
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA I N F O R M A Č N Í C H TECHNOLOGI Í

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV I N F O R M A Č N Í C H SYSTÉMŮ

SMART TASK PLANNER
INTELIGENTNÍ PLÁNOVAČ ÚKOLŮ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

JAN ZIMOLA

Ing. JIŘÍ HYNEK, Ph.D.

BRNO 2023

T BRNO FACULTY I

UNIVERSITY OF INFORMATION |

OF TECHNOLOGY TECHNOLOGY

Bachelor's Thesis Assignment
148580

Institut: Department of Information Systems (UIFS)
Zimola Jan
Information Technology
Information Technology

Student:
Programme:
Specialization:

Title: Smart Task Planner
Category: Mobile applications
Academic year: 2022/23

Assignment:

1. Get acquainted with the time management theory, study the principles and approaches to time
scheduling.

2. Get acquainted with the principles of recommendation systems.
3. Study principles of multiplatform mobile application development.
4. Analyze the requirements for smart time scheduling. Correspond the requirements with existing

tools.
5. Based on the requirements, design a mobile application for smart time scheduling.
6. Implement the application.

7. Test the usability of mobile application and time scheduling with selected users.

Literature:
• Clear, J. (2018). Atomic Habits: An Easy & Proven Way to Build Good Habits & Break Bad Ones.

Random House.
• Allen, D., & Fallows, J. (2015). Getting Things Done: The Art of Stress-Free Productivity. Penguin

Publishing Group.
• Da'u, A., & Salim, N. (2020). Recommendation system based on deep learning methods: a

systematic review and new directions. Artificial Intelligence Review, 53(4), 2709-2748.
• Johnson, J. (2010). Designing with the Mind in Mind: Simple Guide to Understanding User

Interface Design Guidelines. Morgan Kaufmann Publishers/Elsevier.
• Flutter (2022): Flutter documentation. Online: https://docs.flutter.dev/

Requirements for the semestral defence:
Items 1 - 5.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Hynek Jiří, Ing., Ph.D.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: 1.11.2022
Submission deadline: 10.5.2023
Approval date: 25.10.2022

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

https://docs.flutter.dev/
https://www.fit.vut.cz/study/theses/

Abstract
This thesis aims to create a new planning application that combines various time manage­
ment techniques. From in-depth research on time management combined with a survey of
potential users, diverse techniques emerged that the application needs to provide to satisfy
various users' needs. Current applications were insufficient for this purpose. The new im­
plementation mainly combines a todo list and a calendar but also adds support for habits
or the Pomodoro technique. On top of it, the user can assign values to projects, labels, or
tasks such as priority, deadline, or estimate. These attributes are later used in a machine
learning model to score elements, enabling the app to suggest the most relevant tasks to
the user. The app was built using the multiplatform framework Flutter and released to
App Store and Google Play. Own synchronization mechanism for the app's data is utilized
between an Isar database and an Appwrite server. The user-defined events can also be
reflected in the user-selected synchronization local calendar.

Abstrakt
Tato práce si klade za cíl vytvořit novou plánovací aplikaci, která kombinuje různé techniky
správy času. Z hloubkového výzkumu správy času a průzkumu mezi potenciálními uživateli
vyplynulo mnoho různých technik, které aplikace musí poskytnout, aby uspokojila různé
potřeby uživatelů. Současné aplikace k tomuto účelu nestačí. Nová implementace kombinuje
především seznam úkolů a kalendář, ale také podporuje návyky nebo Pomodoro techniku.
Uživatel může přiřadit hodnoty projektům, značkám nebo úkolům, jako je priorita, termín
nebo odhad. Tyto atributy jsou později použity v modelu strojového učení pro ohodnocení
prvků, což umožňuje aplikaci navrhnout uživateli nejrelevantnější úkoly. Aplikace byla
postavena pomocí multiplatformního rámce Flutter a uvolněna na App Store a Google
Play. Vlastní synchronizační mechanismus pro data aplikace je využíván mezi databází
Isar a serverem Appwrite. Uživatelem definované události mohou být také zobrazeny v
lokálním kalendáři vybraném uživatelem pro synchronizaci.

Keywords
time management, mobile app, Flutter, Appwrite, Isar, Pomodoro technique, timeboxing,
calendar, todo list, dart, habits, Android, iOS, machine learning

Klíčová slova
správa času, mobilní aplikace, Flutter, Appwrite, Isar, Pomodoro technika, timeboxing,
kalendář, seznam úkolů, dart, zvyky, Android, iOS, strojové učení

Reference
Z I M O L A , Jan. Smart Task Planner. Brno, 2023. Bachelor's thesis. Brno University of
Technology, Faculty of Information Technology. Supervisor Ing. Jiří Hynek, Ph.D.

S m a r t T a s k P l a n n e r

Declaration
I declare that I have independently prepared this bachelor's thesis under the guidance of Mr.
Ing. Jifi Hynek, Ph.D. I have cited all literary sources, publications, and other resources
from which I drew information.

Jan Zimola
May 9, 2023

Acknowledgements
I want to thank my family for enabling me to study at the university, thus providing me the
space to find what I want to do and become good at it. I also want to thank my supervisor
Mr . Ing. Jif i Hynek, Ph.D., who showed incredible patience with me, was speedy to help,
provided me with essential feedback about how to write this thesis, and generated ideas
that are reflected in the final application. And lastly, I want to thank all who took the time
to test the application and provided me with feedback that I used or will use to improve
the app.

Contents

1 Introduction 7

2 Time Management Theory 8
2.1 Definition Of Time Management 8
2.2 Time Management Principles 9
2.3 Time Management Techniques 11

3 Application Development 14
3.1 Development Strategies 14
3.2 Mobile Application Architecture 15

4 Recommendation Systems 18
4.1 Collaborative filtering 18
4.2 Content-based Filtering 19
4.3 Hybrid recommendations approach 19
4.4 Mobile recommendation systems 19

5 Analysis 21
5.1 Research 21
5.2 Persons 23
5.3 Existing Applications 24
5.4 Conclusion 28

6 Design of the Solution 29
6.1 Architecture 29
6.2 Mobile Application 30
6.3 Databases 34
6.4 Smart Planning 37

7 Implementation 39
7.1 Architecture 39
7.2 Infrastructure 42
7.3 Mobile Application 48
7.4 Smart Planning 49

8 Testing 52
8.1 User Testing 52
8.2 Personal Feedback From Potential And Actual Users 53
8.3 Conclusion 53

5

9 Conclusion 54

Bibliography 56

A Contents of The Attached Memory Media 62

G

Chapter 1

Introduction

We are currently living in an era where digital advancements are creating new possibilities
while simultaneously increasing the complexity of the world we live in. This digital age
demands more from each of us, imposing greater requirements and expectations. Planning
is a key strategy for coping with these demands, and mobile devices have become a popular
tool for organizing responsibilities due to their accessibility. By inputting tasks and dead­
lines into mobile devices, we can effectively manage our daily tasks and remain in control.
Although various tools such as calendars and todo lists have a long history of helping people
stay organized, many individuals still do not plan regularly, limiting their use to special
cases. Others require multiple applications, including todo lists and calendars, to maintain
their organization.

This project aims to develop a mobile application that integrates various popular time
management techniques such as calendar, todo list, Pomodoro technique, and habit tracker
into one platform. The application will be compatible with the most commonly used mobile
operating systems. The concept of this application is based on several sources of information
including personal experience with time management, prior research on time management
techniques, and a survey specifically conducted to gather information about the usage of
planning applications.

Chapter 2 provides an explanation of fundamental time management terms and tech­
niques that are directly connected with planning applications and their functionality. In
Chapter 3, the search for ways to construct mobile applications and what concrete frame­
works can be used is discussed. Chapter 4 delves into the principles of recommendations
used to understand how the application can recommend relevant tasks to the user.

In Chapter 5, a conducted survey will be explored to better understand potential users'
needs. By combining survey findings with insights from time management research, concrete
requirements that the app should provide were defined. These requirements were later
compared with current applications, and the resulting requirements form the design outline
in Chapter 6, with their implementation explained in Chapter 7. Finally, the testing of the
final implementation is described in Chapter 8.

7

Chapter 2

Time Management Theory

Recently, there has been an increasing demand for time management literature. It became
important due to the growing need for fast availability of products [17]. Multiple studies,
mostly from schools, have documented its benefits.

• Procrastinating students had a lower perceived control of time, which made them
agitated. On the contrary, scholars that used time management principles were less
nervous, as they felt more in control [4].

• Time management techniques give people more control, which makes them happier
and healthier while reducing stress [17].

• Practicing time management techniques by college students may influence college
achievement [11].

• Students, who are planning, report greater work and life satisfaction and less job-
induced and somatic tensions [54].

• Time management with leisure activities may be effective at reducing academic stress
[61].

Time management is a vital aspect of personal development, comprising various terms
and techniques. A l l these strategies look at the problem from different angles, solving
different problems and satisfying various needs.

2.1 Definition Of Time Management

There is no standard definition of time management. However, one of the most approved
ones is that time management involves determining needs, setting goals to achieve these
needs, and prioritizing and planning tasks required to achieve these goals [49].

Others define time management as planning and exercising conscious control of time
spent on specific activities to increase effectiveness, efficiency, and productivity [22].

2.1.1 Efficiency

Efficiency is about doing everything as quickly as possible with the fewest wasted motions
[49].

8

2.1.2 Effectiveness

„Effectiveness means selecting the best task to do from all the possibilities available and
then doing it the best way. Making the right choices about how you will use your time is
more important than doing efficiently whatever job happens to be around [49]."

2.1.3 Prioritization

Software development requires prioritization since it is impossible to consider all relevant
factors [51]. This is also relevant for self-management, where it is possible to define three
extremes of how people handle prioritization [49].

• The overorganized person makes lists and plans to be confident that he has the
perfect plan. As a result, he spends so much time planning that he does only a little.

• The overdoer is so focused on doing that he ignores his priorities and the bigger
picture. Consequently, he is inflexible and problematic to work with.

• A time nut is a person obsessed with time and causes himself and others to be
nervous by focusing on never wasting a minute. He makes a schedule for each day
that is very detailed and impossible to follow.

2.1.4 Doing things faster

A l l stereotypes focus on doing things faster, forgetting that pausing and reflecting are
critical problem-solving elements [65]. This skill distinguishes undergraduates from math
experts, who take longer to decide which approach to choose [15].

2.1.5 Goals

There are two major motivationally relevant goal patterns in goal setting: ego-involved
goals and task-involved goals [27].

• People with ego-involved goals seek to look competent and skilled in the eyes of others.
Their minds are filled with questions like „Will I look smart?" and „Can I outperform
others?"

• On the other hand, individuals with task-involved goals focus on mastering tasks and
increasing their competence. As a result, their mind is full of questions like „How can
I do this task?" and „What will I learn?"

2.2 Time Management Principles

This section discusses important principles that are reflected in many time management
techniques 2.3 that used them as their foundation.

2.2.1 80 / 20 Rule

The Pareto or 80 / 20 principle states that roughly 80% of consequences come from 20% of
causes [14]. The phenomenon is seen in many fields, such as money distribution. Research

9

suggests that 20% of the wealthiest people own 56.72% of the total money, while 20% of
the richest countries have 91.62% of the total money [25].

According to physicist Victor Yakovenko of the University of Maryland, the income
distribution of the upper class also follows this principle [82].

2.2.2 Parkinson's Law

Parkinson's law states that the work expands to fill the available time for its completion
[69]. In two experiments with 24 paid undergraduates, it was shown that students naturally
slowed down when given more time [12].

2.2.3 Deep Work

Carl Newport defined the term in his book Deep Work [63] as professional activities per­
formed in a state of distraction-free concentration that push your cognitive capabilities to
their limit. These efforts create new value, improve your skill, and are hard to replicate."

Deep work is rare in today's world, filled with distractions such as social media, Netflix,
and YouTube. It is also disappearing from the workspace, where the average worker spends
60% of his time in electronic communication [16].

Constantly switching between tasks decreases our performance because the brain needs
to focus intently on a task to be effective [52]. This concentration enables the brain to load
information into short-term memory and establish high-intensity communication with it.
Communication of this strength helps build myelin sheaths over nerves, which allow the
brain to move neurons along them faster [65].

Deep work enables their employees to perform exceptionally [20]. Nevertheless, today's
trend of open-spaced workspaces (Facebook, Twitter) significantly increases distractions
[80]. A study [8] found that 67% of workers are disrupted by phones ringing, 55% by people
talking, and half by office air conditioning or machines. This is important because even a
small interruption can significantly increase the time needed to complete a task [58].

2.2.4 Diffuse M o d vs. Focus Mode

Since the start of this century, people have gained a deeper understanding of how the
brain works. One of these things is the transition between focused and diffuse modes of
thinking — two different strategies for solving problems and finding patterns. Barbara
Oakley explains these terms in her book A Mind for Numbers [65].

• During focus mode, the brain solves problems using direct and rational methods. It
is associated with the prefrontal cortex's ability to concentrate.

• Diffuse mode involves relaxing attention and allowing the mind to wander freely.
People enter this state when doing relaxing activities, such as taking a shower, walking,
or sleeping [39]. This ease activates a wide range of brain areas, which allows the
production of insights and different perspectives. Children are better at using the
diffuse mode of thinking, enabling them to solve a certain puzzle that adults struggle
with.

People should focus on a problem first and then allow the mind to relax and find
connections. This approach can help us overcome the Einstellung effect, which states
that people are likely to stick with the initial approach instead of searching for a more

10

optimal solution. Experts whose experience decreases their ability to act creatively are
often affected [10].

2.3 Time Management Techniques

The last section discussed many time management terms 2.2. However, because these
principles are difficult to embrace, many techniques have emerged that wrap them in a
simple interface.

2.3.1 Pomodoro Technique

The pomodoro technique was developed by Francesco Cirillo in 1980. It involves working
for some time and then taking a brief break. After several rounds, it is recommended to
take a more extended break. The standard describes working time as 25 minutes, a short
break as 5 minutes, and a long break as 15 minutes [64]. The pomodoro technique helps to
overcome various problems, often by providing effective relaxation.

Better Concentration

Researchers found that briefly deactivating and activating tasks from focus enables the
brain to concentrate for longer [7]. This shift can be achieved by taking a small break.

Improves Problem Solving

It helps to use focused and diffused states of thinking. By entering diffuse mode in a break,
people can find a better way to solve a problem [65].

Decrease Effects of Sitting

A n office worker spends 15 hours per day sitting [26], which significantly increases his risk of
diabetes and mortality [81]. It is recommended to use light-intensity activity to reduce this
effect. When taking a break, people are naturally motivated to do light-intensity activities,
such as stretching and walking. During a long break, the person can even perform more
time-demanding activities, such as walking outside and exercising.

Decreases Eye Strain

Up to 90% of digital users have symptoms of eye strain — especially computer workers or
contact lens wearers [19]. Study [75] suggests a lower number of 50%.

One way to combat this problem is utilizing the 20-20-20 rule, which can decrease the
effect of digital device usage on eyes [5]. While taking a break, a person is motivated to
look away from the device screen, thus naturally utilizing the 20-20-20 rule.

Helpful for Addressing Multitasking

Another issue that hinders productivity is multitasking [56]. A study shows how easily
students can be distracted at home if they have technology present. Fifteen-minute ob­
servation revealed that students had difficulty focusing on their primary task, averaging
less than 6 minutes staying on a task before switching to another task. Put another way.
Students stayed on a task on average 10 minutes out of the 15-minute study period. Aside

11

from getting up and walking around, switching to another task was most often associated
with technological distractions, such as texting, Facebook, and watching T V [73].

The study indicates that students found the pomodoro technique helpful for addressing
multitasking, even though there was a disagreement on what specifically about it helps. In
conclusion, students needed to allow enough time to get used to the technique and adjust
it to suit their context [79].

2.3.2 Habits

James Clear established healthy habits to promote his identity change and became influen­
tial [18]. He states: „Your behaviors are usually a reflection of your identity. What you do
is an indication of the type of person you believe you are — consciously or nonconsciously".
So instead of embracing behavior changes (I will stop smoking), people should look at
habits from an identity perspective (I am not a smoker). Nevertheless, this is also true for
unhealthy habits. For example, when someone identifies as a smoker, it becomes harder for
them to stop smoking.

James Clear proposes that people forget about goals and focus on small habits that
compound and have a significant impact.

2.3.3 Eat the Frog

Brian Tracy popularized this idea in his book Eat the Frog. „It has been said that if the
first thing you do each morning is to eat a live frog, you can go through the day with the
satisfaction of knowing that that is probably the worst thing that is going to happen to you
all day long," says Brian Tracy, and continues „Your "frog,, is your biggest, most important
task, the one you are most likely to procrastinate on if you don't do something about it. It
is also the one task that can have the greatest impact on life and results at the moment".
And adds that „frog eating" should become a lifelong habit to save energy and make it
automatic [78].

Later summarizes: „Successful, effective people are those who launch directly into their
major tasks and then discipline themselves to work steadily and single-mindedly until those
tasks are completed."

2.3.4 Timeboxing

Timeboxing is a technique of defining a specific timeframe to achieve particular results.
Each timeframe consists of tasks that need priority to clarify which ones could be eliminated
if there is not enough time to complete them all [60]. Timeboxing helps organize projects
or improve school performance [68].

In development, timeboxing is used as an alternative to the waterfall development strat­
egy. It defines a timebox and associated tasks. Multiple timeboxes should be running si­
multaneously, each for a specific team. This approach significantly reduces the cycle time
between each delivery [44].

The following presents ideas from three blogs that convey their experience with time­
boxing.

• When using timeboxing, things are put right in the calendar, which makes it easier to
do things at the right time [83]. This ensures that the plan is grounded and realistic.
Furthermore, timeboxing helps to combat the need to choose between tasks, a factor

12

that people struggle with [74]. A study [43] suggests that people are more likely to
write better essays or buy jams when offered fewer options.

• Timeboxing makes it easier to do major tasks first by fighting against the planning
fallacy phenomenon [46]. It states that people are likely to underestimate the time
it will take to complete a task. Even though they know that the previous task took
longer than planned [13].

• Timeboxing helps combat perfection [47].

2.3.5 Todo List

Todo list helps decompose goals into actionable and manageable tasks, reducing the anxiety
of unfulfilled ones [59]. In the productivity system G T D , David Allen uses a todo list as
the only inventory for all commitments [4]. He explains, „Your mind is for having ideas,
not holding them." By keeping track of all commitments, the inventory can enable intuitive
prioritization.

David Allen suggests a four-step framework for making todo list clean, complete, and
organized. Firstly, people should capture everything, including ideas, tasks, and groceries,
and put it into the todo list. The next step is to clarify the items by turning them into
projects or actionable tasks with all details. And finally, they should review everything
daily, weekly, monthly, and yearly.

13

Chapter 3

Application Development

People spend 4.6 hours daily on mobile devices, which makes it an essential platform for
business [23]. Developers can make mobile apps by using native or cross-platform develop­
ment. Another option is to create a Progressive Web Application (PWA).

3.1 Development Strategies

Before choosing an approach, it is essential to consider project requirements, such as money,
people, time, and possible expansions. If a mobile app were successful, many users would
want web and desktop support. And that would be significantly easier to implement with
reused code from mobile. For example, Tencent states that 90% of Flutter code can be
reused across platforms1.

Additionally, third-party libraries and the main framework capabilities are important
factors. Developers who use frameworks such as Flutter or React Native have ready-made
design components. The developers can then adjust them to fit the application use case.

Other libraries help these frameworks use native functionality such as file picker, noti­
fications, and database. These libraries implement functionality for all platforms and then
make it callable from the multiplatform framework 2 3 4.

3.1.1 Native Development

Native development is an approach where developers create a native app for each platform.
It provides higher performance, especially compared to PWAs [2]. Aside from these benefits,
it provides developers with direct access to the native A P I , eliminating the need to use
plugins for it [38]. Moreover, when programmers build an app from platform components,
it results in a native look. And as the native components change, it is enough to rebuild
the app to get the latest design. This is a significant advantage over Flutter, where the
framework supports these components later as it is only emulating them [36, 33].

However, if the app was running on multiple platforms, the development would require
separate teams for each platform, making it harder to organize. Furthermore, the codebase
grows more quickly because each platform has its unique code. Finally, testing needs to be
done for each platform separately [28].

xhttps: / / flutter.dev/multi-platform
2https: / / pub.dev/packages / awesome_notifications
3https://pub.dev/packages/isar
4https: / / pub.dev/packages / file_picker

14

https://pub.dev/packages/isar

Android

Applications for Android can be created using Kotlin, Java, or C++ languages. It is
recommended to use Android Studio as a development environment with either Kotl in or
Java as programming languages. The official distribution platform is Google Play [32].

iOS

iOS applications can be created using either Swift or Objective-C. Swift is recommended
because it is designed to be more secure, simpler, and faster. On the contrary, Objective-C
is one of the most dreaded languages [67]. The recommended IDE is Xcode. The official
distribution platform is App Store [42].

3.1.2 Progressive Web A p p (P W A)

When supporting multiple platforms is required, a common approach is creating a Pro­
gressive Web App (PWA). It is a web application that is responsive enough to support
mobile devices and runs in a specific environment. The strategy is cost-effective for de­
veloping multi-platform applications because it can run on any device in a browser [2].
Representations are React, Vue, Angular, and Ionic.

The drawbacks are that PWAs can be significantly slower than native implementations.
Moreover, developers using P W A rely on browser developers to support native features such
as notifications. For example, browsers still need to support iOS push notifications [53].

3.1.3 Cross-Platform Application

It aims to combine the possibilities of sharing code across multiple platforms while providing
a way to access the native framework's A P I . The disadvantages of this approach are that the
app may be perceived as less native, have lower performance, and have more problematic
access to the native A P I . React Native and Flutter are the most popular options [57, 28].

React Native

React Native is supported by Facebook. It uses JavaScript/TypeScript, one of the most
popular languages [67], and thus it can benefit from its ecosystem. React Native uses
the JavaScript bridge to access native components, which is slowing the app to an extent
[30, 70]. The components it provides are only the basic ones. This results in developers
having to make more customizations than with Flutter.

Flutter

Flutter is supported by Google. It compiles an app into native code, making it faster than
React Native [24]. And because of its own rendering engine, Flutter controls every pixel on
the screen [30].

3.2 Mobile Applicat ion Architecture

Mobile app architecture comprises three main elements: view, state management, and
database. In the implementation, each element would represent various tools and languages.

15

ViívV Slate Management Slate Management
Database

Figure 3.1: Mobile application architecture diagram

Understanding each element helps make better decisions about which concentrate tools to
choose.

3.2.1 View

The view is responsible for rendering itself based on state management's data [6]. The
user interface (UI) is a bridge between a system and a user. A good UI enables the user
to access information that leads to achieving the user's goals, while a bad UI disorients a
user. Confusion can cause a complicated menu, inconsistent navigation flow, or insufficient
descriptive UI [48].

Bad user experience (UX) costs businesses money because of the need for extensive
training and support [41]. To provide users with good UI and U X many design libraries
emerged. Its components can be easily tweaked to suit specific application needs. These UI
kits follow good UI practices that users are already familiar with. Material Design [35] from
Google is a popular option implemented for frameworks such as Flutter or React [62, 34].

3.2.2 State Management

State management is a bridge between a view 3.2.1 and a database 3.2.3. It provides data
to a view and reacts to the user's actions received from the view. These actions can modify
the data of state management or database. State Management is responsible for notifying
a view about these changes.

3.2.3 Database

The term 'database' refers to a shared collection of logically related data and its description,
designed to meet an organization's information needs. Smaller databases can be stored on
a file system, while larger databases can be hosted on computer clusters or in the cloud.
The design of databases spans formal techniques and practical considerations, including
data modeling, efficient data representation and storage, query languages, security, and
privacy of sensitive data, including the support for concurrent access and fault tolerance.
The database is accessed through a database management system (DBMS) that is used to
interact with the database. There are two major types of families No-SQL and SQL [21].

SQL databases use a relational model to store data. They organize data into one or
more tables of columns and rows, with a unique key identifying each row. Generally, each
table represents one „entity type." The rows represent instances of that entity type, and the
columns represent values attributed to that instance [66]. To summarize, SQL databases
have strict schema and enable combining information using a query language.

No-SQL databases expect the developer to denormalize the data because of their scheme-
less nature. The developer has flexibility regarding how he stores the data, allowing him
to store all relevant data in one record. Because the data is much more likely to be reread,
changing it at multiple places is acceptable. The relationships are represented in multiple

16

ways, and it is up to the developer to decide. The trade-off is that the developer can never
be certain what data he gets, so the developer needs to code defensively. Many local No-
SQL databases have recently been using code-generation to generate the database schema
to provide a safe static A P I 5 6 7 . The No-SQL database can scale horizontally [45].

5https://pub.dev/packages/isar
6https: //pub.dev/packages / realm
7https://pub.dev/packages/objectbox

17

https://pub.dev/packages/isar
https://pub.dev/packages/objectbox

Chapter 4

Recommendation Systems

Recommendation systems are a subclass of information filtering that suggests the most
relevant items to a particular user. Often these suggestions are the best guesses of what
the user would most likely do, buy or watch next. Tips help when the user needs to choose
from a vast range of options [74].

Areas that benefit from recommendation systems are media content providers, online
stores, social platforms, and dating apps [40, 72]. For instance, the You Tube recommen­
dation system for videos displays a grid of cleverly chosen options to the user, eliminating
the need to search or browse by category. As a result, You Tube's suggestions account for
60% of watch time. Other areas that have seen similar trends include: [55]:

• Forty percent of apps installed on Google Play.

• Thirty-five purchases on Amazon.

• Seventy-five percent of movies watched on Netflix.

Recommendation systems usually have two flavors: collaborative filtering and content-
based filtering. Collaborative filtering uses users' past behavior (such as video ratings,
likes, or comments) and other users' decisions to suggest. Content-based filtering uses only
current user actions to recommend [3].

4.1 Collaborative filtering

Collaborative filtering assumes that people will like similar things as they wanted in the
past. Therefore, the system locates peers with similar interests and histories and uses their
past to recommend. Furthermore, it does not rely on machine-analyzable content, so it can
accurately recommend complex items without understanding them. Collaborative filtering
has four main problems [3]:

• New Users: the system needs more data to make accurate recommendations for new
users [31].

• New Items: the collaborative filtering depends on the user's ratings to recommend.
Therefore, it will recommend only items rated a substantial number of times.

• Sparsity: the most active users rate only a minor subset of items, so even the most
popular entities have a few ratings [50].

18

For example, when recommending mobile applications to users on Google Play, the
system would see that user A likes similar items as user B . User B watched a movie X ,
while user A did not. Therefore, the system would recommend movie X to user A [77].

4.2 Content-based Filtering

Content-based filtering tries to understand the similarities between items the user likes and
recommends similar ones [3, 29]. Content-based filtering has two main problems [3]:

• New Users: the user needs to rate a sufficient number of items before the recom-
mender can understand the user's preferences.

• Overspecialization: the user is limited to being recommended items similar to those
that he already rated [77].

For example, when recommending mobile applications to users on Google Play, the
system would see that user A likes healthcare applications and so would recommend another
healthcare application to user A [77].

4.3 H y b r i d recommendations approach

It utilizes many content-based and collaborative recommendation algorithms to avoid cer­
tain limitations. Netflix's recommendation system is a good example [31]. To win the
Netflix Prize in 2007, the winners needed to combine 107 recommendation algorithms [9].
Recommendation methods can be combined in four ways [3]:

• Implementing content-based and collaborative methods separately and then combin­
ing them using voting or linear combination. Another approach is to choose one and
use it.

• By incorporating content-based characteristics in collaborative filtering methods, de­
velopers can create and maintain profiles for each user based on their preferences and
interests. These profiles can then be used to compare users and make recommenda­
tions based on similar content-based characteristics. The technique helps overcome
the sparsity problems where only a few users have a significantly similar history. A n
extra benefit is that it can recommend highly scored items against the user's profile.

• Including collaborative characteristics in content-based methods can result in higher
performance than for a purely content-based approach. One way to do this is to use
the dimensionality reduction technique on a group of content-based profiles. Then,
using latent semantic indexing (LSI), create collaborative views [76].

• Develop a general model with content-based and collaborative characteristics, where
developers use content-based characteristics and collaborative characteristics in one
classifier.

4.4 Mobile recommendation systems

Mobiles produce a lot of data that is useful for creating suggestions. The problem is that
the data is hard to process and noisy [29]. Mobile recommendation systems (MRS) are

19

using this data and provide users with fast (there is no round trip to the server) offline
suggestions while keeping all data private and having a low-power consumption [37].

M R S can be used for recommending routes and parking positions for taxi drivers [29].
The main frameworks are TensorFlow Lite and PyTorch Mobile. They both work on An­
droid and iOS, and support hardware acceleration [37, 71].

20

Chapter 5

Analysis

This chapter presents an analysis of the target audience and their problems and needs,
defined through a survey and previous research on time management techniques and prin­
ciples. Furthermore, it compares the target audience's requirements with those of existing
applications and explains why these applications are inadequate.

5.1 Research

The survey was conducted through social media and gathered responses from 42 individuals,
mainly college students. The chart shown in Figure 5.1 indicates that nearly all respondents
have experience using planning applications. Only two participants stated that they have
never used planning apps and instead prefer physical objects. Furthermore, among those
who reported experience using planning apps, only half of them mentioned using them on
a regular basis.

In Figure 5.2, it can be observed that calendars, todo lists, and note-taking apps are the
most frequently used types of apps by the respondents. Specifically, 30 respondents reported
regularly using calendars, 18 reported using todo lists, and 22 reported using note-taking
apps. It is noteworthy that, despite finding them helpful, 8 respondents stopped using a todo
list app, 10 stopped using a note-taking app, 12 stopped using a timer app, and 10 stopped
using a habit-tracking app. In Figure 5.3, it is possible to see that the main perceived
benefits of planning are gained clarity about where time is spent, increased productivity,
and being reminded about important events.

Figure 5.4 provides a more detailed explanation of the most crucial planning functions
for the respondents. It is unsurprising that notifications are perceived as the most critical
feature, given the use of planning mediums in the G T D theory to reduce stress and free up
mental space. The second most important feature is integration with existing calendars,
followed by the ability to create a concrete plan easily, and task organization. While features
such as statistics and task suggestions are still important, they are perceived as slightly less
crucial.

These findings validate the previous research on time management and provide valuable
insights into the specific needs of users. Additionally, it is noteworthy that only 25% of the
respondents are opposed to the concept of timeboxing, as mentioned in Figure 5.5.

21

On special occasions
A few times in a life

/ 30% / 20% \

\ 25% 25% /

Regularly ^ ^ ^ ^ Every day

Figure 5.1: How much experience have respondents with planning applications

Habit tracker

Timer -

Notes

Todo list

Calendar

i Not used
i Considered
i Did not help
i Helped but not used
i Regularly used

0 5 10 15 20 25 30 35 40 45 50 55 60

Figure 5.2: What experience have respondents with popular types of planning applications

Easier space arrangement for meetings and gatherings

It is easier to concentrate on the most important tasks

Motivation to continue

No benefits

Not forgetting important events

Better productivity -

A n overview of how I spend my time and what awaits me

0 10 20

Figure 5.3: The main benefits of planning for respondents

22

Quickly create detailed plan from existing tasks

Notifications

Timer

Integration with existing calendar apps

Ability to divide work into projects and tasks

Tasks recommendation

Gamification

Statistics

Figure 5.4: The most crucial planning functions for respondents

I am not using it

Regularly

Sounds interesting

It did not helped

Figure 5.5: Experience with timeboxing of respondents

5.2 Persons
Based on prior research and surveys with potential users, three categories of potential users
have been identified: managers, planning students, and non-planning students.

5.2.1 Manager

A manager is responsible for managing a team of colleagues, attending numerous meetings
and handling various tasks related to them. To efficiently manage his busy schedule, he
needs an app that integrates with his existing calendars, allowing him to view all events in
one place and convert them into tasks within the app. Along with work-related tasks, he
also has personal projects that he wants to track. The primary requirements of the app for
a manager include:

• Ability to view calendar events within the app.

• Option to convert calendar events into tasks within the app.

• Seamless integration between calendar and todo list.

23

• Flexible organization of multiple projects.

5.2.2 Planning Student

A planning student has a partly fixed schedule (presentations, exercises) that is repeating
- beyond that, he has organizational freedom. During this time, he must work on school

and personal projects, prepare for exams, care for his health, and enjoy leisure activities.
He aims to manage school burdens effectively, so he has time for personal projects. He
keeps all school activities in a calendar app that gives him a clear view of the plan. Besides
that, he uses a todo list to keep track of duties, but finds it difficult to put tasks from the
todo app into the calendar app. The current setup also does not provide quality statistics.
Sometimes, he uses the Pomodoro technique to include breaks into his day. He would like
to see this included in one app with current tasks in the form of a tracker. The main
requirements include:

• Viewing of calendar events in the app.

• Support for recurring events.

• Flexible organization of many projects.

• Tracker.

• Cooperation of calendar and todo list.

• Statistics for self-reflection.

5.2.3 Non-planning Student

A non-planning student uses a calendar only for special events such as tests or project
presentations and prefers to keep everything else in mind. However, he is considering using
a planning application to increase productivity and gain more clarity. The main challenge
for him is using it regularly. To encourage consistent use, he would like features such as a
clear perspective on where he spends his time, gamification to give him a sense of progress,
and good integration with existing tools. The main requirements for such an app include:

• Ease of use.

• Statistics to track progress.

• Integration with existing calendar apps.

5.3 Exist ing Applications

The applications to be reviewed are those that best satisfy the previously defined require­
ments and are popular. Each review will contain two sections: an explanation of the rating
and how well it satisfies the target audience, and interesting reviews from Google Play
about the app. It is important to consider that managers and planning students are more
focused on features, while non-planning students are more focused on ease of use.

24

5.3.1 Todoist

Figures 5.6 and 5.8 illustrate how Todoist 1 allows users to flexibly organize tasks using
features such as task nesting, projects, labels, and searching. However, the app offers
very limited statistics. Users can integrate Todoist with their existing calendars to view
events, which are converted into tasks with deadlines at the start of the event. When a
user creates a task with a specific deadline and duration using natural language processing
(NLP), as shown in Figure 5.7, an event is created in the synchronized calendar starting
at the specified time and lasting for the specified duration. This feature may be useful for
scheduling events and leaving the remaining tasks to be executed based on a todo list, but
it can be limiting for timeboxing purposes. Recurring events are easy to create, but they
do not support specific time frames. Todoist also lacks a time tracker. Table 5.1 presents
the app's rating according to the requirements defined by the target audience.

Users appreciate the ease of entering tasks, the support for labels and searching, and
the ability to nest tasks. However, some users would like more calendar features.

15:18© » • « • - • •

Nadcházející

*

leden 2023 ' DNES

30 31 1 2 3 4 5

30 led • Dnes • Pondělí

^) Prepare for exam

t, 0/4 VUT •

Training

31 led "Zítra "Úterý

Q Ttain meeting

1 úno • Středa

2 úno • Čtvrtek

3 úno • Pátek

4 úno • Sobota ^ ^ ^ ^

o
4 úno • Sobota ^ ^ ^ ^

o Q. 0

15:11© • «• & •

Dnes

• Zítra P Priorita 53 Připi

night at morning 4*

O Prepare forexarr

• Dnes

r* Priorita 1

Dílčí úkoly 0/A

O c „ c „ „

O ™

Figure 5.6: Todoist's
timeline with todos

Figure 5.7: Todoist en­
ables the creation of
todos using N L P

Figure 5.8: The user
can modify a todo
from a bottom sheet
and also add subtodos

5.3.2 Focus Todo

Figures 5.10 and 5.9 demonstrate the features of Focus Todo 2 . The app allows users to
create and organize tasks into projects, labels, and periods, while also supporting searching.
Users can plan their work using estimates and work through their todo list accordingly. The
app provides statistics, daily, weekly, and monthly reviews, and simple gamification through

xhttps: / / play.google.com/store / apps/details?id=com.todoist&hl=en&gl=US
2https: / / play.google.com/store / apps/details?id=com.superelement.pomodoro&hl=en&gl=US

25

http://play.google.com/store
http://play.google.com/store

Functions Rating (1 10)
Ease of use 10
Statistics 2
Integration with existing calendar apps 6
Support for recurring events 7
Flexible organization of many projects 10
Cooperation of calendar and todo list 5
Tracker 1

Table 5.1: How Todoist would satisfy potential users' needs

a tree that grows as tasks are completed and tracked. Figure 5.11 shows the Pomodoro-style
timer that users can use to track tasks and derive statistics. While this feature is useful
for users who want to track all of their tasks, it may be unnecessary for occasional users.
Currently, the app does not integrate with existing calendars. Table 5.2 presents the app's
rating according to the requirements defined by the target audience.

Users appreciate the combination of the todo list and Pomodoro technique, as well as the
easy-to-view progress and multiplatform support. However, some users would appreciate a
dark theme as well.

Dnes

05:25 3

..ill C D

1L

C Training

Habit App • 2h55m

Q Learning about machine learning

Q Idea Page

W paerot

Ú- Dnes

Q Zítra

B Tento týder

B Plánovane

É i Někdy

ĚD Události

@ SpLneno

• ÚkoLy

Health

• FullStack

• Habit App

• Time management app

doma

• IAL

• Self improverr

IDS

..ill <S, OD'

9 rm

Figure 5.9: Today
view shows today's
events with their esti­
mates

Figure 5.10: The user
can also access tasks
using views for tasks
with a deadline to­
day, this week, or this
month

Figure 5.11: The timer
in a Pomodoro style

26

Functions Rating (1 10)
Ease of use 7
Statistics 8
Integration with existing calendar apps 1
Support for recurring events 4
Flexible organization of many projects 8
Cooperation of calendar and todo list 3
Tracker 8

Table 5.2: How Focus Todo would satisfy potential users' needs

5.3.3 Taskito

Taskito 3 is an app that enables users to organize their work into tasks, notes, events, and
projects, as shown in Figure 5.13. It can also display calendar events from the device
calendars, but it does not have the ability to create events in local calendars. The app's
elements and local calendar events are displayed in the timeline, as shown in Figure 5.12.
However, the statistics provided by the app are very limited, and it does not include a
timer. Table 5.3 presents the app's rating according to the requirements defined by the
target audience.

Users appreciate the timeline feature in the app, as well as the app widget shown in
Figure 5.14. They also find helpful tips, tags, device synchronization, and templates to be
valuable. However, they miss desktop and web support.

Figure 5.12: The time­
line in the Taskito App

Figure 5.13: This view
represents how the
user can access tasks
for a project

Figure 5.14: Taskito's
app widget on Android

https: / / play.google.com/store / apps/details?id=com.fenchtose.reflog&m=en_US

27

http://play.google.com/store

Functions Rating (1 10)
Ease of use 7
Statistics 2
Integration with existing calendar apps 5
Support for recurring events 6
Flexible organization of many projects 8
Cooperation of calendar and todo list 7
Tracker 1

Table 5.3: How Taskito would satisfy potential users' needs

5.4 Conclusion
The current productivity applications in the market do not fully satisfy the needs of the
target audience, as they tend to focus on either a todo list or a calendar approach, but
not both techniques together. While these applications are useful in their own ways, they
do not cater to users who prefer the timeboxing technique with the flexibility of a todo
list. Moreover, they often lack comprehensive statistics or gamification features that can
motivate non-planners to continue using the app. Some apps also do not offer timer func­
tionality, or have functionalities that depend on it. Therefore, there is a need to develop a
solution that can better meet the requirements of the target users.

28

Chapter 6

Design of the Solution

This chapter presents the app design that aims to meet the needs of the target audience
identified in the previous chapter, while also learning from the shortcomings of current
implementations. The chapter begins by dividing the app into four main parts: the server
database, local database, mobile device, and local calendar A P I . It then proceeds to define
the requirements for the server and local databases, along with an explanation of how they
should interact. Next, it defines the different categories of pages for the mobile device
and their corresponding functionalities based on the target audience's needs. Finally, the
chapter introduces planning algorithms that will help users prioritize tasks and schedule
events more effectively.

6.1 Architecture

This section provides a high-level overview of the main components of the application, which
will be discussed in detail in the following sections. Figure 6.1 depicts the architecture of
the application.

6.1.1 Mobile Device

For reasons explained in Chapter 3, the primary platform for the application will be mobile.
As Android and iOS are the two most widely used mobile platforms, it is reasonable to utilize
cross-platform development that will enable the app to be created for both platforms with
one codebase.

6.1.2 Local Database

Since the application will be working extensively with data locally, a local database is
crucial. The main purpose of the local database will be full-text search, monitoring changes,
and querying. It is essential for the database to handle relationships and be fast, especially
considering it may potentially work with a large amount of data. Caching alone is not
sufficient as it could have issues with queries, and not all data needs to be cached. Therefore,
the application must store all user data locally.

6.1.3 Server Database

After analyzing existing apps, it was found that users highly value the ability to share data
between multiple devices and have it securely stored in the cloud. Therefore, the application

29

Platform Calendar API
(iOS, Android)

Figure 6.1: Application architecture

should include a server component to enable data synchronization between multiple devices
and support authentication to ensure data privacy.

6.1.4 Local Calendar A P I

The integration between the app and existing calendar applications is crucial for users, as
demonstrated in Figure 5.4. Hence, the application should have a framework that allows
it to reflect events created within the app in existing calendars and display events from
those calendars in the app. As iOS and Android offer APIs for accessing local calendars,
it is sensible to implement this feature using those APIs, as the app can accomplish all the
necessary actions through them.

6.2 Mobile Applicat ion

The mobile application is the primary component of the application where the user interacts
with it. As shown in Figure 6.2, the complete navigation map was created based on the
requirements of the target audience. This section will focus on discussing the four primary
components of the mobile application.

6.2.1 Timeline

Based on user feedback, the calendar feature was found to be the most useful planning tool.
Hence, the app will prioritize the calendar functionality, which will be implemented using
a timeline view as shown in Figure 6.3. Since the todo list is also a frequently used feature,
it is logical to integrate both planning strategies into a single application. This will enable
users to define events in the timeline using tasks created through the todo list functionality.

30

Search

T Click on search icon in the appbar

-Click on the timer indicator in the app bar

Timer

i

Timeline Todos Calendar Deadlines Deadlines Overdue

Projects Labels Blocks Statistics

Click on an element
Tasks Edit Timeline Stats

Element page for project and label

Click on an element

>

1
f
Edit Timeline Stats

Element page for todo and block

Figure 6.2: Application navigation schema

Events will only store the start and end times along with a link to the corresponding
planning element. This way, the presentation of the event can be mostly delegated to the
planning element. Many users have abandoned calendar applications due to their complex­
ity in creating plans. Therefore, the app should provide a more user-friendly interface. It
will recognize free spaces in the user's plan and offer various functions to flexibly fill them.
When the user clicks on a free space, the app will show the following options:

Add to Timeline - the user selects a task and its duration, and the app creates an
event at the beginning of the free space that ends after the selected duration.

Add to Timeline with Custom Range - the user selects a custom time range and
a task to create an event that spans the selected time range.

Fill the Space - the user selects a task, and the app creates an event that spans the
entire free space.

Expand Above Al l (if the event can expand above) - the selected event fills the
available free space above. Similarly, Expand Below A l l fills the free space below.

Expand Above Pick (if the event can expand above) - the user selects how much
the event should expand above, and the app increases the event by that amount.
Similarly, Expand Below Pick increases the event below.

Clever Planning - the app offers an algorithm to automatically fill the free space
with multiple events more efficiently

31

Figure 6.3: Home page Figure 6.4: Clever plan
timeline design includ- ning page design
ing todo and block
events, but also free
space

Clever Planning

Clever Planning, shown in Figure 6.1, exists to enable the user to fill free space with multiple
events more easily. It is a special environment that will suggest the most important elements
(tasks, projects, labels, and blocks) that the user can work on. The user selects the elements
they want to work on and can flexibly modify them. It should offer functions on individual
elements, such as filling remaining space or removing them. Moreover, changing the order
of elements or spacing them evenly is also an important option.

Deadline Timeline

Users highly value notifications and reminders to ensure they do not forget about important
deadlines. Therefore, it is crucial to provide a feature that displays all their deadlines in
one place. The design for the deadline timeline is presented in Figure 6.5. This feature will
include all tasks, projects, and labels with a deadline, and show how they occur over time.

6.2.2 Pages for Organizing Tasks

The second most frequently used planning functionality is a todo list, which, as mentioned
earlier, will cooperate with the timeline to enable the user to create plans. To make the
organization flexible, the app needs to enable the creation of hierarchies. To accomplish
this, the user will be able to group tasks into projects. However, for larger projects, grouping
tasks into projects may not be sufficient. For this reason, the app will also include labels,

Figure 6.5: The dead­
line page design

32

which will be in a many-to-many relationship with todos. This will enable users to create
subgroups within projects and group similar tasks from multiple projects.

In addition to tasks, projects, and labels, the app will contain an element called a block,
which will be useful for filling up space with often-performed actions such as reading, eating,
or running. Since the app can potentially contain a large number of tasks, it should also
include searching functionality, as shown in Figure 6.6. The bottom sheet design shown in
Figure 6.8 will be used to create all the elements mentioned earlier.

O Clean Room
P Low O Esti

O Help father with clean
p Low O Estimate: 45 mln

Figure 6.6: Search Figure 6.7: Edit page
design

Figure 6.8: The design
for a bottom sheet used
to create a todo item

Viewing Planning Elements

The app will provide a page for viewing and editing planning elements, such as tasks,
projects, and labels, as shown in Figure 6.7. Each planning element will have common
attributes, including priority, creation date, and deadline, enabling the user to prioritize
and manage tasks efficiently Therefore, the app will allow users to sort and group planning
elements by these attributes. To achieve this, an abstract element that contains these
attributes will be created, making sorting and viewing reusable across the application, as
shown in Figure 6.10.

Summary Statistics

To provide users with an overview of their time expenditure, the app will offer summary
statistics that analyze planned time, how many times planning elements were planned, and
how many related elements were completed for the label and project. These statistics will
be presented in the form of a list or pie chart, and users will be able to choose the time
range (day, week, month, year, or total) for which they want to view the data.

33

Figure 6.9: Timer page
design

Figure 6.10: The design
of viewing planning ele­
ments in a list

Specific Statistics for Planning Elements

In addition to summary statistics, the app will also offer specific statistics for individual
planning elements. Users will be able to view a line chart that shows how an element was
executed over time, as well as information on how many times it was planned and how long
it was planned in total.

6.2.3 Timer

The majority of respondents did not use a timer or used it but stopped, according to the
chart in Figure 5.2. However, a significant number of users found the timer feature helpful.
To help users better manage their time and maintain focus on tasks, the app will include
an independent timer feature. This feature will allow users to track their work sessions,
breaks, or other time-related activities. The design of the timer page is presented in Figure
6.9.

6.3 Databases

The application heavily relies on database implementations, particularly on the local database
that handles a substantial amount of data. However, the synchronization process between
the server and local database assumes critical importance given the need to synchronize
across multiple devices and backup data in the cloud, rendering the server database equally
significant.

34

6.3.1 Local Database

The local database is crucial in three main contexts.

Timeline

The timeline loads all events scheduled for a particular day and promptly notifies the user
of any changes in the query. It then displays these events, along with available slots in the
user's schedule, and keeps track of all tasks with deadlines on that day.

Task Organization Pages

The search function is a crucial feature in the app as it can contain numerous tasks that can
be challenging to locate. The search function should recognize matches from the beginning
and end of words, and it should not require full matches. It should also be able to find
elements that match all searched words when multiple words are entered. Additionally, it
should be able to filter by the element's completion state.

When the user selects a project, the app should only display relevant tasks related to
that project in the search results. Similarly, the user can select multiple labels and filter
by them. The app should allow filtering by project and labels simultaneously to display
subgroups within a project.

Statistics

To provide effective statistics, the application's database must support aggregation func­
tions, in addition to indexes. It should also be able to locate linked objects, which places
even more emphasis on the database's speed. For instance, to compute statistics related to
labels, the database must first locate all the related tasks and then identify any associated
events.

6.3.2 Server Database

In order to achieve proper authentication and synchronization between the server and the
local database, it is recommended to utilize a Backend as a Service (BaaS) platform to
expedite development. However, it is important to avoid utilizing services such as Firebase,
which rely heavily on local caching, as this approach may not align with the local database
requirements outlined earlier.

6.3.3 Data Mode l

Figure 6.11 illustrates the default data model that is required for the app's functionality.
The data model consists of four main components: Todo, Project, Label, and Block, all
of which have attributes such as priority, deadline (except for Block), and creation date.
Projects with Todos are in a one-to-many relationship, while Labels with Todos are in a
many-to-many relationship. Subtodos are stored in a list within these elements, eliminating
the need to handle their relationship and allowing the user to search for words included in
these subtodos. Another important attribute is estimatelnMinutes, which enables the user
to make a more realistic plan and is also used for creating recommendations. Furthermore,
Todos and Blocks are connected to TodoEvent, BlockEvent, TodoRecurringEvent, and
BlockRecurringEvent, which represent concrete executions in a one-to-many relationship.

35

The Rrule attribute stores information about event recurrence and is a string representation
of the r r u l e used by local calendars such as ICalendar 1, along with a date when the event
should end.

o

E

Ui
to

T)
-O

Figure 6.11: The app's data model.

1https://github.com/jakubroztocil/rrule

36

https://github.com/jakubroztocil/rrule

6.4 Smart Planning
To enhance the user experience, it is crucial to prioritize the development of intelligent
planning functionality. This feature should be implemented only after the app's foundation
is established, and the basic requirements of the users are met. Intelligent planning has the
potential to significantly improve the app's usability and can be achieved in two ways:

6.4.1 Recommendation of Most Crucial Tasks

Implementing a recommendation system based on the priority, deadline, and estimate fields
assigned to each organizational element in the app can enhance the user's productivity and
aid in focusing on the most crucial tasks. The system can determine the significance of
each element and display them in order of importance. However, creating the logic for
this process can be challenging, so a data-driven approach is recommended. This involves
generating a reasonable number of possible states and assigning values to them. A regression
machine learning model can then be trained and converted to code. This approach can be
used as another grouping option in the app or to recommend tasks when appropriate. It
is important to note that classification is not recommended as it may be confused with an
assigned priority, which could make the app more complex.

When assessing tasks, the deadline should hold the greatest weight as it signifies a
necessary completion. It is important to distinguish between tasks with a deadline in a
month versus those due in a day, which means that even a low-priority task within a low-
priority project that has a deadline today should receive a high score. By implementing a
recommendation system based on these factors, the app can help users prioritize their work
and manage their time more effectively.

6.4.2 Suggesting Possible Event Terms

The app can suggest preferred times for the user to perform a selected action based on their
history and available free spaces in their schedule. To achieve this, a histogram can be used
to loop over all related events and store extracted information in a helper structure, shown
in Listing 6.1.

class ScoreStructure {

//<1 - 7> Count of events for each weekday

List<int> days = [];

//<1, 31> Count of events for each day of month

List<int> daysInMonth = [];

//<1, 5> Count of events for each week of a month

List<int> week = [];

//Example: {"13:00 - 15:00" : 3}

Map<TimeFrame, int> timeFrames = {};

//PartOfDay: morning, noon, evening

Map<PartOfDay, int> partOfDay = {>;

>

Listing 6.1: The basic scoring structure design

The app would then search for all available free spaces within the user's selected time
span (although it cannot look infinitely into the future) and search for parts of free spaces

37

that would satisfy them using the found time frames. It would then score all found parts
using other discovered information.

38

Chapter 7

Implementation

This chapter presents the implementation details of the app's functionality discussed earlier.
It commences by discussing the app's architecture and the development tools employed in
its creation. Then, it delves into the app's data synchronization mechanism and how it
integrates with the calendar synchronization process. Furthermore, the chapter explains
the implementation of the app's user interface components and the supporting structures
and libraries used in the project. Finally, it describes the intelligent planning algorithms
that the app utilizes to aid its users. The app was created using Flutter, a cross-platform
framework, due to its fast performance, availability of relevant libraries, and the author's
previous experience with it.

7.1 Architecture

In order to achieve sustainable development, the app is divided into four layers: infras­
tructure, domain, application, and presentation, as shown in Figure 7.1. This section will
provide an overview of the architecture and its key components, which will be referenced
later.

7.1.1 Infrastructure

The infrastructure layer is responsible for syncing the app with the server database, lo­
cal calendars, and manipulating local data. It communicates with other layers through
interfaces and returns and accepts domain models. The details of how this layer works
are abstracted from other layers. The DatabaseRepository is an example of this layer,
which retrieves data from the local database, modifies elements through synchronization
repositories, and communicates with the Calendar A P I using the device_calendar plugin 1 .

The IDatabaseRepository interface, shown in Listing 7.1, is used by the application
layer to communicate with the infrastructure layer. This interface is primarily implemented
using the Isar2 package. Using this approach, it is possible to modify the infrastructure
layer without refactoring the other layers.

1https: / / pub.dev/packages / device_calendar
2https://pub.dev/packages/isar

39

https://pub.dev/packages/isar

Figure 7.1: Mobile app architecture diagram

abstract class IDatabaseRepository {

Stream<Todo> watchTodo(int todold);

bool createTodo(...);

}

Listing 7.1: A sample of the IDatabaseRepository

7.1.2 Domain

The domain layer is responsible for representing the business logic of the application, by
encapsulating the business entities, rules, and operations that define the behavior of the ap­
plication. It sits on top of the infrastructure layer and is decoupled from the presentation
layer. Its main responsibility is to transform the raw data received from the infrastruc­
ture layer into a more meaningful and expressive representation that can be used by the
application layer.

In this project, the domain layer uses the freezed
3

 package to generate immutable
classes that represent the various entities of the application. The use of immutable classes
ensures that the objects can be shared between different parts of the application without
risking data corruption. The most important classes defined in the domain layer are the

3https: / / pub.dev/packages / freezed

40

Todo, Project, Label, and Block classes, which represent the different elements shown in
Listing 7.2 of the task management system.

Finally, the domain layer defines the Failure union, which represents the different
types of errors that can occur in the application. This allows errors to be handled in a
more systematic and uniform way throughout the application, making it easier to maintain
and debug.

class Elements {

Elements.todo(...) = Todo;

Elements.block(...) = Block;

Elements.project(...) = Project;

Elements.label(...) = Label;

// The i d e n t i f i c a t i o n of an element

Elementld get elementld => ElementId(type: type(), i d : id)

>

Listing 7.2: A pseudocode of the Elements union

7.1.3 Application

The application layer is responsible for managing the state and providing the presentation
layer with access to local data as domain models. This project uses the Riverpod frame­
work, which is based on the principle of providers. Providers are objects that expose values
and allow the state to be updated, making it easy to share and manage state across the
app. An example of a provider in this app is the TodoProvider, shown in Listing 7.3. It
provides the UI with the Todo domain model and automatically updates it when it changes,
as the IDatabaseRepository exposes a stream. The TodoProvider also provides methods
for modification.

class TodoProvider {

Stream<Todo> build(i n t id) async* {

//Listens for stream through the IDatabaseRepository interface

await for (f i n a l v i n ref.watch(databaseRep).watchTodo(id)) {

y i e l d v;

>
}
//Method for modification

void changeName(String newName) {...]•

Listing 7.3: Pseudocode for the TodoProvider provider

7.1.4 Presentation

The presentation layer is responsible for displaying user information and responding to their
actions by making changes through the application layer. To access Riverpod's providers,
the UI uses a parameter called ref. The example provided in Listing 7.4 illustrates how the
UI can obtain required information using the Elementld and then use the same Elementld
to call the relevant modification method.

4https: / / pub.dev/packages / riverpod

41

return ColorCard(

//Based on the type c a l l the appropriate method

onChange: (newColor) => type.when(

//Using ref access the provider

block: () => ref

.read(block(elementId.id).notifier).color = newColor;

) ,
//Access elements's color, while being n o t i f i e d when i t changes

color: ref.watch(eleColor(elementld)),

Listing 7.4: The pseudocode of the ElementSelectionColorCard widget

7.2 Infrastructure
This section provides an explanation for the selection of Isar as the local database and
Appwrite 6 as the server database. Additionally, the section provides details on how the
application's data is synchronized with the Appwrite server and how events in the app are
reflected in the synchronization calendar.

7.2.1 Databases

The app's reliance on local data underscores the importance of having a dependable local
database. Extensive research and benchmark testing led to the selection of a suitable local
database. Additionally, it was crucial that the local database could synchronize seamlessly
with the server database to ensure consistency between the two.

Local Database

In the SQL realm, there is a plugin sqflite which is the classic port of SQLite from C
to dart. SQLite is considered robust and battle-tested over time 8 . There are two major
wrappers for sqflite in Flutter - drift 9 and floor 1 0 , which were chosen based on pub points.
The biggest advantage is the relational structure and the core sqflite that will stay even if
the used wrapper project will not be maintained.

• Drift adds code generation, caching, and threading support.

• Floor adds code generation.

When it comes to the No-SQL databases, there are several options available for handling
relationships as required by the app. ObjectBox 1 1 , Isar 1 2, and Rea lm 1 3 (in Beta) are among
the most popular choices (based on pub points).

5https://pub.dev/packages/isar
6https: / / pub.dev/packages / appwrite
7https: / / pub.dev/packages / sqflite
8https://www.sqlite.org/index.html
9https://pub.dev/packages/drift

10https://pub.dev/packages/floor
1 1https:// pub .dev / packages / obj ectbox
12https://pub.dev/packages/isar
1 3https://github. com/realm

42

https://pub.dev/packages/isar
https://www.sqlite.org/index.html
https://pub.dev/packages/drift
https://pub.dev/packages/floor
https://pub.dev/packages/isar
https://github

• ObjectBox is partly commercial software with high speed, A C I D semantics, and rela­
tionships, and is statically typed. The optional synchronization option is questionable
because you can ask for a free trial for a month and additional information is miss-

14
ing .

• Isar is a database that is statically typed and supports A C I D semantics, queries,
asynchronous, full-text support, relationships, and migration support.

• The Realm is a port of a very popular framework to dart owned by MongoDB. It
offers A C I D , synchronization, relationships, and queries.

To evaluate the performance of the chosen local database, a set of tests were conducted
using modified tests from the Isar author that incorporated relationship data 1 5 . Additional
tests were conducted to compare Isar with drift (a sqflite wrapper) and to evaluate how
Objectbox, Isar, and Realm handle relationships. The non-relational tests ran on 50000
items, while the relational tests were conducted on 200 projects linked to 20000 tasks.

The findings from the conducted tests, presented in Figure 7.2, indicate that Isar out­
performs ObjectBox and Realm in various areas, including C R U D operations, filtering, and
relationship handling. ObjectBox performed slightly slower, while Realm exhibited signif­
icantly slower performance. Furthermore, Isar maintained a more compact database than
ObjectBox, while Realm often encountered crashes when working with a large number of
objects.

N To N Relation Delete Sync

N To N Relation Insert Sync

Get Sync

Delete Sync

Filter Sync

Filter and Sort Sync

Insert Sync

I I I
• Isar
• ObjectBox
• Realm

^ 1 • Isar
• ObjectBox
• Realm 1

1

• Isar
• ObjectBox
• Realm

1

=1

ZD Z
1

1

1
•

1
1

0 500 1,000 1,500 2,000 2,500 3,000 3,500
ins

Figure 7.2: Comparison of No-SQL databases: Realm, Isar, ObjectBox for Flutter

Figure 7.3 shows the comparison of Isar with Drift. Drift takes only half the space as
Isar. Outside of that, Isar is significantly faster. Based on the benchmarks, it is evident
that Isar performs better than other databases in all key operations. The only comparable
option is Realm, which has built-in synchronization capabilities that can greatly reduce
development time.

14https://objectbox. io/sync/
1 5https://github.com/Musta-Pollo/isar benchmark

43

https://objectbox
https://github.com/Musta-Pollo/isar

Get Async

Filter Async

Filter and Sort Async

N To N Relation Delete Async

N To N Relation Find Async

N To N Relation Insert Async

0 1,000 2,000 3,000 4,000 5,000 6,000
ms

Figure 7.3: Comparison of Isar with Drift

Server Database

To save time and focus on the app features it is possible to use BaaS that implements almost
all needed functions. BaaS is a model for providing web app and mobile app developers
with a way to link their applications to backend cloud storage and APIs exposed by back-
end applications while also providing features such as user management. These services
are provided via the use of custom software development kits (SDKs) and application
programming interfaces (APIs) 1 6 .

As previously mentioned, the application requires server storage with authentication.
Firestore, which was also previously mentioned and can be found at 1 ' , is a popular can­
didate that provides a sturdy document-based architecture, allowing for flexible handling
of relationships, synchronization, and integration with Flutter. However, due to the use of
caching in synchronization, Firestore would not be used in this application.

A n alternative to Firestore for server storage with authentication is Supabase 1 8. It is
built on top of a PostgreSQL database and offers additional features such as edge func­
tions, real-time subscriptions, and authentication. However, it does not support offline
functionality, and the Flutter plugin does not support the Linux platform 1 9 .

Another option to consider is Appwri te 2 0 . It aims to simplify backend management
by providing authentication, a database, cloud functions, and out-of-the-box self-hosting.
While Appwrite uses MariaDB as its database, it tries to emulate a No-SQL database,
based on Wix's experience when they started using MySQL as a key-value storage system
[1]. However, offline support is not available.

MongoDB is a popular choice for backend storage, and its integration with Realm pro­
vides features such as object modeling that allows for the translation of code-generated
models to MongoDB schema with relationships and synchronization 2 1. However, despite
offering synchronization, offline-first storing, and authentication features, Realm wil l not
be used for this application due to previous research. The non-static A P I for querying and
poor performance of Realm make it an unsuitable choice for the app's needs. After eval-

1 6https: / / www.cloudflare.com / en-gb/learning/serverless / glossary/backend-as-a-service-baas /
1 7https: / / firebase.google.com/docs/firestore / quickstart#dart
18https://supabase. com/
1 9https: / / pub.dev/packages / supabase_flutter
2 0https://appwrite.io/
2 1https: / / www.mongodb.com/docs/realm/sdk/flutter/

•
]

ZJ

!=• Isar
• Drift

1
•
]

1

:

1
i i i i i

44

http://www.cloudflare.com
http://firebase.google.com
https://supabase
https://appwrite.io/
http://www.mongodb.com/docs/realm/sdk/flutter/

uating various synchronization servers, it became apparent that using Isar in conjunction
with a synchronization server is a more suitable option, despite the added time required
for implementation. This is because a slow database would be a significant issue for the
application.

The available options have been narrowed down to Supabase and Appwrite. Appwrite
is the preferred choice because of its user-friendly interface that eliminates the need for
SQL coding. Furthermore, it supports relationships through list structures, which are
not as powerful as using a SQL relational structure but are still feasible and easier to
integrate with the local database. In addition, Supabase has a limited number of real-time
subscribers2 2 compared to Appwrite. Wi th Appwrite, all data changes can be loaded at
the start of the app, and the server parameters are the only limiting factors when listening
for changes using WebSockets.

7.2.2 Synchronization

As previously mentioned, synchronization is a crucial aspect of the app, enabling data to
be synchronized between the local Isar database and the Appwrite server while also re­
flecting these changes in a local synchronization calendar. The synchronization process
uses helper local attributes, including lastUpdated, lastSynced, deviceld, lastCalen-
darSync, eventld, calendarld, and ownerDeviceld, which are stored on synchronized
elements. On the server, Appwrite adds a lastUpdated attribute to every document that
is updated or created. This attribute is used in conjunction with the stored deviceld to re­
trieve updates from the server. Each document on the server is identified by a documentld.
The local attributes used in synchronization have the following meanings:

• LastUpdated (local) represents the most recent modification time of the element.

• LastSynced represents the last time the element was successfully updated on the
server.

• Deviceld identifies the device that last modified the element.

• LastCalendarSync represents the last time the element was synchronized with the
synchronization calendar.

• Calendarld and eventld identify the corresponding calendar event.

• OwnerDeviceld identifies the device responsible for synchronizing the event in the
synchronization calendar.

Application Data Synchronization

Upon launching or returning from the background, the app synchronizes with the server
using the totalUpdate function as shown in Listing 7.5. This function contacts the server
and retrieves the lastUpdated value of the record associated with the current deviceld

using the Databases A P I . The lastUpdated value represents the last time when the to­
talUpdate function was successfully finished and the server was contacted to store this
value, marking a point in time when the local database and server database were fully
synchronized.

22https://supabase.com/pricing

45

https://supabase.com/pricing

Figure 7.4: Synchronization schema consisting of synchronization repositories, the local
database, the calendar A P I and the server

The app then requests all deletion records created after that datetime (Databases API)
and deletes all local elements associated with them. A deletion record stores all documentlds
for each app's element that were using a Functions A P I previously deleted. Next, each of
the synchronization repositories requests all updated records after that datetime, converts
them to the app's elements, and compares them with the currently stored data. If the
updated records are newer, they are updated in the app's database. Any elements not
recognized by the database are created as new entries. It recognizes elements using the
server's documentld and uses it also to handle relationships with the help of Isar's l inks 2 3 .

Important to note that get Changes and updatedFromChanges are deliberately sepa­
rated steps. Because it is necessary to update elements in a particular order due to re­
lationships it is more effective to load all changes at once and only after all changes are
received, updated them in a specific order, as the most time-consuming part is waiting for
the server responses.

Future<void> totalUpdate() async {

DateTime lastUpdated = await getLastUpdatedO; //When was last

completed totalUpdate

await getDeleted(lastUpdated); //Get a l l deleted records

await getUpdateSettings(); //Using Account API ask for preferences

await getChanges(lastUpdated); //Repositories ask for changes

await updateFromChangesAll(this); //Repositories save changes

await updateLastUpdated(start);

>

Listing 7.5: The pseudocode of the totalUpdate function

2 3https://isar.dev/links.html

46

https://isar.dev/links.html

Furthermore, there is a background service that regularly runs a function shown in
Listing 7.6 that scans for any new or updated elements. It specifically searches for un-
synchronized elements (with lastUpdated not equal to lastSynced). Afterward, it sends
requests to either create or update these elements (Databases API) . For deleting elements,
a cloud function (Functions API) is utilized to ensure that elements are deleted in a par­
ticular order due to relations. A deletion record is also created to enable other devices to
reflect the deletion in their local database 7.6.

Future<void> pushChangesToServer() async {

await Future.wait([

...repositories.map((e) => e.pushChangesToServer(this)),

deleteFromServer(), //It creates DeleteRecord and deletes elements

pushSettingsToServer() //It stores settings i n the user's

preferences using Account API

]) ;
>

Listing 7.6: The pseudocode of the pushChangesToServer function

At the same time, a realtime service utilizing Realtime A P I listens for changes and
then delegates modifications to appropriate synchronization repositories. As WebSockets
are closed after time off inactivity, the app closes this service after the app goes to the back­
ground. The service starts listening again when the app is reopened and after totalUpdate
is executed.

Calendar Synchronization

To reflect app events in calendar apps and make it more understandable, the user needs to
select a device on which he wants to do the synchronization and a calendar in which the
app should create events. As the app synchronizes, any changes made are also reflected in
the synchronization calendar. The user can also view events from device calendars in the
app. It utilizes device_calendar plugin that provides helper functions such as create-
OrUpdateEvent, deleteEvent, deleteEventlnstance, requestPermissions, retrieve-

Calendars, and retrieveEvents.
The retrieval of events in the application is managed by the CalendarRepository,

which utilizes the helper functions of the device_calendar library to retrieve events from
the user-selected calendars and stores them in the local database for caching purposes. This
caching mechanism results in a faster loading of the user interface, with updates made only
when there are differences in the calendar events.

In addition, a background service frequently checks for new or updated app events. It
searches for unsynchronized elements (lastUpdated not equal to lastCalendarSync) with
ownerDeviceld equal to null or the current deviceld. After the update or creation of
an event, it stores the event Id, and the calendar Id of the created event together with
the ownerDeviceld on the element while updating lastCalendarSync to be equal to the
lastUpdated value.

2 4https: / / pub.dev/packages / device_calendar

47

7.3 Mobile Applicat ion
A l l features specified in the app design have been successfully implemented. This section fo­
cuses on the key libraries and algorithms used to implement the user interface and associated
logic. The app heavily relies on Flutter's Material Components for efficient development
and to enhance the consistency and clarity of the user interface.

7.3.1 Timeline

The timeline feature of the app combines app events with calendar events to generate a
list of events, represented by the Events union. The user's defined startWorkingTime and
endWorkingTime are used to calculate free time slots in the user's schedule, and the free
time slots and events are displayed in the UI. To render the events in the UI, the timeline_-
t i l e 2 5 library is used. If the user clicks on an event, a bottom sheet is displayed for event
modification, using the modal_bottom_sheet 2 6 library.

The clever planning page features a draggable sheet for creating events, using the snap-
ping_sheet library. This sheet is displayed persistently and can be dragged to different
positions on the screen.

7.3.2 Pages For Organization O f Tasks

When the app is showing elements in a list and enables them to be grouped by their
attributes it uses the groupedj is t 2 8 library.

7.3.3 Statistics

Statistics use heavily the fl_chart29 plugin that enables it to be interactive. It specifi­
cally uses fl_chart's elements: PieChart, BarChart, and LineChart and their associated
structures.

7.3.4 Timer

The timer state and settings in the app are stored in the TimerSettingsInf o union, which
allows for synchronization across all devices for the same user. This ensures that the
user has the same timer state on different devices. The timer is based on the Pomodoro
technique 2.3.1 and its state includes the timer configuration and the current timer state
number timerStateNum. When a user starts a timer, the app stores the datetime when the
timer should end as f inalTimerDatetime in the TimerSettingsInfo union. On another
device, the provider that holds the timer is rebuilt when the state is synchronized, and
it uses f inalTimerDatetime to start counting down to that datetime. It also checks the
timerStateNum and the timer configuration to determine if it is a working time, a break,
or a long break.

When an user pauses the timer, the tickerNum is stored in the TimerSettingsInfo
union, representing the number of seconds until the timer's end. On another device, this

2 5https: / / pub.dev/packages / timeline_tile
2 6https: / / pub.dev/packages / modal_bottom_sheet
2 7https: / / pub.dev/packages / snapping_sheet
2 8https: / / pub.dev/packages / grouped_list
2 9https: / / pub.dev/packages / fLchart

18

information is used to determine that the timer is paused and how many seconds remain
until the end.

7.4 Smart Planning

The application incorporates two distinct planning mechanisms that assist the user in pri­
oritizing important tasks or finding available time when scheduling events. The first utilizes
machine learning algorithms to score planning elements based on their importance and sub­
sequently recommends tasks to the user in that order. The second examines the history
of related elements and the user's available free space in their plan to suggest appropriate
scheduling slots for the element being scheduled.

7.4.1 Recommendation O f Most Crucial Tasks

This algorithm organizes elements based on the user's input, such as priority, deadline,
estimate, and related projects and labels. It uses a regression machine learning model that
was trained on created data sets. It contains two datasets: the project and label dataset
and the todo dataset.

The datasets are rated in a way that elements with a deadline must be completed.
Because of that deadline has the most impact on the score. Very important is also project
and label score as it is assumed that all related tasks should be affected. Medium influence
on the score has a priority and the least important is considered an estimate. The maximum
score is 100 and the lowest is 0.

To generate the project and label dataset, priority, days until the deadline, and the
difference between the estimate and the elapsed duration were used, as shown in Figure
7.7. To facilitate scoring, only the most important members for each value were included.
It is assumed that the model will interpolate the missing values, which are represented as
-1, as machine learning models may struggle with missing data. Idea and none priorities
were not included, as they receive an automatic score of zero.

#0 - urgent, 1 - important, 2 - low

p r i o r i t y = [0.0, 1.0, 2.0]

daysTillDeadline = [0.0, 7.0, 21.0, -1.0]

estimateTimelnMinutesMinusElapsedProjectLabel = [800.0, 3000.0, -1.0]

Listing 7.7: Used values for the generation of project and label dataset

The Todo dataset, depicted in Figure 7.8, adopts a similar approach to the Project and
Label dataset, but it also takes into account the project and assigned labels of the todo.
The scores for the project and labels are the output values of the machine learning model
for project and label. For the label score, it uses the highest importance label assigned to
the todo. This guarantees that even a low-priority task that belongs to a highly important
project will receive a high score.

49

priority daysTillDeadline estimateTimelnMinutesMinusElapsed score
0 0 3000 100
2 -1 -1 0
1 7 -1 60
2 21 800 42
0 -1 -1 30
1 0 3000 80
2 21 -1 40

Table 7.1: Project and label dataset example values

priority daysTillDeadline estimate... projectScore maxLabelScore score
1 7 800 20 90 73
2 -1 800 20 90 25
1 21 800 90 60 55
2 21 60 60 4 40
0 -1 800 20 90 38
0 7 800 4 4 65
0 -1 60 20 90 35

Table 7.2: Todo dataset example values

#0 - urgent , 1 - important , 2 - low
p r i o r i t y = [0.0, 1.0, 2.0]
daysTillDeadline = [0.0, 7 .0 , 21 .0 , -1.0]
estimateTimelnMinutesMimisElapsedTodo = [60.0, 800.0]
projectlmportance = [4, 20 .0 , 60 .0 , 90.0]
maxLabellmportance = [4, 20.0 , 60 .0 , 90.0]

Listing 7.8: Used values for the generation of todo dataset

The machine learning model was selected from the scikit-learn library, a popular library
that interfaces well with code-generation libraries. To choose the best machine learning
model for the project, the machine learning map 3 0 from the scikit-learn documentation was
consulted, and after testing, the RandomForestRegressor

31

 was selected for its alignment
with the scoring design and its negligible impact on the UI. The machine learning model is
converted to Dart using the m2cgen l ibrary 3 2 .

7.4.2 Suggest Possible Event Terms

This feature heavily relies on the UI to support it. Without it, there would be no value in
it for the user as he would only see a suggestion and nothing else. It cooperates with the
calendar page in the app that shows all events and available free spaces in a day, three days,
or a week layout. When the user enters this mode, part of the calendar page is delegated
to show a list of suggestions represented as cards. When then the user clicks on one of

3 0https: / / scikit-learn. org / stable / tutorial / machine learning map / index, html
3 1https://scikit-learn. org/stable/modules/generated/sklearn.ensemb le.RandomForestRegressor.html
3 2https:// github. com / Bayes Witnesses / m2cgen

50

https://scikit-learn

the suggestion cards, he is navigated to that specific time in the calendar. Because of this
integration with a calendar, the user can see what events are planned around it, enabling
him to make a more confident decision about the value of this suggestion. At the same time,
he can also choose non-suggested time frames. It uses modified 7.9 structure as described
in the application design. In addition, it also gives a higher score to parts that are closer
to the average duration of past events.

class ScoreStructure {

List<int> days = [];

List<int> daysInMonth = [];

List<int> week = [];

DateTime? lastEventDate;

List<int> intervallnDaysBetweenEvents = [];

Map<TimeFrame, int> timeFrames = {};

Map<PartOfDay, int> partOfDay = {>;

>

Listing 7.9: Modified scoring structure from the design of solution

51

Chapter 8

Testing

This chapter discusses the feedback gathered from a survey and personal interactions re­
garding the application. It also includes the opinions of potential users at ExcelCDFIT1.

8.1 User Testing

The application was shared with potential users, primarily college school students, via
Facebook. They were first asked to try the app and provide feedback. After a week, they
were asked to submit a survey using a link to a Google Forms survey. Thirteen respondents
tested the app and submitted the survey. Figure 8.1 shows that all respondents used the app
for over five minutes, and almost half used it for over an hour. The app was understandable,
with an average score of 3.9 out of 5. The design was also attractive, scoring 4.75 out of 5,
if one outlier rating of 1 is excluded. Nine respondents tried the testing environment, and
all of them appreciated it. Others missed it or did not use it. The users' most significant
issue was the lack of classic todo list functions, such as a view for tasks with a deadline
today, this week, or this month. The second biggest issue was creating events or adding
subtasks and notes.

From 15 minutes to 1 hour

Figure 8.1: How long the respondents used the app before submitting the survey

On the other hand, Figure 8.2 shows that users appreciated mainly the app design,
organization hierarchy, clever sorting of tasks, and the ability to view calendar events in
the app. Lastly, when the testing users were asked how well the application satisfies their
needs, their average score was 3.8 out of 5.

1https://excel.fit.vutbr.cz/

52

https://excel.fit.vutbr.cz/

1 1

The timeline and working with it

Smart sorting of tasks = •

Possibility to divide tasks into projects and labels -

Mirroring events in this app to events in your chosen calendar -

Ability to view calendar events in this app =>

The way events are created =

Statistics

Timer -
Design and appearance of the application =•

i

0 5 10

Figure 8.2: What respondents of the survey found interesting about the app

8.2 Personal Feedback Prom Potential A n d Actual Users

Outside of the survey the app also got feedback from users who were previously asked to test
the app using Facebook, but chose their opinion express using personal messages. Outside
of visual or translation issues, they also requested more quality notifications for events, but
also for tasks with a deadline.

Another source of feedback was a student conference called Excel@FIT 2 at the Faculty
of Information Technology of V U T . The feedback was from people to whom the application
was shortly presented. The app attracted attention by its design and its many features. On
closer look, viewers appreciated the idea of combining todo list with a calendar, integration
with existing calendar applications, and recommendations of tasks.

8.3 Conclusion

After analyzing the feedback received from the testing phase, it has been identified that
the application needs improvements in two main areas: addressing translation issues and
enhancing the notification system for planning elements and events. While the app's com­
plexity can be attributed to its multifunctionality, the feedback suggested that there is
room for improvement in the user interface to enhance its usability. One of the respondents
reported feeling overwhelmed by the amount of information presented, stating that they
got lost in the app at times. To tackle this issue, one potential solution could be to use the
showcaseview plugin 3 to demonstrate and showcase the application's features. The feed­
back received is considered valuable and provides guidance on how to make the app more
user-friendly and effective.

2https://excel, fit. vutbr.cz/
3https: / / pub.dev/packages / showcaseview

53

https://excel
http://vutbr.cz/

Chapter 9

Conclusion

The objective of this project was to develop an application that combines various time
management techniques to provide a better planning experience for users compared to
existing implementations. To achieve this goal, popular time management terms, such as
the todo list or calendar, were studied, which enabled the understanding of why these
techniques work and how they could be combined. A survey was conducted, which revealed
that the calendar and todo list were the most important techniques for users, and many
respondents were not against using timeboxing to a certain extent.

Based on the insights gained from the study, three target user personas were defined,
and their needs were analyzed against existing applications. However, the current imple­
mentations failed to meet the diverse needs of the target audience in a single app. Therefore,
the application was created using the Flutter multiplatform framework, which allows for
easy expansion to all major platforms. The app is currently available on Google Play 1 and
App Store 2.

The application that has been developed offers a combination of classic todo list func­
tionality with a timeline and traditional calendar views. Additionally, it provides a Po-
modoro tracker and enables users to view their planning history through statistics. The
app uses user-defined attributes to recommend the most appropriate tasks and offers time
frames for planning events based on related element history. The architecture of the applica­
tion is layered, allowing for easy extension and infrastructure modification without affecting
other layers. To support the local database requirements, the app utilizes self-managed syn­
chronization. This implementation makes it less expensive to maintain long-term since the
user only downloads server changes.

Sharing the app with potential users showed that it resonated with many of them, espe­
cially those with more extensive planning experience who were hoping for this combination
of ideas and techniques. Similar responses were also received at Excel@FIT 3 , from college
students, doctors, and even representatives of sponsoring companies. To ensure the app's
future success, it is important to address users' proposals and work on solutions to their
issues. One of the key areas that the app must focus on is improving its usability, as some
users found the interface overwhelming. It is also essential to consider whether the app
will support sharing tasks across users, as Appwrite currently supports teams and database
relationships. By addressing these issues, the app can gain more trust, which is crucial for
its future existence.

1https://play, google.com/store/apps/details?id=com.zimolajan.timenoder
2 littps: / / apps.apple, com/us/app / timenoder/id1640957069?platform=iphone
3littps: / / excel.fit.vutbr.cz / submissions/2023/051/51.pdf

54

https://play
http://excel.fit.vutbr.cz

55

Bibliography

[1] A B R A H A M I , Y . Scaling to 100M: MySQL is a better NoSQL. Wix Engineering
(utolso frissites: 2018. 07. 17.) Web: https:/'/www. wix.
engineering/post/scaling-to-lOOm-mysql-is-a-better-nosql (2019. 11. 30.). 2016.

[2] A D E T U N J I , O., A J A E G B U , O , O T U N E M E , N . , O M O T O S H O , O. J . et al. Dawning of
Progressive Web Applications (PWA): Edging Out the Pitfalls of Traditional Mobile
Development. American Academic Scientific Research Journal for Engineering,
Technology, and Sciences. 2020, vol. 68, no. 1, p. 85-99.

[3] A D O M A V I C I U S , G . and T U Z H I L I N , A . Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. IEEE transactions
on knowledge and data engineering. I E E E . 2005, vol. 17, no. 6, p. 734-749.

[4] A L L E N , D . Getting things done: The art of stress-free productivity. Penguin, 2015.

[5] A L R A S H E E D , S. H . and A L G H A M D I , W. M . Impact of an educational intervention
using the 20/20/20 rule on Computer Vision Syndrome. African Vision and Eye
Health. AOSIS. 2020, vol. 79, no. 1, p. 1-6.

[6] A N G E L O V , F . Architecture. Accessed: 2022-11-29. Available at:
https: //bloclibrary.dev/#/architecture.

[7] A R I G A , A . and L L E R A S , A . Brief and rare mental "breaks" keep you focused:
Deactivation and reactivation of task goals preempt vigilance decrements. Cognition.
Elsevier. 2011, vol. 118, no. 3, p. 439-443.

[8] B A N B U R Y , S. P. and B E R R Y , D . C. Office noise and employee concentration:
Identifying causes of disruption and potential improvements. Ergonomics. Taylor &
Francis. 2005, vol. 48, no. 1, p. 25-37.

[9] B E L L , R. M . , K O R E N , Y . and V O L I N S K Y , C. The bellkor solution to the netflix prize.
KorBell team's report to Netflix. 2007.

[10] B I L A L I C , M . , M C L E O D , P. and G O B E T , F . Inflexibility of experts—Reality or myth?
Quantifying the Einstellung effect in chess masters. Cognitive psychology. Elsevier.
2008, vol. 56, no. 2, p. 73-102.

[11] B R I T T O N , B . K . and T E S S E R , A . Effects of time-management practices on college
grades. Journal of educational psychology. American Psychological Association. 1991,
vol. 83, no. 3, p. 405.

56

[12] B R Y A N , J . F . and L O C K E , E . A . Parkinson's law as a goal-setting phenomenon.
Organizational Behavior and Human Performance. Elsevier. 1967, vol. 2, no. 3,
p. 258-275.

[13] B U E H L E R , R., G R I F F I N , D . and P E E T Z , J . The planning fallacy: Cognitive,

motivational, and social origins. In: Advances in experimental social psychology.
Elsevier, 2010, vol. 43, p. 1-62.

[14] B U N K L E Y , N . Joseph Juran, 103, pioneer in quality control, dies. New York Times.
2008, vol. 3, p. 50-55.

[15] C H I , M . T., G L A S E R , R. and R E E S , E . Expertise in problem solving. Pittsburgh Univ
P A Learning Research and Development Center, 1981.

[16] C H U I , M . , M A N Y I K A , J . and B U G H I N , J . The social economy: Unlocking value and
productivity through social technologies. McKinsey Global Institute, 2012.

[17] C L A E S S E N S , B . J. , V A N E E R D E , W. , R U T T E , C. G. and R O E , R. A . A review of the
time management literature. Personnel review. Emerald Group Publishing Limited.
2007.

[18] C L E A R , J . Atomic habits: An easy & proven way to build good habits & break bad
ones. Penguin, 2018.

[19] C O L E S B R E N N A N , C , S U L L E Y , A . and Y O U N G , G. Management of digital eye strain.
Clinical and experimental Optometry. Taylor & Francis. 2019, vol. 102, no. 1,
p. 18-29.

[20] C O L Q U I T T , J. , L E P I N E , J . and W E S S O N , M . Organizational Behavior: Improving
Performance and Commitment in the Workplace (4e). New York, N Y , USA:
McGraw-Hill , 2014.

[21] C O N N O L L Y , T. and B E G G , C. A practical Approach to design, implementation, and
management. Addison-Wesley, Reading, 2005.

[22] C O T T R E L L , S. The study skills handbook. Macmillan International Higher Education,
2013.

[23] D A T A . A I . The State of Mobile in 2022: How to Succeed in a Mobile-First World As
Consumers Spend 3.8 Trillion Hours on Mobile Devices. Accessed: 2022-12-21.
Available at: https: //www.data.ai/en/insights/market-data/state-of-mobile-2022/.

[24] D E M E D Y U K , I. and T S Y B U L S K Y I , N . Flutter vs Native vs React-Native: Examining
performance. 2020. Accessed: 2022-12-21. Available at: https://medium.com/swlh/
flutter-vs-native-vs-react-native-examining-performance-31338f081980.

[25] D U N F O R D , R., S U , Q . and T A M A N G , E . The pareto principle. University of
Plymouth. 2014.

[26] D U N S T A N , D . W. , H O W A R D , B . , H E A L Y , G . N . and O W E N , N . TOO much sitting-a
health hazard. Diabetes research and clinical practice. Elsevier. 2012, vol. 97, no. 3,
p. 368-376.

57

http://www.data.ai/en/insights/market-data/state-of-mobile-2022/
https://medium.com/swlh/

[27] E C C L E S , J . S., W I G F I E L D , A . et al. Motivational beliefs, values, and goals. Annual
review of psychology. Palo Alto. 2002, vol. 53, no. 1, p. 109-132.

[28] F O U N D A T I O N , K . Native and cross-platform app development: how to choose?
Accessed: 2022-12-21. Available at:
https: //kotlinlang. org/docs/native-and- cross-platf orm.html#debugging- some-

popular-myths- about-cross-platform-app-development.

[29] G E , Y . , X I O N G , H . , T U Z H I L I N , A . , X I A O , K . , G R U T E S E R , M . et al. A n energy-efficient
mobile recommender system. In: Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining. 2010, p. 899-908.

[30] G I L D E R , T. Flutter's Key Difference: Owning Every Pixel. 2019. Accessed: 2022-12-21.
Available at: https: //medium.com/flutter-community/flutters-key-difference-

owning- every-pixel-e2135b44c8a.

[31] G O M E Z U R I B E , C. A . and H U N T , N . The netflix recommender system: Algorithms,
business value, and innovation. ACM Transactions on Management Information
Systems (TMIS). A C M New York, N Y , USA. 2015, vol. 6, no. 4, p. 1-19.

[32] G O O G L E . Application Fundamentals. Accessed: 2022-12-21. Available at:
https: //developer.android.com/guide/components/fundamentals.

[33] G O O G L E . Compose Material 3. Accessed: 2022-12-21. Available at:
https://developer.android.com/jetpack/androidx/releases/compose-material3.

[34] G O O G L E . Material Components widgets. Accessed: 2022-11-29. Available at:
https: //docs.f lutter.dev/development/ui/widgets/material.

[35] G O O G L E . Material Design. Accessed: 2022-11-29. Available at:
https: //m3.material.io/.

[36] G O O G L E . Material Design Develop. Accessed: 2022-12-21. Available at:
https: //m3.mater ial.io/develop.

[37] G O O G L E . TensorFlow Lite [ht tps: / /www.tensorflow.org/l i te/guide] . Accessed:
2023-01-25.

[38] G O O G L E . Writing custom platform-specific code. Accessed: 2022-12-21. Available at:
https://docs.f lutter.dev/development/platform-integration/platform-channels.

[39] G R U B E R , H . E . and B Ö D E K E R , K . Creativity, psychology and the history of science.
Springer, 2005.

[40] G U P T A , P., G O E L , A . , L I N , J . , S H A R M A , A . , W A N G , D . et al. Wtf: The who to follow
service at twitter. In: Proceedings of the 22nd international conference on World
Wide Web. 2013, p. 505-514.

[41] H A R T S O N , R. and P Y L A , P. S. The UX Book: Process and guidelines for ensuring a
quality user experience. Elsevier, 2012.

[42] I B M . IOS app development. Accessed: 2022-12-21. Available at:
https://www. ibm.com/cloud/learn/ios-app-development-explained.

58

https://developer.android.com/jetpack/androidx/releases/compose-material3
http://www.tensorflow.org/lite/guide
https://docs.f
https://www
http://ibm.com/

[43] I Y E N G A R , S. S. and L E P P E R , M . R. When choice is demotivating: Can one desire too
much of a good thing? Journal of personality and social psychology. American
Psychological Association. 2000, vol. 79, no. 6, p. 995.

[44] J A L O T E , P., P A L I T , A . , K U R I E N , P. and P E E T H A M B E R , V . Timeboxing: a process
model for iterative software development. Journal of Systems and Software. Elsevier.
2004, vol. 70, 1-2, p. 117-127.

[45] K E R P E L M A N , T. Cloud Firestore Data Modeling (Google I/O'19). Accessed:
2022-11-26. Available at:
https://www.youtube.com/watch?v=lW7DWV2jST0&t=578s&ab_channel=Firebase.

[46] K I R P A L A N I , N . What's the 1 Productivity Tool? For Me, It's Timeboxing. [https:

//hbr. org/2021/09/whats-the-1-productivity-tool-for-me-its-timeboxing].
Accessed 16/08/2022.

[47] K o s , B . Timeboxing: A simple and powerful technique to improve your productivity
[https://www.spica.com/blog/timeboxing]. Accessed 16/08/2022.

[48] L A I L A , S. N . , S A B A R I A H , M . K . and S U W A W I , D. D. J . UI design of collaborative
learning app for final assignment subject using goal-directed design. In: I E E E . 2016
4th International Conference on Information and Communication Technology
(ICoICT). 2016, p. 1-6.

[49] L A K E I N , A . and L E A K E , P. How to get control of your time and your life. New
American Library New York, 1973.

[50] L E E , S., Y A N G , J . and P A R K , S.-Y. Discovery of hidden similarity on collaborative
filtering to overcome sparsity problem. In: Springer. International Conference on
Discovery Science. 2004, p. 396-402.

[51] L E H T O L A , L . , K A U P P I N E N , M . and K U J A L A , S. Requirements prioritization
challenges in practice. In: Springer. International Conference on Product Focused
Software Process Improvement. 2004, p. 497-508.

[52] L E R O Y , S. Why is it so hard to do my work? The challenge of attention residue when
switching between work tasks. Organizational Behavior and Human Decision
Processes. Elsevier. 2009, vol. 109, no. 2, p. 168-181.

[53] L U Z N I A K , K . and H A R T U N A , M . All You Need to Know About PWA on iOS
[https: //neoteric.eu/blog/all-you-need-to-know-about-pwa-on-ios/]. 2021.
Accessed 20/12/2022.

[54] M A C A N , T. H . , S H A H A N I , C , D I P B O Y E , R. L . and P H I L L I P S , A . P. College students'
time management: Correlations with academic performance and stress. Journal of
educational psychology. American Psychological Association. 1990, vol. 82, no. 4,
p. 760.

[55] M A C K E N Z I E , I., M E Y E R , C. and N O B L E , S. H O W retailers can keep up with
consumers. McKinsey & Company. 2013, vol. 18, no. 1.

[56] M A D O R E , K . P. and W A G N E R , A . D. Multicosts of multitasking. In: Dana
Foundation. Cerebrum: the dana forum on brain science. 2019, vol. 2019.

59

https://www.youtube.com/watch?v=lW7DWV2jST0&t=578s&ab_channel=Firebase
http://www.spica.com/blog/timeboxing

[57] M A J C H R Z A K , T. A . , B I 0 R N H A N S E N , A . and G R 0 N L I , T . - M . Progressive web apps:
the definite approach to cross-platform development? 2018.

[58] M A R K , G . , G U D I T H , D . and K L O C K E , U . The cost of interrupted work: more speed
and stress. In: Proceedings of the SIGCHI conference on Human Factors in
Computing Systems. 2008, p. 107-110.

[59] M A S I C A M P O , E . and B A U M E I S T E R , R . F . Consider it done! Plan making can
eliminate the cognitive effects of unfulfilled goals. Journal of personality and social
psychology. American Psychological Association. 2011, vol. 101, no. 4, p. 667.

[60] M I R A N D A , E . Time boxing planning: buffered moscow rules. ACM SIGSOFT
Software Engineering Notes. A C M New York, N Y , USA. 2011, vol. 36, no. 6, p. 1-5.

[61] M i S R A , R . and M C K E A N , M . College students' academic stress and its relation to
their anxiety, time management, and leisure satisfaction. American journal of Health
studies. Expert Health Data System, Inc. 2000, vol. 16, no. 1, p. 41.

[62] M U I . Move faster with intuitive React UI tools. Accessed: 2022-11-29. Available at:
https: //mui. com/.

[63] N E W P O R T , C. Deep work: Rules for focused success in a distracted world. Hachette
U K , 2016.

[64] N O T E B E R G , S. Pomodoro technique illustrated: The easy way to do more in less
time. Pragmatic Bookshelf, 2009.

[65] O A K L E Y , B . A . A mind for numbers: How to excel at math and science (even if you
flunked algebra). TarcherPerigee, 2014.

[66] O R A C L E . A Relational Database Overview. Accessed 20/1/2023. Available at:
https://docs.oracle.com/javase/tutorial/jdbc/overview/database.html.

[67] O V E R F L O W , S. 2020 Deleveloper Survey. Accessed: 2022-12-21. Available at:
https: / / ins ights , stackoverf low. com/survey/2020#technology-programming-
scripting-and-markup-languages-professional-developers.

[68] O V E S E N , N . , E R I K S E N , K . , T O L L E S T R U P , C. et al. Speeding up development
activities in student projects with time boxing and scrum. In: DS 69: Proceedings of
E&PDE 2011, the 13th International Conference on Engineering and Product Design
Education, London, UK, 08.-09.09. 2011. 2011, p. 559-564.

[69] P A R K I N S O N , C. N . and L A N C A S T E R , O . Parkinson's Law: or the Pursuit of Progress.
Murray London. 1958.

[70] P I N E D A M G . How Flutter & Dart Code Gets Compiled To Native Apps
[https://pinedamg.medium. com/how-f lu t te r -dar t -code-ge ts -compi led- to-
native-apps-c4612ea0ef0e]. Accessed: 2022-11-26.

[71] R E S E A R C H , F . A . PyTorch Mobile [https:/ /pytorch.org/mobile/home/]. Accessed:
2023-01-25.

60

https://docs.oracle.com/javase/tutorial/jdbc/overview/database.html
https://pinedamg.medium
http://pytorch.org/mobile/home/

[72] R i c c i , F. , R O K A C H , L . and S H A P I R A , B . Recommender Systems: Techniques,
Applications, and Challenges. Recommender Systems Handbook. Springer. 2022,
p. 1-35.

[73] R O S E N , L . D. , C A R R I E R , L . M . and C H E E V E R , N . A . Facebook and texting made me
do it: Media-induced task-switching while studying. Computers in Human Behavior.
Elsevier. 2013, vol. 29, no. 3, p. 948-958.

[74] S C H W A R T Z , B . The paradox of choice: Why more is less. New York. 2004.

[75] S H E P P A R D , A . L . and W O L F F S O H N , J . S. Digital eye strain: prevalence, measurement
and amelioration. BMJ open ophthalmology. B M J Specialist Journals. 2018, vol. 3,
no. 1, p. e000146.

[76] S O B O R O F F , I. and N I C H O L A S , C. Combining content and collaboration in text
filtering. In: Sn. Proceedings of the IJCAI. 1999, vol. 99, no. 1999, p. 86-91.

[77] T E N S E R F L O W . Content-based filtering & collaborative filtering (Building
recommendation systems with TensorFlow) [https://youtu.be/v90un9ALRzw]. 2021.
Accessed 20/12/2022.

[78] T R A C Y , B . Eat that frog!: 21 great ways to stop procrastinating and get more done in
less time. Berrett-Koehler Publishers, 2017.

[79] U S M A N , S. A . Using the Pomodoro Technique® to help undergraduate students better
manage technology-based multitasking during independent study: A design-based
research investigation. Lancaster University (United Kingdom), 2020.

[80] V I S C H E R , J . C. The effects of the physical environment on job performance: towards
a theoretical model of workspace stress. Stress and health: Journal of the
International Society for the Investigation of Stress. Wiley Online Library. 2007,
vol. 23, no. 3, p. 175-184.

[81] WlLMOT, E . C , E D W A R D S O N , C. L . , A C H A N A , F . A . , D A V I E S , M . J. , G O R E L Y , T.
et al. Sedentary time in adults and the association with diabetes, cardiovascular
disease and death: systematic review and meta-analysis. Diabetológia. Springer.
2012, vol. 55, no. 11, p. 2895-2905.

[82] Y A K O V E N K O , V . M . and S I L V A , A . C. TWo-class Structure of Income Distribution in.
Econophysics of Wealth Distributions: Econophys-Kolkata I. Springer Science ÍL
Business Media. 2005, p. 15.

[83] Z A O S A N D E R S , M . HOW Timeboxing Works and Why It Will Make You More
Productive. 2018. Accessed 22/1/2023. Available at: https://hbr.org/2018/12/how-
timeboxing-works-and-why-it-will-make-you-more-productive.

61

http://youtu.be/v90un9ALRzw
https://hbr.org/2018/12/how-

Appendix A

Contents of The Attached Memory
Media

/
i i — sources

LICENCE

I I — gen_models/ (Models generation code)

^fu n c t i o n s / (Appwrite's cloud functions)

"— l i b / (Source codes)

i — README.md (How to run the project i n the development environment)

I I — resources

1

— PlanningSurvey.csv (Results - the usage of planning apps)

I I — PlanningSurveyQuestions.pdf (Questions - the usage of planning apps)

I I — UserTesting.csv (Results - the app review)

I I — UserTestingQuestions.pdf (Questions - the app review)

' i — TimeNoderFigmaDesigns. f i g (File with Figma designs)

I I — app-release.apk (The release build of the app)

i — thesis (The thesis source f i l e s)

62

