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Abstract 

Interpretability in neural networks is a key to derive knowledge for toxicity-related 

research. Attributing the learned patterns in the input is one way towards Explaining neWZork¶V 

decisions. In this work we touch on an important process in drug design, namely mutagenicity 

detection. In regard to mutagenicity, we explain one of the possible mechanisms that mutagens 

use in mutating DNA molecules. Next we introduce the Ames test, one of the most common 

mutagenicity detection tests. We explain that the Ames test has a relatively high interlaboratory 

reproducibility error. Neural networks can take over this repetitive time-consuming task. After 

that, we draw attention to the potential of deep learning in drug development, and how it can 

assist predicting the output of the Ames test. Interpretability in Neural Networks is the idea of 

relating the model¶V decisions back to patterns in the input data. We hint how interpretability 

can help drug development research strive forward. Later we peek into the data at hand and 

provide a quick description of the data processing techniques employed in our analysis. To 

encode the data, we use Extended Connectivity Fingerprints, a highly performant variant of the 

Morgan Fingerprint method. Our 2048-bit vectors are fed to our best trained network. Prior to 

that, the concept of Feed Forward Networks is recapitulated for better grasp of the topic. 

Following, we train 30 different networks and evaluate them using the Area Under the ROC 

curve as an evaluation metric. The hyperparameter settings of these networks are chosen using 

an optimization technique known as the Bayesian Optimization. In regard to the optimization 

process, we elaborate on our choice of parameters and justify how the AUC is an adequate 

metric for our case study. Last but not least, we describe the neWZork¶V architecture suggested 

by our optimization technique. Subsequent to that, we revisit attribution methods, more 

specifically the integrated gradients method. Because integrated gradients is easily applicable 

and implementable, the method stood out in the recent few years. In that regard, we show both 

advantages and disadvantages of IG. The choice of baseline has to be made carefully, in order 

for IG to deliver good results. To investigate that, we try four different baselines: zero-vector, 

modal, average and random, and compare their results in the subsequent work. Remarks 

regarding potential numerical errors committed while approximating the integral are made. 

Furthermore, we provide a recipe to implement IG as well as our own implementation of the 

method. After that, results show that our best trained model is a good performant with an AUC 

of ~0.894, 0.830 on validation, test set respectively. Next, we move to explaining the model¶V 



 

V 

output using analysis of IG. Attributions produced by Integrated Gradients are then used to find 

the weighted atomic contribution for all bits within one molecule. By and by, we make a few 

remarks about the final results. We show that our findings cohere with the findings of the 

literature to a high extent. For better comparison of the baselines, we compare the number of 

true positives with the respect to the number of positively attributed molecules per toxicophores. 

The findings show that the zero-vector managed to rediscover a high number of the 

toxicophores listed in the literature and is therefore the most adequate baseline for our research. 

Finally, our findings are consistent and matches the literature. However, in order for integrated 

gradients achieve a higher toxicophore rediscovery, there is room in our work for improvement.  

Implementation: is available on GitHub  

https://github.com/kareemjeiroudi/molecules_and_ml  

https://github.com/kareemjeiroudi/molecules_and_ml
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observation introduced. The uncertainty grows as we go further from the evaluated observations.
 23 

Figure 10: 10 best scoring models after having them initialized, trained (on training set), and evaluated 
(on validation set) 10 times. The x-axis shows models ids that match the ones listed in table 3. The 
y-axis shows their average auc scores. The whiskers represents the standrd deviation in the auc 
score. 26 

Figure 11: example of a receiver operating characteristic (ROC) curve on the left. Example of precision-
recall plot on the right. See how recall and precision are competing objectives. Which metric is 
preferable depends on the application requirements. 27 

Figure 12: interpolating the input increasing in intensity from 0 to 1. Observe changes in the network's 
decision 30 

Figure 13: three possible paths drawn between an arbitrary baseline 𝑥ᇱ and the original input 𝑥. The 
integrated gradients interpolate over a number of samples 𝑠  that lie on that straight path that 
connects the two samples (𝑃3). Examine the interpolated sample 𝑥ఈ for comprehension. 29 

Figure 14: numerical errors found by each baseline vs. The number of integration steps. The x-axis 
shows the samples in the test data set. The y-axis represents the numerical error found when 
calculating the attributions at sample 𝑥 (i.e. ห൫𝐹ሺ𝑥ሻ െ 𝐹ሺ𝑥′ሻ൯ െ σ 𝑎𝑖

𝑛
𝑖=1 ห). The average error over 

all samples is then calculated (a.n.e.), the same operation is repeated with 50, 60, 70, 80, 90 and 
100 integration steps and all four baselines (zero-baseline, modal, average, and random). In general, 
the zero-baseline had the lowest numerical errors with all integration steps. We can also see that 
the higher the number of integration steps the lower the error is. This statement, however, does not 
hold true for endlessly higher number of steps for computational reasons. 37 

Figure 15: receiver operating characteristic curves of model 28 (best scoring model). The plot on the 
left-hand side corresponds to the validation set. The plot to the right corresponds to the test set. The 
auc scores of each curve is reported on the lower-right corner of the plot 39 

Figure 16: comparison of unweighted (left) vs. Weighted attributions (right). In the figure left, all atoms 
are equally attributed. That is rarely the case in a fingerprint. The depicted molecule is number 100 
in the test set. 41 

Figure 17: weighted attributions of 12 randomly selected fingerprints found in molecule 1731 in the test 
set. Positive attributions are highlighted in red. Negative attributions are in green. The intensity of 
the color corresponds to how big the attribution value is. µP¶ stands for predicted label. µT¶ for true 
label. See how most substructures were recognized as mutagenic/toxic by our network, all of a 
reason for our network to classify the molecule as µmXWagen¶. 1 means µmXWagen¶ (positive class), 
0 means µnon-mXWagen¶ (negative class). 42 

Figure 18: weighted attributions of 12 randomly selected fingerprints found in molecule 341 in the test 
set. The description is identical to Figure 16. However in contrary to Figure 16, here a true negative 
is depicted. 43 

Figure 19: weighted attributions of 12 randomly selected fingerprints found in molecule 692 in the test 
set. The attributions show that the network understood the molecule as mutagen due to the presence 
of an aromic nitro. However, the ames test labeled the molecule as µnon-mXWagen¶. 44 

Figure 20: structural representation of some of the most common toxicophores listed in the literature. 
Some of these could not be plot due to technical errors. The original document provides a toxicity 
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1 Introduction 

Drug design is a lengthy, complex, and costly process. The number of challenges this 

process faces has led to a high uncertainty when approving a newly synthesized drug. The high 

rate of failed clinical trials, regulatory issues, lack of target proteins and biomarkers are all 

nothing but a few of these challenges that this lengthy drug design pipeline faces. Let alone the 

rising costs, lack of knowledge of the underlying mechanisms of certain diseases or patient 

heterogeneity. In order for a drug to be approved, chemists must make sure that the drug does 

not hold any adverse or toxic properties. Toxic properties are tightly relatable to chemical 

structures, sites, atomic arrangement or conformers [1, 2]. This chemical toxic activity takes 

effect when the molecule of interest binds to a target protein (e.g. protein receptor). We identify 

these structures as toxicophores. A good amount of these toxicophores is already listed in the 

literature [2]. This was made possible only with years of chemiVWV¶ extensive research. 

The field of bioinformatics puts computer power at the fingertips of these hardworking 

chemists and tries to take over repetitive and computationally-demanding work. In the recent 

years, we have seen machine learning algorithms being employed almost everywhere: from 

security, to industrial work, medical engineering, health-care, all the way to science. Machine 

learning is the compXWer¶V ability to process data in a desired form, put it in an abstract shape, 

extract meaningful information out of data, identify patterns and finally make decisions and 

predictions on the outcome of future data without being explicitly programmed to make these 

decisions. This is also referred to as generalization. Generalization, in this context, is the ability 

of a learning machine to perform accurately on newly unseen examples after having seen 

precedent data. In mathematical terms, we assume that this learning data has generally unknown 

underlying probability distribution that represent the occurrence probability of each example in 

the data. A learner has to identify patterns (build a statistical model) in this space that enables 

it to produce sufficiently accurate predictions in new cases. This goes hand-in-hand with 

probability reasoning and statistical learning.  
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The bacterial reverse mutation assay (Ames test) is an essential step in this pipeline 

that detects potentially mutagenic compounds. The Ames test represents an early alerting 

system for potential toxicophores that may result in adverse chemical activity in later 

development processes. It was named after the American biochemist Bruce Ames [3]. This in 

vitro assay has become the standard test for mutagenicity determination. According to the Ames 

test, a chemical is Ames test positive, if a genetic damage is detected when the chemical is 

added to a strain of bacteria. The test enjoys several advantages such as simplicity and ease-of-

use, however, the difficult reproducibility of the test hampers its potential. The reproducibility 

of the Ames test is dependent on the purity of the tested chemical, methods employed as well 

as additional toxic side effects.  

In this work we provide assistance to the drug design process by employing the power 

of feed-forward networks in predicting the output of the Ames mutagenicity test. We provide a 

summary of our model optimization strategy. Furthermore, we use a well-known attribution 

method (known as the Integrated Gradients) to interpret the decisions of the model. Results of 

the integrated gradients are mapped to individual atoms and visualized for interpretability. The 

final course of this thesis compares our findings with already-known toxicophores described in 

the literature. Before we get started, let us first cover the theory we will need to best understand 

the applied analysis.  

1.1. Mutagenicity 

An essential step in drug approval is the omission of mutagen molecules. Mutagenicity 

is the compound’s ability to induce DNA mutation, leading to either some deletions or adducts 

in the DNA. Some DNA repairing mechanisms get distorted because mutagenic compounds 

intercalate between the double stranded helix [4]. For instance, aromatic polycyclic 

substructures are likely to intercalate themselves between the base pairs of the DNA molecule 

forming stabilizing π bond [4]. This undesired effect will hinder DNA repair and replication 

mechanisms and will result in erroneous base replacements as a consequence. Once a toxic 

substructure has been identified, we refer to it as a toxicophore. The aromatic nitro and amine 

groups are well recognized toxicophores for mutagenicity [2]. It is important to note that 

detecting a toxicophore does not necessarily turn the molecule into a mutagen, but certainly 

indicates an increased potential for toxicity. With that in mind, no structural properties of non-
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mutagens were found that could explain the absence of mutagenicity. I.e. there no detoxifying 

structural properties that signal µnon-toxicity¶ [2]. As mentioned earlier, several compounds 

with a polycyclic aromatic system with large substituents have been reported to intercalate into 

DNA molecules. Triazene groups were recognized as toxicophores due to their high degree of 

reactivity after enzymatic epoxidation (DNA replication) [2]. Because Mutagenicity is 

substructure-relatable, we can accurately detect mutagenicity by applying substructure-search 

studies. One of the most popular knowledge-based studies is Ames test. In contrast, our 

approach is computationally-driven (in silico) and aims to learn existing described toxicophores 

and effortlessly predict the output of the Ames test. More on the substructure search is discussed 

in Extended-Connectivity Fingerprints (ECFP). In this work, we roughly describe 

mutagenicity (as a wide concept). We do not describe the chemical/structural properties of 

toxicophores, and therefore we use the terms mutagen and toxic interchangeably, not to 

introduce any confusion to the reader. 

1.2. Ames Test 

The identification of mutagenic substances is an important yet a difficult procedure in 

mutagenicity assessments. The Ames test is an in-vitro mutagenicity assay that aims to detect 

wide range of chemical substances that can cause reverse mutation leading to detectable genetic 

damage. The test makes use of several histidine dependent bacteria strains [5]. I.e. the strains 

are histidine deficient mediums, and they restore their ability to synthesize histidine only then 

when a bacteria strain is exposed to a mutagen. Each strain carries different mutations in various 

genes in the histidine operon. These mutations, in turn, act as hot spots for mutagens that cause 

DNA alteration via various mechanisms. We briefly explored one of these mechanisms in 

Mutagenicity. Molecules that are Ames test positive are referred to as mutagen. The test 

recognizes a compound as mutagen, if any genetic damage appears in the bacterial assay. For 

example, a bacteria colony starts to grow at a higher rate than control colonies, when this 

specific colony is exposed to this chemical. When no mutagens are added to the assay, the 

number of spontaneously induced revertant colonies per plate is relatively constant, because 

bacteria do not regain histidine synthesis functionality and hence are not able to form colonies. 

With that being said, this bacterial assay is associated with high complexity: if one colony starts 

to grow at a higher rate, it is not immediately indicative of the presence of a mutagen. This is 
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why this test is associated with a high rate of trial error. Besides that, potential mutagens (ones 

detected in the assay) have to be further examined in mammalian cells, because a number of 

these compounds interact with genetic material (e.g. DNA molecule) only if specific enzymes 

are available during the metabolic activation. Unfortunately, these enzymes exist only in 

mammalian cells, but not in bacterial ones. As a side note, the assay uses bacteria strains that 

are highly sensitive to DNA-damaging agents such as Salmonella, Bacillus subtilis or 

Escherichia coli [6]. The Ames test is one of the heavily used tests in toxicology due to its 

simplicity, fast applicability and lower costs. Almost every drug discovery process includes the 

Ames test as an initial detector of potential mutagenicity. In the following section, we 

demonstrate how the output of the Ames test is reproducible using computational methods such 

as Neural Networks (NNs).  

1.3. Deep Learning in Drug Design 

In the literature, several computational methods to predict the Ames test outcome are 

described and evaluated [7, 8, 9]. However, computational models often suffer from insufficient 

accuracy, making them unreliable compared to biological experiments [11]. However, machine 

learning methods such as support vector machine (SVM) has obtained higher accuracies 

compared to non-learning algorithms when evaluated in a 5-fold cross-validation [9]. Another 

experiment evaluated several computational and non-computational tools on a benchmark data 

set - which is contained in our data set too - in a 5-fold cross-validation. Results showed that 

all evaluated machine learning methods (SVM, Gussian Process, Random Forest, k-Nearest 

Neighbors, and Pipline Pilot) outperformed the non-computational tools [12]. With that being 

said, the non-computational tools such as DEREK and MultiCASE still have their advantages 

especially in drug development, since they provide not only structure-activity but mechanistic 

information too [12]. Both of the previous experiments used the prediction accuracy for 

performance comparison. The performance of the previously mentioned methods depends on 

the type of encoded data (e.g. descriptors, atomic graphs), size of the training data, and 

techniques employed in both data processing and parameter optimization. Moreover, Deep 

Learning specifically excelled in toxicity prediction and outperformed many other 

computational approaches like naive Bayes, support vector machines, and random forests [11], 

because of its ability to detect abstract features in chemical structures. While approaches to 
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detect structural alerts could be roughly categorized into fragment-based, graph-based, and 

fingerprint-based approaches [14], all of these solutions had one common issue: interpretability 

of the model. The National Toxicology Program has determined a 15% inter-laboratory 

reproducibility error in the Ames test [2]. Therefore, to assist drug approval procedure, 

computer algorithms such as machine learning are employed. Already existing software tools 

have their drawbacks in comparison to learning methods: reliance on knowledge database, 

lengthy matching algorithms, and relatively lower performance. The reason behind that, is that 

commercial solutions are often set to default parameters, thus full control over the algorithm is 

not a possibility, let alone adjusting the parameters to the study-case dataset. In contrast to the 

commercial tools, machine learning algorithms exclusively derive their knowledge from the 

training data. Here we name a number of limitations that existing tools have when compared to 

machine learning approaches: poor statistical performance, technical inaccessibility for bench 

chemists and difficult adaptability to a lab¶V chemical environment. In light of these facts, future 

drug development strives for improving the accuracy of machine learning-based methods. All 

that make chemists desire a better performant and more accessible tool. Additionally, the rapid 

increase in number of synthesized drugs demanded a more adequate tools for safety assessment 

than traditional in vitro experiments, where the rate of successfully classifying potential toxic 

drugs cannot be scaled efficiently and easily. Computation predictions are the result of applying 

machine learning, artificial intelligence and statistical learning algorithms to simulate the output 

of chemical experiments - only it is thousand times faster. One could predict the output of 

thousands of experiments at a time. Data that has already been approved and labeled in labs can 

now serve these algorithms, by allowing them to learn features in this data. This is achieved by 

capture the structural information of the molecule in numerical representations and feeding it 

through several layers of non-linear, differentiable parameterized mappings. Having said that, 

choosing the right set of parameters is crucial in order for these algorithms to deliver correct 

predictions. Deep learning, in particular, needs some fine parameter tuning to exploit its 

predictive power. Finding the best model¶ architecture is an optimization problem and is 

necessary to obtain accurate prediction. In the past few years, Deep learning has increased in 

popularity in the tasks of predicting chemical properties. And when neural networks made their 

first accurate predictions, it opened the gate for new AI-drug discovery related studies. One of 

this projecW¶s aims is to construct a neural network and best optimize its parameters. Together 

we look at a binary classification task, where a neural network learns to classify these two 

classes that we have been discussing (mutagen; non-mutagen). Furthermore, extracting 
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knowledge from neWZork¶V decision would not be possible without an accurately predicting 

network. Therefore, we work on improving the neWZork¶V predictions by employing the 

Bayesian optimization compared to a precedent work that used a simple Grid Search. This 

enabled us to obtain a slight improvement in the AUC score. More on that in the 

Hyperparameter Optimization section. The goal is to then extract knowledge from the model¶V 

decisions and relate to the findings of former chemistry literature. One prominent drawback of 

neural networks is that the functions encoded in the neWZork¶V layers are often impossible to 

interpret by humans, and it is therefore impossible for us humans to understand how a neural 

network arrives at a conclusion. In the following section, we motivate more for this topic.  

1.3.1. Interpretability of Deep Neural Network 

Deep learning is a highly promising machine learning technique to employ in 

mutagenicity prediction. However, the problem of being able to correctly predict the outcome 

of the Ames test does not end here. Without being able to interpret these predictions, we are 

still far from being able to improve toxicity assessment and extend our knowledge of molecular 

mutagenicity. Regardless whether in computer vision, toxicity prediction, or natural language 

processing (NLP), the notion that neural networks are black boxes has been widespread. Having 

access to the model¶V µknoZledge¶ and being able to interpret it is certainly helpful in the 

development of newly synthesized pharmaceuticals. One could argue about the notion of 

³neXral networks are black bo[eV´ ± referring to the fact that we can neither have a look at the 

neWZork¶V logic nor debug the network in case of false prediction. In that regard, several 

Figure 1: attributions obtained by applying the integrated gradients for two correctly classified 
samples. The pixels highlighted on the right-hand side are the ones responsible for the model's decision. 
The higher the intensity, the higher the attribution. All other pixels in the surroundings were given 0 
attribution, since they do not contribute to the model¶V decision at all. µT¶ stands for true label, µP¶ 
stands for predicted label. 



Introduction 

 7 

methods such as DeepLift, layer-wise relevance propagation (LRP) and integrated gradients 

have been proposed. Attribution methods help understand the model¶V output from a hXman¶V 

perspective. It is impossible to understand the failures and successes of model predictions (be 

it a true or a negative prediction). This statement holds true as long as there are no means of 

interpretation of the model¶V decision. Luckily for us, we can highlight those patterns in the 

input that are mostly responsible for the neWZork¶V decision. The way we do that is by mutating 

the input and observing the changes in the neWZork¶V output. Attribution methods exploit this 

power of NNs. The hint here is that interpretability of predictions can be used to detect the parts 

of a molecule that are important and analyze its biological properties. To motivate for this, we 

constructed a toy convolutional neural network to predict the target class of the MNIST data 

set1, and applied the integrated gradients to the predicted labels. Results of the integrated 

gradients are visualized in both Figure 1 and Figure 2. See how pixels where the tint is are 

mostly informative to the network. Likewise, we want to examine these atoms that are mostly 

indicative of mutagenicity in our work. In this example we use the analogy of CNNs and the 

MNIST data. Interpretability of molecular descriptors is analogous too and should not introduce 

any confusion to the reader2. However, molecular descriptors require better understanding on 

how structural information is captured in the descriptors. Molecular descriptors are examined 

closely in Extended-Connectivity Fingerprints (ECFP). For Figure 1, one could pose the 

question ³hoZ did the model infer that the image represents a 7 but not a 1?´. More interestingly 

is to understand why the model predicts wrong labels when we expect it to predict the right 

label, such as in Figure 2. See how the network puts high emphasis on those pixels where the 

marker¶V stroke meets the other the other end. For a network, whenever this feature is present, 

the image looks more like 6 than 5. Thanks to attribution methods, we can explain why the 

model yielded a different output compared to a true prediction. With that being said, attribution 

methods do not fully investigate model decisions for every single neuron at every layer in the 

network. It is an attempt to demonstrate that neWZork¶V decisions are relatable to the input and 

 

1 The MNIST data set is a large and curated database often used in machine learning experiments, more 
specifically image processing. A number of scientific papers rely on the MNIST data to conduct small 
experiments, since minimizing the generalization error with this data is easy 
(http://yann.lecun.com/exdb/mnist/).  

2 Here, we take a look at an example from convolutional neural networks (CNN) just for the sake of 
simplicity. While, we do not employ convolutional layers in our project, we believe that readers who are not 
familiar with mutagenicity can get a better grasp of model¶V interpretability with this example. 

http://yann.lecun.com/exdb/mnist/
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can be explained in a way that matches humans understanding of data. In this work, we take a 

look at a well-known attribution method known as the integrated gradients [34]. A method that 

has been revisited by M. Sundararajan et al. to explain neWZork¶V decisions using gradient calls. 

We take a close look at this method and demonstrate its potential to attribute neural networks 

decision in molecular data. Once features attributions haven been worked out, we visualize the 

learned patterns in order to better understand these learned patterns. With that said, there is no 

attempt in our work to delve deep into the highlighted representations of neWZork¶V layers [14]. 

Instead, we only identify the most relevant patterns in a molecular structure for the prediction 

of the network. By identifying these patterns, we are able to compare our findings with the 

literature, allowing for neural networks acceptance in both research and medicine. 

 

Figure 2: attributions obtained by applying the integrated gradients for two false predictions. See how 
the attributions correspond to the model¶V decision. The lower-left stroke in µ5¶ in the first image is 
tight and makes the digit looks more like µ6¶. The attributions, in turn, highlight these pixels with high 
intensity. µT¶ stands for true label, µP¶ stands for predicted label. 



 

  

2 Methods 

Now that we have gained some understanding of the challenge at hand, we present 

hereby the methods that were used to solve the stated challenge and conduct our analysis. In 

general, the capabilities of machine learning algorithms are highly dependent on the type and 

size of data of interest. As a starter, we give a summary of the dataset at hand. In 2004, J. Kazius 

et al. [2] constructed a dataset comprising of 4337 molecular structures with corresponding 

Ames test labels. In 2009, K. Hensen et al. [12] collected a benchmark dataset of 6512 

compounds together with their Ames test data from public sources and made this data set of 

interest available to all researchers to be able to experiment with and compare their 

computational methods. Our data set is a larger one that has a split from both data sets. Idea is 

to allow our network to see different types of data samples. The first split yielded a test set 

consisting of 3315 structures and another set with 4437 structures. The second set was further 

down split into training and validation set, each with 4010 and 327 structures respectively. The 

final splitting is reported in the following table: 

Table 1: number of mutagens and non-mutagens in each of the training, validation and test set. 

 Training Validation Test 
Mutagen 2220 181 1690 

Non-mutagen 1790 146 1625 

The reason for us to choose this dataset is because it was highly curated: for example, duplicate 

structures have already been omitted, since this dataset was collected from multiple sources. It 

is also put in SMILES format for ease of use [13]. Another reason is that the creators of this 

dataset declare that the positively labeled structures (mutagens) in this dataset will not change 

with further testing [12]. Classes distributions of the data set is more or less balanced (see Figure 

3). Most interesting of all is the training set that had 430 samples difference. Although 

oversampling the non-mutagen class would have made a boost in the accuracy of our model, 

this is not necessary for our analysis, since we use the Area Under the ROC Curve (AUC) as 

metric to measure the performance of our models. The AUC score is robust to any changes in 

class distributions and is a valid metric as long as false predictions are equally costly. Let alone 
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the fact that it is not in our interest to apply these types of modifications to the data set. After 

splitting, we encoded the data in bits vectors (descriptor-based). For that purpose, we used the 

Extended-Connectivity Fingerprint (ECFP) [15], where a vector with a desired length is 

specified, and substructures with high similarity are represented by a bit at the same position in 

the vector (see Figure 4)3. For example, the substructure 'CC1CC(=O)C2CCCCC2C1=O' was 

found in the first molecule in the test set and was encoded with 1 at position 1014. If this 

substructure or a similar one was found in other molecules, we indicate its presence with 1 in 

the row that corresponds to that molecule. If the substructure is not found, we write 0 instead. 

The result of the ECFP algorithm is a matrix of shape (𝑛, 𝑚), where 𝑛 is the number of 

molecules in the data set, and 𝑚 is the number of features (the most 𝑚 frequent substructures 

in the dataset). The number of features 𝑚 is controlled by the substructure search parameters. 

More on that in the upcoming section Extended-Connectivity Fingerprints (ECFP). The 

choice of the right representation is task dependent. While we could encode the data in a better 

way, fingerprinting is sufficient because it encodes unique structural representation. 

2.1. Extended-Connectivity Fingerprints (ECFP) 

There are a number of topological/similarity substructure-search algorithms [15, 16, 

17]. We are particularly interested in molecular fingerprinting. Molecular fingerprinting is a 

 

3 Labels assigned to images are the molecules indices in the test set (molecule supplier). These indices 
correspond to the 𝑡𝑟𝑢𝑒 𝑖𝑛𝑑𝑒𝑥 െ 1 and therefore start at 0, that is because indices start at 0 in Python. 
However, the reported indices are the human-readable ones and start at 1. 

Figure 3: class distributions of all training (top), validation (middle) and test set (bottom). Class 
imbalance is noticeable but is not significant enough to apply additional data preprocessing 
techniques such as oversampling the minority class or undersampling. Number of mutagens is 
always higher than that of non-mutagens in all three sets. 
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class of methods designed to represent chemical structures with integer arrays. Originally these 

methods were developed for chemical database substructure searching, similarity searching, 

virtual screening, clustering and classification tasks [15, 16, 17]. Extended-Connectivity 

fingerprints, with one special difference to the original Morgan fingerprint algorithm, are 

designed to capture molecular features that are often associated with molecular activity [15]. It 

works by assigning (unique) numeric identifiers to each atom in the structure, and iteratively 

updates these identifiers. After a number of iterations, we obtain disambiguated substructures, 

that are easily identifiable and comparable. Eventually, the obtained substructures can be 

represented with bits (0s and 1s) in a bit vector. In order to understand the produced descriptor 

used in our workflow, and our parameter choice, it is essential to understand how ECFPs work. 

The algorithm can be broken down to three steps: 

1. Initialization: in this step, each atom is assigned an integer identifier (e.g. their atomic 

number, Daylight, atomic invariants-derived rule) - the choice of the initialization 

method is outside the scope of this work. Hydrogen atoms and bonds to hydrogen 

atoms are ignored (only heavy atoms are considered). The identifiers can be either 

positive or negative integers. Here is an example of initial identifiers: [(1: 734603939), 

(2: 1559650422), (3: 1559650422), «, (6: -1074141656)]. 

2. Iterative update: in every iteration, each aWom¶V identifier is updated to reflect the 

identifiers of neighboring atoms (i.e. collect substructural information about neighbor 

atoms). This step might include removal of duplicate structures, especially at early 

iterations. All identifiers from the previous iteration are collected into a fingerprint set. 

Next, each atom collects both its own identifier as well as the identifiers of its 

immediate neighbor atoms into an own array and passes the array to a hash function. 

A hash function takes care of reducing this array back into a new single integer, which 

gets assigned as a new identifier to the calling atom. Elements in the array must be 

ordered before being passed to the hash function - first to their identifier values, and 

second to their attaching bonds (e.g. single, double or triple bond). Once all atoms 

have generated their new identifiers, they replace their old identifiers with the new 

one. Now, the fingerprint set contains those identifiers from the current iteration. In 

ECFPs, there is no termination condition like in the original Morgan algorithm. 

Instead, the number of iterations is under the control of the user.  
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3. Duplicate identifiers removal: it might occur to anyone that at early iterations, 

identified substructures will look similar if not identical. Therefore, before moving to 

the next iteration, this last step takes care of preventing these substructures from 

appearing in the next iterations, but only then if they correspond to the same set of 

identifiers. To illustrate that, let us examine Figure 5 and Figure 6. In Figure 5, the 

algorithm identifies two similar substructures (having the same atoms, same bonds and 

same activity). These substructures (also referred to as environments) are set two times 

by two different core atoms: once by atom 6 with radius 2, and once by atom 5 with 

radius 2. This case is known as structure duplication. In structure duplication, 

environments get different set of identifiers, and are hence not removed. On the 

contrary, when the set of identifiers is identical such as the case in Figure 6, they are 

removed at the third step. This is quite common in symmetrical structures such as the 

one illustrated in Figure 6. 

One variant of this algorithm uses an extra step, where identification of stereochemical 

fingerprints is possible [15]. However, in our application, we do not make use of this extra step. 

This process is executed over all atoms in the molecule. As a consequence, the final fingerprint 

Figure 6: bit at position 1014 can be located in different molecules (e.g. mol. 1, 18, 42, 76, 87). All of these 
molecules are existent in the test supplier (test set). 

5 

6 

Figure 4: constructed environment after two 
iterations (radius = 2); once when atom 6 is core, 
and once when atom 5 is core. Both environments 
contain exactly the same atoms and bonds. 
Therefore, they are duplicate information. In 
comparison to Figure 5, these two core atoms will 
get different identifiers, and will be represented by 
the same bit at the same position, but not removed. 
This is known as structure duplication. 

2 
3 

5 

8 

4 

1 
6 7 9 

Figure 5: for both atoms 1 and 9, the identifiers will 
be identical even after 𝑛 number of iterations. Not 
only do they have same atoms and bonds, but the 
two regions are mirror images to one another. The 
terminal step works on removing these duplicates. 
These two atoms are known as stereoatoms. From a 
stereochemical point of view, these substructures 
are not identical. 
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set is a mixture of substructures of different sizes for each atom in the molecule. In another 

word, it will contain substructural information from all parts of the molecule. In light of that, 

what is the appropriate number of iterations? This is very case-dependent. Typically, two to 

three iterations are sufficient to produce fingerprints used in similarity search or clustering [15]. 

Since our analysis is an activity-learning one, we choose 3. It is worth mentioning that 

increasing the number of iterations reduces the number of newly discovered identifiers with 

every subsequent iteration. Same can be said about the number of bits ± what is the right number 

of bits? Traditionally, users specify the number of bits at ~1024 for most structure-activity 

learning tasks [15], however, we specified 2048 just so that we allow for less common 

substructures in the dataset to appear in the descriptor, also because 2048 is the default setting 

of the RDKit function GetMorganFingerprintAsBitVect() [15]. Increasing this number would 

make the algorithm take slightly longer time to calculate the bits, especially when having a 

large dataset, but the biggest advantage of ECFPs lies in the fact that they are rapidly 

computable. While ECFPs have been heavily adopted and updated [15], they have their 

downsides too: ECFPs identify highly precise structural features. For some purposes, this high 

level of precision iVn¶W desirable. Instead, some level of abstraction could be more useful. For 

example, a chlorine or a bromine substituent on a ring may be functionally equivalent but are 

still distinguished in an ECFP. On the other hand, other variants of the algorithm ignore this 

detail and treat both of these substituents the same such as in functional-class fingerprints 

(FCFPs). One last remark in regard to the choice of hash functions: in theory, any hash function 

that maps arrays of integers to a single integer can be used to generate the new identifier. The 

only condition for the hash function to be scientifically valid is that it has to take neighboring 

identifiers into account (i.e. collect neighboring information). 

2.2. Feed Forward Neural Networks 

A deep neural network is a function that maps an input vector to an output vector. Feed 

forward neural networks consists of a set of hidden layers, where each layer in the network 

consists of a number of computing neurons. Neurons in turn are computing units that detect a 

particular feature using a parameterized function called activation function. The activation 

value ℎ𝑗
𝑙  of neuron 𝑗 in layer 𝑙  is the weighted sum of (all) activations from neurons in the 

previous layer ሺ𝑙 െ 1ሻ, and is denoted as 
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ℎ𝑗
𝑙 ൌ 𝑎 ൭෍ 𝑤𝑖𝑗

𝑙
𝐼

𝑖=1

ℎ𝑖
𝑙−1൱ 

where 𝑤𝑖𝑗
𝑙  is the weight assigned to the connection between neuron 𝑖  in layer ሺ𝑙 െ 1ሻ  and 

neuron 𝑗  in layer 𝑙 , and controls the activation ℎ𝑖
𝑙−1  of neuron 𝑖  in layer ሺ𝑙 െ 1ሻ. 𝑎  is the 

activation function used in layer 𝑙 (e.g. ReLU). See Activation Functions for better grasp of 

the transformation that an activation function applies to its input. The weighted sum of every 

neXron¶V activation in the previous layer is referred to with the net input of neuron 𝑗 in layer 𝑙 

and is denoted 

𝑧𝑗
𝑙 ൌ ෍ 𝑤𝑖𝑗

𝑙 ℎ𝑖
𝑙−1

𝐼

𝑖

 

Furthermore, each layer 𝑙 transforms its input according to a parametrization to produce its own 

output, passing it to further layers down the line. Neurons in layer 𝑙 are understood as feature 

detectors, since every neuron in the layer applies the same function but receives a different 

parametrized input from the layer below. What that feature is and how it is detected is all 

dependent on the input from the previous layer and controlled by the weight matrix 

𝑊𝑙 ൌ

ۏ
ێ
ێ
ێ
𝑤11ۍ

𝑙 𝑤12
𝑙 ⋯ 𝑤1𝐽

𝑙

𝑤21
𝑙  ⋯ ⋯ 𝑤2𝐽

𝑙

⋮ ⋱  ⋱ ⋮
𝑤𝐼1

𝑙 𝑤𝐼2
𝑙 ⋯ 𝑤𝐼𝐽

𝑙 ے
ۑ
ۑ
ۑ
ې
 

where 𝐼 is the number of neurons in layer ሺ𝑙 െ 1ሻ, and 𝐽 is the number of neurons in layer 𝑙. 

Neurons within the same layer are not connected to each other. A neural network is a function 

that maps an input vector 𝑥 (independent variable) to an output vector 𝑦 (dependent variable).  

𝑦 ൌ 𝑁𝑁ሺ𝑥ሻ 

Therefore, the input of the input layer is the input vector 𝑥 itself 

ℎ0 ൌ 𝑥 

and the neWZork¶V output is the activation of the output layer 

𝑦 ൌ ℎ𝐿  
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where 𝐿 is the total number of the layers in the network. In regression tasks, the output value is 

a real number representing the outcome of the dependent variable 𝑦, but we do not deal with 

regression in this work. In a classification task, the output is vector of size matching to the 

number of possible outcomes 𝑘. To make it more specific, let us consider the classification task 

at hand. There are only two possible outcomes 𝑡𝑘 ൌ ሼ0,1ሽ, where 0 corresponds to the negative 

class (non-mutagen), and 1 to the positive class (mutagen). We call this case binary 

classification. Data is fed to the input layer (first layer). The information (computation) flows 

forwards through the neWZork¶V layers as depicted in Figure 7. The network makes a prediction 

by finding the maximum value in the output vector 𝑦. Every element in the output vector is the 

output value of one neuron in the output layer and corresponds to one label 𝑡𝑘 from all possible 

outcomes. This value could be understood as the probability that the input 𝑥 belongs to class 𝑘. 

For example, let us consider the output vector 𝑦 ൌ ሺ0.121, 𝟎. 𝟖𝟓𝟔, 0.023ሻ in Figure 7. For the 

network, it is most probable that the passed input 𝑥 belongs to the second class. Thus, the 

network classifies the input sample as the second class 𝑦𝑘 ൌ 2 . However, in binary 

classification such as ours, the output is a single-element vector containing the higher 

probability. Because probabilities in the output vector sum up to 1 (complementary event), we 

can easily find the second probability. 

Figure 7: example of a fully-connected feed forward neural network with 2 hidden layers. Input 
size is 3. Output is size is 3. Information is propagated through the neWZork¶V layers. Every Neuron 
in layer 𝑙 captures specific information (features detector), as the network adjusts its weights at 
layer 𝑙. 
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2.2.1. Backpropagation 

The network ³learnV´ by adjusting the weights 𝑊𝑙 layer by layer in order to ³fiW´ the 

data best possible. To do that, we require an Error Function 𝐸 that penalizes the network for 

making false predictions. The error function quantifies the difference between the computed 

output 𝑦𝑘 (e.g. 𝑦𝑘 ൌ 0.856) and the true value 𝑡𝑘 for input 𝑥. A very common error function is 

the mean squared error (MSE) that finds the mean error over a set of 𝑁 input-output pairs and 

is defined as  

𝐸ሺ𝑋ሻ ൌ
1

2𝑁 ෍ሺ𝑡𝑛 െ 𝑦𝑛ሻ2
𝑁

𝑛=1

 

where 𝑁 is the size of input-output pairs, 𝑡𝑛 is the true value for input 𝑥𝑛 and 𝑦𝑛 is the predicted 

value. ൫𝑡𝑛 െ 𝑦𝑛𝑗൯2
 alone is the squared difference of the activation output and the desired 

output for node 𝑗 in the output layer 𝐿, and is interpreted as the loss for node 𝑗 in Layer 𝐿. In 

this case, both 𝑡𝑛 and 𝑦𝑛𝑗 are scalars. To find the average loss, we calculate the loss over a data 

subset 𝑋 ൌ  ሾ𝑥1, 𝑥2, . . , 𝑥𝑁ሿ called a mini-batch. When all predictions are accurate, i.e. 𝑦𝑛 ൌ 𝑡𝑛 

for all input-output pairs ሺ𝑥𝑛, 𝑦𝑛ሻ in 𝑋, we get 𝐸ሺ𝑋ሻ ൌ 0. When we have mismatches, 𝐸ሺ𝑋ሻ 

grows. Therefore, it is desired to have 𝐸ሺ𝑥ሻ as close to zero as possible. To do that we adjust 

the weights in the network such that 𝐸ሺ𝑥ሻ is minimized. Let ℎ𝑗
𝐿 ൌ 𝑎𝐿ሺ𝑧𝑗

𝐿ሻ be the activation of 

neuron 𝑗 in the output layer. We write 

1
2𝑁 ෍ሺ𝑡𝑛 െ 𝑦𝑛ሻ2

𝑁

𝑛=1

ൌ  
1

2𝑁 ෍൫𝑡𝑛 െ ℎ𝑗
𝐿൯2

𝑁

𝑛=1

 

We can minimize 𝐸ሺ𝑥ሻ by calculating the gradient of the error function with respect to the 

weights connecting neuron 𝑗 with the all neurons in the previous layer. In loose terms, µhoZ 

much does the loss change having changed the weights by a little amoXnW¶. The gradient of the 

error function consists of the partial derivatives with respect to every individual weight  

𝛻𝐸ሺ𝑥ሻ௪ೕ
ಽ ൌ ቆ

𝜕𝐸ሺ𝑥ሻ
𝜕𝑤1𝑗

𝐿 ,
𝜕𝐸ሺ𝑥ሻ
𝜕𝑤2𝑗

𝐿 , … ,
𝜕𝐸ሺ𝑥ሻ
𝜕𝑤𝐼𝑗

𝐿 ቇ 

The gradient of the error function with respect to one individual weight connecting neuron 𝑗 in 

the output layer 𝐿 and the neuron 𝑖 in layer 𝐿 െ 1 can be calculated by 
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𝜕𝐸ሺ𝑋ሻ
𝜕𝑤𝑖𝑗

𝐿 ൌ
𝜕

𝜕𝑤𝑖𝑗
𝐿

1
2𝑁 ෍ ቌ𝑡𝑛 െ 𝑎 ൭෍ 𝑤𝑖𝑗

𝐿 . ℎ𝑖
𝐿−1 

𝑖

൱ቍ
𝑁

𝑛=1

2

 

Since 𝐸 depends on the activation ℎ𝑗
𝐿 and the activation ℎ𝑗

𝐿 ൌ 𝑎ሺ𝑧𝑗
𝐿ሻ depends on the net input 

𝑧𝑗
𝐿 and 𝑧𝑗

𝐿 depends on the weight 𝑤𝑖𝑗
𝐿 , then the chain rule tells us that to differentiate 𝐸 w.r.t. 

𝑤𝑖𝑗
𝐿 , we take the product of the derivatives of the composed function 

𝜕𝐸
𝜕𝑤𝑖𝑗

𝐿 ൌ
𝜕𝐸
𝜕ℎ𝑗

𝐿 ⋅
𝜕ℎ𝑗

𝐿

𝜕𝑧𝑗
𝐿 ⋅

𝜕𝑧𝑗
𝐿

𝜕𝑤𝑖𝑗
𝐿  

Let us break down each term from the expression on the right-hand side of the above equation. 

The first term is calculated by 

𝜕𝐸
𝜕ℎ𝑗

𝐿 ൌ
𝜕

𝜕ℎ𝑗
𝐿

1
2𝑁 ෍൫𝑡𝑛 െ ℎ𝑗

𝐿൯2
𝑁

𝑛=1

 

ൌ
1

2𝑁 ෍
𝜕

𝜕ℎ𝑗
𝐿 ൫𝑡𝑛 െ ℎ𝑗

𝐿൯
2

𝑁

𝑛=1

 

ൌ
1

2𝑁 ෍ 2ሺ𝑡𝑛 െ ℎ𝑗
𝐿ሻ

𝑁

𝑛=1

 

This means that the loss from the network for 𝑁 input samples will respond to a small change 

in the activation output from node 𝑗 in layer 𝐿 by an amount equal to the average value of two 

times the difference of the activation output ℎ𝑗
𝐿for node 𝑗 and the desired output 𝑡𝑛. 

The second term is calculated by 

𝜕ℎ𝑗
𝐿

𝜕𝑧𝑖𝑗
𝐿 ൌ

𝜕
𝜕𝑧𝑗

𝐿 𝑎𝐿൫𝑧𝑗
𝐿൯ ൌ 𝑎ᇱ𝐿ሺ𝑧𝑗

𝐿ሻ 

Because 𝑎𝐿  is the activation function employed at the output layer 𝐿 , the derivative 𝑎ᇱ𝐿 is 

dependent on the employed function. We explain activation functions in an upcoming 

subsection (see Activation Functions). Last but not least the last term is calculated by 

𝜕𝑧𝑖𝑗
𝐿

𝜕𝑤𝑖𝑗
𝐿 ൌ

𝜕
𝜕𝑤𝑖𝑗

𝐿 ෍ 𝑤𝑖𝑗
𝐿  ℎ𝑖

𝐿−1
𝐼

𝑖

ൌ 𝐼ℎ𝑖
𝐿−1 

So the input for node 𝑗 in layer 𝐿 will respond to a change in the weight 𝑤𝑖𝑗
𝐿  by an amount equal 

to the activation output for node 𝑖 in the previous layer (𝐿 െ 1) times the number of nodes in 

layer (𝐿 െ 1). Now, combining all terms we obtain 
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𝜕𝐸
𝜕𝑤𝑖𝑗

𝐿 ൌ
𝜕𝐸
𝜕ℎ𝑗

𝐿 ⋅
𝜕ℎ𝑗

𝐿

𝜕𝑧𝑗
𝐿 ⋅

𝜕𝑧𝑗
𝐿

𝜕𝑤𝑖𝑗
𝐿  

ൌ ൭
1

2𝑁 ෍ 2൫𝑡𝑛 െ ℎ𝑗
𝐿൯

𝑁

𝑛=1

൱ ⋅ ቀ𝑎ᇱ𝐿൫𝑧𝑗
𝐿൯ቁ ⋅ ൫𝐼ℎ𝑖

𝐿−1൯ 

So now we have seen how to calculate the derivative of the loss with respect to one individual 

weight in the output layer 𝐿 for 𝑁 training samples. Now the weight 𝑤𝑖𝑗
𝐿  is updated using the 

following rule: 

𝑤𝑖𝑗
𝐿 ← 𝑤𝑖𝑗

𝐿 ൅⋅ 𝜆
𝜕𝐸ሺ𝑋ሻ
𝜕𝑤𝑖𝑗

𝐿  

where 𝜆 is called the step size or learning rate, and controls how strongly the weight 𝑤𝑖𝑗
𝐿   is 

updated. That is, if 𝜆 is too small, the weights converge slowly to the local optimum. If the step 

size is too high, the gradients will explode causing the weights to diverge. We repeat the same 

process for each weight in the network. Calculating the derivative of 𝐸ሺ𝑋) with the respect to 

each weight in the network in a backward manner will eventually minimize the error function. 

This process is known as Backpropagation. This is a typical optimization problem where we 

have a parameterized function and is solved by minimizing an objective function (loss/error 

function) by iteratively updating the parameters using gradient descent until a certain condition 

is met such as finding a stationary point (i.e. local minimum) in the objective. However, what 

we demonstrated is known as stochastic gradient descent (SGD) or mini-batch SGD. The 

difference is that gradient descent is applied to the whole training data set at once where SGD 

is appied to a subset of the training data. Therefore, SGD is computationally more efficient and 

converges faster towards the minimum of the loss function[20]. For a large data set of size 𝑁, 

in gradient descent we would need to calculate the gradient of the loss for all 𝑁 samples, and 

only then can we update the weights. On the other hand, SGD is a more simplified approach 

that calculates the gradient over an equally sized set of (randomly) chosen training samples, 

referred to with mini-batches. The disadvantage of SGD is that parameter updates are not as 

precise as in gradient descent [11]. Since the parameters search space contains several local 

minima, the algorithm is unlikely to find the global minimum, but converges to a local 

minimum with every epoch. In this example we have discussed one specific error function 

which is the mean squared error (MSE).  
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There exists a number of error functions, but most commonly for classification tasks is cross-

entropy  

െ ෍ 𝑡𝑛 𝑙𝑜𝑔ሺ𝑦𝑛ሻ ൅ ሺ1 െ 𝑡𝑛ሻ 𝑙𝑜𝑔 ሺ1 െ 𝑦𝑛ሻ
𝑁

𝑛=1

 

2.2.2. Vanishing Gradient 

Problem in deep neural networks is that as we propagate the gradients through the 

layers, the gradient length decreases exponentially and could become too small for learning in 

the lower layers (close to the input layer). This problem is known as the vanishing gradient. 

This is one of the main problems that deep neural networks suffer from during training. More 

specifically, lower layers in the network are more subject to this problem. As noted earlier, once 

we have calculated the gradient of the loss w.r.t. a particular weight, the gradient is then used 

to update the weight. If that weight is in the output layer (or any high layer), the calculated 

gradient is a product of only few terms. However, more and more terms4 are included in the 

product, when calculating the gradient at lower layers in the network, allowing the gradient to 

become extremely small. If the gradient is extremely small, the update in the weight will 

become extremely small too. This small change in the weight is not going to carry through the 

network well enough such that the loss is reduced. In another word, the weight is barely updated 

and does not converge towards the optimal value as a result. Moreover, because weights in 

earlier layers have implications for the remainder of the network (higher layers), vanishing 

gradients eventually impair the neWZork¶V ability to learn. To overcome this problem, we use 

the Rectified Linear Units activation.  

2.2.3. Activation Functions 

So far, we have been talking about neuron activations but have not specifically defined what an 

activation function is. As stated earlier, an activation ℎ𝑗
𝑙 of neuron 𝑗 in layer 𝑙 is the output of 

 

4 The multiplied terms are often small real values (below 1). Therefore, the product gets smaller with more 
terms. 
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an activation function 𝑎𝑙ሺ𝑧𝑗
𝑙ሻ that is employed in layer 𝑙. An activation function defines what 

that output is given a set of inputs by transforming the inpXW¶V value. Every neuron in layer 𝑙 

utilizes the same activation function to make some transformations on the input but yields a 

different output due to it receiving a different input. Activation functions are biologically 

inspired by activity in our brains, where different neurons fire or are activated by different 

stimuli. Rectified Linear Units (ReLU) is a well known activation function that outputs the 

same value as the net input (preactivation) if the input is greater than 0, otherwise, it outputs 0 

𝑅𝑒𝐿𝑈ሺ𝑧ሻ ൌ 𝑚𝑎𝑥 ሺ0, 𝑧ሻ 

ReLU has the advantage that they are a remedy for the vanishing gradient problem [11]. 

Sigmoid too is a well known activation function that used in the logistic regression 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑ሺ𝑧ሻ ൌ
𝑒௭

𝑒௭ ൅ 1 

Sigmoid transforms the input to a value that is close to 0 if the input is extremely negative and 

to a value close to 1 if the input is extremely positive. See Figure 8 to understand the output of 

Sigmoid and compare it to other activation functions. The output layer in a neural network often 

has a special activation function, depending on the possible outcome of the network. For 

example, in binary classification, it is most suitable to use sigmoid in the output layer, because 

it outputs a real value between 0 and 1. The closer the value to 1, the higher the probability that 

the input belongs to class 1, and vice versa for values closer to 0. In multi-class classifications, 

we need a function that yields probabilities equal to the number of predictable classes such as 

SoftMax. The basic idea of SoftMax is to distribute the probability of different classes so that 

they sum up to 1. If we have 5 predictable classes in total, then we need 5 units in the final layer 

of our network activated by SoftMax. The formula for SoftMax is given by 

𝑆𝑜𝑓𝑡𝑀𝑎𝑥ሺ𝑧𝑘ሻ ൌ
𝑒௭ೖ   

σ 𝑒௭ೖ௄
𝑘=1

 

Neural networks were historically inspired from perceptrons. The simplest type of feedforward 

networks are perceptrons. They have no hidden units, thus a perceptron has only an input layer 

and an output layer. The output units of a perceptron are computed directly from the sum of the 

product of their weights with the corresponding input units. One prominent advantage of neural 

networks is their ability to learn high dimensional data. Also, neural networks are complex 

predictive models that can fit highly complex data, because as we introduce more layers in the 
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network our predictive model gets more complex due to a higher number of adjustable 

parameters. This complexity has its drawbacks too. In machine learning, the idea is to build a  

model that can predict unseen data points. If the model complexity is too high, eventually the 

model will overfit the learning data, and will not be able to predict unseen data. This concept is 

known as Overfitting. The counter-case is known as Underfitting. In underfitting, the model is 

too simple to fit the training data points. Neither overfitting nor underfitting is discussed in our 

work, because it requires more background on the generalization error. The aim instead is to 

provide an initial understanding of how neural networks ³learn´ data. With that being said, the 

downside to deep neural networks compared to other machine learning algorithms is that NNs 

have more hyperparameters to tune. One has to test the algorithm under different 

hyperparameter settings to evaluate the performance of the network. We discuss 

hyperparameter tuning in the upcoming section. To implement our neWZork¶V architecture, we 

use the sequential models from the Keras API [19]. It provides all activation functions, 

optimizers, loss functions as well as gradient calls that we need for our analysis. In order to 

have our data ready for training, a molecule has to be described as a vector with input features 

𝑥 ൌ  ሺ𝑥1, 𝑥2, . . , 𝑥𝑚ሻ, where 𝑚 is the number of features in the input vector. This has been 

covered in the previous section Extended-Connectivity Fingerprints (ECFP). 

Figure 8: four examples of common activation functions. Rectified linear units (ReLU) on the top-
left. Sigmoid to the top-right. To the bottom-left there is leaky ReLU. The bottom-right shows the 
hyperbolic tangent activation function. 
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2.3. Hyperparameter Optimization 

Almost all machine learning algorithms have two different types of parameters: 

trainable parameters; those get updated in the learning process with every epoch (weights of 

the network), and hyperparameters; are usually determined before training and are not updated 

during learning. The learning rate, choice of optimizer, number of layers in a network are all 

hyperparameters and are set before training. Choosing the best hyperparameter settings for the 

learning task at hand is challenging but crucial too for good performance on unseen data. There 

are a number of model selection techniques to choose from [21, 22, 23]. In a precedent work of 

ours utilizing the same data set, we used grid search in model selection [24]. The previously 

selected model yielded an AUC score of ~0.81 on the test. In a grid search, a hyperparameter 

search space is specified manually, and values from the search space are exhaustively 

substituted such that we create all possible hyperparameter combinations [21, 22]. This 

technique suffers from curse of dimensionality [26]. I.e. the search space dimensionality gets 𝑛 

times larger with every parameter setting specified, where 𝑛 is the number of values to be tested 

for that particularly specified setting. This time around, we wanted to improve the performance 

of our model where possible by employing the Bayesian Optimization technique. An automatic 

tuning technique where a function maps the hyperparameters from the search space to a 

specified objective. The objective can by anything that we want to maximize or minimize (e.g. 

accuracy, AUC). The objective is then evaluated on a validation set. In the Bayesian 

optimization, we differentiate between two types of hyperparameter updates: exploitation, 

where the selected hyperparameters are expected to get closer to the objecWiYe¶V maximum; and 

exploration, where using the selected hyperparameters for leads to uncertain outcome. The 

Bayesian optimization has shown better results in fewer evaluations compared to grid search 

and random search [22, 25], because it makes informed decisions about the next trial of 

Table 2: types of evaluated hyperparameters by the Bayesian optimization as well as their search space. µ[]¶ 
is used to describe continuous sets, µ()¶ for discrete, and µ^`¶ for categorical ones. 

Units 
(Discrete) 

Activation function 
(Categorical) 

Optimizer 
(Categorical) 

Learning 
rate 

(Continuous) 

Num. hidden 
layers 

(Discrete) 

(5, 1024) {ReLU, Sigmoid, 
SeLU} {SGD, Adam, RMSprop} [0.00001, 

0.2] (2, 15) 

Epochs 
(Discrete) 

Batch size 
(Discrete) 

Initializer 
(Categorical) 

Momentum 
(Continuous) 

Dropout rate 
(Continuous) 

(5, 30) (1, 200) {lecun_uniform, he_uniform, 
uniform, he_normal, normal} [0.001, 0.5] [0.0001, 0.5] 
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hyperparameter selection. But how do we 

learn about the next trial? Let 𝑓ሺ𝑥ሻ be an 

objective function, and 𝐻 a bounded set 

of hyperparameters. We are interested in 

finding the global maximum of 𝑓ሺ𝑥ሻ. To 

achieve that, the Bayesian optimization 

builds a probabilistic model for 𝑓ሺ𝑥ሻ , 

and exploits this model to make better 

decisions on which parameters in 𝐻  to 

evaluate next [25]. Furthermore, one 

must also select a prior that will make 

assumptions about the function being 

optimized [25, 27]. An acquisition 

function determines what point in 𝐻 

should be evaluated next and makes use 

of the information gathered from 

previous trials [25]. Several acquisition 

functions are used in the Bayesian 

optimization, and they vary in the details, 

in which they suggest the next point in 𝐻 

and previous observations [25, 28]: 

x Probability of Improvement: maximize 

the probability of improving over the best 

current value of the objective function 

x Expected Improvement: maximize the 

expected improvement (EI) over the 

current best 

x GP Upper Confidence Bound (UCB): 

minimize the regret over the course the 

optimization 

 

Figure 9: after just a few points, the algorithm 
constructs a posterior that is close to the true 
maximum. Notice the difference between exploration 
and exploitation steps. The former implies exploring 
the parameter space. The later implies testing points 
that lie near the current known maximum. The 
posterior gets closer to the original target with more 
evaluation points, especially near maxima/minima. At 
early optimization levels, the algorithm makes 
fantasies about the shape of the target function (below 
3 observations). The confidence interval is reevaluated 
with every observation introduced. The uncertainty 
grows as we go further from the evaluated 
observations. 
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AW earl\ opWimi]aWion leYelV, Whe algoriWhm iV VWill making Vome ³gXeVV Zork´ aboXW Whe 

underlaying distribution ± we call fantasies [25]. After a number of sampled points, the 

posterior (dotted line in Figure 9) looks more like the target, especially at maxima and minima. 

The problem of Bayesian optimization is that it exploits those regions where performance was 

good in comparison to previous tested points. Thus, the algorithm can easily get trapped in a 

local maximum, instead of moving towards the global maximum. Furthermore, it is crucial to 

choose a proper number of exploitation and exploration steps for this algorithm to deliver good 

results. Exploration, on the other hand, is forcing the algorithm to look for points that have 

equally or less Expected Improvement (for example) but are far from the currently exploited 

region in the bounded set 𝐻. Another way to get around this trap, is using utility functions that 

are controlled by an exploration parameter. The upper confidence bound (UCB) for example 

has a free parameter 𝜅 that controls how conservative the utility function is (more vs. less 

exploration) [28]. Note that these evaluations are often computationally expensive, because 

they involve running the entire machine learning algorithm until completion. A great advantage 

of the Bayesian optimization is that it takes significantly less time for evaluation in comparison 

to other optimization methods (e.g. Grid search) [22, 25], because it makes better choices about 

where to seek next, and hence less experiments to run. It has outperformed all other state of the 

art global optimization algorithms [25]. Our search took 4 hours: 59 min: 51 sec when set to 20 

exploitation steps and 10 exploration steps. The optimization was run on a 3.1 GHz Dual-Core 

Intel Core i5. In practice as well, one should be careful about the choice of exploitation steps, 

because as we exploit some regions in the parameter search space (e.g. learning rate), the 

algorithm might exploit endlessly precise values, which we cannot represent with a floating 

point in memory, and the computation would crash as a result. We happened to experience 

some crashes when setting the exploitation steps too high compared to the exploration steps. 

To get over this problem we chose the ratio exploitation: exploration steps as 2:1, such that for 

every two exploitations we take one exploration step. This is in general a good idea to avoid 

local maxima, because we know that maximizing the AUC is non-convex objective (i.e. has 

several local and global maxima). To conduct these optimization experiments, we used the 

BayesianOptimization github package [29]. It provides a constrained global optimization with 

gaussian processes. In Table 2 we report the type of hyperparameters that we worked to 

optimize as well as the search space of each. As for acquisition functions, we used the UCB, 

because across a number of experiments done by Wilson et al., the UCB function outperformed 

EI on all acquisition tasks, and proved to be more deterministic of exploitation points [25]. 
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Table 3 lists 10 best scoring models in our hyperparameters optimization history sorted by their 

AUC score. Out of 30 models, we leave out all those models that are obviously poor, 

maintaining a subset of 10 models for further consideration. This has the benefit of saving 

computer time and analyst attention too. There is a possibility for any of these listed models to 

have stochastically scored a high AUC. There are a number of reasons for that: one model might 

have been µlXck\¶ to get an easy validation split (i.e. samples in the validation set were similar 

in structure to the ones already seen in the training set); another reason would be the proper 

initialization of weights. When the model¶V weights are initialized before training, they get 

assigned either randomly or hardly coded for particular reasons. In either case, they are drawn 

from a prespecified distribution such as a normal or uniform distribution. We refer to these 

previous cases with µopWimiVWic¶ models. Therefore, in order to avoid these optimistic models, 

we let these exact same ten best scoring models train from scratch and have them predict on the 

validation set several times (10 times here). Then, we choose the model that scored highest on 

average with minimum deviation. This is a common practice in machine learning to avoid the 

trap of optimistic models. With that being sad, there is no way to identify a µbeVW¶ set of 

hyperparameters, we can only hope to find a global maximum in the search space. Our selection 

Model ID 1st run 2nd run 3rd run 4th run 5th run 6th run 7th run 8th run 9th run 10th run Average AUC Standard Deviation
22 0.881518202 0.8884432 0.870165746 0.888367517 0.882842655 0.888556724 0.876863695 0.878112465 0.858624082 0.868576402 0.878207069 0.009945967
28 0.897979263 0.889237872 0.890259593 0.901574207 0.89417619 0.890656929 0.881877696 0.894119428 0.897392719 0.90089306 0.893816696 0.006025245
24 0.880874896 0.887799894 0.855899493 0.872322712 0.8949141 0.886437599 0.882994021 0.81374404 0.882539923 0.874366155 0.873189283 0.023424586
10 0.874820253 0.858094301 0.8595512 0.856429274 0.854385832 0.848879891 0.856713086 0.854612881 0.848898812 0.859683645 0.857206917 0.007276652
12 0.87724211 0.849012336 0.871338833 0.868879134 0.853174904 0.868879134 0.889843336 0.867176266 0.84685537 0.867592523 0.865999395 0.013180255
8 0.871055022 0.849939454 0.871490199 0.869314312 0.859967456 0.848955574 0.846817528 0.863997578 0.86976841 0.810149096 0.856145463 0.018814615

25 0.872814652 0.836259744 0.848293347 0.828085976 0.838681601 0.843260425 0.830583516 0.848974495 0.836713842 0.845190343 0.842885794 0.012638368
30 0.855180504 0.859532279 0.848615 0.829599637 0.847233785 0.841898131 0.852758647 0.825228941 0.853629002 0.822088095 0.843576402 0.013374606
27 0.835238023 0.855558919 0.844925452 0.863089382 0.836297586 0.858510558 0.863732688 0.849428593 0.857186105 0.859948536 0.852391584 0.010479696
11 0.822069174 0.784416862 0.814879286 0.807386665 0.81276016 0.827669719 0.817566033 0.814803603 0.797661394 0.808748959 0.810796186 0.012375706

Table 3: first 10 best scoring models evaluated 10 times on the validation set in order to avoid optimistic 
models. This data is a one-to-one comparison and is not sorted. Model 28 is the best scoring model in our 
experiments, because the selection criterion implies that the selected model has the highest average AUC and 
lowest standard deviation. 

Model ID AUC activation batch_size dropout_rate epochs init lr momentum n_layers optimizer units
22 0.893741013 relu 200 0.0001 5 normal 0.2 0.5 2 SGD 858
28 0.891016423 relu 200 0.5 30 normal 0.2 0.001 2 SGD 904
24 0.879701809 selu 85 0.5 5 normal 0.2 0.001 2 SGD 586
10 0.874214788 sigmoid 134 0.065985751 23 he_uniform 0.03664644 0.293669954 2 RMSprop 10
12 0.867933096 selu 200 0.5 5 normal 0.2 0.001 2 SGD 103
8 0.867441156 selu 94 0.488382868 20 he_normal 0.007847167 0.142120674 4 Adam 126
25 0.858359192 selu 200 0.0001 5 lecun_uniform 1.00E-05 0.5 15 RMSprop 936
30 0.856750927 selu 1 0.0001 30 lecun_uniform 1.00E-05 0.001 15 RMSprop 373
27 0.841784606 relu 119 0.0001 30 normal 1.00E-05 0.5 2 RMSprop 543
11 0.808332703 selu 1 0.5 30 normal 1.00E-05 0.001 2 SGD 654

Table 4: results of the Bayesian optimization. Here are the 10 best scoring models found in our search history. 
Table is sorted to the AUC score in a descending order top-to-bottom. The AUC values correspond to the 
scores obtained by training a new model every time and evaluating it on the validation set. 
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criterion is best presented in Figure 10. In Table 4 we report the AUC scores obtained from 

each hyperparameter setting in all 10 runs. In the next subsection, we explain the objective used 

for the evaluation of the models. 

2.4. Area Under ROC Curve (AUC_ROC) 

In regular learning, we treat all misclassifications equally, which causes issues in 

imbalanced classification problems. Furthermore, there is no extra reward for accurately 

predicting a minority class. One could apply cost-sensitive learning to overcome this issue such 

as in security-related applications and fraud-detection. In this case it is more costly to falsely 

predict non-fraud than falsely predict fraud ± the latter is recoverable, but the former is not. 

However, we do not always have a ground to assign cost values, and therefore it is rather 

difficult to construct a cost matrix. Also, the decision between recall and precision have to 

made in some machine learning contexts. Recall is the percent of truly positive instances that 

were classified as such. 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
𝑡𝑝

𝑡𝑝 ൅ 𝑓𝑛 

Precision, on the other hand, is the percent of positive classifications that are truly positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
𝑡𝑝

𝑡𝑝 ൅ 𝑓𝑝 

Figure 10: 10 best scoring models after having them initialized, trained (on training set), and 
evaluated (on validation set) 10 times. The x-axis shows models IDs that match the ones listed in 
Table 4. The y-axis shows their average AUC scores. The whiskers represents the standrd deviation 
in the AUC score. 
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Depending on whether you lay your focus on the positive or negative class, one metric is more 

appropriate than the other. For that purpose, we use the AUC score (also known as ROC_AUC), 

which is the area enclosed under the Receiver Operating Characteristic. While the ROC curve 

represents the same confusion matrix under different classification threshold settings, the AUC 

tells how good the performance of the classifier independently of the pronounced threshold 

setting. Therefore, every point on the ROC curve represents one classifier under one threshold 

setting. The point (0,1) in the diagram makes a perfect classifier that commits no false 

predictions. The contrary of that is a classifier whose false positive rate (FPR) is 1 and true 

positive rate (TPR) is 0 (at point (1,0)), because it constantly makes false predictions. Point 

(0,0), makes a classifier that classifies all samples in the data set as negative and at (1,1) all 

samples are classified as positive. Any point on the diagonal is a random classifier whose FPR 

is equal to its TRP and therefore predicts class 𝑝 with probability 𝑥 and class 𝑛 with probability 

( 1 െ 𝑥 ). To see how AUC announces the better classifier independently of the class 

distributions, let us take a look at the two depicted classifiers in Figure 11. Given two classifiers 

with the same accuracy (say 85%) such 𝐶1 and 𝐶2 in Figure 11, one could pose the question 

³are these two classifiers equally good in a real applicaWion?´. For data where correct 

recognition of negatives is more important, 𝐶2 would be preferable. For data, where correct 

recognition of positives is more important, 𝐶1 would be the better classifier. What if it is 

 

Figure 11: example of a Receiver Operating Characteristic (ROC) curve on the left. Example of 
Precision-Recall plot on the right. See how recall and precision are competing objectives. Which 
metric is preferable depends on the application requirements.  



Attribution Methods 

 28 

equally important to correctly classify both positives and negatives? ± we evaluate the 

classifiers under different thresholds. To compare the overall performance of two classifiers 

regardless of the threshold settings, we measure the area enclosed under the ROC curve. The 

larger the area, the better the classifier. The difference is that AUC allows us to compare two 

or more classifiers, while ROC alone is not comparable. Another desired property of the AUC 

score is that it is robust to changes in the class distributions and is therefore a suitable metric 

for imbalanced dataset with no prediction costs. The value of the AUC ranges between 0.5 and 

1.0. An AUC of 0.5 represents a model that does not learn any patterns in the data and commits 

random predictions. On the other hand, a model that scores 1.0 does not make any false 

predictions. In practice such a model is unlikely to exist when dealing with real world data. We 

heavily rely on the AUC in our work. When evaluating models in the optimization process, the 

AUC represents our objective that we try to maximize. Furthermore, the ROC curve together 

with the AUC score of our best scoring model are reported in the Results section. 

2.5. Attribution Methods 

Ever since deep neural networks emerged, they are referred to as black boxes. This 

notion applies to some but not to entirety. While it is still controversial what pattern in the input 

a neuron 𝑛 in layer 𝑙 recognizes, the question asked today is ³Zhy did the network make this 

predicWion?¶¶ rather than ³hoZ´ if we had to rely on these predictions. A system driven by 

machine learning that assists the doctor diagnose diabetic Retinopathy is of no use to the doctor 

unless it can explain its output. And that is why interpretability of neural network is that 

important. Several methods have been proposed to unravel that mystery of these networks [14]. 

Attribution methods is one approach towards interpretability of neural networks. We focus on 

one particular method known as the Integrated Gradients [34] that relates the neWZork¶V output 

back to its input by assigning an attribution value (any real number) to each feature in input 

vector. These values describe the importance of that feature, and thus giving that feature either 

credit or blame for the model¶V decision. This of course implies having neutral features too. In 

another word, features that do not influence the model¶V decision. Neutrality of features is an 

important concept too, especially in the integrated gradients (see Baseline). As a whole concept, 

attribution methods are here to help us understand the reasoning of a neural network, as well as 

give some transparency on the neWZork¶V final prediction. Not only do attributions play a big 
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role in understanding the weaknesses of the trained model, but also help boost the performance 

of the model. Moreover, we could discover new unknown mutagenic patterns in the data. It is 

particularly interesting to understand the neWZork¶V decision with the used input in cases where 

the network makes false predictions. That said, attribution methods are completely independent 

of the learning process and are not to be considered proof tests that make the model avoid 

making false predictions. Instead, they are involved in the post-analysis. 

2.5.1. Integrated Gradients 

As mentioned earlier, attribution methods try to correlate the model¶V output with the current 

input to have more insight on the model¶V decision. Considering a molecule that was classified 

mutagen, what features in the input can we blame for this decision. To find out, we can 

interpolate the input over a number of possible inputs increasing in intensity from 0 to 1 (see 

Figure 12). The closer we get to the original input, the higher the probability that it is mutagen. 

Calculating the gradients along this path will highlight those non-stagnant features (changing 

features). On the other hand, the gradient of features that are not changing along the path will 

be 0. Moreover, the sum of those accumulated gradients highlights will return the attributions 

highlighting non-stagnant gradients. One question remains unanswered so far -what are we 

comparing the original input against? Increasing the current input in intensity implies having a 

reference input referred to with baseline. We discuss the role of baselines in the upcoming 

subsection. By giving an attribution value (importance) to every feature in the input, IG 

³e[plainV´ the decisions of a neural network. To elaborate more on the gradient calculations, 

Figure 12: three possible paths drawn between an arbitrary baseline 𝑥ᇱ and the original input 𝑥. 
The integrated gradients interpolate over a number of samples 𝑠 that lie on that straight path that 
connects the two samples (𝑃3). Examine the interpolated sample 𝑥ఈ for comprehension. 
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suppose 𝐹: ℝ𝑛 → ሾ0,1ሿ is a function that represents a neural network that outputs a real value 

between 0 and 1 (y-axis in Figure 12), given the input 𝑥 ൌ ሺ𝑥1, … , 𝑥𝑖ሻ ∈ ℝ𝑛 , we pose the 

following question: for an arbitrary input vector 𝑥, how different is the model¶V output, having 

changed feature 𝑥𝑖 in the input vector? In another word, we want to understand the changes that 

occur to the output 𝐹ሺ𝑥ሻ, having changed, say, one single feature in the input. A common way 

for humans to perform attribution relies on coXnWerparWV¶ comparisons. This implies the need 

for a baseline, to which we compare our input. Using a path function we can interpolate the 

original input over a number of inputs that lie on the straight line between a baseline 𝑥ᇱ and the 

original input 𝑥 (see Figure 12 for simplicity). We define the path function 𝛾: ሾ0,1ሿ → ℝ𝑛 that 

can written out in a formal way as 𝛾ሺ𝛼ሻ ൌ 𝑥ᇱ ൅ 𝛼 ൈ ሺ𝑥 െ 𝑥ᇱሻ, where 𝑛 is the input dimension. 

𝛼 now controls how close the current sample is to the original input 𝑥, such that: 

𝛾ሺ𝛼 ൌ 0ሻ ൌ 𝑥ᇱ 
𝛾ሺ𝛼 ൌ 1ሻ ൌ 𝑥 

Attribution methods based on path integrated gradients are collectively known as path methods. 

The integrated gradients is such a one. It is important therefore to note that the integrated 

gradients is a path method for the straight line path specified by 𝛾ሺ𝛼ሻ. Now that integrated 

gradients are expressed as the integral of the gradient of the neWZork¶V output with respect to 

the input 

Figure 13: interpolating the input increasing in intensity from 0 to 1. Observe changes in the 
network's decision 
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Because the output is a composition of function, we get the following by applying the chain 

rule 

න
𝜕𝐹൫𝛾ሺ𝛼ሻ൯

𝜕𝛼 𝑑𝛼
1

ఈ=0
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𝜕𝛾ሺ𝛼ሻ
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ఈ=0
⋅

𝜕𝛾ሺ𝛼ሻ
𝜕𝛼 𝑑𝛼 

The later gradient is easily computable  

𝜕𝛾ሺ𝛼ሻ
𝜕𝛼 ൌ

𝜕൫𝑥ᇱ ൅ 𝛼 ൈ ሺ𝑥 െ 𝑥ᇱሻ൯
𝜕𝛼 ൌ ሺ𝑥 െ 𝑥ᇱሻ 

Now the end formula looks like 
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The integral is estimated with 

ሺ𝑥 െ 𝑥ᇱሻ න
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𝑠
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The number of steps 𝑠  to estimate the integral is crucial in numerical calculation and is 

discussed in Integral Approximation (Number of Summation Steps). Here 𝑥 represents one 

input sample from the data set that can be interpolated over a number of steps. Results of the 

integrated gradients is a vector of equal size as the input vector containing attribution values 

that correspond to the importance of the features. For every feature 𝑥𝑖 in the input vector 𝑥 it 

assigns a value 𝑎𝑖 that represents the blame/credit value. This value is then interpreted as the 

contribution of 𝑥𝑖 to the final output 𝑦. IG is an axiomatic approach and satisfies the following 

four axioms compared to other attribution methods [34]: 

x Completeness: the sum of attributions in the attribution vector must be equal to the 

difference between the output at 𝑥 and at the baseline 𝑥ᇱ.  I.e. 

 𝐹ሺ𝑥ሻ െ 𝐹ሺ𝑥ᇱሻ ൌ ෍ 𝑎𝑖
𝑖

 F. 1 

where 𝑎𝑖 is the attribution value that corresponds to feature 𝑥𝑖 in the input vector 𝑥. 

This axiom is beneficial when computing the gradients numerically, because we can 

always double-check the correctness of the implementation by comparing the two 

sides of the equation.   
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x Sensitivity: implies that for two inputs differing in one feature value and same 

baseline, the attribution value of that feature must be different and non-zero too, if the 

model yields a new output. We expect the attribution 𝑎𝑖 to change, if we mutate feature 

𝑥𝑖 in the input vector. Sensitivity is implied by completeness. I.e. if all attributions 

sum up to the difference 𝐹ሺ𝑥ሻ െ 𝐹ሺ𝑥ᇱሻ, then we expect that attributions to be sensitive 

to changes in the input. 

x Implementation Invariance: two neural networks are functionally equivalent if their 

outputs are equal for all same inputs, and regardless of the actual implementation. 

Integrated gradients is an easy-to-implement axiomatic method and requires no 

modification to the original network. It is completely independent of the concrete 

choice of model¶V architecture or trainable parameters, in contrast to other attribution 

methods such as DeepLift and LPR [34]. This is implied by the fact that they are 

defined using the underlaying gradients, which do not depend on the implementation. 

Empirically, no changes were made to apply the integrated gradients to other networks 

in our experiments. 

x Linearity: attributions obtained by the integrated gradient preserve any linearity 

within the network. I.e. a linear combination of two neural networks 𝑓1  and 𝑓2  is 

𝑎 ൈ 𝑓1 ൅ 𝑏 ൈ 𝑓2 , receives attributions that are equal to the weighted sum of the 

attribution for 𝑓1 and 𝑓2. Linearly is a property of path methods. 

Discussion of these four axioms is out of the scope of this thesis. IG is relatively easy to 

implement and requires no changes in the original network, which enables us to use the same 

implementation for a number of networks. Here we provide a summary (recipe) on how to 

easily implement IG as well as our own implementation of the method: 

1. Consider a baseline that when passed to the network, the network predicts the default 

class when no informative features are present in the input. E.g. black image (each 

pixel 0) in computer vision. 

2. Now, we consider an input sample 𝑥 and interpolate it over a number of inputs 𝑠, 

between the baseline image and the original image such that the input vector 𝑥ఈ looks 

closer to the original input vector 𝑥 as we increase the intensity. When intensity is at 

maximum, we obtain the original input 𝑥, and it is at minimum, we obtain the baseline 

𝑥ᇱ.  
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3. For each input on that straight line, we compute the gradient of the neWZork¶V output 

w.r.t. the input. 

4. We average the computed gradients over the number of interpolated inputs. This is an 

approximation to calculating the integral. Then, we multiply the result by the 

difference  

(𝑥 െ 𝑥ᇱ). 

We repeat the previous steps for every sample in the data set. To test the performance of our 

implementation we compared the implementation in Snippet 1 to a GitHub package5 that we 

happened to use once and to an older implementation of ours. The comparison included 

calculating the attributions of the first 100 samples in the test set 10 times and averaging these 

values. Each of these runs were timed and run on the same CPU as the hyperparameter 

optimization. In the Results section we report the average timings. Although our 

implementation was not the best performant in these experiments, we decided to use our 

implementation of IG only for demonstration purposes. The easiness of implementing IG has 

 

5 Link to the Integrated Gradients package by Naozumi Hiranuma. The package was used for comparison 
purposes. https://github.com/hiranumn/IntegratedGradients  

 

from keras import backend as K 
import numpy as np 
 
def integrated_gradients(inp, baseline=None, steps=50): 
    # when no baseline is specified, take zero-vector by default 
    if baseline is None: 
        baseline = np.zeros(inp.shape) 
    # gamma calculates the path function for a given alpha 
    gamma = lambda alpha: baseline + alpha*(inp - baseline) 

input_tensor = np.array([gamma(alpha) for alpha in np.linspace(0, 1, 
num=steps)]) 

    output_tensor = model.predict(input_tensor) 
    gradient = K.gradients(model.output, model.input)[0] 
    sess = K.get_session() 

results = sess.run(gradient, feed_dict={model.output: output_tensor, 
model.input: input_tensor}) 

    return (inp-baseline) * np.average(results, axis=0) 

Snippet 1: implementation of the integrated gradients that was used in our computations. It requires only 
specifying the input and output tensors and a few gradient calls. To compute the gradients, we use the 
function gradients() provided by the backend module of Keras. 

https://github.com/hiranumn/IntegratedGradients
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led a number of developers to favor it. Also, integrated gradients is applicable to a variety of 

areas (e.g. text, vision, medicine and finance).  

2.5.1.1. Pros 

Here we make a couple advantages that we observed when using IG: 

1. IG is an easy-to-implement axiomatic approach to attribute the input and is 

independent of the implemented architecture, as long as we the gradient of the out 

w.r.t the input is computable 

2. The completeness axiom allows us to evaluate the implementation of IG 

3. Sensitivity is a desired property of the integrated gradients, since it highlights those 

non-stagnant gradients along the path of changing input 

4. Results of the integrated gradients are easily interpretable. In our analysis, results of 

the integrated gradients need extra processing to have them in an interpretable form. 

We demonstrate this step in the Results section. 

2.5.1.2. Cons 

Herewith we list some of the main downsides that we happened to experience when 

using IG: 

1. The attribution values obtained by IG are relative, and sometimes hard to interpret 

alone viewed alone: ³HoZ important is a feature with attribution value of -0.00429?´. 

When compared to another value (e.g. -0.39918), the value is interpreted easier, 

otherwise, the value alone is meaningful. Because we never project these values alone 

but always together with the rest of features in the input, this downside is not a 

stumbling rock. 

2. The choice of proper baseline is essential in order for the integrated gradients to work 

[34, 36]. A common way for humans to perform attribution relies on counter-facts. 

E.g. the absence of all features in an image is a black image (with zero pixel 

intensities). This makes the method less desirable, since for some types of data, we 



Methods 

 35 

often might not find a proper (meaningful) baseline. For most neural networks, a 

neutral baseline exists in the input space such as the zero-vector in our case, however, 

this baseline might be uninterpretable to us humans. We discussed the choice of 

baseline the following subsection Baseline. 

3. Features combination is irrelevant to IG. I.e. It doeVn¶W reveal the logic the network 

uses in combining features. In mutagenicity, some substructures are not mutagenic 

unless in the presence of a substituent or other substructures. If either of these 

substructures is present alone, the molecule is not classified as mutagen. While neural 

networks can build this logic, IG does not reveal this type of features correlation. 

2.5.1.3. Baseline 

Choosing an adequate baseline is a crucial step in the integrated gradients [34, 36]. 

While the original paper uses black pixels as the baselines [34], choosing other baselines proved 

to be equally good in some cases. Selecting a reliable baseline for your input type is not spices 

you add to the integrated gradients technique. Selecting an inadequate baseline could result in 

noisy gradients along the path, and could make it look like as if all features are equally 

responsible. Fortunately for us, features are not equally responsible in our data. Having a 

reliable baseline on the other hand makes the absence of some features more informative, thus 

less noisy gradients. Having said that, what is the best way to select a baseline? Depending on 

the problem you are trying to solve, there is a number of baselines to choose from. It is 

recommended for both binary and continuous features to use all-zero embedding vectors [34]. 

Passing the zero-vector baseline to our network resulted in predicting the negative class, 

because if no features of mutagenicity are present, the mutagenicity signal is low. I.e. the input 

is less indicative of mutagenicity. In binary classifications, the network learns both types of 

features: positive ones which increase the model¶V confidence in predicting the positive class, 

and negative ones that decrease the model¶V confidence. Both types of features are informative 

to the network. In our dataset, we have features that indicate mutagenicity when present, and 

others that indicate non-mutagenicity (intoxicity) when present. The network learns both types, 

however we are not aware of the second type of features, because we have a description of only 

mutagenic features (structures). To elaborate more, a baseline where all mutagenic features are 

present and non-mutagenic are absent is the most indicative input of mutagenicity. In the same 
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manner, a baseline where only non-mutagenic features are present is least indicative of 

mutagenicity. Selecting either of the two baselines is adequate. It is nevertheless hard to 

construct either of them. Instead, we can construct a baseline that is rather unindicative of 

mutagenicity just by assuming that the absence of mutagenicity indicators is responsible for 

predicting non-mutagen. I.e. we consider one of the predictable classes the ³defaXlW´ and that 

whenever no learned features are present, the input is rather non-mutagen. It is therefore 

desirable to have our baseline correspond to the ³default´ class such as the zero-vector. In 

general, this baseline works almost for all datasets, where the absence of features is indicative 

of another class label [35]. Other alternatives are there too such as using the average input of 

several training samples. It is a good practice to try out different baselines when applying the 

integrated gradients. In our analysis, we test the following four baselines: 

1. Zero-vector: a vector of size (2048) consisting of only 0s 

2. Average: at every column 𝑖  the average of the bits in the deVcripWor¶V matrix is 

calculated, and then rounded it to either 0 or 1 

3. Modal: at every column 𝑖 the average of the bits in the deVcripWor¶V matrix is calculated 

4. Random: at every position 𝑖 0 or 1 is randomly selected 

Choosing a baseline is relevant to the case study at hand and is independent of the neWZork¶V 

implementation. Sometimes we cannot assume that finding an adequate baseline for every 

dataset is manageable, and therefore we state that several baselines are equally adequate for 

these types of datasets. In light of that, selecting the zero-vector as a baseline is adequate and 

straightforward in this case. 

A common way to visualize the attributions is by scaling the feature values by the 

attribution values. If the feaWXre¶V value is 0 this would make the product 0, and the feature is 

not highlighted as result. Another simpler way is to avoid the multiplication and highlight the 

attributions alone. We used the second technique with one main difference: the attributions 

obtained by IG correspond to entire fingerprint. Allowing all atoms in a substructure to be 

equally attributed is not informative either. It is more desirable to have weighted attributions, 

where one could see the contribution of individual atoms to the mutagenicity predication. 

Attributions were weighted in a way such that each atom is weighted by the number of 
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occurrences (i.e. number of times it appeared in a fingerprint within one molecule). More on 

that in the Results section. 

2.5.1.4. Integral Approximation (Number of Summation Steps) 

Computing integrated gradients involves approximating a path integral via a 

summation. The value of the integral is expected to be equal to the difference 𝐹ሺ𝑥ሻ െ 𝐹ሺ𝑥ᇱሻ  

Figure 14: numerical errors found by each baseline vs. the number of integration steps. The x-axis shows the 
samples in the test data set. The y-axis represents the numerical error found when calculating the attributions 
at sample 𝑥 (i.e. ห൫𝐹ሺ𝑥ሻ െ 𝐹ሺ𝑥′ሻ൯ െ σ 𝑎𝑖

𝑛
𝑖=1 ห). The average error over all samples is then calculated (a.n.e.), the 

same operation is repeated with 50, 60, 70, 80, 90 and 100 integration steps and all four baselines (zero-baseline, 
modal, average, and random). In general, the zero-baseline had the lowest numerical errors with all integration 
steps. We can also see that the higher the number of integration steps the lower the error is. This statement, 
however, does not hold true for endlessly higher number of steps for computational reasons. 
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[F. 1], where 𝐹ሺ𝑥ሻ is the output of the network when passing input 𝑥. This theoretical property 

is of advantage for us to check the correctness of our implementation. In practice, however, we 

still find a slight difference between both sides of the equation. This numerical error is 

committed with every float number we introduce in the calculation. Should this numerical error 

be significantly large, we conclude to incorrectness of the implementation (e.g. bug in the code, 

erroneous differentiation). Should this numerical error be insignificantly small, we can increase 

the number of integration steps. Theoretically, more summation steps, more precision when 

calculating the integral according to the fundamental theorem of differentiation and integration. 

In practice, as we increase the number of steps, we reach a point, where the float points 

representing the gradient values are highly precise, and thus computer memory cannot 

accommodate for that high precision level. In the literature, it was recommended to use a value 

between 50 and 100 [34]. In practice, values in this range should return a µgood¶ estimate of the 

integral in the application of the integrated gradients. To illustrate that, we calculate all the 

numerical errors found using all four baselines (zero-vector, modal, average and random 

baseline) with integration steps of 50, 60, 70, 80, 90 and 100 for every input sample in the 

dataset. Then we average the errors corresponding to every sample over the number of samples 

in the dataset to get better insight on the changes of integral value. This should also give us an 

idea about which the safest baseline to use computationally. Last but not least, to avoid the 

randomness in these calculations we repeated the same calculations ten times over several 

sessions. 



 

  

3 Results 

When encoding the data, we used the Extended-Connectivity fingerprints to produce 

bit vectors including either 0s or 1s. The bits indicate the presence or absence of the substructure 

at position 𝑖. Results of ECFP is a matrix of shape (4010, 2048): (327, 2048): (3315, 2048) for 

training: validation: test set respectively, where every row represents one single molecule and 

in the dataset. To avoid the trap of optimistic models, we used average validation. The selected 

model was number 28 and had an average AUC score of ~0.894 and standard deviation of 

~0.006 when evaluated 10 times on the validation set. The selected model with 2 hidden layers 

and 904 rectified linear units per each yielded an AUC score of 0.830 on the test set. This is a 

slight improvement over our last constructed model from the previous work6 which had an AUC 

of ~0.810 on the test set. Figure 15 shows the ROC curves of model 28 after having it 

 

6  Link to the previous work on predicting the output of the Ames test: 
https://github.com/kareemjeiroudi/molecules_and_ml/blob/master/doc/old_(Grid_Search_optimization)/pro
ject_report.pdf  

Figure 15: Receiver operating characteristic curves of model 28 (best scoring model). The plot on 
the left-hand side corresponds to the validation set. The plot to the right corresponds to the test set. 
The AUC score of each curve is reported on the lower-right corner of the plot. 

https://github.com/kareemjeiroudi/molecules_and_ml/blob/master/doc/old_(Grid_Search_optimization)/project_report.pdf
https://github.com/kareemjeiroudi/molecules_and_ml/blob/master/doc/old_(Grid_Search_optimization)/project_report.pdf
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reinitialized and trained on the training set. The network was initialized using normal 

initialization, contains one input layer, 2 hidden layers with ReLU activation, two additional 

dropout layers with dropout rate of 0.5, and one output layer with 1 single unit activated by 

Sigmoid. For backpropagation, we used SGD with a learning rate of 0.2 and momentum 0.001 

and the binary cross entropy loss function. The network was trained on a batch size of 200 and 

30 epochs. It is obvious that there is a huge drop in the AUC score between the validation and 

test set. One could relate that to the fact that test set has more unseen data samples than the 

validation set. Possibly, model selection using cross validation such as 𝑘-fold cross validation 

might have given a better estimate of generalization error.  In the late analysis, we removed 

those bits from the test set¶V descriptor that correspond to fingerprints set by radius 0 (e.g. single 

atom substituents), because these are redundant structures and usually are not informative. Then 

we let the network predict the test set, and we surprisingly obtained a much higher AUC score 

(~0.894). We are uncertain why the network had made more accurate predictions with less 

fingerprints in the descriptors. It could be that these features introduce more noise and less 

signal to the network. However, this must be tested by training networks with no 0-radius 

fingerprints. Unfortunately, we left out his part due to time limits. Then we moved to 

implementing the Integrated gradients. Our new implementation is ~20 minutes faster on 

average than the old one, but 3 minutes and 15 seconds slower than the prementioned GitHub 

package. The reason for this improvement over the last implementation is because the gradient 

call is performed once per sample. In total it took 1 hour and 50 minutes to calculate the 

attributions for the entire test set on a 3.1 GHz Dual-Core Intel Core i5. To avoid large 

numerical errors when approximating the integral, we tested four different baselines using 6 

Model ID activation batch_size dropout_rate epochs init lr momentum n_layers optimizer units
28 relu 200 0.5 30 normal 0.2 0.001 2 SGD 904

Table 5: hyperparameter list of the best scoring network for quick reference.  

Num. Steps/ baseline zero_vector modal average random
50 0.0030856 0.35104253 0.02498267 0.01275446
60 0.00258399 0.40042657 0.02068872 0.01057354
70 0.00222174 0.39062123 0.01771157 0.00905473
80 0.00195577 0.34763111 0.01537029 0.00795998
90 0.0017401 0.34082637 0.01381169 0.00702143

100 0.00152749 0.34223731 0.01246695 0.00636338

Table 6: matrix containing all average numerical errors (a.n.e.) corresponding to Figure 14, but 
³]oomed oXW´. Zero-vector baseline had best results for all tested integration steps. Modal 
baseline on the other hand gave the worst results, which can also be seen in Figure 14. Also, 
higher integration steps had higher precision and therefore less numerical error. 
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different step sizes. Table 6 from our analysis shows the average numerical error that was 

committed across samples in the test set for every baseline-steps combination. Using the zero 

baseline produces least amount of numerical error and delivers a better approximation of the 

path integral. The table shows that the zero-vector had lowest average numerical error for all 

integration steps. Also, 100 integration steps empirically proved to be a better estimate of the 

integral for all baselines except the modal one. The modal baseline, on the other hand, always 

delivered erroneous results four all integration steps. Results of the integrated gradients is a 

vector of equal size to the input vector (2048). Because we calculated the attributions of the test 

set only, the final matrix is of shape (3315, 2048). For every tested baseline, we obtained a 

different matrix. Each attribution 𝑎𝑖𝑗 in the attribution matrix corresponds to an entire 

substructure that is found in molecule 𝑖 and is encoded at column 𝑗 in the attribution matrix. 

The fact the attribution value corresponds to an entire substructure, makes it look as if all atoms 

in a substructure are equally attributable (see Figure 16 left). To have the substructure 

explainable on the atomic level (see Figure 16 right), we divided the attribution over the 

number of atoms existing within one substructure - we call this value ³VXbVWrXcWXral aWWribXWion´. 

Then, every atom in the molecule gets an ³aWomic attribution´ that is equal to the sum of all 

³VXbVWrXcWXral attributions´ only if the atom is present in the substructure. There is no strict way 

on how to weight the attributions, but this is only one way to arrive at the ³aWomic attributions´. 

Another suggested way is to average the ³substructural attributions´ over the number of 

substructures where the atom is present. Now it is easier to interpret the attributions. In order 

to best understand the difference between weighted vs. unweighted attributions, let us look at a 

real-world example that chemists have to deal with: examine the molecule in Figure 16. This 

molecule is not a mutagen but was classified as such by our network. Question here is, what 

qualifies this molecule to be a mutagen? In loose terms, why does the network ³Whink´ it is a 

Figure 16: Comparison of unweighted (left) vs. weighted attributions (right). In the figure left, 
all atoms are equally attributed. That is rarely the case in a fingerprint. The depicted molecule is 
number 100 in the test set.  
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mutagen. An attribution vector tells us which features in the bits vector are mostly responsible 

for this prediction. However, one feature (fingerprint) in the input could cover multiple 

substructures at the same time. On the other hand, atomic attributions enable us to see the reason 

behind this prediction on a less abstract level. Viewed this way, if a fingerprint covers two or 

more substructures in a molecule where only one of the substructures is known to be mutagenic, 

atomic contributions can translate this information to us. It is certainly of benefit to toxicologists 

to be able to interpret neWZork¶V predictions and attribute that directly to the presence of distinct 

chemical patterns. See how Figure 17 successfully explains the neWZork¶V decision too, by 

highlighting a large part of the molecule as µmXWagenic¶. For the network, this structure is highly 

indicative of mutagenicity, just as we would expect since there are two five-membered aromatic 

nitro structures and one unsubstituted heteroatom (C െ 𝐒 െ C) present in the molecule. A large 

part of molecule 1731 in the test set is indicative of mutagenicity. The predicted label matches 

the Ames test output making it a true positive. Let us examine another example from the test 

where the neWZork¶V prediction matches the output of the Ames test such as the one depicted in 

Figure 17: weighted attributions of 12 randomly selected fingerprints found in molecule 1731 in the test set. 
Positive attributions are highlighted in red. Negative attributions are in green. The intensity of the color 
corresponds to how big the attribution value is. µP¶ stands for predicted label. µT¶ for true label. See how most 
substructures were recognized as mutagenic/toxic by our network, all of a reason for our network to classify 
the molecule as µmXWagen¶. 1 means µmXWagen¶ (positive class), 0 means µnon-mXWagen¶ (negative class). 
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Figure 18. We take a look at a true negative here. We are not able to detect any toxicophores in 

the molecular structure. Furthermore, the network recognizes both hydroxyl substituents (െOH) 

as µnon-mXWagenic¶. Again, this is a straightforward decision, and we expect the neWZork¶V 

output to match the Ames test true label. It is nevertheless harder to interpret the output in case 

of a false positive or a false negative, such as in Figure 19. An aromatic nitro is present in the 

structure, leading the network to µWhink¶ that it is a mutagenic structure. This kind of mismatches 

require specific knowledge of the functional groups in a molecule in order to be interpreted. 

We are uncertain why the Ames test of molecule 692 is negative (non-mutagen). Next step was 

to evaluate the performance of IG on different baselines. To evaluate the performance of the 

four tested baselines (zero vector, average, modal, random), we constructed Table 7 that allows 

us to compare the rediscovery rates of each baseline. I.e. to find out if IG is able to detect already 

known toxicophores and if so, then by how much. We considered only the true positives subset 

in the data that contains at least one toxicophore in their molecular structure. If we assume that 

IG is functional, then we expect it to positively attribute those structures where toxicophores 

are present. Therefore, we want to find the ratio of 

Figure 18: weighted attributions of 12 randomly selected fingerprints found in molecule 341 in the test set. 
The description is identical to Figure 16. However, in contrary to Figure 16, here a true negative is depicted. 
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𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑙௬ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 𝑡ℎ𝑎𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑎 𝑘𝑜௪𝑛 𝑡𝑜௫𝑖𝑐𝑜𝑝ℎ𝑜𝑟𝑒
𝑎𝑙𝑙 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 𝑡ℎ𝑎𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑎 𝑘𝑛𝑜௪𝑛 𝑡𝑜௫𝑖𝑐𝑜𝑝ℎ𝑜𝑟𝑒

 ൌ 𝒓𝒆𝒅𝒊𝒔𝒄𝒐𝒗𝒆𝒓𝒚 𝒓𝒂𝒕𝒆 

One remark should be made here about the rediscovery rate: having a toxicophore in the 

molecular structure does not immediately turn the molecule into a mutagen. Therefore, in order 

to investigate how successful IG is in attributing molecular structures, we would have to find 

out the number of failures of IG too. The first ratio alone does tell anything about the failures 

of IG. It is not sufficient to learn that IG is sensitive, but it has to be specific too 

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑙𝑦 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑠𝑡𝑟𝑎𝑢𝑐𝑡𝑢𝑟𝑒𝑠 𝑡ℎ𝑎𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑛𝑜 𝑘𝑛𝑜𝑤𝑛 𝑡𝑜𝑥𝑖𝑐𝑜𝑝𝑜ℎ𝑟𝑒𝑠
𝑎𝑙𝑙 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 𝑡ℎ𝑎𝑡 𝑑𝑜 𝑛𝑜𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑛𝑜 𝑘𝑛𝑜𝑤𝑛 𝑡𝑜𝑥𝑖𝑐𝑜𝑝ℎ𝑜𝑟𝑒  

However, the problem is that the second ratio might be a bit more difficult to calculate, since 

we do not know all potential toxicophores. It is possible that IG recognizes a new toxicophore 

in a substructure, but only because we are not aware of the toxicophore, the specificity of IG 

decreases according to the second ratio. Therefore, double checking this decision and further 

statistical testing is required in order to make a final statement about the performance of IG. 

Figure 19: weighted attributions of 12 randomly selected fingerprints found in molecule 692 in the test set. 
The attributions show that the network understood the molecule as mutagen due to the presence of an aromic 
nitro. However, the Ames test labeled the molecule as µnon-mXWagen¶. 
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For demonstration purposes, we do not consider all these possible scenarios but only the first 

ratio so that we can compare the performance of the method using different baselines. In Table 

7 the following is reported:  

x True positives (first row): number of true positives in the test set 

x TPs with toxicophores: the number of molecules containing at least one toxicophore 

in their structure. 

x Num. identifiable toxicophores: unique occurrences of toxicophores in the test data 

set, regardless of the number of occurrences within one molecule. I.e. if the same 

toxicophore is detected twice in the structure, it is been identified only once 

x Num. Toxicophores occurrences: the total number of occurrences of all toxicophores 

(including duplicates) 

x Num. positively attributed toxicophores (fifth row): number of positively attributed 

substructures, where a toxicophore has been detected, using the attribution matrix 

calculated by each baseline. Correctly attributing a toxicophore multiple times within 

the same molecule, increases the baVeline¶V rediscovery rate. 

x Rediscovery Rate: for evaluation of baseline performance 

The zero baseline performed the best with a rediscovery rate of ~0.634. In the second place 

comes the modal baseline. The random baseline on the other hand performed the worst 

(~0.330). Furthermore, we include a structural comparison of our findings with already existent 

toxicophores. In Figure 20 we list the structures of some of the most common toxicophores 

Table 7: rediscovery rates of all four tested baselines. Zero vector had the highest rediscovery rate (0.634). 
The random baseline, not surprisingly, had the worst rediscovery rate. 

 

Zero vector Average Modal Random
True positives
TPs with toxicophores
Num. identifiable toxicophores
Num. Toxicophores occurrences 
Num. positively attributed toxicophores 5549 5508 5514 2891
Rediscovery Rate 0.63373687 0.62905436 0.62973961 0.3301736

1374
1050
1558
8756



 

 46 

from the literature 7 . Figure 21 shows a structural comparison of 6 randomly selected 

toxicophores and 4 different matches found in the test set. See how the network is misled in 

some cases such as with the aromatic methylamine (fourth example). To investigate the 

attributions a little more, we wanted to understand the correlation between the attributions and 

the target label. For every molecule, we calculated the average attribution we calculated the 

average attribution, where the average attribution is sum of all attributions in the attribution 

vector over the number of present fingerprints in a molecule (number of bits 1): 

𝑎෤ ൌ
σ 𝑎𝑖𝑖

𝑚𝑏𝑖𝑡
 

where 𝑎𝑖 the attribution at position 𝑖 in the attribution vector, and 𝑚𝑏𝑖𝑡 is the number of present 

fingerprints in a molecule. We then obtain a vector of equal length to the size of the data set 

(3315) containing the average attributions. Every value in the vector describes whether a 

molecule was on average positively or negatively attributed. Viewed this way, let us understand 

what relation these values have with the confusion matrix constructed using the neWZork¶V 

output. Much like we can see in Figure 17, Figure 18 and Figure 19, we expect the average 

attribution to cohere with/correspond to the neWZork¶V output, if integrated gradients is 

functionally correct. I.e. a true positive showed that the average attribution was correspondingly 

highly positive too (e.g. 1.7318 for molecule 1731). Furthermore, a lower positive molecular 

attribution (e.g. 0.0489 for molecule 692) corresponds to either a true or false positive, because 

the molecule is indicative of toxicity, but the confidence level is lower in this case. Likewise, a 

true negative received a highly negative ³molecXlar aWWribXWion´ (e.g. -3.7203 for molecule 341). 

This correspondence is straightforward but only as long as the molecular structure is big enough 

such that we can detect several fingerprints in its structure (100 ± 200 fps), because we can 

µe[plain¶ more fingerprints. Also, more fingerprints the better the estimate of the average. It 

gets harder for the network to extract information if the molecular structure is small and encodes 

only 2-10 fingerprints. In the latter case, there is too little information to extract from the 

molecule, and the network is therefore more likely to make a false prediction. It would be 

particularly interesting to see if some toxicophores are more indicative of toxicity than others,  

 

7  A tabular representation of the toxicophores and their SMARTS strings is available on the GitHub 
repository too. See toxicophores.csv and additional_toxicophores.csv on 
https://github.com/kareemjeiroudi/molecules_and_ml/tree/master/data. 

https://github.com/kareemjeiroudi/molecules_and_ml/tree/master/data
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but we could not conclude to a final result due to lack of knowledge of the toxicity index, but 

there might be a correlation between the toxicity index of a toxicophore and the average 

attribution. 

Lastly, we repeated the same steps as in the rediscovery rate for every toxicophore individually. 

For every toxicophore we compared the number of molecules containing toxicophore 𝑖  vs. 

number of true positives containing toxicophore 𝑖 . Moreover, the number of true positives 

where toxicophore 𝑖 is positively attributed. For that purpose, Table 7 was produced. The table 

also shows that some toxicophores are more frequent in the test set than others. According to 

Table 8: number of molecules where toxicophore 𝑖 is found vs. number of molecules where toxicophore 𝑖 is 
positively attributed vs. number of true positives, where toxicophore 𝑖 is positively attributed. The reported 
results are all correspondent to the attributions calculated using the zero-vector baseline. Highest 3 values in 
a column are highlighted in green. Lowest 3 are highlighted in red. Those toxicophores that were not detected 
in any molecules are highlighted with a red border. 
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the literature, the aromatic nitro and aromatic amine are well known toxicophores for 

mutagenicity [1, 2, 52]. In our analysis, the specific aromatic amine was found in 2719 

molecules from the test set making it the most frequent toxicophore in the data set. The specific 

aromatic nitro is found in 2391 molecules. In the third place comes the aliphatic halide with 

2288 molecules. All of the previously mentioned toxicophores were more often than accurately 

classified (1463, 1842, 1199) respectively. Around two of these molecules, the toxicophores 

were positively attributed. The successful attribution rate of for these toxicophores does not 

suggest that toxicophores such as the aromatic nitro and aliphatic halide are more indicative of 

toxicity than others. The reason for IG to attribute them positively more often, is probably due 

to their abundance in the data set. On the other hand, some toxicophores such as diazo hydroxyl 

that is found only two times in the test set was never positively attributed although the network 

successfully classified both molecules as mutagen. One reason for that could be that the 

fingerprinting fails to capture some structural patterns [9]. The results of using IG are 

promising, nevertheless, explaining mutagenicity using IG is not insightful. Because IG 

successfully attributed only 0.634 of all toxicophore occurrences, it is unlikely that we can 

derive new knowledge with this low performance. Better evaluation methods and statistical 

testing is required to come to make a final conclusion about IG.  
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Figure 20: structural representation of some of the most common toxicophores listed in the literature. Some 
of these could not be plot due to technical errors. The original document provides a toxicity index. 
Equivalently, our network suggests that some are more indicative of toxicity of others. Comparing that 
against that toxicity level would have been of knowledge.  
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Figure 21: few examples of the toxicophores detected in the test set. On the left side we show the toxicophores 
formula. On the right side we show 4 examples per toxicophore together with their attributions. Above every 
example in the plot is a comparison of the true label (T) vs. the predicted label (P). Observe how areas where 
toxicophores are present are indicating toxicity. 



 

  

4 Conclusion 

Neural networks are highly accurate computationally-driven predictors in the field of 

drug design. We have successfully developed and evaluated a number of networks using 

different hyperparameter settings to obtain a high AUC score on the test. As discussed earlier, 

boosting the AUC score could be done by a finer hyperparameter tuning or using a different 

kind of network architectures. We also suggest using a more promising encoding algorithm 

such graph-based methods, where atom arrangements are encoded in the input too. 

Additionally, having larger training sets could help neural networks make more accurate 

predictions on unseen data. Taking the patterns identified by the tested method and the available 

data set into account makes it challenging to avoid false predictions. Integrated gradients is a 

great means to explain a neural neWZork¶V decision. Using the attributions obtained by IG, we 

have successfully related that neWZork¶V output to its patterns of interest in the input. As noted 

earlier, molecules with similar substructures are functionally similar too. In that regard we have 

highlighted structural alerts in the input data and associated them with their mutagenicity. 

Looking at these molecules, our attribution method identified a number of the known 

toxicophores and attributed them positively for being mutagenic compounds. In that regard, we 

managed to rediscover a number of these toxicophores. However, in order to derive more 

knowledge from IG, further experimentation is required. On the other hand, IG fails to explain 

how atoms arrangement is of importance to form a functional group, or how combining multiple 

functional groups steers a chemical reaction in a different direction, because it attributes 

features in the input independently of one another. The reason for the network to make a false 

prediction such as the one demonstrated in Figure 19 cannot be explained using only integrated 

gradients. One could hypothesize that the mutagenic site of the molecule is inhibited in the 

presence of some enzymes. And that we can only conclude to that using a bacteria assay such 

as in the Ames test. These are all some of the weaknesses of IG. Lastly, the choice of parameters 

is of significance in order for IG to deliver better results - just like any other parameterized 

algorithm. Also, an assessment index might be necessary to evaluate the significance of a 
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substructure before comparison. Using an assessment method such as enrichment factor makes 

it easier to rank the substructures and compare them against the toxicophores [9]. This work 

has demonstrated the potential of deep learning and attribution methods in Drug design but 

leaves a lot of room for improvement, all of which is aimed is save chemists lab tedious 

experiments. 
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