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Time-Series Analysis of Cryptocurrencies

Abstract

The present thesis experimentally analysed the time series of cryptocurrencies and
the effect of different coefficients in models towards to them. Selection of the
cryptocurrencies to investigate has been proceeded with checking the crypto market
volumes. The selected cryptocurrencies which were among the coins with highest market
capitalization have been chosen and they are the followings Bitcoin (BTC) and Ethereum
(ETH). After finalizing the individual analysis, the predictions is made with choosing each
other as exogenous variable. However, the thesis does not assess the relations between
cryptos, it uses each other as a supporting variable in order to make accurate predictions.
Individual observations are made and the statistical significances are tested through
different time series models. Towards the end of the thesis, the predictions for the
cryptocurrency prices are made and the fate of the market on the horizon is estimated

based on the evaluation of training data set with different models.

Keywords: Time-Series Analysis, Statistical Theory, Multivariate Time Series Models,
Cryptocurrencies, ARIMA, Python, ARCH, GARCH.



Analyza ¢asovych rad kryptomén

Abstrakt

Tato prace experimentalné analyzovala Casové fady kryptomén a vliv riiznych koeficientli v
modelech na né. Vybér kryptomén k prozkouméni byl proveden kontrolou objemi
kryptotrhu. Byly vybrany vybrané kryptomény, které patfily mezi coiny s nejvyssi trzni
kapitalizaci, a to Bitcoin (BTC) a Ethereum (ETH). Po dokonceni individualni analyzy jsou
provedeny predikce s tim, Ze se navzajem zvoli jako exogenni proménné. Prace vSak
neposuzuje vztahy mezi kryptoménami, vyuZziva se navzajem jako podpltrné promeénné pro
presné predpovedi. Provadéji se jednotliva pozorovani a statistickd vyznamnost se testuje
prostfednictvim riznych modelt ¢asovych fad. V zavéru prace jsou provedeny predikce pro
ceny kryptomén a na zdklad¢ vyhodnoceni sady tréninkovych dat s riznymi modely je
odhadnut osud trhu na obzoru.

Klicova slova: Analyza Casovych fad, statisticka teorie, vicerozmérné modely casovych fad,

kryptomény, ARIMA, Python, ARCH, GARCH
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1 Introduction

The concept of virtual money, which first emerged in 2009, has been an important
development for states and individuals. There are different opinions about the emergence
of the virtual currency system. The most accepted view is that the virtual currency system
was discovered because of the loss of financial trust in financial markets and states after
the 2008 global crisis and its popularity has gradually increased. In this context, it is of
great importance to analyse Bitcoin, which is the most used cryptocurrency system and
popular all over the world. Therefore, it is expected that this research will make an
important contribution towards filling the gap in this field in the literature in terms of
theory. Therefore, it is very important to conduct a study on the appearance of the Bitcoin
ecosystem, which is an example of the concept of virtual money. In the study, after
revealing the conceptual framework of cryptocurrencies, the structure of Bitcoin and other
crypto systems, are examined practically and theoretically. In this thesis, after giving a
comprehensive theoretical information about the topic, we covered a deep analysis of the
market and chosen cryptos. Furthermore, other factors which potentially can have an
impact or correlation to crypto market is investigated and concluded with statistical

statements and predictions (Wayne, D, 2022).

In the first part of the study, the concept of virtual money so called cryptocurrencies, their
features, classification, and the legal framework are examined. In this section, the selected
cryptocurrencies will be covered, and their purpose and capabilities will be indicated. What
crypto money is, how it emerged and why it spread rapidly are discussed in detail in the
light of historical processes. In addition to these, information is given on the structure and
use of the crypto monetary system. What kind of virtual money the coins are, what kind of
system (Block Chain) is behind, where, and how it is used are discussed in detail. The
collection of factual knowledge about each and single cryptocurrency is examined
separately. Their characteristics, opportunities that they serve and the technology behind of
each cryptocurrency is added. The dominance of the cryptocurrencies which are being
neglected by investors is also comprehensively mentioned to deliver the importance and
will be used in second part where the practical usage is shown. The paper includes data
about the competitive advantage of the selected cryptocurrencies depending on the users’

goals of utilizing cryptocurrencies. The advantages and disadvantages of virtual money are
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discussed in general and on coin level. The potential suspicious relations will be mentioned

in the first part where the statistical questions will evolve

The second part of the thesis is about practically using the statistical models, tests and time
series analysis in order to define the behaviour of the selected cryptocurrencies in the
market and their correlations to each other. Selected cryptocurrencies are based on their
market capitalizations and volumes which can be counted to 2. The individual data points,
their historical prices, market volumes through various methods is shown as numeric and
also graphical way. Again, similarly, all the investigation proceeds with certain statistical
models. The graphs of historical changes and the comparison to the crypto prices is shown.
The tests for the outcomes are completed separately to increase the reliability of the
investigation and to give the assurance to make conclusions and the predictions. Towards
to the end of the paper the results and predictions is combined and presented in collective

form in the part of conclusion.
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2 Objectives and Methodology

2.1

2.2

Objectives

The ultimate objective of the thesis is to evaluate, assess and the development of
predictions for the cryptocurrencies. We will be using various methods to achieve
this objective and that is the reason we will also divide our aim into so called sub
objectives which will contain multiple milestones. One of the milestones will be the
univariate analysis for selected crypto coins (BTC, ETH) to summarize their
historical prices with various indicators. In this section the aim will be to build and
compare various time-series models and then choose the best fitting model. Based on
individual analysis the statistical tests are executed to increase the accuracy of the
assessment as a different sub-goal of the thesis. After these steps, achieving the
results of multivariate analysis with another time series method which can allow us
using exogenous variables and tests will be the target to reach. Furthermore, the
market volatility will be assessed and evaluated with other well-known time series

models.

Methodology

To achieve the aim of the above-mentioned objectives there are various ways of
evaluating the individual variables. The most important step in expressing an
economic relationship econometrically is to make the relevant variables expressible
with numbers. For this purpose, it is necessary to collect, compile and organize data
about the variables to be included in the model. Since it is not possible to conduct an
empirical study on a subject where data cannot be collected, it is important to first
determine and obtain data related to the subject. Data collection for studies usually
takes several forms. One of these is to take advantage of previously collected
information. These are mostly in the form of statistical bulletins or statistical
annuals. Another method is the direct observation method. There is a measurement
process in this process. Measurement is done in different ways. The population that

is the subject of the research is either completely measured, or in cases where it is
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very difficult or even impossible to measure the entire population, an estimate of the

population is made with the help of a sample (Amadebai, N.D).

Description Statistics of Time Series:

Univariate Analysis is one of the most common analysis which is being used in
almost all of the statistical researcehs. A single observation over a time period makes up
the univariate time series. Multiple observations collected over time make up the
multivariate time series. Taking into consideration that this analysis gives a great
comprehensive information about the individual analysis of the variables, we will use this
method in order to get general information on our variables. Methods of univariate
descriptive analysis solve the problem of compressing the original information, its compact
representation. As a rule, in the process of research, it is important to obtain the cumulative
characteristics of individual objects through the prism of a particular property. Instead of a
large number of individual indicators, we need one value that would be typical
(representative) for the entire population of objects. Univariate descriptive analysis uses
methods such as Construction of frequency distributions, graphical representation of the
behavior of the analyzed variable and obtaining statistical characteristics of the distribution
of the analyzed variable. Many services can now be provided in real time thanks to the
growth of time series applications. There are numerous issues that arise as the amount of
time series data grows. Time series analysis mechanisms are necessary to ensure the
accuracy of the forecast. The AR, MA, ARMA, and ARIMA methods can only be used
with univariate time series data, despite their advantages and disadvantages for time series
analysis(W.Palma, 2016).

Time — Series Analysis:

Time series, as a rule, arise because of measuring some indicator. These can be both
characteristics of technical systems and indicators of natural, socio-economic phenomena
and processes. For example, the dynamics of the exchange rate or the stock price, in the
analysis of which they try to determine the main direction of development, i.e. trend. Or,
for example, an analysis of the company's sales dynamics in order to plan stock balances.
The main purpose of time series analysis is to build a forecast of its values for future
periods. And the main tasks of time series analysis are to understand under the influence of
which components the value of the time series is formed, and to build a mathematical

model for each component or their combination. Any time series can be decomposed into
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the following components: trend, seasonal component, cyclical component, and random
component. The first three components form a non-random component of the time series.
The random component is present in any time series. But the presence in the structure of
the time series of components of a non-random component is not necessary. Time series
modelling approaches can be divided into two areas. Modelling of a non-random
component in the aggregate and Composition of the time series into constituent
components and modelling the values of each component separately. Statistical forecasting
methods are divided into algorithmic methods and analytical methods. Algorithmic
methods include simple and weighted moving average methods. Analytical methods
include predictive extrapolation methods based on growth curves as functions of time. If
there is a seasonal or cyclical component in the time series, an analysis of periodic
fluctuations or a spectral analysis of the time series is carried out. Time series are classified
into stationary and non-stationary. To analyse and build a forecast for a stationary time
series, special methods are used(W.Palma, 2016).

Moving average models (MA models), autoregressive models (AR models) or mixed
models (ARMA) or integrated moving average and autoregressive models (ARIMA). The

formulas for the above-mentioned models are as follows:

AR model:

Equation 1

- * %* * *

Yt=B, "y + By Yoo t B3 " Yeg toeennnnns +Bic " Ve
MA model:

Equation 2
V=0 Eeyobl T Bl 205 X B baiiviinnnns + oy * €
ARMA model:

Equation 3
YE=B* Ve + 0% Eey + By Yoo + 0y F By + By T Yy T Uy T By e + B

*
Yokt Ok ¥ €k

(Shetty, C, 2020)

A separate direction in forecasting is adaptive forecasting models. In addition, when
studying multifactorial time series, conventional regression models can be used to build a

forecast, with time series reduced to a stationary form. Forecasting is closely related to
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planning and is used for effective decision making. Forecasting can provide an answer to
the various questions like what is most likely to be expected in the future regarding the
process under study? Or what needs to be done to achieve a given state of the forecast
object under study?

The series formed by the observations of a variable at equal time intervals is called
the "time series". In the time series obtained by ordering these observation results
according to the options of a time attribute such as year, week, and day, there are
observation values opposite the time attribute, and in this way, the variability of the event
that is the subject of statistical research over time is observed. Time series data is usually
compiled and collected at daily, weekly, monthly, quarterly, semi-annual, annual, and
longer-term intervals. In general, the time series is represented as Zt, t=1, 2, ..., T, with T
being the sample size. Accordingly, the first observed data is Z1, the second observed data
is Z2, the last observed data is expressed as ZT. Series with data that can be recorded
continuously over time is called “continuous time series”, and series with data that can
only be obtained at certain intervals are called “discrete time series”. While series
belonging to engineering fields such as electrical signals, voltage, and sound vibrations are
continuous time series; Economic series such as interest rate, sales amount, and production
are examples of discrete time series. However, in the purpose of the aims of this thesis the
most important 2 forms are as below:

Economic and financial time series: Most of the economic and financial data
consists of time series. Examples of these are series such as daily exchange rate, stock
return, annual interest rate, and inflation rate.

Business time series: Data such as sales analysis of businesses, profitability ratios,
and cost calculations observed in different periods are used effectively in determining,

directing, or changing business policies (W.Palma, 2016).

White Noise: White noise is an important concept in time series analysis and making
predictions. In a nutshell, white noise indicates whether your data is predictable or not.
Also, it tells you if the model should be further optimized or not. Because it is a random
number sequence, white noise is an unpredictable series. If you build a model and the
residuals (the difference between predicted and actual values) look like white noise, you

know you did everything possible to improve the model. On the other hand, if there are
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visible patterns in the residuals, you have a better fitting model for your dataset. It is

significant for 2 reasons:

e Predictability: If your time series is white noise, it is random by definition.
You can't reasonably model it and predict it.
e Model Diagnostics: A time series forecast model's series of errors should

ideally be white noise.

Time series forecasting relies heavily on model diagnostics. On top of the signal generated
by the underlying process, time series data are expected to contain some white noise.

For a time-series to be classified as white noise, the following conditions must be

met:

e The average (mean) value is zero.

e The standard deviation remains constant over time.

o The relationship between time series and their lag is not significant. We
would want to see if there is a significant correlation between the current time
series and the same time series that has been shifted by N periods.

There are three (simple) ways to determine whether a time series resembles white
noise:

e By displaying the series
e By making comparison the average and standard deviation over time

e Assessing autocorrelations

Once a time series forecast model has made predictions, they can be collected and
analysed. Ideally, the series of forecast errors should be white noise. When forecast errors
are white noise, it means that the model has used all of the signal information in the time
series to make predictions. All that remains are the uncontrollable random fluctuations. A
sign that model predictions are not white noise indicates that the forecast model can be

improved further (Brownlee, J, 2017).

Stationarity: One of the basic operations in time series analysis is "stationary" (constant)

distributional ensembles. A stationary process includes the mean and variance of which do
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not change over time, and the covariance between two periods depends on the distance
between the periods, not the turning point. According to our definition, a stationary time
series is a series whose mean, variance and covariance are independent of time. Such a
series exhibits constant width oscillations around its mean. This property is also called
mean reversion. Such stationary series can be encountered in the literature with different

names:

e weak stationary.
e covariance stationary.

e second-order stationary.

In empirical studies with time series, it is assumed that the data are "stationary".
However, most of the time series are not stationary. In order for the relationships between
the variables to be meaningful, the time series we use must show stationary properties.
Although there are no significant relationships between the two variables, it may seem as if
there is a relationship between them. When we establish a regression model with these
series, a high R"2 value can be obtained even if there is no relationship between them. In
this case, the spurious regression problem will arise. The source of this problem is that if
both time series have a strong trend, the reason for the high R"2 observed between them is
this strong trend relationship, not the linear relationship between the two variables.
Therefore, when analysis is made with non-stationary series, it gives misleading results
with traditional R"2 and tests (Palachy, S, 2019).

Seasonality: is a phenomenon that predicts that the price is subject to similar and
predictable changes in the same period in each calendar year. These changes can be in a
particular meteorological season, growing season, quarterly, monthly, holiday or off-peak
period. Seasonality often happens in the commodity market. For example, there is a
seasonal trend in the demand for heating oil, with prices increasing when demand increases
and lower when demand decreases. There is a seasonal trend in soybean supply (related to
planting, growing and harvesting). Seasonality can also be found in other markets such as
stocks, indices and Forex, and there is usually some underlying reason behind it. Finding
seasonal patterns and using them to predict a trend, filter trade ideas, or identify a tradable
opportunity can provide advantages to a trader. Please note that the character of each year

and therefore seasonality may change. Used alone or in combination with other techniques,
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seasonality is a useful tool in the technical analyst's toolbox. There are many different
kinds of seasons, for instance:

e Moment in Time

e Daily.

o  Weekly.
e Monthly.
e Yearly.

Therefore, it is subjective to determine whether your time series problem contains a
seasonality component. Plotting and reviewing your data, possibly at various scales and
with the addition of trend lines, is the simplest method for determining whether seasonality
is present (Brownlee, J, 2016).

Autocorrelation: Autocorrelation, or self-correlation, is the correlation of a signal
between its values at different times. In other words, it is the expression of similarity
between observed values as a function of time delay. Autocorrelation analysis is a
mathematical tool used for purposes such as recognizing repeating patterns, detecting the
missing fundamental frequency of a signal. It is frequently used for the analysis of
functions or sequences in signal processing. In multiple regression analysis, autocorrelation
describes the relationship between successive values of the error term. This is a deviation
from an important assumption of the general linear regression model. As a general linear
regression model assumption, there is no relationship between the error terms.

ACF/PACEF: In the exploratory data analysis of time series forecasting,
autocorrelation analysis is an essential step. The autocorrelation analysis aids in pattern
recognition and randomness detection. Because it helps determine the parameters of an
autoregressive—moving-average (ARMA) model, this is especially crucial if you intend to
use it for forecasting. The Autocorrelation Function (ACF) and Partial Autocorrelation
Function (PACF) plots are examined during the analysis. When assessing a time series, the
autocorrelation function (ACF) and the partial autocorrelation function (PACF, also known
as partial ACF) are crucial functions. Plots that help determine the values of p, q, and r for
Autoregressive (AR) and Moving Average (MA) models are typically produced. The
average correlation between data points in a time series and previous values of the series
measured for various lag lengths is measured and plotted in an ACF. The only difference
between a PACF and an ACF is that each partial correlation takes into account any

correlations between observations with shorter lag lengths. Due to the fact that they both
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measure the correlation between data points at time t and data points at time t-1, the values
of an ACF and a PACEF at the first lag are identical. However, the PACF measures the
same correlation after controlling for the correlation between data points at time t and those
at time t-1, whereas the ACF measures the correlation between data points at time t and
data points at time t-2 at the second lag(Monigatti, L, 2022).

Returns and Normalization: As intuitive as it may seem to some of you, the term
returns represented the percentage change between the values for two consecutive periods.
It's important to note that positive returns show a rise in price, while negative returns show
a fall. As a result, if investors anticipate positive returns in the future, they would rather
hold onto their stocks as their value rises. The process of rescaling the data from the
original range to ensure that all values fall within the range of 0 to 1 is known as
normalization. When you have time series data with input values that have different scales,
normalization can be helpful and even necessary for some machine learning algorithms.
Linear regression and artificial neural networks that weight input values, as well as
algorithms like k-Nearest neighbors, may necessitate it. You must either know or be able to
accurately estimate the minimum and maximum observable values in order to normalize.
From the data you have, you might be able to make some guesses about these values.
Estimating these expected values may be challenging if your time series is trending upward
or downward, and normalization may not be the best approach for your problem(Brownlee,
J,2016).

Residual Analysis: In a time, series model, the "residuals" are the leftovers from
fitting the model. The difference between the observations and the residuals is the same for
many, but not all, time series models. When determining whether a model has adequately
captured the data's information, residuals are helpful. The following properties of a reliable
forecasting method will be found in residuals:

e There are no correlated residuals. There should be information in the
residuals that can be used to make forecasts if there are correlations between
them.

e There is no mean in the residuals. The forecasts are biased if the mean of the
residuals is not zero.

Any forecasting technique that does not meet these requirements can be enhanced.
However, this does not preclude further development of forecasting techniques that meet

these requirements. For the same data set, it is possible to have multiple forecasting
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methods that all meet these properties. It is important to check these properties to see if a
method is making use of all of the information that is available, but this is not a good way
to choose a forecasting method. The forecasting method can be altered to provide better

forecasts if either of these properties is not met (Hyndman, R, N.D).

Importance of Partition: Splitting data into two or more subsets is known as data
splitting. A split with two parts typically serves to train the model while the first part is
used to evaluate or test the data. The training data set is used to train and develop models
in a basic two-part data split. Estimating various parameters and comparing the
performance of various models are two common uses for training sets. After the training is
finished, the testing data set is used. To ensure that the final model functions properly, the
training and test data are compared. Data is typically divided into three or more sets when
using machine learning. The dev set is the third set, and its purpose is to alter the
parameters of the learning process. There are various choices when it comes to the ratio
between training and testing dataset. Depending on the number of the observation in
dataset the choice can be made between 70/30 or 80/20. Particularly in our time series data

set in both Bitcoin and Ethereum we will use the partition of 80/20.

AR Models:

Autoregression models, also known as AR models, are normally used to predict ex-
post variables (observations whose values we know exactly) at specific moments in time in
chronological order. When we want to make a projection, the dependent variable should
always be at least a later time than the independent variable. Autoregressive models, as the
name suggests, are models that return to themselves. That is, the dependent variable and
the explanatory variable are the same except that the dependent variable will be at a later
time (t) than the independent variable (t-1). We say chronologically ordered because we
are now at time (t). If we go forward one period, we go to (t+1), and if we go back one
period, we go to (t-1). When we want to project using autoregression, our attention must be
focused on the type of variable, the frequency of its observations, and the time horizon of
the projection. They are colloquially known as AR(p), where p is labelled 'order’ and is
equal to the number of periods we will return to to perform the estimation of our variable.
We must take into account that the more periods we go back or the more orders we place

on the model, the more potential information will appear in our forecast (W.Palma, 2016).
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MA models:

The moving average is an important indicator used as a trend follower and is
frequently used in technical analysis. Moving averages show the current direction with a
lag, rather than giving a direction on where prices will go. It is delayed as it is an indicator
based on past prices. Moving averages are used in most of the forex market indicators. For
example, Bollinger bands, moving averages are included in the calculations of indicators
such as MACD. A moving average is an indicator calculated by averaging n prices.
Moving averages are considered an important indicator for trend tracking. This is because
moving averages consist of past price movements. Moving averages also help in
identifying support and resistance points. For example, the 200-day moving average moves
more slowly than the 20-day moving average and indicates a more lagging forecast. Short-
term moving averages are used by short-term traders, while long-term moving averages are
used by long-term investors. The 200-day moving average, which is frequently used by
traders, is carefully followed as an important signal and support resistance level. In some
cases, moving averages with more than one time frame are used together to have an
opinion about the direction of the market. The longer the time to look at the moving
averages, the greater the lag. For example, looking at the 10-day moving average, the lag is
less as it considers more recent prices. There are 3 main types of MA models:

e Simple Moving Average: It is the moving average created by averaging the
price movements of a financial product within the specified period. The
simple moving average considers the closing prices. For example, The 5-day
simple moving average is obtained by adding the 5-day closing prices and
dividing by 5.

o Weighted Moving Average: It is the moving average calculated by averaging
the price movements of a financial product within the specified period
according to the determined weights.

e Exponential Moving Average: It is a moving average calculated by taking
the average of the price movements of a financial product within the specified
period, giving more weight to the price movements in the recent period.
Because of the weighting, the exponential moving average counts as a less

lagged moving average.
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Moving averages, which are widely used in technical analysis, are more effective when
used together. For example, the cross between the 50-day moving average and the 200-day
moving average produces a technical analysis signal. Generally, a combination of short-
term moving averages and long-term moving averages gives better results. When the short-
term moving average crosses the long-term moving average upwards, it signals that price
may move upwards in the short term. In the literature, this “golden cross” is known as the
“golden cross”. On the contrary, if the short-term moving average cuts the long-term
moving average downwards, it generates the signal that prices may move downwards. In

the literature, this "death cross" is referred to as "dead cross"(W. Palma, 2016).

ARMA Models:

ARMA models are used for modelling stationary time series and are a combination
of AR and MA models. In these models, the observation value for any period of a time
series is expressed as a linear combination of a certain number of previous observation
values and the error term. If the ARMA model is a combination of the p-term AR and the

g-term MA model, it contains p+q terms and is written as ARMA(p,q)(W.Palma, 2016).

ARIMA Models:

Most of the series encountered in practice, especially the economic time series, are
not stationary. The stationarity of these series is disturbed by factors such as trends,
seasonal and cyclical fluctuations, and random causes. Modelling of non-stationary time
series depends on providing stationarity in the series. To ensure stability, these factors
must first be identified and then eliminated. If the observation values of a time series are
not stationary around the mean value of this series, stationarity is achieved by taking the
appropriate differences of the series. The degree of difference is represented by d, and in
practice d usually takes the value 1 and at most 2. Models applied to series that are not
stationary but converted to stationary by differencing are called integrated models or "non-
stationary stochastic models". If the degree of the autoregression parameter is p and the
degree of the moving average parameter is q and the difference is made d times, this model
is called the (p,d,q) order autoregressive integrated moving average model and is written as
ARIMA (p,d,q). ARIMA models, also known as Box and Jenkins, are one of the statistical
methods used for predicting the future. The Box-Jenkins (B.J) method is used in the
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forward estimation of univariate time series. This shows a systematic approach to
establishing forward forecast models and making forecasts of discrete and stationary time
series consisting of observation values obtained at equal time intervals. The fact that the
series consisting of the observation values obtained with equal time intervals is discrete
and stationary is B.J. important assumption of the method. The difference between the Box
Jenkins estimation method from other estimation methods is that it does not require any
prior knowledge about the structure of the time series or the general development trend. In
addition, while the use of other methods requires the series to have a certain trend, the
Box-Jenkins method can also be applied to complex time series since there is no such
restriction in these models. An important advantage of the method is that it uses past
observation values as an explanatory variable. Unlike econometric models, the Box
Jenkins method does not provide a behavioural explanation for the studied variable, so it
does not fit into the theoretical framework. It considers the internal dynamics of the time
series.

The Box and Jenkins methodology is summarized in four phases:

* The first phase consists of identifying the possible ARIMA model that follows the
series, which requires the Decision on which transformations to apply to convert the
observed series into a stationary series. Then determine an ARMA model for the stationary
series, that is, the p and q orders of its autoregressive and moving average structure.

* The second phase: After provisionally selecting a model for the stationary series,
the second stage of estimation is passed, where the AR and MA parameters of the model
are estimated by maximum likelihood and their standard errors and model residuals are
obtained.

* The third phase is the diagnosis, where it is verified that the residuals do not have a
dependency structure and follow a white noise process. If the residuals show structure, the
model is modified to incorporate it and the previous steps are repeated until an adequate
model is obtained.

* The fourth phase is the prediction, once an adequate model has been obtained,

predictions are made with it (W.Palma, 2016).

ARIMAX:
An Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX)

model is a multiple regression model that includes one or more autoregressive (AR) and/or
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moving average (MA) terms. This method is appropriate for forecasting when the data is
stationary/nonstationary, multivariate, and has any type of data pattern, i.e.,
level/trend/seasonality/cyclicity. ARIMAX is related to the ARIMA technique, but
ARIMA is appropriate for univariate datasets ARIMAX is appropriate for analyses with
additional explanatory variables in categorical and/or numeric format (multivariate). This
model incorporates exogenous variables, or we use external data in our forecast.
Exogenous variables in the real world include the gold price, oil price, outdoor
temperature, and exchange rate. It's fascinating to consider that all exogenous factors are
still technically modelled indirectly in the historical model forecast. However, if we
include external data, the model will respond to its effect much faster than if we rely on the

influence of lagging terms (Smarten, 2018).

ARCH and GARCH:

ARCH and GARCH models are one of the most well-known models in time series in order
to assess the volatility in the market and even to predict the stability for the future. In the
practical part to assess the volatility we will create a squared version of returns which we
will refer as the volatility (Torben, G, 2013). A time series' variance can be modelled using
an ARCH model, which stands for autoregressive conditionally heteroscedastic. To
describe a fluctuating, possibly volatile variance, ARCH models are utilized. Although an
ARCH model could be used to describe a gradual increase in variance over time, most of
the time, it is used to describe brief periods of increased variation. It may be more effective
to transform the variable to deal with the gradually increasing variance associated with the

gradually increasing mean level (Engle, R, n.d).

Log likelihood ratio test:

In the final step of every fitted model we will run a log likelihood ratio test in order to
decide on which model performs better. The likelihood ratio (LLR) test is a hypothesis test
in which two different maximum likelihood estimates of a parameter are compared to
determine whether or not to reject a parameter restriction. The likelihood ratio test (LLR)
is a statistical test used to compare the goodness-of-fit of two models. A relatively more
complex model is compared to a simpler model to see if it significantly better fits a specific
dataset. If this is the case, the more complex model's additional parameters are frequently

used in subsequent analyses. This test is only useful when comparing hierarchically nested
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models. That is, the more complex model must only differ from the simple model by one
or more parameters. Increasing the number of parameters will always result in a higher
likelihood score. However, there comes a point when adding more parameters is no longer
justified in terms of significantly improving a model's fit to a specific dataset and the

equation is as following (Evomics, N.D):
LR = 2*%(InL1-InL2)
Equation 4

Furthermore, in order to implement this in Python we will create the following function:
def LLR test(mod_1, mod 2, DF = 1):

L1 = mod_1.fit().11f
L2 = mod_2.fit().11f
LR = (2*(L2-L1))

p = chi2.sf(LR, DF).round(3)
return p

Code Chunk 1
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3 Literature Review

In this section of the thesis, we will describe the entities which are being analyzed and also
the comparing indicators. By describing, the detailed information will be delivered to the
reader on crypto currencies, blockchain technology stock markets etc. Furthermore,
comprehensive knowledge is aimed to be passed regarding the dominance factor of

selected crypto coins and their way of working.

3.1 Crypto Currencies

Cryptocurrencies are digital assets that are used as virtual currency and do not exist
in any physical form. They are secured by cryptography, which is called encryption,
and this prevents the act of “double spending”, which means counterfeiting or
making multiple transactions with the same cryptocurrency, which has become

almost impossible.

The world's first cryptocurrency was Bitcoin, created in 2008. Bitcoin was followed
by other types of cryptocurrencies, with hundreds of variations today. Unlike
currencies in the classical sense, cryptocurrencies are not issued by a central
authority. This feature is perhaps the most attractive aspect of cryptocurrencies for
investors. Because in this way, most cryptocurrencies remain immune from

government regulation or manipulation.

The concept of crypto money has been in our lives for many years. For example, we
used cryptocurrencies instead of physical banknotes in every transaction we made
with debit cards, virtual cards, or over the internet. Transactions were made on
digital basis, without physical money transfer between banks. So, from a point of
view, cryptocurrencies were also used in these transactions. Because of these
transactions, there were only numerical changes in the financial systems. The new
generation cryptocurrencies, on the other hand, differ from their ancestors primarily
by not physically existing, besides being used primarily in digital transactions. In
addition, as we mentioned above, it is different from the previous versions in that

they are not subject to the rules of a state or organization and the transactions are
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made with the consensus of all units in the system. The main reason why it attracts
so much attention and love compared to other currencies in the world is that it has a
distributed structure. As such, transactions are not carried out under the control of a
single authority, but through the control and approval of all users. This feature also

ensures that this currency is referred to as more secure.

Cryptocurrencies are created through a process called mining. Individuals with
special hardware (hardware) are rewarded by a network with tokens or
cryptocurrencies such as Bitcoin in return for their services. In this decentralized
competitive process, if too many people try to mine a coin, it will become
increasingly difficult to profit with each new addition to the network. This is one of
the main reasons why Bitcoin, which can be produced on a limited basis, has

increased in value over time with its increasing popularity (Chowdhury, N, 2019).

3.1.1 Blockchain Technology

We are involved in many networks in our lives. Messaging through our social media
accounts, sending e-mails, transferring through a bank, or trading stocks in the stock
market. All these are the networks we use in our daily lives and some of the transactions
we perform on these networks. It is also known that there is an agent that manages the
relevant network on all these networks. For any financial transfer, it is necessary to
confirm that there is enough in the account of the transferee, and to create records
containing the time information of this transfer, the amount sent, the sender and the
sending party information. In short, intermediaries who manage the relevant networks are
needed to ensure that transactions in all these networks can be carried out smoothly and be
recorded, that transactions are verified in case of a problem, and that disputes are resolved.
Blockchain technology enables these functions on networks to be performed in a
decentralized manner and at lower costs. Blockchain is a database system made up of
interconnected blocks. Any information involving a transaction can be processed into this
database. New transactions are added on top of the previous block and a new block is
created. These blocks are linked chronologically. In this way, the new incoming block also
confirms the information in the previous blocks which is increasing the security of the
records. Every single input on these blocks is encrypted and therefore has a distributed

structure. Due to this, it is almost impossible to change or remove the data, as it would
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require a person to change the historical records on this network on all the other blocks in
the chain. The larger the network, the more separate records it has and that provides more
secure to the data in the blockchain. This eliminates the verification and auditing costs
mentioned above and provides an accountable and reliable structure. To put it more
simply, let's think of blocks on the blockchain as ledgers. Let a copy of these notebooks be
distributed to everyone on the network. Each new transaction is recorded in these books
simultaneously, so the records of the transactions are kept in many places, not just in one
or a few places. In a centralized structure, since there is only one record, it is a significant
cost to ensure the security of these records exist and it is reliable. However, as it is not
possible to change all records in the decentralized blockchain structure, a more secure
system is formed. In a centralized system, the privacy risk created by the data that the
intermediaries need to access while transacting is another disadvantage of this structure.
Transactions made through a broker often need to be shared because of the verification
process. This increases the possibility of using the data outside of its real purpose in the
network. In addition, the security of the data held on the intermediary institution that
manages the network creates a different problem and cost. In Blockchain, such information
leaks are prevented as users can verify without sharing information with another person or
institution. Blockchain technology has the potential to change the processes performed
over networks in many different sectors and fields such as finance, health, science, and
industry in the future. This potential excites all institutions in the relevant sectors and
investments in blockchain technology are increasing day by day for these reasons
(Chowdhury, N, 2019). There are numerous methods for constructing a blockchain
network. They can be public, private, permissioned, or built by a consortium of
individuals.

Public blockchain networks are permissionless networks and allow anyone to join. All
members of the blockchain have equal rights to read, edit and verify the blockchain.
Common blockchain networks are mainly used for trading and mining cryptocurrencies
such as Bitcoin, Ethereum and Litecoin.

Private blockchains, also referred to as managed blockchains, are controlled by a single
entity. This authority decides who can become a member and what rights the members
have in the network. Private blockchains are only partially decentralized because they
contain access restrictions. Ripple, a digital currency exchange network for businesses, is

an example of a private blockchain.
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Hybrid blockchains combine some features of both private and public networks.
Companies can set up private, permission-based systems as well as a common system.
Thus, they control access to certain data stored on the blockchain while keeping the rest of
the data public. They use smart contracts to allow members of the common system to
check whether private transactions have been completed. For example, hybrid blockchains
can allow shared access to digital currency, while keeping bank-owned currency private.
Consortium blockchain networks are managed by a group of organizations. Pre-selected
organizations share responsibility for maintaining the continuity of the blockchain and
determining data access rights. Consortium blockchain networks are generally preferred in
sectors where many organizations have a common goal and can benefit from responsibility
sharing. For example, the Global Shipping Business Network Consortium is a non-profit
blockchain consortium that aims to digitize the shipping industry and increase

collaboration among organizations in the shipping industry (Parizo, 2021).

3.1.2 Bitcoin (BTC)

After the 2008 Mortgage crisis, Satoshi Nakamoto published a technical paper
(Whitepaper) on Bitcoin, an end-to-end electronic payment system. With the whitepaper,
Bitcoin, which has a decentralized and transparent structure, emerged as a cryptocurrency.
The Bitcoin blockchain was started to be used with the first transfer made in January 2009
and was named "1st generation blockchain" with the popularity it gained in a short time.
Thanks to its distributed, decentralized, and transparent structure, Bitcoin has risen against
today's financial order in a very short time. With the increase in the use of Bitcoin, the
limited supply, and the technology it brings, it has been adopted by many investors and
financial institutions. Bitcoin has enabled the development of many leading sectors and
technologies with its pioneering nature and technology in the crypto currency world. The
fact that the Bitcoin blockchain structure is transparent and its supply is limited, in addition
to the technological revolution brought by Bitcoin, has caused it to be seen as an
investment with low inflation and high potential for many investors. After its birth, Bitcoin
caused the birth of many different cryptocurrencies due to its inability to provide sufficient
capacity in terms of both speed and scalability. These cryptocurrencies are called
"alternative coins", in other words "altcoins". These cryptocurrencies, which are developed
in a similar or different structure with the Bitcoin blockchain, can be programmable and

have a faster structure. While creating alternative cryptocurrencies, competitive advantage
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has been taken advantage of by having different features at various points and new crypto
money types have emerged. The main differences between these cryptocurrencies are the
maximum amount of supply that can be produced in general, the algorithms used and the
types of blockchains (private/shared, permissioned/unauthorized consensus) are examples.
As all revolutionary technologies, there are Bitcoin predecessors and sources that its
creator refers to in his article. Wei Dai B-Cash, Nick Szabo BitGold, David Chaum
Digicash are the most primitive and government-blocked versions of digital currencies.
Satoshi Nakamoto managed to keep his identity secret because of these negative
experiences of his predecessors. There is controversy over whether it is his real name,
pseudonym, or a team title. The maximum number of Bitcoins that can be produced is
limited to 21 million by specifying in the genesis block. The first Bitcoin transfer was
between Satoshi Nakamoto, cryptographer Hal Finney, who helped him develop it. The
first purchase was made on May 22, 2010, with the purchase of a pizza for 10,000
Bitcoins. As of July 22, 2013, the total value of Bitcoins in circulation was already 1.2
billion dollars as of 26.07.2020 this value was 182,967,290 dollars. The total amount of
Bitcoin currently produced has reached the level of 19,209,775 according to Binance
which is one of the most widely used cryptocurrency trade platforms.

Bitcoins, which are not produced from any centre, show a point-to-point distributed
network feature similar to Bittorent networks. Payments made in this network reach other
points instantly, so that the payment from which address to which address is recorded.
Thus, the collected records are located in structures called blocks. By applying a hash
algorithm that requires high processing on each block, it is desired to find the expression
that starts with a certain number of zeros. The first user to perform this transaction, which
corresponds to approximately every 10 minutes, is rewarded from zero to 50 BTC
(currently 12.5 BTC). Thus, Bitcoins are driven to emission. Each block contains the hash
expression of the last block before it. This creates a blockchain that is very hard to break
(except for the 51% attack). The aim is to avoid double spending and to keep records of
submissions. The process of creating the coin is called mining. Mining is the general name
of the process of performing mathematical operations using computational power. To make
these transactions, the nodes in the bitcoin network that download the offered bitcoin
software and perform operations that require intensive processing power on their hardware

(usually video cards) are called "miners".
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The first block of the system was named "genesis block" and was produced on January 4,
2009. As such, the first transaction in the block is a private transaction and is initiated by
the creator of the new money block. This is an incentive system for miners to participate in
the network, so that money can enter the system distributed as desired, which does not
have a central authority to print the money. In this way, miners make a profit both by
generating and driving new bitcoins into the system, and by receiving bitcoins from the
system in exchange for services to perform pending transactions. The regular addition of
new money to the system is likened to gold miners finding gold and putting it into
circulation, hence the name mining. In the current process, miners continue to produce the
amount of bitcoin that will come into circulation each year at a decreasing and predictable
rate. In the system, production will continue until a total of 21 million bitcoins are in
circulation, then the production process will stop, and miners will continue to be supported
only at transaction costs.

Bitcoin is used as a payment and investment tool in some countries. Bitcoins have a value
because they can be used like money, and some funds are also known to be interested in
this product with the expectation that its value will increase as its popularity grows in the
future. The value of Bitcoin is determined by the supply and demand conditions in the
market. When the demand increases, the price increases and the price decreases. There is a
limited number of bitcoins in circulation and there is a limit and procedure for generating
new bitcoins. The biggest threats to Bitcoin's market value are technical difficulties,
legislative changes due to the approach of countries to this money, and the negative change
in people's desire and trust in this money.

Besides its advantages, Bitcoin also has a few disadvantages. The Disadvantages of Bitcoin

are as follows:

e High price volatility and high risk to invest

¢ Bitcoin transaction speed and capacity remain quite low compared to its
competitors

e The high energy usage required to run the Bitcoin blockchain

e For these reasons, it is very important for people who want to trade Bitcoin to

act by considering Bitcoin Advantages and Bitcoin Disadvantages.
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Although there are many cryptocurrencies in the market, no cryptocurrency has managed
to surpass Bitcoin in terms of market dominance. Bitcoin Market Dominance or Bitcoin
Dominance is a data that expresses the ratio of the market value of Bitcoin to the overall
value of the cryptocurrency market. When historical data are examined, it is seen that the
dominance of Bitcoin, which was over 96 percent in 2013, decreased to 32 percent in 2018.
Underlying this major decline is the increase in transaction volumes of other
cryptocurrencies, especially Ethereum. One of the main reasons for the rise of Bitcoin
Market Dominance can be shown as the rise in Bitcoin price, increasing the transaction
volume by attracting more users and, accordingly, more demand than other
cryptocurrencies. It would not be wrong to say that the cryptocurrency market is largely
driven by Bitcoin. The increase in demand leading to increased Bitcoin dominance may
also be a sign of users moving away from low-volume and relatively riskier
cryptocurrencies and switching to Bitcoin. Being the first cryptocurrency enables Bitcoin
to shape the cryptocurrency industry. Although the number of cryptocurrencies in the
market is very large, there has not yet been a cryptocurrency that can compete with

Bitcoin's weight in the market (Grabowski, M, 2019)

3.2 Ethereum and its system

Ethereum is a system that was first introduced at the North American Bitcoin
Conference by Ethereum founder Vitalik Buterin. Although it is generally seen as an
altcoin, Ethereum is an innovative system that aims to develop blockchain technology and
use it in more areas. After the Ethereum development process, it was released in July 2015
and quickly gained popularity. Ethereum official website can be visited via
ethereum.org/tr/ link.

In 2016, due to a software bug, hackers stole approximately $50 million (3.6 million ETH)
from the DAO (Decentralized Autonomous Organization), a smart contract-operated
venture fund. After this hack, the Ethereum blockchain was hard forked, rewinding the
hack and moving on. In this process, the old chain continued its life as Ethereum Classic.
In 2017, the ERC-20 standard was created on the Ethereum blockchain, making it easier
for developers to develop tokens compatible with applications. In 2017, MakerDao, the
first decentralized finance application on Ethereum, launched and launched the DAI stable

cryptocurrency. Also in the same year, ETH exceeded the level of $100 for the first time.
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In 2018, platforms such as Compound and Uniswap were launched in the field of
decentralized finance. ETH broke above $1000 for the first time in January 2018, then fell
back below $100.

With the popularity of DeFi in 2020, many applications have emerged on Ethereum.
Ethereum has announced that it will launch the Beacon chain for ETH 2.0 migration in
2020. With Ethereum 2.0, it was planned to switch from the Proof of Work algorithm to
the Proof of Stake algorithm. With the rise in the market after the Covid-19 epidemic in
2020, Ethereum rose to the level of 4500 dollars in 2021.

Ethereum is a blockchain project that emerged after Bitcoin and allows creating smart
contracts on the blockchain. With the announcement of the Ethereum project in 2014, it
developed rapidly and allowed the creation of many existing sectors and new tokens in the
crypto money world. The Ethereum project has encountered many difficulties in the
process and has allowed many new areas to be born. With the ability to create smart
contracts on the Ethereum blockchain, it started the decentralized finance trend and helped
this field become a very large industry. The Ethereum project first started to work with the
Proof of Work algorithm, then switched to the Proof of Stake algorithm in September
2022. This process, called Ethereum Merge, is the beginning of the steps taken to make the
Ethereum project more scalable, fast, cheap and decentralized. Ethereum aims to provide a
faster and cheaper experience to its users with a more scalable structure. In addition to all
these goals, unlike other projects, Ethereum aims to create this structure in a decentralized
way. Ethereum was developed by Vitalik Buterin in 2014 and has been supported by many
names such as Mihai Alisie, Anthony Di lorio, Charles Hoskinson and Gawin Wood in the
following period. After the development phase, the non-profit Ethereum Foundation was
established to ensure the functionality of the blockchain. Initial capital investments in the
Ethereum project were made through online bookkeeping in July 2014. In this demand
collection, Ethereum purchases were made by barter with Bitcoin. Ethereum operates in a
worldwide distributed manner, thanks to users participating as “nodes” instead of a central
server, as in the Bitcoin network. This way of working makes the blockchain network
decentralized and highly resistant to attacks. Thus, if a node on the Ethereum blockchain
does not work, other nodes on the network are able to keep the system alive (Grabowski,
M.2019, p.42-68). Ethereum is basically a decentralized system that runs a computer called
the Ethereum Virtual Machine (EVM). Each validator that creates a node on the Ethereum

blockchain contributes to decentralization while keeping a copy of every transaction on the
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network. These copies, which are kept by different people, can be updated after each block
and synchronize with each other. Actions performed on the network are considered
"transactions" and are stored in blocks on the Ethereum blockchain. Verifiers check the
transaction history and records for accuracy before connecting these blocks to the network.
The Proof of Stake algorithm is used to maintain consensus on transaction accuracy on the
blockchain. With this algorithm, min 32 ETH must be locked to become a validator node.
After the locked 32 ETH, it is synchronized with the network and blocks can be added to
the blockchain. Ethereum has a transparent blockchain structure just like Bitcoin. All
transactions on the network can be viewed and examined by third parties (etherscan.io).
However, despite all this transparency, the Ethereum blockchain also provides anonymity
for users. To be able to transact on the Ethereum blockchain, you must have some ETH in
your wallet. Each transaction that takes place on the network is realized with some
transaction fee according to the current supply, demand and density balance. Each
transaction comes with a fee called “gas” which is paid by the user who initiated that
transaction. Gas essentially acts as a limit, restricting the number of actions a user can take
per transaction. It also has a very deterrent function to prevent gas fee network spam. ETH
does not have a limited supply like other cryptocurrencies. The supply of ETH increases
annually according to a certain inflation rate. This rate is inversely proportional to the
ETHs that are currently locked to be validators. In the Pos mechanism, new ETHs will
circulate in the form of staking rewards. However, ETH can take on a deflationary
structure in some cases, as a part of each transaction fee is burned according to the network
usage on Ethereum. Ethereum transaction fees can be quite high depending on network
activity. This is because the total gas capacity of a block is limited. As a result, users who
want to perform their transactions quickly can perform their transactions faster by paying a
higher gas fee. If this is done by many users, transaction fees generally rise on the network
to reduce demand. By shaping the transaction fees according to the demand, the network
can work more healthily and for a long time. ERC-20 is a standard format used to create
tokens on the Ethereum blockchain. The ERC-20 standard, proposed by Ethereum
developer Fabian Vogelsteller in 2015, describes the basis of many sets of rules, such as
how a token will work in the Ethereum ecosystem, how much it will supply. In simpler
terms, ERC-20 is defined as a standard in which the basic rules are determined for creating
tokens with the same characteristics on the Ethereum blockchain. Ethereum hosts many

tokens on its own blockchain with the ERC-20 standard. Some popular Ethereum-based
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altcoins are mentioned below to show the importance and usage of ERC-20((Reiff, N,
2022):

Tether USD (USDT)
USD Coin (USDC)
Shiba Inu (SHIB)
Binance USD (BUSD)
BNB (BNB)

DAI Stablecoin (DAI)
HEX (HEX)

Bitfinex LEO (LEO)
MAKER (MKR)
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4 Practical Part

In the practical part we will implement the methods which have been discussed in
methodology section. The aim will be to apply the time series models to our data with

splitting it into training and testing.

4.1 Analysis of BTC

In this section we will analyse the biggest crypto currency BTC since its first signed day in
Yahoo finance taking into consideration that we have already separated the data into
training and testing dataset in the ratio of 80/20. To start the analysis firstly let’s have a
look on the price plot of BTC since the beginning:
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Graph 1
Looking to the plot, it seems there was a significant expansion of BTC in the beginning of
2021 which is following a sharp decrease towards to the middle of the same year and
increase again at the end of the period. Furthermore, 2022 also shows a significant fall in

the BTC prices.

Next, we can have a look to the BTC Market capitalization:
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Graph 2
Looking to the above plot we can detect that the Market volume of BTC was relatively
stable until the end of 2019 and fluctuating since then until now. Both plots for BTC
market volume and BTC market prices can be signs of high volatility which we will

investigate in further sections of the thesis.

4.1.1 White Noise, Stationarity and Seasonality

In first step, we will try to examine the white noise of our dataset. To do that in python we

have set the dates as our indexes, configured frequency as days.

White Noise Time-Series
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Graph 3
The white noise here is telling us if our data is predictable or not. As we know, one of the
conditions of White Noise is its mean to be 0. To prove that our data is not white noise we
can have a look on the mean which is 13385 and based on this we can clearly state that the
data is not white noise.
print(wn.mean())

13384.990595423738

Figure I (thousands in §)
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In the next step we will assess the stationarity of our dataset with dicky fuller test and we

will set our Null hypothesis as “The data is stationary™”:

sts.adfuller(btcdata.Close)

4

(-1.6366271507566819,

0.4640237426676581,

29,

2998,

{'1%": -3.4325330913621452,
'5%': -2.862504548608965,
'10%': -2.5672834546224057},

48504.776278974656)

Figure 2

1% line test statistic and 5™ 6 7' are the respective critical values. As our test statistic is
greater than all the critical values, we do not have enough evidence for stationarity.

2" Jine is p-value which states that there is 46 percent chance of not accepting the Null
Hypothesis so we cannot confirm that the data is stationary. So, we reject the Null
hypothesis.

3" Jline shows the number of lags the utilized in the regression when determining the T

statistic. As we have 29 it means there is some autocorrelation going back 29 periods.

In the next step we will check the seasonality of the dataset with additive and

multiplicative decompositions.
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When we check the seasonal part of the above plot, we can see that it is a rectangle. This
happens when the values are constantly oscillating back and forth and the figure sizes too
small. In our case, the linear change results from constantly switching up and down
between negative -20 and 20 one for every period. Therefore, there is no concrete cyclical
pattern determined by using naive decomposition. And finally, residuals are indicating the
difference between the predicted values and actual values. From the plot we see that the

residuals are quite high in 2018, 2021 and 2022.

Multiplicative:
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Checking the multiplicative decomposition method to be sure on seasonality we can see

the similar results which states that there is no seasonal cycle in our dataset.

4.1.2 Auto Correlation Function and Partial Correlation Function

Next, we will examine the autocorrelation coefficients for BTC prices. To do so we have
again used Python for visualization where we have set the period daily.

ACF & BTC
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As we can see from the plot at the top all the coefficients are higher than the given
significance level which is the area in blue figure. As each lag shows how the prices differ
from each other one period ago we can state that there is an autocorrelation between lags.
In simple words, it means that prices one period ago can still assist us in forecasting the
future prices.

Furthermore, as a second level confirmation of being our data white noise, we can plot

ACEF of our white noise data:
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Here we can clearly see that almost all the lags are in within significance level (blue figure)
which enables us to easily confirm that there is no auto correlation in white noise data
which is indeed one of the assumptions for White-Noise.

In this step we will also analyse PACF for BTC close prices using order least squared

method in Python.
PACF & BTC
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As PACF shows direct effects of the prices from past period we can notice a completely
different plot than auto correlation function. Looking at the plot we can also notice positive
and negative values which is somewhat random without any lasting effects.

Moreover, we can examine the PACF graph for our white noise data:

PACF & WN
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Again, from the plot above although there is one lag which is out of significance level, we
can claim that it is completely random. Taking this into consideration we can prove one

more time that WN data has no autocorrelation.

4.1.3 AR model

In this section we will start our model building process where we will use Auto
regression models

First, in order to choose the number of lags that we will use in AR model it is
important to examine ACF&PACF and derive the result from there. As we have already
plotted our graphs in univariate, we can go through them again. As per the ACF graph, the
more lags we include, the better our model will fit to our data set however this can create
an overfitting problem which might cause incorrect predictions of the future prices. As per
the PACF plot we can remember that there are existing negative and positive coefficients
and some coefficients which are not in significance level. We can see that, after 48" lag the
coefficients are more likely to be significant and that is the reason, we should have less
than 48 lags in our AR model.

In the next step we are starting to implement AR model with 1 lag and then going

forward slowly to detect the best model. Also, we will use the log likelihood test to
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compare the models with different lags in order to define the best one. Here we define the

Null hypothesis as the second (more complex model) does not perform better than the first

one:
AR model with 4 lags: AR model with 3 lags:

Dep. Variable: Close No. Observations: 2418 Dep. Variable: Close No. Observations: 2418
Model:  ARIMA(4, 0, 0) Log Likelihood -18683.763 Model:  ARIMA(3, 0, 0) Log Likelihood -18688.728
Date: Tue, 31 Jan 2023 AIC  37379.527 Date: Tue, 31 Jan 2023 AIC  37387.457
Time: 07:48:13 BIC 37414271 Time: 07:48:14 BIC 37416.410
Sample: 09-21-2014 HQIC  37392.162 Sample: 09-21-2014 HQIC 37397.986

- 05-04-2021 - 05-04-2021

Covariance Type: opg Covariance Type: opg

coef std err z P>|z| [0.025 0.975] eoe! stdlerr z P>z [0.025 0.975]

const 7178.9367 6.904 1039.814 0.000 7165405 7192468 const 7178.9363 5791 1239.567 0.000 7167.585 7190.287

4 1.011 124 1

arLt o181 0.0087 124:820 10.0007 00 02 arli 10128 0008 125997 0000 0997  1.029

arl2 00141 0011 1332 0183 0007  0.035
arl2 00139 0010 1330 0184  -0007  0.034

arl3 0.0395 0.012 3409 0.001 0.017 0.062
arl3 00270 0007 3758 0000  -0041  -0.013

arl4 00654 0008 -8575 0000 0080  -0.050
sigma2  3.02e+05 1981120 152450 0000 2.98e+05 3.06e+05

sigma2 3041e+05 2016363 150792 0.000  3e+05 3.08e+05

Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 143806.34 ingox C1H Q) Q02 Jarque-Berai(10): Iz e
Prob(Q): - Prob(JB): o Prob(Q): 0.89 Prob(JB): 0.00
Heteroskedasticity (H): 4083.98 e 128 Heteroskedasticity (H): 4293.11 Skew: 1.38
Prob(H) (two-sided):  0.00 Kurtosis: 40.69 Prob{H) {two-sided):  0.00 Kurtosis: 40.80
Table 1 Table 2

Log likelihood test for models with 1 and 4 lags (for visibility as 1 lag model
performed well as well):
LLR test(ar_model, ar_model 1)
0.0
Figure 3
After several trials until 7" lag it is obvious that we should stop at 4™ lag based on
the LLR test results. Although, we have one value which is insignificant in AR model with
4 lags we log likelihood test provides greater log likelihood in model 4 and that is the
reason we will make our decision on 4 lags. So, we reject the Null hypothesis.
Furthermore, after testing the log likelihood test between 1 lag and 4 lag we see that adding
4 more lags does not affect the model in a negative way.
Next, as it is more reliable to use stationary data in AR models which are having constant
mean, variance, and autocorrelation we will try to use returns which is a percentage
representation of the changes in prices. To obtain that, we have created a new column in

both training and test data set and used some python methods to calculate the percentages:
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btc_train['returns’'] = btc_train.Close.pct_change(1).mul(100)
btc_test['returns'] = btc_test.Close.pct_change(1).mul(100)
btc_train = btc_train.iloc[1:]

Code Chunk 2

To test the stationarity, we will use the Dickey-Fuller test for training data set where the
Null hypothesis is that the data is stationary:
(-14.87779616981684,
1.626558183779799¢e-27,
9,
2410,
{'1%': -3.4330662982661715,
'5%': -2.8627400264482548,
'10%': -2.5674088238838864},
13274.840659930018)

Figure 4

From the above we can see that our test statistic -14 is smaller than all the three critical
values in different confidence levels. Because of that we can state that the data that we
have is stationary now.

Now we can go ahead and examine ACF and PACF respectively for the return values:

ACF & BTC Returns PACF & BTC Returns
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Graph 10 Graph 11

In both autocorrelation and partial autocorrelation suggests indicates us that there are some
coefficients which are positive, negative, also within confidence level and some outside of

confidence level which allows us to state that the data has no autocorrelation.
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As we have fitted the models for close prices of BTC we will follow the similar
approach in returns. We will try to fit several models with different lags and apply log
likelihood test in order to assess the best model fit. Here we define the Null hypothesis as

the second (more complex model) does not perform better than the first one:

AR model with 7 lags AR model with 1 lag:
Dep. Variable: returns  No. Observations: 2417
Model:  ARIMA(7,0,0)  Log Likelihood -6699.913 Dep. Variable: retuns  No. Observations: 2417
Date: Tue, 31 Jan 2023 AIC 13417826 Model:  ARIMA(1, 0, 0) Log Likelihood -6705.236
Time: 14:37:51 BIC 13469.939
i Date: Tue, 31Jan 2023 AIC 13416471
Sample: 09-22-2014 HQIC 13436.778
- 05.04-2021 Time: 14:32:42 BIC 13433.842
Covariance Type: opg Sample: 09-22-2014 HQIC 13422789
coef stderr z P>|z| [0.025 0.975] - 05-04-2021
const 02787 0083 3340 0001 0115 0442 Covariance Type: opg
arl1 00144 0013 -1.117 0264 -0.040 0.011
arl2 00015 0016 0095 0924 -0030 0033 costlstdlerr z P>zl [0.025 0.975]

arL3 00176 0017 1.058 0290 -0.015 0.050

const 02787 0.078 3568 0.000 0.126 0432
arL4 -00008 0016 -0.051 0959 -0.032 0.030

arl5 00112 0016 0684 0494 -0021 0043 arl1 -00153 0013 -1227 0220 -0.040 0.009
arl6l 00561 0.016: 34650001 10.024 0058 sigma2 150368 0.194 77.352 0.000 14.656 15.418
arl7 00275 0015 -1872 0061 -0056 0.001
sigma2 149702 0207 72344 0000 14565 15.376 Ljung-Box(L1) (Q) 0.00 Jarque-Bera(JB): 6613.33
Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 6308.91 Prob(Q): 1.00 Prob(JB): 0.00
chine s T Heteroskedasticity (H): 150 Skew: 0.1
Heteroskedasticity (H): 1.51 Skew: -0.16
Prob(H) (two-sided): 0.00 Kirtoeisss 40104 Prob(H) (two-sided): 0.00 Kurtosis: 11.10
Table 3 Table 4

LLR_test(ar_model ret_1, ar_model ret 2)

0.001

Figure 5
Based on our trials we can see that second AR model with 7 lags have greater log
likelihood and as LLR test value is less than 0.01, we can indeed state that the second

model is better than the first model with 1 lag and reject the Null hypothesis.

In the next step, we can also test if normalized prices would result in stationary data that

we can use in our AR models in python:
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benchmark = btc_train.Close.iloc[0@]

btc_train['norm'] = btc_train.Close.div(benchmark).mul(100)
btc_test['norm’'] = btc_test.Close.div(benchmark).mul(100)

Code Chunk 3

As usual, let’s try to assess the stationarity again where we define claim the Null

hypothesis as the data is stationary:

sts.adfuller(btc_train.norm)

(2.7238760327780485,

0.9990879052948666 ,

27,

2392,

{'1%': -3.4330867606360274,
'5%': -2.862749062318083,
'10%': -2.5674136347538057},

30276.790079294624)

Figure 6

Noticing the fact that the test statistic is greater than our critical values we can state that the
data is non-stationary (rejecting Null hypothesis) thus we will not use normalized prices
for our AR model.

However, when we normalize returns, we are able obtain a stationary data. That is the
reason we will implement the similar approach to normalized returns and use Dicky-Fuller

test to check the stationarity where we define claim the Null hypothesis as the data is

stationary:

benchmark_ret = btc_train.returns.iloc[@]
btc_train['norm_ret'] = btc_train.returns.div(benchmark_ret).mul(100)

sts.adfuller(btc_train.norm_ret)

(-14.87779616981684,
1.626558183779799e-27,

9,

2410,

{'1%": -3.4330662982661715,
'S5%': -2.8627400264482548,
'10%": -2.5674088238838864},

26007 .506934147772)

Figure 7

As our test statistic falls to the left of our critical values, we can easily complete our

argument with stating the data is stationary. So we accept the Null hypothesis.

46



As we have done for prices and returns, we will try AR models with different lags
and use log likelihood test to compare our models. Here we define the Null hypothesis as

the second (more complex model) does not perform better than the first one:

Dep. Variable: norm_ret No. Observations: 2418 Dep. Variable: norm_ret No. Observations: 2418
Model: ARIMA(8, 0, 0) Log Likelihood -13138.849 Model: ARIMA(10, 0, 0) Log Likelihood -13132.818
Date: Tue, 31 Jan 2023 AIC 26293697 D Rie At AISINROARS 0N
Time: 15:30:31 BIC 26359.124
Time: 15:30:23 BIC 26340.023
Sample: 09-21-2014 HQIC 26314.906
Sample: 09-21-2014 HQIC 26310.544 - 05-04-2021
- 05-04-2021 Covariance Type: opg
Covariance Type: opPg coef stderr z P>zl  [0.025  0.975]
const -3.9745 1220 -3.257 0.001 -6.366 -1.683
coef stderr z P>|z| [0.025 0.975]
ar.L1 -0.0138 0.013 -1.070 0.285 -0.039 0.011
const -3.9744 1228 -3.238 0.001 -6.380 -1.568 ailiz 00021 0016 0128 0898 -0.030 0.034
ar.L1 -0.0159 0.013 -1.251 0.211 -0.041 0.009 arl3 0.0213 0017 1270 0204 -0.012 0.054
ar.L2 0.0006 0.016 0.038 0.970 -0.031 0.032 ar.L4 -0.0035 0.016 -0.220 0.826 -0.034 0.027
arl3 0.0178 0.017 1.073 0.283 .0.015 0.050 ar.L5 0.0109 0.017 0656 0.512 -0.022 0.044
ar.L6 00569 0.016 3.512 0.000 0.025 0.089
arL4 -0.0011 0.016 -0.068 0.946 -0.032 0.030
arl7 -0.0283 0.015 -1.926 0.054 -0.057 0.001
arLs 0.0114 0.016 0695 0.487 -0.021 0.043 ar.L8 -0.0188 0.018 -1.031 0.303 -0.054 0.017
ar.Lé 0.0567 0.016 3.539 0.000 0.025 0.088 ar.L9 -0.0276 0.018 -1540 0.124 -0.063 0.008
sigma2 3070.1127 41484 74.006 0.000 2988.805 3151.421 ar.L10 0.0561 0.017 3.240 0.001 0.022 0.090

sigma2 30556268 42201 72406 0.000 2972914 3138.340
Ljung-Box (L1) (Q): 0.01 Jarque-Bera (JB): 644855
Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 636520

Prob(Q): 0.94 Prob(JB): 0.00
Prob(Q): 0.97 Prob(JB): 0.00
Heteroskedasticity (H): 1.52 Skew: 0.16 Heteroskedasticity (H): 1.51 Skew: 0.16
Prob(H) (two-sided): 0.00 Kurtosis: 10.99 Prob(H) (two-sided): 0.00 Kurtosis: 10.94
Table 5 Table 6

LLR_test(ar_model_norm_ret_1, ar_model_norm_ret_2)

0.001
Figure 8
From the above results we can see that the model which has 10 lags have higher log
likelihood and also LLR test suggests that there is no significant impact adding extra 4
more lags to the model with 6 lags. So we reject Null hyptothesis and accept that the more
complex model performs better than the simpler one. However, comparing our results to
the unnormalized returns that we did earlier we can see that normalizing does not have any
significant impact on model selection.
In the last section of AR models we will examine the residuals for the created models. In

order to do so firstly we create the residual columns in the datasets:
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btc_train['res_price'] = results_ar_model_1.resid
btc_test['res _price'] = results_ar_model 1.resid

btc_train.res_price.mean()

16.652310445018966

btc_train.res_price.var()
319367.01910491264

Code Chunk 4

Next, we will check teh stationarity where we define claim the Null hypothesis as the data

is stationary::
sts.adfuller(btc_train.res_price[1:])

(-8.330642483276229,

3.3759266971884524e-13,

27,

2389,

{'1%': -3.433090201041693,
'5%': -2.862750581542575,
'10%': -2.567414443618994},

36799.08153158113)

Figure 9
Seeing test statistic falling on the left side of our critical values we can state that the data is

stationary(accepting Null hyptohesis). Now we can check the ACF for our data in order to

analyze residuals

ACF & BTC Residual Prices
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From the above plot we can see many coefficients which are outside of confidence

level(blue region) which makes us to believe that there is a better predictor than residuals.

Finally, we must plot the residual numbers to determine whether they match what we are

accustomed to anticipating from white noise data with ordinary plot function in python.

Residuals of Prices
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When we compare the above graph to actual prices which we initally plotted for BTC

prices we can see the correct patterns. This is another indicator that our model is correct.

Finally, we will analyze residuals of returns in the same way as we did for prices where we

define claim the Null hypothesis as the data is stationary:

btc_train['res_price_ret'] = results_ar_model_ret_2.resid
btc_test['res_price_ret'] = results_ar_model_ret_2.resid
btc_train.res_price_ret.mean()

-8.325419120685814e-05

btc_train.res_price_ret.var()

14.97719249322223

sts.adfuller(btc_train.res_price_ret[1:])

(-49.12376273495132,

0.0,

0,

2416,

{'1%": -3.43305954530467,
'5%': -2.862737044430077,
'10%': -2.5674072362026337},

13253.803837517575)

Figure 10
We can again see that data is stationary based on the dicky fuller test statistic and p-value

which means we accept the Null hyptothesis.
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While examining the ACF we see less coefficients which are outside of the confidence
level which means our model is a good predictor but we still have a steady evidence that

there is a better one which is in existence.

ACF & BTC Residual Returns
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Finally, when we plot the residuals of returns we can see the below graph which shows the
price volatility in different times. As there was a market crash in the second half of 2020,

the prices fell down significantly which was not predicted by many investors.

Residuals of Returns

Change in %

40
2015 2016 017 018 019 220 2021

Graph 15
4.1.4 MA models

Firstly, we will start from setting up our expectation on how many lags should be used. In
order to do so, we will need to check the ACF for Return close prices again:
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ACF & BTC Returns
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From the above plot we can remind ourselves that 6" and 10" lag seems to be statistically
significant, and after 32nd lag the lags becomes following insignificance. So we can
assume our model to have less than 35 lags.

In the next step we will fit the models. As expected from ACF plot, we will use the
models with 7 and 10 lags, then calculate the LLR test to see which performs better. Here
we define the Null hypothesis as the second (more complex model) does not perform better

than the first one:

MA model with 7 lags MA model with 10 lags
Dep. Variable: returns  No. Observations: 2420 Dep. Variable: retums  No. Observations: 2420
Model:  ARIMAQ,0,7)  Log Likelihood -6708.664 Model:: ARIMAD.0,10)  LogLikelihood) -6703.508
Date: Wed, 01 Feb 2023 AIC 13431016
Date: Wed, 01 Feb 2023 AIC 13435328
Time: 06:21:35 BIC 13500.515
Hlms: 0:2eit7 BIC/ 45484752 Sample: 09-19-2014 HQIC 13456289
Sample: 09-19-2014 HaIC 13454283 pTy——
- 05-04-2021 Covariance Type: opg
Covariance Type: 0]
L 2d coef stderr z P>|z|] [0.025 0.975]
coef stderr z P>jz| [0.025 0.975] const 02758 0085 3257 0.001 0.110 0.442

const 02759 0083 3329 0001 0113 0438 maEVRE0-0IC YRS 001 S L3000 0 O RN0.000
ma.l2 00035 0016 0214 0830 -0.029 0.036
mal1 -00161 0013 -1252 0211 -0041 0.009
ma.l3 00236 0017 1402 0.161 -0.009 0.057
mal2 00024 0016 0149 0882 -0030 0.034 el G667 08, (6738, 078 G663 6,038

mal3 00248 0017 1489 0136 -0.008 0.058 mal5 00089 0017 0535 0593 -0024 0.041

mal4 -0.0089 0016 -0574 0.566 -0.039 0.022 malé 00563 0016 3468 0001 0024 0088
mal5 00103 0016 0625 0532 -0.022 0.042 mal7 -00332 0015 -2271 0.023 -0.062 -0.005
ma.lé 00581 0016 3583 0000 0026 0.090 mal8 -00166 0018 -0910 0.363 -0.052 0.019

mal7 -00308 0015 -2118 0034 -0059 -0.002 mal9 -00273 0018 -1529 0.126 -0.062 0.008
ma.L10 00583 0018 3.317 0001 0024 0.093

sigma2 149762 0.207 72339 0.000 14.570 15.382
sigma2 149123 0207 71930 0000 14506 15.319

Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 6291.73 Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 6322.16

Prob(Q): 0.98 Prob(yB):  0.00 Prob(Q): 0.97 Prob(JB):  0.00

Heteroskedasticity (H): 1.51 Skew: -0.17 Heteroskedasticity (H): 1.51 Skew: -0.16

Prob(H) (two-sided): 0.00 Kurtosis: 10.89 Prob(H) (two-sided): 0.00 Kurtosis: 10.91
Table 7 Table 8
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LLR test with 3 degrees of freedom

LLR_test(model _ret_ma_1,model ret_ma_2, DF = 3)
0.016
Figure 11

As the result from LLR test is less than 0,05 we can state that the model with 10 lags
performs better than the model with 7 lags which means we reject the Null hyptothesis.
Also, we can see a slight better log likelihood in the model with 10 lags.

In the next step, we will examine the residuals for the model that performed better with
creating another column for residuals with MA models:

btc_train['res_ret_ma_2'] = results_ret_ma_2.resid[1:]

print("mean is " + str(round(btc_train.res_ret_ma_2.mean(),3)))
print(“"variance is " + str(round(btc_train.res_ret_ma_2.var(),3)))
print("Standard deviation is " + str(round(sqrt(btc_train.res_ret_ma_2.var()), 3)))

mean is 0.003
variance is 14.903
Standard deviation is 3.86

Code Chunk 5

In order to decide if our model is good or not, we need to check the graph for the residuals
first:

Residuals of Returns

Change in %

2015 2016 2017 2018 2019 2020 2021
Date

Graph 17

Looking from the above graph it seems that the residuals are rather random than following
certain pattern. In order to test this randomness, we can run Dickey-Fuller test and make
sure if our residuals are stationary where our Null hypothesis that data is stationary:

sts.adfuller(btc_train.res_ret_ma_2[2:])

(-49.055967881609746,

0.0,

9,

2418,

{'1%': -3.4330573017728736,
'5%': -2.8627360537147197,
'10%': -2.5674067087278276},

13251.566606107284)

Figure 12
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As our p-value is 0.0 we can state that the data is stationary which means we can accept the
Null hypothesis.

Furthermore, we can examine ACF of the residuals of our model in order to find out if the
return residuals is White Noise or not:

ACF & BTC Residuals
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From the above graphs we can see a many of the coefficients which are in significance
level. As we have added the first 10 legs to our model it was expected to have the
coefficients of those close to zero. And coefficients of the following 7 lags are also not

significant which is a sign on how well our model performs.

In this step, we will investigate how the MA models forecasts normalized values (which we
have created earlier) with plotting autocorrelation function. The purpose of this step is
being able to compare BTC values with other crypto currency values towards to the end of

the thesis as all 5 Crpytos have completely different range of prices.

ACF & BTC Normalized Returns
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From the above plot we can have an idea on what number of lags to use in firring the
model to normalized returns based on the coefficients which are not within confidence
level. However, we will fit the model and examine the results to make sure if normalizing

has any effect on model selection or not:

Dep. Variable: norm_ret No. Observations: 2420

Model: ARIMA(0, 0, 10) Log Likelihood -13073.251

Date: Wed, 01 Feb 2023 AIC  26170.503
Time: 08:03:41 BIC 26240.001
Sample: 09-19-2014 HQIC 26195775
- 05-04-2021
Covariance Type: opg
coef stderr z P>|z| [0.025 0.975]

const -3.8366  1.181 -3.249 0.001 -6.151 -1.622
ma.L1 -0.0161  0.013 -1230 0219 -0.042 0.010
ma.lL2 0.0035 0017 0213 0.831 -0.029 0.036
ma.l3 00236 0017 1.399 0.162 -0.009 0.057
ma.L4 -0.0052 0016 -0.328 0.743 -0.036 0.026
ma.L5 0.0089 0.017 0.534 0.593 -0.024 0.041
ma.Lé 00563 0.016 3.458 0.001 0.024 0.088
ma.l7 -0.0332 0015 -2264 0.024 -0.062 -0.004
ma.lL8 -0.0166  0.018 -0.907 0.364 -0.053 0.019
ma.l9 -0.0273 0018 -1.525 0.127 -0.062 0.008
ma.L10 00583 0.018 3.308 0.001 0.024 0.093
sigma2 2890.5087 40296 71.732 0.000 2811.530 2969.488

Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 6322.17

Prob(Q): 097 Prob(JB): 0.00
Heteroskedasticity (H): 1.51 Skew: 0.16
Prob(H) (two-sided): 0.00 Kurtosis: 1091

Table 9

From the above, we can see that we have almost the exact same results of MA model with
10 lags in normalized returns to non-normalized returns. Taking this into consideration we
can state that normalizing values have no impact on model selection. Lastly to prove that
our model was the correct choice we will plot the residuals and ACF of residuals again.
From the below we can see many coefficients falling under confidence level even after the

10" lag. That is the reason our model is indeed correct.
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ACF & BTC Residuals for Normalized Returns
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In the last part, we will try examining if close prices of BTC can be predicted using MA
models. As we have already done in earlier sections as well, we will start with plotting
ACEF for Prices to determine the number of lags:

ACF & BTC
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From the above we can clearly see that all the coefficients are higher than the confidence
level which derives the assumption that any higher lag model will perform better than the
one with less lags. Also, we can derive another theory that infinite number of lags would
perform better in such cases. Since there is no possibility of adding infinite lags, we can

presume that MA models are definitely not the best to predict the real close prices.
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4.1.5 ARMA models

First, we will start with fitting ARMA models to the returns and interpret the results. We
could use the 7 and 10 lags for each part of the model taking into consideration that they
were the chosen lags for each model separately, this kind of complicated model in ARMA
will be very time consuming and inefficient for computers to calculate. That is the reason
choosing a model with less lags is more preferable. We can start to fit (3,3) and (4,4)

models and check the results:

Dep. Variable: returns  No. Observations: 2420 Dep. Variable: returns  No. Observations: 2420
Model: ARIMA(4, 0, 4) Log Likelihood -6710.810 Model: ARIMA(3, 0, 3) Log Likelihood -6710.047
Date: Wed, 01 Feb 2023 AIC  13441.620 Date: Wed, 01 Feb 2023 AIC  13436.095
iTime; 1534514 BIG  113499.535 Time: 15:39:32 BIC 13482427
2 -19-2014 134 1
Sample RS20 HQICT13462.68 sample: 09-19-2014 HQIC 13452.944
- 05-04-2021
- 05-04-2021
Covariance Type: opg
Covariance Type: opg
coef stderr z P>|z| [0.025 0.975]

const 02791 0079 3555 0000 0125 0433 costiist ey 2 GAH] DR BRI

arli1 -05407 1559 -0347 0729 -3596 2514 const 02680 0089 3020 0003 0.094 0442

arl2 05609 1381 -0408 0.685 -3267 2145 arl1 03481 0124 2798 0005 0104 0592
arl3 -05386 1432 -0376 0707 -3.345 2267 arl2 -04338 0074 -5878 0.000 -0.578 -0.289
arl4 03307 1319 0251 0802 -2255 2916 arl3 09335 0123 7562 0000 0692 1175
mali 05229 1554 0336 0737 -2523 3569 mali -03507 0129 -2719 0007 -0.604 -0.098
mal2 05716 1357 0421 0674 -2088 3232 mal2 04414 0076 5840 0.000 0293 0590
LES Wy ey Wy (AR 2iehd SR mal3 09265 0128 -7.233 0.000 -1.178 -0.675

mal4 03481 1927 -DRBYUOTE5N 20451 12267 sigma2 149923 0201 74551 0000 14598 15.386

sigma2 150146 0.199 75288 0000 14.624 15405

Ljung-Box (L1) (Q): 0.43 Jarque-Bera (JB): 6416.59
Ljung-Box (L1) (Q): 0.01 Jarque-Bera (JB): 6719.47

Prob(Q): 0.51 Prob(JB): 0.00
Prob(Q): 0.92 Prob(JB): 0.00
Heteroskedasticity (H): 1.51 Skew: -0.16
Heteroskedasticity (H): 1.50 Skew: -0.15
-si : is: 10.97
Prob(H) (two-sided): 0.00 Kurtosis: 11.16 Erob{H) {two:sided):: 10:00 Kartosls 0.9
Table 10 Table 11

Looking to the above models we can see that the lags in the model (3,3) is statistically
significant whereas the same values in the model (4,4) were much above from the
significance level. That is the reason we presume that the model with 3 lags in each side
would be much better fit for our data. Furthermore, from the LLR test we can also prove

that the first model with 3,3 is doing much better than the model with 4,4 lags:

LLR_test(model_ret_arma_1, model_ret_arma_2, DF = 2)
1.0

Figure 13

Finally, when we compare AIC values, we can see that ARMA (3,3) has less information

criteria which is a better indicator:
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print("ARMA(4,4) AIC value is " + str(results_ret_arma_2.aic))
print("ARMA(3,3) AIC value is " + str(results_ret_arma_1.aic))

ARMA(4,4) AIC Value is 13441.619914324332
ARMA(3,3) AIC Value is 13436.094945896086

Figure 14

As we have done previously for other models, we will also analyse the residuals of ARMA
model too. In order to do so we will create another column with residuals derived from our

ARMA model (3,3) and plot it:

Residuals of Returns

Change in %
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The results are quite similar on what we have obtained from AR and MA models
previously. This recommends that the volatility in returns cannot be fully understood in
case of using only ARMA model. However, we will still need to make sure if the residuals

are random by plotting the autocorrelation function:
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ACF & BTC Residuals of Returns
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Looking at the ACF we can see that the majority of the lags are falling within the
confidence level which enables us stating the residuals are random.

Lastly, we will use ARMA models in close prices of BTC and examine how well it
performs on stationary data.

In order to do so, we will fit the ARMA models (3,3) which was our choice for returns and
also ARMA model (3,6) which is the model until we obtain some coefficients above

significance level:

58



Dep. Variable: Close No. Observations: 2421

Dep. Variable: Close No. Observations: 2421
Model:  ARIMA(3,0,6)  Log Likelihood -18673.037
Model: ARIMA(3, 0, 3) Log Likelihood -18695.052
Date: Wed, 01 Feb 2023 AIC 37368073
Date: Wed, 01 Feb 2023 AIC  37406.104
Time: 16:23:28 BIC 37431785
Sample: 09-18-2014 HQIC 37391241 Time: 16:23:31 BIC 37452.439
- 05-04-2021 Sample: 09-18-2014 HQIC 37422953
Covariance Type: opg - 05-04-2021
coef  stderr z P>z [0.025  0.975] Covariancellype: opg
const 7170.5465 6.440 1113.375 0000 7157.924 7183.169 - 2 Pl [0.025 0.975]

arl1 0.5315 0.005 116.439 0.000 0.523 0.540
const 7170.5465 1.09e-10 6.6e+13 0.000 7170.547 7170.547
arl2 -0.4875 0.005 -95.766 0.000 -0.497 -0.477

arl3 0.9557 0004 238521 0.000 0.948 0964 TS L ULLS =l GLsy AL L

mal1 04855 0010 48887 0000 0466 0505 arl2 06075 0004 155027 0000 0600 0615
mal2 10109 0009 108931 0000 0993  1.029 arl3 0.9865 0.006 164.015 0.000 0.975 0.998
mal3 00918 0011 7988 0000 0069 0114 mal1 16159 0010 161532 0000 1596 1636
malé 00362 0011 3644 0000 0018 0060 malz " ao1a1 oo1e eaaie 0000 os9es 1o

ma.ls 0.0471 0.009 5431 0.000 0.030 0.064
ma.Lé 0.0278 0.008 3.474 0.001 0.012 0.043
sigma2 2967e+05 2183294 135912 0000 292e+05 3.01e+05

ma.l3 0.0293 0.009 3.353 0.001 0.012 0.046
sigma2 3.008e+05 7.32e-09 4.11e+13 0.000 3.01e+05 3.01e+05

Ljung-Box (L1) (Q): 001 Jarque-Bera (JB): 128907.71 Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 146715.78
Prob(Q): 0.94 Prob(JB): 0.00 Prob(Q): 0.99 Prob(JB): 0.00
Heteroskedasticity (H): 3812.82 Skew: 1.30 Heteroskedasticity (H): 4776.46 Skew: 1.35
Prob(H) (two-sided): 0.00 Kurtosis: 38.65 Prob(H) (two-sided): 0.00 Kurtosis: 41.04
Table 12 Table 13

LLR_test(model_arma_1, model arma_2, DF = 3)

0.0

Figure 15

Looking at the LLR test the ARMA (3,6) performs better than ARMA (3,3). Furthermore,
smaller AIC value in suggests that the model 3,6 is a better fit to our data.

In the final part, we can analyse the residual values of BTC for close prices.

Residuals of Prices
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Looking at the above plot the prices have similar trends in the previous residual graphs for
prices. Seems like, there might be some volatility in 2018 and 2021 where there was a big
difference between expected and actual values.

Last but not least, we plot the ACF of residuals and examine the results:

ACF of Residuals for Prices
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From the above graph we can see that there are many lags which are significantly non-
zero. Taking this into consideration we can claim that the residuals for the prices are non-

random.
4.1.6 ARIMA models

In this section we will fit different ARIMA models to our data and examine the results. In
order to choose the lags we can start from plotting the ACF of residuals for ARIMA
(1,1,1):

ACF & BTC Residuals for ARIMA Prices
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Looking at the autocorrelation graph we can see that it might be helpful to add 3™ or 71
lag to our model as they are significant. As we generally prefer simpler models lets try to
fit various models with 3 lags and compare their result with likelihood, AIC and log
likelihood ratio test:

Fitted models:

#1

model_arima_1 = ARIMA(btc_train.Close[1:], order = (1,1,1))
results_model_arimal = model_arimal.fit()
results_model_arimal.summary()

# 2

model_arima_2 = ARIMA(btc_train.Close[1:], order = (1,1,2))
results_model_arima_2 = model_arima_2.fit()
results_model_arima_2.summary()

# 3

model_arima_3 = ARIMA(btc_train.Close[1:], order = (1,1,3))
results_model_arima_3 = model_arima_3.fit()
results_model_arima_3.summary()

#4

model_arima_4 = ARIMA(btc_train.Close[1:], order = (2,1,1))
results_model_arima_4 = model_arima_4.fit()

#5

model_arima_5 = ARIMA(btc_train.Close[1:], order = (3,1,1))
results_model_arima_5 = model_arima_5.fit()

#6

model_arima_6 = ARIMA(btc_train.Close[1:], order = (3,1,2))
results_model_arima_6 = model_arima_6.fit()

Code Chunk 6

Results of calculation of LL and AIC:

ARIMA(1,1,1): LL = -18690.930198249596 AIC = 37387.86039649919
ARIMA(1,1,2): LL = -18689.748010232594 AIC = 37387.49602046519
ARIMA(1,1,3): LL = -18686.541816054236 AIC = 37383.08363210847
ARIMA(2,1,1): LL = -18689.894258525324 AIC = 37387.78851705065
ARIMA(3,1,1): LL = -18686.098516218015 AIC = 37382.19703243603
ARIMA(3,1,2): LL = -18655.94414688421 AIC = 37323.88829376842

Figure 16

As we can see that ARIMA (3,1,2) has higher LL and lower AIC, we can make the
conclusion that this model may perform better than the others. To make this statement sure
we can finally run the LLR test and make our statement where we define the Null

hypothesis as the ARIMA (3,1,2) does not perform better than the others:
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print("\nLLR test p-value = " + str(LLR_test(model_arima_5, model_arima_6)))

print("\nLLR test p-value = " + str(LLR_test(model_arima_4, model_arima_6, DF = 2)))
print("\nLLR test p-value = " + str(LLR_test(model_arima_2, model_arima_6, DF = 2)))
print("\nLLR test p-value = " + str(LLR_test(model_arima_1, model_arima_6, DF = 3)))

LLR test p-value

[}

0.0

LLR test p-value = 0.0

LLR test p-value = 0.0

LLR test p-value

0.0

Figure 17

From the results it is obvious that the ARIMA (3,1,2) outperforms the other models. So we

reject the Null hypothesis. Lastly, lets plot the residuals for this model and examine the

results:
ACF & BTC Residuals for ARIMA Prices
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In this autocorrelation graph we can see less coefficients which are insignificant in

comparison with the simple ARIMA model which shows that how the new model performs

better in actual and expected prices. However, 10" lag is still highly significant which is

the sign that there might be a better model existing with 10 lags.

In the next step, we will try to use higher level of integration. As we know in order to use

higher integration levels our data needs to come from a non-stationary process. In order to

find if integrated data is stationary or not, we will create manually an integrated delta
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prices column using diff function in python and then use Dicky-Fueller test where we

define claim the Null hypothesis as the data is stationary:

btc_train[ 'delta prices']=btc_train.Close.diff(1)

sts.adfuller(btc_train.delta_prices[1:])
(-8.177641199656662,
8.293887243613951e-13,
27,
2392,
{'1%"': -3.4330867606360274,
'5%': -2.862749062318083,

'10%': -2.5674136347538057},
36839.442886560086)

Figure 18

From the above results we see that our test statistic is greater than our critical values in all
3 levels. Furthermore, p-value is also very close to 0 which enables us to state that the data
is stationary. So we accept the Null hypothesis. Taking this into consideration we can
easily recommend not to use higher integrated levels in ARIMA models as 1 level of

integration will be sufficient.

4.1.7 ARIMAX models

In the next step we will use ARIMAX model to include outside factors which has impact
on prices. So called exogenous variables can be used in model fitting in python. To do that

we will use the prices of Ethereum to see if there is correlation between ETH and BTC.
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Dep. Variable: Close No. Observations: 354 ) ;
Dep. Variable: Close No. Observations: 354

Model:  ARIMA(3, 1, 3) Log Likelihood -2649.440
Model: ARIMA(1,1, 1) Log Likelihood -2651.841

Date: Thu, 09 Feb 2023 AIC 5314.879
Time: 07:26:50 BIC 5345811 Date: Thu, 09 Feb 2023 AIC  5311.681
Sample: 11-09-2017 HQIC 5327.187 Time: 07:27:56 BIC 5327.147
i0:28:2018 Sample: 11-09-2017 HQIC 5317.835
Covariance Type: opg 10-28-2018
coef  stderr z P>z| [0.025 0.878]  Covariance Type: opg
Close 8.8986 0.392 22711 0.000 8.131 9.667
arl1 -0.0342 0365 -0.094 0.925 -0.749 0.681 coef std err z P>|z| [0.025 0.975]
arlL2 -0.7492 0.090 -8.300 0.000 -0.926 -0.572 Close 8.1114 0.417 19.457 0.000 7.294 8.929

ks 01546 0195 0793 0428 085 0228 a4 03027 0082 -3676 0000 0464  -0.141
ma.L1 0.2556 0.367 0.696 0.486 -0.464 0.976

mali 05463 0084 6535 0000 0382 0710
ma.L2 0.6644 0111 5972 0.000 0.446 0.882

mals 02654 0168 1577 o115 00s4  osos SigmMa2 1984e+05 6336.192 31.307 0.000 1.86e+05 2.11e+05

sigma2 1.855e+05 5965.581 31.090 0.000 1.74e+05 1.97e+05
Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 2346.59

Ljung-Box (L1) (Q): 0.27 Jarque-Bera (JB): 3110.45 Prob(Q): 0.98 Prob(JB): 0.00
ProblQ): 061 FrobJB): 1000 Heteroskedasticity (H): 0.02 Skew: 098
Heteroskedasticity (H): 0.02 Skew: 1.00
. . Prob(H) (two-sided): 0.00 Kurtosis: 15.48
Prob(H) (two-sided): 0.00 Kurtosis: 17.40
Table 14 Table 15

As it can be seen above the p value of the close prices of ETH is statistically significant for
our prices in BTC. Comparing the models we can see higher likelihood in the complex

model with 3 lags in each side which can be the sign of better performance.
4.1.8 ARCH and GARCH models

In this section we will use ARCH models in order to analyse the volatility of returns.
Before starting to try the models, we will create another column where we will create the
squared of returns as our volatility values. From the below plot we can see that the returns

for BTC seems to have high volatility as expected.
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Next even though PACF is not able to assist us in defining the number of lags to be used in
ARCH model, we can still get a lot of valuable data by looking at it:
PACF & BTC Squared Returns
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As we can see from the above results, out 7 lags in the beginning 5 of them are statistically
significant. Such high values in PACF might be a convention that there can be short term
trends in variances.

Now, we will fit the ARCH model with constant mean with 5 iterations
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Constant Mean - ARCH Model Results

Dep. Variable: returns R-squared: 0.000
Mean Model: Constant Mean Adj. R-squared: 0.000
Vol Model: ARCH Log-Likelihood: -6641.33
Distribution: Normal AlC: 132887
Method: Maximum Likelihood BIC: 13306.0
No. Observations: 2418
Date: Sun, Jan 29 2023 Df Residuals: 2417
Time: 13:32:49 Df Model: 1
Mean Model
coef std err t P>|t| 95.0% Conf. Int.

mu 0.2983 7.493e-02 3.982 6.843e-05 [0.151, 0.445]

Volatility Model
coef std err t P>|t] 95.0% Conf. Int.
omega 12.4061 1125 11.025 2.887e-28 [10.201, 14.612]
alpha[1] 0.1696 4.138e-02 4.099 4.154e-05 [8.850e-02, 0.251]

Table 16

From the above results we can see that both adjusted and not adjusted R squared are 0.00.
As R squared is the way to measure explanatory variation compared to the mean it means
that for our ARCH model it will not be very useful in explaining the deviation. Moving to
Log likelihood we can see a higher value in log likelihood in ARCH models in comparison
with our previous AR, MA, ARMA and ARIMA models which means that simple ARCH
model performs already well. Secondly, we will fit another ARCH model with 3 lags and

compare their results to the simpler one.
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Dep. Variable: returns
Mean Model: Constant Mean
Vol Model: ARCH
Distribution: Normal

Method: Maximum Lik

elihood

Date: Thu, Feb 02 2023

Time: 15:41:28

Mean Mode

coef std err

mu 02894 6.694e-02 4.324 1.534e-05

Volatility Model

coef std err

omega 9.2991 1.314
alpha[1] 0.1623 4.209e-02
alpha[2] 0.0830 4.529e-02
alpha[3] 0.1733 6.294e-02

Table 17

From the first glance it is already visible that the log likelihood has increased while AIC
decreased when we used 3 lags. These both are already indicators that second model is

outperforms the first one. Lastly, checking the coefficients (p-values) we see that all the
figures are statistically significant with the exception of alpha 2. Judging overall we can

still claim that the second model with 3 lags performs better than the first one in estimating

t

t
7.077
3.855
1.833
2753

the market volatility.

In the last section of this sub-chapter, we will fit GARCH models which are extension or
ARCH and also referred as “ARMA Equivalent” of ARCH which is generally expected to

have better performance. We will fit simple and multi lag GARCH models and compare

the results:

R-squared:

Adj. R-squared:
Log-Likelihood:
AlIC:

BIC:

No. Observations:
Df Residuals:

Df Model:

0.000
0.000

-6596.32

13202.6
13231.6
2420
2419

1

P>|t| 95.0% Conf. Int.

P>|t| 95.0% Conf. Int.
1.469e-12 [6.724, 11.874]
1.155e-04 [7.977e-02, 0.245]
6.675e-02 [-5.735e-03, 0.172]
5.899e-03 [4.994e-02, 0.297]

[0.158, 0.421]
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Constant Mean RCH Model Results

Dep. Variable: returns R-squared: 0.000

Dep. Variable: returns R-squared: 0.000
Mean Model: Constant Mean Adj. R-squared: 0.000

Mean Model: Constant Mean Adj. R-squared: 0.000
Vol Model: GARCH Log-Likelihood: -6485.59

Vol Model: GARCH Log-Likelihood: -6486.73
Distribution: Normal AIC: 12981.2

Distribution: Normal AIC: 129815
Method: Maximum Likelihood BIC: 13010.1

Method: Maximum Likelihood BIC: 13004.6
No. Observations: 2420

No. Observations: 2420
Date: Thu, Feb 02 2023 Df Residuals: 2419

Date: Thu, Feb 02 2023 Df Residuals: 2419
Time: 16:11:08 Df Model: 1

Time: 16:11:03 Df Model: 1

Mean Model
Mean Model
coef std err t P>|t| 95.0% Conf. Int.
coef std err t P>|t| 95.0% Conf. Int.

mu 0.2425 6.245e-02 3.883 1.031e-04 [0.120, 0.365]
mu 02392 6.322e-02 3783 1.547e-04 [0.115, 0.363]

Volatility Model
Volatility Model
coef std err t P>|t]  95.0% Conf. Int.

coef std err t P>|t| 95.0% Conf. Int.
omega 0.8094 0.312 2594 9.477e-03 [0.198, 1.421]

omega 06753 0258 2616 8.891e-03 [0.169, 1.181]
alpha[1] 0.1583 3.515e-02 4.503 6.709e-06 [8.938e-02, 0.227]

alpha[1] 0.1294 3.184e-02 4.0685 4.794e-05 [6.703e-02,0.192]
beta[1] 0.5403 0218 2477 1.323e-02 [0.113, 0.968]

beta[1] 0.8373 2.924e-02 28.633 2.575e-180 [0.780, 0.895]
beta[2] 0.2617 0201 1.299 0.194 [-0.133, 0.656]

Table 18 Table 19

Looking at the above we can see that simple GARCH model with (1,1) performs better
than more complex GARCH model based on having beta [2] greater than 0,5 which means
it is not significant. Taking this into consideration we will stick to the GARCH (1,1).

Finally, when we compare the GARCH (1,1) with our ARCH model with 3 lags, we can
see a better log likelihood in ARCH model. From that perspective we can state that in

order to estimate the volatility of BTC it ARCH model would be a better fit.

4.2 Analysis of ETH

In the next section of the thesis, we will analyse another popular and practical
cryptocurrency which is Ethereum. We will proceed with the same strategy as we have

done for BTC and will define the best model to predict Ethereum’s prices.

Initially, we can start by plotting the prices of ETH from its first registered date in Yahoo

finance.
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ETH Prices
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From the above plot of prices, we can observe that there was a sharp increase of ETH since
the beginning of 2021 which is following a fall towards the middle of the same year and
expansion again at the end of the same year. Furthermore, 2022 also shows a significant
fall in ETH prices. In general, at the first glance, the trends in ETH prices since 2021
remind the trends in BTC prices.

Next, we can plot the market capitalization of ETH and check the trends as well:
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Graph 31

The graph shows us that the Market volume of ETH was relatively stable until the middle
0f 2020 and fluctuating since then until now. Both plots for ETH market volume and ETH
prices can be signs of high volatility which we will investigate in further sections of the

thesis.
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4.2.1 White Noise, Stationarity and Seasonality

We'll attempt to look at our dataset's white noise in the following step as we have done for

BTC.
White Noise Time-Series
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Graph 32

Here, the white noise indicates whether or not our data is predictable. We may look at the
mean, which in our instance is 1111.73, to demonstrate that the data is not white noise

because time series data with white noise would always have a mean of zero.

print(wn.mean())

1111.7392034831769

Figure 19

The dataset's stationarity will be examined using the Dicky Fuller test in the following step

and set our Null hypothesis as “The data is stationary”:

sts.adfuller(ethdata.Close)
4

(-1.4089708365742828,

0.5779679105330212,

17,

1861,

{'1%': -3.4338687226315336,
'S%': -2.863094318475046,
'10%": -2.5675974634086765},

21446.440104463112)

Figure 20

Our test statistic exceeds all critical values, hence there is insufficient support for

stationarity.

We cannot confirm that the data is stationary since, according to the second line of the p-

value, there is a 57% chance that the null hypothesis will be accepted. So we reject the
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Null hypothesis. From the number of lags, we can see that there is some autocorrelation

that is going 17 periods back.

In the following phase, the dataset's seasonality will be examined using additive and

multiplicative decompositions.

Additive:
Close
5000
o _M«—
0
“ 2018 2019 2020 2021 2022
s -
w 52500 M"\M
o = 0
(=
® 2018 2019 2020 2021 2022
3 IS
2 5
= 2 0
3 5
2018 2019 2020 2021 2022
° 250
4 0
& 250
2018 2019 2020 2021 2022
Graph 33

We can observe that the plot above is a rectangle when we look at the seasonal portion. As
we mentioned during BTC analysis, this occurs when the figures are too small, and the
values oscillate back and forth constantly. In our situation, the linear change is caused by a
steady up-and-down movement between -250 and 250 for each period. As a result, no
actual cyclical pattern based on naive decomposition can be found. Lastly, from the

residual part of the plot, we can see that they are relatively high in 2018, 2021, and 2022.

Multiplicative:
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We may find the same results when we use the multiplicative decomposition method to

confirm the absence of seasonality in our dataset.
4.2.2 Auto Correlation Function and Partial Correlation Function

We will now look at the autocorrelation of ETH prices. To do this, we once more used

Python for visualization, setting the period to daily.
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Graph 35

All of the lags are higher than the specified significance threshold, which is represented by
the area in blue in the plot at the top, as can be seen. We can say that there is an
autocorrelation between lags since each lag demonstrates how the prices differ from one
another one period ago. Simply put, it indicates that we can still predict future prices using
prices from a previous time period.

Additionally, we may display the ACF of our white noise data as a secondary assurance

that the data is indeed white noise:
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Here, it is easy to see that almost all of the lags are inside the threshold of significance
(blue figure), allowing us to confidently conclude that there is no autocorrelation in the

white noise data, which is one of the WN's underlying assumptions.

In this stage, we'll also use Python's order least squares approach to analyse PACF for BTC

close prices to check partial autocorrelation.
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Graph 37

We can see a quite different graphic from the auto correlation function since the PACF
illustrates the direct effects of the prices from the previous period. When examining the
plot, we can also see positive and negative numbers, which are fairly arbitrary and have no
long-term consequences.

Finally, we can do the same investigation in White noise data:
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Again, based on the plot above, we can conclude that everything is perfectly random,
despite the fact that there is one lag that is not statistically significant. By taking this into

account, we can demonstrate once more that WN data lacks autocorrelation.
4.2.3 AR models

This part will serve as the beginning of our model-building process, using auto-regression
models taking into consideration that we have already separated the data into training and

testing dataset in the ratio of 80/20.

First, it's crucial to look at ACF&PACEF and take the result from there to decide how many
lags to employ in the AR model. We can go over them again since we have already plotted
our graphs in univariate. The ACF graph demonstrates that the more lags we add, the better
our model will fit our data set, however, this can lead to an overfitting issue that could
result in inaccurate projections of future prices. We may recall that there are existent
negative and positive coefficients as well as some coefficients that are not in a significant
level based on the PACF plot. We should have less than 30 since, as we can see, the
coefficients are more likely to be significant after the 30 lag.

The following phase involves implementing an AR model with a single lag before
moving slowly forward to choose the optimal model. Additionally, in order to determine
the optimal model, we will evaluate models with various lags using the log-likelihood test.
Here we define the Null hypothesis as the second (more complex model) does not perform

better than the first one:
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AR model with 2 lags: AR model with 3 lags:

Dep. Variable: Close No. Observations: 1502
pepariable; hsegio Chservations: =0 Model:  ARIMA(3,0,0)  Log Likelihood -8630.011
Model: ARIMA(2, 0, 0) Log Likelihood -8630.028 Date: Sat 04 Feb 2023 AIC  17270.021
Date: Sat, 04 Feb 2023 AIC 17268.055 . Ep— Bic. 7205604
ime; 19:94.08 BIC! 172898915 sample: 11-10-2017 HQIC 17279.920

sample: 11-10-2017 HQIC 17275.974 p——

-il2:20-202 Covariance Type: opg

Covariance Type: opg
coef std err z P>z| [0.025 0.975]
S K z Pzl 0025 0S78] ot 0015950 4672272 0.193 0847 -8255890 1.01e+04
const 901.5974 4705739 0.192 0.848 -8321.481 1.01e+04 o e o
arl1 08998 0013 71.623 0.000 0875 0924 P —— T
L2 00993 0013 7.898 0.000 0075 0124

= arL3 00047 0010 -0453 0651  -0025 0016

jgma2 57067400 61354 93014 0000 5586.489 5826.991
S sigma2 57063579 63493 89.874 0000 5581914 5830.802

Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 35366.99 -
Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 35121.95

Prob(Q): 0.99 Prob(JB): 0.00
Prob(Q): 0.98 Prob(JB): 0.00
Heteroskedasticity (H): 13.85 Skew: -0.96 .
Heteroskedasticity (H): 13.85 Skew: -0.95
Prob(H) (two-sided):  0.00 Kurtosis: 26.69 . )
Prob(H) (two-sided):  0.00 Kurtosis: 26.61
Table 20 Table 21

Log-likelihood test for models with 2 and 3 lags (for visibility as 1 lag model performed
well as well):

LLR_test(ar_model, ar_model 1)

0.851

Figure 21

Based on the findings of the LLR test, it is clear that we should stop at the 3rd lag after a
number of trials up to the 4th lag. We will choose 2 lags because the log likelihood test
shows that simpler model has a better log likelihood. So we accept the Null hyptothesis.
Next, since returns, which are a percentage representation of price changes, are more
dependable than stationary data in AR models since they have constant mean, variance,
and autocorrelation, we will try to employ returns. To do that, we added a new column to
the training and test data sets and calculated the percentages using simple Python methods:
eth_train['returns'] = eth_train.cClose.pct_change(1).mul(100)

eth_test['returns’'] = eth_test.Close.pct_change(1).mul(100)

eth_train = eth_train.iloc[1:]

Code Chunk 7

And we will test the stationarity with the Dickey-Fueller test where we define claim the

Null hypothesis as the data is stationary:
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sts.adfuller(eth_train.returns)

(-11.412390521316967,
7.197384243781305e-21,

9,

1492,

{'1%": -3.434740473427213,
"5%': -2.863479112458789,
'10%": -2.5678023610641922},

9054.48520801563)

Figure 22

We can see from the above that our test statistic, which is -11.41, is less than each of the
three essential values at various confidence levels. As a result, we can say that the data is
stationary with accepting the Null hypthesis.

Now we can go ahead and examine ACF and PACEF respectively for the return values:

. ACF & BTC Returns . PACF & BTC Returns
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Graph 39 Graph 40

Both autocorrelation and partial autocorrelation imply that some coefficients are positive,
some are negative, some are also inside the confidence interval and some are outside the

confidence interval, allowing us to conclude that the data do not exhibit autocorrelation.
We will approach returns in a similar manner as we did when we trained the models for

ETH prices. In order to determine which model fits the data best, we will perform the log-

likelihood test and attempt to fit many models with various lags:

76



Dep. Variable: returns  No. Observations: 1500

Dep. Variable: returns  No. Observations: 1500
Model: ARIMA(8, 0, 0) Log Likelihood -4589.558
Model: ARIMA(4, 0, 0) Log Likelihood -4593.996

Date: Sat, 04 Feb 2023 AIC 9199117
Date: Sat, 04 Feb 2023 AIC  9199.991 Tiie: 20:10:01 BIC 9252249
Time: 20:09:57 BIC 9231.870 Sample: 11-12-2017 Halc 9218911
Sample: 11-12-2017 HQIC 9211.867 - 12-20-2021
- 12-20-2021 Covariance Type: opg
Covariance Type: opg coef stderr z P>|z| [0.025 0.975]
const 03061 0149 2051 0040 0014 0.599
coef std err z P>z [0.025 0.975] arl1 -00450 0020 -2246 0025 -0.084 -0.006
const 03060 0143 2133 0.033 0025 0.587 arl2 00552 0025 2191 0028 0006 0.105
arl1 -00444 0020 -2278 0023 -0.083 -0.006 arL3 00038 0024 0162 0872 -0042 0.050

arl2 00555 0024 2295 0022 0008 0.103 arL4 00365 0021 1780 0.075 -0004 0.077

arL5 00094 0022 0428 0669 -0.034 0.052
arL3 00039 0023 0170 0.865 -0.041 0.049
arl6 00699 0024 2909 0.004 0023 0.117

arl4  0.0389 0.020 1912 0056 -0.001 0.079 arL7 -0.0050 0.020 -0.250 0.803 -0.044 0.034
sigma2 267740 0.552 48481 0.000 25692 27.856 arl8 -00349 0025 -1420 0156 -0.083 0013
sigma2 266151 0.555 47.984 0000 25528 27.702

Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 1879.90
Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 197582

Prob(Q): 0.99 Prob(JB): 0.00
Prob(Q): 0.96 Prob(JB): 0.00
Heteroskedasticity (H): 0.90 Skew: -0.25
Heteroskedasticity (H): 0.90 Skew: -0.26
Prob(H) (two-sided): 0.23 Kurtosis: 8.46 Prob(H) (two-sided): 0.23 Kurtosis: 860
Table 22 Table 23

LLR_test(ar_model ret 1, ar_model ret 2)

0.003
Figure 23

Our tests show that the second AR model with 8 lags has a higher log-likelihood, and since
the LLR test value is smaller than 0.01, we can conclude that the second model is superior
to the first model with 4 lags.
The following step allows us to evaluate whether normalized prices would produce

stationary data that we could incorporate into our Python-based AR models:

benchmark = eth_train.Close.iloc[0]

eth_train[ 'norm’'] = eth_train.Close.div(benchmark).mul(100)
eth_test['norm'] = eth_test.Close.div(benchmark).mul(100)

Code Chunk 8

Testing stationarity as usual where we define claim the Null hypothesis as the data is

stationary:
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sts.adfuller(eth_train.norm)

(0.6069429080168565

0.9877855155545913,

17,

1483,

{'1%": -3.4347671645756304,
'S%': -2.86349089226533,
'10%': -2.5678086339403325},

13543.131431078897)

Figure 24

We can conclude that the data is non-stationary because the test statistic is higher than our

critical values, hence we won't use normalized prices for our AR model so we reject the

Null hypothesis.
But when we normalize the results, we can get stationary data. That's why we'll utilize a
method akin to normalized returns and the Dicky-Fuller test to determine stationarity

where we define claim the Null hypothesis as the data is stationary.

benchmark_ret = eth_train.returns.iloc[0]
eth_train[ 'norm_ret'] = eth_train.returns.div(benchmark_ret).mul(100)
eth_test['norm ret'] = eth_test.returns.div(benchmark_ret).mul(100)

sts.adfuller(eth_train.norm_ret)

(-11.416317801866343,

7.048091371372087e-21,

9,

1491,

{'1%': -3.434743423170358,
'5%': -2.8634804142964025,
'10%': -2.567803054306163},

17802.319193813113)

Figure 25
We can simply conclude that the data is stationary by noting that our test statistic falls to
the left of our critical values where we accept the Null hypothesis/
We will experiment with AR models with various lags and use the log-likelihood test
to compare our models, just as we did for pricing and returns. Here we define the Null

hypothesis as the second (more complex model) does not perform better than the first one:
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Dep. Variable: norm_ret No. Observations: 1501 Dep. Variable: norm_ret No. Observations: 1501

Model: ~ ARIMA(2,0,0)  Log Likelihood -9048715 el PREVRUITIOD).  CogTieihece =honodr
Date: Sat, 04 Feb 2023 AIC 18102734
Date: Sat, 04 Feb 2023 AIC 18105.430 Time: 20:21:15 BIC 18166.501
Time: 202127 BIC 18126686 Sample: 11-11-2017 HQIC 18126 489
- 12-20-2021
Sample: 11-11-2017 HQIC 18113.348  covariance Type: ==
- 12-20-2021 coef stderr z P>z| [0.025  0.975]
TR e I const 59962 2993 2004 0045 0131 11862
arl1 00443 0020 2216 0027  -0.084  -0.005
arl2 00575 0025 2274 0023 0.008 0.107
costi el z N Fel [-028 09781 arL3 00074 0024 0309 0757  -0.040 0.054
const 5.9962 2660 2254 0024 0.782 1.211 arL4 00325 0021 1580 0114 -0.008 0.073
arl1 00445 0019 -2296 0022  -0082  -0.007 arks 00099 0023 0437 0662 0034 0054
arlé 00679 0024 2821 0.005 0.021 0.115
arl2 0.0579 0024 2404 0.016 0.011 0.105 arL7 -00026 0020 -0.132 0895 -0.042 0.036
sigma2 1.009e+04 190612 52.954 0.000 9720.050 1.05e+04 ALt ~C:0380% _0:0205 B3 OO 0083 10.009
arlL9 -0.0351 0026 -1.367 0.172 -0.085 0.015
arl10 00601 0024 2545 0011 0.014 0.106

Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 2025.50 _
sigma2 1e+04 208.680 47.926 0000 9592.210 1.04e+04

Prob(Q): 0.99 Prob(JB): 0.00 )
Ljung-Box (L1) (Q): 000 Jarque-Bera (JB): 208842
Heteroskedasticity (H): 0.90 Skew: -0.26 Prob(Q): 0.98 Prob(JB): 0.00
PI’Ob(H) (two-sided): 0.24 Kurtosis: 867 Heteroskedasticity (H): 0.88 Skew: -0.28
Prob(H) (two-sided): 0.14 Kurtosis: 8.75

Table 24 Table 25

LLR_test(ar_model_norm_ret_1, ar_model_norm_ret_2)

0.0

Figure 26

The model with 10 lags has a greater log likelihood, as can be seen from the data above,
and the LLR test indicates that the addition of 8 additional lags to the model with 2 lags
has no high effect. So we reject the Null hypothesis. Also, we can see that normalizing has
no appreciable influence on model choice by comparing our results to the unnormalized
returns that we did earlier.

We will look at the residuals for the developed models in the final section of AR models.

We first establish the residual columns in the datasets in order to accomplish this:

eth_train[ 'res_price'] = results_ar_model_1.resid
eth_test['res_price'] = results_ar_model_1.resid

eth_train.res_price.mean()

2.245538426615259

eth_train.res_price.var()

5947.85755665728
Code Chunk 9

We will check the stationarity as usual where we define claim the Null hypothesis as the

data is stationary:
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sts.adfuller(eth_train.res_price[1:])

(-9.90433891325914,
3.293878938828608e-17,

16,

1483,

{'1%': -3.4347671645756304,
'5%': -2.86349089226533,
'10%": -2.5678086339403325},

16916.052118069485)

Figure 27
We can say that the data is stationary as the test statistic falls on the left side of our critical

values. So, we accept the Null hypothesis. Now that our data has been checked for the
ACF, we can study the residuals:

ACF & ETH Residual Prices
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Numerous coefficients outside of the confidence interval (blue region) may be seen in the
figure above, leading us to conclude that there is a stronger predictor than residuals. Lastly,
we will conduct a similar analysis of return residuals as we did for price and test the

stationarity where we define claim the Null hypothesis as the data is stationary:
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eth_train['res_price_ret'] = results_ar_model_ret_2.resid
eth_test['res_price ret'] = results_ar_model_ret_2.resid

eth_train.res_price_ret.mean()

-1.857860593810645e-05

eth_train.res_price_ret.var()

26.63373497151356

sts.adfuller(eth_train.res_price_ret[1:])

(-38.746625407896836,

0.0,

0,

1499,

{'1%": -3.4347199356122493,
'S%': -2.86347004827819,
'10%': -2.567797534300163},

9031.09628608121)

Table 26
We can see that data is stationary based on the dicky fuller test statistic and 0.0 p-value
which means we accept the Null hyptothesis.
We notice fewer coefficients outside the confidence interval when looking at the ACF,
which indicates that our model is a solid predictor but that there is still a better one out

there.

ACF & ETH Residual Returns
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Graph 42
Finally, the graph below, which displays the price volatility over time, may be seen when
we plot the residuals of returns. Prices substantially decreased in the second half of 2020

due to a market meltdown that few investors had anticipated.
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Residuals of Returns
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Graph 43
4.2.4 MA models

First, we will establish our expectations for the number of lags that should be used. We

must once more verify the ACF for Return closing prices in order to accomplish this.
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The accompanying plot serves as a helpful reminder that the 2™, 6 lags appear to be
statistically significant, and that after the 17th lag, the lags become statistically

insignificant. We can therefore assume that our model has fewer than 17 lags.
We will fit the models in the following phase. We will employ the models with 7 and 10
lags, as predicted by the ACF plot, and compute the LLR test to determine which model

performs better:

MA mode with 2 lags MA model with 6 lags:
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Dep. Variable: returns No. Observations: 1500

Dep. Variable: returns  No. Observations: 1500 Model:  ARIMAQ, 0,6) Log Likelihood 4590325
Model: AR[MA(O. 0, 2) LOQ Likelihood -4595.308 Date: Sun, 05 Feb 2023 AIC  9196.649
Date: Sun, 05 Feb 2023 AIC 9198617 Time: 10:02:30 BIC 9239.155
Time: 09:58:50 BIC 9219.869 Sample: 11-12-2017 HQIC 9212.484
- 12-20-2021
Sample: 11-12-2017 HQIC 9206.534
Covariance Type: opg
- 12-20-2021
» coef stderr z P>|z| [0.025 0.975]
Covariance Type: opg
const 0.3062 0.154 1.987 0047 0004 0.608
arlaiar z P>lz] [0.025 0975] mal1 -00443 0020 -2219 0027 -0.083 -0.005

mal2 00606 0025 2396 0017 0011 0.110
const 03059 0137 2236 0.025 0038 0574
mal3 00038 0024 0.161 0872 -0043 0.050

mali -0.0445 0019 -2283 0022 -0083 -0.006 S

mal2 00558 0024 2316 0.021 0.009 0.103 mal5 00093 0022 0428 0669 -0.033 0.052

sigma2 26.8212 0507 52930 0.000 25828 27.814 malé 00737 0024 3100 0002 0.027 04120
sigma2 266425 0.552 48261 0.000 25560 27.724

Ljung-Box (L1) (Q): 000 Jarque-Bera (JB): 2037.74
Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 2027.82

Prob(Q): 1.00 Prob(JB): 0.00

Prob(Q): 0.98 Prob(JB):  0.00
Heteroskedasticity (H): 0.90 Skew: -0.26 Heteroskedasticity (H): 0.90 Skew: -0.26
Prob(H) (two-sided): 0.25 Kurtosis: 8.69 Prob(H) (two-sided): 0.26 Kurtosis: 867
Table 27 Table 28
print("\nLLR Test P-value = " + str(LLR_test(model_ret_ma_1,model_ret_ma_2, DF = 4)))

LLR Test P-value = 0.041
Figure 28
After number of trials, we can see that models are performing worse than 2 lag models
until the 6 th lag models. This is because on the 6 lag there is an additional statistically

significant coefficient. Taking this into consideration even though there are insignificant

coefficients we will be using the model with 6 lags.

We will study the residuals for the model that performed better in the following step after

adding a new column for residuals from MA models:
eth_train['res_ret _ma_2'] = results_ret_ma_2.resid[1:]

print("mean is " + str(round(eth_train.res_ret_ma_2.mean(),3)))
print("variance is " + str(round(eth_train.res_ret_ma_2.var(),3)))
print("standard deviation is " + str(round(sqrt(eth_train.res_ret_ma_2.var()), 3)))

mean is ©.002
variance is 26.675
Standard deviation is 5.165

Code Chunk 10
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To determine whether our model is sound or not, we must first look for residuals in the

graph:

Residuals of Returns

Change in %

2018 2019 2020 2021
Date

Graph 45

From the graph, it appears that the residuals are more random than they do consistently.
We may use the Dicky Fuller test to check for stationary residuals and test for this
randomness where we define claim the Null hypothesis as the data is stationary:

sts.adfuller(eth_train.res_ret_ma_2[2:])

(-38.70434351882141,

0.0,

0,

1498,

{'1%": -3.4347228578139943,
'5%': -2.863471337969528,
"10%': -2.5677982210726897},

9027.645156416089)

Figure 29

As our p-value is 0.0, test statistic is smaller than the critical values we can state that the
data is stationary and we accept the Null hypothesis.

In order to determine whether the return residuals are White Noise or not, we can also look

at the ACF of the residuals from our model:
ACF & ETH Residuals

Coefficients

Number of Lags

Graph 46
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We can see that several of the coefficients in the above graphs are significant. The first 10
legs of our model were added; therefore it was predicted that their coefficients would be
near to zero. Additionally, the subsequent seven lags are similarly not significant, which

shows how effectively our model works.

In this stage, we will examine how the MA models predict the previously constructed
normalized data by visualizing the autocorrelation function. As each of the five cryptos has
a completely separate price range, the goal of this step is to enable comparisons between

ETH values and BTC near the conclusion of the thesis.

ACF & ETH Normalized Returns

= Ll Ll
ST

0 5 10 15 20 2 0 B 40

Coefficients

Number of Lags

Graph 47
We can determine from above how many lags to employ when fitting the model to
normalized returns based on coefficients that are outside of the confidence interval. To
determine whether normalizing affects model selection, we will fit the model and look at

the results:
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Dep. Variable: norm_ret No. Observations: 1500

Model: ARIMA(0, 0, 6) Log Likelihood -9037.983

Date: Sun, 05 Feb 2023 AIC  18091.966
Time: 10:22:37 BIC 18134.472
Sample: 11-12-2017 HQIC 18107.801
- 12-20-2021
Covariance Type: opg
coef stderr z P>|z| [0.025 0.975]

const 5.9335 2994 1982 0.047 0.065 11.802
ma.L1 -0.0443 0020 -2214 0.027 -0.084 -0.005
ma.L2 0.0606 0025 2392 0.017 0.011 0.110
ma.L3 0.0038 0024 0.161 0.872 -0.043 0.050
ma.L4 0.0321 0021 1562 0.118 -0.008 0.072
ma.L5 0.0093 0022 0427 0669 -0.033 0.052
ma.L6 0.0736 0024 3.094 0.002 0.027 0.120
sigma2 1.004e+04 208.508 48.167 0.000 9634619 1.05e+04

Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 2027.81

Prob(Q): 0.98 Prob(JB): 0.00
Heteroskedasticity (H): 0.90 Skew: -0.26
Prob(H) (two-sided): 0.26 Kurtosis: 867

Table 29

We can observe from the above that the outcomes of the MA model with 6 lags in
normalized returns and non-normalized returns are nearly identical. Given this, we may
conclude that normalizing values has no effect on model choice.

Finally, we will plot the residuals and ACF of residuals once more to demonstrate that our
model was the right one. From the graph below, we can observe that even after the tenth
lag, many coefficients are below the confidence level. Because of this, our model is
accurate.

ACF & ETH Residuals for Normalized Returns
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Graph 48
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In the final section, we'll try to determine whether BTC closing prices can be forecast using
MA models. We will begin by graphing ACF for Prices to establish the number of lags,

much as we did in the preceding sections:
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Graph 49

The assumption that any higher lag model will perform better than the one with fewer lags
is derived from the fact that all of the coefficients are higher than the confidence level as
shown above. Another notion that we can come up with is that situations like this would
benefit from an endless number of lags. Since adding infinite lags is not possible, we can

assume that MA models are not the best for predicting real close prices.

4.2.5 ARMA models

We will look into ARMA models in this part and attempt to fit them to our datasets.

We will first begin by fitting ARMA models to the returns and analysing the outcomes. We
may be fitting the (2,1) and (4,3) models and evaluating the outcomes:
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Dep. Variable: returns  No. Observations: 1500 Dep. Variable: returns - No. Observations: 1500

Model:  ARIMA(2,0,1)  Log Likelihood -4594.296 Moceli ARIMAL,0.9)  ILogikelinoods: 4502437
Date: Sun, 05 Feb 2023 AIC 9202374
Date: Sun, 05 Feb 2023 AIC 9198.593
Time: 19:30:16 BIC 9250193
Time: 19:28:40 BIC 9225.159 sample: 11-12-2017 HQIC  9220.189
Sample: 11-12-2017 HQIC 9208.489 - 12-20-2021
-12-20-2021 Covariance Type: opg
Covariance Type: opg coef stderr z P>Jz| [0.025 0.975]
const 03060 0136 2244 0025 0039 0573
costipstdier Z 02 2] R10:025380:9751 arl1 04299 0172 2493 0013 0092 0768
const 03075 0156 1972 0.049 0.002 0613 arl2 -0.0078 0.185 -0.042 0966 -0.371 0.355
arL1 07088 0146 4868 0.000 0423 0.994 arl3 -06632 0161 -4125 0.000 -0.978 -0.348

arl2  0.0790 0.022 3637 0000 0036 0.122 arlL4 00355 0030 1202 0229 -0.022 0.093

mal1 -04733 0173 -2737 0006 -0.812 -0.134
ma.l1 -07570 0.146 -5182 0.000 -1.043 -0.471
mal2 00662 0200 0331 0741 -0.326 0459

sigma2 267859 0508 52.753 0.000 25791 27.781 N0 5D D OG0 00T G50 OFD

sigma2 267031 0540 49487 0000 25646 27.761
Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 1996.32

Prob(Q): 0.96 Prob(JB): 0.00 Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 1830.23
Prob(Q): 097 Prob(JB): 0.00
Heteroskedasticity (H): 0.91 Skew: -0.25
Heteroskedasticity (H): 0.89 Skew: -0.27
Prob(H) (two-sided): 0.28 Kurtosis: 8.63 Prob(H) (two-sided): 020 Kirtsais: 839
Table 30 Table 31

The lags in the models (2,1) are statistically significant, however, the identical values in
the models (4,3) were significantly above the significance level when comparing the
models. For this reason, we assume that the first model will match our data crucially better.
Additionally, the LLR test demonstrates that the first model performs significantly better
than the second model with 4,3 lags respectively:

LLR_test(model_ret_arma_1, model_ret arma_2, DF = 4)

0.377

Figure 30

Lastly, when we compare AIC values we can see that ARMA (2,2) has less information
criteria which is a better indicator:

print("ARMA(2,1) AIC Value is " + str(results_ret_arma_1.aic))
print("ARMA(4,3) AIC Value is " + str(results_ret_arma_2.aic))

ARMA(2,1) AIC Value is 9198.592608872896
ARMA(4,3) AIC Value is 9202.37437426682

Figure 31
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We will analyse the ARMA model's residuals in the same way that we have in the past for
other models. To do this, we will plot another column that contains the residuals from our

ARMA model (2,1):

Residuals of Returns

Change in %

2018 2019 2020 2021
Date

Graph 50
The outcomes are comparable to what we previously discovered using AR and MA
models. This suggests that if the ARMA model is used alone, the volatility in returns
cannot be fully comprehended. We must still plot the autocorrelation function to determine

whether the residuals are random.

ACF & ETH Residuals of Returns

0.100
0.075
0.050
2
; 0.025
S
% 0.000
8
-0.025
-0.050
-0.075
-0.100
0 5 10 15 20 25 30 kY] 40
Number of Lags
Graph 51

Most of the lags are falling within the confidence level, which allows us to conclude that

the residuals are random, according to the ACF, which we can see.

Finally, we will test the performance of ARMA models on stationary data by using them
near BTC prices. We will fit the ARMA models (2,1), which were our choice for returns,
as well as the ARMA model (4,3), which is the model till we receive some coefficients
over the significance level and also define our Null hypothesis for the LLR test that the
more complex model (4,3) performs better than eh ARMA (2,1):
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Dep. Variable: Close No. Observations: 1501

Dep. Variable: Close No. Observations: 1501
Model: ARIMA(4, 0, 3) Log Likelihood -8604.261
Model: ARIMA(2, 0, 1) Log Likelihood -8621.952
Date: Sun, 05 Feb 2023 AIC 17226521
Date: Sun, 05 Feb 2023 AIC 17253903 e 19:50-11 BIC 17274.346
Time: 19:50:01 BIC 17280473 Sample: 11-11-2017 HQIC 17244.337
Sample: 11-11-2017 HQIC 17263.801 - 12-20-2021
- 12-20-2021 Covariance Type: opg
Covariance Type: opg coef  stderr z P>z| [0.025 0.975]
const 9019887 7667.143  0.118 0.906 -1.41e+04 1.59e+04
coef  stderr z P>jz| [0.025 0.975]  arL1 04027 0039 -10.316 0.000 0479  -0326
const 901.9933 4246570 0212 0.832 -7421.130 9225.117 arlL2 -0.0239 0.021 -1.150 0.250 -0.065 0.017
ar.L1 0.1776 0.038 4723 0.000 0.104 02578 IESELS R .Co0! D021 0 iEo 0000 DS .50
arL4 0.7892 0.040 19.785 0.000 0711 0.867
arlL2 0.8206 0.038 21.762 0.000 0.747 0.895
ma.L1 1.2980 0.046 28.035 0.000 1.207 1.389
ma.L1 0.7546 0.045 16.701 0.000 0.666 0.843 e 45948 5653 4036 107550 5 555 Py

sigma2 56899125 64767 87.852 0000 5562972 5816.853 mais 06887 0047 14568 0000 0596 0781

sigma2 5628.1247 69.517 80.961 0.000 5491.874 5764.375
Ljung-Box (L1) (Q): 094 Jarque-Bera (JB): 32269.73

Ljung-Box (L1) (Q): 050 Jarque-Bera (JB): 2997564

Prob(Q): 033 Prob(JB): 0.00
Prob(Q): 048 Prob(JB): 0.00
Heteroskedasticity (H): 13.78 Skew: -0.87
Heteroskedasticity (H): 13.15 Skew: -0.84
Prob(H) (two-sided):  0.00 Kurtosis: 25.65 Prob(H) (two-sided):  0.00 Kiirtoats: 2483
Graph 52 Graph 53

LLR_test(model_arma_1, model_arma_2, DF = 4)

0.0

Figure 32

From the above results, we can see that even though model 2,1 performed better for the
returns it is not the case when it comes to the prices. For prices, the higher lag model has
better results in the LLR test and the lower AIC value confirms our conclusion. So we are
accepting the Null hypothesis.
In the final part of ARMA models, we can analyse the residual values of ETH for close

prices.
Residuals of Prices
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In the preceding residual price graphs, which can be seen by looking at the above plot, the

prices exhibit similar tendencies. While there was a significant discrepancy between
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projected and actual numbers in 2018 and 2021, it appears that there may be some

volatility in those years.

Last but not least, we plot the ACF of residuals and review the outcomes:

ACF of Residuals for Prices
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We can observe from the graph above that there are numerous lags that are noticeably non-

zero. By taking this into account, we can state that the price residuals are not random.

4.2.6 ARIMA models

In this section, we will analyse the outcomes of fitting various ARIMA models to our data.
We can begin by plotting the ACF of residuals for ARIMA (1,1,1) in order to determine
the lags:

ACF & ETH Residuals for ARIMA Prices
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We can see from the autocorrelation graph that it could be beneficial to include the

5% or 61 lags in our model because they are substantial. Let's try fitting several models

with three delays as we often favor simpler models and evaluate the results using

likelihood, AIC, and log likelihood ratio tests. Here we define the Null hypothesis as the
model ARIMA (1,1,3) perform better than the others:

Fitted Models:

#1

model_arima_1 = ARIMA(eth_train.Close[1:], order
results_model_arima_1 = model_arima_1.fit()
results_model_arimal.summary()

# 2

model_arima_2 = ARIMA(eth_train.Close[1:], order
results_model_arima_2 = model_arima_2.fit()
results_model_arima_2.summary()

# 3

model_arima_3 = ARIMA(eth_train.Close[1:], order
results_model_arima_3 = model_arima_3.fit()
results_model_arima_3.summary()

#4

model_arima_4 = ARIMA(eth_train.Close[1:], order
results_model_arima_4 = model_arima_4.fit()

#5

model_arima_5 = ARIMA(eth_train.Close[1:], order
results_model_arima_5 = model_arima_5.fit()

#6

model_arima_6 = ARIMA(eth_train.Close[1:], order
results_model_arima_6 = model_arima_6.fit()

Code Chunk 11

Results of LL. and AIC:

(1,1,1))

(1,1,2))

(1,1,3))

(2,1,1))

(3,1,1))

(3,1,2))

print("ARIMA(1,1,1): \t LL = ", results_model_arima_1.11f, "\t

print("ARIMA(1,1,2): \t LL = "
print("ARIMA(1,1,3): \t LL = "

print("ARIMA(3,1,1): \t LL = "

results model arima_2.11f, "\t
results_model arima_3.11f, "\t

results_model arima_5.11f, "\t

s J
)
)
print("ARIMA(2,1,1): \t LL = ", results_model_arima_4.11f, "\t
)
)

print("ARIMA(3,1,2): \t LL ="

ARIMA(1,1,1): LL = -8610.795256554851
ARIMA(1,1,2): LL = -8610.12597071617
ARIMA(1,1,3): LL = -8605.290078714881
ARIMA(2,1,1): LL = -8607.247994566285
ARIMA(3,1,1): LL = -8610.15517355717
ARIMA(3,1,2): LL = -8607.247371915331
Figure 33

AIC
AIC
AIC
AIC
AIC
AIC

results_model_arima_6.11f, "\t

AIC =
AIC =

AIC

AIC =

AIC

AIC =

"

results_model arima_1.
results_model_arima_2.
results_model_arima_3.
results_model_arima_4.
results_model_arima_5.
results_model_arima_6.

"

"

)
3
3

"
3
>

"
)

17227.590513109702
17228.25194143234
17220.580157429762
17222.49598913257
17230.31034711434
17226.494743830663

Because ARIMA (1,1,3) has a lower AIC and a larger LL, we can infer that it might

perform better than the other models. Finally, we can use the LLR test to validate this

assertion and make the following claim:
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print("\nLLR test p-value
print("\nLLR test p-value
print("\nLLR test p-value
print("\nLLR test p-value
print("\nLLR test p-value

str(LLR_test(model_arima_1, model_arima_3, DF = 2)))
str(LLR_test(model_arima_2, model_arima_3)))
str(LLR_test(model_arima_4, model_arima_3)))

]
+ o+ 4+

str(LLR_test(model_arima_5, model_arima_3)))
str(LLR_test(model_arima_6, model_arima_3)))

LLR test p-value = 0.004
LLR test p-value = 0.002
LLR test p-value = 0.048
LLR test p-value = 0.002

LLR test p-value = 0.048
Figure 34
From the results it is obvious that the ARIMA (1,1,3) which is the respective third model at

the above outperforms the other models. So, we accept the Null hypothesis. Lastly, lets

plot the residuals for this model and examine the results:

ACF & ETH Residuals for ARIMA Prices
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Figure 35

Our data must originate from a non-stationary process, as we are aware, in order to
leverage higher integration levels. The Dicky-Fueller test will be used to determine
whether integrated data is stationary or not after manually creating an integrated delta
pricing column using Python's diff function where we define claim the Null hypothesis as
the data is stationary:

eth_train[ 'delta_prices']=eth_train.Close.diff(1)

sts.adfuller(eth_train.delta_prices[1:])

(-10.144321399562491,
8.262347504369866e-18,

16,

1483,

{'1%': -3.4347671645756304,
"5%': -2.86349089226533,
'10%": -2.5678086339403325},

16914.969030305292)

Figure 36
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We can see from the results above that, at all three levels, our test statistic is higher than
our critical values. Additionally, the p-value is quite close to 0, allowing us to conclude
that the data is stationary. So, we accept the Null hypothesis. Due to the fact that, 1 level of
integration in ARIMA models is sufficient, we can readily advise against using more

integrated levels.

4.277 ARIMAX model

The ARIMAX model will be used in the following phase to integrate external factors that
have an impact on prices. Python allows for the use of so-called exogenous variables when

fitting models. To check for a correlation between ETH and BTC, we will use the price of

Ethereum.
Dep. Variable: Close No. Observations: 1501
Model: ARIMA(2, 1, 2) Log Likelihood -8069.353
Date: Mon. 06 Feb 2023 AIC 16150706 Dep. Variable: Close No. Observations: 1501
Time: 19-41:53 BIC 16182536 Model: ARIMA(1, 1, 1) Log Likelihood -8070.893
Sample: 11-11-2017 HQIC 16162583 Date: Thu, 09 Feb 2023 AIC 16149.787
- 12.20-2021 Time: 07:19:59 BIC 16171.040
Covaniance Type: i Sample: 11-11-2017 HQIC 16157.704
- 12-20-2021
coef stderr z P>|z| [0.025 0.975] Covariance Type: opg
Close 0.0541 0.001 87.804 0.000 0.053 0.055
arL1 00408 0065 0624 0533 0087  0.169 gostiistd e 221z [0:025 SNL0-970)

_— 07108 0062 11434 0000 0589 05833 Close 0.0539 0.001 91.295 0.000 0.053 0.055

s 00804 0074 -1089 0276 0225 0.064 ar.L1 -0.8277 0.040 -20.582 0.000 -0.906 -0.749

osalis 06386 0068 -9448 0.000 0771 0506 ma.L1 0.7707 0.048 16.070 0.000 0677 0.865

igma2 2760.8465 36778 75067 0.000 2688762 2832931
sigma2 2759.2403 39691 69518 0.000 2681447 2837.033 U

Ljung-Box (L1) (Q): 1.53 Jarque-Bera (JB): 2457534
Ljung-Box (L1) (Q): 0.29 Jarque-Bera (JB): 23797.11 JupoBoxi(CINQ) S On(EE),

Prob(Q): 0.22 Prob(JB): 0.00
Prob(Q): 0.59 Prob(JB): 0.00
g Heteroskedasticity (H): 8.57 Skew: 0.31
Heteroskedasticity (H): 8.54 Skew: 0.22
= " Prob(H) (two-sided): 0.00 Kurtosis: 22.82
Prob(H) (two-sided): 0.00 Kurtosis: 22:51
Table 32 Table 33

As it can be seen above the p-value of the close prices of BTC is statistically significant for
our prices in ETH in the model where we have 2 lags in each side of model(AR, MA).
Furthermore, looking at the log likelihood we expect a great fit to the dataset in the first

model which we will illustrate in the forecasting section of the ETH.

4.2.8 ARCH and GARCH Models
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In this part, we will analyze the return volatility using ARCH models. We'll make another
column and use the squared of returns as our volatility values before we start testing the
models. The plot below shows that, as may be predicted, the returns for ETH appear to

have substantial volatility.

Volatility
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Next, although though PACF cannot help us determine the number of delays to be utilized
in the ARCH model, it may still provide us with a wealth of useful information:

PACF & BTC Squared Returns
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The data above show that, of the seven initial lags, only 4 are statistically significant. Such
high PACF scores may indicate that short-term patterns in variances are common.

Now, we will fit the ARCH model with constant mean with 5 iterations

95



Dep. Variable: returns R-squared: 0.000

Mean Model: Constant Mean Adj. R-squared: 0.000
Vol Model: ARCH Log-Likelihood: -4584 .43
Distribution: Normal AIC: 917485
Method: Maximum Likelihood BIC: 9190.79
No. Observations: 1500
Date: Mon, Feb 06 2023 Df Residuals: 1499
Time: 18:18:59 Df Model: 1
Mean Model
coef stderr t P>|t]  95.0% Conf. Int.

mu 02893 0.128 2267 2339%-02 [3.919e-02, 0.539]

Volatility Model
coef std err 3 P>|t|  95.0% Conf. Int.

omega 24.0554 2.094 11485 1.566e-30 [19.950, 28.160]
alpha[1] 0.1080 4.793e-02 2253 2.429e-02 [1.403e-02, 0.202]

Table 34

We can see from the results above that R squared is zero when adjusted and not adjusted. R
squared, which is used to assess explanatory variation in relation to the mean, indicates that
it will not be particularly helpful in explaining the deviation for our ARCH model. Moving
on to log likelihood, we can observe that ARCH models have a higher log likelihood value
than our prior AR, MA, ARMA, and ARIMA models, indicating that simpler ARCH
models can outperform complicated ARIMA models in estimations.

Second, we will construct a ARCH model with 2 lags and contrast the outcomes with the

first.

Dep. Variable: returns R-squared: 0.000
Mean Model: Constant Mean Adj. R-squared: 0.000
Vol Model: ARCH Log-Likelihood: -4581.12
Distribution: Normal AlC: 9170.24
Method: Maximum Likelihood BIC: 919149
No. Observations: 1500
Date: Mon, Feb 06 2023 Df Residuals: 1499
Time: 18:24:40 Df Model: 1

Mean Model

coef stderr t P>|t] 95.0% Conf. Int.

mu 03124 0126 2477 1.325e-02 [6.522e-02, 0.560]

Volatility Model
coef std err t P>|t| 95.0% Conf. Int.
omega 225594 2610 8643 5458e-18  [17.444, 27.675]
alpha[1] 0.1037 4.948e-02 2.097 3.600e-02 [6.777e-03, 0.201]
alpha[2] 0.0644 5.161e-02 1.247 0212 [-3.678e-02, 0.166]

Table 35

96



When we employed 2 lags, the log-likelihood increased while the AIC fell, which is
immediately apparent. These two are already signs that the second model performs better
than the previous one. Finally, when looking at the coefficients (p-values), we can see that
all of the figures—aside from alpha 2—are statistically significant. Overall, we can still
say that the second model, which has three delays, outperforms the first one in terms of

estimating market volatility.

We will fit GARCH models, which are an extension of ARCH and are also known as the
"ARMA Equivalent" of ARCH and are typically predicted to perform better, in the final
section of this sub-chapter. We will compare the outcomes of fitting both basic and multi-

lag GARCH models:

Dep. Variable: returns R-squared: 0000  Dep. Variable: returns R-squared:  0.000
Mean Model: Constant Mean Adj. R-squared: 0.000 Mean Model: Constant Mean Adj. R-squared: 0.000
Vol Model: GARCH  Log-Likelihood: -4539.37 VELEECE i) (eI <R
Distribution: Normal AIC:  9086.75 Olstribution: bomel AlC:) 190858
Method: Maximum Likelihood BIC: 9108.00 Mathod: " Marimon ieRwod Bio:otbito

No. Observations: 1500 o EbseHmo; 16

Date:  Mon Feb062023  DfResiduals: 1499
Date:  Mon, Feb062023  DfResiduals: 1499 LRk A esiduals

Time: 18:28:00 Df Model: 1
Time: 18:27:21 Df Model: 1
jel
Mean Mode
coef stderr t P>|t|  95.0% Conf. Int.
coef stderr t P>|t|  95.0% Conf. Int.

mu 02692 0.119 2263 2367e-02 [3.600e-02, 0.502]
mu 02676 0.119 2245 2478e-02 [3.397e-02, 0.501]

Volatility Model
Volatility Model
coef std err t P>|t| 95.0% Conf. Int.

-
coef seer t P 50%ConfInt  ega 16650 0918 1813 6985e02  [-0.135,3465)

omega 15002 0898 1671 0464e02  [-0259,3.259] opary 00825 34620-02 2382 1721e02 [1.462e-02,0.150]

alpha[f] 00727 3256e-02 2233 2556002 (8884003, 0.137) perai) 06945 0384 1809 7050602 [5809.02, 1.447]
beta[1] 08727 5708¢-02 15291 8800e53  [0761,0985] pewary) 01625 0362 0449 0654  [0547.0872)

Table 36 Table 37

Looking at the above, it is clear that a simple GARCH model with the parameters (1,1)
outperforms a more complicated GARCH model based on having beta[2] bigger than 0,5,
which denotes that the difference is not significant. In light of this, we will continue to use

the GARCH (1,1).
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Finally, we can see that the ARCH model has a higher log probability when compared to
the GARCH (1,1) model with three lags. From that angle, we may say that the ARCH
model would be a better fit to estimate the volatility of ETH.
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5 Results and Discussion

In this section we will share the predictions of each of the cryptocurrencies for AR, MA,
ARMA and ARIMAX models implemented and then derive the results.

5.1 Forecasting of BTC

In this section we will use python predict method to make forecasts with the models that

we have built and plot the predictions vs actual values from our testing dataset.

5.1.1 Forecasting with AR model

Initially we can start with our AR models for BTC prices:

Predictions vs Actual AR prices
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Graph 59
From the above graph we can see that AR model is not performing well with prices. Here
the main reason is because AR models are based on constants and it performs poorly with

non-stationary datasets.

As we have already found out that the returns of BTC prices are stationary we can plot our

predictions with the chosen AR return model and plot the predicted and actual values.

Predictions vs Actual AR returns
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From the plot we can see that our model (red line) makes no assumptions as it predicts the

future returns will be either 0 or very close to 0.

5.1.2 Forecasting with MA model

When also try MA models in order to see how well they perform in forecasting of returns
we have the similar results as we had in AR models where can see the poor performance

by the model with constant prediction

Predictions vs Actual MA (Returns)
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5.1.3 Forecasting with ARMA model

Next, we can also try to predict using the ARMA model and examine the results:

Predictions vs Actual ARMA (Returns)
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From ARMA model, even though it does not have one constant value for the whole period
we cannot still conclude that this model performs well when it comes to predicting the

returns.

5.1.4 Forecasting with ARIMAX

Finally, we will use the Ethereum data as exogenous variable and try to use our ARIMAX

model in order to to our forecasts and see how well the model performs:
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Predictions vs Actual ARIMAX (Prices)
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Looking at the above plot we can see that our model with ARIMAX perform significantly
better than other models that we had before. It shows the correct trends even though
sometimes it does overperform and sometimes underperform. From the forecast we can

also conclude that adding more exogenous variables can increase the performance of

model significantly.

5.2 Forecasting of ETH

In this section, we'll create predictions using the models we've built using the Python

predict method and plot those predictions against the actual values from our testing dataset.

5.2.1 Forecasting with AR model

We can start with our AR models for ETH pricing initially:

Predictions vs Actual AR prices
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We can observe from the graph above that the AR model does not work well with prices.
Here, the fundamental cause is that AR models' performance with non-stationary datasets

is weak because they are reliant on constants.
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We may plot our predictions using the selected AR return model and plot the projected and

actual values because we have already established that the returns of ETH prices are

stationary.

Predictions vs Actual AR returns
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The plot shows that our model (red line), which forecasts that future returns would either

be zero or extremely close to zero, contains no assumptions.

5.2.2 Forecasting with MA model

We get comparable outcomes to what we saw with AR models, where we could show the
model's poor performance with constant prediction, when we also test MA models to see

how well they do in projecting returns.

Predictions vs Actual MA (Returns)
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5.2.3 Forecasting with ARMA model

Next, we can also try to predict using the ARMA model and examine the results:
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Predictions vs Actual ARMA (Returns)
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We cannot infer from the ARMA model that this model is effective at predicting returns

despite the fact that it does not have a single constant value for the entire period.

5.2.4 Forecasting wiht ARIMAX

Finally, we will attempt to use our ARIMAX model to make our forecasts using the BTC

data as an exogenous variable and test the model's performance:
Predictions vs Actual ARIMAX (Prices)
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Graph 68
As seen in the aforementioned graphic, our model with ARIMAX performs noticeably
better than other models we had previously. Despite the fact that it occasionally
outperforms and occasionally underperforms, it always displays the right trends. We can
infer from the forecast that significantly more exogenous factors can improve the model's

performance.
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6 Conclusion

In conclusion it is important to mention that after assessing different time-series
models it may be useful to do detailed multivariate analysis and understand the
relationship between other factors to in order to make more accurate predictions.
Taking into consideration the fact that this thesis mainly covered the univariate
analysis and only used one exogenous variable during model fitting, the ARIMAX
model performed the best. In spite of the fact of having not ideal predictions on prices,
using ARIMAX, we were able to detect the trends on testing dataset very accurately
which points one of the aims of the paper. Furthermore, thesis also explained that it is
crucial to analyse the time series analysis of cryptocurrencies with more than 1
exogenous variable and heavily leaning on multivariate analysis of these coins. Thesis
covered detailed analysis of each crypto currency the existence of seasonality,
stationarity and other important indicators which enables us to have more enlightened
comprehension on the BTC, ETH and in crypto world generally considering these
coins as leading coins. Different models of time series also showed us on which kind
of datasets can be the best fit for those models based on the characteristics of the
respective datasets. As those characters can play a significant role on the course of the
analysis and also have a great impact on the decision to be made on the model. Other
time series properties such as auto correlation functions and partial autocorrelation
functions helped us to define the number of lags and their importance to the data set
in modelling. As crypto market is considered as one of the most volatile financial
instruments to be traded in the current world it will be important to mention the final
note which is the necessity of mentioning the description of thesis on the
functionalities of time series with different models and assessing the volatility with
ARCH and GARCH models. Using all the indicators such as returns, residuals and
prices we were able to confirm that the volatility in the selected crypto currencies

indeed exists.
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White Noise Time-Series
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ACF & BTC Residuals for Normalized Returns
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ma.l$s
ma.Lé

coef
5.9335
-0.0443
0.0606
0.0038
0.0321
0.0093
0.0736

opg

z
2244
2493

-0.042
4125
1.202
2737
0331
3531
49.487

0.89
0.20

P>|z|
0.025
0.013
0.966
0.000
0.229
0.006
0.741
0.000
0.000

Log Likelihood

[0.025
0.039
0.092

0371

0978

0.022

0812

0.326
0277

25646

0.00 Jarque-Bera (JB):
0.97

Prob(JB):

Skew:

Kurtosis:

norm_ret

ARIMA(0, 0, 6)
Sun, 05 Feb 2023

10:22:37

11-12-2017

- 12-20-2021

std err

2.994
0.020
0.025
0.024
0.021
0.022
0.024

sigma2 1.004e+04 208.508

Ljung-Box (L1) (Q):

Prob(Q):

Heteroskedasticity (H):

Prob(H) (two-sided):
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0.00
0.98
0.90
026

opg

z
1.982
-2.214
2.392
0.161
1.562
0.427
3.094
48.167

Jarque-Bera (JB):

1500
-4592.187
AIC
BIC
Haic

9202.374
9250.193
9220.189

0.975]
0573
0768
0355

-0.348
0.093

0.134
0.459
0.968

27.761

1830.23
0.00
-0.27
8.39

No. Observations:

Log Likelihood

P>2|
0.047
0.027
0.017
0.872
0.118
0.669
0.002
0.000

Prob(JB):
Skew:

Kurtosis:

AIC
BIC
HQic

[0.025
0.065
-0.084
0.011
-0.043
-0.008
-0.033
0.027
9634.619

2027.81
0.00
-0.26
8.67

1500
-9037.983
18091.966
18134.472
18107.801

0.975]
11.802
-0.005
0.110
0.050
0.072
0.052
0.120

1.05e+04



Dep. Variable: returns  No. Observations: 1500 Dep. Variable: retumns No. Observations: 1500
Model:  ARIMA(,0,2)  Log Likelihood -4595.308 SN SEREEORY  ENERSREG -
Date: Sun, 05 Feb 2023 AIC  9196.649
Date: Sun, 05 Feb 2023 AIC 9198617
Time: 10:02:30 BIC 9239.155
Time: 09:58:50 BIC 9219.869 Sample: 1-12-2017 HaIC 9212484
Sample: 11-12-2017 HQIC 9206.534 - 12-20-2021
- 12-20-2021 Covariance Type: opg
Covariance Type: opg coef stderr z P>[z| [0.025 0.975]
const (0.3062 0154 1.987 0047 0004 0608
coef stderr z P>z] [0.025 0.975] mal1 -0.0443 0020 -2219 0027 -0.083 -0.005
const 03059 0437 2236 0025 0038 0574 mal2 00606 0025 239 0017 0011 0.110
mal3 00038 0024 0161 0.872 -0.043 0.050
mal1 -00445 0019 -2283 0022 -0.083 -0.006
mal4 00321 0020 1565 0.118 -0.008 0.072
mal2 00558 0024 2316 0021 0.009 0.103 mal5 00093 0022 0428 0669 -0033 0052
sigma2 268212 0507 52930 0.000 25828 27.814 malé 00737 0024 3100 0002 0027 0.120
sigma2 266425 0552 48261 0.000 25560 27.724
Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 2037.74
Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 2027.82
Prob(Q): 1.00 Prob(JB): 0.00 Prob(Q): 0.98 Prob(JB): 0.00
Heteroskedasticity (H): 0.90 Skew: -0.26 Heteroskedasticity (H): 0.90 Skew:  -0.26
Prob(H) (two-sided): 0.25 Kurtosis: 8,69 EeeD{H)ftwo-sided);; 026 fiosls; 1887
Dep. Variable: norm_ret No. Observations: 1501 Dep. Variable: norm_ret No. Observations: 1501
Model:  ARIMA(2,0,0)  Log Likelihood -9048.715 Mede IR0 O ool elieliheor IR0an Y
Date: Sat, 04 Feb 2023 AIC 18102.734
Date: Sat, 04 Feb 2023 AIC 18105.430 Time: 20:21:15 BIC 18166.501
Time: 20:21:27 BIC 18126.686 Sample: 11-11-2017 HQIC 18126.489
’ o ' -12-20-2021
Sample: 11-11-2017 HQIC 18113.348  covariance Type: oG
- 12-20-2021 coef stderr z P>z| [0.025 0.975]
Covariance Type opg const 59962 2.993 2.004 0.045 0.131 11.862
ar.L1 -00443 0.020 -2.216 0.027 -0.084 -0.005
arL2 0.0575 0.025 2274 0.023 0.008 0.107
S S0 Z p>|ZI [0.025 0.975] arl3 00074 0.024 0.309 0.757 -0.040 0.054
const 5.9962 2660 2254 0.024 0.782 11.211 arL4 00325 0021 1580 0.114 -0.008 0.073
arL1 -0.0445 0.019 -2296 0.022 .0.082 -0.007 arlL5 0.0099 0.023 0.437 0.662 -0.034 0.054
: ’ ’ ’ ’ ' ' arLé 00679 0024 2821 0005 0.021 0115
ar.L2 0.0579 0.024 2404 0.016 0.011 0.105 arlL7 -00026 0020 -0.132 0895 -0.042 0.036
sigma2 1.009e+04 190612 52954 0.000 9720.050 1.05e+04 acl8, <0.0099 10025 =3613 0400 20088 10:009
ar.L9 -0.0351 0.026 -1.367 0.172 -0.085 0.015
ar.L10 0.0601 0.024 2545 0.011 0.014 0.106
Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 2025.50 .
sigma2 1e+04 208.680 47.926 0.000 9592.210 1.04e+04
Prob(Q): 0.99 Prob(JB): 0.00
Ljung-Box (L1) (Q): 000 Jarque-Bera (JB): 208842
Heteroskedasticity (H): 0.90 Skew: -0.26 Prob(Q): 0.98 Prob(JB): 0.00
PI’Ob(H) (two-sided): 0.24 Kurtosis: 8.67 Heteroskedasticity (H): 0.88 Skew: -0.28
Prob(H) (two-sided): 0.14 Kurtosis: 875
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Dep. Variable: returns  No. Observations: 1500
Dep. Variable: returns No. Observations: 1500 .
Model: ARIMA(8, 0, 0) Log Likelihood -4589.558
Model:  ARIMA(4,0,0)  Log Likelihood -4593.996 Date: Sai 04 Feb 2023 s GV
Date: Sat, 04 Feb 2023 AIC  9199.991 Time: 20:10:01 BIC 9252249
Time: 20:09:57 BIC 9231870 Sample: 11-12-2017 HaIC  9218.911
Sample: 11-12-2017 HQIC  9211.867 =12:20-2021
Covariance Type: o]
-12-202021 v wo
Covariance Type: opg coef stderr z P>Jz| [0.025 0.975]
const 03061 0149 2051 0040 0014 0599
coef stderr z P>[z| [0.025 0.975] arl1 -00450 0020 -2246 0025 -0.084 -0.006
const 0.3060 0.143 2133 0.033 0.025 0.587 arL2 00552 0025 2191 0.028 0006 0.105
arl1 -00444 0020 -2278 0023 -0.083 -0.006 arL3 00038 0024 0162 0.872 -0.042 0.050
L4 00365 0021 1780 0075 -0004 0.077
arL2 00555 0024 2295 0022 0008 0103 o
arl5 00094 0022 0428 0669 -0.034 0.052
arL3 00039 0023 0170 0865 -0.041 0.049
arL6é 00699 0024 2909 0.004 0.023 0.117
arbai 10.0389" 1010207 i11912:70.096 0:001|' 10:079 arl7 00050 0020 -0250 0803 -0.044 0034
sigma2 267740 0552 48481 0000 25692 27.856 arl8 -00349 0025 -1420 0156 -0.083 0.013
sigma2 266151 0555 47.984 0000 25528 27.702
Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 1879.90
jung-i 1 3 -| : 197!
Prob(Q): 0.99 Prob(JB): 0.00 Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 975.82
Prob(Q): 0.96 Prob(JB): 0.00
Heteroskedasticity (H): 0.90 Skew: -0.25
Heteroskedasticity (H): 0.90 Skew: -0.26
Prob(H) (two-sided): 0.23 Kurtosis: 8.46 Prob(H) (two-sided): 0.23 Kurtosis:  8.60
Dep. Variable: Close No. Observations: 1502
Model:  ARIMA(2, 0, 0) Log Likelihood -8630.028 Dep. Variable: Close No. Observations: 1502
Date: Sat, 04 Feb 2023 AIC  17268.055 Model:  ARIMA(3,0,0)  Log Likelihood -8630.011
Time: 19:34-08 BIC 17289.313 Date: Sat, 04 Feb 2023 AIC  17270.021
Time: 19:36:07 BIC 17296.594
Sample: 11-10-2017 HQIC 17275.974 ime
Sample: 11-10-2017 HQIC 17279.920
- 12-20-2021
- 12-20-2021
Covariance Type: opg .
Covariance Type: opg
coef  stdem z P>zl [0.026 0975 coef  stderr z Pzl [0.025  0.975]
const 901.5974 4705739 0.192 0.848 -8321.481 1.01e+04 const 9015950 4672272 0193 0847 -8255.890 1.01e+04
arL1 0.8998 0.013 71.623 0.000 0.875 0.924 arl1 0.9003 0.013 70.713 0.000 0.875 0.925
arlL2 0.0993 0.013 7.898 0.000 0.075 0.124 arlL2 0.1035 0.015 6.842 0.000 0.074 0.133
sigma2 5706.7400 61.354 93.014 0000 5586.489 5826991 arl3  -00047 0010 -0.453 0.651 -0.025 0.016
sigma2 5706.3579 63.493 89.874 0.000 5581914 5830802
Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 35366.99
L -Box (L1 : 000 J -B (JB): 35121.95
Prob(Q): 0.9 Prob(JB): 0.00 Jung B CHQ) atgiie;Bers (5
Prob(Q): 098 Prob(JB): 0.00
Heteroskedasticity (H): 13.85 Skew: -0.96
Heteroskedasticity (H): 13.85 Skew: -0.95
Prob(H) (two-sided):  0.00 Kurtosis: 26.69 5 5
Prob(H) (two-sided):  0.00 Kurtosis: 26.61
Constant Mean - GARCH Model Results Dep. Variable: retums R-squared:  0.000
Dep. Variable: e R qiare 0.000 Mean Model: Constant Mean Adj. R-squared: 0.000
Mean Model: Constant Mean Adj. R-squared: 0.000 NolMocst: CARCH LogiLikelincod:ge4a5:59
Vol Model: GARCH  Log-Likelihood: -6486.73 Distribution: Normal AlC: 129812
Distribution: Normal AIC: 129815 Method: Maximum Likelihood BIC: 13010.1
Method: Maximum Likelihood BIC: 130046 No. Observations: 2420
No. Observations: 2420 Date: Thu, Feb 02 2023 Df Residuals: 2419
Date: Thu, Feb 02 2023 Df Residuals: 2419 Time: 16:11:08 Df Model: 1
Time: 16:11:03 Df Model: 1
Mean Model
Mean;Modc] coef  stderr t P>|t| 95.0% Conf. Int.
coef  stderr t P>|t| 95.0% Conf. Int. mu 02425 6245¢-02 3.883 1.031e-04  [0.120, 0.365]
mu 02392 6.322e-02 3783 1.547e-04 [0.115, 0.363]
Volatility Model
Volatility Model
coef std err t P>|t| 95.0% Conf. Int.
costi stlerm g P>ltf  95.0%Conf.Int. 1 ega 08094 0312 2504 9.477e03  [0.198 1.421]
omega 06753 0258 2616 8801e.03  [0169. 1181] 1] 01583 35156-02 4503 6709e-06 [8.9386-02,0.227]
alpha[1] 0.1294 3.184e-02 4.065 4.794e-05 [6.703e-02,0.192]
beta[1] 0.5403 0218 2477 1.323e-02 [0.113, 0.968]
beta[1] 0.8373 2.924e-02 28633 2.575e-180 [0.780, 0.895]
beta[2] 0.2617 0201 1.299 0.194 [-0.133, 0.656]
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Dep. Variable: returns R-squared: 0.000

Mean Model: Constant Mean Adj. R-squared: 0.000
Vol Model: ARCH Log-Likelihood: -6596.32
Distribution: Normal AlC: 13202.6
Method: Maximum Likelihood BIC: 132316
No. Observations: 2420
Date: Thu, Feb 02 2023 Df Residuals: 2419
Time: 15:41:28 Df Model: 1
Mean Model
coef std err t P>|t| 95.0% Conf. Int.

mu 02894 6.694e-02 4.324 1.534e-05 [0.158, 0.421]

Volatility Model

coef std err t P>t| 95.0% Conf. Int.

omega 9.2991 1.314 7.077 1.469e-12 [6.724, 11.874]
alpha[1] 0.1623 4.209e-02 3.855 1.155e-04 [7.977e-02, 0.245]
alphaf2] 0.0830 4.529e-02 1.833 6.675e-02 [-5.735e-03,0.172]
alpha[3] 0.1733 6.294e-02 2753 5.899e-03 [4.994e-02, 0.297]

Constant Mean - ARCH Model Results

Dep. Variable: returns R-squared: 0.000
Mean Model: Constant Mean Adj. R-squared: 0.000
Vol Model: ARCH Log-Likelihood: -6641.33
Distribution: Normal AlC: 132887
Method: Maximum Likelihood BIC: 13306.0
No. Observations: 2418
Date: Sun, Jan 29 2023 Df Residuals: 2417
Time: 13:32:49 Df Model: 1
Mean Model
coef std err t P>|t| 95.0% Conf. Int.

mu 0.2983 7.493e-02 3.982 6.843e-05 [0.151, 0.445]

Volatility Model

coef std err t P>|t]  95.0% Conf. Int.
omega 124061 1.125 11.025 2.887e-28 [10.201, 14.612]
alpha[1] 0.1696 4.138e-02 4.099 4.154e-05 [8.850e-02, 0.251]
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#will be done for other Cryptos

model_arimax = ARIMA(btc_train['2017-11-09"

results_arimax = model_arimax.fit()
results_arimax.summary()

‘
SARIMAX Results

Dep. Variable:

Model:

Close No. Observations:

ARIMA(1, 1, 1)

Date: Thu, 02 Feb 2023

Log Likelihood

1273

-9925 590

AIC 19859.180

Time: 09:00:15 BIC 19879.774
Sample: 11-09-2017 HQIC 19866.915
- 05-04-2021
Covariance Type: opg
coef  stderr z P>lz  [0.025 0975]
Close 12,0532 0.116 104.125 0.000 11.826 12280
arlL1 02222 0196 1131 0258  -0.163 0607
malil -0.1597 0198  -0.806 0.420 -0.548 0.228
sigma2 3.515e+05 4443353 79.116 0000 343e+05 3.6e+05
Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 20743.18
Prob(Q): 098 Prob(JB): 0.00
Heteroskedasticity (H): 4.02 Skew: 061
BrahiH) fwn.sidadl: 000 Wurtnsie: 2978
Dep. Variable: Close No. Observations: 2421
Model: ARIMA(3, 0, 6) Log Likelihood -18673.037
Date: Wed, 01 Feb 2023 AIC 37368073
Time: 16:23:28 BIC 37431.785
Sample: 09-18-2014 HQIC 37391.241
- 05-04-2021
Covariance Type: opg
coef std err z P>z| [0.025 0.975]
const 7170.5465 6.440 1113.375 0000 7157.924 7183.169
arl1 0.5315 0.005 116.439 0.000 0.523 0.540
arlL2 -0.4875 0.005 -95766 0.000 -0.497 -0.477
arL3 0.9557 0.004 238521 0.000 0.948 0.964
ma.l1 0.4855 0010  48.887 0.000 0.466 0.505
mal2 1.0109 0.009 108.931 0.000 0.993 1.029
mal3d 0.0918 0.011 7.988 0.000 0.069 0.114
ma.ld 0.0392 0.011 3644 0.000 0.018 0.060
mals 0.0471 0.009 5.431 0.000 0.030 0.064
malé 0.0278 0.008 3.474 0.001 0.012 0.043
sigma2 2967e+05 2183294 135912 0.000 2.92e+05 3.01e+05
Ljung-Box (L1) (Q): 0.01 Jarque-Bera (JB): 128907.71
Prob(Q): 0.94 Prob(JB): 0.00
Heteroskedasticity (H): 3812.82 Skew: 1.30
Prob(H) (two-sided): 0.00 Kurtosis: 38.65

Dep. Variable:

Model:
Date:
Time:

Sample:

Covariance Type:

const
arl1
arL2
arl3
ma.L1
ma.l2
ma.L3

coef
7170.5465
-0.5941
0.6075
0.9865
1.6159
1.0141
0.0293

:].Close, exog = ethdata[:"2021-05-04"].Close, order=(1,1,1)

Close No. Observations:

ARIMA(3, 0, 3)

Wed, 01 Feb 2023

16:23:31

09-18-2014

- 05-04-2021

opg
std err z
1.09e-10 6.6e+13
0.006 -102.277
0.004 155.027
0.006 164.015
0.010 161.532
0.016  63.318
0.009 3.353

sigma2 3.008e+05 7.32e-09 4.11e+13

Ljung-Box (L1) (Q):

Prob(Q): 0.99

Heteroskedasticity (H): 4776.46

Prob(H) (two-sided): 0.00
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Log Likelihood
AlC
BIC
HQic
P>|z]  [0.025

0.000 7170.547

0.000
0.000
0.000
0.000
0.000
0.001

-0.605
0.600
0.975
1.596
0.983
0.012

2421
-18695.052
37406.104
37452.439
37422953

0.975]
7170.547
-0.583
0615
0.998
1636
1.046
0.046

0.000 3.01e+05 3.01e+05

0.00 Jarque-Bera (JB):

Prob(JB):

Skew:

Kurtosis:

146715.78

0.00
1.35
41.04



Dep. Variable: returns No. Observations: 2420
Model: ARIMA(3, 0, 3) Log Likelihood -6710.047
Date: Wed, 01 Feb 2023 AIC 13436.095
Time: 15:39:32 BIC 13482427
Sample: 09-19-2014 HQIC 13452944
- 05-04-2021
Covariance Type: opg
coef stderr z P>[z| [0.025 0.975]
const 02680 0089 3.020 0.003 0094 0442
arl1 03481 0124 2798 0005 0.104 0.592
arL2 -04338 0074 -5878 0.000 -0578 -0.289
arL3 09335 0123 7562 0.000 0692 1.175
mal1 -03507 0129 -2719 0.007 -0.604 -0.098
mal2 04414 0076 5840 0000 0293 0.590
mal3 -09265 0128 -7.233 0000 -1.178 -0675
sigma2 14.9923 0201 74551 0.000 14.598 15.386
Ljung-Box (L1) (Q): 043 Jarque-Bera (JB): 6416.59
Prob(Q): 0.51 Prob(JB): 0.00
Heteroskedasticity (H): 1.51 Skew: -0.16
Prob(H) (two-sided): 0.00 Kurtosis: 10.97
Dep. Variable: norm_ret No. Observations: 2420
Model:  ARIMA(0, 0, 10) Log Likelihood -13073.251
Date: Wed, 01 Feb 2023 AIC  26170.503
Time: 08:03:41 BIC 26240.001
Sample: 09-19-2014 HQIC 26195.775
- 05-04-2021
Covariance Type: opg
coef stderr z P>|z| [0.025 0.975]
const -3.8366 1.181 -3.249 0.001 -6.151 -1.522
ma.L1 -0.0161  0.013 -1.230 0219 -0.042 0.010
ma.l2 0.0035 0.017 0213 0.831 -0.029 0.036
ma.l3 0.0236 0.017 1.399 0.162 -0.009 0.057
ma.L4 -0.0052 0.016 -0.328 0.743 -0.036 0.026
ma.L5 0.0089 0017 0534 0.593 -0.024 0.041
ma.Lé 0.0563 0.016 3.458 0.001 0.024 0.088
ma.L7 -0.0332 0015 -2264 0.024 -0.062 -0.004
ma.L8 -0.0166 0.018 -0.907 0.364 -0.053 0.019
ma.L9 -0.0273 0018 -1.525 0.127 -0.062 0.008
ma.L10 0.0583 0.018 3.308 0.001 0.024 0.093
sigma2 2890.5087 40296 71.732 0.000 2811.530 2969.488
Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 6322.17
Prob(Q): 0.97 Prob(JB): 0.00
Heteroskedasticity (H): 1.51 Skew: 0.16
Prob(H) (two-sided): 0.00 Kurtosis: 10.91

Log Likelihood

Al

C
B
Haic

o4

0.975]
0.433
2514
2145
2267
2916
3569
3232
3377
2257

15.405

6719.47
0.00
-0.15
11.16

Dep. Variable: returns No. Observations:
Model: ARIMA(4, 0, 4)
Date: Wed, 01 Feb 2023
Time: 15:43:14
Sample: 09-19-2014
- 05-04-2021
Covariance Type: opg
coef stderr z P>|z| [0.025
const 02791 0079 3555 0.000 0.125
arL1 -05407 1559 -0.347 0729 -3.596
arL2 -05609 1381 -0.406 0685 -3.267
arl3 -05386 1432 -0376 0707 -3.345
arl4 03307 1319 0251 0802 -2.255
mal1 05229 1554 0336 0737 -2.523
mal2 05716 1357 0421 0674 -2.088
mal3 05357 1450 0370 0712 -2.305
mald4 -03441 1327 -0259 0795 -2.945
sigma2 150146 0.199 75288 0.000 14.624
Ljung-Box (L1) (Q): 0.01 Jarque-Bera (JB):
Prob(Q): 0.92 Prob(JB):
Heteroskedasticity (H): 1.50 Skew:
Prob(H) (two-sided): 0.00 Kurtosis:

Log Likelihood

AlC
BIC
Haic

0.975]
0.442
0.009
0.036
0.057
0.026
0.041
0.088

-0.005
0.019
0.008
0.093

15.319

6322.16
0.00
-0.16

Dep. Variable: returns No. Observations:
Model:  ARIMA(0, 0, 10)
Date: Wed, 01 Feb 2023
Time: 06:21:35
Sample: 09-19-2014
- 05-04-2021
Covariance Type: opg
coef stderr z P>|z|] [0.025
const 02758 0085 3.257 0.001 0.110
ma.l1 -00161 0.013 -1233 0218 -0.042
mal2 00035 0.016 0214 0.830 -0.029
ma.l3 00236 0.017 1402 0.161 -0.009
ma.l4 -0.0052 0.016 -0.328 0.743 -0.036
mals 00089 0.017 0535 0.593 -0.024
ma.lé 00563 0.016 3468 0.001 0.024
mal7 -00332 0015 -2271 0023 -0.062
ma.l8 -00166 0.018 -0.910 0.363 -0.052
ma.l9 -00273 0018 -1529 0.126 -0.062
ma.L10 0.0583 0.018 3.317 0.001 0.024
sigma2 149123 0207 71930 0.000 14.506
Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB):
Prob(Q): 0.97 Prob(JB):
Heteroskedasticity (H): 1.51 Skew:
Prob(H) (two-sided): 0.00 Kurtosis:
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10.91

2420
-6710.810
13441.620
13499.535
13462681

2420
-6703.508
13431.016
13500.515
13456.289



Dep. Variable: returns No. Observations: 2420
Model: ARIMA(0, 0, 7) Log Likelihood -6708.664
Date: Wed, 01 Feb 2023 AIC 13435328
Time: 06:28:17 BIC 13487.452 Dep. Variable: norm_ret No. Observations: 2418
Sample: 09-19-2014 HQIC 13454283 Model:  ARIMA(10,0,0)  Log Likelihood -13132.818
r— Date: Tue, 31 Jan 2023 AIC  26289.635
Time: 15:30:31 BIC 26359.124
Covariance Type: oprg Sample: 09-21-2014 HQIC 26314.906
- 05-04-2021
coef stderr z P>|z| [0.025 0.975] e )
const 02759 0083 3329 0001 0.113 0438
coef stderr z P>z [0.025 0.975]
mall -00161 0013 -1.252 0211 -0.041 0.009 const: 96745 1250/ 83957 OO0 .BiYSE 1583
mal2 00024 0016 0149 0882 -0030 0034 arl1 00138 0013 -1070 0285 0039 001
arl2 00021 0016 0128 0898  -0030 0034
mal3 00248 0017 1489 0.136 -0.008 0.058
arl3 00213 0017 1270 0204  -0012 0054
mald 00089 0016 -0.574 0566 -0.039 0.022 aFL# -G0S G0i8 0220 0836 -ONSE | GWET
mals 00103 0016 0625 0532 -0.022 0.042 arLs 00108 0017 0656 0512 -0.022 0.044
malé 00581 0016 3583 0000 0026 0.090 ke 0069 0016 3812 0000 0025 0089
arl7 00283 0015 -1926 0054  -0057  0.001
mal7? -00308 0015 -2118 0034 -0059 -0.002 i G0i88 0018 031 0508 <0068 0017
sigma2 149762 0.207 72339 0.000 14.570 15.382 arLs -0.0276 0018 -1.540 0.124 -0.063 0.008
arl10 00861 0017 3240 0.001 0022 0090
Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 6291.73 sigma2 30556268 42201 72406 0000 2972914 3138.340
Prob(Q): 098 Prob(JB): 0.00 Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 636520
Heteroskedasticity (H): 1.51 Skew: 017 Prob(Q): (0.9 RrobUB); 0.00
Heteroskedasticity (H): 1.51 Skew: 016
Prob(H) (two-sided): 0.00 Kurtosis: 10.89 N
Prob(H) (two-sided): 0.00 Kurtosis: 1094
Dep. Variable: norm_ret No. Observations: 2418 Dep. Variable: returns No. Observations: 2417
Model:  ARIMA®,0,0)  LoglLikelihood -13138.849 Model:  ARIMA(1,0,0)  Log Likelihood -6705236
Date: Tue, 31 Jan 2023 AIC 26293 697
Date: Tue, 31 Jan 2023 AIC 13416.471
Time: 15:30:23 BIC 26340.023
Sample: 09-21-2014 HQIC 26310544 Time: 14:32:42 BIC 13433.842
- 05-04-2021 Sample: 09-22-2014 HQIC 13422789
Covariance Type: opg 05-04-2021
coef stderr z P>z] [0.025 0.975] Covariance Type: opg
const -3.9744 1228 -3.238 0.001 -6.380 -1.568
arl1 00159 0013 -1.251 0211  -0.041 0.009 coef stderr z P>|z| [0.025 0.975]
el K . 7 - 1 i
art2 00005 0016 0038 0970 0031 0032 const 02787 0078 3568 0000 0126 0432
arl3 00178 0017 1073 0283 -0015  0.050
ol GG e 5688 G52 e o030 arl1 -00153 0.013 -1.227 0.220 -0.040 0.009
arL5 0.0114 0016 0695 0487  -0.021 0.043 sigma2 15.0368 0.194 77.352 0.000 14656 15418
arlé 00567 0016 3539 0000 0025  0.088
sigma2 30701127 41484 74006 0000 2988.805 3151421 Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 6613.33
= Prob(Q): 1.00 Prob(JB): 0.00
Ljung-Box (L1) (Q): 0.01 Jarque-Bera (JB): 644855
Prob(Q): 0.94 Prob(JB): 0.00 Heteroskedasticity (H): 1.50 Skew: -0.16
Heteroskedasticity (H): 1.52 Skew:  0.16 Prob(H) (two-sided): 0.00 Kurtosis: 11.10
Prob(H) (two-sided): 0.00 Kurtosis: 10.99
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Dep. Variable: returns No. Observations: 2417
Model: ARIMA(7, 0, 0) Log Likelihood -6699 913
Date Rlue S1an 2023 MCRSHT 828 Dep. Variable: Close No. Observations: 2418
Time: 14:37:51 BIC 13469939
Model: ARIMA(3, 0, 0) Log Likelihood -18688.728
Sample: 09-22-2014 HQIC 13436.778
Date: Tue, 31 Jan 2023 AIC  37387.457
- 05-04-2021
s Time: 07:48:14 BIC 37416.410
Covariance Type: opg
Sample: 09-21-2014 HQIC 37397.986
coef stderr z P>z [0.025 0.975]
- 05-04-2021
const 02787 0.083 3340 0001 0.115 0.442
Covariance Type: opg
arl1 -00144 0013 -1.117 0264 -0.040 0011
arL2 00015 0.016 0.095 0.924 -0.030 0.033 coef std err z P>z| [0.025 0.975]
Sl W Wbl 083 G S0l O0eY const 71789363 5791 1239.567 0.000 7167.585 7190.287
il e 0010 000 Dot 0SB arl1 10128 0008 125997 0000 0997  1.029
arL5 00112 0016 0684 0494 -0.021 0.043
arl2 0.0139 0.010 1.330 0.184 -0.007 0.034
arL6 00561 0016 3465 0.001 0.024 0.088
arl3 -0.0270 0.007 -3.758 0.000 -0.041 -0.013
arL7 -0.0275 0015 -1.872 0.061 -0.056 0.001
sigma2 149702 0207 72344 0.000 14565 15376 sigma2 3.02e+05 1981.120 152.450 0.000 2.98e+05 3.06e+05
Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 6308.91 Ljung-Box (L1) (Q): 0.02 Jarque-Bera (JB): 14474242
Prob(Q): 0.98 Prob(JB): 0.00 Prob(Q): 0.89 Prob(JB): 0.00
Heteroskedasticity (H): 1.51 Skew: -0.16 Heteroskedasticity (H): 4293.11 Skew: 1.38
Prob(H) (two-sided): 0.00 Kurtosis: ~ 10.91 Prob(H) (two-sided): 0.00 Kurtosis: 40.80
Dep. Variable: Close No. Observations: 2418
Model: ARIMA(4, 0, 0) Log Likelihood -18683.763
Date: Tue, 31 Jan 2023 AIC  37379.527
Time: 07:48:13 BIC 37414271
Sample: 09-21-2014 HQIC 37392.162
- 05-04-2021
Covariance Type: opg
coef std err z P>|z| [0.025 0.975]
const 7178.9367 6.904 1039.814 0.000 7165.405 7192.468
ar.L1 1.0116 0.008 124.820 0.000 0.996 1.027
arlL2 0.0141 0.011 1.332 0.183 -0.007 0.035
arL3 0.0395 0.012 3.409 0.001 0.017 0.062
arL4 -0.0654 0.008 -8.575 0.000 -0.080 -0.050
sigma2 3.041e+05 2016.363 150.792 0.000 3e+05 3.08e+05

Ljung-Box (L1) (Q):

Prob(Q): 0.98
Heteroskedasticity (H): 4083.98
Prob(H) (two-sided): 0.00

8.3

def LLR_test(mod_1, mod_2, DF

0.00 Jarque-Bera (JB):

Prob(JB):
Skew:

Kurtosis:

L1 = mod_1.fit().11lf
L2 = mod_2.fit().11f
LR = (2*(L2-L1))

p —

return p

List of Code Chunks

143806.34

0.00
128
40.69

.
.

1)

chi2.sf(LR, DF).round(3)
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eth_train['delta_prices']=eth_train.Close.diff(1) Print("\nLLR test p-value
= = = print("\nLLR test p-value

print("\nLLR test p-value
print("\nLLR test p-value
print("\nLLR test p-value

str(LLR_test(model_arima_2, model_arima_3)))
str(LLR_test(model_arima_4, model_arima_3)))

str(LLR_test(model_arima_5, model_arima_3)))
str(LLR_test(model_arima_6, model_arima_3)))

sts.adfuller(eth_train.delta_prices[1:])

[T
ok 4+

(-10.144321399562491,

8.262347504369866e-18, LLR£est. p-vallie = 0.008
16, LLR test p-value = 0.002
1483,

{'1%": -3.4347671645756304, LLR Test p-value = 0038
"S%': -2.86349089226533, LR test p-value = oj0e2
'10%': -2.5678086339403325},

16914.969030305292) LLR fest: p-yalie - 0043

print("ARIMA(1,1,1): \t LL = results_model_arima_1.11f, "\t AIC = ", results_model_arima_1.aic)

’ ’
print("ARIMA(1,1,2): \t LL = ", results_model_arima_2.11f, "\t AIC = ", results_model_arima_2.aic)
print("ARIMA(1,1,3): \t LL = ", results_model arima_3.11f, "\t AIC = ", results_model_arima_3.aic)
print("ARIMA(2,1,1): \t LL = ", results_model arima_4.11f, "\t AIC = ", results_model_arima_4.aic)
print("ARIMA(3,1,1): \t LL = ", results_model_arima_5.11f, "\t AIC = ", results_model_arima_5.aic)
print(“"ARIMA(3,1,2): \t LL = ", results_model arima_6.11f, "\t AIC = ", results_model_arima_6.aic)
ARIMA(1,1,1): LL = -8610.795256554851 AIC = 17227.590513109702

ARIMA(1,1,2): LL = -8610.12597071617 AIC = 17228.25194143234

ARIMA(1,1,3): LL = -8605.290078714881 AIC = 17220.580157429762

ARIMA(2,1,1): LL = -8607.247994566285 AIC = 17222.49598913257

ARIMA(3,1,1): LL = -8610.15517355717 AIC = 17230.31034711434

ARIMA(3,1,2): LL = -8607.247371915331 AIC = 17226.494743830663

#1

model_arima_1 = ARIMA(eth_train.Close[1:], order = (1,1,1)) §t§, adfuller\(eth train.res ret ma 2[2 : ] )

results_model arima_1 = model_arima_1.fit()
results_model_arimal.summary()
#2

wodel_arima_2 = ARIMA(eth_train.Close[1:], order = (1,1,2)) (- 38.70434351882141,

results_model_arima_2 = model_arima_2.fit()

results_model arima_2. sunmary() 0.9,

#3

model_arima_3 = ARIMA(eth_train.Close[1:], order = (1,1,3)) o,

results_model arima_3 = model_arima_3.fit()

results_model_arima_3.summary() 1498 5

#4

model_arima_4 = ARIMA(eth_train.Close[1:], order = (2,1,1)) { '1%"': -3.4347228578139943
results_model_arima_4 = model_arima_4.fit() i >
o . 5%': -2.863471337969528,
model_arima_5 = ARIMA(eth_train.Close[1:], order = (3,1,1))

results_model_arima_5 = model_arima_s.fit() qox e =2. 5677982210726897},
#6

model_arima_6 = ARIMA(eth_train.Close[1:], order = (3,1,2)) 9027. 645156416089)

results_model_arima_6 = model_arima_6.fit()

eth_train['res_ret_ma_2'] = results_ret_ma_2.resid[1:]

print("mean is " + str(round(eth_train.res_ret_ma_2.mean(),3)))
print(“variance is " + str(round(eth_train.res_ret_ma_2.var(),3)))
print("standard deviation is " + str(round(sqrt(eth_train.res_ret_ma_2.var()), 3)))

mean is 0.002
variance is 26.675
Standard deviation is 5.165

eth_train['res_price ret'] = results_ar_model_ret_2.resid

eth_test['res_price_ret'] = results_ar_model_ret_2.resid Sts . adfuller\ (eth—t r\ain . res—pr\ice [ Jis ] )

eth_train.res_price_ret.mean()

-1.857860593810645e-05 ( ‘9 . 9043 3891325914,
eth_train.res_price_ret.var() 3 N 293878938828698e o 17 L
26.63373497151356 16,
sts.adfuller(eth_train.res_price_ret[1:]) 148 3 )
PEp——— {"1%': -3.4347671645756304,
ey '5%': -2.86349089226533,
{12 - aanissase1nanss, '10%': -2.5678086339403325},
e Rgpigenc s U 16916.052118069485)

9031.09628608121)
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P P - 4 benchmark_ret = eth_train.returns.iloc[@]
eth_traln[ res_price ] = I"QSU]'tS_ar_mOdel_l‘reszl'd eth_train['norm_ret'] = eth_train.returns.div(benchmark_ret).mul(100)

eth_test['res_price'] = results_ar_model_1.resid eth_test['norm_ret'] = eth_test.returns.div(benchmark_ret).mul(100)

eth_train . res_price . mean( ) sts.adfuller(eth_train.norm_ret)
(-11.416317801866343,
2.245538426615259 7.048091371372087e-21,
9,
N N 1491,
eth_train.res_price.var() {'1%': -3.434743423170358,
'5%': -2.8634804142964025,
5947 .85755665728 '10%': -2.567803054306163},

17802.319193813113)

benchmark = eth_train.Close.iloc[@]

eth_train['norm'] = eth_train.Close.div(benchmark).mul(100) LLR test(ar_model ret 1, ar_model ret_2)
eth_test['norm’'] = eth_test.Close.div(benchmark).mul(100)

9.003
LLR_test(ar_model_norm_ret_1, ar_model_norm_ret_2)

0.0
eth_train['returns'] = eth_train.Close.pct_change(1).mul(100)

eth_test['returns'] = eth_test.Close.pct_change(1).mul(100)
eth_train = eth_train.iloc[1:]

sts.adfuller(eth_train.returns) sts.adfuller(ethdata.Close) btc_train[ 'delta_prices']=btc_train.Close.diff(1)
4

-11.412390521316967 sts.adfuller(btc_train.delta_prices[1:
(7 107384243781305e-21 et iy e : il

i : 0.5779679105330212, (-8.177641199656662,

9, 17; 8.293887243613951e-13,

1492, 1861 27,

{'1%': -3.434740473427213 P 2392,

oL . > {'1%"': -3.4338687226315336, {'1%': -3.4330867606360274,

5%': -2.863479112458789, '5%': -2.863094318475046, '5%': -2.862749062318083,

'10%': -2.5678023610641922}, '10%": -2.5675974634086765},  '10%': -2.5674136347538057},

9054.48520801563) 21446.440104463112) 36839.442886560086)

print(wn.mean()) LLR_test(ar_model, ar_model 1)

1111.7392034831769 ©.851

ARIMA(1,1,1):  LL = -18690.930198249596 AIC = 37387.86039649919

ARIMA(1,1,2):  LL = -18689.748010232594 AIC = 37387.49602046519

ARIMA(1,1,3):  LL = -18686.541816054236 AIC = 37383.08363210847

ARIMA(2,1,1):  LL = -18689.894258525324 AIC = 37387.78851705065

ARIMA(3,1,1):  LL = -18686.098516218015 AIC = 37382.19703243603

ARIMA(3,1,2):  LL = -18655.94414688421 AIC = 37323.88829376842
print("\nLLR test p-value = " + str(LLR_test(model_arima_5, model_arima_6)))
print("\nLLR test p-value = " + str(LLR_test(model_arima_4, model_arima_6, DF = 2)))
print("\nLLR test p-value = " + str(LLR_test(model_arima_2, model_arima_6, DF = 2)))
print("\nLLR test p-value = " + str(LLR_test(model_arima_1, model_arima_6, DF = 3)))

LLR test p-value = 0.0
LLR test p-value = 0.0

LLR test p-value

0.0

LLR test p-value = 0.0
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#1

model_arima_1 = ARIMA(btc_train.Close[1:], order = (1,1,1))
results_model_arimal = model_arimal.fit()
results_model_arimal.summary()

#2

model_arima_2 = ARIMA(btc_train.Close[1:], order = (1,1,2))
results_model_arima_2 = model_arima_2.fit()
results_model_arima_2.summary ()

#3

model_arima_3 = ARIMA(btc_train.Close[1:], order = (1,1,3))
results_model_arima_3 = model_arima_3.fit()
results_model_arima_3.summary()

#4

model_arima_4 = ARIMA(btc_train.Close[1:], order = (2,1,1))
results_model_arima_4 = model_arima_4.fit()

#5

model_arima_5 = ARIMA(btc_train.Close[1:], order = (3,1,1))
results_model_arima_5 = model_arima_5.fit()

#6

model_arima_6 = ARIMA(btc_train.Close[1:], order = (3,1,2))
results_model_arima_6 = model_arima_6.fit()

LLR_test(model_arma_1, model arma_2, DF = 3)

0.0
btc_train['res_ret ma_2'] = results_ret_ma_2.resid[1:]

+ str(round(btc_train.res_ret_ma_2.mean(),3)))
" + str(round(btc_train.res_ret_ma_2.var(),3)))
"+ str(round(sqrt(btc_train.res_ret_ma_2.var()), 3)))

print(“mean is °
print("variance is °
print("Standard deviation is

mean is 0.003
variance is 14.903
Standard deviation is 3.86

8.4 List of Equations
Y= By ¥y + By  Yera + B * Yerg toeeeennen + P Yk
YE=q, " E + 0 * Ep 03 * Eirg toviicsionens T * Epg

_ * * * * * * *
Ye=B ¥ 0 E + B Va0 T €+ By Ve H @ T Bt + B

Vet @ * €y

LR = 2*(InL1-InL2)
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8.5 List of abbreviations

BTC — Bitcoin

ETH — Ethereum

ACF — Auto Correlation Function

PACEF — Partial Autocorrelation Function

AR — Auto Regression

MA — Moving Average

ARMA — Auto Regression Moving Average

ARIMA — Auto Regression Integrated Moving Average
ARIMAX — Auto Regression Integrated Moving Average Exogenous
WN — White noise

LLR- Log Likelihood Ratio

Appendix

&

BTC_ETH_TIMESERIES.
pdf - PDF form of the Python notebook which contains all the code, different

models and graphs
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