Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Statistics

Master's Thesis

Time-Series Analysis of Cryptocurrencies

Tural Dadashzade

© 2023 CZU Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE

Faculty of Economics and Management

DIPLOMA THESIS ASSIGNMENT

Bc. Tural Dadashzade

Informatics

Thesis title

Time Series Analysis of Cryptocurrencies

Objectives of thesis

The aim of the thesis is to make the evaluation of selected Cryptocurrencies with highest market capitalization, finding relationship between the coins, their time series analysis and predictions for future prices together with market capitalizations.

Methodology

The methodology used in the thesis assumes statistical analysis of time series, with regard to the nature of the data used will be used methods with fixed as well as the adaptive methods, such as exponential smoothing or ARIMA models.

The proposed extent of the thesis

60 - 80 pages

Keywords

Time-Series Analysis, Statistical Theory, Multivariate Time Series Models.

Recommended information sources

ENDERS, W. Applied econometric time series. Hoboken: Wiley, 2015. ISBN 978-1-118-80856-6.

- FIELD, A P. MILES, J. FIELD, Z. Discovering statistics using R. London: SAGE, 2012. ISBN 978-1-4462-0046-9.
- GRABOWSKI, M. Cryptocurrencies : A Primer on Digital Money. [elektronický zdroj] /. Milton: Taylor & Francis Group, 2019. ISBN 9780429510144.
- HATCHER, L. Advanced statistics in research : reading, understanding, and writing up data analysis results. Saginaw, MI: ShadowFinch Media, LLC, 2013. ISBN 978-0-9858670-0-3.
- CHOWDHURY, N. Inside Blockchain, Bitcoin, and Cryptocurrencies. [elektronický zdroj] /. Milton: Auerbach Publishers, Incorporated, 2019. ISBN 9781000507706.
- KOČENDA, E. ČERNÝ, A. UNIVERZITA KARLOVA. *Elements of time series econometrics: an applied approach*. Prague: Karolinum, 2014. ISBN 978-80-246-2315-3.
- PESARAN, M H. *Time series and panel data econometrics*. Oxford: Oxford University Press, 2015. ISBN 978-0-19-875998-0.

Expected date of thesis defence 2022/23 SS – FEM

The Diploma Thesis Supervisor

Ing. Tomáš Hlavsa, Ph.D.

Supervising department

Department of Statistics

Electronic approval: 20. 6. 2022

prof. Ing. Libuše Svatošová, CSc.

Head of department

Electronic approval: 28. 11. 2022

doc. Ing. Tomáš Šubrt, Ph.D. Dean

Prague on 07. 02. 2023

Declaration

I declare that I have worked on my master's thesis titled "Time-Series Analysis of Cryptocurrencies" by myself and I have used only the sources mentioned at the end of the thesis. As the author of the master's thesis, I declare that the thesis does not break any copyrights.

In Prague on date of submission

Acknowledgement

I would like to thank to my thesis supervisor Ing. Tomas Hlavsa, Ph.D for all the support and consultations provided during the course of this thesis.

Time-Series Analysis of Cryptocurrencies

Abstract

The present thesis experimentally analysed the time series of cryptocurrencies and the effect of different coefficients in models towards to them. Selection of the cryptocurrencies to investigate has been proceeded with checking the crypto market volumes. The selected cryptocurrencies which were among the coins with highest market capitalization have been chosen and they are the followings Bitcoin (BTC) and Ethereum (ETH). After finalizing the individual analysis, the predictions is made with choosing each other as exogenous variable. However, the thesis does not assess the relations between cryptos, it uses each other as a supporting variable in order to make accurate predictions. Individual observations are made and the statistical significances are tested through different time series models. Towards the end of the thesis, the predictions for the cryptocurrency prices are made and the fate of the market on the horizon is estimated based on the evaluation of training data set with different models.

Keywords: Time-Series Analysis, Statistical Theory, Multivariate Time Series Models, Cryptocurrencies, ARIMA, Python, ARCH, GARCH.

Analýza časových řad kryptoměn

Abstrakt

Tato práce experimentálně analyzovala časové řady kryptoměn a vliv různých koeficientů v modelech na ně. Výběr kryptoměn k prozkoumání byl proveden kontrolou objemů kryptotrhu. Byly vybrány vybrané kryptoměny, které patřily mezi coiny s nejvyšší tržní kapitalizací, a to Bitcoin (BTC) a Ethereum (ETH). Po dokončení individuální analýzy jsou provedeny predikce s tím, že se navzájem zvolí jako exogenní proměnné. Práce však neposuzuje vztahy mezi kryptoměnami, využívá se navzájem jako podpůrné proměnné pro přesné předpovědi. Provádějí se jednotlivá pozorování a statistická významnost se testuje prostřednictvím různých modelů časových řad. V závěru práce jsou provedeny predikce pro ceny kryptoměn a na základě vyhodnocení sady tréninkových dat s různými modely je odhadnut osud trhu na obzoru.

Klíčová slova: Analýza časových řad, statistická teorie, vícerozměrné modely časových řad, kryptoměny, ARIMA, Python, ARCH, GARCH

Table of content

1	Introduc	tion	11
2	Objective	es and Methodology	13
	2.1 Ob	jectives	13
	2.2 Me	thodology	13
3	Literatui	e Review	
		vpto Currencies	
	3.1.1	Blockchain Technology	
	3.1.2	Bitcoin (BTC)	
	3.2 Eth	ereum and its system	
4	Practical	Part	
		alysis of BTC	
	4.1.1	White Noise, Stationarity and Seasonality	
	4.1.2	Auto Correlation Function and Partial Correlation Function	
	4.1.3	AR model	
	4.1.4	MA models	50
	4.1.5	ARMA models	56
	4.1.6	ARIMA models	60
	4.1.7	ARIMAX models	63
	4.1.8	ARCH and GARCH models	64
	4.2 Ana	alysis of ETH	68
	4.2.1	White Noise, Stationarity and Seasonality	70
	4.2.2	Auto Correlation Function and Partial Correlation Function	72
	4.2.3	AR models	74
	4.2.4	MA models	
	4.2.5	ARMA models	
	4.2.6	ARIMA models	91
	4.2.7	ARIMAX model	94
	4.2.8	ARCH and GARCH Models	94
5	Results a	nd Discussion	
	5.1 For	recasting of BTC	
	5.1.1	Forecasting with AR model	
	5.1.2	Forecasting with MA model	100
	5.1.3	Forecasting with ARMA model	
	5.1.4	Forecasting with ARIMAX	
	5.2 For	ecasting of ETH	

	5.2.1	Forecasting with AR model	
	5.2.2	Forecasting with MA model	
	5.2.3	Forecasting with ARMA model	
	5.2.4	Forecasting wiht ARIMAX	
6	Conclu	sion	
7	Referer	1Ces	
8	List of]	pictures, tables, graphs and abbreviations	
		pictures, tables, graphs and abbreviations	
	8.1 L		
	8.1 L 8.2 L	ist of Graphs	109 114
	 8.1 L 8.2 L 8.3 L 	ist of Graphs ist of Tables	

1 Introduction

The concept of virtual money, which first emerged in 2009, has been an important development for states and individuals. There are different opinions about the emergence of the virtual currency system. The most accepted view is that the virtual currency system was discovered because of the loss of financial trust in financial markets and states after the 2008 global crisis and its popularity has gradually increased. In this context, it is of great importance to analyse Bitcoin, which is the most used cryptocurrency system and popular all over the world. Therefore, it is expected that this research will make an important contribution towards filling the gap in this field in the literature in terms of theory. Therefore, it is very important to conduct a study on the appearance of the Bitcoin ecosystem, which is an example of the concept of virtual money. In the study, after revealing the conceptual framework of cryptocurrencies, the structure of Bitcoin and other crypto systems, are examined practically and theoretically. In this thesis, after giving a comprehensive theoretical information about the topic, we covered a deep analysis of the market and chosen cryptos. Furthermore, other factors which potentially can have an impact or correlation to crypto market is investigated and concluded with statistical statements and predictions (Wayne, D, 2022).

In the first part of the study, the concept of virtual money so called cryptocurrencies, their features, classification, and the legal framework are examined. In this section, the selected cryptocurrencies will be covered, and their purpose and capabilities will be indicated. What crypto money is, how it emerged and why it spread rapidly are discussed in detail in the light of historical processes. In addition to these, information is given on the structure and use of the crypto monetary system. What kind of virtual money the coins are, what kind of system (Block Chain) is behind, where, and how it is used are discussed in detail. The collection of factual knowledge about each and single cryptocurrency is examined separately. Their characteristics, opportunities that they serve and the technology behind of each cryptocurrency is added. The dominance of the cryptocurrencies which are being neglected by investors is also comprehensively mentioned to deliver the importance and will be used in second part where the practical usage is shown. The paper includes data about the competitive advantage of the selected cryptocurrencies depending on the users' goals of utilizing cryptocurrencies. The advantages and disadvantages of virtual money are

discussed in general and on coin level. The potential suspicious relations will be mentioned in the first part where the statistical questions will evolve

The second part of the thesis is about practically using the statistical models, tests and time series analysis in order to define the behaviour of the selected cryptocurrencies in the market and their correlations to each other. Selected cryptocurrencies are based on their market capitalizations and volumes which can be counted to 2. The individual data points, their historical prices, market volumes through various methods is shown as numeric and also graphical way. Again, similarly, all the investigation proceeds with certain statistical models. The graphs of historical changes and the comparison to the crypto prices is shown. The tests for the outcomes are completed separately to increase the reliability of the investigation and to give the assurance to make conclusions and the predictions. Towards to the end of the paper the results and predictions is combined and presented in collective form in the part of conclusion.

2 Objectives and Methodology

2.1 Objectives

The ultimate objective of the thesis is to evaluate, assess and the development of predictions for the cryptocurrencies. We will be using various methods to achieve this objective and that is the reason we will also divide our aim into so called sub objectives which will contain multiple milestones. One of the milestones will be the univariate analysis for selected crypto coins (BTC, ETH) to summarize their historical prices with various indicators. In this section the aim will be to build and compare various time-series models and then choose the best fitting model. Based on individual analysis the statistical tests are executed to increase the accuracy of the assessment as a different sub-goal of the thesis. After these steps, achieving the results of multivariate analysis with another time series method which can allow us using exogenous variables and tests will be the target to reach. Furthermore, the market volatility will be assessed and evaluated with other well-known time series models.

2.2 Methodology

To achieve the aim of the above-mentioned objectives there are various ways of evaluating the individual variables. The most important step in expressing an economic relationship econometrically is to make the relevant variables expressible with numbers. For this purpose, it is necessary to collect, compile and organize data about the variables to be included in the model. Since it is not possible to conduct an empirical study on a subject where data cannot be collected, it is important to first determine and obtain data related to the subject. Data collection for studies usually takes several forms. One of these is to take advantage of previously collected information. These are mostly in the form of statistical bulletins or statistical annuals. Another method is the direct observation method. There is a measurement process in this process. Measurement is done in different ways. The population that is the subject of the research is either completely measured, or in cases where it is very difficult or even impossible to measure the entire population, an estimate of the population is made with the help of a sample (Amadebai, N.D).

Description Statistics of Time Series:

Univariate Analysis is one of the most common analysis which is being used in almost all of the statistical researcents. A single observation over a time period makes up the univariate time series. Multiple observations collected over time make up the multivariate time series. Taking into consideration that this analysis gives a great comprehensive information about the individual analysis of the variables, we will use this method in order to get general information on our variables. Methods of univariate descriptive analysis solve the problem of compressing the original information, its compact representation. As a rule, in the process of research, it is important to obtain the cumulative characteristics of individual objects through the prism of a particular property. Instead of a large number of individual indicators, we need one value that would be typical (representative) for the entire population of objects. Univariate descriptive analysis uses methods such as Construction of frequency distributions, graphical representation of the behavior of the analyzed variable and obtaining statistical characteristics of the distribution of the analyzed variable. Many services can now be provided in real time thanks to the growth of time series applications. There are numerous issues that arise as the amount of time series data grows. Time series analysis mechanisms are necessary to ensure the accuracy of the forecast. The AR, MA, ARMA, and ARIMA methods can only be used with univariate time series data, despite their advantages and disadvantages for time series analysis(W.Palma, 2016).

Time – Series Analysis:

Time series, as a rule, arise because of measuring some indicator. These can be both characteristics of technical systems and indicators of natural, socio-economic phenomena and processes. For example, the dynamics of the exchange rate or the stock price, in the analysis of which they try to determine the main direction of development, i.e. trend. Or, for example, an analysis of the company's sales dynamics in order to plan stock balances. The main purpose of time series analysis is to build a forecast of its values for future periods. And the main tasks of time series analysis are to understand under the influence of which components the value of the time series is formed, and to build a mathematical model for each component or their combination. Any time series can be decomposed into

the following components: trend, seasonal component, cyclical component, and random component. The first three components form a non-random component of the time series. The random component is present in any time series. But the presence in the structure of the time series of components of a non-random component is not necessary. Time series modelling approaches can be divided into two areas. Modelling of a non-random component in the aggregate and Composition of the time series into constituent components and modelling the values of each component separately. Statistical forecasting methods are divided into algorithmic methods and analytical methods. Algorithmic methods include simple and weighted moving average methods. Analytical methods include predictive extrapolation methods based on growth curves as functions of time. If there is a seasonal or cyclical component in the time series, an analysis of periodic fluctuations or a spectral analysis of the time series is carried out. Time series are classified into stationary and non-stationary. To analyse and build a forecast for a stationary time series, special methods are used(W.Palma, 2016).

Moving average models (MA models), autoregressive models (AR models) or mixed models (ARMA) or integrated moving average and autoregressive models (ARIMA). The formulas for the above-mentioned models are as follows:

AR model:

Equation 1

 $Yt = \beta_1 * y_{-1} + \beta_2 * y_{t-2} + \beta_3 * y_{t-3} + \dots + \beta_k * y_{t-k}$

MA model:

Equation 2

 $Yt = \alpha_1^* E_{t-1} + \alpha_2^* E_{t-2} + \alpha_3^* E_{t-3} + \dots + \alpha_k^* E_{t-k}$

ARMA model:

```
Equation 3
```

$$\begin{split} &Yt = \beta_1^{\ *} \ y_{t^-1} + \alpha_1^{\ *} \ \mathcal{E}_{t^-1} + \beta_2^{\ *} \ y_{t^-2} + \alpha_2^{\ *} \ \mathcal{E}_{t^-2} + \beta_3^{\ *} \ y_{t^-3} + \alpha_3^{\ *} \ \mathcal{E}_{t^-3} + \ldots + \beta_k^{\ *} \\ & y_{t^-k} + \alpha_k^{\ *} \ \mathcal{E}_{t^-k} \end{split}$$

(Shetty, C, 2020)

A separate direction in forecasting is adaptive forecasting models. In addition, when studying multifactorial time series, conventional regression models can be used to build a forecast, with time series reduced to a stationary form. Forecasting is closely related to planning and is used for effective decision making. Forecasting can provide an answer to the various questions like what is most likely to be expected in the future regarding the process under study? Or what needs to be done to achieve a given state of the forecast object under study?

The series formed by the observations of a variable at equal time intervals is called the "time series". In the time series obtained by ordering these observation results according to the options of a time attribute such as year, week, and day, there are observation values opposite the time attribute, and in this way, the variability of the event that is the subject of statistical research over time is observed. Time series data is usually compiled and collected at daily, weekly, monthly, quarterly, semi-annual, annual, and longer-term intervals. In general, the time series is represented as Zt, t= 1, 2, ..., T, with T being the sample size. Accordingly, the first observed data is Z1, the second observed data is Z2, the last observed data is expressed as ZT. Series with data that can be recorded continuously over time is called "continuous time series", and series with data that can only be obtained at certain intervals are called "discrete time series". While series belonging to engineering fields such as electrical signals, voltage, and sound vibrations are continuous time series; Economic series such as interest rate, sales amount, and production are examples of discrete time series. However, in the purpose of the aims of this thesis the most important 2 forms are as below:

Economic and financial time series: Most of the economic and financial data consists of time series. Examples of these are series such as daily exchange rate, stock return, annual interest rate, and inflation rate.

Business time series: Data such as sales analysis of businesses, profitability ratios, and cost calculations observed in different periods are used effectively in determining, directing, or changing business policies (W.Palma, 2016).

White Noise: White noise is an important concept in time series analysis and making predictions. In a nutshell, white noise indicates whether your data is predictable or not. Also, it tells you if the model should be further optimized or not. Because it is a random number sequence, white noise is an unpredictable series. If you build a model and the residuals (the difference between predicted and actual values) look like white noise, you know you did everything possible to improve the model. On the other hand, if there are

visible patterns in the residuals, you have a better fitting model for your dataset. It is significant for 2 reasons:

- Predictability: If your time series is white noise, it is random by definition. You can't reasonably model it and predict it.
- Model Diagnostics: A time series forecast model's series of errors should ideally be white noise.

Time series forecasting relies heavily on model diagnostics. On top of the signal generated by the underlying process, time series data are expected to contain some white noise.

For a time-series to be classified as white noise, the following conditions must be met:

- The average (mean) value is zero.
- The standard deviation remains constant over time.
- The relationship between time series and their lag is not significant. We would want to see if there is a significant correlation between the current time series and the same time series that has been shifted by N periods.

There are three (simple) ways to determine whether a time series resembles white noise:

- By displaying the series
- By making comparison the average and standard deviation over time
- Assessing autocorrelations

Once a time series forecast model has made predictions, they can be collected and analysed. Ideally, the series of forecast errors should be white noise. When forecast errors are white noise, it means that the model has used all of the signal information in the time series to make predictions. All that remains are the uncontrollable random fluctuations. A sign that model predictions are not white noise indicates that the forecast model can be improved further (Brownlee, J, 2017).

Stationarity: One of the basic operations in time series analysis is "stationary" (constant) distributional ensembles. A stationary process includes the mean and variance of which do

not change over time, and the covariance between two periods depends on the distance between the periods, not the turning point. According to our definition, a stationary time series is a series whose mean, variance and covariance are independent of time. Such a series exhibits constant width oscillations around its mean. This property is also called mean reversion. Such stationary series can be encountered in the literature with different names:

- weak stationary.
- covariance stationary.
- second-order stationary.

In empirical studies with time series, it is assumed that the data are "stationary". However, most of the time series are not stationary. In order for the relationships between the variables to be meaningful, the time series we use must show stationary properties. Although there are no significant relationships between the two variables, it may seem as if there is a relationship between them. When we establish a regression model with these series, a high R^2 value can be obtained even if there is no relationship between them. In this case, the spurious regression problem will arise. The source of this problem is that if both time series have a strong trend, the reason for the high R^2 observed between them is this strong trend relationship, not the linear relationship between the two variables. Therefore, when analysis is made with non-stationary series, it gives misleading results with traditional R^2 and tests (Palachy, S, 2019).

Seasonality: is a phenomenon that predicts that the price is subject to similar and predictable changes in the same period in each calendar year. These changes can be in a particular meteorological season, growing season, quarterly, monthly, holiday or off-peak period. Seasonality often happens in the commodity market. For example, there is a seasonal trend in the demand for heating oil, with prices increasing when demand increases and lower when demand decreases. There is a seasonal trend in other markets such as stocks, indices and Forex, and there is usually some underlying reason behind it. Finding seasonal patterns and using them to predict a trend, filter trade ideas, or identify a tradable opportunity can provide advantages to a trader. Please note that the character of each year and therefore seasonality may change. Used alone or in combination with other techniques,

seasonality is a useful tool in the technical analyst's toolbox. There are many different kinds of seasons, for instance:

- Moment in Time
- Daily.
- Weekly.
- Monthly.
- Yearly.

Therefore, it is subjective to determine whether your time series problem contains a seasonality component. Plotting and reviewing your data, possibly at various scales and with the addition of trend lines, is the simplest method for determining whether seasonality is present (Brownlee, J, 2016).

Autocorrelation: Autocorrelation, or self-correlation, is the correlation of a signal between its values at different times. In other words, it is the expression of similarity between observed values as a function of time delay. Autocorrelation analysis is a mathematical tool used for purposes such as recognizing repeating patterns, detecting the missing fundamental frequency of a signal. It is frequently used for the analysis of functions or sequences in signal processing. In multiple regression analysis, autocorrelation describes the relationship between successive values of the error term. This is a deviation from an important assumption of the general linear regression model. As a general linear regression model assumption, there is no relationship between the error terms.

ACF/PACF: In the exploratory data analysis of time series forecasting, autocorrelation analysis is an essential step. The autocorrelation analysis aids in pattern recognition and randomness detection. Because it helps determine the parameters of an autoregressive–moving-average (ARMA) model, this is especially crucial if you intend to use it for forecasting. The Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots are examined during the analysis. When assessing a time series, the autocorrelation function (ACF) and the partial autocorrelation function (PACF, also known as partial ACF) are crucial functions. Plots that help determine the values of p, q, and r for Autoregressive (AR) and Moving Average (MA) models are typically produced. The average correlation between data points in a time series and previous values of the series measured for various lag lengths is measured and plotted in an ACF. The only difference between a PACF and an ACF is that each partial correlation takes into account any correlations between observations with shorter lag lengths. Due to the fact that they both measure the correlation between data points at time t and data points at time t-1, the values of an ACF and a PACF at the first lag are identical. However, the PACF measures the same correlation after controlling for the correlation between data points at time t and those at time t-1, whereas the ACF measures the correlation between data points at time t and data points at time t-2 at the second lag(Monigatti, L, 2022).

Returns and Normalization: As intuitive as it may seem to some of you, the term returns represented the percentage change between the values for two consecutive periods. It's important to note that positive returns show a rise in price, while negative returns show a fall. As a result, if investors anticipate positive returns in the future, they would rather hold onto their stocks as their value rises. The process of rescaling the data from the original range to ensure that all values fall within the range of 0 to 1 is known as normalization. When you have time series data with input values that have different scales, normalization can be helpful and even necessary for some machine learning algorithms. Linear regression and artificial neural networks that weight input values, as well as algorithms like k-Nearest neighbors, may necessitate it. You must either know or be able to accurately estimate the minimum and maximum observable values in order to normalize. From the data you have, you might be able to make some guesses about these values. Estimating these expected values may be challenging if your time series is trending upward or downward, and normalization may not be the best approach for your problem(Brownlee, J, 2016).

Residual Analysis: In a time, series model, the "residuals" are the leftovers from fitting the model. The difference between the observations and the residuals is the same for many, but not all, time series models. When determining whether a model has adequately captured the data's information, residuals are helpful. The following properties of a reliable forecasting method will be found in residuals:

- There are no correlated residuals. There should be information in the residuals that can be used to make forecasts if there are correlations between them.
- There is no mean in the residuals. The forecasts are biased if the mean of the residuals is not zero.

Any forecasting technique that does not meet these requirements can be enhanced. However, this does not preclude further development of forecasting techniques that meet these requirements. For the same data set, it is possible to have multiple forecasting

methods that all meet these properties. It is important to check these properties to see if a method is making use of all of the information that is available, but this is not a good way to choose a forecasting method. The forecasting method can be altered to provide better forecasts if either of these properties is not met (Hyndman, R, N.D).

Importance of Partition: Splitting data into two or more subsets is known as data splitting. A split with two parts typically serves to train the model while the first part is used to evaluate or test the data. The training data set is used to train and develop models in a basic two-part data split. Estimating various parameters and comparing the performance of various models are two common uses for training sets. After the training is finished, the testing data set is used. To ensure that the final model functions properly, the training and test data are compared. Data is typically divided into three or more sets when using machine learning. The dev set is the third set, and its purpose is to alter the parameters of the learning process. There are various choices when it comes to the ratio between training and testing dataset. Depending on the number of the observation in dataset the choice can be made between 70/30 or 80/20. Particularly in our time series data set in both Bitcoin and Ethereum we will use the partition of 80/20.

AR Models:

Autoregression models, also known as AR models, are normally used to predict expost variables (observations whose values we know exactly) at specific moments in time in chronological order. When we want to make a projection, the dependent variable should always be at least a later time than the independent variable. Autoregressive models, as the name suggests, are models that return to themselves. That is, the dependent variable and the explanatory variable are the same except that the dependent variable will be at a later time (t) than the independent variable (t-1). We say chronologically ordered because we are now at time (t). If we go forward one period, we go to (t+1), and if we go back one period, we go to (t-1). When we want to project using autoregression, our attention must be focused on the type of variable, the frequency of its observations, and the time horizon of the projection. They are colloquially known as AR(p), where p is labelled 'order' and is equal to the number of periods we will return to to perform the estimation of our variable. We must take into account that the more periods we go back or the more orders we place on the model, the more potential information will appear in our forecast (W.Palma, 2016).

MA models:

The moving average is an important indicator used as a trend follower and is frequently used in technical analysis. Moving averages show the current direction with a lag, rather than giving a direction on where prices will go. It is delayed as it is an indicator based on past prices. Moving averages are used in most of the forex market indicators. For example, Bollinger bands, moving averages are included in the calculations of indicators such as MACD. A moving average is an indicator calculated by averaging n prices. Moving averages are considered an important indicator for trend tracking. This is because moving averages consist of past price movements. Moving averages also help in identifying support and resistance points. For example, the 200-day moving average moves more slowly than the 20-day moving average and indicates a more lagging forecast. Shortterm moving averages are used by short-term traders, while long-term moving averages are used by long-term investors. The 200-day moving average, which is frequently used by traders, is carefully followed as an important signal and support resistance level. In some cases, moving averages with more than one time frame are used together to have an opinion about the direction of the market. The longer the time to look at the moving averages, the greater the lag. For example, looking at the 10-day moving average, the lag is less as it considers more recent prices. There are 3 main types of MA models:

- Simple Moving Average: It is the moving average created by averaging the price movements of a financial product within the specified period. The simple moving average considers the closing prices. For example, The 5-day simple moving average is obtained by adding the 5-day closing prices and dividing by 5.
- Weighted Moving Average: It is the moving average calculated by averaging the price movements of a financial product within the specified period according to the determined weights.
- Exponential Moving Average: It is a moving average calculated by taking the average of the price movements of a financial product within the specified period, giving more weight to the price movements in the recent period.
 Because of the weighting, the exponential moving average counts as a less lagged moving average.

Moving averages, which are widely used in technical analysis, are more effective when used together. For example, the cross between the 50-day moving average and the 200-day moving average produces a technical analysis signal. Generally, a combination of shortterm moving averages and long-term moving averages gives better results. When the shortterm moving average crosses the long-term moving average upwards, it signals that price may move upwards in the short term. In the literature, this "golden cross" is known as the "golden cross". On the contrary, if the short-term moving average cuts the long-term moving average downwards, it generates the signal that prices may move downwards. In the literature, this "death cross" is referred to as "dead cross"(W. Palma, 2016).

ARMA Models:

ARMA models are used for modelling stationary time series and are a combination of AR and MA models. In these models, the observation value for any period of a time series is expressed as a linear combination of a certain number of previous observation values and the error term. If the ARMA model is a combination of the p-term AR and the q-term MA model, it contains p+q terms and is written as ARMA(p,q)(W.Palma, 2016).

ARIMA Models:

Most of the series encountered in practice, especially the economic time series, are not stationary. The stationarity of these series is disturbed by factors such as trends, seasonal and cyclical fluctuations, and random causes. Modelling of non-stationary time series depends on providing stationarity in the series. To ensure stability, these factors must first be identified and then eliminated. If the observation values of a time series are not stationary around the mean value of this series, stationarity is achieved by taking the appropriate differences of the series. The degree of difference is represented by d, and in practice d usually takes the value 1 and at most 2. Models applied to series that are not stationary but converted to stationary by differencing are called integrated models or "nonstationary stochastic models". If the degree of the autoregression parameter is p and the degree of the moving average parameter is q and the difference is made d times, this model is called the (p,d,q) order autoregressive integrated moving average model and is written as ARIMA (p,d,q). ARIMA models, also known as Box and Jenkins, are one of the statistical methods used for predicting the future. The Box-Jenkins (B.J) method is used in the

forward estimation of univariate time series. This shows a systematic approach to establishing forward forecast models and making forecasts of discrete and stationary time series consisting of observation values obtained at equal time intervals. The fact that the series consisting of the observation values obtained with equal time intervals is discrete and stationary is B.J. important assumption of the method. The difference between the Box Jenkins estimation method from other estimation methods is that it does not require any prior knowledge about the structure of the time series or the general development trend. In addition, while the use of other methods requires the series to have a certain trend, the Box-Jenkins method can also be applied to complex time series since there is no such restriction in these models. An important advantage of the method is that it uses past observation values as an explanatory variable. Unlike econometric models, the Box Jenkins method does not provide a behavioural explanation for the studied variable, so it does not fit into the theoretical framework. It considers the internal dynamics of the time series.

The Box and Jenkins methodology is summarized in four phases:

• The first phase consists of identifying the possible ARIMA model that follows the series, which requires the Decision on which transformations to apply to convert the observed series into a stationary series. Then determine an ARMA model for the stationary series, that is, the p and q orders of its autoregressive and moving average structure.

• The second phase: After provisionally selecting a model for the stationary series, the second stage of estimation is passed, where the AR and MA parameters of the model are estimated by maximum likelihood and their standard errors and model residuals are obtained.

• The third phase is the diagnosis, where it is verified that the residuals do not have a dependency structure and follow a white noise process. If the residuals show structure, the model is modified to incorporate it and the previous steps are repeated until an adequate model is obtained.

• The fourth phase is the prediction, once an adequate model has been obtained, predictions are made with it (W.Palma, 2016).

ARIMAX:

An Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) model is a multiple regression model that includes one or more autoregressive (AR) and/or

moving average (MA) terms. This method is appropriate for forecasting when the data is stationary/nonstationary, multivariate, and has any type of data pattern, i.e., level/trend/seasonality/cyclicity. ARIMAX is related to the ARIMA technique, but ARIMA is appropriate for univariate datasets ARIMAX is appropriate for analyses with additional explanatory variables in categorical and/or numeric format (multivariate). This model incorporates exogenous variables, or we use external data in our forecast. Exogenous variables in the real world include the gold price, oil price, outdoor temperature, and exchange rate. It's fascinating to consider that all exogenous factors are still technically modelled indirectly in the historical model forecast. However, if we include external data, the model will respond to its effect much faster than if we rely on the influence of lagging terms (Smarten, 2018).

ARCH and GARCH:

ARCH and GARCH models are one of the most well-known models in time series in order to assess the volatility in the market and even to predict the stability for the future. In the practical part to assess the volatility we will create a squared version of returns which we will refer as the volatility (Torben, G, 2013). A time series' variance can be modelled using an ARCH model, which stands for autoregressive conditionally heteroscedastic. To describe a fluctuating, possibly volatile variance, ARCH models are utilized. Although an ARCH model could be used to describe a gradual increase in variance over time, most of the time, it is used to describe brief periods of increased variation. It may be more effective to transform the variable to deal with the gradually increasing variance associated with the gradually increasing mean level (Engle, R, n.d).

Log likelihood ratio test:

In the final step of every fitted model we will run a log likelihood ratio test in order to decide on which model performs better. The likelihood ratio (LLR) test is a hypothesis test in which two different maximum likelihood estimates of a parameter are compared to determine whether or not to reject a parameter restriction. The likelihood ratio test (LLR) is a statistical test used to compare the goodness-of-fit of two models. A relatively more complex model is compared to a simpler model to see if it significantly better fits a specific dataset. If this is the case, the more complex model's additional parameters are frequently used in subsequent analyses. This test is only useful when comparing hierarchically nested

models. That is, the more complex model must only differ from the simple model by one or more parameters. Increasing the number of parameters will always result in a higher likelihood score. However, there comes a point when adding more parameters is no longer justified in terms of significantly improving a model's fit to a specific dataset and the equation is as following (Evomics, N.D):

LR = 2*(InL1-InL2)

Equation 4

Furthermore, in order to implement this in Python we will create the following function:

```
def LLR_test(mod_1, mod_2, DF = 1):
    L1 = mod_1.fit().llf
    L2 = mod_2.fit().llf
    LR = (2*(L2-L1))
    p = chi2.sf(LR, DF).round(3)
    return p
```

Code Chunk 1

3 Literature Review

In this section of the thesis, we will describe the entities which are being analyzed and also the comparing indicators. By describing, the detailed information will be delivered to the reader on crypto currencies, blockchain technology stock markets etc. Furthermore, comprehensive knowledge is aimed to be passed regarding the dominance factor of selected crypto coins and their way of working.

3.1 Crypto Currencies

Cryptocurrencies are digital assets that are used as virtual currency and do not exist in any physical form. They are secured by cryptography, which is called encryption, and this prevents the act of "double spending", which means counterfeiting or making multiple transactions with the same cryptocurrency, which has become almost impossible.

The world's first cryptocurrency was Bitcoin, created in 2008. Bitcoin was followed by other types of cryptocurrencies, with hundreds of variations today. Unlike currencies in the classical sense, cryptocurrencies are not issued by a central authority. This feature is perhaps the most attractive aspect of cryptocurrencies for investors. Because in this way, most cryptocurrencies remain immune from government regulation or manipulation.

The concept of crypto money has been in our lives for many years. For example, we used cryptocurrencies instead of physical banknotes in every transaction we made with debit cards, virtual cards, or over the internet. Transactions were made on digital basis, without physical money transfer between banks. So, from a point of view, cryptocurrencies were also used in these transactions. Because of these transactions, there were only numerical changes in the financial systems. The new generation cryptocurrencies, on the other hand, differ from their ancestors primarily by not physically existing, besides being used primarily in digital transactions. In addition, as we mentioned above, it is different from the previous versions in that they are not subject to the rules of a state or organization and the transactions are

made with the consensus of all units in the system. The main reason why it attracts so much attention and love compared to other currencies in the world is that it has a distributed structure. As such, transactions are not carried out under the control of a single authority, but through the control and approval of all users. This feature also ensures that this currency is referred to as more secure.

Cryptocurrencies are created through a process called mining. Individuals with special hardware (hardware) are rewarded by a network with tokens or cryptocurrencies such as Bitcoin in return for their services. In this decentralized competitive process, if too many people try to mine a coin, it will become increasingly difficult to profit with each new addition to the network. This is one of the main reasons why Bitcoin, which can be produced on a limited basis, has increased in value over time with its increasing popularity (Chowdhury, N, 2019).

3.1.1 Blockchain Technology

We are involved in many networks in our lives. Messaging through our social media accounts, sending e-mails, transferring through a bank, or trading stocks in the stock market. All these are the networks we use in our daily lives and some of the transactions we perform on these networks. It is also known that there is an agent that manages the relevant network on all these networks. For any financial transfer, it is necessary to confirm that there is enough in the account of the transferee, and to create records containing the time information of this transfer, the amount sent, the sender and the sending party information. In short, intermediaries who manage the relevant networks are needed to ensure that transactions in all these networks can be carried out smoothly and be recorded, that transactions are verified in case of a problem, and that disputes are resolved. Blockchain technology enables these functions on networks to be performed in a decentralized manner and at lower costs. Blockchain is a database system made up of interconnected blocks. Any information involving a transaction can be processed into this database. New transactions are added on top of the previous block and a new block is created. These blocks are linked chronologically. In this way, the new incoming block also confirms the information in the previous blocks which is increasing the security of the records. Every single input on these blocks is encrypted and therefore has a distributed structure. Due to this, it is almost impossible to change or remove the data, as it would

require a person to change the historical records on this network on all the other blocks in the chain. The larger the network, the more separate records it has and that provides more secure to the data in the blockchain. This eliminates the verification and auditing costs mentioned above and provides an accountable and reliable structure. To put it more simply, let's think of blocks on the blockchain as ledgers. Let a copy of these notebooks be distributed to everyone on the network. Each new transaction is recorded in these books simultaneously, so the records of the transactions are kept in many places, not just in one or a few places. In a centralized structure, since there is only one record, it is a significant cost to ensure the security of these records exist and it is reliable. However, as it is not possible to change all records in the decentralized blockchain structure, a more secure system is formed. In a centralized system, the privacy risk created by the data that the intermediaries need to access while transacting is another disadvantage of this structure. Transactions made through a broker often need to be shared because of the verification process. This increases the possibility of using the data outside of its real purpose in the network. In addition, the security of the data held on the intermediary institution that manages the network creates a different problem and cost. In Blockchain, such information leaks are prevented as users can verify without sharing information with another person or institution. Blockchain technology has the potential to change the processes performed over networks in many different sectors and fields such as finance, health, science, and industry in the future. This potential excites all institutions in the relevant sectors and investments in blockchain technology are increasing day by day for these reasons (Chowdhury, N, 2019). There are numerous methods for constructing a blockchain network. They can be public, private, permissioned, or built by a consortium of individuals.

Public blockchain networks are permissionless networks and allow anyone to join. All members of the blockchain have equal rights to read, edit and verify the blockchain. Common blockchain networks are mainly used for trading and mining cryptocurrencies such as Bitcoin, Ethereum and Litecoin.

Private blockchains, also referred to as managed blockchains, are controlled by a single entity. This authority decides who can become a member and what rights the members have in the network. Private blockchains are only partially decentralized because they contain access restrictions. Ripple, a digital currency exchange network for businesses, is an example of a private blockchain.

Hybrid blockchains combine some features of both private and public networks. Companies can set up private, permission-based systems as well as a common system. Thus, they control access to certain data stored on the blockchain while keeping the rest of the data public. They use smart contracts to allow members of the common system to check whether private transactions have been completed. For example, hybrid blockchains can allow shared access to digital currency, while keeping bank-owned currency private. Consortium blockchain networks are managed by a group of organizations. Pre-selected organizations share responsibility for maintaining the continuity of the blockchain and determining data access rights. Consortium blockchain networks are generally preferred in sectors where many organizations have a common goal and can benefit from responsibility sharing. For example, the Global Shipping Business Network Consortium is a non-profit blockchain consortium that aims to digitize the shipping industry and increase collaboration among organizations in the shipping industry (Parizo, 2021).

3.1.2 Bitcoin (BTC)

After the 2008 Mortgage crisis, Satoshi Nakamoto published a technical paper (Whitepaper) on Bitcoin, an end-to-end electronic payment system. With the whitepaper, Bitcoin, which has a decentralized and transparent structure, emerged as a cryptocurrency. The Bitcoin blockchain was started to be used with the first transfer made in January 2009 and was named "1st generation blockchain" with the popularity it gained in a short time. Thanks to its distributed, decentralized, and transparent structure, Bitcoin has risen against today's financial order in a very short time. With the increase in the use of Bitcoin, the limited supply, and the technology it brings, it has been adopted by many investors and financial institutions. Bitcoin has enabled the development of many leading sectors and technologies with its pioneering nature and technology in the crypto currency world. The fact that the Bitcoin blockchain structure is transparent and its supply is limited, in addition to the technological revolution brought by Bitcoin, has caused it to be seen as an investment with low inflation and high potential for many investors. After its birth, Bitcoin caused the birth of many different cryptocurrencies due to its inability to provide sufficient capacity in terms of both speed and scalability. These cryptocurrencies are called "alternative coins", in other words "altcoins". These cryptocurrencies, which are developed in a similar or different structure with the Bitcoin blockchain, can be programmable and have a faster structure. While creating alternative cryptocurrencies, competitive advantage

has been taken advantage of by having different features at various points and new crypto money types have emerged. The main differences between these cryptocurrencies are the maximum amount of supply that can be produced in general, the algorithms used and the types of blockchains (private/shared, permissioned/unauthorized consensus) are examples. As all revolutionary technologies, there are Bitcoin predecessors and sources that its creator refers to in his article. Wei Dai B-Cash, Nick Szabo BitGold, David Chaum Digicash are the most primitive and government-blocked versions of digital currencies. Satoshi Nakamoto managed to keep his identity secret because of these negative experiences of his predecessors. There is controversy over whether it is his real name, pseudonym, or a team title. The maximum number of Bitcoins that can be produced is limited to 21 million by specifying in the genesis block. The first Bitcoin transfer was between Satoshi Nakamoto, cryptographer Hal Finney, who helped him develop it. The first purchase was made on May 22, 2010, with the purchase of a pizza for 10,000 Bitcoins. As of July 22, 2013, the total value of Bitcoins in circulation was already 1.2 billion dollars as of 26.07.2020 this value was 182,967,290 dollars. The total amount of Bitcoin currently produced has reached the level of 19,209,775 according to Binance which is one of the most widely used cryptocurrency trade platforms.

Bitcoins, which are not produced from any centre, show a point-to-point distributed network feature similar to Bittorent networks. Payments made in this network reach other points instantly, so that the payment from which address to which address is recorded. Thus, the collected records are located in structures called blocks. By applying a hash algorithm that requires high processing on each block, it is desired to find the expression that starts with a certain number of zeros. The first user to perform this transaction, which corresponds to approximately every 10 minutes, is rewarded from zero to 50 BTC (currently 12.5 BTC). Thus, Bitcoins are driven to emission. Each block contains the hash expression of the last block before it. This creates a blockchain that is very hard to break (except for the 51% attack). The aim is to avoid double spending and to keep records of submissions. The process of creating the coin is called mining. Mining is the general name of the process of performing mathematical operations using computational power. To make these transactions, the nodes in the bitcoin network that download the offered bitcoin software and perform operations that require intensive processing power on their hardware (usually video cards) are called "miners".

The first block of the system was named "genesis block" and was produced on January 4, 2009. As such, the first transaction in the block is a private transaction and is initiated by the creator of the new money block. This is an incentive system for miners to participate in the network, so that money can enter the system distributed as desired, which does not have a central authority to print the money. In this way, miners make a profit both by generating and driving new bitcoins into the system, and by receiving bitcoins from the system in exchange for services to perform pending transactions. The regular addition of new money to the system is likened to gold miners finding gold and putting it into circulation, hence the name mining. In the current process, miners continue to produce the amount of bitcoin that will come into circulation each year at a decreasing and predictable rate. In the system, production will continue until a total of 21 million bitcoins are in circulation, then the production process will stop, and miners will continue to be supported only at transaction costs.

Bitcoin is used as a payment and investment tool in some countries. Bitcoins have a value because they can be used like money, and some funds are also known to be interested in this product with the expectation that its value will increase as its popularity grows in the future. The value of Bitcoin is determined by the supply and demand conditions in the market. When the demand increases, the price increases and the price decreases. There is a limited number of bitcoins in circulation and there is a limit and procedure for generating new bitcoins. The biggest threats to Bitcoin's market value are technical difficulties, legislative changes due to the approach of countries to this money, and the negative change in people's desire and trust in this money.

Besides its advantages, Bitcoin also has a few disadvantages. The Disadvantages of Bitcoin are as follows:

- High price volatility and high risk to invest
- Bitcoin transaction speed and capacity remain quite low compared to its competitors
- The high energy usage required to run the Bitcoin blockchain
- For these reasons, it is very important for people who want to trade Bitcoin to act by considering Bitcoin Advantages and Bitcoin Disadvantages.

Although there are many cryptocurrencies in the market, no cryptocurrency has managed to surpass Bitcoin in terms of market dominance. Bitcoin Market Dominance or Bitcoin Dominance is a data that expresses the ratio of the market value of Bitcoin to the overall value of the cryptocurrency market. When historical data are examined, it is seen that the dominance of Bitcoin, which was over 96 percent in 2013, decreased to 32 percent in 2018. Underlying this major decline is the increase in transaction volumes of other cryptocurrencies, especially Ethereum. One of the main reasons for the rise of Bitcoin Market Dominance can be shown as the rise in Bitcoin price, increasing the transaction volume by attracting more users and, accordingly, more demand than other cryptocurrencies. It would not be wrong to say that the cryptocurrency market is largely driven by Bitcoin. The increase in demand leading to increased Bitcoin dominance may also be a sign of users moving away from low-volume and relatively riskier cryptocurrencies and switching to Bitcoin. Being the first cryptocurrency enables Bitcoin to shape the cryptocurrency industry. Although the number of cryptocurrencies in the market is very large, there has not yet been a cryptocurrency that can compete with Bitcoin's weight in the market (Grabowski, M, 2019)

3.2 Ethereum and its system

Ethereum is a system that was first introduced at the North American Bitcoin Conference by Ethereum founder Vitalik Buterin. Although it is generally seen as an altcoin, Ethereum is an innovative system that aims to develop blockchain technology and use it in more areas. After the Ethereum development process, it was released in July 2015 and quickly gained popularity. Ethereum official website can be visited via ethereum.org/tr/ link.

In 2016, due to a software bug, hackers stole approximately \$50 million (3.6 million ETH) from the DAO (Decentralized Autonomous Organization), a smart contract-operated venture fund. After this hack, the Ethereum blockchain was hard forked, rewinding the hack and moving on. In this process, the old chain continued its life as Ethereum Classic. In 2017, the ERC-20 standard was created on the Ethereum blockchain, making it easier for developers to develop tokens compatible with applications. In 2017, MakerDao, the first decentralized finance application on Ethereum, launched and launched the DAI stable cryptocurrency. Also in the same year, ETH exceeded the level of \$100 for the first time.

In 2018, platforms such as Compound and Uniswap were launched in the field of decentralized finance. ETH broke above \$1000 for the first time in January 2018, then fell back below \$100.

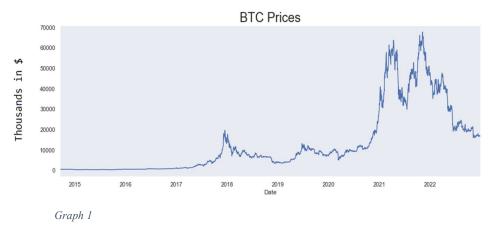
With the popularity of DeFi in 2020, many applications have emerged on Ethereum. Ethereum has announced that it will launch the Beacon chain for ETH 2.0 migration in 2020. With Ethereum 2.0, it was planned to switch from the Proof of Work algorithm to the Proof of Stake algorithm. With the rise in the market after the Covid-19 epidemic in 2020, Ethereum rose to the level of 4500 dollars in 2021.

Ethereum is a blockchain project that emerged after Bitcoin and allows creating smart contracts on the blockchain. With the announcement of the Ethereum project in 2014, it developed rapidly and allowed the creation of many existing sectors and new tokens in the crypto money world. The Ethereum project has encountered many difficulties in the process and has allowed many new areas to be born. With the ability to create smart contracts on the Ethereum blockchain, it started the decentralized finance trend and helped this field become a very large industry. The Ethereum project first started to work with the Proof of Work algorithm, then switched to the Proof of Stake algorithm in September 2022. This process, called Ethereum Merge, is the beginning of the steps taken to make the Ethereum project more scalable, fast, cheap and decentralized. Ethereum aims to provide a faster and cheaper experience to its users with a more scalable structure. In addition to all these goals, unlike other projects, Ethereum aims to create this structure in a decentralized way. Ethereum was developed by Vitalik Buterin in 2014 and has been supported by many names such as Mihai Alisie, Anthony Di Iorio, Charles Hoskinson and Gawin Wood in the following period. After the development phase, the non-profit Ethereum Foundation was established to ensure the functionality of the blockchain. Initial capital investments in the Ethereum project were made through online bookkeeping in July 2014. In this demand collection, Ethereum purchases were made by barter with Bitcoin. Ethereum operates in a worldwide distributed manner, thanks to users participating as "nodes" instead of a central server, as in the Bitcoin network. This way of working makes the blockchain network decentralized and highly resistant to attacks. Thus, if a node on the Ethereum blockchain does not work, other nodes on the network are able to keep the system alive (Grabowski, M.2019, p.42-68). Ethereum is basically a decentralized system that runs a computer called the Ethereum Virtual Machine (EVM). Each validator that creates a node on the Ethereum blockchain contributes to decentralization while keeping a copy of every transaction on the

network. These copies, which are kept by different people, can be updated after each block and synchronize with each other. Actions performed on the network are considered "transactions" and are stored in blocks on the Ethereum blockchain. Verifiers check the transaction history and records for accuracy before connecting these blocks to the network. The Proof of Stake algorithm is used to maintain consensus on transaction accuracy on the blockchain. With this algorithm, min 32 ETH must be locked to become a validator node. After the locked 32 ETH, it is synchronized with the network and blocks can be added to the blockchain. Ethereum has a transparent blockchain structure just like Bitcoin. All transactions on the network can be viewed and examined by third parties (etherscan.io). However, despite all this transparency, the Ethereum blockchain also provides anonymity for users. To be able to transact on the Ethereum blockchain, you must have some ETH in your wallet. Each transaction that takes place on the network is realized with some transaction fee according to the current supply, demand and density balance. Each transaction comes with a fee called "gas" which is paid by the user who initiated that transaction. Gas essentially acts as a limit, restricting the number of actions a user can take per transaction. It also has a very deterrent function to prevent gas fee network spam. ETH does not have a limited supply like other cryptocurrencies. The supply of ETH increases annually according to a certain inflation rate. This rate is inversely proportional to the ETHs that are currently locked to be validators. In the Pos mechanism, new ETHs will circulate in the form of staking rewards. However, ETH can take on a deflationary structure in some cases, as a part of each transaction fee is burned according to the network usage on Ethereum. Ethereum transaction fees can be quite high depending on network activity. This is because the total gas capacity of a block is limited. As a result, users who want to perform their transactions quickly can perform their transactions faster by paying a higher gas fee. If this is done by many users, transaction fees generally rise on the network to reduce demand. By shaping the transaction fees according to the demand, the network can work more healthily and for a long time. ERC-20 is a standard format used to create tokens on the Ethereum blockchain. The ERC-20 standard, proposed by Ethereum developer Fabian Vogelsteller in 2015, describes the basis of many sets of rules, such as how a token will work in the Ethereum ecosystem, how much it will supply. In simpler terms, ERC-20 is defined as a standard in which the basic rules are determined for creating tokens with the same characteristics on the Ethereum blockchain. Ethereum hosts many tokens on its own blockchain with the ERC-20 standard. Some popular Ethereum-based

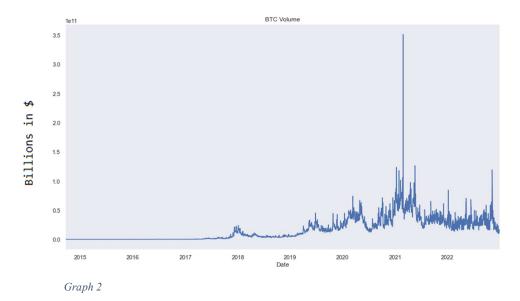
altcoins are mentioned below to show the importance and usage of ERC-20((Reiff, N,

2022):


Tether USD (USDT) USD Coin (USDC) Shiba Inu (SHIB) Binance USD (BUSD) BNB (BNB) DAI Stablecoin (DAI) HEX (HEX) Bitfinex LEO (LEO) MAKER (MKR)

4 Practical Part

In the practical part we will implement the methods which have been discussed in methodology section. The aim will be to apply the time series models to our data with splitting it into training and testing.


4.1 Analysis of BTC

In this section we will analyse the biggest crypto currency BTC since its first signed day in Yahoo finance taking into consideration that we have already separated the data into training and testing dataset in the ratio of 80/20. To start the analysis firstly let's have a look on the price plot of BTC since the beginning:

Looking to the plot, it seems there was a significant expansion of BTC in the beginning of 2021 which is following a sharp decrease towards to the middle of the same year and increase again at the end of the period. Furthermore, 2022 also shows a significant fall in the BTC prices.

Next, we can have a look to the BTC Market capitalization:

Looking to the above plot we can detect that the Market volume of BTC was relatively stable until the end of 2019 and fluctuating since then until now. Both plots for BTC market volume and BTC market prices can be signs of high volatility which we will investigate in further sections of the thesis.

4.1.1 White Noise, Stationarity and Seasonality

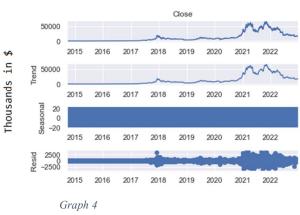
In first step, we will try to examine the white noise of our dataset. To do that in python we have set the dates as our indexes, configured frequency as days.

The white noise here is telling us if our data is predictable or not. As we know, one of the conditions of White Noise is its mean to be 0. To prove that our data is not white noise we can have a look on the mean which is 13385 and based on this we can clearly state that the data is not white noise.

```
print(wn.mean())
13384.990595423738
```

```
Figure 1 (thousands in $)
```

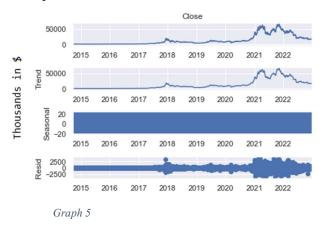
In the next step we will assess the stationarity of our dataset with dicky fuller test and we will set our Null hypothesis as "The data is stationary":


sts.adfuller(btcdata.Close)

```
(-1.6366271507566819,
 0.4640237426676581,
 29,
 2998,
 {'1%': -3.4325330913621452,
 '5%': -2.862504548608965,
 '10%': -2.5672834546224057},
 48504.776278974656)
Figure 2
```

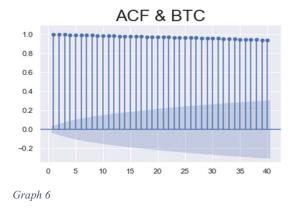
1st line test statistic and 5th 6th 7th are the respective critical values. As our test statistic is greater than all the critical values, we do not have enough evidence for stationarity. 2nd line is p-value which states that there is 46 percent chance of not accepting the Null Hypothesis so we cannot confirm that the data is stationary. So, we reject the Null hypothesis.

3rd line shows the number of lags the utilized in the regression when determining the T statistic. As we have 29 it means there is some autocorrelation going back 29 periods.

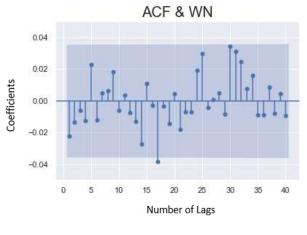

In the next step we will check the seasonality of the dataset with additive and multiplicative decompositions.

Additive:

When we check the seasonal part of the above plot, we can see that it is a rectangle. This happens when the values are constantly oscillating back and forth and the figure sizes too small. In our case, the linear change results from constantly switching up and down between negative -20 and 20 one for every period. Therefore, there is no concrete cyclical pattern determined by using naive decomposition. And finally, residuals are indicating the difference between the predicted values and actual values. From the plot we see that the residuals are quite high in 2018, 2021 and 2022.

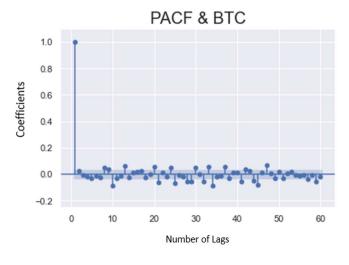

Multiplicative:

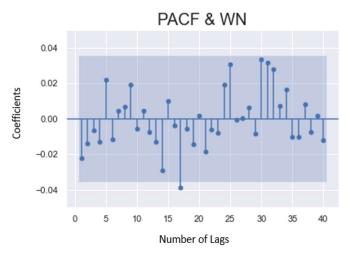
Checking the multiplicative decomposition method to be sure on seasonality we can see the similar results which states that there is no seasonal cycle in our dataset.


4.1.2 Auto Correlation Function and Partial Correlation Function

Next, we will examine the autocorrelation coefficients for BTC prices. To do so we have again used Python for visualization where we have set the period daily.

As we can see from the plot at the top all the coefficients are higher than the given significance level which is the area in blue figure. As each lag shows how the prices differ from each other one period ago we can state that there is an autocorrelation between lags. In simple words, it means that prices one period ago can still assist us in forecasting the future prices.


Furthermore, as a second level confirmation of being our data white noise, we can plot ACF of our white noise data:


Here we can clearly see that almost all the lags are in within significance level (blue figure) which enables us to easily confirm that there is no auto correlation in white noise data which is indeed one of the assumptions for White-Noise.

In this step we will also analyse PACF for BTC close prices using order least squared method in Python.

Graph 8

As PACF shows direct effects of the prices from past period we can notice a completely different plot than auto correlation function. Looking at the plot we can also notice positive and negative values which is somewhat random without any lasting effects. Moreover, we can examine the PACF graph for our white noise data:

Again, from the plot above although there is one lag which is out of significance level, we can claim that it is completely random. Taking this into consideration we can prove one more time that WN data has no autocorrelation.

4.1.3 AR model

In this section we will start our model building process where we will use Auto regression models

First, in order to choose the number of lags that we will use in AR model it is important to examine ACF&PACF and derive the result from there. As we have already plotted our graphs in univariate, we can go through them again. As per the ACF graph, the more lags we include, the better our model will fit to our data set however this can create an overfitting problem which might cause incorrect predictions of the future prices. As per the PACF plot we can remember that there are existing negative and positive coefficients and some coefficients which are not in significance level. We can see that, after 48th lag the coefficients are more likely to be significant and that is the reason, we should have less than 48 lags in our AR model.

In the next step we are starting to implement AR model with 1 lag and then going forward slowly to detect the best model. Also, we will use the log likelihood test to compare the models with different lags in order to define the best one. Here we define the Null hypothesis as the second (more complex model) does not perform better than the first one:

```
Dep. Variable:
                       Close No. Observations:
                                                 2418
        Model: ARIMA(4, 0, 0) Log Likelihood -18683.763
         Date: Tue, 31 Jan 2023 AIC 37379.527
         Time:
                    07:48:13
                                        BIC 37414.271
                                       HQIC 37392.162
       Sample:
                  09-21-2014
                  - 05-04-2021
Covariance Type:
                        opg
           coef std err
                              z P>|z|
                                         [0.025
                                                 0.975]
 const 7178,9367
                  6.904 1039.814 0.000 7165.405 7192.468
  ar.L1
         1.0116
                  0.008 124.820 0.000 0.996
                                                  1.027
  ar.L2
          0.0141
                   0.011
                          1.332 0.183
                                         -0.007
                                                  0.035
  ar.L3 0.0395
                 0.012 3.409 0.001 0.017
                                                  0.062
  arL4
         -0.0654
                   0.008
                          -8 575 0 000
                                         -0.080
                                                  -0.050
sigma2 3.041e+05 2016.363 150.792 0.000 3e+05 3.08e+05
   Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 143806.34
                                Prob(JB)
           Prob(Q): 0.98
                                              0.00
Heteroskedasticity (H): 4083.98
                               Skew:
                                              1.28
  Prob(H) (two-sided): 0.00
                                 Kurtosis:
                                              40.69
```

AR model with 4 lags:

Dep.	Variable:	C	lose No.	Observat	ions:	2	418
	Model:	ARIMA(3,	0, 0) I	Log Likeli	hood	-18688.	728
	Date: 1	ue, 31 Jan 3	2023		AIC	37387.	457
	Time:	07:4	8:14		BIC	37416.	410
	Sample:	09-21-2	2014		HQIC	37397.	986
		- 05-04-2	2021				
Covaria	nce Type:		opg				
	coef	std err	z	P> z	[0.02	50	.975
const	7178.9363	5.791	1239.567	0.000	7167.58	5 719	0.287
ar.L1	1.0128	0.008	125.997	0.000	0.99	7	1.029
ar.L2	0.0139	0.010	1.330	0.184	-0.00	7 (0.034
ar.L3	-0.0270	0.007	-3.758	0.000	-0.04	1 -	0.013
sigma2	3.02e+05	1981.120	152.450	0.000	2.98e+0	5 3.06	e+05
Ljun	g-Box (L1) (Q): 0.0	2 Jarque	-Bera (JB): 144	742.42	
	Prob(Q): 0.8	9	Prob(JB):	0.00	
Heteros	kedasticity (H): 4293.1	1	Skev	v:	1.38	
Prob(H) (two-side	d): 0.0	0	Kurtosi	5:	40.80	

AR model with 3 lags:

Log likelihood test for models with 1 and 4 lags (for visibility as 1 lag model

Table 2

performed well as well):

LLR_test(ar_model, ar_model_1)

0.0

Table 1

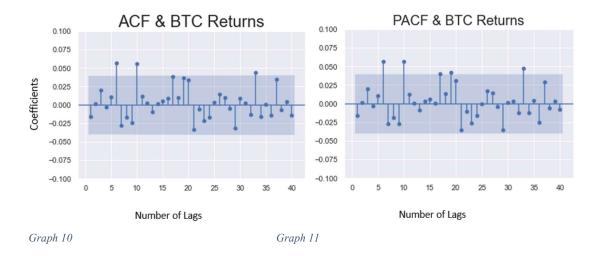
Figure 3

After several trials until 7th lag it is obvious that we should stop at 4th lag based on the LLR test results. Although, we have one value which is insignificant in AR model with 4 lags we log likelihood test provides greater log likelihood in model 4 and that is the reason we will make our decision on 4 lags. So, we reject the Null hypothesis. Furthermore, after testing the log likelihood test between 1 lag and 4 lag we see that adding 4 more lags does not affect the model in a negative way.

Next, as it is more reliable to use stationary data in AR models which are having constant mean, variance, and autocorrelation we will try to use returns which is a percentage representation of the changes in prices. To obtain that, we have created a new column in both training and test data set and used some python methods to calculate the percentages:

```
btc_train['returns'] = btc_train.Close.pct_change(1).mul(100)
btc_test['returns'] = btc_test.Close.pct_change(1).mul(100)
btc_train = btc_train.iloc[1:]
```

Code Chunk 2


To test the stationarity, we will use the Dickey-Fuller test for training data set where the Null hypothesis is that the data is stationary:

```
(-14.87779616981684,
1.626558183779799e-27,
9,
2410,
{'1%': -3.4330662982661715,
'5%': -2.8627400264482548,
'10%': -2.5674088238838864},
13274.840659930018)
```

Figure 4

From the above we can see that our test statistic -14 is smaller than all the three critical values in different confidence levels. Because of that we can state that the data that we have is stationary now.

Now we can go ahead and examine ACF and PACF respectively for the return values:

In both autocorrelation and partial autocorrelation suggests indicates us that there are some coefficients which are positive, negative, also within confidence level and some outside of

confidence level which allows us to state that the data has no autocorrelation.

As we have fitted the models for close prices of BTC we will follow the similar approach in returns. We will try to fit several models with different lags and apply log likelihood test in order to assess the best model fit. Here we define the Null hypothesis as the second (more complex model) does not perform better than the first one:

AR model with 7 lags

AR model wi	th 1 lag:
-------------	-----------

Dep.	Variable:		return	s No.	Observa	tions:	2417
	Model:	ARI	MA(7, 0, 0) L	og Likel	ihood	-6699.913
	Date:	Tue, 3	1 Jan 2023	3		AIC	13417.826
	Time:		14:37:5	1		BIC	13469.939
	Sample:	C	9-22-2014	4		HQIC	13436.778
		- (5-04-202	1			
Covarian	nce Type:		op	9			
	coef	std err	z	P> z	[0.025	0.978	5]
const	0.2787	0.083	3.340	0.001	0.115	0.44	2
ar.L1	-0.0144	0.013	-1.117	0.264	-0.040	0.01	1
ar.L2	0.0015	0.016	0.095	0.924	-0.030	0.03	3
ar.L3	0.0176	0.017	1.058	0.290	-0.015	0.05	0
ar.L4	-0.0008	0.016	-0.051	0.959	-0.032	0.03	0
ar.L5	0.0112	0.016	0.684	0.494	-0.021	0.04	3
ar.L6	0.0561	0.016	3.465	0.001	0.024	0.08	8
ar.L7	-0.0275	0.015	-1.872	0.061	-0.056	0.00	1
sigma2	14.9702	0.207	72.344	0.000	14.565	15.37	6
Ljun	g-Box (L1) (Q): (.00 Jaro	que-Ber	a (JB):	6308.9	1
	Pro	b(Q): (.98	Pro	b(JB):	0.0	0
Heteros	edasticity	<mark>/ (H):</mark> 1	.51	Skew: -			6
Prob(H) (two-si	ded): (.00	Ku	rtosis:	10.9	1

Dep.	Variable:		r	eturn	s No.	Observa	tions:	241
	Model:	AR	IMA(1	1, <mark>0</mark> , 0) L	og Likel	ihood	-6705.23
	Date:	Tue,	31 Jar	n 2023	3		AIC	13416.47
	Time:		14	:32:42	2		BIC	13433.84
	Sample:		09-22	2-2014	4		HQIC	13422.78
		-	05-04	1-202	1			
Covariar	nce Type:			op	9			
	coef	std er	r	z	P> z	[0.025	0.97	5]
const	0.2787	0.07	83	.568	0.000	0.126	0.43	32
ar.L1	-0.0153	0.01	3 -1	.227	0.220	-0.040	0.00	9
sigma2	15.0368	0.19	4 77	.352	0.000	14.656	15.41	18
Ljun	g-Box (L1) (Q):	0.00	Jaro	que-Ber	a (JB):	6613.3	33
	Pro	b(Q):	1.00		Pro	bb(JB):	0.0	00
Heteros	kedasticity	/ (H):	1.50			Skew:	-0.1	16
Prob(H) (two-si	ded):	0.00		Ku	rtosis:	11.1	10

Table 3

Table 4

```
LLR_test(ar_model_ret_1, ar_model_ret_2)
```

0.001

Figure 5

Based on our trials we can see that second AR model with 7 lags have greater log likelihood and as LLR test value is less than 0.01, we can indeed state that the second model is better than the first model with 1 lag and reject the Null hypothesis.

In the next step, we can also test if normalized prices would result in stationary data that we can use in our AR models in python:

```
benchmark = btc_train.Close.iloc[0]
```

```
btc_train['norm'] = btc_train.Close.div(benchmark).mul(100)
btc_test['norm'] = btc_test.Close.div(benchmark).mul(100)
```

Code Chunk 3

As usual, let's try to assess the stationarity again where we define claim the Null hypothesis as the data is stationary:

```
sts.adfuller(btc_train.norm)
(2.7238760327780485,
0.9990879052948666,
27,
2392,
{'1%': -3.4330867606360274,
    '5%': -2.862749062318083,
    '10%': -2.5674136347538057},
30276.790079294624)
```

Figure 6

Noticing the fact that the test statistic is greater than our critical values we can state that the data is non-stationary (rejecting Null hypothesis) thus we will not use normalized prices for our AR model.

However, when we normalize returns, we are able obtain a stationary data. That is the reason we will implement the similar approach to normalized returns and use Dicky-Fuller test to check the stationarity where we define claim the Null hypothesis as the data is stationary:

```
benchmark_ret = btc_train.returns.iloc[0]
btc_train['norm_ret'] = btc_train.returns.div(benchmark_ret).mul(100)
sts.adfuller(btc_train.norm_ret)
(-14.87779616981684,
    1.626558183779799e-27,
    9,
    2410,
    {'1%': -3.4330662982661715,
    '5%': -2.8627400264482548,
    '10%': -2.5674088238838864},
    26007.506934147772)
```

Figure 7

As our test statistic falls to the left of our critical values, we can easily complete our argument with stating the data is stationary. So we accept the Null hypothesis.

As we have done for prices and returns, we will try AR models with different lags and use log likelihood test to compare our models. Here we define the Null hypothesis as the second (more complex model) does not perform better than the first one:

Dep.	Variable:	n	orm_ret	No. Ob	servations	2418	Dep.	Variable:	no	orm_ret	No. Ob	servations
	Model:	ARIMA	(6, 0, 0)	Log	Likelihood	-13138.849		Model:	ARIMA(1	0, 0, 0)	Log	l Likelihood
	Date:	Tue, 31 Ja	an 2023		AIC	26293.697		Date:	lue, 31 Ja	n 2023		AIC
	Time:	1	5:30:23		BIC	26340.023		Time:	1	5:30:31		BIC
	Sample:		21-2014		HQIC			Sample:		1-2014		HQIC
	Sample.				HQIC	20310.044			- 05-0	4-2021		
		- 05-0	04-2021				Covariar	ice Type:		opg		
Covaria	nce Type:		opg					coef	std err	z	P> z	[0.025
	coef	std err	7	P> z	[0.025	0.975]	const	-3.9745	1.220	-3.257	0.001	-6.366
	-3.9744	1.228	-3.238	0.001	- Harris	-1.568	ar.L1	-0.0138	0.013	-1.070	0.285	-0.039
const					-6.380		ar.L2	0.0021	0.016	0.128	0.898	-0.030
ar.L1	-0.0159	0.013	-1.251	0.211	-0.041	0.009	ar.L3	0.0213	0.017	1.270	0.204	-0.012
ar.L2	0.0006	0.016	0.038	0.970	-0.031	0.032	ar.L4	-0.0035	0.016	-0.220	0.826	-0.034
ar.L3	0.0178	0.017	1.073	0.283	-0.015	0.050	ar.L5	0.0109	0.017	0.656	0.512	-0.022
ar.L4	-0.0011	0.016	-0.068	0.946	-0.032	0.030	ar.L6	0.0569	0.016	3.512		0.025
ar.L5	0.0114	0.016	0.695	0.487	-0.021	0.043	ar.L7	-0.0283	0.015	-1.926		-0.057
ar.L6	0.0567		3.539	0.000	0.025	0.088	ar.L8	-0.0188	0.018	-1.031		-0.054
							ar.L9	-0.0276	0.018		0.124	-0.063
sigma2	3070.1127	41.484	74.006	0.000	2988.805	3151.421	ar.L10	0.0561	0.017	3.240		0.022
Liun	g-Box (L1)	(Q): 0.01	Jarqu	e-Bera (JB): 6448	55	sigma2	3055.6268	42.201	72.406	0.000	2972.914
-		(Q): 0.94		Prob		.00	Ljun	g-Box (L1) (Q): 0.00	Jarqu	e-Bera	(JB): 6365
		• •						Prob(Q): 0.97		Prob	(JB): 0
leteros	kedasticity	(H): 1.52	2	S	kew: 0	.16	Heteros	edasticity (H): 1.51		S	kew: 0
Prob(H) (two-sid	ed): 0.00)	Kurte	osis: 10	.99	Prob(H) (two-side	d): 0.00		Kurte	osis: 10

LLR_test(ar_model_norm_ret_1, ar_model_norm_ret_2)

0.001

Figure 8

From the above results we can see that the model which has 10 lags have higher log likelihood and also LLR test suggests that there is no significant impact adding extra 4 more lags to the model with 6 lags. So we reject Null hyptothesis and accept that the more complex model performs better than the simpler one. However, comparing our results to the unnormalized returns that we did earlier we can see that normalizing does not have any significant impact on model selection.

In the last section of AR models we will examine the residuals for the created models. In order to do so firstly we create the residual columns in the datasets:

```
btc_train['res_price'] = results_ar_model_1.resid
btc_test['res_price'] = results_ar_model_1.resid
```

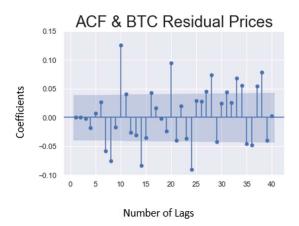
btc_train.res_price.mean()

16.652310445018966

btc_train.res_price.var()

319367.01910491264

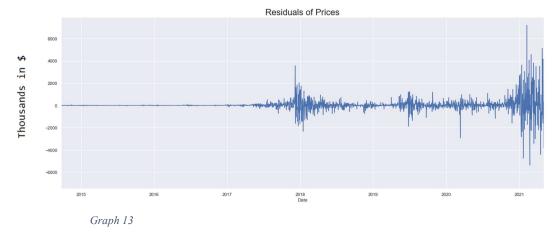
Code Chunk 4


Next, we will check teh stationarity where we define claim the Null hypothesis as the data

is stationary ::

```
sts.adfuller(btc_train.res_price[1:])
(-8.330642483276229,
3.3759266971884524e-13,
27,
2389,
{'1%': -3.433090201041693,
   '5%': -2.862750581542575,
   '10%': -2.567414443618994},
36799.08153158113)
```

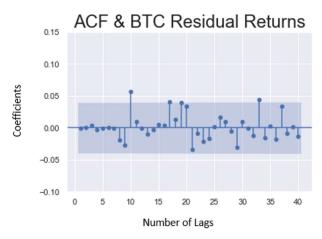
Figure 9


Seeing test statistic falling on the left side of our critical values we can state that the data is stationary(accepting Null hyptohesis). Now we can check the ACF for our data in order to analyze residuals

From the above plot we can see many coefficients which are outside of confidence level(blue region) which makes us to believe that there is a better predictor than residuals.

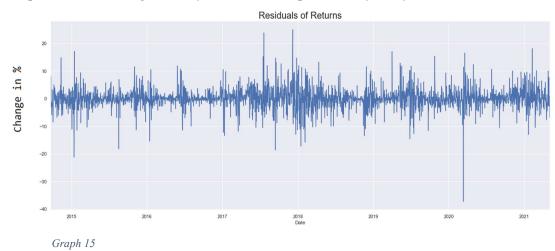
Finally, we must plot the residual numbers to determine whether they match what we are accustomed to anticipating from white noise data with ordinary plot function in python.

When we compare the above graph to actual prices which we initially plotted for BTC prices we can see the correct patterns. This is another indicator that our model is correct.

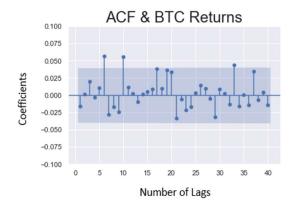

Finally, we will analyze residuals of returns in the same way as we did for prices where we define claim the Null hypothesis as the data is stationary:

```
btc_train['res_price_ret'] = results_ar_model_ret_2.resid
btc_test['res_price_ret'] = results_ar_model_ret_2.resid
btc_train.res_price_ret.mean()
-8.325419120685814e-05
btc_train.res_price_ret.var()
14.97719249322223
sts.adfuller(btc_train.res_price_ret[1:])
(-49.12376273495132,
0.0,
0,
2416,
{'1%': -3.43305954530467,
'5%': -2.862737044430077,
'10%': -2.5674072362026337},
13253.803837517575)
```

Figure 10


We can again see that data is stationary based on the dicky fuller test statistic and p-value which means we accept the Null hyptothesis.

While examining the ACF we see less coefficients which are outside of the confidence level which means our model is a good predictor but we still have a steady evidence that there is a better one which is in existence.



Finally, when we plot the residuals of returns we can see the below graph which shows the price volatility in different times. As there was a market crash in the second half of 2020, the prices fell down significantly which was not predicted by many investors.

4.1.4 MA models

Firstly, we will start from setting up our expectation on how many lags should be used. In order to do so, we will need to check the ACF for Return close prices again:

Graph 16

From the above plot we can remind ourselves that 6th and 10th lag seems to be statistically significant, and after 32nd lag the lags becomes following insignificance. So we can assume our model to have less than 35 lags.

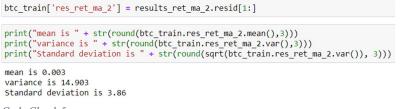
In the next step we will fit the models. As expected from ACF plot, we will use the models with 7 and 10 lags, then calculate the LLR test to see which performs better. Here we define the Null hypothesis as the second (more complex model) does not perform better than the first one:

MA model with 7 lags

MA model with 10 lags

Dep.	Variable:		return	ns No.	Observ	ations:	2420
	Model:	ARI	MA(0, 0,	7)	Log Like	lihood	-6708.664
	Date:	Wed, 01	Feb 202	23		AIC	13435.328
	Time:		06:28:1	7		BIC	13487.452
	Sample:	C	9-19-201	4		HQIC	13454.283
		- 0	5-04-202	21			
Covarian	nce Type:		op	g			
	coef	std err	z	P> z	[0.025	0.975]	
const	0.2759	0.083	3.329	0.001	0.113	0.438	
ma.L1	-0.0161	0.013	-1.252	0.211	-0.041	0.009	
ma.L2	0.0024	0.016	0.149	0.882	-0.030	0.034	
ma.L3	0.0248	0.017	1.489	0.136	-0.008	0.058	
ma.L4	-0.0089	0.016	-0.574	0.566	-0.039	0.022	
ma.L5	0.0103	0.016	0.625	0.532	-0.022	0.042	
ma.L6	0.0581	0.016	3.583	0.000	0.026	0.090	
ma.L7	-0.0308	0.015	-2.118	0.034	-0.059	-0.002	
sigma2	14.9762	0.207	72.339	0.000	14.570	15.382	
Ljun	g-Box (L1) (Q): 0.	00 Jaro	que-Ber	a (JB):	6291.73	
	Pro	b(Q): 0.	98	Pro	ob(JB):	0.00	
Heteros	edasticity	(H): 1.	51		Skew:	-0.17	
Prob(H) (two-si	ded): 0.	00	Ku	rtosis:	10.89	
Tahle 7							

Dep.	Variable:		return	ns No.	Observa	ations:	2420
	Model:	ARI	MA(0, 0, 1	0)	Log Like	lihood	-6703.508
	Date:	Wed, 0	1 Feb 202	23		AIC	13431.016
	Time:		06:21:3	15		BIC	13500.515
	Sample:		09-19-201	4		HQIC	13456.289
		-	05-04-202	1			
Covariar	nce Type:		or	g			
	coef	std err	z	P> z	[0.025	0.975]	
const	0.2758	0.085	3.257	0.001	0.110	0.442	
ma.L1	-0.0161	0.013	-1.233	0.218	-0.042	0.009	
ma.L2	0.0035	0.016	0.214	0.830	-0.029	0.036	
ma.L3	0.0236	0.017	1.402	0.161	-0.009	0.057	
ma.L4	-0.0052	0.016	-0.328	0.743	-0.036	0.026	
ma.L5	0.0089	0.017	0.535	0.593	-0.024	0.041	
ma.L6	0.0563	0.016	3.468	0.001	0.024	0.088	
ma.L7	-0.0332	0.015	-2.271	0.023	-0.062	-0.005	
ma.L8	-0.0332	0.018	-0.910	0.363	-0.052	0.019	
ma.L9	-0.0273	0.018	-1.529	0.126	-0.062	0.008	
ma.L10				0.001	0.024	0.008	
	0.0583	0.018	3.317				
sigma2	14.9123	0.207	71.930	0.000	14.506	15.319	
Ljun	g-Box (L1) (Q): 0	.00 Jaro	ue-Ber	a (JB):	6322.16	
	Pro	b(Q): 0	.97	Pro	ob(JB):	0.00	
Heteros	edasticity	(H): 1	.51		Skew:	-0.16	
Prob(H) (two-si	ded): 0	.00	Ku	rtosis:	10.91	
Table	0						


Table 7

LLR test with 3 degrees of freedom

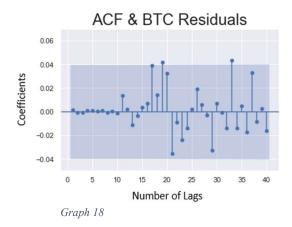
```
LLR_test(model_ret_ma_1,model_ret_ma_2, DF = 3)
0.016
Figure 11
```

As the result from LLR_test is less than 0,05 we can state that the model with 10 lags performs better than the model with 7 lags which means we reject the Null hyptothesis. Also, we can see a slight better log likelihood in the model with 10 lags.

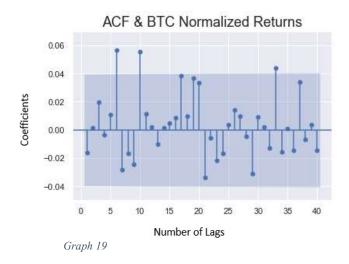
In the next step, we will examine the residuals for the model that performed better with creating another column for residuals with MA models:

Code Chunk 5

In order to decide if our model is good or not, we need to check the graph for the residuals first:



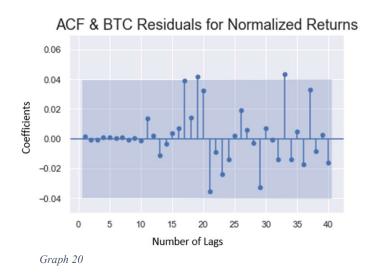
Looking from the above graph it seems that the residuals are rather random than following certain pattern. In order to test this randomness, we can run Dickey-Fuller test and make sure if our residuals are stationary where our Null hypothesis that data is stationary:


As our p-value is 0.0 we can state that the data is stationary which means we can accept the Null hypothesis.

Furthermore, we can examine ACF of the residuals of our model in order to find out if the return residuals is White Noise or not:

From the above graphs we can see a many of the coefficients which are in significance level. As we have added the first 10 legs to our model it was expected to have the coefficients of those close to zero. And coefficients of the following 7 lags are also not significant which is a sign on how well our model performs.

In this step, we will investigate how the MA models forecasts normalized values (*which we have created earlier*) with plotting autocorrelation function. The purpose of this step is being able to compare BTC values with other crypto currency values towards to the end of the thesis as all 5 Crpytos have completely different range of prices.



From the above plot we can have an idea on what number of lags to use in firring the model to normalized returns based on the coefficients which are not within confidence level. However, we will fit the model and examine the results to make sure if normalizing has any effect on model selection or not:

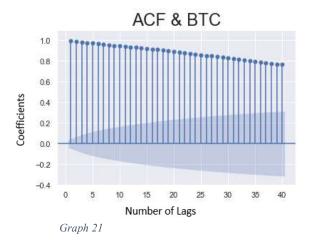

Dep.	Variable:		norm_ret	No. O	bservati	ons:	24	20
	Model:	ARIM	A(0, 0, 10)	Lo	g Likelih	ood	-13073.2	251
	Date: \	Ned, 01	Feb 2023			AIC	26170.5	503
	Time:		08:03:41			BIC	26240.0	001
	Sample:	0	9-19-2014		H	QIC	26195.7	75
		- 0	5-04-2021					
Covaria	nce Type:		opg					
	coef	std er	r z	P> z	[0.0]	25	0.975]	
const	-3.8366	1.18	1 -3.249	0.001	-6.1	51	-1.522	
ma.L1	-0.0161	0.01	3 -1.230	0.219	-0.04	12	0.010	
ma.L2	0.0035	0.01	0.213	0.831	-0.02	29	0.036	
ma.L3	0.0236	0.01	7 1.399	0.162	-0.0	9	0.057	
ma.L4	-0.0052	0.01	- <mark>0.328</mark>	0.743	-0.03	36	0.026	
ma.L5	0.0089	0.01	0.534	0.593	-0.0	24	0.041	
ma.L6	0.0563	0.01	3.458	0.001	0.0	24	0.088	
ma.L7	-0.0332	0.01	5 -2.264	0.024	-0.06	62	-0.004	
ma.L8	-0.0166	0.01	-0.907	0.364	-0.0	53	0.019	
ma.L9	-0.0273	0.01	3 -1.525	0.127	-0.06	62	0.008	
ma.L10	0.0583	0.01	3.308	0.001	0.0	24	0.093	
sigma2	2890.5087	40.29	5 71.732	0.000	2811.5	30 29	69.488	
Ljun	g-Box (L1) (Q): 0.0	00 Jarqu	e-Bera (JB): 63	322.17		
	Prob(Q): 0.	97	Prob(JB):	0.00		
Heteros	kedasticity (H): 1.	51	SI	(ew:	0.16		
Prob(H) (two-side	d): 0.0	00	Kurto	sis:	10.91		

Table 9

From the above, we can see that we have almost the exact same results of MA model with 10 lags in normalized returns to non-normalized returns. Taking this into consideration we can state that normalizing values have no impact on model selection. Lastly to prove that our model was the correct choice we will plot the residuals and ACF of residuals again. From the below we can see many coefficients falling under confidence level even after the 10th lag. That is the reason our model is indeed correct.

In the last part, we will try examining if close prices of BTC can be predicted using MA models. As we have already done in earlier sections as well, we will start with plotting ACF for Prices to determine the number of lags:

From the above we can clearly see that all the coefficients are higher than the confidence level which derives the assumption that any higher lag model will perform better than the one with less lags. Also, we can derive another theory that infinite number of lags would perform better in such cases. Since there is no possibility of adding infinite lags, we can presume that MA models are definitely not the best to predict the real close prices.

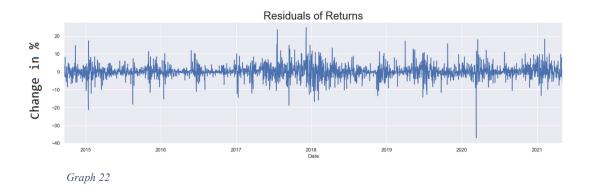
4.1.5 ARMA models

First, we will start with fitting ARMA models to the returns and interpret the results. We could use the 7 and 10 lags for each part of the model taking into consideration that they were the chosen lags for each model separately, this kind of complicated model in ARMA will be very time consuming and inefficient for computers to calculate. That is the reason choosing a model with less lags is more preferable. We can start to fit (3,3) and (4,4) models and check the results:

Dep.	Variable:		returr	ns No.	Observa	ations:	2420	Dep.	Variable:		return	ns No.	Observ	ations:	2420
	Model:	ARI	MA(4, 0,	4) 1	Log Like	lihood	-6710.810		Model:	ARI	MA(3, 0,	3)	Log Like	lihood	-6710.047
	Date:	Wed, 0	1 Feb 202	23		AIC	13441.620		Date:	Wed, 0	1 Feb 202	23		AIC	13436.095
	Time:		15:43:1	4		BIC	13499.535		Time:		15:39:3	32		BIC	13482.427
	Sample:		09-19-201			HQIC	13462.681		Sample:	(09-19-201	14		HQIC	13452.944
		- (05-04-202							- (05-04-202	21			
Covarian	nce Type:		op)g				Covarian	nce Type:		op	g			
	coef	std err	z	P> z	[0.025	0.975]									
const	0.2791	0.079	3.555	0.000	0.125	0.433			coef	std err		P> z	[0.025	0.975]	
ar.L1	-0.5407	1.559	-0.347	0.729	-3.596	2.514		const	0.2680	0.089	3.020	0.003	0.094	0.442	1
ar.L2	-0.5609	1.381	-0.406	0.685	-3.267	2.145		ar.L1	0.3481	0.124	2.798	0.005	0.104	0.592	:
ar.L3	-0.5386	1.432	- <mark>0.376</mark>	0.707	-3.3 <mark>4</mark> 5	2.267		ar.L2	-0.4338	0.074	-5.878	0.000	-0.578	-0.289	i .
ar.L4	0.3307	1.319	0.251	0.802	-2.255	2.916		ar.L3	0.9335	0.123	7.562	0.000	0.692	1.175	5
ma.L1	0.5229	1.554	0.336	0.737	-2.523	3.569		ma.L1	-0.3507	0.129	-2.719	0.007	-0.604	-0.098	ł
ma.L2	0.5716	1.357	0.421	0.674	-2.088	3.232		ma.L2	0.4414	0.076	5.840	0.000	0.293	0.590)
ma.L3	0.5357	1.450	0.370	0.712	-2.305	3.377		ma.L3	-0.9265	0.128	-7.233	0.000	-1.178	-0.675	;
ma.L4	-0.3441	1.327	-0.259	0.795	-2.945	2.257		sigma2	14.9923	0.201	74.551	0.000	14.598	15.386	;
sigma2	15.0146	0.199	75.288	0.000	14.624	15.405					10		(15)	0.440.50	
Ljung	g-Box (L1) (Q): 0.	01 Jaro	ue-Ber	a (JB):	6719.47		Ljun	g-Box (L1				a (JB):	6416.59	
	Pro	b(Q): 0.	.92	Pro	bb(JB):	0.00				b(Q): 0.		Pro	bb(JB):	0.00	
Heterosk	edasticity	(H): 1	50		Skew:	-0.15			kedasticit		51		Skew:	-0.16	
Prob(I	H) (two-si	ded): 0	.00	Ku	rtosis:	11.16		Prob(H) (two-si	ded): 0.	00	Ku	rtosis:	10.97	
Table 1	0							Table	e 11						

Looking to the above models we can see that the lags in the model (3,3) is statistically significant whereas the same values in the model (4,4) were much above from the significance level. That is the reason we presume that the model with 3 lags in each side would be much better fit for our data. Furthermore, from the LLR test we can also prove that the first model with 3,3 is doing much better than the model with 4,4 lags:

```
LLR_test(model_ret_arma_1, model_ret_arma_2, DF = 2)
1.0
```


Figure 13

Finally, when we compare AIC values, we can see that ARMA (3,3) has less information criteria which is a better indicator:

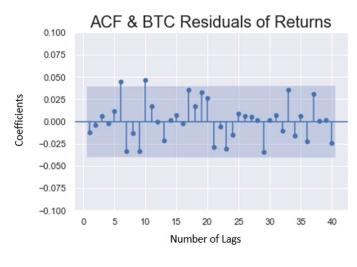

```
print("ARMA(4,4) AIC Value is " + str(results_ret_arma_2.aic))
print("ARMA(3,3) AIC Value is " + str(results_ret_arma_1.aic))
ARMA(4,4) AIC Value is 13441.619914324332
ARMA(3,3) AIC Value is 13436.094945896086
```

Figure 14

As we have done previously for other models, we will also analyse the residuals of ARMA model too. In order to do so we will create another column with residuals derived from our ARMA model (3,3) and plot it:

The results are quite similar on what we have obtained from AR and MA models previously. This recommends that the volatility in returns cannot be fully understood in case of using only ARMA model. However, we will still need to make sure if the residuals are random by plotting the autocorrelation function:

Looking at the ACF we can see that the majority of the lags are falling within the confidence level which enables us stating the residuals are random. Lastly, we will use ARMA models in close prices of BTC and examine how well it performs on stationary data.

In order to do so, we will fit the ARMA models (3,3) which was our choice for returns and also ARMA model (3,6) which is the model until we obtain some coefficients above significance level:

Dep.	Variable:		C	Close No	. Obser	vations:	24
	Model:	ARIN	VA(3,	0, 6)	Log Lik	elihood	-18673.0
	Date:	Wed, 01	Feb	2023		AIC	37368.0
	Time:		16:2	23:28		BIC	37431.7
	Sample:	0	9-18-	2014		HQIC	37391.2
		- 0	5-04-	2021			
ovariar	nce Type:			opg			
	coef	std	err	z	P> z	[0.02	5 0.9 7
const	7170.5465	6.4	440	111 <mark>3.375</mark>	0.000	7157.924	7183.1
ar.L1	0.5315		005	116.439	0.000	0.523	
ar.L2	-0.4875		005	-95.766	0.000	-0.497	-0.4
ar.L3	0.9557		004	238.521	0.000	0.948	
na.L1	0.4855		010	48.887	0.000	0.466	
na.L2	1.0109		009	108.931	0.000	0.993	
na.L3	0.0918		011	7.988	0.000	0.069	
na.L4	0.0392		011	3.644	0.000	0.018	
na.L5	0.0471		009	5.431	0.000	0.030	
ma.L6 gma2	0.0278 2.967e+05		800	3.474 135.912	0.001	0.012	
gmaz	2.9070+05	2103.4	294	135.912	0.000	2.920+03	5 3.01et
Ljun	g-Box (L1)	(Q):	0.01	1 Jarque	-Bera (J	JB): 128	907.71
	Prob	(Q):	0.94	4	Prob(J	JB):	0.00
eteros	kedasticity	(H): 38	812.82	2	Sk	ew:	1.30
Prob(H) (two-sid	ed):	0.00	0	Kurtos	sis:	38.65

Table 12

Table 13

LLR_test(model_arma_1, model_arma_2, DF = 3)

0.0

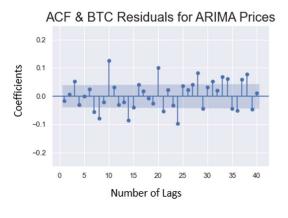

Figure 15

Looking at the LLR test the ARMA (3,6) performs better than ARMA (3,3). Furthermore, smaller AIC value in suggests that the model 3,6 is a better fit to our data.

In the final part, we can analyse the residual values of BTC for close prices.

Looking at the above plot the prices have similar trends in the previous residual graphs for prices. Seems like, there might be some volatility in 2018 and 2021 where there was a big difference between expected and actual values.

Last but not least, we plot the ACF of residuals and examine the results:



From the above graph we can see that there are many lags which are significantly nonzero. Taking this into consideration we can claim that the residuals for the prices are nonrandom.

4.1.6 ARIMA models

In this section we will fit different ARIMA models to our data and examine the results. In order to choose the lags we can start from plotting the ACF of residuals for ARIMA

(1,1,1):

Looking at the autocorrelation graph we can see that it might be helpful to add 3rd or 7th lag to our model as they are significant. As we generally prefer simpler models lets try to fit various models with 3 lags and compare their result with likelihood, AIC and log likelihood ratio test:

Fitted models:

```
# 1
model_arima_1 = ARIMA(btc_train.Close[1:], order = (1,1,1))
results_model_arima1 = model_arima1.fit()
results_model_arima1.summary()
# 2
model_arima_2 = ARIMA(btc_train.Close[1:], order = (1,1,2))
results_model_arima_2 = model_arima_2.fit()
results_model_arima_2.summary()
# 3
model_arima_3 = ARIMA(btc_train.Close[1:], order = (1,1,3))
results_model_arima_3 = model_arima_3.fit()
results_model_arima_3.summary()
# 4
model_arima_4 = ARIMA(btc_train.Close[1:], order = (2,1,1))
results model arima 4 = model arima 4.fit()
# 5
model_arima_5 = ARIMA(btc_train.Close[1:], order = (3,1,1))
results_model_arima_5 = model_arima_5.fit()
# 6
model_arima_6 = ARIMA(btc_train.Close[1:], order = (3,1,2))
results model arima 6 = model arima 6.fit()
```

Code Chunk 6

Results of calculation of LL and AIC:

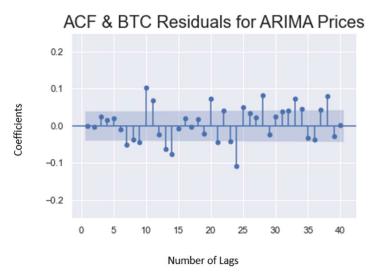

ARIMA(1,1,1):	LL =	-18690.930198249596	AIC =	37387.86039649919
ARIMA(1,1,2):	LL =	-18689.748010232594	AIC =	37387.49602046519
ARIMA(1,1,3):	LL =	-18686.541816054236	AIC =	37383.08363210847
ARIMA(2,1,1):	LL =	-18689.894258525324	AIC =	37387.78851705065
ARIMA(3,1,1):	LL =	-18686.098516218015	AIC =	37382.19703243603
ARIMA(3,1,2):	LL =	-18655.94414688421	AIC =	37323.88829376842

Figure 16

As we can see that ARIMA (3,1,2) has higher LL and lower AIC, we can make the conclusion that this model may perform better than the others. To make this statement sure we can finally run the LLR test and make our statement where we define the Null hypothesis as the ARIMA (3,1,2) does not perform better than the others:

```
print("\nLLR test p-value = " + str(LLR_test(model_arima_5, model_arima_6)))
print("\nLLR test p-value = " + str(LLR_test(model_arima_4, model_arima_6, DF = 2)))
print("\nLLR test p-value = " + str(LLR_test(model_arima_2, model_arima_6, DF = 2)))
print("\nLLR test p-value = " + str(LLR_test(model_arima_1, model_arima_6, DF = 3)))
LLR test p-value = 0.0
Figure 17
```

From the results it is obvious that the ARIMA (3,1,2) outperforms the other models. So we reject the Null hypothesis. Lastly, lets plot the residuals for this model and examine the results:

Graph 27

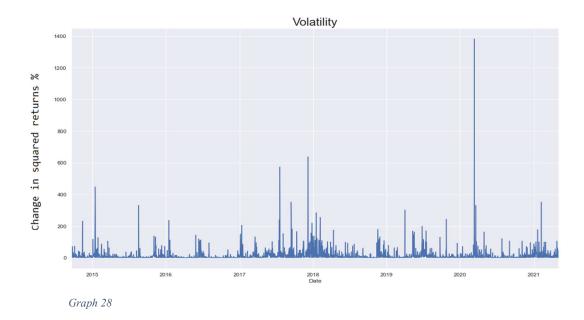
In this autocorrelation graph we can see less coefficients which are insignificant in comparison with the simple ARIMA model which shows that how the new model performs better in actual and expected prices. However, 10th lag is still highly significant which is the sign that there might be a better model existing with 10 lags.

In the next step, we will try to use higher level of integration. As we know in order to use higher integration levels our data needs to come from a non-stationary process. In order to find if integrated data is stationary or not, we will create manually an integrated delta prices column using diff function in python and then use Dicky-Fueller test where we define claim the Null hypothesis as the data is stationary:

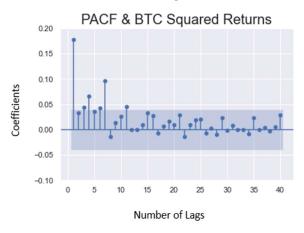
Figure 18

From the above results we see that our test statistic is greater than our critical values in all 3 levels. Furthermore, p-value is also very close to 0 which enables us to state that the data is stationary. So we accept the Null hypothesis. Taking this into consideration we can easily recommend not to use higher integrated levels in ARIMA models as 1 level of integration will be sufficient.

4.1.7 ARIMAX models


In the next step we will use ARIMAX model to include outside factors which has impact on prices. So called exogenous variables can be used in model fitting in python. To do that we will use the prices of Ethereum to see if there is correlation between ETH and BTC.

Dep.	Variable:		Close N	lo. Obse	rvations:	354	Dep.	Variable:		Close N	lo. Obser	vations:	354
	Model:	ARIMA(3	, 1, 3)	Log Li	ikelihood	-2649.440		Model:	ARIMA(1	1 1)	Log Lik	elihood	-2651.841
	Date:	Thu, 09 Feb	2023		AIC	5314.879					LOG LIN		
	Time:	07:	26:50		BIC	5345.811		Date:	Thu, 09 Feb	2023		AIC	5311.681
	Sample:	11-09	-2017		HQIC	5327.187		Time:	07:	27:56		BIC	5327.147
		- 10-28	-2018					Sample:	11-09	-2017		HQIC	5317.835
Covariar	nce Type:		opg						- 10-28	-2018			
	coef	std err	-	P> z	[0.025	0.975]	-	_	- 10-20				
Close	8.8986	0.392			8.131	9.667	Covaria	nce Type:		opg			
ar.L1	-0.0342	0.365	-0.094	0.925	-0.749	0.681		coef	std err	z	P> z	[0.025	0.975]
ar.L2	-0.7492			0.000	-0.926	-0.572	0						-
ar.L2	-0.1546			0.428	-0.920	0.228	Close	8.1114	0.417	19.457	0.000	7.294	8.929
							ar.L1	-0.3027	0.082	-3.676	0.000	-0.464	-0.141
ma.L1	0.2556		0.696	0.486	-0.464	0.976	ma.L1	0.5463	0.084	6.535	0.000	0.382	0.710
ma.L2	0.6644	0.111		0.000	0.446	0.882	sigma2	1.984e+05	6336.192	31.307	0.000	1.86e+05	2.11e+05
ma.L3	0.2654			0.115	-0.064		-						
sigma2	1.855e+05	5965.581	31.090	0.000	1.74e+05	1.97e+05	Ljun	ig-Box (L1) (Q): 0.00	Jarque-	Bera (JB)	2346.59)
Ljun	g-Box (L1)	(Q): 0.27	Jarque-	Bera (JB): 3110.45	6		Prob(Q): 0.98		Prob(JB)	0.00)
	Prob	(Q): 0.61		Prob(JB): 0.00		Heteros	kedasticity ((H): 0.02		Skew	. 0.98	2
Heterosl	kedasticity	(H): 0.02		Skev	v: 1.00	•							
Prob(H) (two-side	ed): 0.00		Kurtosis	s: 17.40	E.	Prob((H) (two-side	ed): 0.00		Kurtosis	15.48	3
Table I	14						Τc	able 15					


As it can be seen above the p value of the close prices of ETH is statistically significant for our prices in BTC. Comparing the models we can see higher likelihood in the complex model with 3 lags in each side which can be the sign of better performance.

4.1.8 **ARCH and GARCH models**

In this section we will use ARCH models in order to analyse the volatility of returns. Before starting to try the models, we will create another column where we will create the squared of returns as our volatility values. From the below plot we can see that the returns for BTC seems to have high volatility as expected.

Next even though PACF is not able to assist us in defining the number of lags to be used in ARCH model, we can still get a lot of valuable data by looking at it:

As we can see from the above results, out 7 lags in the beginning 5 of them are statistically significant. Such high values in PACF might be a convention that there can be short term trends in variances.

Now, we will fit the ARCH model with constant mean with 5 iterations

Constant N	lean - AR	CH Model Re	sults				
Dep. Varia	able:	ret	turns	R-squ	ared:	0.000	
Mean Me	odel:	Constant N	lean	Adj. R-squ	ared:	0.000	
Vol Me	odel:	A	RCH	Log-Likelih	ood: -6	641.33	
Distribu	tion:	No	ormal		AIC: 1	3288.7	
Met	hod: Ma	aximum Likeli	hood		BIC: 1	3306.0	
			N	o. Observat	ions:	2418	
ſ	Date:	Sun, Jan 29	2023	Df Resid	uals:		
1	lime:	13:3	2:49	Df M	odel:		
Mean Mode							
CC				141 OF 00/	Canf Int		
0.00		tderr t		11	Conf. Int.		
mu 0.29 Volatility Me	83 7.49	tderr t 3e-02 3.982		11	Conf. Int. 51, 0.445]		
	83 7.49			11	51, 0.445]		
	83 7.49	3e-02 3.982	6.843e	-05 [0.1	51, 0.445 95.0%	I	
Volatility M	83 7.49 odel	3e-02 3.982 std err 1.125	6.843e	P> t	51, 0.445 95.0%	Conf. In 1, 14.612	

Table 16

From the above results we can see that both adjusted and not adjusted R squared are 0.00. As R squared is the way to measure explanatory variation compared to the mean it means that for our ARCH model it will not be very useful in explaining the deviation. Moving to Log likelihood we can see a higher value in log likelihood in ARCH models in comparison with our previous AR, MA, ARMA and ARIMA models which means that simple ARCH model performs already well. Secondly, we will fit another ARCH model with 3 lags and compare their results to the simpler one.

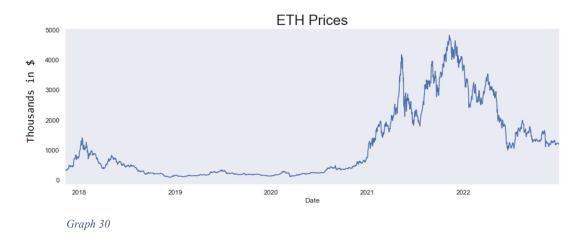
			eturns			0.0	
Dep. Vari	able:		etunis	R-	squared:	0.00	
Mean M	odel:	Constant	Mean	Adj. R-	0.000		
Vol M	odel:		ARCH	Log-Lik	elihood:	-6596.32	
Distribu	ution:	1	ormal		13202		
Me	thod: N	laximum Like	elihood		13231		
				No. Obser	rvations:	242	
	Date:	Thu, Feb 02	2 2023	Df Re	24		
1	Time:	15	:41:28	0	of Model:		
Mean Mod							
	oef 9 394 6.69	std err 94e-02 4.32	t 24 1.53		.0% Conf. [0.158, 0.4		
ca mu 0.28	oef 9 394 6.69		-		[0.158, 0.4		
ca mu 0.28	oef : 394 6.69	94e-02 4.32	4 1.53	4e-05	0.158, 0.4 95.0 %	421]	
ca mu 0.28 /olatility M	oef s 394 6.69 lodel coef	94e-02 4.32 std err	t	94e-05 P> t	0.158, 0.4 95.0% (6.7	421] % Conf.	
ca mu 0.28 /olatility M omega	oef s 394 6.69 lodel coef 9.2991	94e-02 4.32 std err 1.314	t 7.077	P> t 1.469e-12	0.158, 0.4 9 5.0% [6.7 [7.977e	421] % Conf. 724, 11.8	

Table 17

From the first glance it is already visible that the log likelihood has increased while AIC decreased when we used 3 lags. These both are already indicators that second model is outperforms the first one. Lastly, checking the coefficients (p-values) we see that all the figures are statistically significant with the exception of alpha 2. Judging overall we can still claim that the second model with 3 lags performs better than the first one in estimating the market volatility.

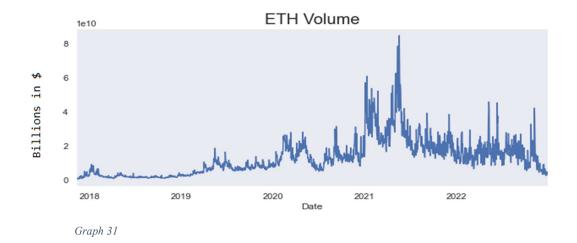
In the last section of this sub-chapter, we will fit GARCH models which are extension or ARCH and also referred as "ARMA Equivalent" of ARCH which is generally expected to have better performance. We will fit simple and multi lag GARCH models and compare the results:

Constant Me	ean - GA	ARCH Model	Results										
Dep. Varia	blar		eturns	R-squ	arad	0.000	Dep. Vari	able:		returns	R-se	quared:	0.000
							Mean M	odel:	Constan	t Mean	Adj. R-se	quared:	0.000
Mean Mo		Constant		Adj. R-squ		0.000	Vol M	odel:	G	ARCH	Log-Like	lihood:	-6485.59
Vol Mo			ARCH	Log-Likelih			Distribu	tion:	1	Normal		AIC:	12981.2
Distribut	ion:	N	lormal		AIC:	12981.5	Me	thod:	Aaximum Like	elihood		BIC:	13010.1
Meth	nod: N	laximum Like	lihood		BIC:	13004.6					No. Observ	ations:	2420
				No. Observat	ions:	2420		Date:	Thu, Feb 0	2 2023		siduals:	2419
D	ate:	Thu, Feb 02	2 2023	Df Resid	uals:	2419			and the second	3:11:08		Model:	
п	me:	16	:11:03	Df M	odel:	1		Time:	10	5.11:08	Di	wodel:	1
							Mean Mod	el					
Mean Mode													
co	ef s	std err	t	P> t 95.0%	Conf. In	nt.			std err	t	P> t 95.0	% Conf.	Int.
mu 0.239	2 6.32	22e-02 3.78	3 1.547	7e-04 [01	15, 0.36	31	mu 0.24	25 6.2	45e-02 3.88	33 1.03	1e-04 [0.120, 0.3	365]
	2 0.01			10.1	10, 0.00	0]	17 1 17 1 A						
Volatility Mo	del						Volatility M	odel					
	coef	std err		P> t	05.09	Conf. Int.		coef	std err	t	P> t	95.0%	Conf. Int.
			t				omega	0.8094	0.312	2.594	9.477e-03	[0.1	198, 1.421]
	0.6753	0.258	2.616	8.891e-03		169, 1.181]	alpha[1]	0.1583	3.515e-02	4.503	6.709e-06	[8.938e	-02, 0.227]
alpha[1]	0.1294	3.184e-02	4.065	4.794e-05	[6.703e	-02, 0.192]	beta[1]	0.5403	0.218	2.477	1.323e-02	[0.*	113, 0.968]
beta[1]	0.8373	2.924e-02	28.633	2.575e-180	[0.	780, 0.895]	beta[2]	0.2617	0.201	1,299	0,194	[-0.1	133, 0.656]
									1.00000000 A.				

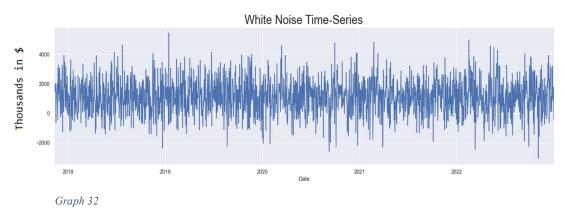

Looking at the above we can see that simple GARCH model with (1,1) performs better than more complex GARCH model based on having beta [2] greater than 0,5 which means it is not significant. Taking this into consideration we will stick to the GARCH (1,1).

Finally, when we compare the GARCH (1,1) with our ARCH model with 3 lags, we can see a better log likelihood in ARCH model. From that perspective we can state that in order to estimate the volatility of BTC it ARCH model would be a better fit.

4.2 Analysis of ETH


In the next section of the thesis, we will analyse another popular and practical cryptocurrency which is Ethereum. We will proceed with the same strategy as we have done for BTC and will define the best model to predict Ethereum's prices.

Initially, we can start by plotting the prices of ETH from its first registered date in Yahoo finance.


From the above plot of prices, we can observe that there was a sharp increase of ETH since the beginning of 2021 which is following a fall towards the middle of the same year and expansion again at the end of the same year. Furthermore, 2022 also shows a significant fall in ETH prices. In general, at the first glance, the trends in ETH prices since 2021 remind the trends in BTC prices.

Next, we can plot the market capitalization of ETH and check the trends as well:

The graph shows us that the Market volume of ETH was relatively stable until the middle of 2020 and fluctuating since then until now. Both plots for ETH market volume and ETH prices can be signs of high volatility which we will investigate in further sections of the thesis.

4.2.1 White Noise, Stationarity and Seasonality

We'll attempt to look at our dataset's *white noise* in the following step as we have done for BTC.

```
Here, the white noise indicates whether or not our data is predictable. We may look at the mean, which in our instance is 1111.73, to demonstrate that the data is not white noise because time series data with white noise would always have a mean of zero.
```

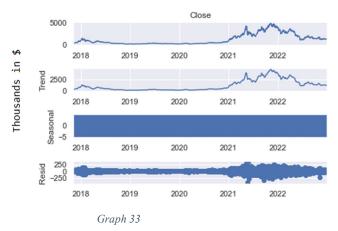
```
print(wn.mean())
1111.7392034831769
```

Figure 19

The dataset's *stationarity* will be examined using the Dicky Fuller test in the following step and set our Null hypothesis as "The data is stationary":

```
sts.adfuller(ethdata.close)

(-1.4089708365742828,
0.5779679105330212,
17,
1861,
{'1%': -3.4338687226315336,
'5%': -2.863094318475046,
'10%': -2.5675974634086765},
21446.440104463112)
```


```
Figure 20
```

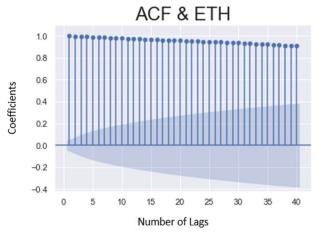
Our test statistic exceeds all critical values, hence there is insufficient support for stationarity.

We cannot confirm that the data is stationary since, according to the second line of the pvalue, there is a 57% chance that the null hypothesis will be accepted. So we reject the Null hypothesis. From the number of lags, we can see that there is some autocorrelation that is going 17 periods back.

In the following phase, the dataset's *seasonality* will be examined using additive and multiplicative decompositions.

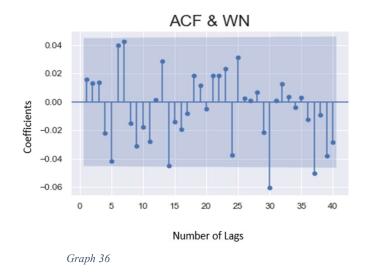
Additive:

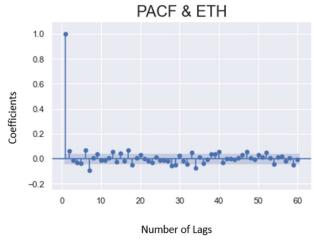
We can observe that the plot above is a rectangle when we look at the seasonal portion. As we mentioned during BTC analysis, this occurs when the figures are too small, and the values oscillate back and forth constantly. In our situation, the linear change is caused by a steady up-and-down movement between -250 and 250 for each period. As a result, no actual cyclical pattern based on naïve decomposition can be found. Lastly, from the residual part of the plot, we can see that they are relatively high in 2018, 2021, and 2022.


Multiplicative:

We may find the same results when we use the multiplicative decomposition method to confirm the absence of seasonality in our dataset.

4.2.2 Auto Correlation Function and Partial Correlation Function


We will now look at the *autocorrelation* of ETH prices. To do this, we once more used Python for visualization, setting the period to daily.


All of the lags are higher than the specified significance threshold, which is represented by the area in blue in the plot at the top, as can be seen. We can say that there is an autocorrelation between lags since each lag demonstrates how the prices differ from one another one period ago. Simply put, it indicates that we can still predict future prices using prices from a previous time period.

Additionally, we may display the ACF of our white noise data as a secondary assurance that the data is indeed white noise:

Here, it is easy to see that almost all of the lags are inside the threshold of significance (blue figure), allowing us to confidently conclude that there is no autocorrelation in the white noise data, which is one of the WN's underlying assumptions.


In this stage, we'll also use Python's order least squares approach to analyse PACF for BTC close prices to check *partial autocorrelation*.

We can see a quite different graphic from the auto correlation function since the PACF illustrates the direct effects of the prices from the previous period. When examining the plot, we can also see positive and negative numbers, which are fairly arbitrary and have no long-term consequences.

Finally, we can do the same investigation in White noise data:

Graph 38

Again, based on the plot above, we can conclude that everything is perfectly random, despite the fact that there is one lag that is not statistically significant. By taking this into account, we can demonstrate once more that WN data lacks autocorrelation.

4.2.3 AR models

This part will serve as the beginning of our model-building process, using auto-regression models taking into consideration that we have already separated the data into training and testing dataset in the ratio of 80/20.

First, it's crucial to look at ACF&PACF and take the result from there to decide how many lags to employ in the AR model. We can go over them again since we have already plotted our graphs in univariate. The ACF graph demonstrates that the more lags we add, the better our model will fit our data set, however, this can lead to an overfitting issue that could result in inaccurate projections of future prices. We may recall that there are existent negative and positive coefficients as well as some coefficients that are not in a significant level based on the PACF plot. We should have less than 30 since, as we can see, the coefficients are more likely to be significant after the 30 lag.

The following phase involves implementing an AR model with a single lag before moving slowly forward to choose the optimal model. Additionally, in order to determine the optimal model, we will evaluate models with various lags using the log-likelihood test. Here we define the Null hypothesis as the second (more complex model) does not perform better than the first one:

AR model with 2 lags:

AR model with 3 lags:

							Dep.	Variable:	C	Close N	lo. Obse	rvations:	1502
Dep.	Variable:	C	Close N	o. Obse	rvations:	1502		Model:	ARIMA(3,	0, 0)	Log Li	kelihood	-8630.011
	Model:	ARIMA(2,	0, 0)	Log Li	kelihood	-8630.028		Date:	Sat, 04 Feb	2023		AIC	17270.021
	Date: S	at, 04 Feb	2023		AIC	17268.055		Time:		36:07		BIC	17296.594
	Time:	19:3	84:08		BIC	17289.313		Sample:	11-10-	2017		HQIC	17279.920
	Sample:	11-10-	2017		HQIC	17275.974			- 12-20-	2021			
		- 12-20-	2021				Covaria	nce Type:		opg			
Covaria	nce Type:		opg							opg			
								coef	std err	z	P> z	[0.025	0.975]
	coef	std err	z	P> z	[0.025	0.975]	const	901.5950	4672.272	0.193	0.847	-8255.890	1.01e+04
const	901.5974	4705.739	0.192	0.848	-8321.481	1.01e+04	ar.L1	0.9003	0.013	70.713	0.000	0.875	0.925
ar.L1	0.8998	0.013	71.623	0.000	0.875	0.924	ar.L2	0.1035	0.015	6.842	0.000	0.074	0.133
ar.L2	0.0993	0.013	7.898	0.000	0.075	0.124	ar.L3	-0.0047	0.010	-0.453	0.651	-0.025	0.016
sigma2	5706.7400	61.354	93.014	0.000	5586.489	5826.991	sigma2	5706.3579	63,493	89.874	0.000	5581,914	5830,802
Liun	g-Box (L1) (0	0.00	largue	-Bera (J	B): 35366	00							
Ljun	-	-/	Jarque			.00	Ljun	g-Box (L1) (Q): 0.00	Jarque	-Bera (J	B): 3512	.95
	Prob(0	,		Prob(J	- /			Prob(Q): 0.98		Prob(J	B): (0.00
	kedasticity (I			Ske		.96	Heteros	kedasticity	(H): 13.85		Sk	ew: -(0.95
Prob((H) (two-side	d): 0.00		Kurtos	is: 26	.69	Prob	H) (two-side	ed): 0.00		Kurtos	sis: 20	6.61
Table 20	0							Table 2	21				

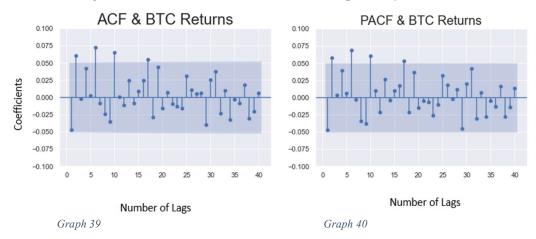
Log-likelihood test for models with 2 and 3 lags (for visibility as 1 lag model performed well as well):

```
LLR_test(ar_model, ar_model_1)
0.851
```

Figure 21

Based on the findings of the LLR test, it is clear that we should stop at the 3rd lag after a number of trials up to the 4th lag. We will choose 2 lags because the log likelihood test shows that simpler model has a better log likelihood. So we accept the Null hyptothesis. Next, since returns, which are a percentage representation of price changes, are more dependable than stationary data in AR models since they have constant mean, variance, and autocorrelation, we will try to employ returns. To do that, we added a new column to the training and test data sets and calculated the percentages using simple Python methods:

```
eth_train['returns'] = eth_train.Close.pct_change(1).mul(100)
eth_test['returns'] = eth_test.Close.pct_change(1).mul(100)
eth_train = eth_train.iloc[1:]
```


Code Chunk 7

And we will test the stationarity with the Dickey-Fueller test where we define claim the Null hypothesis as the data is stationary:

```
sts.adfuller(eth_train.returns)
(-11.412390521316967,
7.197384243781305e-21,
9,
1492,
{'1%': -3.434740473427213,
    '5%': -2.863479112458789,
    '10%': -2.5678023610641922},
9054.48520801563)
```

Figure 22

We can see from the above that our test statistic, which is -11.41, is less than each of the three essential values at various confidence levels. As a result, we can say that the data is stationary with accepting the Null hypothesis.

Now we can go ahead and examine ACF and PACF respectively for the return values:

Both autocorrelation and partial autocorrelation imply that some coefficients are positive, some are negative, some are also inside the confidence interval and some are outside the confidence interval, allowing us to conclude that the data do not exhibit autocorrelation.

We will approach returns in a similar manner as we did when we trained the models for ETH prices. In order to determine which model fits the data best, we will perform the log-likelihood test and attempt to fit many models with various lags:

	tions:	Observat	No. C	returns			Variable:	Dep.	1500	ions:	Observat	No. C	returns		Variable:	Dep.
-458		og Likeli		A(8, 0, 0)			Model		-4593.996	hood	og Likeli) L	IA(4, 0, 0	ARIM	Model:	
919	AIC				Sat, 04 F		Date:		9199.991	AIC	eg Linen	,	Feb 2023		Date:	
925	BIC			20:10:01			Time			10.00				Sal, 04		
92	HQIC			-12-2017		e:	Sample		9231.870	BIC		7	20:09:57		Time:	
				-20-2021	- 12-				9211.867	HQIC		7	1-12-2017	11	Sample:	
			(opg		e:	nce Type:	Covaria				1	2-20-2021	- 12		
5]	0.97	[0.025	P> z	z	std err	f sto	coef					3	opg		nce Type:	Covaria
99	0.59	0.014	0.040	2.051	0.149	1 0	0.3061	const								
06	-0.00	-0.084	0.025	-2.246	0.020	0 0	-0.0450	ar.L1	1	0.975	[0.025	P> z	z	std err	coef	
05	0.10	0.006	0.028	2.191	0.025	2 0	0.0552	ar.L2	7	0.587	0.025	0.033	2.133	0.143	0.3060	const
50	0.05	-0.042	0.872	0.162	0.024	8 0	0.0038	ar.L3	6	-0.006	-0.083	0.023	-2.278	0.020	-0.0444	ar.L1
7	0.07	-0.004	0.075	1.780	0.021	5 0	0.0365	ar.L4	3	0.103	0.008	0.022	2.295	0.024	0.0555	ar.L2
52	0.05	-0.034	0.669	0.428	0.022	4 0	0.0094	ar.L5	9	0.049	-0.041	0.865	0.170	0.023	0.0039	ar.L3
	0.11	0.023	0.004		0.024		0.0699	ar.L6	- -	0.079	-0.001	0.056	1.912	0.020	0.0389	ar.L4
	0.03	-0.044	0.803				-0.0050	ar.L7								
	0.01	-0.083	0.156				-0.0349	ar.L8	6	27.856	25.692	0.000	48.481	0.552	26.7740	sigma2
02	27.70	25.528	0.000	47.984	0.555	1 0	26.6151	sigma2)	1879.90	a (JB):	ue-Ber	00 Jaro	(Q): 0	g-Box (L1)	Ljun
32	1975.8	a (JB):	ue-Ber	00 Jarq	Q): 0.0	_1) (Q	ng-Box (L	Ljur		0.00	b(JB):			b(Q): 0.	-	
00	0.0	b(JB):	Pro	96	Q): 0.9	rob(Q	Pro			-0.25	Skew:		90		kedasticity	Hotoroc
26	-0.2	Skew:		90	(H): 0.9	ity (H	kedastici	Heteros								
	8.6	rtosis:	Ku	23	d): 0.2	sided	(H) (two-s	Prob	j i	8.46	rtosis:	Ku	23	ded): 0.	H) (two-sid	Prob(

```
LLR_test(ar_model_ret_1, ar_model_ret_2)
```

0.003

Figure 23

Our tests show that the second AR model with 8 lags has a higher log-likelihood, and since the LLR test value is smaller than 0.01, we can conclude that the second model is superior to the first model with 4 lags.

The following step allows us to evaluate whether normalized prices would produce stationary data that we could incorporate into our Python-based AR models:

benchmark = eth_train.Close.iloc[0]

eth_train['norm'] = eth_train.Close.div(benchmark).mul(100)
eth_test['norm'] = eth_test.Close.div(benchmark).mul(100)

Code Chunk 8

Testing stationarity as usual where we define claim the Null hypothesis as the data is stationary:

```
sts.adfuller(eth_train.norm)
(0.6069429080168565,
0.9877855155545913,
17,
1483,
{'1%': -3.4347671645756304,
'5%': -2.86349089226533,
'10%': -2.5678086339403325},
13543.131431078897)
```

Figure 24

We can conclude that the data is non-stationary because the test statistic is higher than our critical values, hence we won't use normalized prices for our AR model so we reject the Null hypothesis.

But when we normalize the results, we can get stationary data. That's why we'll utilize a method akin to normalized returns and the Dicky-Fuller test to determine stationarity where we define claim the Null hypothesis as the data is stationary.

We can simply conclude that the data is stationary by noting that our test statistic falls to the left of our critical values where we accept the Null hypothesis/

We will experiment with AR models with various lags and use the log-likelihood test to compare our models, just as we did for pricing and returns. Here we define the Null hypothesis as the second (more complex model) does not perform better than the first one:

-													
Dep.	Variable:	no	rm_ret	No. Obs	ervations:	1501	Dep.	Variable:		norm_ret		bservation	
	Model:	ARIMA(2, 0, 0)	Log L	ikelihood	-9048.715		Model:		(10, 0, 0)		og Likelihoo	
	Date:	Sat. 04 Fe	h 2022		AIC	18105.430		Date:	Sat, 04	Feb 2023			IC 18102.73
	Date.	Sal, 04 Fe	0 2023		AIC	10103.430		Time:		20:21:15		В	
	Time:	20):21:27		BIC	18126.686		Sample:		-11-2017		HQ	IC 18126.48
	Sample:	11-1	1-2017		HQIC	18113.348	Coursela	nce Type:	- 12	-20-2021			
						10110.010	Covariai	ice type:		opg			
		- 12-2	0-2021					coef	std err	z	P> z	[0.025	0.975]
Covariar	nce Type:		opg				const		2.993	2.004	0.045	0.131	11.862
								-0.0443	0.020	-2.216	0.027	-0.084	-0.005
	coe	f std err	2	P> z	[0.025	0.975]	ar.L2	0.0575	0.025	2.274	0.023	0.008	0.107
	5 0000	0.000			0 700		ar.L3	0.0074	0.024	0.309	0.757	-0.040	0.054
const	5.9962	2.660	2.254	0.024	0.782	11.211	ar.L4	0.0325	0.021	1.580	0.114	-0.008	0.073
ar.L1	-0.0445	0.019	-2.296	0.022	-0.082	-0.007	ar.L5	0.0099	0.023	0.437	0.662	-0.034	0.054
ar.L2	0.0579	0.024	2.404	0.016	0.011	0.105	ar.L6	0.0679	0.024	2.821	0.005	-0.021	0.115
u1.62	0.0010	0.024					ar.L7	-0.0399	0.020	-0.132	0.895	-0.042	0.036
sigma2	1.009e+04	190.612	52.954	0.000	9720.050	1.05e+04	ar.L9	-0.0399	0.025	-1.367	0.172	-0.085	0.009
							ar.L10	0.0601	0.024	2.545	0.011	0.014	0.106
Ljun	g-Box (L1)	(Q): 0.00	Jarqu	e-Bera (J	B): 2025.	50	sigma2	1e+04	208.680	47.926	0.000		1.04e+04
	Prob	(Q): 0.99		Prob(J	B): 0.0	00	-						
		• •		•	,		Ljun	g-Box (L1				a (JB): 208	
Heterosi	kedasticity	(H): 0.90		Ske	ew: -0.2	26			b(Q): 0.			b(JB):	0.00
Prob(H) (two-sid	ed): 0.24		Kurtos	sis: 8.6	67		kedasticit					-0.28
							Prob(H) (two-si	ded): 0.	14	Ku	rtosis:	8.75
Table 24							Tab	ole 25					

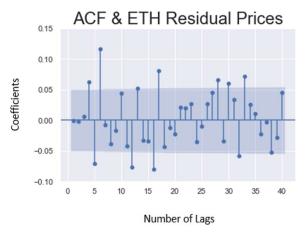
```
LLR_test(ar_model_norm_ret_1, ar_model_norm_ret_2)
```

0.0

Figure 26

The model with 10 lags has a greater log likelihood, as can be seen from the data above, and the LLR test indicates that the addition of 8 additional lags to the model with 2 lags has no high effect. So we reject the Null hypothesis. Also, we can see that normalizing has no appreciable influence on model choice by comparing our results to the unnormalized returns that we did earlier.

We will look at the residuals for the developed models in the final section of AR models. We first establish the residual columns in the datasets in order to accomplish this:

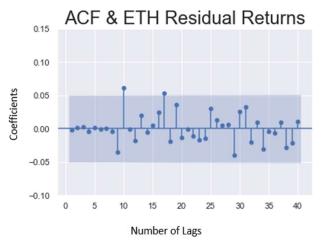

Code Chunk 9

We will check the stationarity as usual where we define claim the Null hypothesis as the data is stationary:

```
sts.adfuller(eth_train.res_price[1:])
(-9.90433891325914,
3.293878938828608e-17,
16,
1483,
{'1%': -3.4347671645756304,
 '5%': -2.86349089226533,
 '10%': -2.5678086339403325},
16916.052118069485)
```

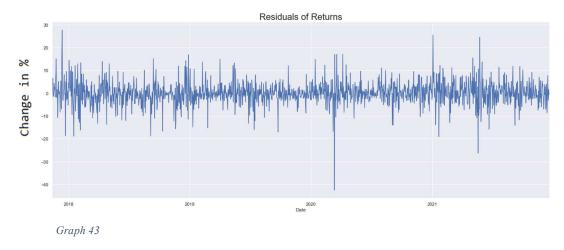
Figure 27

We can say that the data is stationary as the test statistic falls on the left side of our critical values. So, we accept the Null hypothesis. Now that our data has been checked for the ACF, we can study the residuals:

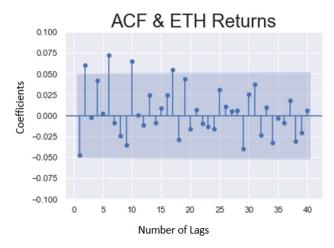

Graph 41

Numerous coefficients outside of the confidence interval (blue region) may be seen in the figure above, leading us to conclude that there is a stronger predictor than residuals. Lastly, we will conduct a similar analysis of return residuals as we did for price and test the stationarity where we define claim the Null hypothesis as the data is stationary:

```
eth_train['res_price_ret'] = results_ar_model_ret_2.resid
eth_test['res_price_ret'] = results_ar_model_ret_2.resid
eth_train.res_price_ret.mean()
-1.857860593810645e-05
eth_train.res_price_ret.var()
26.63373497151356
sts.adfuller(eth_train.res_price_ret[1:])
(-38.746625407896836,
0.0,
0,
1499,
{'1%': -3.4347199356122493,
'5%': -2.86347004827819,
'10%': -2.567797534300163},
9031.09628608121)
Table 26
```


We can see that data is stationary based on the dicky fuller test statistic and 0.0 p-value which means we accept the Null hyptothesis.

We notice fewer coefficients outside the confidence interval when looking at the ACF, which indicates that our model is a solid predictor but that there is still a better one out there.


Graph 42

Finally, the graph below, which displays the price volatility over time, may be seen when we plot the residuals of returns. Prices substantially decreased in the second half of 2020 due to a market meltdown that few investors had anticipated.

4.2.4 MA models

First, we will establish our expectations for the number of lags that should be used. We must once more verify the ACF for Return closing prices in order to accomplish this.

Graph 44

The accompanying plot serves as a helpful reminder that the 2nd, 6th lags appear to be statistically significant, and that after the 17th lag, the lags become statistically insignificant. We can therefore assume that our model has fewer than 17 lags.

We will fit the models in the following phase. We will employ the models with 7 and 10 lags, as predicted by the ACF plot, and compute the LLR test to determine which model performs better:

MA mode with 2 lags

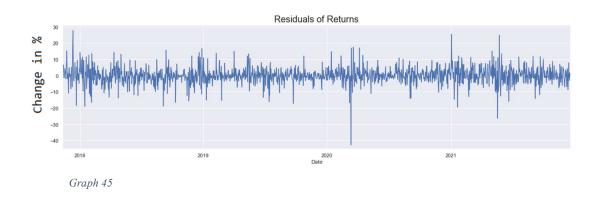
MA model with 6 lags:

								De	p. Variable:		return	No.	Observa	tions
Dep.	Variable:		return	s No.	Observa	tions:	1500	De	Model:		MA(0, 0, 6		og Like	
	Model:	ARI	MA(0, 0, 2	2) L	og Like	lihood	4595.308				5 Feb 202		LOG LIKE	AIC
	Date:	Sun, 05	Feb 202	3		AIC	9198.617		Time:		10:02:3			BIC
	Time:		09:58:5	0		BIC	9219,869		Sample:		11-12-201	7		HQIC
	Sample:	1	1-12-201	7		HQIC	9206.534			-	12-20-202	21		
							0200.001	Covar	iance Type:		op	g		
		- 1	2-20-202	1					coef	std err	z	P> z	[0.025	0.975
Covarian	nce Type:		op	g				cons	t 0.3062	0.154	1.987	0.047	0.004	0.608
	coef	std err	z	P> z	[0.025	0.975]		ma.L	1 -0.0443	0.020	-2.219	0.027	-0.083	-0.00
const	0.3059	0.137	2.236	0.025	0.038	0.574		ma.L	2 0.0606	0.025	2.396	0.017	0.011	0.110
								ma.L	3 0.0038	0.024	0.161	0.872	-0.043	0.050
ma.L1	-0.0445	0.019	-2.283	0.022	-0.083	-0.006		ma.L	4 0.0321	0.020	1.565	0.118	-0.008	0.072
ma.L2	0.0558	0.024	2.316	0.021	0.009	0.103		ma.L	5 0.0093	0.022	0.428	0.669	-0.033	0.052
igma2	26.8212	0.507	52.930	0.000	25.828	27.814		ma.L	6 0.0737	0.024	3.100	0.002	0.027	0.120
								sigma	2 26.6425	0.552	48.261	0.000	25.560	27.72
Ljung	g-Box (L1) (Q): 0.	.00 Jaro	que-Ber	a (JB):	2037.74		Lji	ung-Box (L1	I) (Q): 0	.00 Jar	que-Ber	a (JB):	2027.82
	Pro	b(Q): 1	.00	Pro	b(JB):	0.00			Pro	b(Q): 0	.98	Pro	ob(JB):	0.00
leterosk	edasticit	y (H): 0.	90		Skew:	-0.26		Heter	skedasticit	y (H): 0	.90		Skew:	-0.26
		ded): 0.	25	K.,	rtosis:	8.69		Pro	b(H) (two-s	ided): (.26	Ku	rtosis:	8.6

print("\nLLR Test P-value = " + str(LLR_test(model_ret_ma_1,model_ret_ma_2, DF = 4)))

LLR Test P-value = 0.041

Figure 28

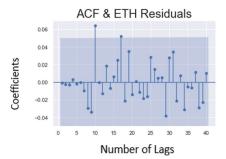

After number of trials, we can see that models are performing worse than 2 lag models until the 6 th lag models. This is because on the 6^{th} lag there is an additional statistically significant coefficient. Taking this into consideration even though there are insignificant coefficients we will be using the model with 6 lags.

We will study the residuals for the model that performed better in the following step after adding a new column for residuals from MA models:

```
eth_train['res_ret_ma_2'] = results_ret_ma_2.resid[1:]
print("mean is " + str(round(eth_train.res_ret_ma_2.mean(),3)))
print("variance is " + str(round(eth_train.res_ret_ma_2.var(),3)))
print("Standard deviation is " + str(round(sqrt(eth_train.res_ret_ma_2.var()), 3)))
mean is 0.002
variance is 26.675
Standard deviation is 5.165
```

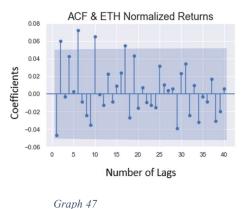
Code Chunk 10

To determine whether our model is sound or not, we must first look for residuals in the graph:


From the graph, it appears that the residuals are more random than they do consistently. We may use the Dicky Fuller test to check for stationary residuals and test for this randomness where we define claim the Null hypothesis as the data is stationary:

```
sts.adfuller(eth_train.res_ret_ma_2[2:])
(-38.70434351882141,
0.0,
0,
1498,
{'1%': -3.4347228578139943,
'5%': -2.863471337969528,
'10%': -2.5677982210726897},
9027.645156416089)
```


As our p-value is 0.0, test statistic is smaller than the critical values we can state that the data is stationary and we accept the Null hypothesis.

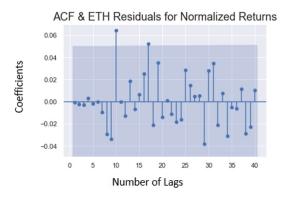

In order to determine whether the return residuals are White Noise or not, we can also look at the ACF of the residuals from our model:

We can see that several of the coefficients in the above graphs are significant. The first 10 legs of our model were added; therefore it was predicted that their coefficients would be near to zero. Additionally, the subsequent seven lags are similarly not significant, which shows how effectively our model works.

In this stage, we will examine how the MA models predict the previously constructed normalized data by visualizing the autocorrelation function. As each of the five cryptos has a completely separate price range, the goal of this step is to enable comparisons between ETH values and BTC near the conclusion of the thesis.

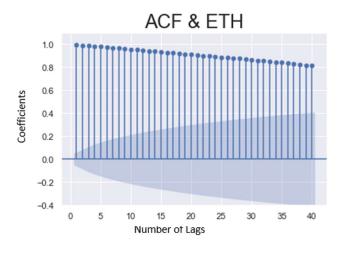
the results:

We can determine from above how many lags to employ when fitting the model to normalized returns based on coefficients that are outside of the confidence interval. To determine whether normalizing affects model selection, we will fit the model and look at


85

-						
Dep.	Variable:	no	rm_ret	No. Obs	ervations:	1500
	Model:	ARIMA(0, 0, 6)	Log	Likelihood	-9037.983
	Date: S	Sun, 05 Fel	b 2023		AIC	18091.966
	Time:	10	:22:37		BIC	18134.472
	Sample:	11-12	2-2017		HQIC	18107.801
		- 12-20	0-2021			
Covariar	nce Type:		opg			
	coef	std err	z	P> z	[0.025	0.975]
const	5.9335	2.994	1.982	0.047	0.065	11.802
ma.L1	-0.0443	0.020	-2.214	0.027	-0.084	-0.005
ma.L2	0.0606	0.025	2.392	0.017	0.011	0.110
ma.L3	0.0038	0.024	0.161	0.872	-0.043	0.050
ma.L4	0.0321	0.021	1.562	0.118	-0.008	0.072
ma.L5	0.0093	0.022	0.427	0.669	-0.033	0.052
ma.L6	0.0736	0.024	3.094	0.002	0.027	0.120
sigma2	1.004e+04	208.508	48.167	0.000	9634.619	1.05e+04
Ljun	g-Box (L1) ((2): 0.00	Jarque	-Bera (J	B): 2027.8	1
	Prob(2): 0.98		Prob(J	B): 0.0	0
Heteros	edasticity (H): 0.90		Ske	w: -0.2	.6
Prob(H) (two-side	d): 0.26		Kurtos	is: 8.6	7

Table 29


We can observe from the above that the outcomes of the MA model with 6 lags in normalized returns and non-normalized returns are nearly identical. Given this, we may conclude that normalizing values has no effect on model choice.

Finally, we will plot the residuals and ACF of residuals once more to demonstrate that our model was the right one. From the graph below, we can observe that even after the tenth lag, many coefficients are below the confidence level. Because of this, our model is accurate.

Graph 48

In the final section, we'll try to determine whether BTC closing prices can be forecast using MA models. We will begin by graphing ACF for Prices to establish the number of lags, much as we did in the preceding sections:

Graph 49

The assumption that any higher lag model will perform better than the one with fewer lags is derived from the fact that all of the coefficients are higher than the confidence level as shown above. Another notion that we can come up with is that situations like this would benefit from an endless number of lags. Since adding infinite lags is not possible, we can assume that MA models are not the best for predicting real close prices.

4.2.5 ARMA models

We will look into ARMA models in this part and attempt to fit them to our datasets.

We will first begin by fitting ARMA models to the returns and analysing the outcomes. We may be fitting the (2,1) and (4,3) models and evaluating the outcomes:

1	tions:	Observa	s No.	return		Variable:	Dep.	1500	tions:	Observa	s No.	returns		Variable:	Dep.
-4592	ihood	og Likel	3) L	MA(4, 0, 3	ARI	Model:		-4594.296	ihood	.og Likel) L	/ <mark>A(2, 0</mark> , 1	ARI	Model:	
9202	AIC		3	Feb 202	Sun, 05			9198,593	AIC		3	Feb 2023	Sun. 05	Date:	
9250	BIC			19:30:1		Time:		9225 159	BIC			19:28:40		Time:	
9220	HQIC			1-12-201		Sample:									
				2-20-202	- 1			9208.489	HQIC		(1-12-2017	1	Sample:	
			g	op		nce Type:	Covaria				1	2-20-2021	- 1		
0	0.975	[0.025	P> z	z	std err	coef					9	op		nce Type:	Covaria
3	0.573	0.039	0.025	2.244	0.136	0.3060	const								
8	0.768	0.092	0.013	2.493	0.172	0.4299	ar.L1		0.975]	[0.025	P> z	z	std err	coef	
5	0.355	-0.371	0.966	-0.042	0.185	-0.0078	ar.L2		0.613	0.002	0.049	1.972	0.156	0.3075	const
8	-0.348	-0.978	0.000	-4.125	0.161	-0.6632	ar.L3		0.994	0.423	0.000	4.868	0.146	0.7088	ar.L1
3	0.093	-0.022	0.229	1.202	0.030	0.0355	ar.L4		0.122	0.036	0.000	3.637	0.022	0.0790	ar.L2
4	-0.134	-0.812	0.006	-2.737	0.173	-0.4733	ma.L1		-0.471	-1.043	0.000	-5.182	0.146	-0 7570	ma.L1
9	0.459	-0.326	0.741	0.331	0.200	0.0662	ma.L2								
8	0.968	0.277	0.000	3.531	0.176	0.6228	ma.L3		27.781	25.791	0.000	52.753	0.508	26.7859	sigma2
1	27.761	25.646	0.000	49.487	0.540	26.7031	sigma2		1996.32	a (JB):	ue-Ber	00 Jarq) (Q): 0.	g-Box (L1)	Ljun
3	1830.23	a (JB):	que-Ber	00 Jaro	(Q): 0	g-Box (L1)	Ljun		0.00	b(JB):	Pro	96	b(Q): 0.	Pro	
0	0.00	ob(JB):	Pro	.97	b(Q): 0	Pro			-0.25	Skew:		91	(H) 0	kedasticity	Heteros
7	-0.27	Skew:		89	(H): 0	kedasticity	Heteros								
9	8.39	rtosis:	Ku	20	ded): 0	H) (two-sid	Prob(8.63	rtosis:	Ku	28	ded): 0.	H) (two-sid	Prob(

Table 30

Table 31

The lags in the models (2,1) are statistically significant, however, the identical values in the models (4,3) were significantly above the significance level when comparing the models. For this reason, we assume that the first model will match our data crucially better. Additionally, the LLR test demonstrates that the first model performs significantly better than the second model with 4,3 lags respectively:

LLR_test(model_ret_arma_1, model_ret_arma_2, DF = 4)

0.377

Figure 30

Lastly, when we compare AIC values we can see that ARMA (2,2) has less information criteria which is a better indicator:

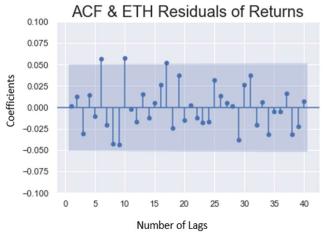

print("ARMA(2,1) AIC Value is " + str(results_ret_arma_1.aic))
print("ARMA(4,3) AIC Value is " + str(results_ret_arma_2.aic))
ARMA(2,1) AIC Value is 9198.592608872896
ARMA(4,3) AIC Value is 9202.37437426682

Figure 31

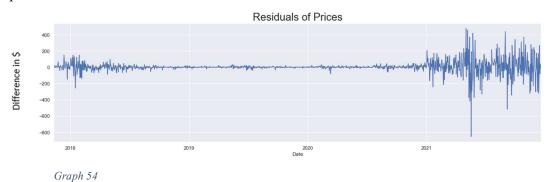
We will analyse the ARMA model's residuals in the same way that we have in the past for other models. To do this, we will plot another column that contains the residuals from our ARMA model (2,1):

The outcomes are comparable to what we previously discovered using AR and MA models. This suggests that if the ARMA model is used alone, the volatility in returns cannot be fully comprehended. We must still plot the autocorrelation function to determine whether the residuals are random.

Graph 51

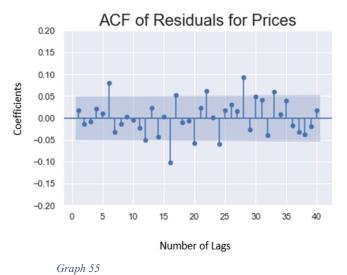
Most of the lags are falling within the confidence level, which allows us to conclude that the residuals are random, according to the ACF, which we can see.

Finally, we will test the performance of ARMA models on stationary data by using them near BTC prices. We will fit the ARMA models (2,1), which were our choice for returns, as well as the ARMA model (4,3), which is the model till we receive some coefficients over the significance level and also define our Null hypothesis for the LLR test that the more complex model (4,3) performs better than eh ARMA (2,1):


Dep.	Variable:	()	Close N	lo. Obse	rvations:	1501	Dep	Variable:)	Close N	o. Observ	ations:	1501
	Model:	ARIMA(2	0, 1)	Log Li	kelihood	-8621.952		Model:	ARIMA(4	, 0, 3)	Log Lik	elihood	-8604.261
					AIC	17253.903		Date: S	Sun, 05 Feb	2023		AIC	17226.521
		Sun, 05 Feb						Time:	19:	50:11		BIC	17274.346
	Time:	19:	50: <mark>01</mark>		BIC	17280.473		Sample:	11-11	-2017		HQIC	17244.337
	Sample:	<mark>11-11</mark> -	-2017		HQIC	17263.801			- 12-20	-2021			
		- 12-20	-2021				Covaria	nce Type:		opg			
Covaria	nce Type:		opg					coef	std err	z	P> z	[0.025	0.975]
							const	901.9887	7667.143	0.118	0.906	-1.41e+04	1.59e+04
	coef	std err	z	P> z	[0.025	0.975]	ar.L1	-0.4027	0.039	-10.316	0.000	-0.479	-0.326
const	901.9933	4246.570	0.212	0.832	-7421.130	9225.117	ar.L2	-0.0239	0.021	-1.150	0.250	-0.065	0.017
ar.L1	0.1776	0.038	4.723	0.000	0.104	0.251	ar.L3	0.6351	0.021	30.485	0.000	0.594	0.676
ar.L2	0.8206	0.038	21.762	0.000	0.747	0.895	ar.L4	0.7892	0.040	19.785	0.000	0.711	0.867
ma.L1	0.7546	0.045	16.701		0.666		ma.L1	1.2980	0.046	28.035	0.000	1.207	1.389
							ma.L2	1.3148	0.033	40.120	0.000	1.251	1.379
sigma2	5689.9125	64.767	87.852	0.000	5562.972	5816.853	ma.L3	0.6887	0.047	14.568	0.000	0.596	0.781
Ljun	g-Box (L1) ((Q): 0.94	Jarque	-Bera (JE	B): 32269	.73	sigma2	5628.1247	69.517	80.961	0.000	5491.874	5764.375
	Prob(0	Q): 0.33		Prob(JE	B): 0	.00	Ljur	ng-Box (L1) (Q): 0.50	Jarque-	Bera (JB	: 29975.	64
Hotoroc	kedasticity (I			Ske	,	.87		Prob(Q): 0.48		Prob(JB): 0.	00
							Heteros	kedasticity (H): 13.15		Skew	/: -0.	84
Prob(H) (two-side	d): 0.00		Kurtos	is: 25	.65	Prob	(H) (two-side	d): 0.00		Kurtosis	24.	83
Graph 5	52							Graph	53				
LLR tes	st(model a	arma 1. r	nodel a	arma 2.	DF = 4								

```
0.0
```

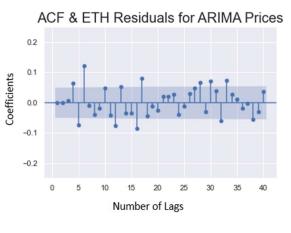
Figure 32


From the above results, we can see that even though model 2,1 performed better for the returns it is not the case when it comes to the prices. For prices, the higher lag model has better results in the LLR test and the lower AIC value confirms our conclusion. So we are accepting the Null hypothesis.

In the final part of ARMA models, we can analyse the residual values of ETH for close prices.

In the preceding residual price graphs, which can be seen by looking at the above plot, the prices exhibit similar tendencies. While there was a significant discrepancy between

projected and actual numbers in 2018 and 2021, it appears that there may be some volatility in those years.



Last but not least, we plot the ACF of residuals and review the outcomes:

We can observe from the graph above that there are numerous lags that are noticeably nonzero. By taking this into account, we can state that the price residuals are not random.

4.2.6 ARIMA models

In this section, we will analyse the outcomes of fitting various ARIMA models to our data. We can begin by plotting the ACF of residuals for ARIMA (1,1,1) in order to determine the lags:

Graph 56

We can see from the autocorrelation graph that it could be beneficial to include the 5th or 6th lags in our model because they are substantial. Let's try fitting several models with three delays as we often favor simpler models and evaluate the results using likelihood, AIC, and log likelihood ratio tests. Here we define the Null hypothesis as the model ARIMA (1,1,3) perform better than the others:

Fitted Models:

```
# 1
model_arima_1 = ARIMA(eth_train.Close[1:], order = (1,1,1))
results_model_arima_1 = model_arima_1.fit()
results_model_arima1.summary()
# 2
model_arima_2 = ARIMA(eth_train.Close[1:], order = (1,1,2))
results_model_arima_2 = model_arima_2.fit()
results_model_arima_2.summary()
model arima 3 = ARIMA(eth train.Close[1:], order = (1,1,3))
results model arima 3 = model arima 3.fit()
results_model_arima_3.summary()
# 4
model_arima_4 = ARIMA(eth_train.Close[1:], order = (2,1,1))
results_model_arima_4 = model_arima_4.fit()
model_arima_5 = ARIMA(eth_train.Close[1:], order = (3,1,1))
results_model_arima_5 = model_arima_5.fit()
# 6
model_arima_6 = ARIMA(eth_train.Close[1:], order = (3,1,2))
results_model_arima_6 = model_arima_6.fit()
```

Code Chunk 11

Results of LL and AIC:

```
print("ARIMA(1,1,1): \t LL = ", results_model_arima_1.llf, "\t AIC = ", results_model_arima_1.aic)
print("ARIMA(1,1,2): \t LL = ", results_model_arima_2.llf, "\t AIC = ", results_model_arima_2.aic)
print("ARIMA(1,1,3): \t LL = ", results_model_arima_3.llf, "\t AIC = ", results_model_arima_3.aic)
print("ARIMA(2,1,1): \t LL = ", results_model_arima_4.llf, "\t AIC = ", results_model_arima_4.aic)
print("ARIMA(3,1,1): \t LL = ", results_model_arima_5.llf, "\t AIC = ", results_model_arima_5.aic)
print("ARIMA(3,1,2): \t LL = ", results_model_arima_6.llf, "\t AIC = ", results_model_arima_6.aic)
ARIMA(1,1,1):
                                 LL = -8610.795256554851
                                                                                              AIC = 17227.590513109702
                                LL = -8610.12597071617
                                                                                            AIC = 17228.25194143234
ARIMA(1,1,2):
ARIMA(1,1,3):
                                LL = -8605.290078714881
                                                                                           AIC = 17220.580157429762
ARIMA(2,1,1):
                                LL = -8607.247994566285
                                                                                              AIC = 17222.49598913257
ARIMA(3,1,1):
                                LL = -8610.15517355717
                                                                                              AIC = 17230.31034711434
ARIMA(3,1,2):
                                LL = -8607.247371915331
                                                                                             AIC = 17226.494743830663
```

Figure 33

Because ARIMA (1,1,3) has a lower AIC and a larger LL, we can infer that it might perform better than the other models. Finally, we can use the LLR test to validate this assertion and make the following claim:

<pre>print("\nLLR test p-value print("\nLLR test p-value</pre>	<pre>= " + str(LLR_test(model_arima_1, model_arima_3, DF = 2))) = " + str(LLR_test(model_arima_2, model_arima_3))) = " + str(LLR_test(model_arima_4, model_arima_3))) = " + str(LLR_test(model_arima_5, model_arima_3)))</pre>
<pre>print("\nLLR test p-value</pre>	<pre>= " + str(LLR_test(model_arima_6, model_arima_3)))</pre>
LLR test p-value = 0.004	
LLR test p-value = 0.002	
LLR test p-value = 0.048	
LLR test p-value = 0.002	
LLK test p-value = 0.002	
LLR test p-value = 0.048	

Figure 34

From the results it is obvious that the ARIMA (1,1,3) which is the respective third model at the above outperforms the other models. So, we accept the Null hypothesis. Lastly, lets plot the residuals for this model and examine the results:

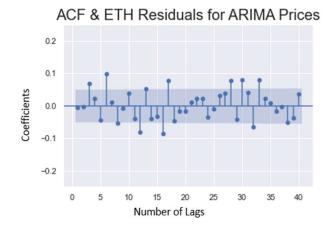


Figure 35

Our data must originate from a non-stationary process, as we are aware, in order to leverage higher integration levels. The Dicky-Fueller test will be used to determine whether integrated data is stationary or not after manually creating an integrated delta pricing column using Python's diff function where we define claim the Null hypothesis as the data is stationary:

```
eth_train['delta_prices']=eth_train.Close.diff(1)
sts.adfuller(eth_train.delta_prices[1:])
(-10.144321399562491,
8.262347504369866e-18,
16,
1483,
{'1%': -3.4347671645756304,
'5%': -2.86349089226533,
'10%': -2.5678086339403325},
16914.969030305292)
Figure 36
```

We can see from the results above that, at all three levels, our test statistic is higher than our critical values. Additionally, the p-value is quite close to 0, allowing us to conclude that the data is stationary. So, we accept the Null hypothesis. Due to the fact that, 1 level of integration in ARIMA models is sufficient, we can readily advise against using more integrated levels.

4.2.7 ARIMAX model

The ARIMAX model will be used in the following phase to integrate external factors that have an impact on prices. Python allows for the use of so-called exogenous variables when fitting models. To check for a correlation between ETH and BTC, we will use the price of Ethereum.

Dep.	Variable:		Close	No. Ob	oservations:	150	1							
	Model:	ARIMA	(2, 1, 2)	Log	g Likelihood	-8069.35	3							
	Date:	Mon, 06 F	eb 2023		AIC	16150.70	6	Dep.	Variable:		Close	No. Ob	servations:	1501
	Time:	1	19:41:53		BIC	16182.58	6		Model:	ARIMA(1, 1, 1)	Log	Likelihood	-8070.893
	Sample:	11-	11-2017		HQIC	16162.58	3		Date:	Thu, <mark>0</mark> 9 Fe	b 2023		AIC	16149.787
		- 12-3	20-2021						Time:	0	7:19:59		BIC	16171.040
Covariar	nce Type:		opg						Sample:	11-1	1-2017		HQIC	16157.704
			10							- 12-2	0-2021			
	coef	std err	z	P> z	[0.025	0.975]	Cov	aria	nce Type:		opg			
Close	0.0541	0.001	87.804	0.000	0.053	0.055								
ar.L1	0.0408	0.065	0.624	0.533	-0.087	0.169				std err		P> z	[0.025	0.975]
ar.L2	0.7108	0.062	11.434	0.000	0.589	0.833	CI	ose	0.0539	0.001	91.295	0.000	0.053	0.055
ma.L1	-0.0804	0.074	-1.089	0.276	-0.225	0.064	a	r.L1	-0.8277	0.040	-20.582	0.000	-0.906	-0.749
ma.L2	-0.6386	0.068	-9.448	0.000	-0.771	-0.506	ma	.L1	0.7707	0.048	16.070	0.000	0.677	0.865
sigma2	2759.2403	39.691	<mark>69.5</mark> 18	0.000	2681.447	2837.033	sign	na2	2760.8465	36.778	75.067	0.000	2688.762	2832.931
Ljung	g-Box (L1)	(Q): 0.29	Jarque	e-Bera (JB): 23797	.11		Ljun	g-Box (L1) (Jarque	e-Bera (J	IB): 24575	.34
	Prob	(Q): 0.59		Prob(JB): 0	.00			Prob(Q): 0.22		Prob(IB): 0	.00
Heterosk	Redasticity	(H): 8.54		SI	(ew: 0	.22	Hete	eros	kedasticity (H): 8.57		Sk	ew: 0	.31
Prob(H) (two-sid	ed): 0.00		Kurto	osis: 22	.51	P	rob(H) (two-side	d): 0.00		Kurto	sis: 22	.82

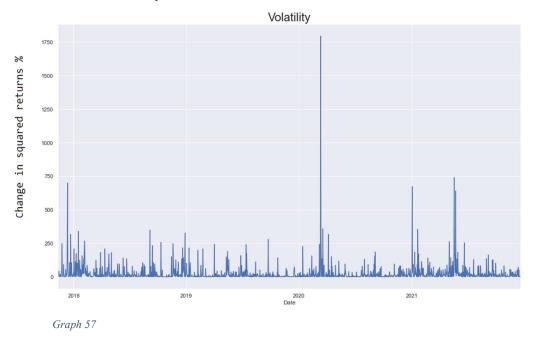
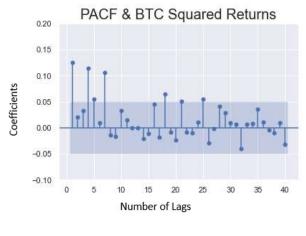

Table 32

Table 33


As it can be seen above the p-value of the close prices of BTC is statistically significant for our prices in ETH in the model where we have 2 lags in each side of model(AR, MA). Furthermore, looking at the log likelihood we expect a great fit to the dataset in the first model which we will illustrate in the forecasting section of the ETH.

4.2.8 ARCH and GARCH Models

In this part, we will analyze the return volatility using ARCH models. We'll make another column and use the squared of returns as our volatility values before we start testing the models. The plot below shows that, as may be predicted, the returns for ETH appear to have substantial volatility.

Next, although though PACF cannot help us determine the number of delays to be utilized in the ARCH model, it may still provide us with a wealth of useful information:

Graph 58

The data above show that, of the seven initial lags, only 4 are statistically significant. Such high PACF scores may indicate that short-term patterns in variances are common. Now, we will fit the ARCH model with constant mean with 5 iterations

Dep. Vari	iable:		r	eturns	R-squ	ared:	0.000
Mean M	odel:	(Constant	Mean	Adj. R-squ	ared:	0.000
Vol M	odel:			ARCH	Log-Likelih	nood:	4584.43
Distribu	ition:		N	lormal		AIC:	9174.85
Met	thod:	Maxin	n <mark>um L</mark> ike	lihood		BIC:	9190.79
				N	o. Observat	ions:	1500
I	Date:	Mor	n, Fe <mark>b 0</mark> 6	3 2023	Df Resid	luals:	1499
1	Time:		18	:18:59	Df M	odel:	1
				P> t	05 09/ 0		
C(Dole	05 09/ 0		
-		std err	t			Conf. Int.	
		0.128			[3.919e-0		
mu 0.28	393						
-	393 lodel			2.339e-02		2, 0.539]	Conf. In
mu 0.28	393 lodel	0.128	2.267	2.339e-02	[3.919e-0	2, 0.539] 95.0%	

We can see from the results above that R squared is zero when adjusted and not adjusted. R squared, which is used to assess explanatory variation in relation to the mean, indicates that it will not be particularly helpful in explaining the deviation for our ARCH model. Moving on to log likelihood, we can observe that ARCH models have a higher log likelihood value than our prior AR, MA, ARMA, and ARIMA models, indicating that simpler ARCH models can outperform complicated ARIMA models in estimations.

Second, we will construct a ARCH model with 2 lags and contrast the outcomes with the first.

Dep. Variable		re	turns	R-sq	uared:	0.000
Mean Model	: C	onstant I	Mean	Adj. R-sq	uared:	0.000
Vol Model		A	RCH	Log-Likeli	hood: -4	581.12
Distribution		No	ormal		AIC: 9	170.24
Method	: Maxim	um Likeli	hood		BIC: 9	191.49
			1	No. Observa	tions:	1500
Date	: Mon	, Feb 06	2023	Df Resi	duals:	1499
Time		18:2	24:40	Df	Nodel:	1
coef mu 0.3124 Volatility Model	std err 0.126	t 2.477 1	P> 1.325e-0	-	Conf. Int. 02, 0.560]	
3	coef	std err	t	P> t	95.0%	Conf. In
omega 22.	5594	2.610	8.643	5.458e-18	[17.44	4, 27.67
alpha[1] 0.1	1037 4.9	948e-02	2.097	3.600e-02	[6.777e-	03, 0.20
alpha[2] 0.0	0644 5.1	161e-02	1.247	0.212	[-3.678e-	02, 0.16

When we employed 2 lags, the log-likelihood increased while the AIC fell, which is immediately apparent. These two are already signs that the second model performs better than the previous one. Finally, when looking at the coefficients (p-values), we can see that all of the figures—aside from alpha 2—are statistically significant. Overall, we can still say that the second model, which has three delays, outperforms the first one in terms of estimating market volatility.

We will fit GARCH models, which are an extension of ARCH and are also known as the "ARMA Equivalent" of ARCH and are typically predicted to perform better, in the final section of this sub-chapter. We will compare the outcomes of fitting both basic and multilag GARCH models:

Weart Wodel. Constant Weart Ruj. R-squared. 0.000	returns R-squared: 0
Mean Model. Constant Mean Auj. R-squared. 0.000	
	stant Mean Adj. R-squared: 0
Vol Model: GARCH Log-Likelihood: -4539.37 Vol Model:	GARCH Log-Likelihood: -453
Distribution: Normal AIC: 9086.75 Distribution:	Normal AIC: 908
Method: Maximum Likelihood BIC: 9108.00 Method: Maximum I	Likelihood BIC: 911
No. Observations: 1500	No. Observations:
Date: Mon, Feb 06 2023 Df Residuals: 1499 Date: Mon, Fel	eb 06 2023 Df Residuals:
Time: 18:27:21 Df Model: 1	18:28:00 Df Model:
coef std err t P> t 95.0% Conf. Int. mu 0.2676 0.119 2.245 2.478e-02 [3.397e-02, 0.501]	263 2.367e-02 [3.600e-02, 0.502]
/olatility Model coef std e	err t P> t 95.0% Cor
coef std err t P>[t] 95.0% Conf. Int. omega 1.6650 0.9	918 1.813 6.985e-02 [-0.135, 3
omega 1.5002 0.898 1.671 9.464e-02 [-0.259, 3.259] alpha[1] 0.0825 3.462e-	e-02 2.382 1.721e-02 [1.462e-02,
alpha[1] 0.0727 3.256e-02 2.233 2.556e-02 [8.884e-03, 0.137] beta[1] 0.6945 0.3	384 1.809 7.050e-02 [-5.809e-02,
beta[1] 0.8727 5.708e-02 15.291 8.800e-53 [0.761, 0.985] beta[2] 0.1625 0.3	362 0.449 0.654 [-0.547, 0

Looking at the above, it is clear that a simple GARCH model with the parameters (1,1) outperforms a more complicated GARCH model based on having beta[2] bigger than 0,5, which denotes that the difference is not significant. In light of this, we will continue to use the GARCH (1,1).

Finally, we can see that the ARCH model has a higher log probability when compared to the GARCH (1,1) model with three lags. From that angle, we may say that the ARCH model would be a better fit to estimate the volatility of ETH.

5 Results and Discussion

In this section we will share the predictions of each of the cryptocurrencies for AR, MA, ARMA and ARIMAX models implemented and then derive the results.

5.1 Forecasting of BTC

In this section we will use python predict method to make forecasts with the models that we have built and plot the predictions vs actual values from our testing dataset.

5.1.1 Forecasting with AR model

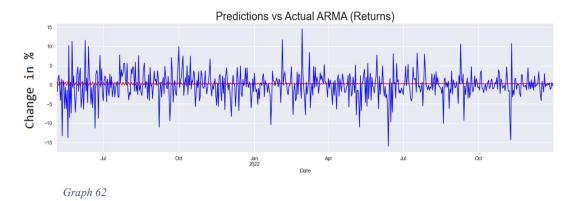
Initially we can start with our AR models for BTC prices:

From the above graph we can see that AR model is not performing well with prices. Here the main reason is because AR models are based on constants and it performs poorly with non-stationary datasets.

As we have already found out that the returns of BTC prices are stationary we can plot our predictions with the chosen AR return model and plot the predicted and actual values.

Graph 60

From the plot we can see that our model (red line) makes no assumptions as it predicts the future returns will be either 0 or very close to 0.


5.1.2 Forecasting with MA model

When also try MA models in order to see how well they perform in forecasting of returns we have the similar results as we had in AR models where can see the poor performance by the model with constant prediction

5.1.3 Forecasting with ARMA model

Next, we can also try to predict using the ARMA model and examine the results:

From ARMA model, even though it does not have one constant value for the whole period we cannot still conclude that this model performs well when it comes to predicting the returns.

5.1.4 Forecasting with ARIMAX

Finally, we will use the Ethereum data as exogenous variable and try to use our ARIMAX model in order to to our forecasts and see how well the model performs:

Looking at the above plot we can see that our model with ARIMAX perform significantly better than other models that we had before. It shows the correct trends even though sometimes it does overperform and sometimes underperform. From the forecast we can also conclude that adding more exogenous variables can increase the performance of model significantly.

5.2 Forecasting of ETH

In this section, we'll create predictions using the models we've built using the Python predict method and plot those predictions against the actual values from our testing dataset.

5.2.1 Forecasting with AR model

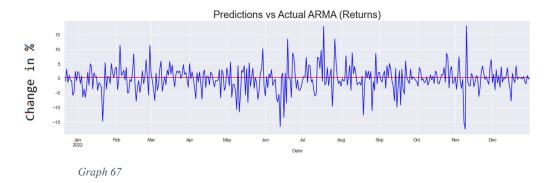
We can start with our AR models for ETH pricing initially:

We can observe from the graph above that the AR model does not work well with prices. Here, the fundamental cause is that AR models' performance with non-stationary datasets is weak because they are reliant on constants. We may plot our predictions using the selected AR return model and plot the projected and actual values because we have already established that the returns of ETH prices are stationary.

Graph 65

The plot shows that our model (red line), which forecasts that future returns would either be zero or extremely close to zero, contains no assumptions.

5.2.2 Forecasting with MA model


We get comparable outcomes to what we saw with AR models, where we could show the model's poor performance with constant prediction, when we also test MA models to see how well they do in projecting returns.

Gruph 00

5.2.3 Forecasting with ARMA model

Next, we can also try to predict using the ARMA model and examine the results:

We cannot infer from the ARMA model that this model is effective at predicting returns despite the fact that it does not have a single constant value for the entire period.

5.2.4 Forecasting wiht ARIMAX

Finally, we will attempt to use our ARIMAX model to make our forecasts using the BTC data as an exogenous variable and test the model's performance:

As seen in the aforementioned graphic, our model with ARIMAX performs noticeably better than other models we had previously. Despite the fact that it occasionally outperforms and occasionally underperforms, it always displays the right trends. We can infer from the forecast that significantly more exogenous factors can improve the model's performance.

6 Conclusion

In conclusion it is important to mention that after assessing different time-series models it may be useful to do detailed multivariate analysis and understand the relationship between other factors to in order to make more accurate predictions. Taking into consideration the fact that this thesis mainly covered the univariate analysis and only used one exogenous variable during model fitting, the ARIMAX model performed the best. In spite of the fact of having not ideal predictions on prices, using ARIMAX, we were able to detect the trends on testing dataset very accurately which points one of the aims of the paper. Furthermore, thesis also explained that it is crucial to analyse the time series analysis of cryptocurrencies with more than 1 exogenous variable and heavily leaning on multivariate analysis of these coins. Thesis covered detailed analysis of each crypto currency the existence of seasonality, stationarity and other important indicators which enables us to have more enlightened comprehension on the BTC, ETH and in crypto world generally considering these coins as leading coins. Different models of time series also showed us on which kind of datasets can be the best fit for those models based on the characteristics of the respective datasets. As those characters can play a significant role on the course of the analysis and also have a great impact on the decision to be made on the model. Other time series properties such as auto correlation functions and partial autocorrelation functions helped us to define the number of lags and their importance to the data set in modelling. As crypto market is considered as one of the most volatile financial instruments to be traded in the current world it will be important to mention the final note which is the necessity of mentioning the description of thesis on the functionalities of time series with different models and assessing the volatility with ARCH and GARCH models. Using all the indicators such as returns, residuals and prices we were able to confirm that the volatility in the selected crypto currencies indeed exists.

7 References

Parizo, C. (2021). "What are the 4 different types of blockchain technology?", Techtarget <u>https://www.techtarget.com/searchcio/feature/What-are-the-4-different-types-of-</u>

blockchain-technology

Brownlee, J, (2017), "White Noise Time Series", machinelearninfmastery <u>https://machinelearningmastery.com/white-noise-time-series-python/</u>

Daniel, D. (2016). "Applied Univariate, Bivariate and Multivariate Statistics" *ISBN 978-1-118-63233-8*

Prabhakaran, S. (2019). "Vector Autoregression (VAR) – Comprehensive Guide with Examples in Python", Machinelearningplus <u>https://www.machinelearningplus.com/time-series/vector-autoregression-examples-python/</u>

Amadebai, E.(N.D). "5 Methods of Collecting Data", analyticsfordecision. https://www.analyticsfordecisions.com/methods-of-collecting-data/ Palma, W. (2016). "Time Series Analysis"

ISBN 978-1-118-63432-5

Grabowski, M. (2019). "Cryptocurrencies: A Primer on Digital Money" *ISBN 978-0-367-19267-9*

Reiff, N. (2022, July 6). "What Are ERC-20 Tokens on the Ethereum Network?, investopedia

https://www.investopedia.com/news/what-erc20-and-what-does-it-mean-ethereum/

Janssen, J. (2013). "VaR methodology for Nan-Gaussian Finance" ISBN 978-1-84821-464-4

Brownlee, J. (2018). "A Gentle Introduction to Exponential Smoothing for Time Series Forecasting in Python", machinelearningmastery <u>https://machinelearningmastery.com/exponential-smoothing-for-time-series-forecasting-</u>

<u>in-python/</u>

Chowdhury, N. (2019). "Inside Blockchain, Bitcoin, and Cryptocurrencies". *ISBN 978-1-00050-770-6*.

Cointelegraph, (N.D). "Ripple (XRP): A beginner's guide to the digital asset built for global payments" <u>https://cointelegraph.com/blockchain-for-beginners/what-is-ripple-a-beginners-guide-for-</u> understanding-ripple

CFI team, (2022). "Binance Coin(BNB)", corporatefinanceinstitute <u>https://corporatefinanceinstitute.com/resources/cryptocurrency/binance-coin-</u> <u>bnb/#:~:text=Binance%20Coin%20(BNB)%20is%20a,1.4%20million%20transactions%20</u> per%20second.

Coinbase. (N.D). "What is Cardano?" https://www.coinbase.com/learn/crypto-basics/what-is-cardano

Sankrit, K. (2022). "What is Bitcoin dominance?". MoonPay <u>https://www.moonpay.com/blog/what-is-bitcoin-dominance</u>

Shetty, C. (2020) "Time Series Models". towardsdatascience https://towardsdatascience.com/time-series-models-d9266f8ac7b0

Engle, R (N.D) "An Introduction to the Use of ARCH/GARCH models in Applied Econometrics"

https://web-static.stern.nyu.edu/rengle/GARCH101.PDF

Brownlee, J(2016). "How to Normalize and Standardize Time Series Data in Python". Machinelearningmastery https://machinelearningmastery.com/normalize-standardize-time-series-data-python/

Hyndman R(2021). "Forecasting: Principles and Practice". Otexts <u>https://otexts.com/fpp3/intro.html</u>

Monigatti, L, (2022). "Interpreting ACF and PACF Plots for Time Series Forecasting". Towardsdatascience

https://towardsdatascience.com/interpreting-acf-and-pacf-plots-for-time-series-forecastingaf0d6db4061c

Brownlee, J(2016). "How to Identify and Remove Seasonality fromTime Series Data with Python". Machinelearningmastery https://machinelearningmastery.com/time-series-seasonality-with-python/

Palachy, S, (2019). "Stationarity in time series analysis". Towardsdatascience https://towardsdatascience.com/stationarity-in-time-series-analysis-90c94f27322

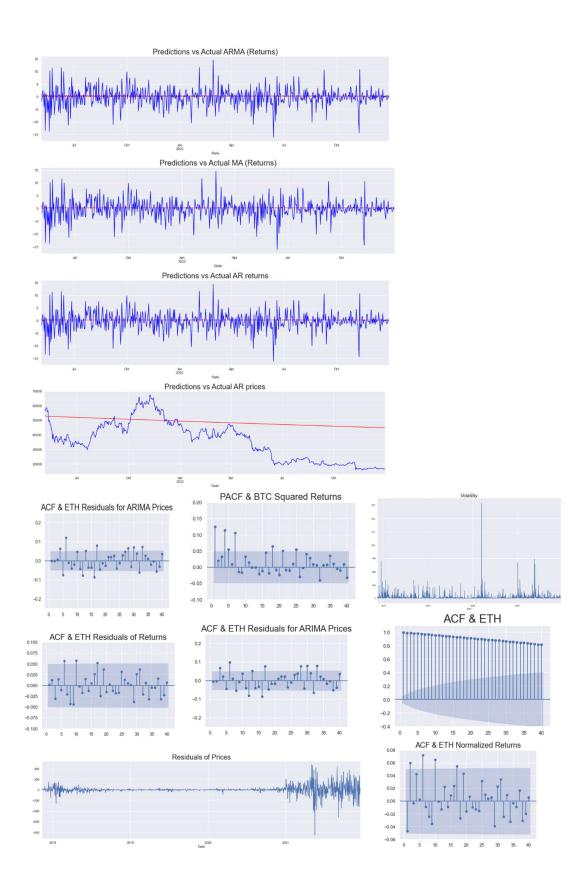
Smarten, (2018). "What is ARIMAX Forecasting and how is it used for Enterprise Analysis?".

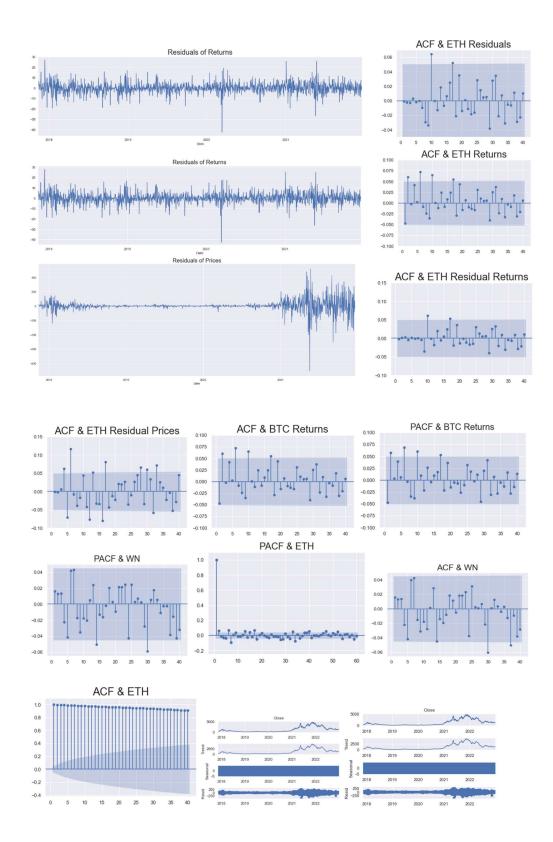
https://www.elegantjbi.com/blog/what-is-arimax-forecasting-and-how-is-it-used-forenterprise-analysis.htm

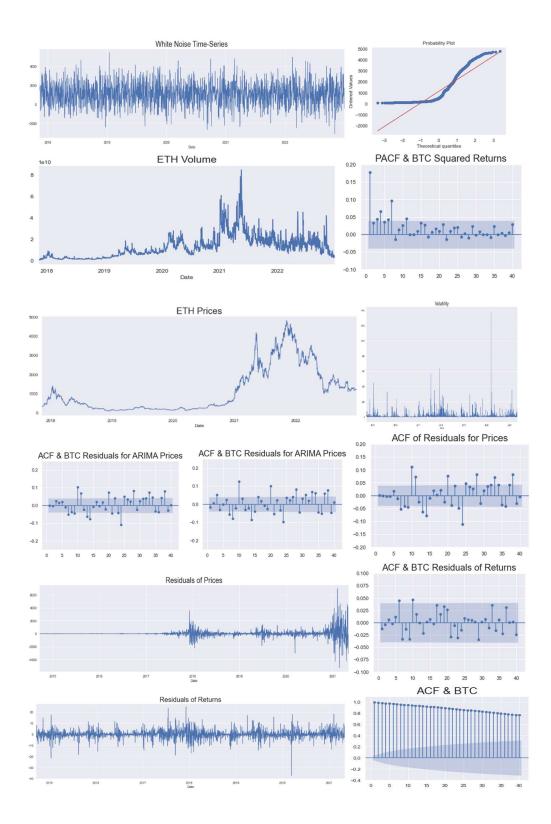
Torben, G, (2013). "Financial Risk Measurement for Financial Risk Management". ScienceDirect

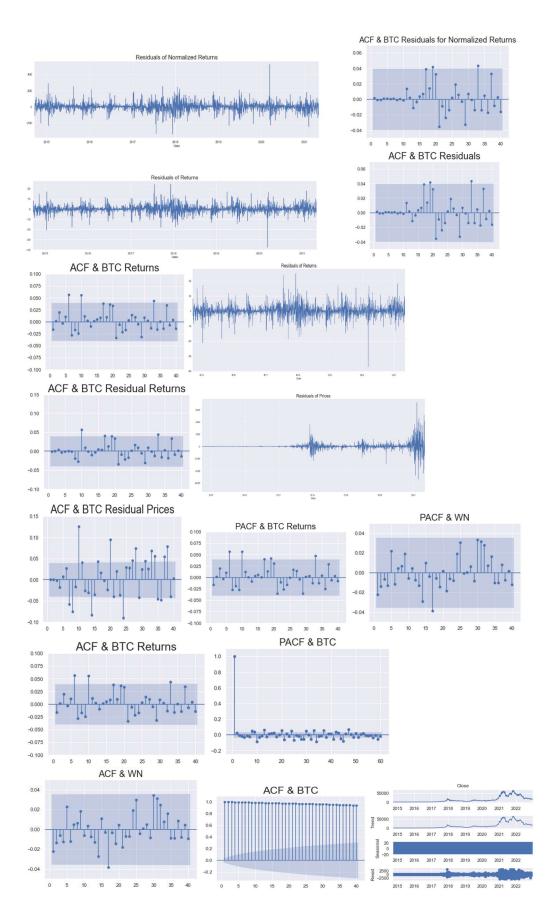
https://www.sciencedirect.com/science/article/abs/pii/B9780444594068000172

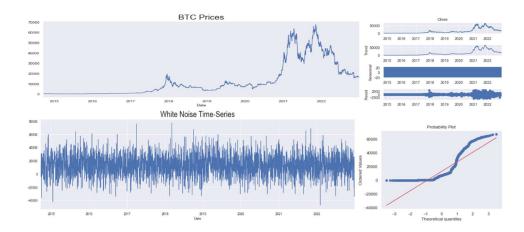
Evomics, (N.D), "Likelihood Ratio Test". Evolution and Genomics https://evomics.org/resources/likelihood-ratio-test/


Wayne, D, "The History of Bitcoin, First Cryptocurrency". Usnews <u>https://money.usnews.com/investing/articles/the-history-of-bitcoin</u>


8 List of pictures, tables, graphs and abbreviations


Predictions vs Actual ARIMAX (Prices) 4000 300 2500 2000 1500 1000 Jan 2022 Predictions vs Actual ARMA (Returns) -10 -15 Jan 2022 Date Predictions vs Actual MA (Returns) Jan 2022 Date Predictions vs Actual AR returns -15 Jan 2022 Predictions vs Actual AR prices 4000 3500 3000 250 2000 1500 1000 Jan 2022 Predictions vs Actual ARIMAX (Prices) 40000 30000


Jan 2022


8.1 List of Graphs

8.2 List of Tables

						0.000		- later			D -	1111111111111	0.000
Dep. Vari	iable:	r	eturns	R-squ	ared:	0.000	Dep. Vari	able:	R.	returns	R-SI	quared:	
Mean M	odel:	Constant	Mean	Adj. R-squ	ared:	0.000	Mean M	odel:	Constan	t Mean	Adj. R-s	quared:	0.00
Vol M	odel:	G	ARCH	Log-Likelil	hood:	-4539.37	Vol M	odel:	G	BARCH	Log-Like	lihood:	-4539.2
Distribu	ution:	N	lormal		AIC:	9086.75	Distribu	tion:	1	Normal		AIC:	9088.5
Met	thod: N	laximum Like	lihood		BIC:	9108.00	Met	thod: N	Aaximum Like	elihood		BIC:	9115.1
				No. Observat	tions:	1500					No. Observ	ations:	150
	Date:	Mon, Feb 06	2023	Df Resid	duals:	1499		Date:	Mon, Feb 0	6 2023	Df Res	siduals:	149
	Time:	18	27:21	Df N	lodel:	1	0	lime:	18	8:28:00	Df	Model:	
vlean Mod	el oef std	err t	P>	t 95.0% (Conf. In	t.		oef std				6 Conf. lı	
co mu 0.26	oef std 676 0.		P> 2.478e-0					bef std 992 0.	err t 119 2.263	P 2.367e		6 Conf. I 1 e-02, 0.50	
co mu 0.26	oef std 676 0.						co mu 0.26	bef std 992 0.				e-02, 0.50	
co mu 0.26	oef std 676 0.				02, 0.50		co mu 0.26	oef std 92 0. odel	119 2.263	2.367e	-02 [3.600e	e-02, 0.50 95.0%	2]
co mu 0.26	oef std 676 0.	119 2.245	2.478e-0)2 [3.397e-0	02, 0.50 9 5.0 %	1]	ca mu 0.26 Volatility M	oef std 92 0. odel coef	119 2.263 std err 0.918	2.367e	-02 [3.600e P> t	e-02, 0.50 95.0 % [-0.	2] 6 Conf. II
ca mu 0.26 Volatility M	oef std 376 0. lodel coef	119 2.245 std err	2.478e-0	2 [3.397e-0 P> t 9.464e-02	02, 0.50 9 5.0% [-0.	1] 6 Conf. Int.	ca mu 0.26 Volatility M omega	oef std 392 0. odel	119 2.263 std err 0.918	2.367e t 1.813	-02 [3.600¢ P> t 6.985e-02	e-02, 0.50 95.0% [-0. [1.462e	2] 6 Conf. li 135, 3.46

Dep. Variable:	returns	R-squared:	0.000
Mean Model:	Constant Mean	Adj. R-squared:	0.000
Vol Model:	ARCH	Log-Likelihood:	-4581.12
Distribution:	Normal	AIC:	9170.24
Method:	Maximum Likelihood	BIC:	9191.49
		No. Observations:	1500
Date:	Mon, Feb 06 2023	Df Residuals:	1499
Time:	18:24:40	Df Model:	1

Volatility Model

	coef	std err	t	P> t	95.0% Conf. Int.
mu	0.3124	0.126	2.477	1.325e-02	[6.522e-02, 0.560]

0.000	R-squared:	returns	Dep. Variable:
0.000	Adj. R-squared:	Constant Mean	Mean Model:
-4584.43	Log-Likelihood:	ARCH	Vol Model:
9174.85	AIC:	Normal	Distribution:
9190.79	BIC:	Maximum Likelihood	Method:
1500	No. Observations:		
1499	Df Residuals:	Mon, Feb 06 2023	Date:
1	Df Model:	18:18:59	Time:

Mean Model

	coef	std err	t	P> t	95.0% Conf. Int.
mu	0.2893	0.128	2.267	2.339e-02	[3.919e-02, 0.539]

							241.0						
	coef	std e	rr	t	P> t	95.0% Conf. In	t. Volati	lity Model					
omega	22.5594	2.61	0 8.64	3 5.45	8e-18	[17.444, 27.67	5]	c	oef s	td err	t	P> t	95.0% Co
alpha[1]	0.1037	4.948e-0	2 2.09	7 3.60	0e-02 [6	6.777e-03, 0.20	1] om	ega 24.0	554	2.094 1	11.485	1.566e-30	[19.950, 3
alpha[2]	0.0644	5.161e-0	02 1.24	7	0.212 [-3	3.678e-02, 0.16	6] alph	a[1] 0.10	080 4.79	3e-02	2.253	2.429e-02	[1.403e-02
Dep. \	/ariable:		Close	No. Ob	oservation	s: 1501							
	Model:	ARIMA	(2, 1, 2)	Log	g Likelihoo	-8069.353	Dep.	Variable:				servations:	1501
	Date:	Mon, 06 F	eb 2023		A	IC 16150.706		Model:	ARIMA		Log	Likelihood	-8604.261
	Time:	1	19:41:53		в	IC 16182.586		Date: Time:	Sun, 05 Fe	9:50:11			17226.521 17274.346
	Sample:	11-	11-2017		HQ	IC 16162.583		Sample:		1-2017			17244.337
		- 12-3	20-2021						- 12-2	0-2021			
Covarian	ce Type:		opg				Covaria	nce Type:		opg			
								coef	std er	r	z P>	z [0.025	5 0.975]
	coef	std err	z	P> z	[0.025	0.975]	const	901.9887	7667.14	3 <u>0</u> .11	18 0.90	06 -1.41e+04	1.59e+04
Close	0.0541	0.001	87.804	0.000	0.053	0.055	ar.L1	-0.4027	0.03	9 -10.31	16 0.0	-0.479	-0.326
ar.L1	0.0408	0.065	0.624	0.533	-0.087	0.169	ar.L2	-0.0239	0.02	1 -1.15	0.2	-0.065	0.017
ar.L2	0.7108	0.062	11.434	0.000	0.589	0.833	ar.L3	0.6351	0.02	30.48	85 0.00	0.594	0.676
ma.L1	-0.0804	0.074	-1.089	0.276	-0.225	0.064	ar.L4	0.7892	0.040	19.78	85 0.00	0.711	0.867
ma.L2	-0.6386	0.068	-9.448	0.000	-0.771	-0.506	ma.L1	1.2980					
sigma2	2759.2403	39.691	69.518	0.000	2681.447	2837.033	ma.L2	1.3148					
							ma.L3	0.6887	0.04 69.51		0.00 0.00		
Ljung	-Box (L1)	(Q): 0.29	Jarque	e-Bera (JB): 237	97.11	sigma2	5026.1247	09.51	80.90	0.00	00 0491.874	+ 5/04.3/5

Prob(JB):

Skew:

Kurtosis:

0.00

0.22

22.51

Prob(Q): 0.59

Heteroskedasticity (H): 8.54

Prob(H) (two-sided): 0.00

	model.	74 (111)-4(-1	, 0, 0)	Logici	Rennood	-0004.201		
	Date:	Sun, 05 Feb	2023		AIC	17226.521		
	Time:	19:	50:11		BIC	17274.346		
	Sample:	11-11	-2017		HQIC	17244.337		
		- 12-20	-2021					
Covaria	nce Type:		opg					
	coef	std err	z	P> z	[0.025	0.975]		
const	901.9887	7667.143	0.118	0.906	-1.41e+04	1.59e+04		
ar.L1	-0.4027	0.039	-10.316	0.000	-0.479	-0.326		
ar.L2	-0.0239	0.021	-1.150	0.250	-0.065	0.017		
ar.L3	0.6351	0.021	3 <mark>0.485</mark>	0.000	0.594	0.676		
ar.L4	0.7892	0.040	19.785	0.000	0.711	0.867		
ma.L1	1.2980	0.046	28.035	0.000	1.207	1.389		
ma.L2	1.3148	0.033	40.120	0.000	1.251	1.379		
ma.L3	0.6887	0.047	14.568	0.000	0.596	0.781		

Ljung-Box (L1) (Q):	0.50	Jarque-Bera (JB):	29975.64
Prob(Q):	0.48	Prob(JB):	0.00
Heteroskedasticity (H):	13.15	Skew:	-0.84
Prob(H) (two-sided):	0.00	Kurtosis:	24.83

								Dep.	Variable:			IS No.		tions:	15	
Dep.	Variable:		C	lose N	o. Obse	ervations:	1501		Model:	ARI	/A(4, 0, 3	3) L	og Likel	ihood	-4592.1	87
	Model:	AR	MA(2,	0, 1)	Log L	.ikelihood	-8621.952		Date:	Sun, 05	Feb 202	3		AIC	9202.3	74
	Date:	Sun, 0	5 Feb	2023		AIC	17253.903		Time:		19:30:1	6		BIC	9250.1	93
	Time:			50:01		BIC	17280.473		Sample:	1	1-12-201	7		HQIC	9220.1	89
	Sample:		11-11-			HQIC	17263.801			- 1	2-20-202	1				
	Sample.					HQIC	17203.001	Covarian	nce Type:		op	g				
		-	12-20-						coef	std err	z	P> z	[0.025	0.975]		
Covariar	nce Type:			opg				const	0.3060	0.136	2.244	0.025	0.039	0.573		
	coe	f st	d err	z	P> z	[0.025	0.9751	ar.L1	0.4299	0.172	2.493	0.013	0.092	0.768		
const	901.993		6.570	0.212	0.832	-7421.130	-	ar.L2	-0.0078	0.185	-0.042	0.966	-0.371	0.355		
								ar.L3	-0.6632	0.161	-4.125	0.000	-0.978	-0.348		
ar.L1	0.177		0.038	4.723	0.000	0.104		u	0.0355	0.030	1.202	0.229	-0.022	0.093		
ar.L2	0.820	6 (0.038	21.762	0.000	0.747	0.895		-0.4733	0.173	-2.737	0.006	-0.812	-0.134		
ma.L1	0.754	6 (0.045	16.701	0.000	0.666	0.843		0.0662	0.200	0.331	0.741	-0.326	0.459		
sigma2	5689.912	5 64	.767	87.852	0.000	5562.972	5816.853		0.6228	0.176	3.531 49.487	0.000	0.277	0.968		
		(0)	0.04		D	B), 00000	70	siginaz	20.7031	0.540	43.407	0.000	23.040	21.101		
Ljung	g-Box (L1)		0.94	Jarque				Ljun	g-Box (L1)			que-Ber		1830.23		
	Prot	o(Q):	0.33		Prob(J		0.00		Prob		97		b(JB):	0.00		
						(0.87		edasticity	(H): 0.	89		Skew:	-0.27		
	kedasticity H) (two-sic		0.00		Ske				H) (two-sic	led): 0.	20	Ku	rtosis:	8.39		
	kedasticity H) (two-sic		0.00		Kurtos		5.65	Prob(H) (two-sic . Variable			Kur m_ret				15
								Prob(:		rm_ret	No. Ob		tions:	
Prob(I			0.00	turns N	Kurtos			Prob(Variable	: : A	nor	rm_ret , 0, 6)	No. Ob	oservat	tions:	<mark>-9037.9</mark>
Prob(I	H) (two-sid	ded):	0.00		Kurtos	sis: 25	5.65	Prob(Variable Model	: : A : Sun,	nor RIMA(0 05 Feb	rm_ret , 0, 6)	No. Ob	oservat	tions: hood	-9037.9 18091.9
Prob(I	H) (two-sic Variable:	ded):	0.00 re MA(2,	0, 1)	Kurtos	sis: 25 ervations:	5.65 1500	Prob(Variable Model Date	: A : Sun, :	nor RIMA(0 05 Feb	rm_ret (, 0, 6) () 2023 (22:37	No. Ob	oservat g Likeli	tions: hood AIC	-9037.9 18091.9 18134.4
Prob(l	H) (two-sid Variable: Model:	ded): ARI	0.00 re ^r MA(2, 5 Feb 3	0, 1)	Kurtos	sis: 25 ervations: .ikelihood	5.65 1500 -4594.296	Prob(Variable Model Date Time	: A : Sun, :	nor RIMA(0 05 Feb 10	m_ret (, 0, 6) () 2023 (22:37 ()-2017	No. Ob	oservat g Likeli	tions: hood AIC BIC	-9037.9 18091.9 18134.4
Prob(I	H) (two-sid Variable: Model: Date: Time:	ded): ARI Sun, 0	0.00 rei MA(2, 5 Feb : 19:2	0, 1) 2023 8:40	Kurtos	sis: 25 ervations: .ikelihood AIC BIC	1500 -4594.296 9198.593 9225.159	Prob(Variable Model Date Time	: A : Sun, :	nor RIMA(0 05 Feb 10 11-12	m_ret (, 0, 6) () 2023 (22:37 ()-2017	No. Ob	oservat g Likeli	tions: hood AIC BIC	-9037.9 18091.9 18134.4
Prob(I	H) (two-sid Variable: Model: Date:	ARI Sun, 0	0.00 ref MA(2, 5 Feb 2 19:2 11-12-2	0, 1) 2023 28:40 2017	Kurtos	sis: 25 ervations: .ikelihood AIC	5.65 1500 -4594.296 9198.593	Prob(Variable Model Date Time Sample nce Type	: A : Sun, :	nor RIMA(0 05 Feb 10 11-12 - 12-20	m_ret (, 0, 6) (2023) (22:37) (-2017) (-2021)	No. Ot	oservat g Likeli	hood AIC BIC HQIC	-9037.9 18091.9 18134.4 18107.8
Prob(H) (two-sid Variable: Model: Date: Time: Sample:	ARI Sun, 0	0.00 rei MA(2, 5 Feb : 19:2	0, 1) 2023 28:40 2017 2021	Kurtos	sis: 25 ervations: .ikelihood AIC BIC	1500 -4594.296 9198.593 9225.159	Prob(Dep	Variable Model Date Time Sample nce Type	: A : Sun, : : : :	nor RIMA(0 , 05 Feb 10: 11-12 - 12-20 td err	m_ret , 0, 6) , 2023 , 22:37 , 2017 , 2021 opg z	No. Ot Log	oservat g Likeli	hood AIC BIC HQIC	-9037.9 18091.9 18134.4 18107.8
Prob(H) (two-sid Variable: Model: Date: Time:	ARI Sun, 0	0.00 ref MA(2, 5 Feb 2 19:2 11-12-2	0, 1) 2023 28:40 2017	Kurtos	sis: 25 ervations: .ikelihood AIC BIC	1500 -4594.296 9198.593 9225.159	Prob(Dep Covaria	Variable Model Date Time Sample nce Type co 5.93	: A : Sun, : : : : : : :	nor RIMA(0 , 05 Feb 10: 11-12 - 12-20 td err 2.994	m_ret , 0, 6) 2023 22:37 -2017 -2021 opg z 1.982	No. Ok Log : P> z : 0.047	pservat g Likeli l [0 r ()	hood AIC BIC HQIC	-9037.9 18091.9 18134.4 18107.8 0.975 11.802
Prob(H) (two-sid Variable: Model: Date: Time: Sample: nce Type:	ARI Sun, 0	0.00 re: MA(2, 5 Feb : 19:2 11-12-: 12-20-:	0, 1) 2023 28:40 2017 2021	Kurtos o. Obse Log L	sis: 25 ervations: .ikelihood AIC BIC	1500 -4594.296 9198.593 9225.159 9208.489	Prob(Dep	Variable Model Date Time Sample nce Type	: A : Sun, : : : : : : :	nor RIMA(0 , 05 Feb 10: 11-12 - 12-20 td err	rm_ret (, 0, 6) (2023) (22:37) (-2021) (-2021) (-2021) (-2021) (-2021) (-22:214)	No. Ok Log : P> z : 0.047 0.027	pservat g Likeli l [0 r ()	hood AIC BIC HQIC	-9037.9 18091.9 18134.4 18107.8 0.975 11.802
Prob(H) (two-sid Variable: Model: Date: Time: Sample: nce Type:	ARI Sun, 0	0.00 ref MA(2, 19:2 19:2 11-12-20-	0, 1) 2023 28:40 2017 2021 opg z P>	Kurtos lo. Obse Log L	sis: 2: ervations: .ikelihood AIC BIC HQIC	1500 -4594.296 9198.593 9225.159 9208.489	Prob(Dep Covaria	Variable Model Date Time Sample nce Type co 5.93	: A : Sun, : : : : : : : : : : : : : : : : : : :	nor RIMA(0 , 05 Feb 10: 11-12 - 12-20 td err 2.994	m_ret , 0, 6) 2023 22:37 -2017 -2021 opg z 1.982	No. Ok Log : P> z : 0.047 0.027	pservat g Likeli l [0 r _0	hood AIC BIC HQIC	-9037.9 18091.9 18134.4 18107.8 0.975 11.802 -0.005
Prob(I Dep. Covarian	H) (two-sid Variable: Model: Date: Time: Sample: nce Type: coef 0.3075	ARI Sun, 0 std err 0.156	0.00 rei MA(2, 19:2 11-12 12-20 1.9	0, 1) 2023 28:40 2017 2021 opg z P> 72 0.04	Kurtos lo. Obse Log L z] [0.1	sis: 26 ervations: .ikelihood AIC BIC HQIC 025 0.978	3.65 1500 -4594.296 9198.593 9225.159 9208.489 9208.489	Prob(Dep Covaria const	Variable Model Date Time Sample nce Type ca 5.93 -0.04	: A : Sun, : : : : : : : : : : : : : : : : : : :	nor RIMA(0 05 Feb 10: 11-12 - 12-20 td err 2.994 0.020	rm_ret (, 0, 6) (2023) (22:37) (-2021) (-2021) (-2021) (-2021) (-2021) (-22:214)	No. Ot Log P> z 0.047 0.027	pservat g Likeli l [0 	tions: hood BIC HQIC 0.025 0.065	15 -9037.9 18091.9 18134.4 18107.8 0.975 11.802 -0.005 0.110 0.050
Prob(I Dep. Covarian const ar.L1	H) (two-sid Variable: Model: Date: Time: Sample: coef 0.3075 0.7088	ARI Sun, 0 std err 0.156 0.146	0.00 rei MA(2, 5 Feb : 19:2 11-12-: 12-20-: 1.9 4.8	0, 1) 2023 28:40 2017 2021 opg z P> 72 0.0 68 0.00	Kurtos lo. Obse Log L [z] [0.1 49 0.4 00 0.4	sis: 25 ervations: .ikelihood AIC BIC HQIC 025 0.974 002 0.61	1500 -4594.296 9198.593 9225.159 9208.489	Prob(Dep Covaria const ma.L1 ma.L2	Variable Model Date Time Sample nce Type co 5.93 -0.04 0.06	: A : Sun, : : : : : : : : : : : : : : : : : : :	nor RIMA(0 05 Feb 10: 11-12 - 12-20 td err 2.994 0.020 0.025	m_ret , 0, 6) 2023 22:37 -2017 -2021 opg 1.982 -2.214 2.392	No. Ot Log P> z 0.047 0.027 0.017 0.872	j Likeli j Likeli , ((, _(, _(, _(tions: hood AIC BIC HQIC 0.025 0.065	-9037.9 18091.9 18134.4 18107.8 0.975 11.802 -0.005 0.110
Prob(I Dep. Covarian const ar.L1 ar.L2	H) (two-sid Variable: Date: Date: Time: Sample: acc Type: coef 0.3075 0.7088 0.0790	ARI Sun, 0 . 156 0.146 0.022	0.00 rei MA(2, 19:22 11-12- 12-20- 1.9 4.8 3.6	0, 1) 2023 28:40 2017 2021 opg z P> 72 0.04 68 0.00 37 0.00	Kurtos Io. Obse Log L 49 0.0 0.0 0.0	sis: 28 ervations: .ikelihood AIC BIC HQIC 025 0.974 002 0.61 423 0.99 036 0.12	1500 -4594.296 9198.593 9225.159 9208.489 9 3 4 2	Prob(Dep Covaria const ma.L1 ma.L2 ma.L3	Variable Model Date Time Sample nce Type ca 5.93 -0.04 0.06 0.00	: A : Sun, : : : : : : : : : : : : : : : : : : :	nor RIMA(0 05 Feb 10: 11-12 - 12-20 td err 2.994 0.020 0.025 0.024	m_ret , 0, 6) 2023 22:37 -2017 -2021 opg 1.982 -2.214 2.392 0.161	No. Ot Los P> z] 0.047 0.027 0.017 0.872 0.118) [[] [[] (] (] (tions: hood AIC BIC HQIC 0.025 0.085 0.084 0.011	-9037.9 18091.9 18134.4 18107.8 0.975 11.802 -0.005 0.110 0.050
Prob(I Dep. Covarian ar.L1 ar.L2 ma.L1	H) (two-sid Variable: Date: Date: Time: Sample: coef 0.3075 0.3075 0.3075 0.0790 -0.7570	ARI Sun, 0 . 156 0.146 0.022 0.146	re' MA(2, 5 Feb : 19:2 11-12-2 12-20-: 1.9 4.8 3.6 -5.1	0, 1) 2023 28:40 2017 2021 opg z P> 72 0.0 68 0.00 37 0.00 82 0.00	Kurtos Log L 12 [0.1 49 0.0 00 0.4 00 0.4 00 0.4 00 0.4 00 0.4 00 0.4 0.4 00 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	sis: 2: ervations: .ikelihood AIC BIC HQIC 0025 0.974 002 0.61 423 0.99 036 0.12 043 -0.47	1500 -4594.296 9198.593 9225.159 9208.489 1 1	Prob(Dep Covaria const ma.L1 ma.L2 ma.L3	Variable Model Date Time Sample nce Type ca 5.93 -0.04 0.06 0.00 0.00	: A : Sun, : : : : : : : : : : : : : : : : : : :	nor RIMA(0 05 Feb 10 11-12 - 12-20 4 4 2.994 0.020 0.025 0.024 0.021	m_ret (, 0, 6) 2023 222:37 -2017 -2017 -2021 0.982 -2.214 2.392 0.161 1.562	No. Ob Log 0.047 0.027 0.017 0.872 0.118 0.665	j Likeli i [0] · -(0) · -(0) · -(0) · -(0)	tions: hood AIC BIC HQIC 0.025 0.065 0.084 0.011 0.043	-9037.9 18091.9 18134.4 18107.8 0.975 11.802 -0.005 0.110 0.050 0.072
Prob(I Dep. Covarian const ar.L1 ar.L2	H) (two-sid Variable: Date: Date: Time: Sample: coef 0.3075 0.3075 0.3075 0.0790 -0.7570	ARI Sun, 0 . 156 0.146 0.022	re' MA(2, 5 Feb : 19:2 11-12-2 12-20-: 1.9 4.8 3.6 -5.1	0, 1) 2023 28:40 2017 2021 opg z P> 72 0.0 68 0.00 37 0.00 82 0.00	Kurtos Log L 12 [0.1 49 0.0 00 0.4 00 0.4 00 0.4 00 0.4 00 0.4 00 0.4 0.4 00 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	sis: 2: ervations: .ikelihood AIC BIC HQIC 0025 0.974 002 0.61 423 0.99 036 0.12 043 -0.47	1500 -4594.296 9198.593 9225.159 9208.489 1 1	Prob(Dep Covaria const ma.L1 ma.L2 ma.L3 ma.L4 ma.L5	Variable Model Date Time Sample nce Type co 5.93 -0.04 0.06 0.00 0.03 0.00	: A : Sun, : : : : : : : : : : : : : : : : : : :	nor RIMA(0 05 Feb 10 11-12 - 12-20 td err 2.994 0.020 0.025 0.024 0.021	m_ret 1, 0, 6) 2023 22:37 -2017 -2017 -2021 opg 2 -2.214 2.392 0.161 1.562 0.427	No. Ob Log 0.047 0.027 0.017 0.872 0.118 0.665 0.002	bservat y Likeli i	tions: hood AIC BIC HQIC 0.0025 0.005 0.004 0.003 0.003	-9037.9 18091.9 18134.4 18107.8 0.975 111.802 -0.009 0.110 0.055 0.072
Prob(I Dep. Covarian ar.L1 ar.L2 ma.L1 sigma2	H) (two-sid Variable: Date: Date: Time: Sample: coef 0.3075 0.3075 0.3075 0.0790 -0.7570	ARI Sun, 0 - - 0.156 0.146 0.022 0.146 0.022	0.00 ret MA(2, 19:2 11-12-2 112-20- 1.9 4.8 3.6 -5.1 52.7	0, 1) 2023 28:40 2017 2021 opg z P> 72 0.0 68 0.00 37 0.00 82 0.00	Kurtos ko. Obse Log L (0.1 49 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1	sis: 28 ervations: .ikelihood AIC BIC HQIC 002 0.61 423 0.99 036 0.12 043 -0.47 791 27.78	1500 -4594.296 9198.593 9225.159 9208.489 3 4 2 1 1	Prob(Dep Covaria const ma.L1 ma.L2 ma.L2 ma.L3 ma.L4 ma.L5 ma.L6 sigma2	Variable Model Date Time Sample nce Type ca 5.93 -0.04 0.06 0.00 0.03 0.00 0.03 0.00 0.07 1.004et	: A : Sun, : Sun, : : : : : : : : : : : : :	nor RIMA(0 05 Feb 10 11-12 2.994 0.020 0.025 0.024 0.024 0.022 0.024 8.508	m_ret , 0, 6) 2023 22:37 -2017 -2021 0pg 2.392 0.161 1.562 0.427 3.094 48.167	No. OE Log 0.047 0.027 0.017 0.872 0.118 0.668 0.002 0.000	j [0] j Likeli j [1] j [2] j j	tions: hood BIC HQIC 0.065 0.084 0.011 0.043 0.008 0.033 0.027 4.619	-9037.9 18091.9 18134.4 18107.8 0.975 11.802 0.009 0.110 0.052 0.052 0.120 1.05e+04
Prob(I Dep. Covarian ar.L1 ar.L2 ma.L1 sigma2	H) (two-sid Variable: Date: Time: Sample: nce Type: coef 0.3075 0.7088 0.0790 -0.7570 26.7859 g-Box (L1)	ARI Sun, 0	0.00 ret MA(2, 19:2 11-12-2 112-20- 1.9 4.8 3.6 -5.1 52.7	0, 1) 2023 28:40 2017 2021 opg z P> 72 0.0- 68 0.00 37 0.00 82 0.00 53 0.00 Jarque-E	Kurtos ko. Obse Log L (0.1 49 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1	sis: 2: ervations: .ikelihood AIC BIC HQIC 0025 0.974 002 0.61 423 0.99 036 0.12 043 -0.47 791 27.78 3): 1996.3	1500 -4594.296 9198.593 9225.159 9208.489 1 3 4 2 1 1 2	Prob(Dep Covaria const ma.L1 ma.L2 ma.L2 ma.L3 ma.L4 ma.L5 ma.L6 sigma2	Variable Model Date Time Sample nce Type co 5.93 -0.04 0.06 0.00 0.00 0.00 0.00 0.00 0.00	: A : Sun, : Sun, : : : : : : : : : : : : : : : : : : :	nor RIMA(0 05 Feb 10. 11-12 - 12-20 0.02 0.025 0.024 0.022 0.024 8.508 0.000	m_ret , 0, 6) 2023 22:37 -2017 -2021 0pg 2.392 0.161 1.562 0.427 3.094 48.167	No. Ob Log P> z 0.047 0.027 0.017 0.872 0.018 0.665 0.002 0.002 0.002	j [0] i [0] i (0) i -00 i <t< td=""><td>tions: hood AIC BIC HQIC 0.025 0.065 0.084 0.033 0.027 4.619 2027.8</td><td>-9037.9 18091.9 18134.4 18107.8 0.975 11.802 -0.009 0.110 0.052 0.052 0.052 0.120 1.05e+0- 1</td></t<>	tions: hood AIC BIC HQIC 0.025 0.065 0.084 0.033 0.027 4.619 2027.8	-9037.9 18091.9 18134.4 18107.8 0.975 11.802 -0.009 0.110 0.052 0.052 0.052 0.120 1.05e+0- 1
Prob(I Dep. Covarian ar.L1 ar.L2 ma.L1 sigma2 Ljung	H) (two-sid Variable: Date: Time: Sample: nce Type: coef 0.3075 0.7088 0.0790 -0.7570 26.7859 g-Box (L1)	ARI Sun, 0 . 156 0.146 0.022 0.146 0.508 (Q): ((0)(Q): ()	0.00 rei MA(2, 5 Feb : 19:2 11-12-2 112-20- 1.9 4.8 3.6 -5.1 52.7	0, 1) 2023 28:40 2017 2021 opg z P> 72 0.0- 68 0.00 37 0.00 82 0.00 53 0.00 Jarque-E	Kurtos Log L 19 0.0 00 0.0 00 0.0 00 0.0 00 0.0 00 0.0 00 0.0 0.0	sis: 2: ervations: ikeli≻ood AIC BIC HQIC 002 0.91 002 0.61 423 0.99 036 0.12 043 -0.47 791 27.78 3): 1996.3 3): 0.00	1500 -4594.296 9198.593 9225.159 9208.489 7 1 1 1 2 0	Prob(Dep Covaria const ma.L1 ma.L2 ma.L3 ma.L4 ma.L5 ma.L6 sigma2 Ljur	Variable Model Date Time Sample nce Type co 5.93 -0.04 0.06 0.00 0.00 0.00 0.00 0.00 0.00	: A : Sun, : Sun, : : : : : : : : : : : : : : : : : : :	nor RIMA(0 05 Feb 10 11-12 2.994 0.020 0.025 0.024 0.024 0.022 0.024 8.508	m_ret , 0, 6) 2023 22:37 -2017 -2021 0pg 2.392 0.161 1.562 0.427 3.094 48.167	No. Ob Log P> z] 0.047 0.027 0.017 0.872 0.018 0.002 0.002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.000000	j [0] i [0] i (0) i -00 i <t< td=""><td>tions: hood BIC HQIC 0.065 0.084 0.011 0.043 0.008 0.033 0.027 4.619</td><td>-9037.9 18091.9 18134.4 18107.8 0.975 11.802 -0.003 0.111 0.052 0.052 0.120 1.05e+0- 1 0</td></t<>	tions: hood BIC HQIC 0.065 0.084 0.011 0.043 0.008 0.033 0.027 4.619	-9037.9 18091.9 18134.4 18107.8 0.975 11.802 -0.003 0.111 0.052 0.052 0.120 1.05e+0- 1 0

D								Dee							
Dep.	Variable:		return	s No.	Observa	tions:	1500	Dep.	Variable:		return	s No. C	bserva	tions:	1500
	Model:	ARI	MA(0, 0, 2	2) L	og Likel	ihood -	4595.308		Model:	ARI	MA(0, 0, 6) L	og Likel	ihood	-4590.325
	Date:	Sup 0	5 Feb 202	2	-	AIC	9198.617		Date:	Sun, 05	Feb 202	3		AIC	9196.649
		Sun, oc							Time:		10:02:3	D		BIC	9239.155
	Time:		09:58:5	0		BIC	9219.869		Sample:	1	1-12-201	7		HQIC	9212.484
	Sample:	1	11-12-201	7		HQIC	9206.534			- 1	2-20-202	1			
		- 1	12-20-202	1				Covaria	nce Type:		ор	9			
Covaria	nce Type:		ор	a					coef	std err	z	P> z	[0.025	0.975]	
	iee ijpe.		99	9				const	0.3062	0.154	1.987	0.047	0.004	0.608	
	coef	std err	z	P> z	[0.025	0.975]		ma.L1	-0.0443	0.020	-2.219	0.027	-0.083	-0.005	i.
const	0.3059	0.137	2.236	0.025	0.038	0.574		ma.L2	0.0606	0.025	2.396	0.017	0.011	0.110	
ma.L1	-0.0445	0.019	-2.283	0.022	-0.083	-0.006		ma.L3	0.0038	0.024	0.161	0.872	-0.043	0.050	1
ma.L1			-2.283	0.022				ma.L4	0.0321	0.020	1.565	0.118	-0.008	0.072	
ma.L2	0.0558	0.024	2.316	0.021	0.009	0.103		ma.L5	0.0093	0.022	0.428	0.669	-0.033	0.052	1
sigma2	26.8212	0.507	52.930	0.000	25.828	27.814		ma.L6	0.0737	0.024	3.100	0.002	0.027	0.120	
								sigma2	26.6425	0.552	48.261	0.000	25.560	27.724	Ę.
Ljun	g-Box (L1)	(Q): 0	.00 Jaro	que-Ber	a (JB):	2037.74		Liun	ig-Box (L1) (Q): 0	00 Jaro	ue-Bera	(JB):	2027.82	
	Pro	b(Q): 1	.00	Pro	b(JB):	0.00		-,		b(Q): 0.	1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919		(JB):	0.00	
Heteros	kedasticity	r (H): 0	.90		Skew:	-0.26		Heteros	kedasticit	y (H): 0.	90		Skew:	-0.26	
				Ku					kedasticit (H) (two-si				Skew: tosis:	-0.26 8.67	
	kedasticity H) (two-sic			Ku	Skew: rtosis:	-0.26 8.69									
Prob(ded): 0			rtosis:		: 1		(H) (two-si			Kur	tosis:	8.67	
Prob(H) (two-sid	ded): 0).25 norm_	ret N	rtosis: o. Obse	8.69 rvations		Prob((H) (two-si	ded): 0.	26	Kur	tosis: et No	8.67	
Prob(H) (two-sid . Variable: Model:	ded): 0 : : AR	0.25 norm_ RIMA(2, 0	_ret N (rtosis: o. Obse	8.69 rvations kelihood	d -9048.	Prob(501 715	(H) (two-si	ded): 0. ariable: Model: Date:	26 ARIM	Kur norm_r A(10, 0, Feb 202	tosis: et No. 0) 23	8.67	vations: elihood AIC
Prob(H) (two-sid . Variable: Model: Date:	ded): 0 : : AR : Sat, 0	0.25 norm_ RIMA(2, 0 04 Feb 20	_ret No , 0) 023	rtosis: o. Obse	8.69 rvations kelihood AlC	d -9048. C 18105.	Prob(501 715 430	(H) (two-si Dep. V	ded): 0. /ariable: Model:	26 ARIM/ Sat, 04	Kur norm_r A(10, 0,	tosis: et No. 0) 23 15	8.67	vations:
Prob(H) (two-sid Variable: Model: Date: Time:	ded): 0 : : AR : Sat, 0	0.25 norm_ RIMA(2, 0 04 Feb 20 20:21	_ret No , 0) 023 :27	rtosis: o. Obse	8.69 rvations kelihood AlC BlC	 d -9048. 18105. 18126. 	Prob(501 715 430 686	(H) (two-si Dep. V	ded): 0. /ariable: Model: Date: Time:	26 ARIM Sat, 04 1	Kur norm_r A(10, 0, Feb 202 20:21:	tosis: et No. 0) 23 15 17	8.67	vations: selihood AIC BIC
Prob(H) (two-sid . Variable: Model: Date:	ded): 0 : : AR : Sat, 0	0.25 norm_ RIMA(2, 0 04 Feb 20	_ret No , 0) 023 :27	rtosis: o. Obse	8.69 rvations kelihood AlC	 d -9048. 18105. 18126. 	Prob((H) (two-si Dep. V	ded): 0. /ariable: Model: Date: Time: Sample:	26 ARIM Sat, 04 1	Kur norm_r A(10, 0, Feb 202 20:21: 1-11-20 2-20-202	tosis: et No. 0) 23 15 17	8.67	vations: selihood AIC BIC
Prob(H) (two-sid Variable: Model: Date: Time:	ded): 0 : : AR : Sat, 0 :	0.25 norm_ RIMA(2, 0 04 Feb 20 20:21	_ret No , 0) 223 :27 017	rtosis: o. Obse	8.69 rvations kelihood AlC BlC	 d -9048. 18105. 18126. 	Prob((H) (two-si Dep. V Scovariance	ded): 0. 'ariable: Model: Date: Time: Sample: coef	26 ARIM/ Sat, 04 1 - 1: std err	Norm_r A(10, 0, Feb 20: 20:21: 1-11-20: 2-20-20: op	tosis: et No 0) 23 15 17 21 09 z P> :	8.67 . Obsern Log Lik	vations: kelihood AIC BIC HQIC
Prob(H) (two-sid Variable: Model: Date: Time:	ded): 0 : AR : Sat, 0 :	0.25 norm_ RIMA(2, 0 04 Feb 20 20:21 11-11-20 12-20-20	_ret No , 0) 223 :27 017	rtosis: o. Obse	8.69 rvations kelihood AlC BlC	 d -9048. 18105. 18126. 	Prob((H) (two-si Dep. V : : : : : : : : : : : : : : : :	ded): 0. 'ariable: Model: Date: Time: Sample: ce Type:	26 ARIM/ Sat, 04 1 - 1:	Kur norm_r A(10, 0, Feb 20: 20:21: 1-11-20: 2-20-20: op	tosis: et No 0) 23 15 17 21 29 21 29 21 21 21 22 21 22 24 0.04	8.67 . Observ Log Lik z] [(5 ()	vations: selihood AIC BIC HQIC

	Time:	20	21:27		BIC	18126.686		Sample:	11	-11-2017		HQ	IC 18126.48
			0047			10110 010				-20-2021			
	Sample:	11-11	-2017		HQIC	18113.348	Covaria	nce Type:		opg			
		- 12-20	-2021					coef	std err	z	P> z	[0.025	0.975]
Covaria	nce Type:		opg				const	5.9962	2.993	2.004	0.045	0.131	11.862
			10				ar.L1	-0.0443	0.020	-2.216	0.027	-0.084	-0.005
	coef	std err	z	P> z	[0.025	0.975]	ar.L2	0.0575	0.025	2.274	0.023	0.008	0.107
					1 • Contractorian		ar.L3	0.0074	0.024	0.309	0.757	-0.040	0.054
const	5.9962	2.660	2.254	0.024	0.782	11.211	ar.L4	0.0325	0.021	1.580	0.114	-0.008	0.073
ar.L1	-0.0445	0.019	-2.296	0.022	-0.082	-0.007	ar.L5	0.0099	0.023	0.437	0.662	-0.034	0.054
							ar.L6	0.0679	0.024	2.821	0.005	0.021	0.115
ar.L2	0.0579	0.024	2.404	0.016	0.011	0.105	ar.L7	-0.0026	0.020	-0.132	0.895	-0.042	0.036
sigma2	1.009e+04	190.612	52.954	0.000	9720.050	1.05e+04	ar.L8	-0.0399	0.025	-1.613	0.107	-0.088	0.009
							ar.L9	-0.0351	0.026	-1.367	0.172	-0.085	0.015
Liun	g-Box (L1) (0	2): 0.00	Jarque	-Bera (J	B): 2025.5	50	ar.L10	0.0601	0.024	2.545	0.011	0.014	0.106
-,							sigma2	1e+04	208.680	47.926	0.000	9592.210	1.04e+04
	Prob(0	2): 0.99		Prob(J	B): 0.0	00	Ljun	g-Box (L1	I) (Q): 0.	00 Jarq	ue-Bera	a (JB): 20	88.42
Heteros	kedasticity (I	H): 0.90		Sk	ew: -0.2	26		Pro	b(Q): 0.	98	Pro	b(JB):	0.00
Prob	H) (two-side	d): 0.24		Kurtos	sis: 8.6	37	Heteros	kedasticit	y (H): 0.	88		Skew:	-0.28
1105(, (aj. 0.24		i carto.	0.0		Prob(H) (two-si	ided): 0.	14	Ku	rtosis:	8.75

10 16 11 70 37
0 0
0
37
0
Co
sig
He
ep. Vai
Mean M
Vol N
Distrib
Distrib
Distrib
Distrib
Distrib Me
Distrib Me
Distrib Me ean Moo
Vol M Distrib Me ean Moo c u 0.2
Distrib Me ean Moo
Distrib Me an Moo c uu 0.2
ean Moo c u 0.2
Distrib Me an Moo c uu 0.2
4

beta[1] 0.8373 2.924e-02 28.633 2.575e-180 [0.780, 0.895]

500		Dep	o. Variable:		returr		Observat		1500
.996			Model:		MA(8, 0,		og Likeli		
.991			Date: Time:	Sat, 0	4 Feb 202				9199.117 9252.249
			Sample:		20:10:0			HQIC	9252.24
.870			Sample:		11-12-20			INC	9210.91
.867		Covari	ance Type:		01				
			coef	std en		P> z	[0.025	0.975]	
		cons		0.149		0.040	0.014	0.599	
		ar.L1 ar.L2		0.020		0.025	-0.084	0.105	
		ar.L3		0.024			-0.042	0.050	
		ar.L4		0.021		0.075	-0.004	0.077	
		ar.Lt		0.022		0.669	-0.034	0.052	
		ar.Le	0.0699	0.024	2.909	0.004	0.023	0.117	
		ar.L7	-0.0050	0.020	-0.250	0.803	-0.044	0.034	Ļ
		ar.L8	-0.0349	0.025	- <mark>1.4</mark> 20	0.156	-0.083	0.013	
		sigma	26.6151	0.555	47.984	0.000	25.528	27.702	1
		11.	ng-Box (L1	1(0):	0.00	nue Pr	a (JB).	1975 00	
		Lju) (Q): b(Q):			a (JB):	0.00	
		Hetero	skedasticit			FR	Skew:	-0.26	
			o(H) (two-si			Ku	rtosis:	8.60	
02								2.50	
02	-	ep. Varia	able:		Close N	0	vations:		1503
28	De	- 10 CO		RIMA(3,			kelihood		1502
55				04 Feb		LUg LI	AIC		
13			ime:		36:07		BIC		
74			nple:	11-10-			HQIC		
		Jul	1	- 12-20-					
	Covar	iance 1			opg				
75]									
-04				std err	2	P> z	[0.02		0.975]
24	con: ar.L		1.5950 46 0.9003	0.013		0.847	-8255.89		1e+04 0.925
124	ar.L		0.9003	0.015	6.842	0.000	0.07		0.925
	ar.L		0.0047	0.010	-0.453	0.651	-0.02		0.016
991		2 570			89.874			14 583	
			0.0070			0.000			0.002
	Lj	ung-Bo	x (L1) (Q):	0.00	Jarque		B): 351		
			Prob(Q):	0.98		Prob(J		0.00	
			sticity (H):			Ske		-0.95	
	Pro	op(H) (t	wo-sided):	0.00		Kurtos	IS:	26.61	
Dep.	Variab	le:		returns		R-squa	red:	0.000	
Me	an Mod	el:	Constar	nt Mean	Adj	R-squa	red:	0.000	
1	/ol Mod	el:	(GARCH	Log	-Likelih	ood: -6	485.59	
Dis	stributio	on:		Normal				2981.2	
	Metho	od: Ma	aximum Lik	elihood			BIC: 1	3010.1	
							ons:	2420	
	Da	te:	Thu, Feb 0	2 2023	D	f Residu	uals:	2419	
	Tim	ne:		6:11:08		Df Mo		1	
Mean	Model								
	coef		td err				Conf. Int		
mu	0.2425	6.24	5e-02 3.8	83 1.0	31e-04	[0.12	20, 0.365	5]	
Volct	lity M- 1	ol							
volati	lity Mod								
		coef	std err	ł	t F	>> t 9	95.0% Co	onf. Int.	
om	ega 0	.8094	0.312	2.594	9.4776	e-03	[0.198	, 1.421]	
alph	a[1] 0	1583	3.515e-02	4.503	6.709	e-06 [8	938e-02	, 0.227]	
	a[1] 0				1.323				
bet	a[2] 0	2617	0.201	1.299	0.	194	[-0.133	, 0.656]	

Dep. Variable:	returns	R-squared:	0.000
Mean Model:	Constant Mean	Adj. R-squared:	0.000
Vol Model:	ARCH	Log-Likelihood:	-6596.32
Distribution:	Normal	AIC:	13202.6
Method:	Maximum Likelihood	BIC:	13231.6
		No. Observations:	2420
Date:	Thu, Feb 02 2023	Df Residuals:	2419
Time:	15:41:28	Df Model:	1

Mean Model

	coef	std err	t	P> t	95.0% Conf. Int.
mu	0.2894	6.694e-02	4.324	1.534e-05	[0.158, 0.421]

Volatility Model

	coef	std err	t	P> t	95.0% Conf. Int.
omega	9.2991	1.314	7.077	1.469e-12	[6.724, 11.874]
alpha[1]	0.1623	4.209e-02	3.855	1.155e-04	[7.977e-02, 0.245]
alpha[2]	0.0830	4.529e-02	1.833	6.675e-02	[-5.735e-03, 0.172]
alpha[3]	0.1733	6.294e-02	2.753	5.899e-03	[4.994e-02, 0.297]

Constant Mean - ARCH Model Results

Dep. Variable:	returns	R-squared:	0.000
Mean Model:	Constant Mean	Adj. R-squared:	0.000
Vol Model:	ARCH	Log-Likelihood:	-6641.33
Distribution:	Normal	AIC:	13288.7
Method:	Maximum Likelihood	BIC:	13306.0
		No. Observations:	2418
Date:	Sun, Jan 29 2023	Df Residuals:	2417
Time:	13:32:49	Df Model:	1

Mean Model

	coef	std err	t	P> t	95.0% Conf. Int.
mu	0.2983	7.493e-02	3.982	6.843e-05	[0.151, 0.445]

Volatility Model

	coef	std err	t	P> t	95.0% Conf. Int.
omega	12.4061	1.125	11.025	2.887e-28	[10.201, 14.612]
alpha[1]	0.1696	4.138e-02	4.099	4.154e-05	[8.850e-02, 0.251]

#will be done for other Cryptos

model_arimax = ARIMA(btc_train['2017-11-09':].close, exog = ethdata[:"2021-05-04"].close, order=(1,1,1)
results_arimax.summary()

results	_arimax.su	mmary()						
4								
SARIMAX	Results							
Dep.	Variable:		No. Obser		1273			
		ARIMA(1, 1, 1)	Log Lik		-9925.590			
	Date: The Time:	u, 02 Feb 2023 09:00:15			19859.180 19879.774			
	Sample:	11-09-2017			19866.915			
		- 05-04-2021						
Covaria	nce Type:	opg						
	coef	std err	z P> z	[0.025	0.975]			
Close	12.0532	0.116 104.1	25 0.000	11.826	12.280			
ar.L1	0.2222	0.196 1.1	31 0.258	-0.163	0.607			
ma.L1	-0.1597	0.198 -0.8		-0.548				
sigma2	3.515e+05 4	443.353 79.	116 0.000	3.43e+05	3.6e+05			
Ljun	ig-Box (L1) (Q)	: 0.00 Jarqu	e-Bera (JB):	20743.1	8			
	Prob(Q)		Prob(JB):					
	kedasticity (H)		Skew:					
	Variable:		Close N			2421		Mantalata
	Model:	ARIMA(3	0.6)	Log Li	kelihood	-18673.037	Dep	Variable:
		Wed, 01 Feb			AIC	37368.073		Model:
	Time:		23:28		BIC	37431.785		Date:
			-2014					Time:
	Sample:				HQIC	37391.241		Sample:
	_	- 05-04						Sample.
Covaria	nce Type:		opg					
	coef	std err	2	P> z	[0.025	0.975]	Covaria	nce Type:
const	7170.5465	6.440	1113.375	0.000	7157.924	7183.169		coef
ar.L1	0.5315	0.005	116.439	0.000	0.523	0.540		
ar.L2	-0.4875	0.005	-95.766	0.000	-0.497	-0.477	const	7170.5465
ar.L3	0.9557	0.004	238.521	0.000	0.948	0.964	ar.L1	-0.5941
ma.L1	0.4855		48.887				ar.L2	0.6075
ma.L2	1.0109		108.931				ar.L3	0.9865
ma.L3	0.0918		7.988				ma.L1	1.6159
ma.L4	0.0392		3.644					
							ma.L2	1.0141
ma.L5	0.0471		5.431				ma.L3	0.0293
ma.L6	0.0278		3.474		0.012		sigma2	3.008e+05
sigma2	2.967e+05	2183.294	135.912	0.000	2.92e+05	3.01e+05		

Ljung-Box (L1) (Q):	0.01	Jarque-Bera (JB):	128907.71
Prob(Q):	0.94	Prob(JB):	0.00
Heteroskedasticity (H):	3812.82	Skew:	1.30
Prob(H) (two-sided):	0.00	Kurtosis:	38.65

Dep.	Variable:		Close I	No. Obser	vations:	2421
	Model:	ARIMA(3	3, 0, 3)	Log Likelihood		-18695.052
	Date: V	Ved, 01 Fet	2023		AIC	37406.104
	Time:	16	:23:31		BIC	37452.439
	Sample:	09-18	3-20 <mark>1</mark> 4		HQIC	37422.953
		- 05-04	1-2021			
Covaria	nce Type:		opg			
	coef	std err		- Dalel	10 005	0.0751
	coer	sta err		z P> z	[0.025	0.975]
const	7170.5465	1.09e-10	6.6e+1	3 0.000	7170.547	7170.547
ar.L1	-0.5941	0.006	-102.27	7 0.000	-0.605	-0.583
ar.L2	0.6075	0.004	155.02	7 0.000	0.600	0.615
ar.L3	0.9865	0.006	164.01	5 0.000	0.975	0.998
ma.L1	1.6159	0.010	161.53	2 0.000	1.596	1.636
ma.L2	1.0141	0.016	63.31	8 0.000	0.983	1.046
ma.L3	0.0293	0.009	3.35	3 0.001	0.012	0.046
sigma2	3.008e+05	7.32e-09	4.11e+1	3 0.000	3.01e+05	3.01e+05

Ljung-Box (L1) (Q):	0.00	Jarque-Bera (JB):	146715.78
Prob(Q):	0.99	Prob(JB):	0.00
Heteroskedasticity (H):	4776.46	Skew:	1.35
Prob(H) (two-sided):	0.00	Kurtosis:	41.04

Dep.	Variable:		return	is No.	Observatio	ons:	2420	D	ep. Variable				. Observ		2420
	Model:	ARI	MA(3, 0, 3	3) L	og Likelih	ood	-6710.047		Mode		RIMA(4, (Log Like		-6710.810
	Date:	Wed, 01	Feb 202	3		AIC	13436.095		Date		, 01 Feb 2			AIC	13441.620
	Time:		15:39:3	2		BIC	13482.427		Time		15:43			BIC	13499.535
	Sample:	0	9-19-201	4	н	QIC	13452.944		Sample	:	09-19-2			HQIC	13462.681
		- 0	5-04-202	1							- 05-04-2				
Covarian	nce Type:		op	g				Cova	riance Type): 		opg			
									coe	f std e	rr	z P> z	[0.025	0.975]	
	coef	std err	z		[0.025	0.975]		con	st 0.279	1 0.0	79 3.55	5 0.000	0.125	0.433	
const	0.2680	0.089	3.020	0.003	0.094	0.442		ar.l	L1 -0.540	7 1.5	-0.34	7 0.729	-3.596	2.514	
ar.L1	0.3481	0.124	2.798	0.005	0.104	0.592		ar.l	-0.560s	1.3	-0.40	6 0.685	-3.267	2.145	
ar.L2	-0.4338	0.074	-5.878	0.000	-0.578	0.289		ar.l	L3 -0.5386	3 1.4	32 -0.37	6 0.707	-3.345	2.267	
ar.L3	0.9335	0.123	7.562	0.000	0.692	<mark>1.175</mark>		ar.l	L4 0.330	7 1.3	0.25	1 0.802	-2.255	2.916	
ma.L1	-0.3507	0.129	-2.719	0.007	-0.604	0.098		ma.l	L1 0.5229	9 1.5	0.33	6 0.737	-2.523	3.569	
ma.L2	0.4414	0.076	5.840	0.000	0.293	0.590		ma.l	L2 0.5716	5 1. 3	0.42	1 0.674	-2.088	3.232	
ma.L3	-0.9265	0.128	-7.233	0.000	-1.178	0.675		ma.l	L3 0.535	7 1.4	50 0 .37	0 0.712	-2.305	3.377	
sigma2	14.9923	0.201	74.551	0.000	14.598 1	5.386		ma.l	L4 -0.344	1 1.3	-0.25	9 0.795	-2.945	2.257	
								sigma	a2 15.0140	6 0.19	99 75.28	8 0.000	14.624	15.405	
Ljun	g-Box (L1)	(Q): 0.4	43 Jaro	ue-Bera	a (JB): 64	16.59		L	jung-Box (L	1) (0).	0.01 Ja	arque-Be	ra (JB):	6719.47	
	Prob	(Q): 0.	51	Pro	b(JB):	0.00		-		ob(Q):	0.92		ob(JB):	0.00	
Heteros	kedasticity	(H): 1.	51)	Skew:	- <mark>0.16</mark>		Heter	oskedastic				Skew:	-0.15	
Prob(H) (two-sid	led): 0.0	00	Kur	tosis:	10.97			ob(H) (two-			K	urtosis:	11.16	
Dep.	Variable:		-		bservatio		2420								
	Model:		\(0, 0, 10	5. GC	og Likeliho		13073.251								
	Date:	Wed, 01					26170.503	Dep.	Variable:		retur	ns No.	Observa	ations:	2420
	Time:		08:03:4				26240.001		Model:	ARII	MA(0, 0, 1	0)	og Like	lihood	-6703.508
	Sample:	09	9-19-2014	4	но		26195.775		Date:	Wed, 0	1 Feb 20	23		AIC	13431.016
		- 08	5-04-202	1					Time:		06:21:			BIC	13500.515
Covariar	nce Type:		opg	9					Sample:		09-19-20			HQIC	13456.289
	coet	std en	r z	P> z	[0.028	5 (0.975]	Courselou		-	05-04-20				
const	-3.8366				-		1.522	Covariar	nce Type:		0	pg			
ma.L1	-0.0161						0.010		coef	std err	z	P> z	[0.025	0.975]	
ma.L2	0.0035				-0.029		0.036	const	0.2758	0.085	3.257	0.001	0.110	0.442	
ma.L3	0.0236						0.057	ma.L1	-0.0161	0.013	-1.233	0.218	-0.042	0.009	
ma.L3	-0.0052							ma.L2	0.0035	0.016	0.214	0.830	-0.029	0.036	
ma.L4							0.026	ma.L3	0.0236	0.017	1.402	0.161	-0.009	0.057	
	0.0089						0.041	ma.L4	-0.0052	0.016	-0.328	0.743	-0.036	0.026	
ma.L6	0.0563						0.088	ma.L5 ma.L6	0.0089	0.017	0.535	0.593	-0.024	0.041	
ma.L7	-0.0332						0.004	ma.L6 ma.L7	-0.0332	0.016	-2.271	0.001	-0.062	-0.005	
ma.L8	-0.0166			0.364	-0.053	3	0.019	ma.L8	-0.0332	0.015	-0.910	0.363	-0.052	0.019	
	-0.0273						0.008	ma.L9	-0.0273	0.018			-0.062	0.008	
ma.L9		0.018	3.308	0.001	0.024		0.093	ma.L10	0.0583	0.018			0.024	0.093	
ma.L10	0.0583					206	9.488						ALCONTROL OF		
ma.L10	0.0583 2890.5087		6 71.732	0.000	2811.530	230		sigma2	14.9123	0.207	/1.930	0.000	14.506	15.319	
ma.L10 sigma2	2890.5087	40.296													
ma.L10 sigma2	2890.5087 g-Box (L1)	40.296	0 Jarq	ue-Bera	(JB): 632	2.17			g-Box (L1)	(Q): (.00 Jar	que-Bera	a (JB):	6322.16	
ma.L10 sigma2 Ljun	2890.5087 g-Box (L1) Prob	40.296 (Q): 0.0 (Q): 0.9	00 Jarqı 07	ue-Bera Prob	(JB): 632 (JB):	2.17		Ljun	g-Box (L1) Prot	(Q): ((Q): (0.00 Jan 0.97	que-Bera	a (JB): b(JB):	6322.16 0.00	
ma.L10 sigma2 Ljun Heterosk	2890.5087 g-Box (L1)	40.296 (Q): 0.0 (Q): 0.9 (H): 1.5	00 Jarq 97	ue-Bera Prob S	(JB): 632 (JB): ;kew:	2.17		Ljun Heterosk	g-Box (L1)	(Q): 0 (Q): 0 (H): 1	0.00 Jan 0.97 .51	que-Ber Pro	a (JB):	6322.16	

De	p. Variable:		retur	ne Ne	. Observ	ations	2420								
De	Model:	AD	IMA(0, 0,		Log Like		-6708.664								
				,	LOG LIKE										
	Date:	vved, U	01 Feb 20				13435.328								
	Time:		06:28:				13487.452	Dep.	Variable:				servations:	241	
	Sample:		09-19-20	14		HQIC	13454.283		Model: Date:	ARIMA(1		Log	Likelihood	-13132.81	
		-	05-04-20	21					Time:		5:30:31		BIC	26359.12	
Covari	iance Type:		0	pg					Sample:	09-2	1-2014		HQIC	26314.90	6
	coef	std err	z	P> z	[0.025	0.975]				- 05-0	4-2021				
cons		0.083			0.113	0.438		Covaria	nce Type:		opg				
									coef		z	P> z	[0.025	0.975]	
ma.L		0.013			-0.041	0.009		const	-3.9745		-3.257	0.001	-6.366	-1.583	
ma.L:		0.016				0.034		ar.L1	-0.0138	0.013	-1.070	0.285	-0.039	0.011	
ma.L	3 0.0248	0.017	1.489	0.136	-0.008	0.058		ar.L3	0.0213	0.017	1.270	0.204	-0.012	0.054	
ma.L4	4 -0.0089	0.016	-0.574	0.566	-0.039	0.022		ar.L4	-0.0035	0.016	-0.220	0.826	-0.034	0.027	
ma.L	5 0.0103	0.016	0.625	0.532	-0.022	0.042		ar.L5	0.0109		0.656	0.512	-0.022	0.044	
ma.L	6 0.0581	0.016	3.583	0.000	0.026	0.090		ar.L6 ar.L7	0.0569		3.512	0.000	0.025	0.089	
ma.Li	7 -0.0308	0.015	-2.118	0.034	-0.059	-0.002		ar.L8	-0.0283		-1.031	0.303	-0.057	0.001	
sigma	2 14.9762	0.207	72.339	0.000	14.570	15.382		ar.L9	-0.0276	0.018	-1.540	0.124	-0.063	0.008	
								ar.L10	0.0561	0.017	3.240	0.001	0.022	0.090	
Lju	ung-Box (L1	l) (Q): ().00 Jar	que-Be	ra (JB):	6291.73		sigma2	3055.6268	42.201	72.406	0.000	2972.914	3138.340	
	Pro	ob(Q): 0).98	Pr	ob(JB):	0.00		Ljun	g-Box (L1)				JB): 6365.		
Hetero	skedasticit	y (H): 1	1.51		Skew:	-0.17			Prob kedasticity			Prob(00 16	
Pro	b(H) (two-si	ided): (0.00	K	urtosis:	10.89		Heteros	Redasticity	(п). 1.51					
						10.09		Prob(H) (two-sid	ed): 0.00	0	Kurto	sis: 10.	94	
Dep.	Variable:	no		o. Obsei	rvations:	24	18	Prob(Dep. Va		ed): 0.00	returr		osis: 10.		2417
Dep.	Variable: Model:	no ARIMA(6	rm_ret N					Dep. Va				ns No	o. Observ	ations:	2417
Dep.	Model:		rm_ret N 3, 0, 0)		rvations:	24	19	Dep. Va	riable: Model:	ARIM	returr A(1, 0,	ns No 0)		ations: elihood	-6705.236
Dep.	Model:	ARIMA(6 ue, 31 Jar	rm_ret N 3, 0, 0)		rvations: kelihood	24 -13138.84	49 97	Dep. Va	riable: Model: Date: 1	ARIM/	returr A(1, 0, Jan 202	ns No 0) 23	o. Observ	ations: elihood AIC	-6705.236 13416.471
Dep.	Model: Date: ⊤	ARIMA(6 ue, 31 Jar 15	rm_ret N 3, 0, 0) n 2023		rvations: kelihood AIC	24 -13138.84 26293.65	49 97 23	Dep. Va	riable: Model:	ARIM/	returr A(1, 0,	ns No 0) 23	o. Observ	ations: elihood	-6705.236
Dep.	Model: Date: T Time:	ARIMA(6 ue, 31 Jar 15	rm_ret N 5, 0, 0) n 2023 5:30:23 1-2014		rvations: kelihood AIC BIC	24 -13138.84 26293.69 26340.02	49 97 23	Dep. Va	riable: Model: Date: 1	ARIM/ Tue, 31 .	returr A(1, 0, Jan 202	ns No 0) 23 42	o. Observ	ations: elihood AIC	-6705.236 13416.471
	Model: Date: T Time:	ARIMA(6 iue, 31 Jar 15 09-21	rm_ret N 5, 0, 0) n 2023 5:30:23 1-2014		rvations: kelihood AIC BIC	24 -13138.84 26293.69 26340.02	49 97 23	Dep. Va	riable: Model: Date: Time:	ARIM/ Fue, 31 . 09	returr A(1, 0, 1 Jan 202 14:32:4	ns No 0) 23 42	o. Observ	ations: elihood AIC BIC	-6705.236 13416.471 13433.842
	Model: Date: T Time: Sample: nce Type:	ARIMA(6 iue, 31 Jar 15 09-21	rm_ret N 3, 0, 0) n 2023 3:30:23 1-2014 4-2021 opg		rvations: kelihood AIC BIC	24 -13138.84 26293.69 26340.02	49 97 23 44	Dep. Va I Sa	riable: Model: Date: Time: ample:	ARIM/ Fue, 31 . 09	returr A(1, 0, 1 Jan 202 14:32:4 -22-201 -04-202	No 0) 23 42 14	o. Observ	ations: elihood AIC BIC	-6705.236 13416.471 13433.842
	Model: Date: T Time: Sample: nce Type:	ARIMA(6 iue, 31 Jan 15 09-21 - 05-04	rm_ret N \$, 0, 0) n 2023 :30:23 1-2014 4-2021 opg z I	Log Li	rvations: kelihood AIC BIC HQIC	24' -13138.84 26293.64 26340.02 26310.54	49 97 23 44	Dep. Va	riable: Model: Date: Time: ample:	ARIM/ Fue, 31 v	returr A(1, 0, 1 Jan 202 14:32:4 -22-201	No 0) 23 42 14	o. Observ	ations: elihood AIC BIC	-6705.236 13416.471 13433.842
Covariar	Model: Date: T Time: Sample: nce Type: coef	ARIMA(6 iue, 31 Jan 15 09-21 - 05-04 std err	rm_ret N 3, 0, 0) h 2023 i:30:23 i:30:23 i:2014 4-2021 opg z I -3.238 0	Log Li	vations: kelihood AIC BIC HQIC	24: -13138.84 26293.60 26340.00 26310.54	49 97 23 44	Dep. Va I Sa	riable: Model: Date: Time: ample: Type:	ARIM/ Fue, 31 v	returr A(1, 0, 1 Jan 202 14:32:4 -22-201 -04-202	No 0) 23 42 14 21 29	o. Observ Log Like	ations: elihood AIC BIC HQIC	-6705.236 13416.471 13433.842 13422.789
Covariar const	Model: Date: T Time: Sample: nce Type: coef -3.9744	ARIMA(6 iue, 31 Jar 15 09-2* - 05-04 std err 1.228	rm_ret N 3, 0, 0) h 2023 i:30:23 i:30:23 i:2014 4-2021 opg z I -3.238 0	P> z 0.001	kelihood AIC BIC HQIC (0.025 -6.380	24: -13138.84 26293.63 26340.03 26310.54 0.975] -1.568	49 97 23 14 Cov	Dep. Va I Sa variance	riable: Model: Date: Time: ample: Type: coef s	ARIM/ Tue, 31 09 - 05	returr A(1, 0, 1 Jan 202 14:32:4 -22-201 -04-202 op z	ns No 0) 23 42 44 21 20 9 9 8 8 P>]	o. Observ Log Like z [0.02	ations: elihood AIC BIC HQIC 5 0.975	-6705.236 13416.471 13433.842 13422.789
Covariar const ar.L1	Model: T Date: T Time: Sample: Sample: Coef -3.9744 -0.0159	ARIMA(6 iue, 31 Jan 09-21 - 05-04 std err 1.228 0.013	rm_ret N 3, 0, 0) 1 2023 3:30:23 1-2014 4-2021 0pg z l -3.238 0 -1.251 0.038 0	P> z 0.001	rvations: kelihood AIC BIC HQIC (0.025 -6.380 -0.041	24 -13138.8 26293.64 26340.02 26310.5 - 0.975] -1.568 0.009	19 37 23 14 Cov	Dep. Va I Sa variance	riable: Model: Date: Time: ample: Type: coef s	ARIM/ Tue, 31 . 09 - 05 td err 0.078	return A(1, 0, 1 Jan 202 14:32:4 -22-201 -04-202 op 2 3.568	ns No 0) 23 42 44 21 21 29 9 9 9 9 9	 Dbserv Log Like zj [0.02 0.12 	ations: elihood AIC BIC HQIC 5 0.975 6 0.43	-6705.236 13416.471 13433.842 13422.789
Covariar const ar.L1 ar.L2	Model: Date: 7 Time: 2 Sample: 2 nce Type: 2 	ARIMA(6 iue, 31 Jan 15 09-2* - 05-04 std err 1.228 0.013 0.016	rm_ret N 3, 0, 0) 1 2023 3:30:23 1-2014 4-2021 0pg 2 1 -3.238 0.038 0 1.073 0	P> z 0.001 0.211 0.970	rvations: kelihood AIC BIC HQIC -0.025 -0.041 -0.031	24* -13138.8* 26293.6* 26340.02 26310.5* 0.975] -1.568 0.009 0.032	19 37 23 14 Cov	Dep. Va I Sa variance	riable: Model: Date: Time: ample: Type: coef s	ARIM/ Tue, 31 09 - 05	returr A(1, 0, 1 Jan 202 14:32:4 -22-201 -04-202 op z	ns No 0) 23 42 44 21 20 9 9 8 8 P>]	 Dbserv Log Like zj [0.02 0.12 	ations: elihood AIC BIC HQIC 5 0.975 6 0.43	-6705.236 13416.471 13433.842 13422.789
Covariar const ar.L1 ar.L2 ar.L3	Model: T Date: T Time: Sample: Sample: I nce Type: I -0.0159 0.0006 0.0078 0.0178	ARIMA(6 iue, 31 Jan 15 09-21 - 05-04 std err 1.228 0.013 0.016 0.017	rm_ret N 3, 0, 0) 12023 1-2014 4-2021 opg -3.238 0 -1.251 0 0.038 0 1.073 0 -0.068 0	P> z 0.001 0.211 0.970 0.283	(0.025 -6.380 -0.031 -0.015	24: -13138.84 26293.63 26340.02 26310.54 0.097 0.037 0.032 0.050	49 97 23 14 Cov	Dep. Va F Sa variance onst () r.L1 -()	riable: Model: Date: Time: ample: • Type: coef s 0.2787 0.0153	ARIM/ Fue, 31 . 09 - 05 td err 0.078 0.013	return A(1, 0, 1 Jan 202 14:32:4 -22-201 -04-202 op 2 3.568	ns No 0) 23 42 14 21 20 21 21 20 21 20 21 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	 D. Observ Log Like z [0.02 00 0.12 00 -0.04 	ations: elihood BIC HQIC 5 0.975 6 0.43 0 0.009	-6705.236 13416.471 13433.842 13422.789]
Covariar const ar.L1 ar.L2 ar.L3 ar.L4	Model: I Date: T Time: I Sample: I nce Type: I coef -3.9744 -0.0159 0.0006 0.0178 -0.011	ARIMA(6 iue, 31 Jar 15 09-2' - 05-04 std err 1.228 0.013 0.016 0.017 0.016	rm_ret N 3, 0, 0) 12023 1-2014 4-2021 opg -3.238 0 -1.251 0 0.038 0 1.073 0 0.068 0 0.695 0	P> z 0.001 0.211 0.970 0.283 0.946	rvations: kelihood AIC BIC HQIC (0.025 -0.041 -0.031 -0.015 -0.032	244 -13138.84 26293.63 26340.02 26310.54 0.657 -1.568 0.009 0.032 0.050 0.030	i9 i7 i3 i4 Cov ccc a sigr	Dep. Va Sa variance onst () r.L1 -0 na2 15	riable: Model: Date: 1 Time: ample: Type: coef s 0.2787 0.0153 5.0368	ARIM/ Tue, 31 - 09 - 05 td err 0.078 0.013 0.194	return A(1, 0, 1) Jan 202 14:32:4 -22-201 -04-202 or 2 3.568 -1.227 77.352	Nc 0) 23 42 44 21 22 44 21 22 23 24 25 26 27 28 29 29 200 2	 z) [0.02 z) [0.02 0 0.12 0 -0.04 14.65 	ations: elihood AIC BIC HQIC 5 0.975 6 0.433 0 0.009 6 15.413	-6705.236 13416.471 13433.842 13422.789
Covariar ar.L1 ar.L2 ar.L3 ar.L4 ar.L5 ar.L6	Model: I Date: T Time: Sample: Sample: I nce Type: I coef -3.9744 -0.0159 0.0006 0.0178 -0.011 0.0114 0.0114	ARIMA(6 15 09-2 ⁻¹ - 05-04 std err 1.228 0.013 0.016 0.017 0.016 0.016 0.016	rm_ret N 3, 0, 0) 12023 1-2014 4-2021 opg -3.238 0 -1.251 0 0.038 0 1.073 0 0.068 0 0.695 0	P> z 0.001 0.211 0.970 0.283 0.946 0.487 0.000	(0.025 -6.380 -0.041 -0.015 -0.031 -0.025 -0.021 -0.021	24: -13138.8 26293.6i 26340.0i 26310.5 -1.568 0.009 0.032 0.050 0.030 0.030 0.043 0.088	i9 i7 i3 i4 Cov ccc a sigr	Dep. Va Sa variance onst () r.L1 -0 na2 15	riable: Model: Date: Time: ample: • Type: coef s 0.2787 0.0153	ARIM/ Tue, 31 - 09 - 05 td err 0.078 0.013 0.194	return A(1, 0, 1) Jan 202 14:32:4 -22-201 -04-202 or 2 3.568 -1.227 77.352	Nc 0) 23 42 44 21 22 44 21 22 23 24 25 26 27 28 29 29 200 2	 D. Observ Log Like z [0.02 00 0.12 00 -0.04 	ations: elihood AIC BIC HQIC 5 0.975 6 0.433 0 0.009 6 15.413	-6705.236 13416.471 13433.842 13422.789
Covariar ar.L1 ar.L2 ar.L3 ar.L4 ar.L5 ar.L6 sigma2	Model: I Date: T Time: Sample: Sample: - nce Type: - -0.0159 - 0.0006 - 0.0178 - -0.0111 - 0.0114 - 0.0114 - 0.0114 - 0.0567 3070.127	ARIMA(6 ue, 31 Jai 09-2* - 05-04 std err 1.228 0.013 0.016 0.017 0.016 0.016 0.016 41.484	rm_ret N 3, 0, 0) 1, 2023 3, 30, 23 1, 2014 4, 2021 opg 2 1 -3, 238 0, 3, 238 0, 3, 238 0, 0, 685 0, 3, 539 0, 74, 006 0, 0, 0 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	P> z 0.001 0.211 0.970 0.283 0.946 0.487 0.000 0.000 2.5	rvations: kelihood AIC BIC HQIC -0.025 -0.041 -0.031 -0.015 -0.021 0.025 -0.021	24: -13138.84 26293.63 26340.02 26310.54 -1.568 0.009 0.032 0.050 0.030 0.043 0.043 0.088 3151.421	i9 i7 i3 i4 Cov ccc a sigr	Dep. Va Sa variance onst () r.L1 -0 na2 15	riable: Model: Date: Time: ample: Type: coef s 0.2787 0.0153 5.0368 Box (L1) (ARIM/ Tue, 31 - 09 - 05 td err 0.078 0.013 0.194	return A(1, 0, 1 Jan 202 14:32:4 -22-2010 -04-202 op z 3.568 -1.227 77.352	Nc 0) 23 42 44 21 22 44 23 44 24 25 26 27 28 29 20 0.000 0.22 0.000 0.22 0.000	 z) [0.02 z) [0.02 0 0.12 0 -0.04 14.65 	ations: elihood BIC HQIC 5 0.975 6 0.433 0 0.009 6 15.413 6613.33	-6705.236 13416.471 13433.842 13422.789]] 2 9 3 3
Covariar ar.L1 ar.L2 ar.L3 ar.L4 ar.L5 ar.L6 sigma2	Model: I Date: T Time: Sample: Sample: - nce Type: - -0.0159 - 0.0006 - 0.0178 - -0.0111 - 0.0013 - 0.0014 - 0.0173 - -0.0151 - 0.0114 - 0.0567 - 3070.1127 -	ARIMA(6 ue, 31 Jai 09-2* - 05-04 std err 1.228 0.013 0.016 0.016 0.016 41.484 2): 0.01	rm_ret N 3, 0, 0) 1, 2023 1, 2014 4, 2021 opg 2 1 -3,238 0, -1,251 0,038 0, 0,695 0, 3,539 0, 74,006 0 Jarque-t	Log Li P> z 0.001 0.2211 0.223 0.233 0.243 0.243 0.243 0.245	rvations: kelihood AIC BIC HQIC -0.025 -0.041 -0.015 -0.031 -0.025 -0.025 -0.021 0.025 -0.025	24: -13138.84 26293.63 26340.02 26310.54 -1.568 0.009 0.032 0.050 0.030 0.043 0.088 3151.421 55	i9 23 14 Cov cc ai sigr	Dep. Va I Sa variance onst () r.L1 -() na2 15 Ljung-E	riable: Model: Date: Time: ample: Type: coef s 0.2787 0.0153 5.0368 Box (L1) (ARIM/ Tue, 31 (09 - 05 td err 0.078 0.013 0.194 Q): 0.0 Q): 1.0	return A(1, 0, 1) Jan 202 14:32:4 -04-202 op z 3.568 -1.227 77.352 00 Jan 00 Jan	Nc 0) 23 42 44 21 22 44 23 44 24 25 26 27 28 29 20 0.000 0.22 0.000 0.22 0.000	 D. Observ Log Like [0.02] 0.12 0.04 0.14.65 14.65 14.65 	ations: elihood AIC BIC HQIC 5 0.975 6 0.43: 0 0.009 6 15.413 6613.33 0.009	-6705.236 13416.471 13433.842 13422.789]] 2 9 8 3 0
Covariar const ar.L1 ar.L2 ar.L3 ar.L4 ar.L5 ar.L6 sigma2 Ljun	Model: I Date: T Time: Sample: Sample: - nce Type: - -0.0159 - 0.0006 - 0.0178 - -0.0111 - 0.0013 - 0.0014 - 0.0173 - -0.0151 - 0.0114 - 0.0567 - 3070.1127 -	ARIMA(6 ue, 31 Jan 15 09-2* - 05-04 std err 1.228 0.013 0.016 0.016 0.016 0.016 41.484 2): 0.01 2): 0.94	rm_ret N 3, 0, 0) 1, 2023 1, 2014 4, 2021 opg 2 1 -3,238 0, -1,251 0,038 0, 0,695 0, 3,539 0, 74,006 0 Jarque-t	P> z 0.001 0.211 0.970 0.283 0.946 0.487 0.000 0.000 2.5	rvations: kelihood AIC BIC HQIC -6.380 -0.041 -0.015 -0.025 -0.021 0.025 -888.805 : -0.6448.5 -0.648.5	24: -13138.84 26293.63 26340.02 26310.54 -1.568 0.009 0.032 0.050 0.030 0.043 0.088 3151.421 35 10	i9 i14 Cov cc ai sigr Hete	Dep. Va Sa variance onst () r.L1 -() ma2 15 Ljung-E erosked	riable: Model: Date: Time: ample: Type: coef s 0.2787 0.0153 5.0368 Gox (L1) (Prob(ARIM/ Tue, 31 . 09 - 05 td err 0.078 0.013 0.194 Q): 0.0 Q): 1.0 H): 1.5	return A(1, 0, 1,	No N	 z) Observ Log Like z] [0.02 0.012 0.04 14.65 iera (JB): Prob(JB): 	ations: elihood AIC BIC HQIC 5 0.975 6 0.433 0 0.003 6 15.413 6613.33 0.00 -0.11	-6705.236 13416.471 13433.842 13422.789

Prob	(H) (two-s	ided):	0.00	1	Kurtosis:	10
Dep. V	ariable:	n	orm_ret	No. Obs	ervations:	
	Model:	ARIMA	6, 0, 0)	Log	Likelihood	-1313
	Date:	Tue, 31 Ja	in 2023		AIC	2629
	Time:	1	5:30:23		BIC	2634
5	Sample:	09-2	1-2014		HQIC	2631
		- 05-0	4-2021			
Covariand	e Type:		opg			
	coef	std err	z	P> z	[0.025	0.97
const	-3.9744	1.228	- <mark>3.23</mark> 8	0.001	-6.380	-1.5

ar.L1	-0.0159	0.013	-1.251	0.211	-0.041	0.009
ar.L2	0.0006	0.016	0.038	0.970	-0.031	0.032
ar.L3	0.0178	0.017	1.073	0.283	-0.015	0.050
ar.L4	-0.0011	0.016	-0.068	0.946	-0.032	0.030
ar.L5	0.0114	0.016	0.695	0.487	-0.021	0.043
ar.L6	0.0567	0.016	3.539	0.000	0.025	0.088
sigma2	3070.1127	41.484	74.006	0.000	2988.805	3151.421

Ljung-Box (L1) (Q):	0.01	Jarque-Bera (JB):	6448.55
Prob(Q):	0.94	Prob(JB):	0.00
Heteroskedasticity (H):	1.52	Skew:	0.16
Prob(H) (two-sided):	0.00	Kurtosis:	10.99

Dep.	Variable:		return	s No.	Observa	tions:	2417
	Model:	ARI	VIA(7, 0, 0) L	og Likel	ihood	-6699.913
	Date:	Tue, 3	Jan 202	3		AIC	13417.826
	Time:		14:37:5	1		BIC	13469.939
	Sample:	C	9-22-2014	4		HQIC	13436.778
		- 0	5-04-202	1			
Covaria	nce Type:		opį	g			
	coef	std err	z	P> z	[0.025	0.975	1
const	0.2787	0.083	3.340	0.001	0.115	0.44	2
ar.L1	-0.0144	0.013	-1.117	0.264	-0.040	0.01	1
ar.L2	0.0015	0.016	0.095	0.924	-0.030	0.03	3
ar.L3	0.0176	0.017	1.058	0.290	-0.015	0.05	D
ar.L4	-0.0008	0.016	-0.051	0.959	-0.032	0.03	D
ar.L5	0.0112	0.016	0.684	0.494	-0.021	0.043	3
ar.L6	0.0561	0.016	3.465	0.001	0.024	0.08	В
ar.L7	-0.0275	0.015	-1.872	0.061	-0.056	0.00	1
sigma2	14.9702	0.207	72.344	0.000	14.565	15.37	6
Ljun	g-Box (L1) (Q): (.00 Jaro	que-Ber	a (JB):	6308.9	1
	Pro	b(Q): (.98	Pro	bb(JB):	0.0	0
Heteros	kedasticit	<mark>(H):</mark> 1	.51		Skew:	-0.10	6
Prob(H) (two-si	ded): (.00	Ku	rtosis:	10.9	1

Dep.	Variable:	C	lose No	. Observ	ations:	2418
	Model:	ARIMA(3, 0	0, 0)	Log Like	lihood	18688.728
	Date: T	ue, <mark>31 Jan</mark> 2	023		AIC	37387.457
	Time:	07:48	B:14		BIC	37416.410
	Sample:	09-21-2	014		HQIC	37397.986
		- 05-04-2	021			
Covariar	nce Type:		opg			
	coef	std err	;	z P> z	[0.02	5 0.975]
const	7178.9363	5.791	1239.567	0.000	7167.58	5 7190.287
ar.L1	1.0128	0.008	125.997	0.000	0.99	7 1.029
ar.L2	0.0139	0.010	1.330	0.184	-0.00	7 0.034
ar.L3	-0.0270	0.007	-3.758	0.000	-0.04	1 -0.013
sigma2	3.02e+05	1981.120	152.450	0.000	2.98e+0	5 3.06e+05
Ljung	g-Box (L1) ((ב): 0.02	Jarqu	e-Bera (J	B): 1447	742.42

-jung / (/ (-).	0.02	enique Bein (eB).	
Prob(Q):	0.89	Prob(JB):	0.00
Heteroskedasticity (H):	4293.11	Skew:	1.38
Prob(H) (two-sided):	0.00	Kurtosis:	40.80

Dep. Variable:	Close	No. Observations:	2418
Model:	ARIMA(4, 0, 0)	Log Likelihood	-18683.763
Date:	Tue, 31 Jan 2023	AIC	37379.527
Time:	07:48:13	BIC	37414.271
Sample:	09-21-2014	HQIC	37392.162
	- 05-04-2021		
Covariance Type:	opg		

	coef	std err	z	P> z	[0.025	0.975]
const	7178.9367	6.904	1039.814	0.000	7165.405	7192.468
ar.L1	1.0116	0.008	124.820	0.000	0.996	1.027
ar.L2	0.0141	0.011	1.332	0.183	-0.007	0.035
ar.L3	0.0395	0.012	3.409	0.001	0.017	0.062
ar.L4	-0.0654	0.008	-8.575	0.000	-0.080	-0.050
sigma2	3.041e+05	2016.363	150.792	0.000	3e+05	3.08e+05

Ljung-Box (L1) (Q):	0.00	Jarque-Bera (JB):	143806.34
Prob(Q):	0.98	Prob(JB):	0.00
Heteroskedasticity (H):	4083.98	Skew:	1.28
Prob(H) (two-sided):	0.00	Kurtosis:	40.69

8.3 List of Code Chunks

```
def LLR_test(mod_1, mod_2, DF = 1):
    L1 = mod_1.fit().llf
    L2 = mod_2.fit().llf
    LR = (2*(L2-L1))
    p = chi2.sf(LR, DF).round(3)
    return p
```

<pre>eth_train['delta_prices']=eth_train.close.diff(1</pre>	<pre>print("\nLR test p-value = " + str(LLR_test(model_arima_1, model_arima_3, DF = 2))) print("\nLR test p-value = " + str(LLR_test(model_arima_2, model_arima_3))) mint("\nLR test p-value = " + str(LLR_test(model_arima_2, model_arima_3)))</pre>
<pre>sts.adfuller(eth_train.delta_prices[1:])</pre>	<pre>print("\nLR test p-value = " + str(LR test(model_arima_4, model_arima_3))) print("\nLR test p-value = " + str(LR test(model_arima_5, model_arima_3))) print("\nLLR test p-value = " + str(LLR_test(model_arima_6, model_arima_3)))</pre>
(-10.144321399562491, 8.262347504369866e-18,	LLR test p-value = 0.004
16, 1483,	LLR test p-value = 0.002
{'1%': -3.4347671645756304,	LLR test p-value = 0.048
'5%': -2.86349089226533, '10%': -2.5678086339403325},	LLR test p-value = 0.002
16914.969030305292)	LLR test p-value = 0.048

```
print("ARIMA(1,1,1): \t LL = ", results_model_arima_1.1lf, "\t AIC = ", results_model_arima_1.aic)
print("ARIMA(1,1,2): \t LL = ", results_model_arima_2.1lf, "\t AIC = ", results_model_arima_2.aic)
print("ARIMA(1,1,3): \t LL = ", results_model_arima_3.1lf, "\t AIC = ", results_model_arima_3.aic)
print("ARIMA(2,1,1): \t LL = ", results_model_arima_4.1lf, "\t AIC = ", results_model_arima_4.aic)
print("ARIMA(3,1,2): \t LL = ", results_model_arima_6.1lf, "\t AIC = ", results_model_arima_6.aic)
ARIMA(1,1,1): LL = -8610.795256554851 AIC = 17227.590513109702
```

ARIMA(1,1,2):	LL =	-8610.12597071617	AIC =	17228.25194143234
ARIMA(1,1,3):	LL =	-8605.290078714881	AIC =	17220.580157429762
ARIMA(2,1,1):	LL =	-8607.247994566285	AIC =	17222.49598913257
ARIMA(3,1,1):	LL =	-8610.15517355717	AIC =	17230.31034711434
ARIMA(3,1,2):	LL =	-8607.247371915331	AIC =	17226.494743830663

1 model_arima_1 = ARIMA(eth_train.close[1:], order = (1,1,1)) results_model_arima_1 = model_arima_1.fit() results_model_arima1.summary()
sts.adfuller(eth_train.res_ret_ma_2[2:])

<pre># 2 model_arima_2 = ARIMA(eth_train.Close[1:], order = (1,1,2)) results_model_arima_2 = model_arima_2.fit() results_model_arima_3 = model_arima_3.fit() results_model_arima_3 = model_arima_3.fit() results_model_arima_3 = model_arima_3.fit() results_model_arima_4 = ARIMA(eth_train.Close[1:], order = (2,1,1)) results_model_arima_4 = model_arima_4.fit() # 5 model_arima_5 = ARIMA(eth_train.Close[1:], order = (3,1,1)) results_model_arima_5.fit()</pre>	0.0, 0, 1498, {'1%': -3.4347228578139943, '5%': -2.863471337969528,	
<pre>#6ults_model_oilmo_1 = model_oilmo_1.nt() #6 model_arima_6 = ARIMA(eth_train.close[1:], order = (3,1,2)) results_model_arima_6 = model_arima_6.fit()</pre>	9027,645156416089)	

eth_train['res_ret_ma_2'] = results_ret_ma_2.resid[1:]

print("mean is " + str(round(eth_train.res_ret_ma_2.mean(),3)))
print("variance is " + str(round(eth_train.res_ret_ma_2.var(),3)))
print("Standard deviation is " + str(round(sqrt(eth_train.res_ret_ma_2.var()), 3)))

mean is 0.002 variance is 26.675 Standard deviation is 5.165

<pre>eth_train['res_price_ret'] = results_ar_model_ret_2.resid eth_test['res_price_ret'] = results_ar_model_ret_2.resid</pre>	<pre>sts.adfuller(eth_train.res_price[1:])</pre>		
eth_train.res_price_ret.mean()	(
-1.857860593810645e-05	(-9.90433891325914,		
eth_train.res_price_ret.var()	3.293878938828608e-17,		
26.63373497151356	16,		
<pre>sts.adfuller(eth_train.res_price_ret[1:])</pre>	1483,		
(-38.746625407896836,	{'1%': -3.4347671645756304,		
0.0, 0,	'5%': -2.86349089226533,		
1499, {'1%': -3.4347199356122493,	'10%': -2.5678086339403325},		
'5%': -2.86347004827819, '10%': -2.567797534300163}, 9031.09628608121)	16916.052118069485)		

```
eth_train['res_price'] = results_ar_model_1.resid benchmark_ret = eth_train.returns.iloc[0]
eth_test['res_price'] = results_ar_model_1.resid eth_train['norm_ret'] = eth_train.returns.div(benchmark_ret).mul(100)
eth_test['norm_ret'] = eth_test.returns.div(benchmark_ret).mul(100)
eth_train.res_price.mean()
                                                                  sts.adfuller(eth_train.norm_ret)
                                                                  (-11.416317801866343,
2.245538426615259
                                                                   7.048091371372087e-21,
                                                                  9,
1491,
eth train.res price.var()
                                                                  {'1%': -3.434743423170358,
'5%': -2.8634804142964025,
'10%': -2.567803054306163},
17802.319193813113)
5947.85755665728
 benchmark = eth train.Close.iloc[0]
                                                                               LLR test(ar model ret 1, ar model ret 2)
 eth_train['norm'] = eth_train.Close.div(benchmark).mul(100)
 eth_test['norm'] = eth_test.Close.div(benchmark).mul(100)
                                                                               0.003
LLR_test(ar_model_norm_ret_1, ar_model_norm_ret_2)
0.0
eth_train['returns'] = eth_train.Close.pct_change(1).mul(100)
eth_test['returns'] = eth_test.Close.pct_change(1).mul(100)
eth train = eth train.iloc[1:]
sts.adfuller(eth_train.returns) sts.adfuller(ethdata.Close)
                                                                                     btc_train['delta_prices']=btc_train.Close.diff(1)
                                             1
(-11.412390521316967,
                                                                                      sts.adfuller(btc_train.delta_prices[1:])
                                              (-1.4089708365742828,
  7.197384243781305e-21,
                                                                                      (-8,177641199656662.
                                              0.5779679105330212,
  9,
                                                                                       8.293887243613951e-13,
                                              17,
                                                                                       27,
 1492,
{'1%': -3.434740473427213,
                                              1861.
                                                                                       2392.
                                              {'1%': -3.4338687226315336,
'5%': -2.863094318475046,
                                                                                       {'1%': -3.4330867606360274,
'5%': -2.862749062318083,
   '5%': -2.863479112458789,
   '10%': -2.5678023610641922},
                                                '10%': -2.5675974634086765},
                                                                                        '10%': -2.5674136347538057},
                                                                                       36839.442886560086)
  9054.48520801563)
                                              21446.440104463112)
print(wn.mean())
                                LLR test(ar model, ar model 1)
1111.7392034831769
                              0.851
ARIMA(1,1,1):
                 LL = -18690.930198249596
                                                    AIC = 37387.86039649919
ARIMA(1,1,2):
                 LL = -18689.748010232594
                                                    AIC =
                                                           37387.49602046519
ARIMA(1,1,3):
                 LL = -18686.541816054236
                                                    AIC =
                                                           37383.08363210847
ARIMA(2,1,1):
                 LL = -18689.894258525324
                                                    AIC = 37387.78851705065
ARIMA(3,1,1):
                 LL =
                        -18686.098516218015
                                                    AIC = 37382.19703243603
                 LL = -18655.94414688421
                                                    AIC = 37323.88829376842
ARIMA(3,1,2):
 print("\nLLR test p-value = " + str(LLR_test(model_arima_5, model_arima_6)))
print("\nLLR test p-value = " + str(LLR_test(model_arima_4, model_arima_6, DF = 2)))
print("\nLLR test p-value = " + str(LLR_test(model_arima_2, model_arima_6, DF = 2)))
 print("\nLLR test p-value = " + str(LLR_test(model_arima_1, model_arima_6, DF = 3)))
 LLR test p-value = 0.0
 LLR test p-value = 0.0
 LLR test p-value = 0.0
 LLR test p-value = 0.0
```

```
# 1
model_arima_1 = ARIMA(btc_train.Close[1:], order = (1,1,1))
results_model_arima1 = model_arima1.fit()
results_model_arima1.summary()
# 2
model_arima_2 = ARIMA(btc_train.Close[1:], order = (1,1,2))
results_model_arima_2.summary()
# 3
model_arima_3 = aRIMA(btc_train.Close[1:], order = (1,1,3))
results_model_arima_3 = model_arima_3.fit()
results_model_arima_3 = model_arima_3.fit()
results_model_arima_4 = ARIMA(btc_train.Close[1:], order = (2,1,1))
results_model_arima_5 = model_arima_4.fit()
# 5
model_arima_5 = ARIMA(btc_train.Close[1:], order = (3,1,1))
results_model_arima_5 = model_arima_5.fit()
# 6
model_arima_6 = ARIMA(btc_train.Close[1:], order = (3,1,2))
results_model_arima_6 = model_arima_6.fit()
```

LLR_test(model_arma_1, model_arma_2, DF = 3)

0.0

btc_train['res_ret_ma_2'] = results_ret_ma_2.resid[1:]

print("mean is " + str(round(btc_train.res_ret_ma_2.mean(),3)))
print("variance is " + str(round(btc_train.res_ret_ma_2.var(),3)))
print("Standard deviation is " + str(round(sqrt(btc_train.res_ret_ma_2.var()), 3)))

mean is 0.003 variance is 14.903 Standard deviation is 3.86

8.4 List of Equations

 $Yt = \beta_1^* y_{-1} + \beta_2^* y_{t-2} + \beta_3^* y_{t-3} + \dots + \beta_k^* y_{t-k}$

 $Yt = \alpha_1^* E_{t-1} + \alpha_2^* E_{t-2} + \alpha_3^* E_{t-3} + \dots + \alpha_k^* E_{t-k}$

 $\begin{aligned} Yt &= \beta_1^* y_{t^-1} + \alpha_1^* \mathcal{E}_{t^-1} + \beta_2^* y_{t^-2} + \alpha_2^* \mathcal{E}_{t^-2} + \beta_3^* y_{t^-3} + \alpha_3^* \mathcal{E}_{t^-3} + \dots + \beta_k^* \\ y_{t^-k} + \alpha_k^* \mathcal{E}_{t^-k} \end{aligned}$

LR = 2*(InL1-InL2)

8.5 List of abbreviations

- BTC Bitcoin
- ETH Ethereum
- ACF Auto Correlation Function
- PACF Partial Autocorrelation Function
- AR Auto Regression
- MA Moving Average
- ARMA Auto Regression Moving Average
- ARIMA Auto Regression Integrated Moving Average
- ARIMAX Auto Regression Integrated Moving Average Exogenous
- WN White noise
- LLR-Log Likelihood Ratio

Appendix

^{pdf} - PDF form of the Python notebook which contains all the code, different models and graphs