018). The QTL
appears to be near the centromeric region, which might be the reason why it is harder to narrow
it down as the amount of recombination is limited.

The QTL on 5A™ was located within a marker interval between Owm471 and
Owm476 corresponding to a physical interval of ~1.2 Mbp on 5A (~688.7-689.9 Mbp; IWGSC
RefSeq v1.0; IWGSC, 2018), narrowed down from the initial ~34 Mbp interval. The ~1.2 Mbp
interval contains 26 predicted genes (high-confidence genes, IWGSC RefSeq v1.0; IWGSC,
2018).
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6.4 Ear emergence time

Regional and seasonal adaptation of wheat varieties largely depends on ear (spike) emergence
time. Appropriate ear emergence time and anthesis are important targets for breeding. They
correlate with the growth period and affect yield. Two major QTLs for ear emergence time were
mapped on 1A™ and 7A™, and four minor QTLs on 2A™, 4A™, 5A™, and 6A™.

The QTL on 1A™ (PEV = 33%) mapped in the same position as the previously
reported (Bullrich et al., 2002; Valarik et al., 2006) wheat ortholog of circadian clock regulator
EARLY FLOWERING 3 (ELF3; Alvarez et al., 2016), formerly named earliness per se gene
Eps-A™1. In hexaploid wheat, three QTLs were mapped in similar regions on 1AL (Kuchel
et al., 2006), 1DL (Griffiths et al., 2009), and 1BL (Zikhali et al., 2017).

Kuchel et al. (2006) and Bennett et al. (2011) mapped homoeologous QTLs for ear
emergence time on 2AS, 2BS, and 2DS (coincident with the diagnostic photoperiod responsive
allele Ppd-D1a marker; Beales et al., 2007) in a similar region to that on 2A™ from the present
study. Moreover, the QTLs for tiller number and spike length on 2A™ mapped in a similar
position, which is in agreement with reports (Li et al., 2002; Xie et al., 2015; Ochagavia et al.,
2017) that Ppd-1 alleles affect tillering and spike-related traits (Boden et al., 2015).

The VRN1 vernalization genes (Yan et al., 2003) are located on 5A™L, 5AL, 5BL, and
5DL (Dubcovsky et al., 1998; Barrett et al., 2002) and the VRN2 gene (Yan et al., 2004) was
mapped in the distal region of 5A™L (Dubcovsky et al., 1998). Yu et al. (2016) used VRN
specific STS markers and mapped VRNL1 in the middle of the long arm of chromosome 5A™ and
VRN2 in the distal region of 5A™. In the present study, the QTL on 5A™ was mapped in the
distal region as well; thus, it is most likely the VRN2 gene.

The QTL mapped on 7A™ (PEV = 16%; marker FT, 63.1 cM) is the TaFT-VRN3
flowering gene (Yan et al., 2006) mapped on 7BS (Huang et al., 2003; Yan et al., 2006; Griffiths
etal., 2009) and 7A™S (Yu et al., 2016).

The QTLs on 4A™ and 6A™ were mapped in regions similar to those with QTLs on
4AS and 4BS (Bennett et al., 2011; Chen et al., 2020), and 6AL and 6BL (Borner et al., 2002;
Huang et al., 2003; Griffiths et al., 2009; Chen et al., 2020).

6.5 Spike-related traits

Most spike-related traits, such as spike length, the number of spikelets per spike, and spike
density, positively affect the number of grains per spike, which in turn affects the yield (Liu
etal., 2018b).

In T. aestivum, four well-studied genes affect spike-related traits: Q, Br, C, and s.
The domestication Q gene on chromosome 5AL (Simons et al., 2006) pleiotropically affects

a repertoire of traits, e.g., spike length and shape, seed threshability, glume tenacity, rachis
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fragility, plant height, and ear emergence time. T. monococcum has the primitive q allele, which
grants the non-free-threshing character.

In addition to the Q gene, Brittle rachis (Br) loci on the homoeologous group 3
chromosomes control the rachis character (Chen etal., 1999; Watanabe & Ikebata, 2000;
Watanabe et al., 2003; Li & Gill, 2006; Nalam et al., 2006).

The C gene on 2D (Johnson et al., 2007) affects spike morphology, grain size, shape,
and number, and is characteristic for T. aestivum ssp. compactum (Host) Mac Key (or club
wheat), which has characteristic compact spikes.

The s gene on 3DS (Salina etal., 2000) is characteristic for another subspecies,
T. aestivum ssp. sphaerococcum (Percival) Mac Key (or shot wheat), and determines whether
a spike is short and dense and has round grains and glumes. According to Faris et al. (2014),
these genes do not contribute to various spike-related traits among the modern T. aestivum
cultivars as all of them have the universal QcS genotype.

Two major QTLs for spike (ear) length were mapped on 2A™ and 4A™, and four
minor QTLs were mapped on 1A™, 3A™ 5A™, and 6A™.

The QTLs are in similar positions as QTLs mapped in diploid wheat on 4A™ and 5A™
(Hori et al., 2007; Yu et al., 2016) and in hexaploid wheat on 1B and 1D (Borner et al., 2002;
Marza et al., 2005; Kumar et al., 2006), 2B and 2D (Borner et al., 2002; Kumar et al., 2006; Cui
etal., 2011; Liu etal., 2018b), 3B (Li etal., 2015; Wiirschum et al., 2018; Zhou et al., 2017),
4A and 4B (Bormer et al., 2002; Chu et al., 2008; Cui et al., 2011; Faris et al., 2014; Gao et al.,
2015; Li etal., 2015), 5A, 5B, and 5D (Kato et al., 1999; Borner et al., 2002; Cui et al., 2011;
Zhai et al., 2016; Zhou et al., 2017), and 6A (Borner et al., 2002; Liu et al., 2018b; Wiirschum
etal., 2018).

The number of spikelets per spike has a significant effect on the number of grains
per spike and grain weight. Three major QTLs for spikelet number per spike were mapped on
1A™ 2A™ and 7A™, and two minor QTLs in wide intervals on 5A™ and 6A™.

The QTL on 1A™ was mapped in the same position as ELF3 (marker SMP; 115.2 cM),
which have arole in the regulation of flowering and the number of spikelets per spike. ELF3
shortens the vegetative and the spike initiation phase; therefore, fewer spikelets and grains per
spike are produced (Lewis et al., 2008).

The QTLs mapped on 2A™, 5A™, and 6A™ are in similar positions as QTLs mapped in
hexaploid wheat on 2BS and 2DS (Cui et al., 2011; Zhang et al., 2018; Ma et al., 2019a; Kuzay
etal., 2019), 5A and 5B, and 6A and 6D (Wang et al., 2010; Cui etal., 2011; Zhang et al.,
2018).

Hori et al. (2007) mapped QTLs for the number of spikelets per spike on 3A™ and 4A™

in diploid wheat but they were not detected in the present study.
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Xu et al. (2013), Zhang et al. (2018), Fan et al. (2019), Kuzay et al. (2019), and Chen
et al. (2020) mapped QTLs on 7AS and 7AL and Yu etal. (2016) mapped a QTL on 7A™S.
Interestingly, the QTL on 7A™ mapped in the present study consists of two peaks (one of them
on 7A™S and more distinct one on 7A™L) that approximately correspond to the QTLs on 7AS,
7A™S, and 7AL. A QTL on 7AL has been recently discovered to be an ortholog of rice
ABERRANT PANICLE ORGANIZATION 1 (TaAPO-Al; Mugaddasi et al., 2019).

Spike compactness (density) is associated with grain yield. It is determined as the
ratio of the number of spikelets per spike to spike length and it is positively correlated with the
number of spikelets per spike and negatively correlated with spike length (Wiirschum et al.,
2018). Varieties with longer and more compact spikes bear a higher number of grains per spike;
therefore, breeding for length and density of spikes can improve grain yield (Li etal., 2015).
Low spike density plants have a lower number of spikelets on spikes, and, therefore, reduced
yield, but the spikes have better ventilation. On the contrary, high-density spikes tend to hold
more water; thus, pre-harvest sprouting is more likely to occur, which leads to yield and quality
reduction and higher incidence of Fusarium head blight (Mesterhazy, 1995). Therefore, varieties
with a moderate spike density are preferred (Li et al., 2015). Two major QTLs for spike density
were mapped on 3A™ and 4A™, and five minor QTLs on 1A™, 2A™, 5A™, 6A™, and 7A™.

The QTLs were mapped in chromosomal regions similar to those with QTLs detected
in T. aestivum on 1B (Liu et al., 2019), 2A, 2B, 2D (Sourdille et al., 2003; Cui et al., 2011; Faris
et al., 2014; Echeverry-Solarte et al., 2015; Li et al., 2015; Zhou et al., 2017; Wiirschum et al.,
2018), 3A, 3B (Cui etal., 2011; Faris etal., 2014; Liu etal., 2019), 4A, 4B (Katkout et al.,
2014; Liu etal., 2019), 5A, 5B, 5D (Chu et al., 2008; Katkout et al., 2014; Echeverry-Solarte
etal., 2015; Zhai et al., 2016; Liu et al., 2019), 6A (Cui et al., 2011; Wiirschum et al., 2018; Liu
etal., 2019), and 7A (Wiirschum et al., 2018).

The QTL on 2A™ was mapped in the same position as the QTL for plant height, which
might be homoeologous to Rht8 as discussed above. This is in agreement with Liu et al. (2019)
who suggest that spike density might be affected by dwarfing genes.

Rachis brittleness (also shattering or fragility) is characteristic for wild
T. boeoticum that the spikelets disarticulate at maturity to disperse the seed. Domesticated
T. monococcum has a non-brittle rachis that breaks into spikelets only during threshing or
flailing. The loss of a brittle rachis was one of the first and most important domestication traits
acquired by the cultivated wheats. The non-brittle rachis einkorn originated from a single
nucleotide mutation at Btrl on 3A™S (Pourkheirandish et al., 2018). This mutation was selected
as a result of cultivation by early Neolithic farmers. The trait is influenced by QTLs other than
the btrl but with milder phenotypic effects (Jiang et al., 2014). Two major QTLs for rachis
fragility were mapped on 3A™ and 7A™, and three minor QTLs on 1A™, 4A™ and 5A™.
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The QTLs on LA™ and 4A™ have not been previously mapped. The QTLs on 5A™ and
7A™ were mapped in chromosomal regions similar to those with QTLs detected in T. aestivum
on 5A and 7B (Marza et al., 2005).

The major QTL on 3A™ was mapped in a similar position as Btrl mapped in
T. monococcum by Pourkheirandish et al. (2018).

The number of grains per spikelet determines the number of grains per spike and
thus determines the yield potential. In general, domesticated T. monococcum has one grain per
spikelet, whereas wild T. boeoticum has two grains per spikelet. Current T. aestivum cultivars
produce three to five grains per spikelet. Two major QTLs for the number of grains per spikelet
were mapped on 1A™ and 3A™, and one minor QTL on 5A™. Only 31% of variance was
explained by the QTLs, which indicates that the grain number might be strongly influenced by
the environment.

Singh et al. (2008) mapped a QTL for the number of grains per spikelet on 1A™L in
T. monococcum at a different position than the QTL mapped on 1A™ in the present study. Singh
et al. (2008) also mapped a QTL on 4A™S in T. monococcum but no QTL was detected on 4A™
in the present study. A QTL in a similar region as the QTL mapped on 1A™ was detected in
T. aestivum on 1D by Zhou et al. (2017).

Recently, the Grain Number Increase 1 (GNI1) gene was identified on 2AL in diploid
and polyploid wheat (Sakuma et al., 2019). However, no QTL on 2A™ was detected in the
present study.

The QTL on 3A™ was mapped in a region similar to those with QTLs mapped in
T. aestivum on 3A, 3B, and 3D (Guo et al., 2016; Zhou et al., 2017)

6.6 Grain-related traits

One of the main components of yield is grain weight, which is largely defined by grain size and
the morphometric characteristics of grain area, length and width.

In T. aestivum, many QTLs associated with grain weight have been found across the
wheat genome on most of the chromosomes (e.g., Borner et al., 2002; Groos et al., 2003; Huang
et al., 2004; McCartney et al., 2005; Quarrie et al., 2005; Marza et al., 2005; Narasimhamoorthy
etal., 2006; Kuchel et al., 2006; Wang et al., 2009; Zheng et al., 2010; Reif etal., 2011; Wu
etal.,, 2012; Lopes etal., 2013; Zhang etal., 2013; Zanke etal., 2015; Kumar et al., 2016;
Zhang et al., 2016; Assanga et al., 2017; Deng et al., 2017; Cabral et al., 2018; Su et al., 2018;
Wiirschum et al., 2018; Zhang et al., 2018; Goel etal., 2019; Kumari et al., 2019; Ma etal.,
2019b; Wang et al., 2019; Xin et al., 2020). Nevertheless, only few genes were characterized
(see Li & Yang, 2017), e.g., TaGW2 (Su et al., 2011; Hong et al., 2014), TaGS5 (Wang et al.,
2016b), and TaGWS8 (Yan et al., 2019).
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In the present study, the weight of 1in1 and 2 in 1 grains (one grain per spikelet or
two grains per spikelet) was analyzed separately (except for the 2009 season in which the 1 in 1
and 2 in 1 grains were not differentiated). This allowed more precise QTL mapping as 1 in 1
grains were 19% heavier compared to 2 in 1 grains. This is also supported by the fact that the
QTLs for the weight of non-differentiated grains were detected in wider intervals. Moreover,
a higher number of QTLs was detected for the weight of 1in1 and 2in1 grains. No other
studies have analyzed 1 in 1 and 2 in 1 grains separately.

Grains of the wild T. boeoticum parent were found to be weighing 40% less compared
to grains of the domesticated T. monococcum parent. This is similar to a 60% weight difference
reported by Yu et al. (2019). The average grain weight of RILs (18.4 mg) was 1.8 mg higher
than the grain weight of the KT1-1xKT3-5 RIL population used by Yu et al. (2019). The grains
of the KT1-1 and KT3-5 parental lines were 22% lighter than grains of the DV92 and G3116
parents, so the difference was expected.

In general, three major QTLs for grain weight were mapped on 2A™, 5A™ and 7A",
and three minor QTLs on 1A™, 3A™, and 4A™. The QTLs for the weight of 1in 1, 2in 1, and
non-differentiated grains mapped in similar regions; therefore, the underlying genes are most
likely the same. The QTLs on 2A™ are an interesting exception because peaks of the QTLs for
the weight of 1 in 1 and 2 in 1 grains mapped 13.4 cM apart. There is a similar difference in the
position of peaks of QTLs for the area, length, and width of 1in1 and 2 in 1 grains on 2A™.
Thus, different genes on 2A™ might be affecting the development of 1 in 1 and 2 in 1 grains.

The QTLs mapped on 2A™ and 7A™ are in similar positions as QTLS mapped in
T. monococcum (Hori et al., 2007; Singh et al., 2008). Yu et al. (2019) mapped QTLs for grain
weight on 1A™, 2A™, 3A™ 5A™ and 7A™. The QTLs on 1A™, 3A™, and 5A™ are in similar
regions, while the QTLs on 2A™ and 7A™ are not.

Grain size (grain area, length, and width) and shape (grain roundness, thickness) are
important characteristics that are components of yield and milling quality and have a strong
positive correlation with grain weight (Gegas et al., 2010). The transition from wild wheats to
their domesticated forms was associated with a trend toward larger grains. The shape of grains
has changed from long and thin (cylindrical) into wider and shorter (Fuller, 2007). However, the
grain shape has not been a major component of the wheat domestication syndrome but has
become an important breeding target due to the market and industry requirements. In general,
large thin-skinned grains with nearly circular shape have higher flour extraction rates (Gegas
etal., 2010).

In T. aestivum, QTLs for grain shape and size have been detected on almost all wheat
chromosomes (e.g., Gegas et al., 2010; Tsilo et al., 2010; Prashant et al., 2012; Maphosa et al.,
2014; Williams & Sorrells, 2014; Wu et al., 2015; Kumar et al., 2016; Brinton et al., 2017; Su
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etal., 2018; Kumari etal., 2019; Ma etal., 2019b; Wang etal., 2019; Xin etal., 2020).
In T. monococcum, Yu et al. (2019) have detected QTLs on all chromosomes except 4A™.

The average values of area (mm?), length (mm), and width (mm) of 1 in 1 (15.5, 7.7,
and 2.7, respectively) and 2 in 1 grains (12.5, 7.5, and 2.1) were similar to those reported by Yu
et al. (2019; 12.9, 7.8, and 2.2). The grains of the KT1-1xKT3-5 RIL population used by Yu
et al. (2019) were 8% smaller overall, but slightly more elongated.

Three major QTLs for the area of both 1in 1 and 2 in 1 grains were mapped on 2A™,
5A™, and 7A™, and two minor QTLs on 1A™ and 3A™. The QTLs on 1A™ and 5A™ overlap,
which means that the underlying genes are probably the same, while the QTLs on 2A™, 3A™,
and 7A™ mapped in different chromosomal regions. The QTLs on 3A™ mapped 60 cM apart;
however, they both consist of two peaks. One of the peaks is in the telomeric region (above the
LOD threshold in the case of 2 in 1 grains), while the second one is in the centromeric region
(above the LOD threshold in the case of 1 in 1 grains). Therefore, there might be two different
QTLs for grain area on 3A™. The QTLs on 3A™ (in the telomeric region) and 5A™ mapped in
similar positions as the QTLs detected by Yu etal. (2019). The QTL on 5A™ explained up to
26% of variance, which is similar to what Yu et al. (2019) reported (22%).

Two major QTLs for the length of both 1 in 1 and 2 in 1 grains were mapped on 2A™,
and 7A™, one major QTL for the length of 2 in 1 grains on 5A™, three minor QTLs for the length
of both 1in1and 2 in 1 grains on 1A™, 3A™ 4A™ and one minor QTL for the length of 1 in 1
grains on 5A™. The QTLs on 3A™, 4A™ 5A™, and 7A™ overlap and the QTLs on 2A™ are in
a similar position. No QTLs were mapped in positions similar to those in which Yu et al. (2019)
detected QTLs for grain length.

Three major QTLs for the width of both 1 in 1 and 2 in 1 grains were mapped on 2A™,
4A"™, and 5A™, one major QTL for the length of 1 in 1 grains on 7A™, one major QTL for the
length of 2 in 1 grains on 1A™, one minor QTL for the length of both 1 in 1 and 2 in 1 grains on
3A™, and three minor QTLs for the length of either 1in1 or 2in 1 grains on 1A™, 6A™, and
7A™. The QTLs 2A™, 4A™, 5A™, and 7A™ overlap. The QTLs on 1A™ for the width of 1in1
grains and on 5A™ for the width of both 1in1 and 2 in1 grains were mapped in positions
similar to those with QTLs detected by Yu et al. (2019).

The ratio of grain length to grain width was designated as grain roundness. One
major QTL for the roundness of both 1 in 1 and 2 in 1 grains was mapped on 4A™, three major
QTLs for the roundness of 1in1 grains on 2A™, 5A™, and 7A™, one major QTL for the
roundness of 2 in 1 grains on 6A™, two minor QTLs for the roundness of both 1 in1and 2in 1
grains on 1A™ and 3A™, and four one minor QTLs for the length of either 1 in 1 or 2 in 1 grains
on 2A™, 5A™ 6A™, and 7A™. The QTLs on all chromosomes except 5A™ overlap. The QTL on
1A™ mapped in a position similar to that with a QTL detected by Yu et al. (2019).
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Grain thickness was calculated as the ratio of grain weight to grain area. Two major
QTLs for the thickness of both 1 in 1 and 2 in 1 grains was mapped on 2A™ and 5A™, one major
QTL for the thickness of 1 in 1 grains on 4A™, two minor QTLs for the thickness of both 1 in 1
and 2 in 1 grains on 3A™ and 7A™, and two minor QTLs for the thickness of 2 in 1 grains on
1A™ and 6A™. The QTLs on 2A™, 3A™, 5A™ and 7A™ overlap.

Generally, most of the QTLs for grain traits on chromosomes 1A™, 2A™, 4A™, 5A™,
and 7A™ co-located at the same chromosomal regions. That is in agreement with Yu etal.
(2019) who have also mapped QTLs for grain traits that clustered at certain chromosomal

regions.

grain area grain area

Another two grain shapes were analyzed ( ); however,

grain width grain roundness
both of them were found to be redundant as they strongly correlated with the basic grain
parameters (grain area, length, and width) and were discarded.

Grain protein content is one of the important grain traits determining nutritional and
end-use value of a harvested crop. Wheat is rich in carbohydrates but rather poor in protein
(Vogel etal., 1976). Still, wheat is one of the main sources of worldwide protein supply;
therefore, an improvement in grain protein content has been a major aim in wheat breeding
programs focused on nutritional quality. However, grain protein content is negatively correlated
with grain yield, which makes it more difficult to improve (Wang et al., 2012b). The QTLs for
grain protein content were found on all chromosomes of both tetraploid and hexaploid wheat
(see review by Kumar et al., 2018). Three major QTLs for grain protein content were mapped
on 4A™ 5A™ and 7A™, and three minor QTLs on 1A™, 2A™, and 6A™.

The QTLs were mapped in chromosomal regions similar to those in which QTLs were
detected in tetraploid and hexaploid wheat on 1A, 1B, 1D (Groos et al., 2003; Kulwal et al.,
2005; Mann et al., 2009; Wang et al., 2012b; Deng et al., 2015; Tiwari et al., 2016b; Goel et al.,
2019), 2A, 2B, 2D (Groos et al., 2003; Wang et al., 2012b; Deng et al., 2015; Maphosa et al.,
2015; Giancaspro etal., 2019; Nigro etal., 2019), 4A, 4B (Zanetti etal., 2001; Groos et al.,
2003; Blanco et al., 2012; Wang et al., 2012b; Fatiukha et al., 2019; Nigro et al., 2019), 5A, 5B,
5D (Blanco et al., 2002; Groos et al., 2003; Mann et al., 2009; Wang et al., 2012b; Deng et al.,
2015; Fatiukha et al., 2019), 6A, 6B (Joppa et al., 1997; Groos et al., 2003; Breseghello et al.,
2005; Peleg et al., 2009; Blanco et al., 2012; Fatiukha et al., 2019; Nigro et al., 2019), 7A, and
7B (Blanco et al., 2002; Groos et al., 2003; Blanco et al., 2012; Wang et al., 2012b; Nigro et al.,
2019).

Taenzler et al. (2002) mapped QTLs for grain protein content on 1A™ and 5A™.

The minor QTL mapped on 1A™ in the present study is in a similar position.
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7 Conclusions

Triticum monococcum L. is closely related to T. urartu, the donor of the A-genome of common
wheat, and is an attractive model for wheat genomic studies.

A linkage map of T. monococcum was constructed using 81 Fi» RILs derived from
a cross of cultivated T. monococcum ssp. monococcum ‘DV92’ and wild T. monococcum ssp.
boeoticum ‘G3116’ (Dubcovsky et al., 1996; Vanzurova, 2013). The linkage map contains 676
molecular markers (338 skeleton and 338 attached markers) assigned to seven linkage groups
corresponding to seven T. monococcum chromosomes and covers 1033 cM with one marker per
1.53 cM on average.

A total of 129 QTLs for 17 quantitative traits (plant height, the number of tillers,
tillering pattern, leaf pubescence, ear emergence time, spike length, the number of spikelets per
spike, spike compactness, rachis brittleness, the number of grains per spikelet, grain weight,
grain area, grain width, grain length, grain roundness, grain thickness, and grain protein content)
were detected using multiple environment multiple interval mapping. The highest number of
QTLs was mapped on chromosome 5A™ (22), while the lowest on 6A™ (10). The QTLs for
different traits often co-localized, especially on 2A™, 5A™, and 7A™. A sum of the average
percentage of variance explained by QTLs for a trait ranged from 31% (the number of grains
per spikelet) to 72% (leaf pubescence).

Leaf pubescence is a useful trait for breeders as it provides a protection against both
biotic and abiotic stress factors. Two highly significant QTLs for leaf pubescence were mapped
on 3A™ and 5A™ and the chromosomal regions with the QTLs on both chromosomes were
saturated with markers. The sequences on which the markers associated with the QTLs are
based on were BLASTN searched against the physical map of T. aestivum (IWGSC RefSeq
v1.0; IWGSC, 2018). The markers for the QTL on 3A™ aligned within an interval between 709
and 729 Mbp on 3B and the markers for the QTL on 5A™ within an interval between 688.7 and
689.9 Mbp on 5A. Both QTLs were verified on verification mapping populations. This provides

an ideal basis for the identification of underlying genes.
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9 Appendices

Appendix 1. A linkage map of Triticum monococcum DV92xG3116 with 129 mapped QTLs.

Appendix 2. QTLs detected by multiple environment multiple interval mapping in Triticum

monococcum Fi» RIL population derived from DV92xG3116.

Appendix 3. Highly significant QTLs for leaf pubescence mapped on 3A™ and 5A™ by multiple
environment multiple interval mapping in Triticum monococcum Fi; RIL population derived

from DV92xG3116 using skeleton linkage map.

Appendix 4. Highly significant QTLs for leaf pubescence mapped on 3A™ and 5A™ by multiple
environment multiple interval mapping in Triticum monococcum Fi; RIL population derived
from DV92xG3116 using adjusted global linkage map.

Appendix 5. Verification of the QTLs for leaf pubescence on 3A™ and 5A™ by single
environment multiple interval mapping in Triticum monococcum F, verification mapping

populations.
Appendix 6. Owm400-Owm448 PCR markers.

Appendix 7. Owm449-Owm484 PCR markers.
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Appendix 1. A linkage map of Triticum monococcum DV92xG3116 with 129 mapped
QTLs.

The vertical bars represent the seven chromosomes of T. monococcum with marker
loci on the right and corresponding genetic distances in ¢cM (approximated using Kosambi) on
the left.

Minor highly significant QTLs are shown as black filled bars, major highly significant
QTLs as green filled bars, minor significant QTLs as black open bars, and major significant
QTLs as green open bars.

Lines represent the spans of 95% confidence intervals (detailed information available
in Appendix 2).
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Chromosome 4A™
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Chromosome 5A™
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Appendix 2. QTLs detected by multiple environment multiple interval mapping in Triticum monococcum Fi; RIL population derived from

DV92xG3116.

! Chromosome on which the QTL was detected (visualized in Appendix 1).
2 Position of LOD peak with standard deviation (SD).

% 95% confidence interval of the QTL span calculated using a bootstrap method.

4 LOD peak score.

®99% (significant QTLs) and 99.9% (highly significant QTLs) LOD thresholds calculated using a global permutation test.

® QTL effects are provided as the percentage of explained variance (PEV) for each of the eight environments 1-8 (E1-8) with SD.

E1-8 represent Stupice (2009), Spring (2009), Spring (2010), Fall (2010), Spring (2011), Fall (2011), Spring (2012), and Italy (2012),

respectively. Environments in which the trait has not been assessed are marked as —.

* Chromosomes with QTLs that are considered to be major (PEV > 10% in at least half of the environments).

LOD thr.®

Trait chp: Positionx  Confidence o PEVEL PEVE2 PEVE3 PEVE4 PEVE5 PEVE6 PEVE7 PEVES
SD[cM]?2 interval (95%)° 99% 99.9% +SD° +SD® +sp® +sp® +SD® +SD® +SD® +sSD®

Plant height 1A™  113.50+6.87 [100.0;115.2] 11.75 629 7.9 37434 24424 28+18 1.1xl.6 17.6+54 3.0+23  9.5+4.6 1.4+18
2A™  70.53+0.87  [68.8;72.2] 4825 672 1611 18.0+6.4 30.0£6.8 33.3+4.6 24365 10544 12.5t44 16.8+5.6 22.5+5.9

3A™ 74224510 [64.2;84.2] 1459 657 735 6.9+45 57+39 8330 29426 54+£33 21420 59+42 111452

4A™ 24544276 [19.1;30.0] 12.47 6.07 784 45+35 53436 7.6£29 63+3.8 4.1+£29 39427 2.0+£23  1.7+19

SA™ 146311221 [122.4170.3] 1653 6.9 862 2.6£2.8 29+2.6 5.8+27 7.8+4.0 6.8+3.8 122448 09+13  9.2+4.4

6A™  109.47+12.04  [85.9;133.1] 9.76 652 844 32434 50436 7.6+3.4 15t1.8 3.7+£34  48+34 2930 27426

7TA™  87.14+2.08  [83.1;91.2] 2216 6.9 866 2324 27424 10.1433  69+43 5535 282457 10.0453 12.7£5.5

Number of tillers  1Am*  109.92+16.68  [77.2;115.2] 8.69 496 551 - —  15%23  1.6+23 14.7+60 16.7+5.8  9.9+5.5 -
2A™  60.53+25.56  [10.4;110.7] 569 533  6.73 - —  5.0+44 21426 2.0£29 77455 14.4+8.0 -

4A™ 9.70410.68  [0.00;30.64] 6.04 485 599 - — 152493  38+4.0 6.1+47  62+43  53+45 -

7A™  8519+10.51  [64.6;105.8] 935 521  6.84 - — 2634 204+74 8.7+57 185+7.0 2.1£29 -

1—Appendix 2



Trait Chri Positions  Confidence , LODthr® PEVE1 PEVE2 PEVE3 PEVE4 PEVE5 PEVE6 PEVE7 PEVES

SD [cM]?2  interval (95%)® 99% 9999% +SD® +SD® +£Sp® +sSp® +£SD® +SD® +SD®  +SD

Tillering pattern 1 Am 111404820  [95.3;115.2] 16.34 564  7.03 - — 7442 42443 241480 8347 14.0+65 23435
2A™ 7115048 SD<0.5cM 289 551 836 - — 229459 226473 124448 20.046.2 16.8+5.7 33.0+7.6

4A™  31.13+18.04  [0.0;66.5] 6.18 545 651 - — 10.5+5.7 52455  8.7+48  2.6£3.0 2.743.0 22427

SA™  133.92425.10  [84.7;183.1] 753 596  7.45 - — 82449 22431 29428 113465 7.044.8 23432

7A"  87.44+10.12  [67.6,107.3] 1142 587  8.49 - — 27424  53+46 1.1£14 17.047.0 8.0448  9.645.6

Leaf pubescence  3Am™*  84.61+0.64  [83.3;85.9]  159.53 7.26 7054 22.1452 27.045.2 78.842.4 76.6+42 79.4+4.1 743+44 7T3.7£3.7 27.9+5.8
A" 178.68+1.81 [175.1;182.2] 325 676 1411 369459 32.9+55 02403 03404 02403 63424  1.6+13 22.846.3

7A"  80.46+20.08  [41.1;119.8] 8.83 6.84 4749 34428 3.7£2.7 29417 1.8+1.5 0.7+0.7 12412 24419 24423

Ear emergence 1A™  115.15£0.16 SD<0.5cM 58.93 5.01 11.64 - — 331462 20.9+6.0 56.3+3.0 13.4+4.6 38.9+5.8 -
time 2A"™  47.26+£19.65  [8.7;85.8] 7.74 5.13 6.5 - — 27424 45432 55422 23424  1.4+16 -
4A™ 9.1849.17  [0.00;27.17] 6.73 489 594 - —  1.1#15 78434 13+1.0 55436  3.1423 -

A" 185.59+7.30 [171.3;192.6] 1201 499  6.07 - — 20421  1.6+1.6 87425  1.0+13  7.7433 -

6A™  130.01+22.13  [86.6;164.8] 6.57 541  7.36 - — 28430 29427 3.5+19 52436 1.516 -

7A™ 63194040 SD<0.5cM 2947 51 657 - — 53435 17.044.1 87423 37.6%5.6 12.1+4.5 -

Spike length 1A™  1152140.16 SD<0.5cM 14.68 5.17 6.88 — 48429 42423  0.8+1.1 8.8+3.5 18.145.7 12.0+4.8 -
2A™ 53414497  [43.7;63.2] 19.83 581  6.89 — 132447 129438 73438 12.7445 13.5£5.6  2.542.5 -

3A™ 60.39+3.49  [53.5;67.2] 1528 56 6.4 — 8337 19.0444 21423  2.5+2.0 33428  6.844.0 -

4A™  33.16+1.54  [30.1;36.2] 32.24 553 8.3 — 26.146.6 30.144.6 14.944.6 18.644.9 9.6+4.7 12.945.2 -

A" 102.09+16.16  [70.4;133.8] 10.25 557  6.41 — 36436 4.6+3.0 3.0433  9.143.8 79452  6.045.0 -

6A™ 84.1145.97  [72.4:95.8] 14.03 593 833 — 68+4.1 28420 89442 13.044.5 1.6#2.1 11.545.0 -
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Trait chp: Positionx  Confidence , LODthr® PEVE1 PEVE2 PEVE3 PEVE4 PEVE5 PEVE6 PEVE7 PEVES

SD [cM]?2  interval (95%)® 99% 9999% +SD® +SD® +£sp® +sp® +SD® +SD® +SD®  +SD

Numberof —  jAm  1152140.16 SD<0.5cM 3438 594 808 114455 17.045.5 202454  7.6+4.1 343453 214459 16.745.2 -
spikelets per spike 2A™  4829+4.45  [39.6;57.0] 2052 611 751 26437 158+6.1 17.545.7 10.1#4.8 9.2+4.1 16.4+6.0 11.3+5.5 -
5A™  95.63+30.88  [35.1;156.2] 722 634 785 48+44 12417 3.5£32 89452  4.6+3.5 34436 34432 -

6A™  81.46+27.26  [28.0;134.9] 758 6 693 52457 3.142.8 2.8427 58443 6.4+43  1.1£19  8.0+£5.0 -

7A™* 898441201  [66.3;113.4] 13.12 6.39 7.7 129+7.0 112457  3.043.3 10.8+5.7 3.542.9  12+1.7 11.0+5.1 -

Spike compactness 1 Am 70.57+2.01  [66.6;74.5] 2346 582  6.48 —  9.6+44 97430 29422 26.7+5.6 7.4+3.6 8.1+4.4 -
2AM 72.30+3.49  [65.5;79.1] 129 577 701 — 29424 82427  4.6+25 4.0+2.8 55432  3.0+2.7 -

3A™  5880+0.33 SD<0.5cM 29 569 7.9 — 173451 16.8+3.5 11.6+3.8 7.7+3.4 8.0+35 49434 -

4A™*  36.06+0.70  [34.7;37.4] 4951 521 657 — 17.1453 29.6£3.9 31.4453 15.1+4.9 257453 17.6£6.3 -

5A™  113.81+18.48  [77.6;150.0] 12.73 573  7.36 —  5.043.6 45822  2.6+2.0 3.4+2.6 104448  7.0+4.3 -

6AM 95.52+6.85  [82.1;109.0] 121 586  6.57 — 35428  3.5+19  8.5+3.5 32426 4.0+25 74447 -

7A™  100.84+3.23  [94.5;107.2] 1828 586  7.25 — 7438 78426 69432  7.0433  95+3.8  1.8+2.1 -

Rachis brittleness 3 am 98.04+1.64  [94.8;101.2] 19.03 565  7.33 — 13.144.0 54428 2.8+22 47429 16.4+6.1 8.7+3.9 -
3A™  5297+0.55  [51.9;54.0] 5231 581  9.12 — 307457 29.7#5.7 31.3+6.0 41.1464 17.045.7 21.845.7 -

4A™ 37.20+4.89  [27.6;46.8] 17.24 558  7.69 — 103443  9.6+45 93440 72436 6.0439 13.846.3 -

5A™  106.83+35.03  [38.1;175.5] 72 628 836 —  15t14  0.8+12 83+48 32426 15+2.0 53438 -

7A™  83.17+0.35 SD<0.5cM 2752 576  7.21 — 13.843.7 19.8449 112445 5243.1 17.6+6.6 10.4+4.5 -

Number of grains  jA™*  5180+2.76  [46.4;57.2] 17.97 557 7.83 - — 169463 151462  7.4+42  63+4.5 114451 183+5.4
per spikelet 3A™ 83494895  [65.9;101.0] 17.34 562  7.58 - — 103449 11.6+6.8 11.2+58 123462 9.4+53 19.6+5.8
5A™  167.75+42.96  [83.5;192.6] 8.89 586 831 - — 52439  3.1434 53439 2.6+3.0 12.6457 8.2+43
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Trait chri Position+  Confidence , LODthr® PEVE1 PEVE2 PEVE3 PEVE4 PEVE5 PEVE6 PEVE7 PEVES
SD [cM]?2  interval (95%)® 99% 9999% +SD® +SD® +£Sp® +sSp® +£SD® +SD® +SD®  +SD

Grain weight 1AM 103.35425.16  [54.0;115.2] 7.08 5.86 6.75 - — 51434 14425 125457 1.8424 33428  1.7+2.1
(LinD) 2A™  5385+4.11  [45.8,61.9] 2666 545  6.73 - — 19.146.1 203+6.1 4.7+3.1 15.5%5.6 16.5+5.0 17.845.5
3AM 63.4149.20  [45.4;81.5] 11.76 582  6.96 - — 23424  6.6+4.1 122447 99453  62+3.8 4.8+33

4A™  36.12+11.80  [13.0;59.3] 546 534  7.73 - —  13+21  12+£17 3.6+3.5 97470 22423 82458

SA™*  140.22+8.39  [123.8;156.7] 15.16 6.1 7.2 - — 97449  64+43 12.1£58 10.4+6.0 10.6+52 10.6+5.0

TA™  65.12+7.00  [51.4;78.8] 2097 6.04  7.69 - — 194454 174455 10.9+5.1 4.9+3.6 12.74#5.1 10.0+4.3

Grain weight 2A™ 67294247  [62.4;72.1] 2758 6.2 9.03 - — 11.843.8 26.7+6.5 4343.6 22346.0 25.9+6.0 20.2+6.1
(2in1) SA™  148.66+4.25 [140.3;157.0] 2061 569  6.98 - — 62432 138448 14.8+58 14.3+53 117452 12.9+5.0
7A™  8336+12.60 [58.7;108.1] 1169 575 7.7 - —  7.0432 159454  1.842.4 11.045.8 3.4+3.0 3.042.8

ggif&i\;\;zirgemiated) 1A™  76.35+23.89  [29.5;115.2] 448 358 472 104458 10.0+45.5 - - - - -
2A™*  67.88+4.53  [59.0;76.8] 106 41 508 18.6+6.4 32.2+6.6 - - - - - -

4A™ 22.89+9.06  [5.1;40.7] 349 324 394 95463 7.9+48 - - - - -
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Trait chp: Positionx  Confidence , LODthr® PEVE1 PEVE2 PEVE3 PEVE4 PEVE5 PEVE6 PEVE7 PEVES

SD [cM]?2  interval (95%)® 99% 999% +SD® +SD® +£Sp® +sSp® +£SD® +SD® +SD®  +SD

Grain area 1A™ 51.8649.14  [33.9;69.8] 16.93 5.96 8.25 - — 35431 8.0+45 11.7+445 112457 97437 55433
(LinD) 2A™  5037+0.55  [49.3;51.5] 37.36 6.36 7.7 - — 20.646.1 12.6+4.0 10.1%4.7 23.9+55 18.0+4.4 18.5+5.5
3AM 74.24+8.99  [56.6;91.9] 11.76 589  9.94 - — 45432 20£17  6.0+£3.6 77439 74431  6.5+34

SA™  145.02+5.32 [134.6;155.5] 2513 597  7.24 - — 71449  9.145.0 10.9+4.4  7.8+4.1 142440 12.6+4.6

TA™  63.64+0.83  [62.0;65.3] 37.04 594 951 - — 220463 257448 16.6£5.5 9.8+3.8 183442 183452

Grain area 1AM 60.41£3.92  [52.7;68.1] 1854 6.08  7.27 - — 3.6424 64432  7.043.9 132442 83432 53429
(2in1) 2A™  69.43+1.00  [67.5;71.4] 41.15 581 7.9 - — 221452 159445 5.7+3.5 18.8+4.5 24.8+43 248451
3AM 13.81+3.51  [6.9;20.7] 19.67 577  6.92 - — 77434 38426 9.1£39 9.5+3.8 7.8+34 7.8+34

5A™  133.29+0.78 [131.8;134.8] 39.67 567  7.87 - — 124439 102444 224454 258447 20.7+4.3 15.644.7

TA™  81.95+2.66  [76.7;87.2] 30.75 584  6.95 - — 161450 233454 89+44 9.7+42 9333 10.743.8

Grain length 1A™  89.46+11.88  [66.2;112.8] 13.63 5.59 7.27 - — 12,1449 32421  5.7+44  8743.6 37427  7.2+43
(Lin1) 2A™  62.63+1.72  [59.3;66.0] 36.93 547 826 - — 208452 11.543.7 9.5+5.4 16.5+43 19.5+4.7 25.545.1
3A™ 35571497  [6.2;64.9] 11.78 63 8.3 - —  17+18 34423 5.0+3.8 9.7+3.7 79437 4.2+3.1

4AM 22774548  [12.0;33.5] 73 529 695 - — 14416 88434 1.6£1.9 35425 32422  13+1.7

5A™  130.20+0.58  [129.1;131.3] 19.89 5.92 6.7 - —  7.643.1  7.0£29 49+3.7 16.8+3.9 14.6+44 5.9+34

7TA™  8220+1.01  [80.3;84.3] 4092 549 867 - — 247453 37.6+45 112456 19.1+42 20.5+4.4 12.6+4.6

Grain length 1AM 61.38+0.80  [59.8;62.9] 1811 55 755 - — 24418 61427 67433 154446 69+29  4.9+27
(2in1) 2A™  69.99+0.85  [68.3;71.7] 3884 553  9.77 - — 239449 10.1£3.9  53+3.1 19.7+4.6 22.1+4.5 22.5+54
3AM 11.21+3.77  [3.8;18.6] 1731 575  6.64 - — 89438 29422 82437 7.5+3.5 74433  7.5+35

4A™ 14.81+3.30  [8.3;21.3] 19.14 5.42 8.3 - — 52428 139439 5243.1 85435 48+24 67434

SA™  131.44+0.85 [129.8;133.1] 254 587  6.99 - — 58427 52430 16.9+4.7 19.8+4.6 139441  6.9+3.3

TA™ 82204226  [77.8;86.6] 36.27 6.06 10.89 - — 162448 28.8+43 15452 9.9+43 147444  9.6+3.9
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Trait chri Positionx  Confidence ., LODthr® PEVEL PEVE2 PEVE3 PEVE4 PEVE5 PEVE6 PEVE7 PEVES

SD [cM]?  interval (95%)* 99% 999% +SD® +sSp® +sp® +sp® +sp® +sD® +sp®  +spD®

Grain width 1A™  111.59+9.28  [93.4;115.2] 16.02 552  8.14 - — 9.043.9 25422 119442 52432  6.743.0  8.3+3.4
(LinD) 2A™  5280+1.52  [49.8;55.8] 3521 586  7.23 - — 207455 17.046.1 10.8+4.5 23.3+6.1 19.0£53 16.0+4.0
3A™ 68.0146.56  [55.2;80.9] 16.55 569  7.58 - — 48428 19419 8.143.6 89442 10.143.8 10.743.5

4A™ 44504573 [33.3;55.7] 12.68 516  7.43 - —  5443.6 114462 11.045.0 8.7+52 3.743.1 13.8+5.8

5A™  137.68+1.62 [134.5:140.9] 2316 59  8.08 - —  93+38  5.1+32 94439 125449 14.5+42 12.3+3.8

TA™  66.94+4.99  [57.2;76.7] 2244 585  7.91 - — 125447 167453 10.0443 39432 12.044.6  6.4+3.6

Grain width 1A™ 47104898  [29.5:64.7] 17.02 5.56 7.02 - — 28424  6.9+3.8 10.0£5.7 17.045.9 11.6+4.0  5.6+2.8
(2in1) 2A™ 67534697  [53.9;81.2] 2465 575  6.58 - — 132447 13347 20421  6.6+3.9 12.6£45 12.1+3.9
3A™ 8.86+10.49  [0.00;29.43] 881 583  6.69 - — 29427 37427 57432 61439 47829  3.5+2.1

4A™*  3493+1.55  [31.9;38.0] 2446 559  7.46 - — 147455 95+4.1 14.8+53  5.0+33  9.8+43 19.545.1

SA™  134.74+1.15 [132.5;137.0]  29.14 6.48 8.5 - — 125444  8.0+3.7 147445 224457 13.9+4.7 13.843.9

6A™  64.51+18.39  [28.4;100.6] 71 573 703 - — 21420 27422 27424 23425 40427  6.4+32

7A™ 78.3246.00  [66.5;90.1] 2028 59 833 - — 9.1+4.0 17.9449 4.8+3.1 135472  6.6433  7.6+3.1

Grain 1A 53.64+16.61  [21.1:86.2] 79 557  6.94 - — 26425 22424 27425 49436 49431 35427
E‘;ﬂgdl”fss 2A™  40.47+13.34  [14.3;66.6] 1854 624 741 - — 67438 138454  8.7+3.8 13350 12.4+44 42429
3A™ 734042048  [33.3;113.6] 6.81 572  6.62 - — 42432 10413 3526 41432  4.8+3.0 7.7+4.1

4A™  22.93+6.54  [10.1;35.8] 27.82 541  6.11 - — 205453 17.845.2 14.8+4.6 9.1+43  8.6+3.7 17.7+5.4

S5A™  134.07+4.29 [125.7;1425] 1458 576  7.57 - — 124447 79438 84438 159452 14.1+42 13.8+4.9

6A™  93.53+12.20  [69.6;117.5] 13.93 533 6.9 - — 38829 57433  8.6+3.8 8.4+44  8.9+3.7 24423

7A™  117.68+6.18 [105.6;129.8]  19.56 554  8.64 - —  8.1+4.1 10.6+44 10.044.0 11.0+4.6 6.9+33 10.1+43

Grain 1AM 49244350  [42.4:56.1] 1162 532 697 - — 37425  3.6+1.9 32419 41435 5.8+24  14+13
Eguiﬂdln)ess 2A™m 28.41+4.00  [20.6:36.3] 15.89 541  7.08 - — 33423 9.0+2.8 3.6+2.0 11.8+56 32+19 4.6+25
3A"  9631+27.76  [41.9;150.7] 6.66 583  7.37 - — 1.0£1.7 07409 41424 15422 23+1.6 2.8+2.1

4A™* 34744058  [33.6;35.9] 61 5.41 9.6 - — 363+4.6 38.0+5.0 27.2+46.0 27.5+6.9 23.1£5.5 37.9+4.6

A" 118.47+1.68 [115.2;121.8]  24.19 6.14  8.48 - — 6531 44423 77426 62440 12.0432  6.4+2.7

6A™  83.73+0.95  [81.9;85.6] 3798 557  6.73 - — 127437 10.0+2.9 10.142.9  9.3+43 18.5+3.6 10.6+3.3

7A"  122.47+8.19 [106.4;1385] 2053 59  8.36 - —  50+28 6.0+2.5 7.8+3.0 55439 32+2.1 11.5+3.4
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Trait Chrt I;ositionzzl: _ Confidence . LOD LOD thr®  PEV E61 PEV EGZ PEV EGS PEV E64 PEV E65 PEV E66 PEV EGY PEV Ee8
D [cM] interval (95%0) 999 99.9% +SD +SD +SD +SD +SD +SD +SD +SD

Grain 2A™* 62.55+6.59 [49.6;75.5] 17.25 5.88 7.13 - — 13246.5 153+6.8 2.1£2.3 17.746.7 22.546.7  7.4+5.0
ET::,:( T;SS 3A™  61.51£32.81  [0.0;125.8] 8.24 6.1 7.2 - — 4143 47+42 112453  6.4+49  4.8+37 42435
4A™* 18.10+£2.93 [12.4;23.8] 16.83 5.35 6.45 - — 12.0+£5.2  7.844.6 23.1+6.3  2.6£3.1  6.2+3.4 15.446.2

5A™  121.46+13.50  [95.0;147.9] 12.69 5.81 6.5 - - 7.8+45  14+£1.8 10.7+4.7 17.1£7.0 12.0+4.9 5.6+4.1

TA™ 36.43+36.72 [0.0;108.4] 5.97 5.68 6.7 - - 4.0+4.1  9.54£55 2.1£24  6.3+£5.0 59440 24429

Grain 1A™  51.03+£17.57  [16.6;85.5] 7.87 5.83 6.57 - — 15823 6.7+44 15422 46+£3.6 109453  6.1+4.7
Egl(i:rl](q(;ss 2A™  60.16+12.91 [34.8;85.5] 18.34 6 7.24 - - 16.7£7.0 15.746.9 29427 19.746.0 134454  3.8+3.9
3A™ 18.01£16.48 [0.0;50.3] 944 59 7.45 - - 7.3%4.0 6.3£3.5 4.3+3.1 9.1+4.9 3.5+£2.6 3.6+3.1

5A™  114.46+1.29 [111.9;117.0] 21.41 5.96 7.03 - — 155458  7.1£3.6 14.3+£53 22.349.0 16.3+4.8 13.0£5.4

6A™ 81.66+7.13 [67.7;95.6] 11.67 5.7 6.97 - - 2724 2.6+£2.5 13.74£5.2 14.1+6.7 5.243.0 8.4+4.5

TA™ 28.75+£29.02 [0.0;85.7] 7 57 7.65 - — 34432 6.6x£4.2 3.8+4.3 4.4+4.2 7.5+4.4 3.1+3.7

Grain protein 1A™  65.87+£30.71  [5.6;115.2] 8.52 4.49 5.85 — 41434 11.8£50 9.4+49 24424 - - -
content 2AM 55.35+1.59 [52.2;58.5] 10.77 4.59 5.65 - 1.3£1.6  19+£24 14.6+4.7 13.6+4.2 - -
4A™* 14.21£1.53 [11.2;17.2] 15.69 4.21 6.66 — 21.745.8 7.1+4.1 159444 4.7+2.7 — —

5A™  118.32+3.59 [111.3;125.4] 16.66 4.94 5.83 — 164454 135+£54  4.5+£2.6 19.9+5.7 - - -

B6AM 86.29+12.63  [61.5;111.1] 6.59 4.97 5.82 - 7541 7.6+43  22+1.8 52430 - -

TA™* 64.69+2.41 [60.0;69.4] 17.09 4.84 5.84 — 45432 87451 18.7+4.7 17.5+4.7 - - -
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Appendix 3. Highly significant QTLs for leaf pubescence mapped on 3A™ and 5A™ by multiple environment multiple interval mapping in Triticum monococcum Fi,

RIL population derived from DV92xG3116 using skeleton linkage map.

the y axis. Blue arrow marks the LOD peak.

Chromosome 3A™

Skeleton linkage map without attached markers was used for the analysis. Markers and their positions in cM are on the x axis, while their LOD scores are on
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Chromosome 5A™
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Appendix 4. Highly significant QTLs for leaf pubescence mapped on 3A™ and 5A™ by multiple environment multiple interval mapping in Triticum monococcum Fi,

RIL population derived from DV92xG3116 using adjusted global linkage map.

Adjusted global linkage map with all markers and an additional set of markers (Owm453, Owm457, Owm462, Owm463, Owm466, Owm467, Owm471, Owm476,

Owm478, Owm480, and Owm483) was used for the analysis. Markers and their positions in cM are on the x axis, while their LOD scores are on the y axis. Blue arrow marks

the LOD peak. Note that the genetic distances and marker positions in the graphs and table below are different from that in Appendix 1, 2, and 3 because attached markers

including the additional Owm markers inflate the map (e.g., markers Owm462-Owm466 on 3A™) and skew the calculations.
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Chromosome 5A™
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Highly significant QTLs for leaf pubescence mapped on 3A™ and 5A™ by multiple environment multiple interval mapping in Triticum monococcum Fi2 RIL
population derived from DV92xG3116 using global linkage map
! Chromosome on which the QTL was detected.
2 Position of LOD peak with standard deviation (SD).
% 95% confidence interval of the QTL span calculated using a bootstrap method.
* LOD peak score.
®99% (significant QTLs) and 99.9% (highly significant QTLs) LOD thresholds calculated using a global permutation test.
® QTL effects are provided as the percentage of explained variance (PEV) for each of the eight environments 1-8 (E1-8) with SD.
E1-8 represent Stupice (2009), Spring (2009), Spring (2010), Fall (2010), Spring (2011), Fall (2011), Spring (2012), and Italy (2012),
respectively.

* Chromosomes with QTLs that are considered to be major (PEV > 10% in at least half of the environments).

i 5
. Position = SD C?r?tfe'f\fglce Lopt OPr PEVEL PEVE2 PEVE3 PEVE4 PEVES PEVE6 PEVE7 PEVES

Trait Chr. [cM]? (95%)° 99% 999% +SD® +SD® +SD® +sSp® +SD® +SD® +SD® +sSD°

3A™* 100.5340.46 SD<0.5cM 149.95 7.70 23.81 23.5454 284453 789422 75444.1 78.6+4.2 734443 72.543.8 28.5+6.1

Leaf pubescence
5A™ 205.5142.05 [201.5;209.5] 32.24 7.19 10.16 35.245.5 31.545.7 0.2+0.3 0.5+0.5 0.3+0.4 6.6+3.0 1.9+1.5 22.1+£6.2
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Appendix 5. Verification of the QTLs for leaf pubescence on 3A™ and 5A™ by single environment multiple interval mapping in Triticum monococcum F;
verification mapping populations.

The QTL for leaf pubescence on 3A™ was verified using all verification mapping populations (144x246, 246x144, DV92x113, and DV92x165), while the
QTL on 5A™ was verified only on 144x246 and 246> 144 because the other two populations are not polymorphic in the QTL region. Markers and their positions in cM are on
the x axis, while their LOD scores are on the y axis. Blue arrow marks the LOD peak. Note that the marker distances do not reflect the size of chromosomes or QTL positions

on them because only a fraction of markers was genotyped on verification mapping populations and was used for the analysis.
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Chromosome 5A™
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Verification of QTLs for leaf pubescence on 3A™ and 5A™
! Chromosome on which the QTL was verified.
2 LOD peak score.
% 99% (significant QTLs) and 99.9% (highly significant QTLs) LOD thresholds calculated using a global permutation test.

* QTL effects are provided as the percentage of explained variance (PEV) with standard deviation (SD).

LOD thr.? PEV
99% 99.9% +SD*
3A™ 4235 405 9.83 22.843.3
5AM 282 2580 7.83 6.0+4.7

Chr! LOD?
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Appendix 6. Owm400-Owm448 PCR markers.

* LP — length polymorphism; PA — presence-absence polymorphism; SNP — single
nucleotide polymorphism (the position of the SNPs is calculated from the beginnings of the
corresponding PCR products).

The empty cells in the last two columns mean either no PCR product or no

polymorphism.

Based on

Marker SNP Forward (F) and reve'rse ('R) primer Amplicon Polymorphism*
markers sequences (5'—3') length [bp]
F: GGGATTCAATGGGGTTCAG
Owm400
R: ATCCTCTTGGTGCAAACTGC
Owmaol F: GCAGTTTGCACCAAGAGGAT 500
wm ~
RAC875 c13 R: CTTTTCGGGATGAACATTGG
976.509 F: CAGCCATATCCATTTCATCG
Owm402 ~550
R: TCTTGAGCGAGTTAGGCAAA
F: CCAATGCTGGATATGCCTCT
Owm403
R: GTGCGCTTGAAGTGTGTCTC
Owma04 F: GCCGATTTGTGTTCCGTAGT £50
wm -
‘g’;gpA—?QlT R: TTGCGAAACCGATAGGAAAG
e a
OWMAOS 7 ~~ F. CGATGGACTTCAAGCTCTCC 500 oA
wm R: GCAAGAAGAAACTTCCATTTCG
OWmA06 F: TCCGGACTGAGAACATTCCT 500/1100 Lp
wm -
R: TTCAGGCCCATCAGTGGT
RAC875 c58 F:  GCAAGCAAGAGGGTGTGAG
Owma07 3341 R: GACTAATCGCTGGGATGGAA 450 SNP, 176 GIC
OWMA08 F: TTGCTCGAAATCACATGGAA 500
wm -
R: AGCAATCAAACTGACAATAAATCTTCT
OWmA409 F: CGGCATGACGAAGGAGTATC 500 SNP. 365 G/A
wm ~ ,
R: TCGCCCTACACTGCTTTTCT
F: TCTTGGCTGTTAGCACTTGAAA
Owm410 ~500 SNP, 194 T/C
BS00021920 R: GCGATCCACAGGAGTAGGAG
OwmA1L 51 F: CGCAGATCGTTGCCAATA 650 oA
wm -
R: CAGGCAACGTTGGTTCTGTA
Owma12 F: AAGATCAAACCATACGAACACG 500 oA
wm -
R: CGGTGGAAACTGTACTGCTG
Tdurum_cont F:  AGTGTGCCTACCGARAGCTG
Owm413 ig45539 226 R: GATCCACAGGGACACCTCAC 600 SNP, 147 T/G
F: ATCAAGTACCCGGTCTGAGC
Owm414 ~600
R: GATCAGCAAAAGAGGGGATG
F: GGATACGGTCTTTGCTGGAA
Owm415 ~600
R: CGAGCAGCGGATACAACTG
i F: GGGCACGATATTGTTCGAGT
owm416 BobWhite_c1 500
1006 801 R: ATTGCAATCACTGCACAAGG
Owmal? F: CCACTGTGTTGCCTGTGTCT 550 SNP. 368 C/A
wm R: TCCGTTCCAAAATACTTGTCG !
F: GATTTGTTGTGGCCTTCTTGA
Owm418 ~500 PA
R: TCTGGTAGAAAGGATGCATGG
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Based on

Marker SNP Forwards(f)uirlll(:i;:\(/serf 3(;{) primer I:\nmftl"[:t?n] Polymorphism*
markers q gth [bp
OwmA15 GENE- F: GACATGAATCAAAAAGATATTCATCA 500 oA
wm 3346 506 R: CAGTGACTCACCTGGAGATAGG
F: TTTGGTGTGGTTGTCCTTGA
Owm420 ~450
RAC875 s11 R: ACCAAATCCACCAGCAACAT
888278 F. AGGGCTTGGATTTTTGGAGT LP/
Owm421 ~500
R: AACCCAGGTAGGACCTTTGG SNP 200 T/C
Owma22 F: GGGTCCCTGCAGTTAGTICTG 500 SNP. 393 AG
wm R: AATACCGCCACGAATGTGAT '
BS00049977 F: CCAAGTGCAACACCTTGCT
Owmaz3 Sl R: CAATGTCCGCAGAGTTCAAA 500 SNP, 240 A/G
F: GGAGGAGGAGGAGACTCAGG
Owm424
R: GAGACAGGCGATCGGAAATA
OWMAZS F: GATTCTCCAAACCCCACTGA 450
wm R: TGCAGTGGATTCAAAGCAAG
Tdurum_cont F:  TTCTTTCGGCTTCAAGGTTC
Owma26 ig47370_77 R: GGCAGAAAAATCATCCTTGG 500 SNP, 195 C/T
F: AGGAGTTGGGCTCATTTTTG
Oowm427 ~500
R: CACTAGTCACTGCCCAATGC
D_contig61 F:  AGGGACGTTCTGAAACGATG ~
Owm428 79372 R: GGACAGCCAACAAAGGGATA 500
OwmA29 F: GCTTCAAACTGCCAAAGAGG 550 SNP. 201 T/C
wm R: AGCCAATTTCCCTTCTTCGT '
Owmd30 ngg;ggrii F: TCACAACAAACCGTGGAGAG 450
C ~,
wm ~774 7 R GCTGAACTGCATTTGAGTGG
—— F: TCAAATGCAGTTCAGCCAAG 150 oA
wm R: CTCCCTCCGTCCCATAATGA
S F: TGTCCAGTTTTCCAACCACA 500/700 Lo
wm R: CGACTGGAACGCTTGAATTT
wsnp_CAP11 "F. 1CGCGAAATCTGTGAGTGAC
Owm433 _c923 55871 ~450 SNP, 179 T/G
5 R: GATCCGTTGGCTGGAAGATA
. F: TGCTGGAACAAACGACTACG 450 SNP. 349 /T
wm R: TCAGGGTTTTAGGCATGTCA '
OWmA35 F: ATCTGCAACGCTCTCAAGGT 500
wm R: GACGCAGGGTATCCATGTICT
F: AGCCTCTCAAACTCGGACAA
Owm436 ~450 SNP, 213 C/G
RAC875 c19 R: TGACCAAACGTTGCATCAAT
owma3? 313 887 £ TCGGAGTGGGTTCTTTTGAC 500 SNP. 414 T/C
wm R: GGATCAAACAAGCCCAGAAA '
Owmd38 F: TGCAATCCTGCTGATTCAAG 500 SNP. 116 C/T
wm R: ACGAATGGCCTTTGATGATT :
OWma39 F: GATCGAGAAAGTCCCGAGTG 500
wm wsnp_Ra_c2  R.  CCATTTGTCGGGAAGGTATG
5624 351921
OWmd40 95 F: ATGTACCAGAGGACGGCAAC ~500/550 Lp/
R: GGTGGAGGCATATGGAAAAA SNP, 188 A/G
Owmadl. F: GAGAGGACTCCGCTGCAAT 150 SNP. 93 C/T
wm wsnp_Ex_c31 R: GTGGAGTAGGGGAGGAGGTT '
365798236 F: CGACTGGTGTIGGTTGTTGAC
Owm442 ~550
R: TCGCAGAATGCTGACAGTITC

2—Appendix 6



Based on

Forward (F) and reverse (R) primer

Amplicon

1 *
Marker mil[\lkF;rs sequences (5'—3") length [bp] Polymorphism
Owmd43 F: CAGGACATTATGCCAGTGTGA £50
wm R: ATGAGCGGACATAATGAAAGC
F: GCAAGTGAAACTGCATCAGC
Owm444 ~500
Excalibur_ re R: CTCCAACCCCCAACAAAGT
p_c68005_67 F: CGTTGTAGGGGAAGCAGGTA
Owm445 ~500 SNP, 284 A/G
R: ATCGTGGAATGGTTCAAAGG
F: CATCCGTAACGTGGTCATCA
Owm446
R: AATTTCGTATCAGCGGCATC
F: GGGCCGATACCTCTCCTAAT
Owm447 ~550
Excalibur ¢c1 R: CCGTAGAGCACTGCGATAAA
1797_118 F: CTAGCCGCGAGTTATCCATC
Owm448 ~450
R: CTCCCAATGTTTGTGIGGTG
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Appendix 7. Owm449-Owm484 PCR markers.

! Position of a sequence in IWGSC RefSeq v1.0 (IWGSC, 2018) chromosome 3B
(Owm449-0Owm466) and 5A (Owm467-0Owm484) that was used for BLASTN searches against

the T. monococcum database (as described in Methods).

2 LP — length polymorphism; PA — presence-absence polymorphism; SNP — single

nucleotide polymorphism (the position of the SNPs is calculated from the beginning of the

corresponding PCR products).

The empty cells in the last two columns mean either no PCR product or no

polymorphism.

Positions of sequences

Marker using which the markers Foryvard (F) and reve'rse (,R) IAmpk:lctc))n Polymorphism 2
were designed [cM] primer sequences (5'—3") ength [bp]
F: GCCCAACTTTGGATTGTGTT
Owmd449  662556233-662556965 ~800 SNP, 186 T/C
R CGACTACTGCGGCTTTTCTC
F: GGIGGTIGCAAGAGGATGAAT
Owm450  665464444-665464936 ~900
R: CAGAAGCCCATGAAGATGGT
F: AAATCTTGCCATGCGTAACC
Owm451  667778573-667779377 R: TATGCCACTGCTCCAGTGAT ~850
F: CAGGAAGCTGACATGAACCA
Owm452  668888263-668889679 ~870
R: GTGCGCGGCTACTACTTCTC
F: AAAGAAGCGCATACCACCAC
Owm453  671017958-671018053 ~850 SNP, 175 G/C
R: ATCGTTGGCTACTCCATTGC
F: CATTTCGTGTCCGATGTTTG
Owm454  672104337-672105914
R: GAGCGIGGGGITTGIGTAGT
F: CCCGAGATGAGATCCTACCC
Owm455  673849549-673850198 ~870
R: GITACGGAGGAGGAGGIGGT
F: AGCCGAGATAAAGCAGACGA
Owm456  676207819-676208047 ~700
R: GCTTGACGGATGITGGTTICT
F: GAACTTGGACAGCACAAGCA
Owmd457  678441264-678442146 ~870 SNP, 355 A/C
R: ATCGCCCAGTCATAATCGTC
F: TGGGTAACAGTCAGCGAGAA
Owm458  680426706-680427059
R: GACGGAGGGAGGGTTTTC
F: GTCCTCTTCTCCCTCCTGCT
Owm459  682786423-682787556 ~900 SNP, 261 A/C
R: TGGCGGTACGGGATTACTAC
F: ACACACCACTCTCACCCACA
Owm460  683680118-683680559 ~1100
R: CATGTTGTCTGCAGCTTCGT
F: TCGATCTGATGGGGAGAAAC
Owm461  685037982-685039317 ~1000 SNP, 92 G/C
R: CAAAGGCCAATGACACCICT
F: ACGAGGAAGGAGAGGAGGAC
Owmd62  686337233-686337911 ~1050/900 LP
R: GCAGATCCATGGCAAAGACT
F: GAATAAACCGAACGCACAGG
Owm463  686346706-686348270 R: ~850 PA

GGGAAGTTCTTCACGCACA

1—Appendix 7



Positions of sequences

Marker using which the markers For\_/vard (F) and reve'rse (,R) IAmpk:lcgn Polymorphism 2
were designed [cM] © primer sequences (5'—3") ength [bp]
F: ATGCTCCATCGGCTACCTC
Owm464  687064081-687064593 ~1000
R: AAAGGGTTGCTTTCACATCG
F: CATCGTCCTCCCATGTTGAT
Owm465  688395988-688396412 ~1000 SNP, 190 C/G
R: ATTTTGGGCTGAGTGGAGTG
F: GCGTCAAGGATGAGAAGAGG
Owm466  689517655-689517948 ~900 SNP, 164 G/T
R: AATGCTAACACACGCCACAA
F: TCAGICTTGTAATGTCGGTGCT
Owm467  688007659-688008112 ~850 SNP, 272 CIT
R: CGGGGAAGGACGTAGAAATC
F: GGGCAAGTTGAGCCTAAGTG
Owm468  688141827-688142338 ~1100 SNP, 385 T/C
R: GCAGICTGCAATGAACCAAA
F: ACGCCTCATGATGGTAGGAC
Owm469  688301294-688301461 ~900 SNP, 146 T/C
R: TCTTGTICGCAGTIGTITCTTGG
F: CAGTGCATACGCCAAGTICTG
Owm470  688663140-688664375 ~850 SNP, 491 C/G
R: TGAACCCGACCTTATCTGCT
F: ACAACAACAAGCAGCAGCAC
Owm471  688764148-688764280 ~950/1000 LP
R: GCGTAAATCACTGGGCAGAT
F: GTGTGCCCATCCCATTTATT
Owm472  688946924-688950064 ~900 SNP, 303 C/T
R: GGAAAGGAGAATTCCCAAGC
F: GGAAGCGTGACAGAGGCTAC
Owm473  689386621-689387165 ~850
R: CGTTATTAGTGGCCCATGCT
F: AGCAGCTACCTGAAGCGAAA
Owm474  689604449-689604667
R: GCCCCTATGATTTCCAGTIGA
F: CATCAGCCCGTTGGAGTC
Owm475  689867453-689868092 ~850
R: TGTGGCAGTGGTCTCATCAT
F: CTGTCCACAGCAAGAGCAAA
Owm476  689888876-689890310 ~950/850 LP
R: GCTCACTGGTCCATTCTTCG
F: GGCTAGGCGATGAAGAACTG
Owm477  690188759-690191350 ~900
R: CACGCTAGCCACATCCCTAT
F: CCAGTGTACAAGAGGGTGGAA
Owm478  690188759-690191350 ~900 PA
R: GIGCGGCATGGCTATCTAAT
F: CTACGGAGAGGCGATGTGTC
Owm479  690304923-690305295 ~950
R: GGAGGTGGTTGTGGACCTG
F: GAGCAAGCTTCTITCGATTGG
Owm480  690438536-690438887 ~1100/1500 LP
R: GGAAGTGAAGTCGGATCTGG
F: CTCGACCAAGGATCTGGAAA
Owm481l  690438536-690438887 ~900
R: GCGTCTGCCTCAGCTACTCT
F: ATCTGAACGACTGGGAGCAC
Owm482  690566450-690566674 ~1050 SNP, 509 T/C
R: AGCAGGGAACTCCACATCAC
F: TGCCTCCTTCAAATCTCACC
Owmd483  690944542-690944848 ~900 PA
R: GCAAACGGGTACACGCTACT
F: TAGTGGTGCACCGACATGAT
Owm484  690951260-690953100 ~1050 SNP, 213 T/G
R: TTCCTCGACTGAGGGAGCTA
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