

Author
Abd Alkareem
ALJEIROUDI

Submission
Institute for Machine
Learning

Thesis Supervisor
Univ. Prof. Dr. Sepp
Hochreiter

Assistant Thesis
Supervisor
Hubert Ramsauer, MSc

March 2020

ýeskp BudČjovice

BACHELOR THESIS

INTERPRETABILITY OF
NEURAL NETWORKS IN
DRUG DESIGN
IMPLEMENTING THE INTEGRATED
GRADIENTS METHOD

Bachelor Thesis

to confer the academic degree of

Bachelor of Science in Bioinformatics

in the Bachelor¶V Program

Bioinformatics ± Bachelor¶V Program

I

Aljeiroudi, A. A., 2020: Interpretability of Neural Networks in Drug Design, BSc. Thesis, in

English, - 52p., Faculty of Science, University of South Bohemia, České Budějovice, Czech

Republic.

Annotation

Several artificial neural networks were implemented and evaluated. Best neWZork¶V

architecture was selected on the basis of the AUC analysis. Later on, Integrated Gradients (IG)

was used to attribute the neWZork¶V decisions to the learned input. The performance of IG using

different baselines was evaluated. IG identifies a number of already known toxicophores listed

in the literature.

Affirmation

I hereby declare that I have worked on my bachelor's thesis independently and used

only the sources listed in the bibliography. I hereby declare that, in accordance with Article 47b

of Act No. 111/1998 in the valid wording, I agree with the publication of my bachelor thesis,

in full to be kept in the Faculty of Science archive, in electronic form in a publicly accessible

part of the IS STAG database operated by the University of South Bohemia in ýeskp

BudČjovice accessible through its web pages. Further, I agree to the electronic publication of

the comments of my supervisor and thesis opponents and the record of the proceedings and

results of the thesis defence in accordance with aforementioned Act No. 111/1998. I also agree

to the comparison of the text of my thesis with the Theses.cz thesis database operated by the

National Registry of University Theses and a plagiarism detection system.

ýeVkp BXdČjoYice, 20.03.2020

««««««««««««««««««

Abd Alkareem ALJEIROUDI

III

Acknowledgments

First and foremost, I would like to thank my supervisor Hubert Ramsauer, MSc as well as

my former supervisor Dr. Kristina Preuer, MSc. This work would not have been possible

without you. Thanks for being constantly supportive and offering me help on the go.

To my dearest and nearest friend Dipl.-Ing. Alaa Mofleh the one who never allowed me to

lose hope a second, thanks for providing me with support and motivation when I needed them

most.

My biggest gratitude goes to the love of my life BSc, Nina Troppmair for having stood next

to me. The lessons you taught me are incomparable.

Maria Grazia Dascanio, Adnan Aljeiroudi, Obadah Aljeiroudi and Ghaith Aljeiroudi, I show

an immense gratitude to you all. Thank you for believing in me and giving me the strength with

which I thrive every day.

I am endlessly grateful to all my colleagues at the Institute for Machine Learning in Linz for

their helpful comments, insightful work, and exciting discussions.

IV

Abstract

Interpretability in neural networks is a key to derive knowledge for toxicity-related

research. Attributing the learned patterns in the input is one way towards Explaining neWZork¶V

decisions. In this work we touch on an important process in drug design, namely mutagenicity

detection. In regard to mutagenicity, we explain one of the possible mechanisms that mutagens

use in mutating DNA molecules. Next we introduce the Ames test, one of the most common

mutagenicity detection tests. We explain that the Ames test has a relatively high interlaboratory

reproducibility error. Neural networks can take over this repetitive time-consuming task. After

that, we draw attention to the potential of deep learning in drug development, and how it can

assist predicting the output of the Ames test. Interpretability in Neural Networks is the idea of

relating the model¶V decisions back to patterns in the input data. We hint how interpretability

can help drug development research strive forward. Later we peek into the data at hand and

provide a quick description of the data processing techniques employed in our analysis. To

encode the data, we use Extended Connectivity Fingerprints, a highly performant variant of the

Morgan Fingerprint method. Our 2048-bit vectors are fed to our best trained network. Prior to

that, the concept of Feed Forward Networks is recapitulated for better grasp of the topic.

Following, we train 30 different networks and evaluate them using the Area Under the ROC

curve as an evaluation metric. The hyperparameter settings of these networks are chosen using

an optimization technique known as the Bayesian Optimization. In regard to the optimization

process, we elaborate on our choice of parameters and justify how the AUC is an adequate

metric for our case study. Last but not least, we describe the neWZork¶V architecture suggested

by our optimization technique. Subsequent to that, we revisit attribution methods, more

specifically the integrated gradients method. Because integrated gradients is easily applicable

and implementable, the method stood out in the recent few years. In that regard, we show both

advantages and disadvantages of IG. The choice of baseline has to be made carefully, in order

for IG to deliver good results. To investigate that, we try four different baselines: zero-vector,

modal, average and random, and compare their results in the subsequent work. Remarks

regarding potential numerical errors committed while approximating the integral are made.

Furthermore, we provide a recipe to implement IG as well as our own implementation of the

method. After that, results show that our best trained model is a good performant with an AUC

of ~0.894, 0.830 on validation, test set respectively. Next, we move to explaining the model¶V

V

output using analysis of IG. Attributions produced by Integrated Gradients are then used to find

the weighted atomic contribution for all bits within one molecule. By and by, we make a few

remarks about the final results. We show that our findings cohere with the findings of the

literature to a high extent. For better comparison of the baselines, we compare the number of

true positives with the respect to the number of positively attributed molecules per toxicophores.

The findings show that the zero-vector managed to rediscover a high number of the

toxicophores listed in the literature and is therefore the most adequate baseline for our research.

Finally, our findings are consistent and matches the literature. However, in order for integrated

gradients achieve a higher toxicophore rediscovery, there is room in our work for improvement.

Implementation: is available on GitHub

https://github.com/kareemjeiroudi/molecules_and_ml

https://github.com/kareemjeiroudi/molecules_and_ml

VII

Table of Contents
SWORN DECLARATION I

ACKNOWLEDGMENTS III

ABSTRACT IV

1 INTRODUCTION 1

1.1. MUTAGENICITY 2
1.2. AMES TEST 3
1.3. DEEP LEARNING IN DRUG DESIGN 4
1.3.1. INTERPRETABILITY OF DEEP NEURAL NETWORK 6

2 METHODS 9

2.1. EXTENDED-CONNECTIVITY FINGERPRINTS (ECFP) 10
2.2. FEED FORWARD NEURAL NETWORKS 13
2.2.1. BACKPROPAGATION 16
2.2.2. VANISHING GRADIENT 19
2.2.3. ACTIVATION FUNCTIONS 19
2.3. HYPERPARAMETER OPTIMIZATION 22
2.4. AREA UNDER ROC CURVE (AUC_ROC) 26
2.5. ATTRIBUTION METHODS 28
2.5.1. INTEGRATED GRADIENTS 29
2.5.1.1. Pros 34

2.5.1.2. Cons 34

2.5.1.3. Baseline 35

2.5.1.4. Integral Approximation (Number of Integration Steps) 37

3 RESULTS 39

4 CONCLUSION 51

5 REFERENCES 53

VIII

List of Tables

Table 1: number of mutagens and non-mutagens in each of the training, validation and test set. 9

Table 2: types of evaluated hyperparameters by the bayesian optimization as well as their search space.
µ[]¶ is used to describe continuous sets, µ()¶ for discrete, and µ^`¶ for categorical ones. 22

Table 3: results of the bayesian optimization. Here are the 10 best scoring models found in our search
history. Table is sorted to the auc score in a descending order top-to-bottom. The auc values
correspond to the scores obtained by training a new model every time and evaluating it on the
validation set. 25

Table 4: first 10 best scoring models evaluated 10 times on the validation set in order to avoid optimistic
models. This data is a one-to-one comparison and is not sorted. Model 28 is the best scoring model
in our experiments, because the selection criterion implies that the selected model has the highest
average auc and lowest standard deviation. 25

Table 5: hyperparameter list of the best scoring network for quick reference. 40

Table 6: matrix containing all average numerical errors (a.n.e.) Corresponding to figure 13, but ³]oomed
out´. Zero-vector baseline had best results for all tested integration steps. Modal baseline on the
other hand gave the worst results, which can also be seen in figure 13. Also, higher integration
steps had higher precision and therefore less numerical error. 40

Table 7: rediscovery rates of all four tested baselines. Zero vector had the highest rediscovery rate
(0.634). The random baseline, not surprisingly, had the worst rediscovery rate. 45

Table 8: number of molecules where toxicophore 𝑖 is found vs. Number of molecules where toxicophore
𝑖 is positively attributed vs. Number of true positives, where toxicophore 𝑖 is positively attributed.
The reported results are all correspondent to the attributions calculated using the zero-vector
baseline. 47

file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33200405
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33200405
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33200406
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33200406
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33200406
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33200406
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33200407
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33200407
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33200407
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33200407
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33200408
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33200409
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33200409
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33200409
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33200409
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33200410
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33200410
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33200411
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33200411
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33200411
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33200411

IX

List of Figures

Figure 1: attributions obtained by applying the integrated gradients for two correctly classified samples.
The pixels highlighted on the right-hand side are the ones responsible for the model's decision. The
higher the intensity, the higher the attribution. All other pixels in the surroundings were given 0
attribution, since they do not contribute to the model¶V decision at all. µT¶ stands for true label, µP¶
stands for predicted label. 6

Figure 2: attributions obtained by applying the integrated gradients for two false predictions. See how
the attributions correspond to the model¶V decision. The lower-left stroke in µ5¶ in the first image
is tight and makes the digit looks more like µ6¶. The attributions, in turn, highlight these pixels with
high intensity. µT¶ stands for true label, µP¶ stands for predicted label. 8

Figure 3: class distributions of all training (top), validation (middle) and test set (bottom). Class
imbalance is noticeable but is not significant enough to apply additional data preprocessing
techniques such as oversampling the minority class or undersampling. Number of mutagens is
always higher than that of non-mutagens in all three sets. 10

Figure 4: bit at position 1014 can be located in different molecules (e.g. Mol. 1, 18, 42, 76, 87). All of
these molecules are existent in the test supplier (test set). 12

Figure 5: constructed environment after two iterations (radius = 2); once when atom 6 is core, and once
when atom 5 is core. Both environments contain exactly the same atoms and bonds. Therefore,
they are duplicate information. In comparison to Figure 6, these two core atoms will get different
identifiers, and will be represented by the same bit at the same position, but not removed. This is
known as structure duplication. 12

Figure 6: for both atoms 1 and 9, the identifiers will be identical even after 𝑛 number of iterations. Not
only do they have same atoms and bonds, but the two regions are mirror images to one another.
The terminal step works on removing these duplicates. These two atoms are known as stereoatoms.
From a stereochemical point of view, these substructures are not identical. 12

Figure 7: example of a fully-connected feed forward neural network with 2 hidden layers. Input size is
3. Output is size is 3. Information is propagated through the neWZork¶V layers. Every neuron in layer
𝑙 captures specific information (features detector), as the network adjusts its weights at layer 𝑙. 15

Figure 8: four examples of common activation functions. Rectified linear units (ReLU) on the top-left.
Sigmoid to the top-right. To the bottom-left there is leaky relu. The bottom-right shows the
hyperbolic tangent activation function. 21

Figure 9: after just a few points, the algorithm constructs a posterior that is close to the true maximum.
Notice the difference between exploration and exploitation steps. The former implies exploring the
parameter space. The later implies testing points that lie near the current known maximum. The
posterior gets closer to the original target with more evaluation points, especially near
maxima/minima. At early optimization levels, the algorithm makes fantasies about the shape of the
target function (below 3 observations). The confidence interval is reevaluated with every

file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671685
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671685
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671685
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671685
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671685
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671686
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671686
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671686
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671686
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671687
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671687
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671687
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671687
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671688
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671688
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671689
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671689
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671689
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671689
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671689
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671690
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671690
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671690
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671690
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671691
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671691
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671691
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671692
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671692
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671692
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671693
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671693
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671693
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671693
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671693
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671693

X

observation introduced. The uncertainty grows as we go further from the evaluated observations.
 23

Figure 10: 10 best scoring models after having them initialized, trained (on training set), and evaluated
(on validation set) 10 times. The x-axis shows models ids that match the ones listed in table 3. The
y-axis shows their average auc scores. The whiskers represents the standrd deviation in the auc
score. 26

Figure 11: example of a receiver operating characteristic (ROC) curve on the left. Example of precision-
recall plot on the right. See how recall and precision are competing objectives. Which metric is
preferable depends on the application requirements. 27

Figure 12: interpolating the input increasing in intensity from 0 to 1. Observe changes in the network's
decision 30

Figure 13: three possible paths drawn between an arbitrary baseline 𝑥ᇱ and the original input 𝑥. The
integrated gradients interpolate over a number of samples 𝑠 that lie on that straight path that
connects the two samples (𝑃3). Examine the interpolated sample 𝑥ఈ for comprehension. 29

Figure 14: numerical errors found by each baseline vs. The number of integration steps. The x-axis
shows the samples in the test data set. The y-axis represents the numerical error found when
calculating the attributions at sample 𝑥 (i.e. ห൫𝐹ሺ𝑥ሻ െ 𝐹ሺ𝑥′ሻ൯ െ σ 𝑎𝑖

𝑛
𝑖=1 ห). The average error over

all samples is then calculated (a.n.e.), the same operation is repeated with 50, 60, 70, 80, 90 and
100 integration steps and all four baselines (zero-baseline, modal, average, and random). In general,
the zero-baseline had the lowest numerical errors with all integration steps. We can also see that
the higher the number of integration steps the lower the error is. This statement, however, does not
hold true for endlessly higher number of steps for computational reasons. 37

Figure 15: receiver operating characteristic curves of model 28 (best scoring model). The plot on the
left-hand side corresponds to the validation set. The plot to the right corresponds to the test set. The
auc scores of each curve is reported on the lower-right corner of the plot 39

Figure 16: comparison of unweighted (left) vs. Weighted attributions (right). In the figure left, all atoms
are equally attributed. That is rarely the case in a fingerprint. The depicted molecule is number 100
in the test set. 41

Figure 17: weighted attributions of 12 randomly selected fingerprints found in molecule 1731 in the test
set. Positive attributions are highlighted in red. Negative attributions are in green. The intensity of
the color corresponds to how big the attribution value is. µP¶ stands for predicted label. µT¶ for true
label. See how most substructures were recognized as mutagenic/toxic by our network, all of a
reason for our network to classify the molecule as µmXWagen¶. 1 means µmXWagen¶ (positive class),
0 means µnon-mXWagen¶ (negative class). 42

Figure 18: weighted attributions of 12 randomly selected fingerprints found in molecule 341 in the test
set. The description is identical to Figure 16. However in contrary to Figure 16, here a true negative
is depicted. 43

Figure 19: weighted attributions of 12 randomly selected fingerprints found in molecule 692 in the test
set. The attributions show that the network understood the molecule as mutagen due to the presence
of an aromic nitro. However, the ames test labeled the molecule as µnon-mXWagen¶. 44

Figure 20: structural representation of some of the most common toxicophores listed in the literature.
Some of these could not be plot due to technical errors. The original document provides a toxicity

file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671693
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671693
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671694
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671694
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671694
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671694
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671695
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671695
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671695
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671696
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671696
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671697
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671697
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671697
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671698
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671698
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671698
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671698
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671698
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671698
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671698
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671698
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671699
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671699
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671699
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671700
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671700
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671700
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671701
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671701
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671701
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671701
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671701
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671701
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671702
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671702
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671702
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671703
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671703
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671703
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671704
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671704

List of Figures

 XI

index. Equivalently, our network suggests that some are more indicative of toxicity of others.
Comparing that against that toxicity level would have been of knowledge. 49

Figure 21: few examples of the toxicophores detected in the test set. On the left side we show the
toxicophores formula. On the right side we show 4 examples per toxicophore together with their
attributions. Above every example in the plot is a comparison of the true label µT¶ vs. The predicted
label µP¶. Observe how areas where toxicophores are present are indicating toxicity. 50

file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671704
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671704
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671705
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671705
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671705
file://///Users/kareem/Documents/Bildung/Uni/Bachelor%20Thesis/Bachelor%20Thesis.docx%23_Toc33671705

1 Introduction

Drug design is a lengthy, complex, and costly process. The number of challenges this

process faces has led to a high uncertainty when approving a newly synthesized drug. The high

rate of failed clinical trials, regulatory issues, lack of target proteins and biomarkers are all

nothing but a few of these challenges that this lengthy drug design pipeline faces. Let alone the

rising costs, lack of knowledge of the underlying mechanisms of certain diseases or patient

heterogeneity. In order for a drug to be approved, chemists must make sure that the drug does

not hold any adverse or toxic properties. Toxic properties are tightly relatable to chemical

structures, sites, atomic arrangement or conformers [1, 2]. This chemical toxic activity takes

effect when the molecule of interest binds to a target protein (e.g. protein receptor). We identify

these structures as toxicophores. A good amount of these toxicophores is already listed in the

literature [2]. This was made possible only with years of chemiVWV¶ extensive research.

The field of bioinformatics puts computer power at the fingertips of these hardworking

chemists and tries to take over repetitive and computationally-demanding work. In the recent

years, we have seen machine learning algorithms being employed almost everywhere: from

security, to industrial work, medical engineering, health-care, all the way to science. Machine

learning is the compXWer¶V ability to process data in a desired form, put it in an abstract shape,

extract meaningful information out of data, identify patterns and finally make decisions and

predictions on the outcome of future data without being explicitly programmed to make these

decisions. This is also referred to as generalization. Generalization, in this context, is the ability

of a learning machine to perform accurately on newly unseen examples after having seen

precedent data. In mathematical terms, we assume that this learning data has generally unknown

underlying probability distribution that represent the occurrence probability of each example in

the data. A learner has to identify patterns (build a statistical model) in this space that enables

it to produce sufficiently accurate predictions in new cases. This goes hand-in-hand with

probability reasoning and statistical learning.

Mutagenicity

 2

The bacterial reverse mutation assay (Ames test) is an essential step in this pipeline

that detects potentially mutagenic compounds. The Ames test represents an early alerting

system for potential toxicophores that may result in adverse chemical activity in later

development processes. It was named after the American biochemist Bruce Ames [3]. This in

vitro assay has become the standard test for mutagenicity determination. According to the Ames

test, a chemical is Ames test positive, if a genetic damage is detected when the chemical is

added to a strain of bacteria. The test enjoys several advantages such as simplicity and ease-of-

use, however, the difficult reproducibility of the test hampers its potential. The reproducibility

of the Ames test is dependent on the purity of the tested chemical, methods employed as well

as additional toxic side effects.

In this work we provide assistance to the drug design process by employing the power

of feed-forward networks in predicting the output of the Ames mutagenicity test. We provide a

summary of our model optimization strategy. Furthermore, we use a well-known attribution

method (known as the Integrated Gradients) to interpret the decisions of the model. Results of

the integrated gradients are mapped to individual atoms and visualized for interpretability. The

final course of this thesis compares our findings with already-known toxicophores described in

the literature. Before we get started, let us first cover the theory we will need to best understand

the applied analysis.

1.1. Mutagenicity

An essential step in drug approval is the omission of mutagen molecules. Mutagenicity

is the compound’s ability to induce DNA mutation, leading to either some deletions or adducts

in the DNA. Some DNA repairing mechanisms get distorted because mutagenic compounds

intercalate between the double stranded helix [4]. For instance, aromatic polycyclic

substructures are likely to intercalate themselves between the base pairs of the DNA molecule

forming stabilizing π bond [4]. This undesired effect will hinder DNA repair and replication

mechanisms and will result in erroneous base replacements as a consequence. Once a toxic

substructure has been identified, we refer to it as a toxicophore. The aromatic nitro and amine

groups are well recognized toxicophores for mutagenicity [2]. It is important to note that

detecting a toxicophore does not necessarily turn the molecule into a mutagen, but certainly

indicates an increased potential for toxicity. With that in mind, no structural properties of non-

Introduction

 3

mutagens were found that could explain the absence of mutagenicity. I.e. there no detoxifying

structural properties that signal µnon-toxicity¶ [2]. As mentioned earlier, several compounds

with a polycyclic aromatic system with large substituents have been reported to intercalate into

DNA molecules. Triazene groups were recognized as toxicophores due to their high degree of

reactivity after enzymatic epoxidation (DNA replication) [2]. Because Mutagenicity is

substructure-relatable, we can accurately detect mutagenicity by applying substructure-search

studies. One of the most popular knowledge-based studies is Ames test. In contrast, our

approach is computationally-driven (in silico) and aims to learn existing described toxicophores

and effortlessly predict the output of the Ames test. More on the substructure search is discussed

in Extended-Connectivity Fingerprints (ECFP). In this work, we roughly describe

mutagenicity (as a wide concept). We do not describe the chemical/structural properties of

toxicophores, and therefore we use the terms mutagen and toxic interchangeably, not to

introduce any confusion to the reader.

1.2. Ames Test

The identification of mutagenic substances is an important yet a difficult procedure in

mutagenicity assessments. The Ames test is an in-vitro mutagenicity assay that aims to detect

wide range of chemical substances that can cause reverse mutation leading to detectable genetic

damage. The test makes use of several histidine dependent bacteria strains [5]. I.e. the strains

are histidine deficient mediums, and they restore their ability to synthesize histidine only then

when a bacteria strain is exposed to a mutagen. Each strain carries different mutations in various

genes in the histidine operon. These mutations, in turn, act as hot spots for mutagens that cause

DNA alteration via various mechanisms. We briefly explored one of these mechanisms in

Mutagenicity. Molecules that are Ames test positive are referred to as mutagen. The test

recognizes a compound as mutagen, if any genetic damage appears in the bacterial assay. For

example, a bacteria colony starts to grow at a higher rate than control colonies, when this

specific colony is exposed to this chemical. When no mutagens are added to the assay, the

number of spontaneously induced revertant colonies per plate is relatively constant, because

bacteria do not regain histidine synthesis functionality and hence are not able to form colonies.

With that being said, this bacterial assay is associated with high complexity: if one colony starts

to grow at a higher rate, it is not immediately indicative of the presence of a mutagen. This is

Deep Learning in Drug Design

 4

why this test is associated with a high rate of trial error. Besides that, potential mutagens (ones

detected in the assay) have to be further examined in mammalian cells, because a number of

these compounds interact with genetic material (e.g. DNA molecule) only if specific enzymes

are available during the metabolic activation. Unfortunately, these enzymes exist only in

mammalian cells, but not in bacterial ones. As a side note, the assay uses bacteria strains that

are highly sensitive to DNA-damaging agents such as Salmonella, Bacillus subtilis or

Escherichia coli [6]. The Ames test is one of the heavily used tests in toxicology due to its

simplicity, fast applicability and lower costs. Almost every drug discovery process includes the

Ames test as an initial detector of potential mutagenicity. In the following section, we

demonstrate how the output of the Ames test is reproducible using computational methods such

as Neural Networks (NNs).

1.3. Deep Learning in Drug Design

In the literature, several computational methods to predict the Ames test outcome are

described and evaluated [7, 8, 9]. However, computational models often suffer from insufficient

accuracy, making them unreliable compared to biological experiments [11]. However, machine

learning methods such as support vector machine (SVM) has obtained higher accuracies

compared to non-learning algorithms when evaluated in a 5-fold cross-validation [9]. Another

experiment evaluated several computational and non-computational tools on a benchmark data

set - which is contained in our data set too - in a 5-fold cross-validation. Results showed that

all evaluated machine learning methods (SVM, Gussian Process, Random Forest, k-Nearest

Neighbors, and Pipline Pilot) outperformed the non-computational tools [12]. With that being

said, the non-computational tools such as DEREK and MultiCASE still have their advantages

especially in drug development, since they provide not only structure-activity but mechanistic

information too [12]. Both of the previous experiments used the prediction accuracy for

performance comparison. The performance of the previously mentioned methods depends on

the type of encoded data (e.g. descriptors, atomic graphs), size of the training data, and

techniques employed in both data processing and parameter optimization. Moreover, Deep

Learning specifically excelled in toxicity prediction and outperformed many other

computational approaches like naive Bayes, support vector machines, and random forests [11],

because of its ability to detect abstract features in chemical structures. While approaches to

Introduction

 5

detect structural alerts could be roughly categorized into fragment-based, graph-based, and

fingerprint-based approaches [14], all of these solutions had one common issue: interpretability

of the model. The National Toxicology Program has determined a 15% inter-laboratory

reproducibility error in the Ames test [2]. Therefore, to assist drug approval procedure,

computer algorithms such as machine learning are employed. Already existing software tools

have their drawbacks in comparison to learning methods: reliance on knowledge database,

lengthy matching algorithms, and relatively lower performance. The reason behind that, is that

commercial solutions are often set to default parameters, thus full control over the algorithm is

not a possibility, let alone adjusting the parameters to the study-case dataset. In contrast to the

commercial tools, machine learning algorithms exclusively derive their knowledge from the

training data. Here we name a number of limitations that existing tools have when compared to

machine learning approaches: poor statistical performance, technical inaccessibility for bench

chemists and difficult adaptability to a lab¶V chemical environment. In light of these facts, future

drug development strives for improving the accuracy of machine learning-based methods. All

that make chemists desire a better performant and more accessible tool. Additionally, the rapid

increase in number of synthesized drugs demanded a more adequate tools for safety assessment

than traditional in vitro experiments, where the rate of successfully classifying potential toxic

drugs cannot be scaled efficiently and easily. Computation predictions are the result of applying

machine learning, artificial intelligence and statistical learning algorithms to simulate the output

of chemical experiments - only it is thousand times faster. One could predict the output of

thousands of experiments at a time. Data that has already been approved and labeled in labs can

now serve these algorithms, by allowing them to learn features in this data. This is achieved by

capture the structural information of the molecule in numerical representations and feeding it

through several layers of non-linear, differentiable parameterized mappings. Having said that,

choosing the right set of parameters is crucial in order for these algorithms to deliver correct

predictions. Deep learning, in particular, needs some fine parameter tuning to exploit its

predictive power. Finding the best model¶ architecture is an optimization problem and is

necessary to obtain accurate prediction. In the past few years, Deep learning has increased in

popularity in the tasks of predicting chemical properties. And when neural networks made their

first accurate predictions, it opened the gate for new AI-drug discovery related studies. One of

this projecW¶s aims is to construct a neural network and best optimize its parameters. Together

we look at a binary classification task, where a neural network learns to classify these two

classes that we have been discussing (mutagen; non-mutagen). Furthermore, extracting

Deep Learning in Drug Design

 6

knowledge from neWZork¶V decision would not be possible without an accurately predicting

network. Therefore, we work on improving the neWZork¶V predictions by employing the

Bayesian optimization compared to a precedent work that used a simple Grid Search. This

enabled us to obtain a slight improvement in the AUC score. More on that in the

Hyperparameter Optimization section. The goal is to then extract knowledge from the model¶V

decisions and relate to the findings of former chemistry literature. One prominent drawback of

neural networks is that the functions encoded in the neWZork¶V layers are often impossible to

interpret by humans, and it is therefore impossible for us humans to understand how a neural

network arrives at a conclusion. In the following section, we motivate more for this topic.

1.3.1. Interpretability of Deep Neural Network

Deep learning is a highly promising machine learning technique to employ in

mutagenicity prediction. However, the problem of being able to correctly predict the outcome

of the Ames test does not end here. Without being able to interpret these predictions, we are

still far from being able to improve toxicity assessment and extend our knowledge of molecular

mutagenicity. Regardless whether in computer vision, toxicity prediction, or natural language

processing (NLP), the notion that neural networks are black boxes has been widespread. Having

access to the model¶V µknoZledge¶ and being able to interpret it is certainly helpful in the

development of newly synthesized pharmaceuticals. One could argue about the notion of

³neXral networks are black bo[eV´ ± referring to the fact that we can neither have a look at the

neWZork¶V logic nor debug the network in case of false prediction. In that regard, several

Figure 1: attributions obtained by applying the integrated gradients for two correctly classified
samples. The pixels highlighted on the right-hand side are the ones responsible for the model's decision.
The higher the intensity, the higher the attribution. All other pixels in the surroundings were given 0
attribution, since they do not contribute to the model¶V decision at all. µT¶ stands for true label, µP¶
stands for predicted label.

Introduction

 7

methods such as DeepLift, layer-wise relevance propagation (LRP) and integrated gradients

have been proposed. Attribution methods help understand the model¶V output from a hXman¶V

perspective. It is impossible to understand the failures and successes of model predictions (be

it a true or a negative prediction). This statement holds true as long as there are no means of

interpretation of the model¶V decision. Luckily for us, we can highlight those patterns in the

input that are mostly responsible for the neWZork¶V decision. The way we do that is by mutating

the input and observing the changes in the neWZork¶V output. Attribution methods exploit this

power of NNs. The hint here is that interpretability of predictions can be used to detect the parts

of a molecule that are important and analyze its biological properties. To motivate for this, we

constructed a toy convolutional neural network to predict the target class of the MNIST data

set1, and applied the integrated gradients to the predicted labels. Results of the integrated

gradients are visualized in both Figure 1 and Figure 2. See how pixels where the tint is are

mostly informative to the network. Likewise, we want to examine these atoms that are mostly

indicative of mutagenicity in our work. In this example we use the analogy of CNNs and the

MNIST data. Interpretability of molecular descriptors is analogous too and should not introduce

any confusion to the reader2. However, molecular descriptors require better understanding on

how structural information is captured in the descriptors. Molecular descriptors are examined

closely in Extended-Connectivity Fingerprints (ECFP). For Figure 1, one could pose the

question ³hoZ did the model infer that the image represents a 7 but not a 1?´. More interestingly

is to understand why the model predicts wrong labels when we expect it to predict the right

label, such as in Figure 2. See how the network puts high emphasis on those pixels where the

marker¶V stroke meets the other the other end. For a network, whenever this feature is present,

the image looks more like 6 than 5. Thanks to attribution methods, we can explain why the

model yielded a different output compared to a true prediction. With that being said, attribution

methods do not fully investigate model decisions for every single neuron at every layer in the

network. It is an attempt to demonstrate that neWZork¶V decisions are relatable to the input and

1 The MNIST data set is a large and curated database often used in machine learning experiments, more
specifically image processing. A number of scientific papers rely on the MNIST data to conduct small
experiments, since minimizing the generalization error with this data is easy
(http://yann.lecun.com/exdb/mnist/).

2 Here, we take a look at an example from convolutional neural networks (CNN) just for the sake of
simplicity. While, we do not employ convolutional layers in our project, we believe that readers who are not
familiar with mutagenicity can get a better grasp of model¶V interpretability with this example.

http://yann.lecun.com/exdb/mnist/

Deep Learning in Drug Design

 8

can be explained in a way that matches humans understanding of data. In this work, we take a

look at a well-known attribution method known as the integrated gradients [34]. A method that

has been revisited by M. Sundararajan et al. to explain neWZork¶V decisions using gradient calls.

We take a close look at this method and demonstrate its potential to attribute neural networks

decision in molecular data. Once features attributions haven been worked out, we visualize the

learned patterns in order to better understand these learned patterns. With that said, there is no

attempt in our work to delve deep into the highlighted representations of neWZork¶V layers [14].

Instead, we only identify the most relevant patterns in a molecular structure for the prediction

of the network. By identifying these patterns, we are able to compare our findings with the

literature, allowing for neural networks acceptance in both research and medicine.

Figure 2: attributions obtained by applying the integrated gradients for two false predictions. See how
the attributions correspond to the model¶V decision. The lower-left stroke in µ5¶ in the first image is
tight and makes the digit looks more like µ6¶. The attributions, in turn, highlight these pixels with high
intensity. µT¶ stands for true label, µP¶ stands for predicted label.

2 Methods

Now that we have gained some understanding of the challenge at hand, we present

hereby the methods that were used to solve the stated challenge and conduct our analysis. In

general, the capabilities of machine learning algorithms are highly dependent on the type and

size of data of interest. As a starter, we give a summary of the dataset at hand. In 2004, J. Kazius

et al. [2] constructed a dataset comprising of 4337 molecular structures with corresponding

Ames test labels. In 2009, K. Hensen et al. [12] collected a benchmark dataset of 6512

compounds together with their Ames test data from public sources and made this data set of

interest available to all researchers to be able to experiment with and compare their

computational methods. Our data set is a larger one that has a split from both data sets. Idea is

to allow our network to see different types of data samples. The first split yielded a test set

consisting of 3315 structures and another set with 4437 structures. The second set was further

down split into training and validation set, each with 4010 and 327 structures respectively. The

final splitting is reported in the following table:

Table 1: number of mutagens and non-mutagens in each of the training, validation and test set.

 Training Validation Test
Mutagen 2220 181 1690

Non-mutagen 1790 146 1625

The reason for us to choose this dataset is because it was highly curated: for example, duplicate

structures have already been omitted, since this dataset was collected from multiple sources. It

is also put in SMILES format for ease of use [13]. Another reason is that the creators of this

dataset declare that the positively labeled structures (mutagens) in this dataset will not change

with further testing [12]. Classes distributions of the data set is more or less balanced (see Figure

3). Most interesting of all is the training set that had 430 samples difference. Although

oversampling the non-mutagen class would have made a boost in the accuracy of our model,

this is not necessary for our analysis, since we use the Area Under the ROC Curve (AUC) as

metric to measure the performance of our models. The AUC score is robust to any changes in

class distributions and is a valid metric as long as false predictions are equally costly. Let alone

Extended-Connectivity Fingerprints (ECFP)

 10

the fact that it is not in our interest to apply these types of modifications to the data set. After

splitting, we encoded the data in bits vectors (descriptor-based). For that purpose, we used the

Extended-Connectivity Fingerprint (ECFP) [15], where a vector with a desired length is

specified, and substructures with high similarity are represented by a bit at the same position in

the vector (see Figure 4)3. For example, the substructure 'CC1CC(=O)C2CCCCC2C1=O' was

found in the first molecule in the test set and was encoded with 1 at position 1014. If this

substructure or a similar one was found in other molecules, we indicate its presence with 1 in

the row that corresponds to that molecule. If the substructure is not found, we write 0 instead.

The result of the ECFP algorithm is a matrix of shape (𝑛, 𝑚), where 𝑛 is the number of

molecules in the data set, and 𝑚 is the number of features (the most 𝑚 frequent substructures

in the dataset). The number of features 𝑚 is controlled by the substructure search parameters.

More on that in the upcoming section Extended-Connectivity Fingerprints (ECFP). The

choice of the right representation is task dependent. While we could encode the data in a better

way, fingerprinting is sufficient because it encodes unique structural representation.

2.1. Extended-Connectivity Fingerprints (ECFP)

There are a number of topological/similarity substructure-search algorithms [15, 16,

17]. We are particularly interested in molecular fingerprinting. Molecular fingerprinting is a

3 Labels assigned to images are the molecules indices in the test set (molecule supplier). These indices
correspond to the 𝑡𝑟𝑢𝑒 𝑖𝑛𝑑𝑒𝑥 െ 1 and therefore start at 0, that is because indices start at 0 in Python.
However, the reported indices are the human-readable ones and start at 1.

Figure 3: class distributions of all training (top), validation (middle) and test set (bottom). Class
imbalance is noticeable but is not significant enough to apply additional data preprocessing
techniques such as oversampling the minority class or undersampling. Number of mutagens is
always higher than that of non-mutagens in all three sets.

Methods

 11

class of methods designed to represent chemical structures with integer arrays. Originally these

methods were developed for chemical database substructure searching, similarity searching,

virtual screening, clustering and classification tasks [15, 16, 17]. Extended-Connectivity

fingerprints, with one special difference to the original Morgan fingerprint algorithm, are

designed to capture molecular features that are often associated with molecular activity [15]. It

works by assigning (unique) numeric identifiers to each atom in the structure, and iteratively

updates these identifiers. After a number of iterations, we obtain disambiguated substructures,

that are easily identifiable and comparable. Eventually, the obtained substructures can be

represented with bits (0s and 1s) in a bit vector. In order to understand the produced descriptor

used in our workflow, and our parameter choice, it is essential to understand how ECFPs work.

The algorithm can be broken down to three steps:

1. Initialization: in this step, each atom is assigned an integer identifier (e.g. their atomic

number, Daylight, atomic invariants-derived rule) - the choice of the initialization

method is outside the scope of this work. Hydrogen atoms and bonds to hydrogen

atoms are ignored (only heavy atoms are considered). The identifiers can be either

positive or negative integers. Here is an example of initial identifiers: [(1: 734603939),

(2: 1559650422), (3: 1559650422), «, (6: -1074141656)].

2. Iterative update: in every iteration, each aWom¶V identifier is updated to reflect the

identifiers of neighboring atoms (i.e. collect substructural information about neighbor

atoms). This step might include removal of duplicate structures, especially at early

iterations. All identifiers from the previous iteration are collected into a fingerprint set.

Next, each atom collects both its own identifier as well as the identifiers of its

immediate neighbor atoms into an own array and passes the array to a hash function.

A hash function takes care of reducing this array back into a new single integer, which

gets assigned as a new identifier to the calling atom. Elements in the array must be

ordered before being passed to the hash function - first to their identifier values, and

second to their attaching bonds (e.g. single, double or triple bond). Once all atoms

have generated their new identifiers, they replace their old identifiers with the new

one. Now, the fingerprint set contains those identifiers from the current iteration. In

ECFPs, there is no termination condition like in the original Morgan algorithm.

Instead, the number of iterations is under the control of the user.

Extended-Connectivity Fingerprints (ECFP)

 12

3. Duplicate identifiers removal: it might occur to anyone that at early iterations,

identified substructures will look similar if not identical. Therefore, before moving to

the next iteration, this last step takes care of preventing these substructures from

appearing in the next iterations, but only then if they correspond to the same set of

identifiers. To illustrate that, let us examine Figure 5 and Figure 6. In Figure 5, the

algorithm identifies two similar substructures (having the same atoms, same bonds and

same activity). These substructures (also referred to as environments) are set two times

by two different core atoms: once by atom 6 with radius 2, and once by atom 5 with

radius 2. This case is known as structure duplication. In structure duplication,

environments get different set of identifiers, and are hence not removed. On the

contrary, when the set of identifiers is identical such as the case in Figure 6, they are

removed at the third step. This is quite common in symmetrical structures such as the

one illustrated in Figure 6.

One variant of this algorithm uses an extra step, where identification of stereochemical

fingerprints is possible [15]. However, in our application, we do not make use of this extra step.

This process is executed over all atoms in the molecule. As a consequence, the final fingerprint

Figure 6: bit at position 1014 can be located in different molecules (e.g. mol. 1, 18, 42, 76, 87). All of these
molecules are existent in the test supplier (test set).

5

6

Figure 4: constructed environment after two
iterations (radius = 2); once when atom 6 is core,
and once when atom 5 is core. Both environments
contain exactly the same atoms and bonds.
Therefore, they are duplicate information. In
comparison to Figure 5, these two core atoms will
get different identifiers, and will be represented by
the same bit at the same position, but not removed.
This is known as structure duplication.

2
3

5

8

4

1
6 7 9

Figure 5: for both atoms 1 and 9, the identifiers will
be identical even after 𝑛 number of iterations. Not
only do they have same atoms and bonds, but the
two regions are mirror images to one another. The
terminal step works on removing these duplicates.
These two atoms are known as stereoatoms. From a
stereochemical point of view, these substructures
are not identical.

Methods

 13

set is a mixture of substructures of different sizes for each atom in the molecule. In another

word, it will contain substructural information from all parts of the molecule. In light of that,

what is the appropriate number of iterations? This is very case-dependent. Typically, two to

three iterations are sufficient to produce fingerprints used in similarity search or clustering [15].

Since our analysis is an activity-learning one, we choose 3. It is worth mentioning that

increasing the number of iterations reduces the number of newly discovered identifiers with

every subsequent iteration. Same can be said about the number of bits ± what is the right number

of bits? Traditionally, users specify the number of bits at ~1024 for most structure-activity

learning tasks [15], however, we specified 2048 just so that we allow for less common

substructures in the dataset to appear in the descriptor, also because 2048 is the default setting

of the RDKit function GetMorganFingerprintAsBitVect() [15]. Increasing this number would

make the algorithm take slightly longer time to calculate the bits, especially when having a

large dataset, but the biggest advantage of ECFPs lies in the fact that they are rapidly

computable. While ECFPs have been heavily adopted and updated [15], they have their

downsides too: ECFPs identify highly precise structural features. For some purposes, this high

level of precision iVn¶W desirable. Instead, some level of abstraction could be more useful. For

example, a chlorine or a bromine substituent on a ring may be functionally equivalent but are

still distinguished in an ECFP. On the other hand, other variants of the algorithm ignore this

detail and treat both of these substituents the same such as in functional-class fingerprints

(FCFPs). One last remark in regard to the choice of hash functions: in theory, any hash function

that maps arrays of integers to a single integer can be used to generate the new identifier. The

only condition for the hash function to be scientifically valid is that it has to take neighboring

identifiers into account (i.e. collect neighboring information).

2.2. Feed Forward Neural Networks

A deep neural network is a function that maps an input vector to an output vector. Feed

forward neural networks consists of a set of hidden layers, where each layer in the network

consists of a number of computing neurons. Neurons in turn are computing units that detect a

particular feature using a parameterized function called activation function. The activation

value ℎ𝑗
𝑙 of neuron 𝑗 in layer 𝑙 is the weighted sum of (all) activations from neurons in the

previous layer ሺ𝑙 െ 1ሻ, and is denoted as

Feed Forward Neural Networks

 14

ℎ𝑗
𝑙 ൌ 𝑎 ൭෍ 𝑤𝑖𝑗

𝑙
𝐼

𝑖=1

ℎ𝑖
𝑙−1൱

where 𝑤𝑖𝑗
𝑙 is the weight assigned to the connection between neuron 𝑖 in layer ሺ𝑙 െ 1ሻ and

neuron 𝑗 in layer 𝑙 , and controls the activation ℎ𝑖
𝑙−1 of neuron 𝑖 in layer ሺ𝑙 െ 1ሻ. 𝑎 is the

activation function used in layer 𝑙 (e.g. ReLU). See Activation Functions for better grasp of

the transformation that an activation function applies to its input. The weighted sum of every

neXron¶V activation in the previous layer is referred to with the net input of neuron 𝑗 in layer 𝑙

and is denoted

𝑧𝑗
𝑙 ൌ ෍ 𝑤𝑖𝑗

𝑙 ℎ𝑖
𝑙−1

𝐼

𝑖

Furthermore, each layer 𝑙 transforms its input according to a parametrization to produce its own

output, passing it to further layers down the line. Neurons in layer 𝑙 are understood as feature

detectors, since every neuron in the layer applies the same function but receives a different

parametrized input from the layer below. What that feature is and how it is detected is all

dependent on the input from the previous layer and controlled by the weight matrix

𝑊𝑙 ൌ

ۏ
ێ
ێ
ێ
𝑤11ۍ

𝑙 𝑤12
𝑙 ⋯ 𝑤1𝐽

𝑙

𝑤21
𝑙 ⋯ ⋯ 𝑤2𝐽

𝑙

⋮ ⋱ ⋱ ⋮
𝑤𝐼1

𝑙 𝑤𝐼2
𝑙 ⋯ 𝑤𝐼𝐽

𝑙 ے
ۑ
ۑ
ۑ
ې

where 𝐼 is the number of neurons in layer ሺ𝑙 െ 1ሻ, and 𝐽 is the number of neurons in layer 𝑙.

Neurons within the same layer are not connected to each other. A neural network is a function

that maps an input vector 𝑥 (independent variable) to an output vector 𝑦 (dependent variable).

𝑦 ൌ 𝑁𝑁ሺ𝑥ሻ

Therefore, the input of the input layer is the input vector 𝑥 itself

ℎ0 ൌ 𝑥

and the neWZork¶V output is the activation of the output layer

𝑦 ൌ ℎ𝐿

Methods

 15

where 𝐿 is the total number of the layers in the network. In regression tasks, the output value is

a real number representing the outcome of the dependent variable 𝑦, but we do not deal with

regression in this work. In a classification task, the output is vector of size matching to the

number of possible outcomes 𝑘. To make it more specific, let us consider the classification task

at hand. There are only two possible outcomes 𝑡𝑘 ൌ ሼ0,1ሽ, where 0 corresponds to the negative

class (non-mutagen), and 1 to the positive class (mutagen). We call this case binary

classification. Data is fed to the input layer (first layer). The information (computation) flows

forwards through the neWZork¶V layers as depicted in Figure 7. The network makes a prediction

by finding the maximum value in the output vector 𝑦. Every element in the output vector is the

output value of one neuron in the output layer and corresponds to one label 𝑡𝑘 from all possible

outcomes. This value could be understood as the probability that the input 𝑥 belongs to class 𝑘.

For example, let us consider the output vector 𝑦 ൌ ሺ0.121, 𝟎. 𝟖𝟓𝟔, 0.023ሻ in Figure 7. For the

network, it is most probable that the passed input 𝑥 belongs to the second class. Thus, the

network classifies the input sample as the second class 𝑦𝑘 ൌ 2 . However, in binary

classification such as ours, the output is a single-element vector containing the higher

probability. Because probabilities in the output vector sum up to 1 (complementary event), we

can easily find the second probability.

Figure 7: example of a fully-connected feed forward neural network with 2 hidden layers. Input
size is 3. Output is size is 3. Information is propagated through the neWZork¶V layers. Every Neuron
in layer 𝑙 captures specific information (features detector), as the network adjusts its weights at
layer 𝑙.

Feed Forward Neural Networks

 16

2.2.1. Backpropagation

The network ³learnV´ by adjusting the weights 𝑊𝑙 layer by layer in order to ³fiW´ the

data best possible. To do that, we require an Error Function 𝐸 that penalizes the network for

making false predictions. The error function quantifies the difference between the computed

output 𝑦𝑘 (e.g. 𝑦𝑘 ൌ 0.856) and the true value 𝑡𝑘 for input 𝑥. A very common error function is

the mean squared error (MSE) that finds the mean error over a set of 𝑁 input-output pairs and

is defined as

𝐸ሺ𝑋ሻ ൌ
1

2𝑁 ෍ሺ𝑡𝑛 െ 𝑦𝑛ሻ2
𝑁

𝑛=1

where 𝑁 is the size of input-output pairs, 𝑡𝑛 is the true value for input 𝑥𝑛 and 𝑦𝑛 is the predicted

value. ൫𝑡𝑛 െ 𝑦𝑛𝑗൯2
 alone is the squared difference of the activation output and the desired

output for node 𝑗 in the output layer 𝐿, and is interpreted as the loss for node 𝑗 in Layer 𝐿. In

this case, both 𝑡𝑛 and 𝑦𝑛𝑗 are scalars. To find the average loss, we calculate the loss over a data

subset 𝑋 ൌ ሾ𝑥1, 𝑥2, . . , 𝑥𝑁ሿ called a mini-batch. When all predictions are accurate, i.e. 𝑦𝑛 ൌ 𝑡𝑛

for all input-output pairs ሺ𝑥𝑛, 𝑦𝑛ሻ in 𝑋, we get 𝐸ሺ𝑋ሻ ൌ 0. When we have mismatches, 𝐸ሺ𝑋ሻ

grows. Therefore, it is desired to have 𝐸ሺ𝑥ሻ as close to zero as possible. To do that we adjust

the weights in the network such that 𝐸ሺ𝑥ሻ is minimized. Let ℎ𝑗
𝐿 ൌ 𝑎𝐿ሺ𝑧𝑗

𝐿ሻ be the activation of

neuron 𝑗 in the output layer. We write

1
2𝑁 ෍ሺ𝑡𝑛 െ 𝑦𝑛ሻ2

𝑁

𝑛=1

ൌ
1

2𝑁 ෍൫𝑡𝑛 െ ℎ𝑗
𝐿൯2

𝑁

𝑛=1

We can minimize 𝐸ሺ𝑥ሻ by calculating the gradient of the error function with respect to the

weights connecting neuron 𝑗 with the all neurons in the previous layer. In loose terms, µhoZ

much does the loss change having changed the weights by a little amoXnW¶. The gradient of the

error function consists of the partial derivatives with respect to every individual weight

𝛻𝐸ሺ𝑥ሻ௪ೕ
ಽ ൌ ቆ

𝜕𝐸ሺ𝑥ሻ
𝜕𝑤1𝑗

𝐿 ,
𝜕𝐸ሺ𝑥ሻ
𝜕𝑤2𝑗

𝐿 , … ,
𝜕𝐸ሺ𝑥ሻ
𝜕𝑤𝐼𝑗

𝐿 ቇ

The gradient of the error function with respect to one individual weight connecting neuron 𝑗 in

the output layer 𝐿 and the neuron 𝑖 in layer 𝐿 െ 1 can be calculated by

Methods

 17

𝜕𝐸ሺ𝑋ሻ
𝜕𝑤𝑖𝑗

𝐿 ൌ
𝜕

𝜕𝑤𝑖𝑗
𝐿

1
2𝑁 ෍ ቌ𝑡𝑛 െ 𝑎 ൭෍ 𝑤𝑖𝑗

𝐿 . ℎ𝑖
𝐿−1

𝑖

൱ቍ
𝑁

𝑛=1

2

Since 𝐸 depends on the activation ℎ𝑗
𝐿 and the activation ℎ𝑗

𝐿 ൌ 𝑎ሺ𝑧𝑗
𝐿ሻ depends on the net input

𝑧𝑗
𝐿 and 𝑧𝑗

𝐿 depends on the weight 𝑤𝑖𝑗
𝐿 , then the chain rule tells us that to differentiate 𝐸 w.r.t.

𝑤𝑖𝑗
𝐿 , we take the product of the derivatives of the composed function

𝜕𝐸
𝜕𝑤𝑖𝑗

𝐿 ൌ
𝜕𝐸
𝜕ℎ𝑗

𝐿 ⋅
𝜕ℎ𝑗

𝐿

𝜕𝑧𝑗
𝐿 ⋅

𝜕𝑧𝑗
𝐿

𝜕𝑤𝑖𝑗
𝐿

Let us break down each term from the expression on the right-hand side of the above equation.

The first term is calculated by

𝜕𝐸
𝜕ℎ𝑗

𝐿 ൌ
𝜕

𝜕ℎ𝑗
𝐿

1
2𝑁 ෍൫𝑡𝑛 െ ℎ𝑗

𝐿൯2
𝑁

𝑛=1

ൌ
1

2𝑁 ෍
𝜕

𝜕ℎ𝑗
𝐿 ൫𝑡𝑛 െ ℎ𝑗

𝐿൯
2

𝑁

𝑛=1

ൌ
1

2𝑁 ෍ 2ሺ𝑡𝑛 െ ℎ𝑗
𝐿ሻ

𝑁

𝑛=1

This means that the loss from the network for 𝑁 input samples will respond to a small change

in the activation output from node 𝑗 in layer 𝐿 by an amount equal to the average value of two

times the difference of the activation output ℎ𝑗
𝐿for node 𝑗 and the desired output 𝑡𝑛.

The second term is calculated by

𝜕ℎ𝑗
𝐿

𝜕𝑧𝑖𝑗
𝐿 ൌ

𝜕
𝜕𝑧𝑗

𝐿 𝑎𝐿൫𝑧𝑗
𝐿൯ ൌ 𝑎ᇱ𝐿ሺ𝑧𝑗

𝐿ሻ

Because 𝑎𝐿 is the activation function employed at the output layer 𝐿 , the derivative 𝑎ᇱ𝐿 is

dependent on the employed function. We explain activation functions in an upcoming

subsection (see Activation Functions). Last but not least the last term is calculated by

𝜕𝑧𝑖𝑗
𝐿

𝜕𝑤𝑖𝑗
𝐿 ൌ

𝜕
𝜕𝑤𝑖𝑗

𝐿 ෍ 𝑤𝑖𝑗
𝐿 ℎ𝑖

𝐿−1
𝐼

𝑖

ൌ 𝐼ℎ𝑖
𝐿−1

So the input for node 𝑗 in layer 𝐿 will respond to a change in the weight 𝑤𝑖𝑗
𝐿 by an amount equal

to the activation output for node 𝑖 in the previous layer (𝐿 െ 1) times the number of nodes in

layer (𝐿 െ 1). Now, combining all terms we obtain

Feed Forward Neural Networks

 18

𝜕𝐸
𝜕𝑤𝑖𝑗

𝐿 ൌ
𝜕𝐸
𝜕ℎ𝑗

𝐿 ⋅
𝜕ℎ𝑗

𝐿

𝜕𝑧𝑗
𝐿 ⋅

𝜕𝑧𝑗
𝐿

𝜕𝑤𝑖𝑗
𝐿

ൌ ൭
1

2𝑁 ෍ 2൫𝑡𝑛 െ ℎ𝑗
𝐿൯

𝑁

𝑛=1

൱ ⋅ ቀ𝑎ᇱ𝐿൫𝑧𝑗
𝐿൯ቁ ⋅ ൫𝐼ℎ𝑖

𝐿−1൯

So now we have seen how to calculate the derivative of the loss with respect to one individual

weight in the output layer 𝐿 for 𝑁 training samples. Now the weight 𝑤𝑖𝑗
𝐿 is updated using the

following rule:

𝑤𝑖𝑗
𝐿 ← 𝑤𝑖𝑗

𝐿 ൅⋅ 𝜆
𝜕𝐸ሺ𝑋ሻ
𝜕𝑤𝑖𝑗

𝐿

where 𝜆 is called the step size or learning rate, and controls how strongly the weight 𝑤𝑖𝑗
𝐿 is

updated. That is, if 𝜆 is too small, the weights converge slowly to the local optimum. If the step

size is too high, the gradients will explode causing the weights to diverge. We repeat the same

process for each weight in the network. Calculating the derivative of 𝐸ሺ𝑋) with the respect to

each weight in the network in a backward manner will eventually minimize the error function.

This process is known as Backpropagation. This is a typical optimization problem where we

have a parameterized function and is solved by minimizing an objective function (loss/error

function) by iteratively updating the parameters using gradient descent until a certain condition

is met such as finding a stationary point (i.e. local minimum) in the objective. However, what

we demonstrated is known as stochastic gradient descent (SGD) or mini-batch SGD. The

difference is that gradient descent is applied to the whole training data set at once where SGD

is appied to a subset of the training data. Therefore, SGD is computationally more efficient and

converges faster towards the minimum of the loss function[20]. For a large data set of size 𝑁,

in gradient descent we would need to calculate the gradient of the loss for all 𝑁 samples, and

only then can we update the weights. On the other hand, SGD is a more simplified approach

that calculates the gradient over an equally sized set of (randomly) chosen training samples,

referred to with mini-batches. The disadvantage of SGD is that parameter updates are not as

precise as in gradient descent [11]. Since the parameters search space contains several local

minima, the algorithm is unlikely to find the global minimum, but converges to a local

minimum with every epoch. In this example we have discussed one specific error function

which is the mean squared error (MSE).

Methods

 19

There exists a number of error functions, but most commonly for classification tasks is cross-

entropy

െ ෍ 𝑡𝑛 𝑙𝑜𝑔ሺ𝑦𝑛ሻ ൅ ሺ1 െ 𝑡𝑛ሻ 𝑙𝑜𝑔 ሺ1 െ 𝑦𝑛ሻ
𝑁

𝑛=1

2.2.2. Vanishing Gradient

Problem in deep neural networks is that as we propagate the gradients through the

layers, the gradient length decreases exponentially and could become too small for learning in

the lower layers (close to the input layer). This problem is known as the vanishing gradient.

This is one of the main problems that deep neural networks suffer from during training. More

specifically, lower layers in the network are more subject to this problem. As noted earlier, once

we have calculated the gradient of the loss w.r.t. a particular weight, the gradient is then used

to update the weight. If that weight is in the output layer (or any high layer), the calculated

gradient is a product of only few terms. However, more and more terms4 are included in the

product, when calculating the gradient at lower layers in the network, allowing the gradient to

become extremely small. If the gradient is extremely small, the update in the weight will

become extremely small too. This small change in the weight is not going to carry through the

network well enough such that the loss is reduced. In another word, the weight is barely updated

and does not converge towards the optimal value as a result. Moreover, because weights in

earlier layers have implications for the remainder of the network (higher layers), vanishing

gradients eventually impair the neWZork¶V ability to learn. To overcome this problem, we use

the Rectified Linear Units activation.

2.2.3. Activation Functions

So far, we have been talking about neuron activations but have not specifically defined what an

activation function is. As stated earlier, an activation ℎ𝑗
𝑙 of neuron 𝑗 in layer 𝑙 is the output of

4 The multiplied terms are often small real values (below 1). Therefore, the product gets smaller with more
terms.

Feed Forward Neural Networks

 20

an activation function 𝑎𝑙ሺ𝑧𝑗
𝑙ሻ that is employed in layer 𝑙. An activation function defines what

that output is given a set of inputs by transforming the inpXW¶V value. Every neuron in layer 𝑙

utilizes the same activation function to make some transformations on the input but yields a

different output due to it receiving a different input. Activation functions are biologically

inspired by activity in our brains, where different neurons fire or are activated by different

stimuli. Rectified Linear Units (ReLU) is a well known activation function that outputs the

same value as the net input (preactivation) if the input is greater than 0, otherwise, it outputs 0

𝑅𝑒𝐿𝑈ሺ𝑧ሻ ൌ 𝑚𝑎𝑥 ሺ0, 𝑧ሻ

ReLU has the advantage that they are a remedy for the vanishing gradient problem [11].

Sigmoid too is a well known activation function that used in the logistic regression

𝑠𝑖𝑔𝑚𝑜𝑖𝑑ሺ𝑧ሻ ൌ
𝑒௭

𝑒௭ ൅ 1

Sigmoid transforms the input to a value that is close to 0 if the input is extremely negative and

to a value close to 1 if the input is extremely positive. See Figure 8 to understand the output of

Sigmoid and compare it to other activation functions. The output layer in a neural network often

has a special activation function, depending on the possible outcome of the network. For

example, in binary classification, it is most suitable to use sigmoid in the output layer, because

it outputs a real value between 0 and 1. The closer the value to 1, the higher the probability that

the input belongs to class 1, and vice versa for values closer to 0. In multi-class classifications,

we need a function that yields probabilities equal to the number of predictable classes such as

SoftMax. The basic idea of SoftMax is to distribute the probability of different classes so that

they sum up to 1. If we have 5 predictable classes in total, then we need 5 units in the final layer

of our network activated by SoftMax. The formula for SoftMax is given by

𝑆𝑜𝑓𝑡𝑀𝑎𝑥ሺ𝑧𝑘ሻ ൌ
𝑒௭ೖ

σ 𝑒௭ೖ௄
𝑘=1

Neural networks were historically inspired from perceptrons. The simplest type of feedforward

networks are perceptrons. They have no hidden units, thus a perceptron has only an input layer

and an output layer. The output units of a perceptron are computed directly from the sum of the

product of their weights with the corresponding input units. One prominent advantage of neural

networks is their ability to learn high dimensional data. Also, neural networks are complex

predictive models that can fit highly complex data, because as we introduce more layers in the

Methods

 21

network our predictive model gets more complex due to a higher number of adjustable

parameters. This complexity has its drawbacks too. In machine learning, the idea is to build a

model that can predict unseen data points. If the model complexity is too high, eventually the

model will overfit the learning data, and will not be able to predict unseen data. This concept is

known as Overfitting. The counter-case is known as Underfitting. In underfitting, the model is

too simple to fit the training data points. Neither overfitting nor underfitting is discussed in our

work, because it requires more background on the generalization error. The aim instead is to

provide an initial understanding of how neural networks ³learn´ data. With that being said, the

downside to deep neural networks compared to other machine learning algorithms is that NNs

have more hyperparameters to tune. One has to test the algorithm under different

hyperparameter settings to evaluate the performance of the network. We discuss

hyperparameter tuning in the upcoming section. To implement our neWZork¶V architecture, we

use the sequential models from the Keras API [19]. It provides all activation functions,

optimizers, loss functions as well as gradient calls that we need for our analysis. In order to

have our data ready for training, a molecule has to be described as a vector with input features

𝑥 ൌ ሺ𝑥1, 𝑥2, . . , 𝑥𝑚ሻ, where 𝑚 is the number of features in the input vector. This has been

covered in the previous section Extended-Connectivity Fingerprints (ECFP).

Figure 8: four examples of common activation functions. Rectified linear units (ReLU) on the top-
left. Sigmoid to the top-right. To the bottom-left there is leaky ReLU. The bottom-right shows the
hyperbolic tangent activation function.

Hyperparameter Optimization

 22

2.3. Hyperparameter Optimization

Almost all machine learning algorithms have two different types of parameters:

trainable parameters; those get updated in the learning process with every epoch (weights of

the network), and hyperparameters; are usually determined before training and are not updated

during learning. The learning rate, choice of optimizer, number of layers in a network are all

hyperparameters and are set before training. Choosing the best hyperparameter settings for the

learning task at hand is challenging but crucial too for good performance on unseen data. There

are a number of model selection techniques to choose from [21, 22, 23]. In a precedent work of

ours utilizing the same data set, we used grid search in model selection [24]. The previously

selected model yielded an AUC score of ~0.81 on the test. In a grid search, a hyperparameter

search space is specified manually, and values from the search space are exhaustively

substituted such that we create all possible hyperparameter combinations [21, 22]. This

technique suffers from curse of dimensionality [26]. I.e. the search space dimensionality gets 𝑛

times larger with every parameter setting specified, where 𝑛 is the number of values to be tested

for that particularly specified setting. This time around, we wanted to improve the performance

of our model where possible by employing the Bayesian Optimization technique. An automatic

tuning technique where a function maps the hyperparameters from the search space to a

specified objective. The objective can by anything that we want to maximize or minimize (e.g.

accuracy, AUC). The objective is then evaluated on a validation set. In the Bayesian

optimization, we differentiate between two types of hyperparameter updates: exploitation,

where the selected hyperparameters are expected to get closer to the objecWiYe¶V maximum; and

exploration, where using the selected hyperparameters for leads to uncertain outcome. The

Bayesian optimization has shown better results in fewer evaluations compared to grid search

and random search [22, 25], because it makes informed decisions about the next trial of

Table 2: types of evaluated hyperparameters by the Bayesian optimization as well as their search space. µ[]¶
is used to describe continuous sets, µ()¶ for discrete, and µ^`¶ for categorical ones.

Units
(Discrete)

Activation function
(Categorical)

Optimizer
(Categorical)

Learning
rate

(Continuous)

Num. hidden
layers

(Discrete)

(5, 1024) {ReLU, Sigmoid,
SeLU} {SGD, Adam, RMSprop} [0.00001,

0.2] (2, 15)

Epochs
(Discrete)

Batch size
(Discrete)

Initializer
(Categorical)

Momentum
(Continuous)

Dropout rate
(Continuous)

(5, 30) (1, 200) {lecun_uniform, he_uniform,
uniform, he_normal, normal} [0.001, 0.5] [0.0001, 0.5]

Methods

 23

hyperparameter selection. But how do we

learn about the next trial? Let 𝑓ሺ𝑥ሻ be an

objective function, and 𝐻 a bounded set

of hyperparameters. We are interested in

finding the global maximum of 𝑓ሺ𝑥ሻ. To

achieve that, the Bayesian optimization

builds a probabilistic model for 𝑓ሺ𝑥ሻ ,

and exploits this model to make better

decisions on which parameters in 𝐻 to

evaluate next [25]. Furthermore, one

must also select a prior that will make

assumptions about the function being

optimized [25, 27]. An acquisition

function determines what point in 𝐻

should be evaluated next and makes use

of the information gathered from

previous trials [25]. Several acquisition

functions are used in the Bayesian

optimization, and they vary in the details,

in which they suggest the next point in 𝐻

and previous observations [25, 28]:

x Probability of Improvement: maximize

the probability of improving over the best

current value of the objective function

x Expected Improvement: maximize the

expected improvement (EI) over the

current best

x GP Upper Confidence Bound (UCB):

minimize the regret over the course the

optimization

Figure 9: after just a few points, the algorithm
constructs a posterior that is close to the true
maximum. Notice the difference between exploration
and exploitation steps. The former implies exploring
the parameter space. The later implies testing points
that lie near the current known maximum. The
posterior gets closer to the original target with more
evaluation points, especially near maxima/minima. At
early optimization levels, the algorithm makes
fantasies about the shape of the target function (below
3 observations). The confidence interval is reevaluated
with every observation introduced. The uncertainty
grows as we go further from the evaluated
observations.

Hyperparameter Optimization

 24

AW earl\ opWimi]aWion leYelV, Whe algoriWhm iV VWill making Vome ³gXeVV Zork´ aboXW Whe

underlaying distribution ± we call fantasies [25]. After a number of sampled points, the

posterior (dotted line in Figure 9) looks more like the target, especially at maxima and minima.

The problem of Bayesian optimization is that it exploits those regions where performance was

good in comparison to previous tested points. Thus, the algorithm can easily get trapped in a

local maximum, instead of moving towards the global maximum. Furthermore, it is crucial to

choose a proper number of exploitation and exploration steps for this algorithm to deliver good

results. Exploration, on the other hand, is forcing the algorithm to look for points that have

equally or less Expected Improvement (for example) but are far from the currently exploited

region in the bounded set 𝐻. Another way to get around this trap, is using utility functions that

are controlled by an exploration parameter. The upper confidence bound (UCB) for example

has a free parameter 𝜅 that controls how conservative the utility function is (more vs. less

exploration) [28]. Note that these evaluations are often computationally expensive, because

they involve running the entire machine learning algorithm until completion. A great advantage

of the Bayesian optimization is that it takes significantly less time for evaluation in comparison

to other optimization methods (e.g. Grid search) [22, 25], because it makes better choices about

where to seek next, and hence less experiments to run. It has outperformed all other state of the

art global optimization algorithms [25]. Our search took 4 hours: 59 min: 51 sec when set to 20

exploitation steps and 10 exploration steps. The optimization was run on a 3.1 GHz Dual-Core

Intel Core i5. In practice as well, one should be careful about the choice of exploitation steps,

because as we exploit some regions in the parameter search space (e.g. learning rate), the

algorithm might exploit endlessly precise values, which we cannot represent with a floating

point in memory, and the computation would crash as a result. We happened to experience

some crashes when setting the exploitation steps too high compared to the exploration steps.

To get over this problem we chose the ratio exploitation: exploration steps as 2:1, such that for

every two exploitations we take one exploration step. This is in general a good idea to avoid

local maxima, because we know that maximizing the AUC is non-convex objective (i.e. has

several local and global maxima). To conduct these optimization experiments, we used the

BayesianOptimization github package [29]. It provides a constrained global optimization with

gaussian processes. In Table 2 we report the type of hyperparameters that we worked to

optimize as well as the search space of each. As for acquisition functions, we used the UCB,

because across a number of experiments done by Wilson et al., the UCB function outperformed

EI on all acquisition tasks, and proved to be more deterministic of exploitation points [25].

Methods

 25

Table 3 lists 10 best scoring models in our hyperparameters optimization history sorted by their

AUC score. Out of 30 models, we leave out all those models that are obviously poor,

maintaining a subset of 10 models for further consideration. This has the benefit of saving

computer time and analyst attention too. There is a possibility for any of these listed models to

have stochastically scored a high AUC. There are a number of reasons for that: one model might

have been µlXck\¶ to get an easy validation split (i.e. samples in the validation set were similar

in structure to the ones already seen in the training set); another reason would be the proper

initialization of weights. When the model¶V weights are initialized before training, they get

assigned either randomly or hardly coded for particular reasons. In either case, they are drawn

from a prespecified distribution such as a normal or uniform distribution. We refer to these

previous cases with µopWimiVWic¶ models. Therefore, in order to avoid these optimistic models,

we let these exact same ten best scoring models train from scratch and have them predict on the

validation set several times (10 times here). Then, we choose the model that scored highest on

average with minimum deviation. This is a common practice in machine learning to avoid the

trap of optimistic models. With that being sad, there is no way to identify a µbeVW¶ set of

hyperparameters, we can only hope to find a global maximum in the search space. Our selection

Model ID 1st run 2nd run 3rd run 4th run 5th run 6th run 7th run 8th run 9th run 10th run Average AUC Standard Deviation
22 0.881518202 0.8884432 0.870165746 0.888367517 0.882842655 0.888556724 0.876863695 0.878112465 0.858624082 0.868576402 0.878207069 0.009945967
28 0.897979263 0.889237872 0.890259593 0.901574207 0.89417619 0.890656929 0.881877696 0.894119428 0.897392719 0.90089306 0.893816696 0.006025245
24 0.880874896 0.887799894 0.855899493 0.872322712 0.8949141 0.886437599 0.882994021 0.81374404 0.882539923 0.874366155 0.873189283 0.023424586
10 0.874820253 0.858094301 0.8595512 0.856429274 0.854385832 0.848879891 0.856713086 0.854612881 0.848898812 0.859683645 0.857206917 0.007276652
12 0.87724211 0.849012336 0.871338833 0.868879134 0.853174904 0.868879134 0.889843336 0.867176266 0.84685537 0.867592523 0.865999395 0.013180255
8 0.871055022 0.849939454 0.871490199 0.869314312 0.859967456 0.848955574 0.846817528 0.863997578 0.86976841 0.810149096 0.856145463 0.018814615

25 0.872814652 0.836259744 0.848293347 0.828085976 0.838681601 0.843260425 0.830583516 0.848974495 0.836713842 0.845190343 0.842885794 0.012638368
30 0.855180504 0.859532279 0.848615 0.829599637 0.847233785 0.841898131 0.852758647 0.825228941 0.853629002 0.822088095 0.843576402 0.013374606
27 0.835238023 0.855558919 0.844925452 0.863089382 0.836297586 0.858510558 0.863732688 0.849428593 0.857186105 0.859948536 0.852391584 0.010479696
11 0.822069174 0.784416862 0.814879286 0.807386665 0.81276016 0.827669719 0.817566033 0.814803603 0.797661394 0.808748959 0.810796186 0.012375706

Table 3: first 10 best scoring models evaluated 10 times on the validation set in order to avoid optimistic
models. This data is a one-to-one comparison and is not sorted. Model 28 is the best scoring model in our
experiments, because the selection criterion implies that the selected model has the highest average AUC and
lowest standard deviation.

Model ID AUC activation batch_size dropout_rate epochs init lr momentum n_layers optimizer units
22 0.893741013 relu 200 0.0001 5 normal 0.2 0.5 2 SGD 858
28 0.891016423 relu 200 0.5 30 normal 0.2 0.001 2 SGD 904
24 0.879701809 selu 85 0.5 5 normal 0.2 0.001 2 SGD 586
10 0.874214788 sigmoid 134 0.065985751 23 he_uniform 0.03664644 0.293669954 2 RMSprop 10
12 0.867933096 selu 200 0.5 5 normal 0.2 0.001 2 SGD 103
8 0.867441156 selu 94 0.488382868 20 he_normal 0.007847167 0.142120674 4 Adam 126
25 0.858359192 selu 200 0.0001 5 lecun_uniform 1.00E-05 0.5 15 RMSprop 936
30 0.856750927 selu 1 0.0001 30 lecun_uniform 1.00E-05 0.001 15 RMSprop 373
27 0.841784606 relu 119 0.0001 30 normal 1.00E-05 0.5 2 RMSprop 543
11 0.808332703 selu 1 0.5 30 normal 1.00E-05 0.001 2 SGD 654

Table 4: results of the Bayesian optimization. Here are the 10 best scoring models found in our search history.
Table is sorted to the AUC score in a descending order top-to-bottom. The AUC values correspond to the
scores obtained by training a new model every time and evaluating it on the validation set.

Area Under ROC Curve (AUC_ROC)

 26

criterion is best presented in Figure 10. In Table 4 we report the AUC scores obtained from

each hyperparameter setting in all 10 runs. In the next subsection, we explain the objective used

for the evaluation of the models.

2.4. Area Under ROC Curve (AUC_ROC)

In regular learning, we treat all misclassifications equally, which causes issues in

imbalanced classification problems. Furthermore, there is no extra reward for accurately

predicting a minority class. One could apply cost-sensitive learning to overcome this issue such

as in security-related applications and fraud-detection. In this case it is more costly to falsely

predict non-fraud than falsely predict fraud ± the latter is recoverable, but the former is not.

However, we do not always have a ground to assign cost values, and therefore it is rather

difficult to construct a cost matrix. Also, the decision between recall and precision have to

made in some machine learning contexts. Recall is the percent of truly positive instances that

were classified as such.

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
𝑡𝑝

𝑡𝑝 ൅ 𝑓𝑛

Precision, on the other hand, is the percent of positive classifications that are truly positive.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
𝑡𝑝

𝑡𝑝 ൅ 𝑓𝑝

Figure 10: 10 best scoring models after having them initialized, trained (on training set), and
evaluated (on validation set) 10 times. The x-axis shows models IDs that match the ones listed in
Table 4. The y-axis shows their average AUC scores. The whiskers represents the standrd deviation
in the AUC score.

Methods

 27

Depending on whether you lay your focus on the positive or negative class, one metric is more

appropriate than the other. For that purpose, we use the AUC score (also known as ROC_AUC),

which is the area enclosed under the Receiver Operating Characteristic. While the ROC curve

represents the same confusion matrix under different classification threshold settings, the AUC

tells how good the performance of the classifier independently of the pronounced threshold

setting. Therefore, every point on the ROC curve represents one classifier under one threshold

setting. The point (0,1) in the diagram makes a perfect classifier that commits no false

predictions. The contrary of that is a classifier whose false positive rate (FPR) is 1 and true

positive rate (TPR) is 0 (at point (1,0)), because it constantly makes false predictions. Point

(0,0), makes a classifier that classifies all samples in the data set as negative and at (1,1) all

samples are classified as positive. Any point on the diagonal is a random classifier whose FPR

is equal to its TRP and therefore predicts class 𝑝 with probability 𝑥 and class 𝑛 with probability

(1 െ 𝑥). To see how AUC announces the better classifier independently of the class

distributions, let us take a look at the two depicted classifiers in Figure 11. Given two classifiers

with the same accuracy (say 85%) such 𝐶1 and 𝐶2 in Figure 11, one could pose the question

³are these two classifiers equally good in a real applicaWion?´. For data where correct

recognition of negatives is more important, 𝐶2 would be preferable. For data, where correct

recognition of positives is more important, 𝐶1 would be the better classifier. What if it is

Figure 11: example of a Receiver Operating Characteristic (ROC) curve on the left. Example of
Precision-Recall plot on the right. See how recall and precision are competing objectives. Which
metric is preferable depends on the application requirements.

Attribution Methods

 28

equally important to correctly classify both positives and negatives? ± we evaluate the

classifiers under different thresholds. To compare the overall performance of two classifiers

regardless of the threshold settings, we measure the area enclosed under the ROC curve. The

larger the area, the better the classifier. The difference is that AUC allows us to compare two

or more classifiers, while ROC alone is not comparable. Another desired property of the AUC

score is that it is robust to changes in the class distributions and is therefore a suitable metric

for imbalanced dataset with no prediction costs. The value of the AUC ranges between 0.5 and

1.0. An AUC of 0.5 represents a model that does not learn any patterns in the data and commits

random predictions. On the other hand, a model that scores 1.0 does not make any false

predictions. In practice such a model is unlikely to exist when dealing with real world data. We

heavily rely on the AUC in our work. When evaluating models in the optimization process, the

AUC represents our objective that we try to maximize. Furthermore, the ROC curve together

with the AUC score of our best scoring model are reported in the Results section.

2.5. Attribution Methods

Ever since deep neural networks emerged, they are referred to as black boxes. This

notion applies to some but not to entirety. While it is still controversial what pattern in the input

a neuron 𝑛 in layer 𝑙 recognizes, the question asked today is ³Zhy did the network make this

predicWion?¶¶ rather than ³hoZ´ if we had to rely on these predictions. A system driven by

machine learning that assists the doctor diagnose diabetic Retinopathy is of no use to the doctor

unless it can explain its output. And that is why interpretability of neural network is that

important. Several methods have been proposed to unravel that mystery of these networks [14].

Attribution methods is one approach towards interpretability of neural networks. We focus on

one particular method known as the Integrated Gradients [34] that relates the neWZork¶V output

back to its input by assigning an attribution value (any real number) to each feature in input

vector. These values describe the importance of that feature, and thus giving that feature either

credit or blame for the model¶V decision. This of course implies having neutral features too. In

another word, features that do not influence the model¶V decision. Neutrality of features is an

important concept too, especially in the integrated gradients (see Baseline). As a whole concept,

attribution methods are here to help us understand the reasoning of a neural network, as well as

give some transparency on the neWZork¶V final prediction. Not only do attributions play a big

Methods

 29

role in understanding the weaknesses of the trained model, but also help boost the performance

of the model. Moreover, we could discover new unknown mutagenic patterns in the data. It is

particularly interesting to understand the neWZork¶V decision with the used input in cases where

the network makes false predictions. That said, attribution methods are completely independent

of the learning process and are not to be considered proof tests that make the model avoid

making false predictions. Instead, they are involved in the post-analysis.

2.5.1. Integrated Gradients

As mentioned earlier, attribution methods try to correlate the model¶V output with the current

input to have more insight on the model¶V decision. Considering a molecule that was classified

mutagen, what features in the input can we blame for this decision. To find out, we can

interpolate the input over a number of possible inputs increasing in intensity from 0 to 1 (see

Figure 12). The closer we get to the original input, the higher the probability that it is mutagen.

Calculating the gradients along this path will highlight those non-stagnant features (changing

features). On the other hand, the gradient of features that are not changing along the path will

be 0. Moreover, the sum of those accumulated gradients highlights will return the attributions

highlighting non-stagnant gradients. One question remains unanswered so far -what are we

comparing the original input against? Increasing the current input in intensity implies having a

reference input referred to with baseline. We discuss the role of baselines in the upcoming

subsection. By giving an attribution value (importance) to every feature in the input, IG

³e[plainV´ the decisions of a neural network. To elaborate more on the gradient calculations,

Figure 12: three possible paths drawn between an arbitrary baseline 𝑥ᇱ and the original input 𝑥.
The integrated gradients interpolate over a number of samples 𝑠 that lie on that straight path that
connects the two samples (𝑃3). Examine the interpolated sample 𝑥ఈ for comprehension.

Attribution Methods

 30

suppose 𝐹: ℝ𝑛 → ሾ0,1ሿ is a function that represents a neural network that outputs a real value

between 0 and 1 (y-axis in Figure 12), given the input 𝑥 ൌ ሺ𝑥1, … , 𝑥𝑖ሻ ∈ ℝ𝑛 , we pose the

following question: for an arbitrary input vector 𝑥, how different is the model¶V output, having

changed feature 𝑥𝑖 in the input vector? In another word, we want to understand the changes that

occur to the output 𝐹ሺ𝑥ሻ, having changed, say, one single feature in the input. A common way

for humans to perform attribution relies on coXnWerparWV¶ comparisons. This implies the need

for a baseline, to which we compare our input. Using a path function we can interpolate the

original input over a number of inputs that lie on the straight line between a baseline 𝑥ᇱ and the

original input 𝑥 (see Figure 12 for simplicity). We define the path function 𝛾: ሾ0,1ሿ → ℝ𝑛 that

can written out in a formal way as 𝛾ሺ𝛼ሻ ൌ 𝑥ᇱ ൅ 𝛼 ൈ ሺ𝑥 െ 𝑥ᇱሻ, where 𝑛 is the input dimension.

𝛼 now controls how close the current sample is to the original input 𝑥, such that:

𝛾ሺ𝛼 ൌ 0ሻ ൌ 𝑥ᇱ
𝛾ሺ𝛼 ൌ 1ሻ ൌ 𝑥

Attribution methods based on path integrated gradients are collectively known as path methods.

The integrated gradients is such a one. It is important therefore to note that the integrated

gradients is a path method for the straight line path specified by 𝛾ሺ𝛼ሻ. Now that integrated

gradients are expressed as the integral of the gradient of the neWZork¶V output with respect to

the input

Figure 13: interpolating the input increasing in intensity from 0 to 1. Observe changes in the
network's decision

Methods

 31

𝐼𝐺ሺ𝑥ሻ ∷ൌ න
𝜕𝐹൫𝛾ሺ𝛼ሻ൯

𝜕𝛼 𝑑𝛼
1

ఈ=0

Because the output is a composition of function, we get the following by applying the chain

rule

න
𝜕𝐹൫𝛾ሺ𝛼ሻ൯

𝜕𝛼 𝑑𝛼
1

ఈ=0
ൌ න

𝜕𝐹൫𝛾ሺ𝛼ሻ൯
𝜕𝛾ሺ𝛼ሻ

1

ఈ=0
⋅

𝜕𝛾ሺ𝛼ሻ
𝜕𝛼 𝑑𝛼

The later gradient is easily computable

𝜕𝛾ሺ𝛼ሻ
𝜕𝛼 ൌ

𝜕൫𝑥ᇱ ൅ 𝛼 ൈ ሺ𝑥 െ 𝑥ᇱሻ൯
𝜕𝛼 ൌ ሺ𝑥 െ 𝑥ᇱሻ

Now the end formula looks like

𝐼𝐺ሺ𝑥ሻ ∷ൌ ሺ𝑥 െ 𝑥ᇱሻ න
𝜕𝐹൫𝑥ᇱ ൅ 𝛼 ൈ ሺ𝑥 െ 𝑥ᇱሻ൯

𝜕𝛾ሺ𝛼ሻ 𝑑𝛼
1

ఈ=0

The integral is estimated with

ሺ𝑥 െ 𝑥ᇱሻ න
𝜕𝐹൫𝑥ᇱ ൅ 𝛼 ൈ ሺ𝑥 െ 𝑥ᇱሻ൯

𝜕𝛾ሺ𝛼ሻ 𝑑𝛼
1

ఈ=0
ൎ ሺ𝑥 െ 𝑥ᇱሻ ෍

𝜕𝐹൫𝑥ᇱ ൅ 𝛼𝑘 ൈ ሺ𝑥 െ 𝑥ᇱሻ൯
𝜕𝛾ሺ𝛼𝑘ሻ

𝑠

𝑘=1

The number of steps 𝑠 to estimate the integral is crucial in numerical calculation and is

discussed in Integral Approximation (Number of Summation Steps). Here 𝑥 represents one

input sample from the data set that can be interpolated over a number of steps. Results of the

integrated gradients is a vector of equal size as the input vector containing attribution values

that correspond to the importance of the features. For every feature 𝑥𝑖 in the input vector 𝑥 it

assigns a value 𝑎𝑖 that represents the blame/credit value. This value is then interpreted as the

contribution of 𝑥𝑖 to the final output 𝑦. IG is an axiomatic approach and satisfies the following

four axioms compared to other attribution methods [34]:

x Completeness: the sum of attributions in the attribution vector must be equal to the

difference between the output at 𝑥 and at the baseline 𝑥ᇱ. I.e.

 𝐹ሺ𝑥ሻ െ 𝐹ሺ𝑥ᇱሻ ൌ ෍ 𝑎𝑖
𝑖

 F. 1

where 𝑎𝑖 is the attribution value that corresponds to feature 𝑥𝑖 in the input vector 𝑥.

This axiom is beneficial when computing the gradients numerically, because we can

always double-check the correctness of the implementation by comparing the two

sides of the equation.

Attribution Methods

 32

x Sensitivity: implies that for two inputs differing in one feature value and same

baseline, the attribution value of that feature must be different and non-zero too, if the

model yields a new output. We expect the attribution 𝑎𝑖 to change, if we mutate feature

𝑥𝑖 in the input vector. Sensitivity is implied by completeness. I.e. if all attributions

sum up to the difference 𝐹ሺ𝑥ሻ െ 𝐹ሺ𝑥ᇱሻ, then we expect that attributions to be sensitive

to changes in the input.

x Implementation Invariance: two neural networks are functionally equivalent if their

outputs are equal for all same inputs, and regardless of the actual implementation.

Integrated gradients is an easy-to-implement axiomatic method and requires no

modification to the original network. It is completely independent of the concrete

choice of model¶V architecture or trainable parameters, in contrast to other attribution

methods such as DeepLift and LPR [34]. This is implied by the fact that they are

defined using the underlaying gradients, which do not depend on the implementation.

Empirically, no changes were made to apply the integrated gradients to other networks

in our experiments.

x Linearity: attributions obtained by the integrated gradient preserve any linearity

within the network. I.e. a linear combination of two neural networks 𝑓1 and 𝑓2 is

𝑎 ൈ 𝑓1 ൅ 𝑏 ൈ 𝑓2 , receives attributions that are equal to the weighted sum of the

attribution for 𝑓1 and 𝑓2. Linearly is a property of path methods.

Discussion of these four axioms is out of the scope of this thesis. IG is relatively easy to

implement and requires no changes in the original network, which enables us to use the same

implementation for a number of networks. Here we provide a summary (recipe) on how to

easily implement IG as well as our own implementation of the method:

1. Consider a baseline that when passed to the network, the network predicts the default

class when no informative features are present in the input. E.g. black image (each

pixel 0) in computer vision.

2. Now, we consider an input sample 𝑥 and interpolate it over a number of inputs 𝑠,

between the baseline image and the original image such that the input vector 𝑥ఈ looks

closer to the original input vector 𝑥 as we increase the intensity. When intensity is at

maximum, we obtain the original input 𝑥, and it is at minimum, we obtain the baseline

𝑥ᇱ.

Methods

 33

3. For each input on that straight line, we compute the gradient of the neWZork¶V output

w.r.t. the input.

4. We average the computed gradients over the number of interpolated inputs. This is an

approximation to calculating the integral. Then, we multiply the result by the

difference

(𝑥 െ 𝑥ᇱ).

We repeat the previous steps for every sample in the data set. To test the performance of our

implementation we compared the implementation in Snippet 1 to a GitHub package5 that we

happened to use once and to an older implementation of ours. The comparison included

calculating the attributions of the first 100 samples in the test set 10 times and averaging these

values. Each of these runs were timed and run on the same CPU as the hyperparameter

optimization. In the Results section we report the average timings. Although our

implementation was not the best performant in these experiments, we decided to use our

implementation of IG only for demonstration purposes. The easiness of implementing IG has

5 Link to the Integrated Gradients package by Naozumi Hiranuma. The package was used for comparison
purposes. https://github.com/hiranumn/IntegratedGradients

from keras import backend as K
import numpy as np

def integrated_gradients(inp, baseline=None, steps=50):
 # when no baseline is specified, take zero-vector by default
 if baseline is None:
 baseline = np.zeros(inp.shape)
 # gamma calculates the path function for a given alpha
 gamma = lambda alpha: baseline + alpha*(inp - baseline)

input_tensor = np.array([gamma(alpha) for alpha in np.linspace(0, 1,
num=steps)])

 output_tensor = model.predict(input_tensor)
 gradient = K.gradients(model.output, model.input)[0]
 sess = K.get_session()

results = sess.run(gradient, feed_dict={model.output: output_tensor,
model.input: input_tensor})

 return (inp-baseline) * np.average(results, axis=0)

Snippet 1: implementation of the integrated gradients that was used in our computations. It requires only
specifying the input and output tensors and a few gradient calls. To compute the gradients, we use the
function gradients() provided by the backend module of Keras.

https://github.com/hiranumn/IntegratedGradients

Attribution Methods

 34

led a number of developers to favor it. Also, integrated gradients is applicable to a variety of

areas (e.g. text, vision, medicine and finance).

2.5.1.1. Pros

Here we make a couple advantages that we observed when using IG:

1. IG is an easy-to-implement axiomatic approach to attribute the input and is

independent of the implemented architecture, as long as we the gradient of the out

w.r.t the input is computable

2. The completeness axiom allows us to evaluate the implementation of IG

3. Sensitivity is a desired property of the integrated gradients, since it highlights those

non-stagnant gradients along the path of changing input

4. Results of the integrated gradients are easily interpretable. In our analysis, results of

the integrated gradients need extra processing to have them in an interpretable form.

We demonstrate this step in the Results section.

2.5.1.2. Cons

Herewith we list some of the main downsides that we happened to experience when

using IG:

1. The attribution values obtained by IG are relative, and sometimes hard to interpret

alone viewed alone: ³HoZ important is a feature with attribution value of -0.00429?´.

When compared to another value (e.g. -0.39918), the value is interpreted easier,

otherwise, the value alone is meaningful. Because we never project these values alone

but always together with the rest of features in the input, this downside is not a

stumbling rock.

2. The choice of proper baseline is essential in order for the integrated gradients to work

[34, 36]. A common way for humans to perform attribution relies on counter-facts.

E.g. the absence of all features in an image is a black image (with zero pixel

intensities). This makes the method less desirable, since for some types of data, we

Methods

 35

often might not find a proper (meaningful) baseline. For most neural networks, a

neutral baseline exists in the input space such as the zero-vector in our case, however,

this baseline might be uninterpretable to us humans. We discussed the choice of

baseline the following subsection Baseline.

3. Features combination is irrelevant to IG. I.e. It doeVn¶W reveal the logic the network

uses in combining features. In mutagenicity, some substructures are not mutagenic

unless in the presence of a substituent or other substructures. If either of these

substructures is present alone, the molecule is not classified as mutagen. While neural

networks can build this logic, IG does not reveal this type of features correlation.

2.5.1.3. Baseline

Choosing an adequate baseline is a crucial step in the integrated gradients [34, 36].

While the original paper uses black pixels as the baselines [34], choosing other baselines proved

to be equally good in some cases. Selecting a reliable baseline for your input type is not spices

you add to the integrated gradients technique. Selecting an inadequate baseline could result in

noisy gradients along the path, and could make it look like as if all features are equally

responsible. Fortunately for us, features are not equally responsible in our data. Having a

reliable baseline on the other hand makes the absence of some features more informative, thus

less noisy gradients. Having said that, what is the best way to select a baseline? Depending on

the problem you are trying to solve, there is a number of baselines to choose from. It is

recommended for both binary and continuous features to use all-zero embedding vectors [34].

Passing the zero-vector baseline to our network resulted in predicting the negative class,

because if no features of mutagenicity are present, the mutagenicity signal is low. I.e. the input

is less indicative of mutagenicity. In binary classifications, the network learns both types of

features: positive ones which increase the model¶V confidence in predicting the positive class,

and negative ones that decrease the model¶V confidence. Both types of features are informative

to the network. In our dataset, we have features that indicate mutagenicity when present, and

others that indicate non-mutagenicity (intoxicity) when present. The network learns both types,

however we are not aware of the second type of features, because we have a description of only

mutagenic features (structures). To elaborate more, a baseline where all mutagenic features are

present and non-mutagenic are absent is the most indicative input of mutagenicity. In the same

Attribution Methods

 36

manner, a baseline where only non-mutagenic features are present is least indicative of

mutagenicity. Selecting either of the two baselines is adequate. It is nevertheless hard to

construct either of them. Instead, we can construct a baseline that is rather unindicative of

mutagenicity just by assuming that the absence of mutagenicity indicators is responsible for

predicting non-mutagen. I.e. we consider one of the predictable classes the ³defaXlW´ and that

whenever no learned features are present, the input is rather non-mutagen. It is therefore

desirable to have our baseline correspond to the ³default´ class such as the zero-vector. In

general, this baseline works almost for all datasets, where the absence of features is indicative

of another class label [35]. Other alternatives are there too such as using the average input of

several training samples. It is a good practice to try out different baselines when applying the

integrated gradients. In our analysis, we test the following four baselines:

1. Zero-vector: a vector of size (2048) consisting of only 0s

2. Average: at every column 𝑖 the average of the bits in the deVcripWor¶V matrix is

calculated, and then rounded it to either 0 or 1

3. Modal: at every column 𝑖 the average of the bits in the deVcripWor¶V matrix is calculated

4. Random: at every position 𝑖 0 or 1 is randomly selected

Choosing a baseline is relevant to the case study at hand and is independent of the neWZork¶V

implementation. Sometimes we cannot assume that finding an adequate baseline for every

dataset is manageable, and therefore we state that several baselines are equally adequate for

these types of datasets. In light of that, selecting the zero-vector as a baseline is adequate and

straightforward in this case.

A common way to visualize the attributions is by scaling the feature values by the

attribution values. If the feaWXre¶V value is 0 this would make the product 0, and the feature is

not highlighted as result. Another simpler way is to avoid the multiplication and highlight the

attributions alone. We used the second technique with one main difference: the attributions

obtained by IG correspond to entire fingerprint. Allowing all atoms in a substructure to be

equally attributed is not informative either. It is more desirable to have weighted attributions,

where one could see the contribution of individual atoms to the mutagenicity predication.

Attributions were weighted in a way such that each atom is weighted by the number of

Methods

 37

occurrences (i.e. number of times it appeared in a fingerprint within one molecule). More on

that in the Results section.

2.5.1.4. Integral Approximation (Number of Summation Steps)

Computing integrated gradients involves approximating a path integral via a

summation. The value of the integral is expected to be equal to the difference 𝐹ሺ𝑥ሻ െ 𝐹ሺ𝑥ᇱሻ

Figure 14: numerical errors found by each baseline vs. the number of integration steps. The x-axis shows the
samples in the test data set. The y-axis represents the numerical error found when calculating the attributions
at sample 𝑥 (i.e. ห൫𝐹ሺ𝑥ሻ െ 𝐹ሺ𝑥′ሻ൯ െ σ 𝑎𝑖

𝑛
𝑖=1 ห). The average error over all samples is then calculated (a.n.e.), the

same operation is repeated with 50, 60, 70, 80, 90 and 100 integration steps and all four baselines (zero-baseline,
modal, average, and random). In general, the zero-baseline had the lowest numerical errors with all integration
steps. We can also see that the higher the number of integration steps the lower the error is. This statement,
however, does not hold true for endlessly higher number of steps for computational reasons.

Attribution Methods

 38

[F. 1], where 𝐹ሺ𝑥ሻ is the output of the network when passing input 𝑥. This theoretical property

is of advantage for us to check the correctness of our implementation. In practice, however, we

still find a slight difference between both sides of the equation. This numerical error is

committed with every float number we introduce in the calculation. Should this numerical error

be significantly large, we conclude to incorrectness of the implementation (e.g. bug in the code,

erroneous differentiation). Should this numerical error be insignificantly small, we can increase

the number of integration steps. Theoretically, more summation steps, more precision when

calculating the integral according to the fundamental theorem of differentiation and integration.

In practice, as we increase the number of steps, we reach a point, where the float points

representing the gradient values are highly precise, and thus computer memory cannot

accommodate for that high precision level. In the literature, it was recommended to use a value

between 50 and 100 [34]. In practice, values in this range should return a µgood¶ estimate of the

integral in the application of the integrated gradients. To illustrate that, we calculate all the

numerical errors found using all four baselines (zero-vector, modal, average and random

baseline) with integration steps of 50, 60, 70, 80, 90 and 100 for every input sample in the

dataset. Then we average the errors corresponding to every sample over the number of samples

in the dataset to get better insight on the changes of integral value. This should also give us an

idea about which the safest baseline to use computationally. Last but not least, to avoid the

randomness in these calculations we repeated the same calculations ten times over several

sessions.

3 Results

When encoding the data, we used the Extended-Connectivity fingerprints to produce

bit vectors including either 0s or 1s. The bits indicate the presence or absence of the substructure

at position 𝑖. Results of ECFP is a matrix of shape (4010, 2048): (327, 2048): (3315, 2048) for

training: validation: test set respectively, where every row represents one single molecule and

in the dataset. To avoid the trap of optimistic models, we used average validation. The selected

model was number 28 and had an average AUC score of ~0.894 and standard deviation of

~0.006 when evaluated 10 times on the validation set. The selected model with 2 hidden layers

and 904 rectified linear units per each yielded an AUC score of 0.830 on the test set. This is a

slight improvement over our last constructed model from the previous work6 which had an AUC

of ~0.810 on the test set. Figure 15 shows the ROC curves of model 28 after having it

6 Link to the previous work on predicting the output of the Ames test:
https://github.com/kareemjeiroudi/molecules_and_ml/blob/master/doc/old_(Grid_Search_optimization)/pro
ject_report.pdf

Figure 15: Receiver operating characteristic curves of model 28 (best scoring model). The plot on
the left-hand side corresponds to the validation set. The plot to the right corresponds to the test set.
The AUC score of each curve is reported on the lower-right corner of the plot.

https://github.com/kareemjeiroudi/molecules_and_ml/blob/master/doc/old_(Grid_Search_optimization)/project_report.pdf
https://github.com/kareemjeiroudi/molecules_and_ml/blob/master/doc/old_(Grid_Search_optimization)/project_report.pdf

 40

reinitialized and trained on the training set. The network was initialized using normal

initialization, contains one input layer, 2 hidden layers with ReLU activation, two additional

dropout layers with dropout rate of 0.5, and one output layer with 1 single unit activated by

Sigmoid. For backpropagation, we used SGD with a learning rate of 0.2 and momentum 0.001

and the binary cross entropy loss function. The network was trained on a batch size of 200 and

30 epochs. It is obvious that there is a huge drop in the AUC score between the validation and

test set. One could relate that to the fact that test set has more unseen data samples than the

validation set. Possibly, model selection using cross validation such as 𝑘-fold cross validation

might have given a better estimate of generalization error. In the late analysis, we removed

those bits from the test set¶V descriptor that correspond to fingerprints set by radius 0 (e.g. single

atom substituents), because these are redundant structures and usually are not informative. Then

we let the network predict the test set, and we surprisingly obtained a much higher AUC score

(~0.894). We are uncertain why the network had made more accurate predictions with less

fingerprints in the descriptors. It could be that these features introduce more noise and less

signal to the network. However, this must be tested by training networks with no 0-radius

fingerprints. Unfortunately, we left out his part due to time limits. Then we moved to

implementing the Integrated gradients. Our new implementation is ~20 minutes faster on

average than the old one, but 3 minutes and 15 seconds slower than the prementioned GitHub

package. The reason for this improvement over the last implementation is because the gradient

call is performed once per sample. In total it took 1 hour and 50 minutes to calculate the

attributions for the entire test set on a 3.1 GHz Dual-Core Intel Core i5. To avoid large

numerical errors when approximating the integral, we tested four different baselines using 6

Model ID activation batch_size dropout_rate epochs init lr momentum n_layers optimizer units
28 relu 200 0.5 30 normal 0.2 0.001 2 SGD 904

Table 5: hyperparameter list of the best scoring network for quick reference.

Num. Steps/ baseline zero_vector modal average random
50 0.0030856 0.35104253 0.02498267 0.01275446
60 0.00258399 0.40042657 0.02068872 0.01057354
70 0.00222174 0.39062123 0.01771157 0.00905473
80 0.00195577 0.34763111 0.01537029 0.00795998
90 0.0017401 0.34082637 0.01381169 0.00702143

100 0.00152749 0.34223731 0.01246695 0.00636338

Table 6: matrix containing all average numerical errors (a.n.e.) corresponding to Figure 14, but
³]oomed oXW´. Zero-vector baseline had best results for all tested integration steps. Modal
baseline on the other hand gave the worst results, which can also be seen in Figure 14. Also,
higher integration steps had higher precision and therefore less numerical error.

Results

 41

different step sizes. Table 6 from our analysis shows the average numerical error that was

committed across samples in the test set for every baseline-steps combination. Using the zero

baseline produces least amount of numerical error and delivers a better approximation of the

path integral. The table shows that the zero-vector had lowest average numerical error for all

integration steps. Also, 100 integration steps empirically proved to be a better estimate of the

integral for all baselines except the modal one. The modal baseline, on the other hand, always

delivered erroneous results four all integration steps. Results of the integrated gradients is a

vector of equal size to the input vector (2048). Because we calculated the attributions of the test

set only, the final matrix is of shape (3315, 2048). For every tested baseline, we obtained a

different matrix. Each attribution 𝑎𝑖𝑗 in the attribution matrix corresponds to an entire

substructure that is found in molecule 𝑖 and is encoded at column 𝑗 in the attribution matrix.

The fact the attribution value corresponds to an entire substructure, makes it look as if all atoms

in a substructure are equally attributable (see Figure 16 left). To have the substructure

explainable on the atomic level (see Figure 16 right), we divided the attribution over the

number of atoms existing within one substructure - we call this value ³VXbVWrXcWXral aWWribXWion´.

Then, every atom in the molecule gets an ³aWomic attribution´ that is equal to the sum of all

³VXbVWrXcWXral attributions´ only if the atom is present in the substructure. There is no strict way

on how to weight the attributions, but this is only one way to arrive at the ³aWomic attributions´.

Another suggested way is to average the ³substructural attributions´ over the number of

substructures where the atom is present. Now it is easier to interpret the attributions. In order

to best understand the difference between weighted vs. unweighted attributions, let us look at a

real-world example that chemists have to deal with: examine the molecule in Figure 16. This

molecule is not a mutagen but was classified as such by our network. Question here is, what

qualifies this molecule to be a mutagen? In loose terms, why does the network ³Whink´ it is a

Figure 16: Comparison of unweighted (left) vs. weighted attributions (right). In the figure left,
all atoms are equally attributed. That is rarely the case in a fingerprint. The depicted molecule is
number 100 in the test set.

 42

mutagen. An attribution vector tells us which features in the bits vector are mostly responsible

for this prediction. However, one feature (fingerprint) in the input could cover multiple

substructures at the same time. On the other hand, atomic attributions enable us to see the reason

behind this prediction on a less abstract level. Viewed this way, if a fingerprint covers two or

more substructures in a molecule where only one of the substructures is known to be mutagenic,

atomic contributions can translate this information to us. It is certainly of benefit to toxicologists

to be able to interpret neWZork¶V predictions and attribute that directly to the presence of distinct

chemical patterns. See how Figure 17 successfully explains the neWZork¶V decision too, by

highlighting a large part of the molecule as µmXWagenic¶. For the network, this structure is highly

indicative of mutagenicity, just as we would expect since there are two five-membered aromatic

nitro structures and one unsubstituted heteroatom (C െ 𝐒 െ C) present in the molecule. A large

part of molecule 1731 in the test set is indicative of mutagenicity. The predicted label matches

the Ames test output making it a true positive. Let us examine another example from the test

where the neWZork¶V prediction matches the output of the Ames test such as the one depicted in

Figure 17: weighted attributions of 12 randomly selected fingerprints found in molecule 1731 in the test set.
Positive attributions are highlighted in red. Negative attributions are in green. The intensity of the color
corresponds to how big the attribution value is. µP¶ stands for predicted label. µT¶ for true label. See how most
substructures were recognized as mutagenic/toxic by our network, all of a reason for our network to classify
the molecule as µmXWagen¶. 1 means µmXWagen¶ (positive class), 0 means µnon-mXWagen¶ (negative class).

Results

 43

Figure 18. We take a look at a true negative here. We are not able to detect any toxicophores in

the molecular structure. Furthermore, the network recognizes both hydroxyl substituents (െOH)

as µnon-mXWagenic¶. Again, this is a straightforward decision, and we expect the neWZork¶V

output to match the Ames test true label. It is nevertheless harder to interpret the output in case

of a false positive or a false negative, such as in Figure 19. An aromatic nitro is present in the

structure, leading the network to µWhink¶ that it is a mutagenic structure. This kind of mismatches

require specific knowledge of the functional groups in a molecule in order to be interpreted.

We are uncertain why the Ames test of molecule 692 is negative (non-mutagen). Next step was

to evaluate the performance of IG on different baselines. To evaluate the performance of the

four tested baselines (zero vector, average, modal, random), we constructed Table 7 that allows

us to compare the rediscovery rates of each baseline. I.e. to find out if IG is able to detect already

known toxicophores and if so, then by how much. We considered only the true positives subset

in the data that contains at least one toxicophore in their molecular structure. If we assume that

IG is functional, then we expect it to positively attribute those structures where toxicophores

are present. Therefore, we want to find the ratio of

Figure 18: weighted attributions of 12 randomly selected fingerprints found in molecule 341 in the test set.
The description is identical to Figure 16. However, in contrary to Figure 16, here a true negative is depicted.

 44

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑙௬ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 𝑡ℎ𝑎𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑎 𝑘𝑜௪𝑛 𝑡𝑜௫𝑖𝑐𝑜𝑝ℎ𝑜𝑟𝑒
𝑎𝑙𝑙 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 𝑡ℎ𝑎𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑎 𝑘𝑛𝑜௪𝑛 𝑡𝑜௫𝑖𝑐𝑜𝑝ℎ𝑜𝑟𝑒

 ൌ 𝒓𝒆𝒅𝒊𝒔𝒄𝒐𝒗𝒆𝒓𝒚 𝒓𝒂𝒕𝒆

One remark should be made here about the rediscovery rate: having a toxicophore in the

molecular structure does not immediately turn the molecule into a mutagen. Therefore, in order

to investigate how successful IG is in attributing molecular structures, we would have to find

out the number of failures of IG too. The first ratio alone does tell anything about the failures

of IG. It is not sufficient to learn that IG is sensitive, but it has to be specific too

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑙𝑦 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑠𝑡𝑟𝑎𝑢𝑐𝑡𝑢𝑟𝑒𝑠 𝑡ℎ𝑎𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑛𝑜 𝑘𝑛𝑜𝑤𝑛 𝑡𝑜𝑥𝑖𝑐𝑜𝑝𝑜ℎ𝑟𝑒𝑠
𝑎𝑙𝑙 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 𝑡ℎ𝑎𝑡 𝑑𝑜 𝑛𝑜𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑛𝑜 𝑘𝑛𝑜𝑤𝑛 𝑡𝑜𝑥𝑖𝑐𝑜𝑝ℎ𝑜𝑟𝑒

However, the problem is that the second ratio might be a bit more difficult to calculate, since

we do not know all potential toxicophores. It is possible that IG recognizes a new toxicophore

in a substructure, but only because we are not aware of the toxicophore, the specificity of IG

decreases according to the second ratio. Therefore, double checking this decision and further

statistical testing is required in order to make a final statement about the performance of IG.

Figure 19: weighted attributions of 12 randomly selected fingerprints found in molecule 692 in the test set.
The attributions show that the network understood the molecule as mutagen due to the presence of an aromic
nitro. However, the Ames test labeled the molecule as µnon-mXWagen¶.

Results

 45

For demonstration purposes, we do not consider all these possible scenarios but only the first

ratio so that we can compare the performance of the method using different baselines. In Table

7 the following is reported:

x True positives (first row): number of true positives in the test set

x TPs with toxicophores: the number of molecules containing at least one toxicophore

in their structure.

x Num. identifiable toxicophores: unique occurrences of toxicophores in the test data

set, regardless of the number of occurrences within one molecule. I.e. if the same

toxicophore is detected twice in the structure, it is been identified only once

x Num. Toxicophores occurrences: the total number of occurrences of all toxicophores

(including duplicates)

x Num. positively attributed toxicophores (fifth row): number of positively attributed

substructures, where a toxicophore has been detected, using the attribution matrix

calculated by each baseline. Correctly attributing a toxicophore multiple times within

the same molecule, increases the baVeline¶V rediscovery rate.

x Rediscovery Rate: for evaluation of baseline performance

The zero baseline performed the best with a rediscovery rate of ~0.634. In the second place

comes the modal baseline. The random baseline on the other hand performed the worst

(~0.330). Furthermore, we include a structural comparison of our findings with already existent

toxicophores. In Figure 20 we list the structures of some of the most common toxicophores

Table 7: rediscovery rates of all four tested baselines. Zero vector had the highest rediscovery rate (0.634).
The random baseline, not surprisingly, had the worst rediscovery rate.

Zero vector Average Modal Random
True positives
TPs with toxicophores
Num. identifiable toxicophores
Num. Toxicophores occurrences
Num. positively attributed toxicophores 5549 5508 5514 2891
Rediscovery Rate 0.63373687 0.62905436 0.62973961 0.3301736

1374
1050
1558
8756

 46

from the literature 7 . Figure 21 shows a structural comparison of 6 randomly selected

toxicophores and 4 different matches found in the test set. See how the network is misled in

some cases such as with the aromatic methylamine (fourth example). To investigate the

attributions a little more, we wanted to understand the correlation between the attributions and

the target label. For every molecule, we calculated the average attribution we calculated the

average attribution, where the average attribution is sum of all attributions in the attribution

vector over the number of present fingerprints in a molecule (number of bits 1):

𝑎෤ ൌ
σ 𝑎𝑖𝑖

𝑚𝑏𝑖𝑡

where 𝑎𝑖 the attribution at position 𝑖 in the attribution vector, and 𝑚𝑏𝑖𝑡 is the number of present

fingerprints in a molecule. We then obtain a vector of equal length to the size of the data set

(3315) containing the average attributions. Every value in the vector describes whether a

molecule was on average positively or negatively attributed. Viewed this way, let us understand

what relation these values have with the confusion matrix constructed using the neWZork¶V

output. Much like we can see in Figure 17, Figure 18 and Figure 19, we expect the average

attribution to cohere with/correspond to the neWZork¶V output, if integrated gradients is

functionally correct. I.e. a true positive showed that the average attribution was correspondingly

highly positive too (e.g. 1.7318 for molecule 1731). Furthermore, a lower positive molecular

attribution (e.g. 0.0489 for molecule 692) corresponds to either a true or false positive, because

the molecule is indicative of toxicity, but the confidence level is lower in this case. Likewise, a

true negative received a highly negative ³molecXlar aWWribXWion´ (e.g. -3.7203 for molecule 341).

This correspondence is straightforward but only as long as the molecular structure is big enough

such that we can detect several fingerprints in its structure (100 ± 200 fps), because we can

µe[plain¶ more fingerprints. Also, more fingerprints the better the estimate of the average. It

gets harder for the network to extract information if the molecular structure is small and encodes

only 2-10 fingerprints. In the latter case, there is too little information to extract from the

molecule, and the network is therefore more likely to make a false prediction. It would be

particularly interesting to see if some toxicophores are more indicative of toxicity than others,

7 A tabular representation of the toxicophores and their SMARTS strings is available on the GitHub
repository too. See toxicophores.csv and additional_toxicophores.csv on
https://github.com/kareemjeiroudi/molecules_and_ml/tree/master/data.

https://github.com/kareemjeiroudi/molecules_and_ml/tree/master/data

Results

 47

but we could not conclude to a final result due to lack of knowledge of the toxicity index, but

there might be a correlation between the toxicity index of a toxicophore and the average

attribution.

Lastly, we repeated the same steps as in the rediscovery rate for every toxicophore individually.

For every toxicophore we compared the number of molecules containing toxicophore 𝑖 vs.

number of true positives containing toxicophore 𝑖 . Moreover, the number of true positives

where toxicophore 𝑖 is positively attributed. For that purpose, Table 7 was produced. The table

also shows that some toxicophores are more frequent in the test set than others. According to

Table 8: number of molecules where toxicophore 𝑖 is found vs. number of molecules where toxicophore 𝑖 is
positively attributed vs. number of true positives, where toxicophore 𝑖 is positively attributed. The reported
results are all correspondent to the attributions calculated using the zero-vector baseline. Highest 3 values in
a column are highlighted in green. Lowest 3 are highlighted in red. Those toxicophores that were not detected
in any molecules are highlighted with a red border.

 48

the literature, the aromatic nitro and aromatic amine are well known toxicophores for

mutagenicity [1, 2, 52]. In our analysis, the specific aromatic amine was found in 2719

molecules from the test set making it the most frequent toxicophore in the data set. The specific

aromatic nitro is found in 2391 molecules. In the third place comes the aliphatic halide with

2288 molecules. All of the previously mentioned toxicophores were more often than accurately

classified (1463, 1842, 1199) respectively. Around two of these molecules, the toxicophores

were positively attributed. The successful attribution rate of for these toxicophores does not

suggest that toxicophores such as the aromatic nitro and aliphatic halide are more indicative of

toxicity than others. The reason for IG to attribute them positively more often, is probably due

to their abundance in the data set. On the other hand, some toxicophores such as diazo hydroxyl

that is found only two times in the test set was never positively attributed although the network

successfully classified both molecules as mutagen. One reason for that could be that the

fingerprinting fails to capture some structural patterns [9]. The results of using IG are

promising, nevertheless, explaining mutagenicity using IG is not insightful. Because IG

successfully attributed only 0.634 of all toxicophore occurrences, it is unlikely that we can

derive new knowledge with this low performance. Better evaluation methods and statistical

testing is required to come to make a final conclusion about IG.

Results

 49

Figure 20: structural representation of some of the most common toxicophores listed in the literature. Some
of these could not be plot due to technical errors. The original document provides a toxicity index.
Equivalently, our network suggests that some are more indicative of toxicity of others. Comparing that
against that toxicity level would have been of knowledge.

 50

Figure 21: few examples of the toxicophores detected in the test set. On the left side we show the toxicophores
formula. On the right side we show 4 examples per toxicophore together with their attributions. Above every
example in the plot is a comparison of the true label (T) vs. the predicted label (P). Observe how areas where
toxicophores are present are indicating toxicity.

4 Conclusion

Neural networks are highly accurate computationally-driven predictors in the field of

drug design. We have successfully developed and evaluated a number of networks using

different hyperparameter settings to obtain a high AUC score on the test. As discussed earlier,

boosting the AUC score could be done by a finer hyperparameter tuning or using a different

kind of network architectures. We also suggest using a more promising encoding algorithm

such graph-based methods, where atom arrangements are encoded in the input too.

Additionally, having larger training sets could help neural networks make more accurate

predictions on unseen data. Taking the patterns identified by the tested method and the available

data set into account makes it challenging to avoid false predictions. Integrated gradients is a

great means to explain a neural neWZork¶V decision. Using the attributions obtained by IG, we

have successfully related that neWZork¶V output to its patterns of interest in the input. As noted

earlier, molecules with similar substructures are functionally similar too. In that regard we have

highlighted structural alerts in the input data and associated them with their mutagenicity.

Looking at these molecules, our attribution method identified a number of the known

toxicophores and attributed them positively for being mutagenic compounds. In that regard, we

managed to rediscover a number of these toxicophores. However, in order to derive more

knowledge from IG, further experimentation is required. On the other hand, IG fails to explain

how atoms arrangement is of importance to form a functional group, or how combining multiple

functional groups steers a chemical reaction in a different direction, because it attributes

features in the input independently of one another. The reason for the network to make a false

prediction such as the one demonstrated in Figure 19 cannot be explained using only integrated

gradients. One could hypothesize that the mutagenic site of the molecule is inhibited in the

presence of some enzymes. And that we can only conclude to that using a bacteria assay such

as in the Ames test. These are all some of the weaknesses of IG. Lastly, the choice of parameters

is of significance in order for IG to deliver better results - just like any other parameterized

algorithm. Also, an assessment index might be necessary to evaluate the significance of a

 52

substructure before comparison. Using an assessment method such as enrichment factor makes

it easier to rank the substructures and compare them against the toxicophores [9]. This work

has demonstrated the potential of deep learning and attribution methods in Drug design but

leaves a lot of room for improvement, all of which is aimed is save chemists lab tedious

experiments.

5 References

1. Martin, Y. C., Kofron, J. L., & Traphagen, L. M. (2002). Do structurally similar molecules have similar biological
activity? Journal of Medicinal Chemistry. https://doi.org/10.1021/jm020155c

2. Kazius, J., McGuire, R., & Bursi, R. (2005). Derivation and validation of toxicophores for mutagenicity prediction.
Journal of Medicinal Chemistry, 48(1), 312–320. https://doi.org/10.1021/jm040835a

3. Maron, D. M., & Ames, B. N. (1983). Revised methods for the Salmonella mutagenicity test. Mutation
Research/Environmental Mutagenesis and Related Subjects. https://doi.org/10.1016/0165-1161(83)90010-9

4. Garrett, R. H., & Grisham, C. M. (1997). Biochemistry, Fifth Edition. Journal of Chemical Education.
https://doi.org/10.1021/ed074p189.2

5. Mortelmans, K., & Zeiger, E. (2000). The Ames Salmonella/microsome mutagenicity assay. Mutation Research -
Fundamental and Molecular Mechanisms of Mutagenesis, 455(1–2), 29–60. https://doi.org/10.1016/S0027-
5107(00)00064-6

6. Hengstler, J. G., & Oesch, F. (2001). Ames Test. In S. Brenner & J. H. Miller (Eds.), Encyclopedia of Genetics (pp.
51–54). https://doi.org/10.1006/rwgn.2001.1543

7. Ridings, J. E., Barratt, M. D., Cary, R., Earnshaw, C. G., Eggington, C. E., Ellis, M. K., … Yih, T. D. (1996). Computer
prediction of possible toxic action from chemical structure: An update on the DEREK system. Toxicology.
https://doi.org/10.1016/0300-483X(95)03190-Q

8. Klopman, G. (1992). MULTICASE 1. A Hierarchical Computer Automated Structure Evaluation Program.
Quantitative Structure‐Activity Relationships. https://doi.org/10.1002/qsar.19920110208

9. Yang, H., Li, J., Wu, Z., Li, W., Liu, G., & Tang, Y. (2017). Evaluation of Different Methods for Identification of
Structural Alerts Using Chemical Ames Mutagenicity Data Set as a Benchmark. Chemical Research in Toxicology,
30(6), 1355–1364. https://doi.org/10.1021/acs.chemrestox.7b00083

10. Ivanciuc, O. (2007). Applications of Support Vector Machines in Chemistry.
https://doi.org/10.1002/9780470116449.ch6

11. Mayr, A., Klambauer, G., Unterthiner, T., & Hochreiter, S. (2016). DeepTox: Toxicity prediction using deep learning.
Frontiers in Environmental Science. https://doi.org/10.3389/fenvs.2015.00080

12. Hansen, K., Mika, S., Schroeter, T., Sutter, A., Laak, A. Ter, Thomas, S. H., … Müller, K. R. (2009). Benchmark data
set for in silico prediction of Ames mutagenicity. Journal of Chemical Information and Modeling, 49(9), 2077–2081.
https://doi.org/10.1021/ci900161g

13. Benchmark Data Set for In Silico Prediction of Ames Mutagenicity. (n.d.). Retrieved February 6, 2020, from
http://doc.ml.tu-berlin.de/toxbenchmark/index.html

14. Preuer, K., Klambauer, G., Rippmann, F., Hochreiter, S., & Unterthiner, T. (2019). Interpretable Deep Learning in
Drug Discovery. https://doi.org/10.1007/978-3-030-28954-6_18

15. Rogers, D., & Hahn, M. (2010). Extended-connectivity fingerprints. Journal of Chemical Information and Modeling.
https://doi.org/10.1021/ci100050t

16. Bender, A., Mussa, H. Y., Glen, R. C., & Reiling, S. (2004). Molecular Similarity Searching Using Atom Environments,
Information-BaVed FeaWXUe SelecWiRn, and a NawYe Ba\eVian ClaVVifieU. Journal of Chemical Information and Computer
Sciences. https://doi.org/10.1021/ci034207y

17. Glen, R. C., Bender, A., Arnby, C. H., Carlsson, L., Boyer, S., & Smith, J. (2006). Circular fingerprints: Flexible
molecular descriptors with applications from physical chemistry to ADME. IDrugs.

18. Landrum, G. (n.d.). Getting Started with the RDKit in Python. Retrieved from
http://www.rdkit.org/docs/GettingStartedInPython.html#fingerprinting-and-molecular-similarity

19. Chollet, F. et al. (2015). Keras. https://keras.io

20. Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD
Thesis, Harvard U. https://doi.org/10.1.1.41.8085

https://doi.org/10.1021/jm020155c
https://doi.org/10.1021/jm040835a
https://doi.org/10.1016/0165-1161(83)90010-9
https://doi.org/10.1021/ed074p189.2
https://doi.org/10.1016/S0027-5107(00)00064-6
https://doi.org/10.1016/S0027-5107(00)00064-6
https://doi.org/10.1006/rwgn.2001.1543
https://doi.org/10.1016/0300-483X(95)03190-Q
https://doi.org/10.1002/qsar.19920110208
https://doi.org/10.1021/acs.chemrestox.7b00083
https://doi.org/10.1002/9780470116449.ch6
https://doi.org/10.3389/fenvs.2015.00080
https://doi.org/10.1021/ci900161g
http://doc.ml.tu-berlin.de/toxbenchmark/index.html
https://doi.org/10.1007/978-3-030-28954-6_18
https://doi.org/10.1021/ci100050t
http://www.rdkit.org/docs/GettingStartedInPython.html%23fingerprinting-and-molecular-similarity
https://keras.io/
https://doi.org/10.1.1.41.8085

 54

21. Claesen, M., & De Moor, B. (2015). Hyperparameter Search in Machine Learning. 10–14. Retrieved from
http://arxiv.org/abs/1502.02127

22. Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter optimization. Advances in
Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011,
NIPS 2011, 1–9

23. Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning
Research, 13, 281–305

24. Aljeiroudi, A. A., & Preuer, K. (2019). Optimizing Keras ANNs for predicting molecules mutagenicity. Retrieved from
https://github.com/kareemjeiroudi/molecules_and_ml/blob/master/doc/old_(Grid_Search_optimization)/project_rep
ort.pdf

25. Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of machine learning algorithms.
Advances in Neural Information Processing Systems, 4, 2951–2959

26. Wikipedia, T. F. E. (2019). Hyperparameter optimization. Retrieved February 10, 2020, from
https://en.wikipedia.org/w/index.php?title=Hyperparameter_optimization&oldid=925073211

27. Brochu, E., Cora, V. M., & de Freitas, N. (2010). A Tutorial on Bayesian Optimization of Expensive Cost Functions,
with Application to Active User Modeling and Hierarchical Reinforcement Learning. Retrieved from
http://arxiv.org/abs/1012.2599

28. Wilson, J. T., Hutter, F., & Deisenroth, M. P. (2018). Maximizing acquisition functions for Bayesian optimization.
Advances in Neural Information Processing Systems, 2018-December (NeurIPS), 9884–9895

29. Nogueira, F. (2014). Bayesian Optimization: Open source constrained global optimization tool for Python Retrieved
from https://github.com/fmfn/BayesianOptimization

30. Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. 1–15. Retrieved from
http://arxiv.org/abs/1412.6980

31. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification. Proceedings of the IEEE International Conference on Computer Vision.
https://doi.org/10.1109/ICCV.2015.123

32. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.
https://doi.org/10.1016/j.patrec.2005.10.010

33. Guvenir, H. A., & Kurtcephe, M. (2013). Ranking instances by maximizing the area under ROC curve. IEEE
Transactions on Knowledge and Data Engineering, 25(10), 2356–2366. https://doi.org/10.1109/TKDE.2012.214

34. Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic attribution for deep networks. 34th International Conference
on Machine Learning, ICML 2017, 7, 5109–5118

35. Mudrakarta, P. K., Taly, A., Sundararajan, M., & Dhamdhere, K. (2018). Did the model understand the question?
ACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference
(Long Papers), 1, 1896–1906. https://doi.org/10.18653/v1/p18-1176

36. Kazemi, V., & Elqursh, A. (2017). Show, Ask, Attend, and Answer: A Strong Baseline For Visual Question Answering.
Retrieved from http://arxiv.org/abs/1704.03162

37. Klambauer, G., Unterthiner, T., Mayr, A., & Hochreiter, S. (2017). Self-normalizing neural networks. Advances in
Neural Information Processing Systems

38. Cuissart, B., Poezevara, G., Crémilleux, B., Lepailleur, A., & Bureau, R. (2016). Emerging patterns as structural alerts
for computational toxicology. In Contrast Data Mining: Concepts, Algorithms, and Applications.
https://doi.org/10.1201/b12986-25

39. Lavecchia, A. (2015). Machine-learning approaches in drug discovery: Methods and applications. Drug Discovery
Today. https://doi.org/10.1016/j.drudis.2014.10.012

40. Ancona, M., Ceolini, E., Öztireli, C., & Gross, M. (2017). Towards better understanding of gradient-based attribution
methods for Deep Neural Networks. 1–16. Retrieved from http://arxiv.org/abs/1711.06104

41. Unterthiner, T., Ceulemans, H., & Steijaert, M. (2014). Multi-task deep networks for drug target prediction. Advances
in Neural Information Processing Systems

42. Li, X., Chen, L., Cheng, F., Wu, Z., Bian, H., Xu, C., … Tang, Y. (2014). In silico prediction of chemical acute oral
toxicity using multi-classification methods. Journal of Chemical Information and Modeling.
https://doi.org/10.1021/ci5000467

43. Yang, H., Li, X., Cai, Y., Wang, Q., Li, W., Liu, G., & Tang, Y. (2017). In silico prediction of chemical subcellular
localization via multi-classification methods. MedChemComm. https://doi.org/10.1039/c7md00074j

http://arxiv.org/abs/1502.02127
https://github.com/kareemjeiroudi/molecules_and_ml/blob/master/doc/old_(Grid_Search_optimization)/project_report.pdf
https://github.com/kareemjeiroudi/molecules_and_ml/blob/master/doc/old_(Grid_Search_optimization)/project_report.pdf
http://arxiv.org/abs/1012.2599
https://github.com/fmfn/BayesianOptimization
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1109/TKDE.2012.214
https://doi.org/10.18653/v1/p18-1176
http://arxiv.org/abs/1704.03162
https://doi.org/10.1201/b12986-25
https://doi.org/10.1016/j.drudis.2014.10.012
http://arxiv.org/abs/1711.06104
https://doi.org/10.1021/ci5000467
https://doi.org/10.1039/c7md00074j

 55

44. Ahlberg, E., Carlsson, L., & Boyer, S. (2014). Computational derivation of structural alerts from large toxicology data
sets. Journal of Chemical Information and Modeling. https://doi.org/10.1021/ci500314a

45. Liu, P., Agrafiotis, D. K., & Rassokhin, D. N. (2011). Power keys: A novel class of topological descriptors based on
exhaustive subgraph enumeration and their application in substructure searching. Journal of Chemical Information and
Modeling. https://doi.org/10.1021/ci200282z

46. Sun, L., Zhang, C., Chen, Y., Li, X., Zhuang, S., Li, W., … Tang, Y. (2015). In silico prediction of chemical aquatic
toxicity with chemical category approaches and substructural alerts. Toxicology Research.
https://doi.org/10.1039/c4tx00174e

47. Lepailleur, A., Poezevara, G., & Bureau, R. (2013). Automated detection of structural alerts (chemical fragments) in
(eco)toxicology. Computational and Structural Biotechnology Journal. https://doi.org/10.5936/csbj.201302013

48. Floris, M., Raitano, G., Medda, R., & Benfenati, E. (2017). Fragment Prioritization on a Large Mutagenicity Dataset.
Molecular Informatics. https://doi.org/10.1002/minf.201600133

49. Webb, S. J., Hanser, T., Howlin, B., Krause, P., & Vessey, J. D. (2014). Feature combination networks for the
interpretation of statistical machine learning models: Application to Ames mutagenicity. Journal of Cheminformatics.
https://doi.org/10.1186/1758-2946-6-8

50. Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., & Müller, K. R. (2010). How to explain
individual classification decisions. Journal of Machine Learning Research, 11, 1803–1831

51. Xu, C., Cheng, F., Chen, L., Du, Z., Li, W., Liu, G., … Tang, Y. (2012). In silico prediction of chemical ames
mutagenicity. Journal of Chemical Information and Modeling. https://doi.org/10.1021/ci300400a

52. Benigni, R., Giuliani, A., Franke, R., & Gruska, A. (2000). Quantitative structure-activity relationships of mutagenic
and carcinogenic aromatic amines. Chemical Reviews. https://doi.org/10.1021/cr9901079

53. Taly, A. (2018). How to use Integrated Gradients (IG). Retrieved October 10, 2019, from
https://github.com/ankurtaly/Integrated-Gradients/blob/master/howto.md

54. Tseng, G. (2018). Interpretable Neural Networks. Retrieved October 10, 2019, from
https://towardsdatascience.com/interpretable-neural-networks-45ac8aa91411

55. Wikipedia contributors. (2019). Machine learning. Retrieved November 13, 2019, from
https://en.wikipedia.org/wiki/Machine_learning

56. Feng, J., Lurati, L., Ouyang, H., Robinson, T., Wang, Y., Yuan, S., & Young, S. S. (2003). Predictive Toxicology:
Benchmarking Molecular Descriptors and Statistical Methods. Journal of Chemical Information and Computer
Sciences. https://doi.org/10.1021/ci034032s

https://doi.org/10.1021/ci500314a
https://doi.org/10.1021/ci200282z
https://doi.org/10.1039/c4tx00174e
https://doi.org/10.5936/csbj.201302013
https://doi.org/10.1002/minf.201600133
https://doi.org/10.1186/1758-2946-6-8
https://doi.org/10.1021/ci300400a
https://doi.org/10.1021/cr9901079
https://github.com/ankurtaly/Integrated-Gradients/blob/master/howto.md
https://towardsdatascience.com/interpretable-neural-networks-45ac8aa91411
https://en.wikipedia.org/wiki/Machine_learning
https://doi.org/10.1021/ci034032s

	Annotation
	Affirmation
	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	1 Introduction
	1.1. Mutagenicity
	1.2. Ames Test
	1.3. Deep Learning in Drug Design
	1.3.1. Interpretability of Deep Neural Network

	2 Methods
	2.1. Extended-Connectivity Fingerprints (ECFP)
	2.2. Feed Forward Neural Networks
	2.2.1. Backpropagation
	2.2.2. Vanishing Gradient
	2.2.3. Activation Functions

	2.3. Hyperparameter Optimization
	2.4. Area Under ROC Curve (AUC_ROC)
	2.5. Attribution Methods
	2.5.1. Integrated Gradients
	2.5.1.1. Pros
	2.5.1.2. Cons
	2.5.1.3. Baseline
	2.5.1.4. Integral Approximation (Number of Summation Steps)

	3 Results
	4 Conclusion
	5 References

