
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

AUTONOMOUS ROVER NAVIGATION ON PLANE-

TARY SURFACE
AUTONOMNÍ NAVIGACE VOZIDLA NA POVRCHU PLANETY

BACHELOR’S THESIS

BAKALÁŘSKÁ PRÁCE

AUTHOR MAREK VAŠKO

AUTOR PRÁCE

SUPERVISOR doc. Ing. PETER CHUDÝ, Ph.D. MBA

VEDOUCÍ PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2019/2020

 Bachelor's Thesis Specification

Student: Vaško Marek
Programme: Information Technology
Title: Autonomous Rover Navigation on Planetary Surface
Category: Modelling and Simulation
Assignment:

1. Research historical evolution of planetary exploration rovers and get familiar with their
autonomous navigation principles.

2. Research a suitable algorithm for rover navigation using sensors available to a planetary
rover.

3. Perform Matlab implementation of the researched rover navigation solution.
4. Implement the navigation solution into a suitable planetary simulator.
5. Evaluate achieved results and discuss potential further improvements.

Recommended literature:

 According to supervisor's recommendations.

Requirements for the first semester:
Items No. 1, 2 and partially item No. 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Chudý Peter, doc. Ing., Ph.D. MBA
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: July 31, 2020
Approval date: July 23, 2020

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/22728/2019/xvasko16 Page 1/1

Abstract
Exploration of the depths of the space has led to the development of technology in various
fields. One of these areas is the exploration of the surface of extraterrestrial planets. An
unmanned ground vehicle is an effective way of exploration. This thesis deals with one
of the most important systems of unmanned vehicles, which is autonomous navigation.
The vehicle must be able to navigate in the environment and map potential obstacles. The
thesis will examine the navigation principles that have been used by existing vehicles. It will
then research the use of the algorithm based on the principle of simultaneous localization
and mapping and its implementation in MATLAB. This algorithm will be integrated into
the simulator, which will allow later integration into the real environment using the Robot
Operating System. A vehicle platform with simulated sensors and a six-wheel chassis, which
will be used for an integrated algorithm, will be designed in the simulator. Finally, the
quality of the proposed algorithm is evaluated and a discussion about future improvements
is initiated.

Abstrakt
Výskum hlbín vesmíru doviedol k vývoju technológii v rôznych oblastiach. Jednou z týchto
oblastí je prieskum povrchu mimozemských planét. Efektívny spôsob skúmania je bezpi-
lotné pozemné vozidlo. Práca sa zaoberá jedným z najdôležitejších systémov bezpilotných
vozidiel, čím je autonómna navigácia. Vozidlo sa musí vedieť orientovať v priestore a
zmapovať potenciálne prekážky. Práca v úvode preskúma navigačné princípy, ktoré boli
využívané existujúcimi vozidlami. Neskôr preskúma využitie algoritmu na princípe súčasnej
lokalizácie a mapovania a jeho implementáciu v MATLAB-e. Tento algoritmus bude inte-
grovaný do simulátora, ktorý umožní neskoršiu integráciu do reálneho prostredia pomocou
Robot Operating System. V simulátore bude navrhnutá platforma vozidla so simulovanými
senzormi a šesť-kolesovým podvozkom, ktorá bude slúžiť na testovanie integrovaného algo-
ritmu. V závere sa vyhodnotí kvalita navrhnutého algoritmu a zaháji sa diskusia o budúcich
vylepšeniach.

Keywords
Autonomous navigation, Gazebo, localization, LiDAR, Mars, mapping, NASA, RGB-D,
ROS, simulation, SLAM, unmanned rover

Klíčová slova
Autonómna navigácia, bezpilotné vozidlo, Gazebo, lokalizácia, LiDAR, Mars, mapovanie,
NASA, RGB-D, ROS, simulácia, SLAM

Reference
VAŠKO, Marek. Autonomous Rover Navigation on Planetary Surface. Brno, 2020. Bache-
lor’s thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
doc. Ing. Peter Chudý, Ph.D. MBA

Rozšířený abstrakt
Misie mimo dosah orbity Zeme určené pre hľadanie nových potenciálnych miest pre život
boli hlavným cieľom prieskumu vesmíru. Prvá medziplanetárna misia smerom k Venuši bola
vyslaná už v šesťdesiatych rokoch minulého storočia. Toto bol zlomový bod prieskumných
misií, ktoré začali minulým storočím a pokračujú do súčasnosti. Náročné prostredie mi-
mozemských planét sťažuje prieskum s posádkou. Bezpilotné misie poskytujú kompromis
v potenciálnych ziskoch a rizikách. Cieľom každej z týchto misií je dosiahnuť čo najviac
vedeckých pokrokov.

Jedným zo spôsobov prieskumu povrchu planét je použitie pristávacích modulov. Plat-
formou, ktorá poskytuje väčšiu flexibilitu ako pristávací modul, je bezpilotné vozidlo. Skú-
manie pomocou bezpilotných vozidiel prináša svoje vlastné výzvy. Jedna z najväčších je
lokalizácia a vyhýbanie sa potenciálnym prekážkam.

Planéta Zem má vybudovanú infraštruktúru určenú pre navigáciu. Služby, ako GPS,
poskytujú pokrytie takmer všetkých miest na povrchu. Vďaka tomu je možné získať infor-
máciu o presnej polohe v reálnom čase. Presné mapy poskytujú podrobný popis každého
možného terénu. Misia skúmajúca inú planétu môže byť prvou, ktorá kedy pristála na
povrchu vzdialenom milióny kilometrov od Zeme.

Dôležitosť riešenia tohto problému navigácie narastá, v prípade misií s časovo limito-
vanou dobou trvania. V týchto prípadoch je dôležité preskúmať čo najväčšie územie v čo
najkratšom čase. Vozidlo je závislé od informácii, ktoré je schopné samostatne získať a
spracovať. Operátor nemôže zasiahnuť do riadenia vozidla v reálnom čase, tým pádom je
potrebné vytvárať autonómne mapu okolitého prostredia a navigovať sa na nej.

V posledných rokoch došlo k veľkému vývoju smerom k rôznym riešeniam navigácie. Ti-
eto riešenia sú navrhnuté tak, aby neboli potrebné žiadne ďalšie navigačné údaje. Využívajú
sa hlavne komerčne dostupné senzory, čím táto forma navigácie nadobúda širšie uplatnenie.
Misie prieskumných vozidiel môžu tieto algoritmy taktiež efektívne využívať.

Existujúce misie používali vlastné riešenia, ktorým sa v práci budem podrobnejšie ven-
ovať. Prehľad riešení sa zamerá na históriu prieskumných vozidiel a vysvetlí použité nav-
igačné princípy ako sú vizuálna odometria a odometer. Senzory ktoré boli využívané pre
navigáciu a princípy ich fungovania budú taktiež detailnejšie popísané.

Algoritmus, ktorý využíva existujúce komerčne dostupné snímače, je hlavnou časťou
tejto práce. Tento algoritmus využije existujúce riešenie pre súčasnú lokalizáciu a mapo-
vanie. Jeho výsledkom bude mapa a poloha vozidla. Poloha a mapa sa získa z viacerých
senzorov ako sú odometer, stereoskopická kamera, hĺbková kamera a LiDAR. Algoritmus
bude implementovaný v MATLAB-e.

V práci bude navrhnutá simulovaná platforma vozidla, využívaná pre testovanie a inte-
gráciu algoritmu. Hlavnou inšpiráciou pri návrhu tejto platformy je prvá misa na povrchu
Marsu s bezpilotným vozidlom Sojourner. Vozidlo bude mať šesť-kolesový podvozok, mod-
ely senzorov so simulovanými výstupnými dátami a 3D modely iných častí ako je solárny
panel a rám. Ovládanie vozidla bude naprogramované v Python-e a princíp ovládania bude
v práci vysvetlený.

Integrácia skúmaného algoritmu do simulátoru bude pomocou Robot Operating System,
ktorý umožní neskoršiu integráciu do reálneho prostredia. V simulačnom prostredí Gazebo
bude navrhnutá testovacia scéna simulujúca podmienky na povrchu Marsu. Táto scéna
bude obsahovať rôzne prekážky. Navrhnuté vozidlo sa bude pohybovať po zvolenej trase
pomedzi prekážky a získa dáta o svojom okolí, ktoré budú spracované do mapy. Výsledky
práce budú štatisticky zhodnotené a určí sa najlepšia kombinácia využitých senzorov.

Autonomous Rover Navigation on Planetary Sur-
face

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of doc. Ing. Peter Chudý Ph.D. MBA. I have listed all the literary
sources, publications and other sources, which were used during the preparation of this
thesis.

. .
Marek Vaško
July 30, 2020

Acknowledgements
I would like to thank my supervisor doc. Ing. Peter Chudý Ph.D. MBA. for guidance,
professional help and comments on the researched subject which helped to reach desired
goals of this thesis. A special thanks comes to Alfredo C. Plascencia Ph.D. for providing a
professional help with the Robot Operating System.

Contents

Abbreviations 5

Symbols 6

1 Introduction 7

2 Historical evolution of planetary exploration rovers 9
2.1 Sojourner rover . 10
2.2 Spirit and Opportunity rovers . 12
2.3 Curiosity rover . 12

3 Rover navigation principles 14
3.1 Odometer . 15
3.2 Visual odometry . 17
3.3 Simultaneous Localization and Mapping . 18

3.3.1 Occupancy grid-map . 18
3.3.2 Scan matching . 19
3.3.3 Pose graph optimization . 19
3.3.4 Loop closure detection . 19

4 Research of used navigation algorithm 20
4.1 Sensors . 22

4.1.1 Stereoscopic camera . 22
4.1.2 Depth camera . 22
4.1.3 Light Detection and Ranging . 22

4.2 Image processing . 23
4.2.1 Camera calibration . 23

4.3 Relative pose . 24
4.4 Data synchronization . 24
4.5 Point-cloud processing . 25

4.5.1 Ground plane filtering . 26
4.5.2 Region of interest . 27
4.5.3 Down-sampling . 28

4.6 Two-dimensional scan . 29

5 MATLAB implementation of the navigation solution 30
5.1 Data acquisition, synchronization and pre-processing 30
5.2 Input data processing . 31

1

5.3 MATLAB Navigation Toolbox . 31
5.3.1 Integration of simultaneous localization and mapping 32
5.3.2 Map and pose output . 32

6 Integration of the navigation solution into a simulator 33
6.1 Rover platform . 33

6.1.1 3D model . 34
6.2 Rover control . 36
6.3 Simulation environment . 39

6.3.1 Physics configuration . 40
6.3.2 Model of the Martian surface . 40
6.3.3 Light Detection and Ranging sensor model 41
6.3.4 Stereoscopic camera model . 41
6.3.5 Depth camera model . 42
6.3.6 Model of the odometer . 42

6.4 Data visualisation . 42
6.5 Robot Operating System . 43

6.5.1 Coordinate frames . 44
6.6 MATLAB Robot Operating System Toolbox 45

7 Evaluation of achieved results 47
7.1 Test cases . 47
7.2 Statistical evaluation . 48
7.3 Search for optimal parameters of navigation algorithm 49
7.4 Results of testing . 50

8 Conclusion 53
8.1 Future improvements . 53

Bibliography 55

A LiDAR and odometer 59

B LiDAR point-cloud and visual odometry 62

C RGB-D and odometer 65

D RGB-D point-cloud and visual odometry 68

2

List of Figures

2.1 Lunokhod rover in museum. 10
2.2 MFEX Stripe projector. 11
2.3 MSL instruments . 13

3.1 Showcase of AutoNav. 15
3.2 Previous and current pose estimates . 16

4.1 Navigation algorithm architecture . 20
4.2 Overview of the navigation algorithm . 21
4.3 Camera calibration with OpenCV. 23
4.4 Point-cloud directly from the camera . 25
4.5 Point-cloud processing pipeline . 26
4.6 Point-cloud with ground plane filtered out 27
4.7 Point-cloud segment inside of ROI . 28
4.8 Down-sampled point-cloud . 29

5.1 Example map and position output . 32

6.1 Rough measurements of reference images . 34
6.2 CAD model with all required dimensions . 35
6.3 3D model form the right side . 36
6.4 3D model from the left side . 36
6.5 Turn classification . 37
6.6 Simplified model of the rover . 38
6.7 Wheel coordinate frame . 39
6.8 Repeating ground texture . 40
6.9 Martian surface model for simulation . 41
6.10 The rover model visualized in rviz . 43

7.1 Traversed path . 47

3

List of Tables

2.1 MFEX on-board sensors. 11

4.1 Region of interest boundaries . 27

6.1 Turn calcification . 37
6.2 Positions of wheels . 38

7.1 Searched intervals and selected samples . 49
7.2 Arithmetic mean and standard deviation samples for LiDAR 49
7.3 Arithmetic mean and standard deviation samples for RGB-D 50
7.4 Odometer statistics . 50
7.5 Visual odometry statistics . 50
7.6 LiDAR and odometer statistics . 51
7.7 LiDAR and visual odometry statistics . 51
7.8 RGB-D point-cloud and odometer statistics 52
7.9 RGB-D point-cloud and visual odometry statistics 52
7.10 Best to worst performing results . 52

4

Abbreviations

CAD Computer Aided Design
CCD Charge-coupled device
ECEF earth-centered, earth-fixed
ENU East North Up
FOV Field of View
GNC Guidance Navigation Control
GPS Global Positioning System
GT Ground-truth
IMU Inertial Measurement Unit
IR Infra-Red
LiDAR Light Detection and Ranging
MAHLI Mars Hand Lens Imager
MARDI Mars Descent Imager
MER Mars Exploration Rovers
MFEX Microrover Flight Experiment
MSL Mars Science Laboratory
NASA National Aeronautics and Space Administration
NED North East Down
PCL Point Cloud Library
PST Pacific Standard Time
RAT Rock Abrasion Tool
RGB Red Green Blue
RGB-D Red Green Blue Depth
ROS Robot Operating System
SLAM Simultaneous Localization and Mapping
SUV Sport utility vehicle
UAV Unmanned Areal Vehicle
UGV Unmanned Ground Vehicle
URDF Unified Robot Description Format
USA United States of America
USSR Union of Soviet Socialist Republics
UTC Coordinated Universal Time
V-SLAM Visual Simultaneous Localization and Mapping
VCS Version Control System

5

Symbols

𝛼 Steering angle
𝛽 Angle between local x-axis and a vector towards the

center of an arc
∆ Difference
𝜔 Angular velocity
𝜓 Yaw angle
𝜎 Standard deviation

𝑥 Arithmetic mean
𝐶 Center point of an arc
𝑑 Distance
𝑙1 Distance between front and middle axle
𝑙2 Distance between middle and rear axle
𝑙3 Distance between right and left wheel, measured from

the center of wheel
𝑀 Rotational matrix
𝑃 Position
𝑝 Vector from previous to current position
𝑃𝑒𝑟𝑟 Position error
𝑟 Radius
𝑡 Time
𝑣 Velocity

ˆ Estimate

𝑐𝑚𝑑 Command
𝑖 Current state
𝑖−1 Previous state
𝑙𝑒𝑓𝑡 Value for a left wheel
𝑟𝑒𝑙 Relative value
𝑟𝑖𝑔ℎ𝑡 Value for a right wheel
𝑤ℎ𝑒𝑒𝑙 Value for a wheel
𝑥 Value in the x-axis
𝑦 Value in the y-axis

6

Chapter 1

Introduction

Curiosity of mankind to search for resources and potential life on planets of our solar system
lead to missions beyond reach of Earth’s orbit. As early as 1960s, the first interplanetary
mission toward Venus was sent. This was a starting point of exploration missions going
thought the last century well into present time. The challenging environment of extraterres-
trial planets makes a manned exploration hard to undergo. Unmanned exploration provides
a compromise in potential gains and risks.

The goal of any exploration mission is to make as many scientific advancements as
possible. One way of planetary exploration is through use of landers. A lander provides
stationary base which can be insufficient for instruments on-board. A platform which pro-
vides flexibility is an unmanned rover. Agencies such as National Aeronautics and Space
Administration (NASA) have been flying rover missions towards other planets since 1990s.
The 2020 Rover Perseverance being latest addition to the NASA rover family [31] and an
earlier launched Chinese Mars rover Tianwen-1 [1].

Unmanned rover exploration brings challenges of it’s own. One of the biggest is the
knowledge of location and avoidance of potential obstacles. Earth has multiple infrastruc-
tures which are designed for navigation. Services such as GPS provide coverage on nearly
all places on the Earth surface. This makes knowledge of exact location in real-time pos-
sible. Accurate maps provide a detailed description of terrain however exploration rover
mission can be the first to ever land on a planetary surface distanced millions of kilometers
away form the Earth. The simple question is, how can the navigation information become
available?

The importance of this problem is most notable if a rover mission explores many places
in as a narrow time frame. The rover depends on its own since no navigation infrastructure
is available. To make this task even more challenging, an operator who may have access
to available rover data is not able to find obstacles or create maps in time for the rover to
avoid them or navigate around them. Thus, and autonomous

Recent years have seen a great amount of development towards different solution for
navigation. These solution are designed so no additional navigation data is needed. These
solutions take advantage of commercially available sensors and this makes this form of
navigation accessible. Exploration rovers can take the advantage of using these algorithms.
Existing missions used solutions of their own. The Chapter 2 takes a deeper look into
the history of exploration rovers. Navigation principles of unmanned rovers are explored
in the Chapter 3. Our approach, presented in the Chapter 4, will combine data provided
by multiple commercially available sensors such as stereoscopic camera, depth camera and
LiDAR and use them for navigation. The solution will provide both a map and position

7

without the use of additional navigation infrastructure. Inner working of implementation is
described in the Chapter 5. The designed algorithm is to made be used with a exploration
rover equipped these sensors. A simulation model of rover platform and its environment is
described in the Chapter 6. The full implementation of the navigation algorithm and its
performance is evaluated in the Chapter 7.

8

Chapter 2

Historical evolution of planetary
exploration rovers

Mankind has been looking towards space exploration form early ages. This can be seen in
early civilizations drawing star maps and maps of the Moon. The exploration of space has
become reality in the last century . It is ranging from manned mission to the Moon, probes
beyond edges of our solar system to more thorough exploration of planets, comets asteroids
and moons. Unmanned rovers being one way of planetary surface exploration.

First unmanned space exploration rovers date back to the second half of 20th century
to back then Union of Soviet Socialist Republics (USSR). Lunokhod 1, model of which is
shown in the Figure 2.1, has been a part of Luna 17 mission. Lunokhod 1 is first successful
unmanned rover mission followed by the second Lunokhod 2 mission. The purpose of this
mission was to explore Lunar surface, making this important step towards future planetary
exploration missions. Lunokhod rovers were at first meant to pave a way for manned mi-
ssions to the Moon. It would provide guidance beacon for manned lander and afterwards
cosmonauts would use rover to drive across Lunar surface. This path of development
was not pursued. The Lunokhod is eight wheeled exploration vehicle containing scientific
instruments such as X-Ray detector, photodetector, magnetometer, soil mechanics tester
and laser reflector. In addition to these instruments Lunokhod 1 and 2 contained a set of
TV cameras used for surface observation and navigation [10]. The navigation of these rovers
did not include any autonomy. The rover was controlled by a crew of 5 people including
commander, navigator, flight engineer, communications operator and driver. The crew was
controlling rover with Lunokhod Control Center which allowed each of the crew members
to control their part of rovers instrumentation. Images form Lunokhod navigation cameras
were received every twenty seconds. Single autonomous principle was fail-safe in form of
tilt detection where if over tilt was detected, rover would stop [10, 43].

Rovers missions continued through the rest of the century and are still pursued to this
day. The rover exploration effort was pursued mainly by three countries United States
of America (USA), USSR/Russia and China. Each of them having their own missions,
Lunokhod 1 and 2 from USSR/Russia, Yutu [40] and Yutu 2 [3] from China and Sojourner,
Opportunity, Spirit and Curiosity from the USA (NASA). The USA being the only country
with rovers on Mars surface, thus missions performed by NASA being most interesting for
this thesis.

9

Figure 2.1: Lunokhod rover in museum.
Source: [10].

2.1 Sojourner rover
Sojourner rover, the first rover to drive on a surface of another planet, was launched as part
of NASA’s Pathfinder mission. The rover experiment with code-name Microrover Flight
Experiment (MFEX), was small, low cost exploration platform with weight of approximately
10 kilograms [28]. It was launched in year 1996 and landed in year 1997 [42]. The rover
platform was limited mainly by computational power of radiation hardened processors of
that time. This ended up being one of the key limitations of design of appropriate navigation
and collision avoidance systems.

Sensors and instrumentation

The rover is equipped with a selection of sensors. Some of these sensors have multiple
purposes such as cameras [44]. Cameras are being used for both imaging and navigation.
List of sensors and their purposes can be seen in the Table 2.1. Some of these sensors
such as accelerometers are used for excessive tilt detection, the gyros are used to compute
current heading of the rover. The camera system present on this rover uses a pair of stereo
cameras. Stereo cameras produce image with a three dimensional perspective.

Stereoscopic cameras are extended with a set of five stripe laser projectors as shown in
the Figure 2.2. Laser stripe projectors project vertical stripes on the surface of Mars. The
stripe projectors and cameras are mounted to the front of the vehicle just below the solar
panel. Stripe projectors generate vertical beams of light which create stripes on the surface
of obstacles and the terrain in front of the rover.

Odometry was preformed using dead reckoning with data acquired by rotary encoders
on wheels. The direction tracking was done using gyro and a potentiometer for the steering
angle measurement. This approach does not result in high precision measurement when
used in environment such as Mars, since Mars has mainly dusty surface with slopes and
stones resulting in some amount of slip.

10

Figure 2.2: MFEX Stripe projector.
Source: [44].

Table 2.1: MFEX on-board sensors.
Source: [44].

Qty Sensor Primary Function(s)
3 Accelerometers Hazard Detection
1 Rate Gryro Dead Reckoning
2 Bumper (chassis) Collision Detection
4 Bumper (solar) Collision Detection
2 CCDs (front) Imaging; Proximity
1 CCDs (rear) Imaging; Target Validation
11 Current (Motor) Torque Monitoring; Fault Protection
2 Bogie Position Hazard Detection; Mobility
1 Differential Pos. Hazard Detection; Mobility
6 Wheel Position Dead Reckoning
4 Steering Angle Direction Control

Obstacle detection and avoidance

The obstacle detection system makes use of a pair stereo cameras rigidly mounted to the
rover front panel. The rover navigation system uses images from both right and left cameras.
The images taken do not use the whole sensor area but a limited set of five horizontal scan
lines. The process is repeated approximately every wheel radius worth of distance [44].

Image capture consists of five different images. One of the five laser stripe projectors
is turned on per image. The image will capture stripe projected by selected projector.
The lines captured by camera are then fed into a peak detector. The location of peaks in
captured line signify laser stripe is projected on the surface. Since rover has available pair
of stereo camera and the process of image capture is done for each of them, it is possible
to calculate depth for each captured point. The result for images combined will give five

11

by five range measurements array. The values of positions are then evaluated to determine
presence of obstacles [44].

The process of detection is based on comparison of measured values to values which
would be given by a flat surface. The values of range high above surface are considered
an obstacle. Ranges below flat surface level signify presence of trench or a cliff. The
thresholds which determine safety of traversed terrain are determined by ground-based
testing. Combination of this information and odometry provides a simple map of obstacles
[44].

2.2 Spirit and Opportunity rovers
Year 2004 brought two new rover exploration missions in the form of twin rovers of Mars
Exploration Rovers (MER) program.

”Spirit and Opportunity landed on Mars January 3 and January 24, 2004 PST
(Jan. 4 and Jan. 25 UTC). Both rovers lived well beyond their planned 90-day
missions. Opportunity worked nearly 15 years on Mars and broke the driving
record for putting the most miles on the odometer [38].“

Both rovers being much larger platforms than their predecessor Sojourner. Rover weigh
around 180 kilogram and are the size of golf cart [38]. Rovers included more instrumen-
tation, ranging from different scientific experiments such as Rock Abrasion Tool (RAT),
spectrometers and a microscopic imager. The camera system has been improved by use of
Hazcams (similar to stereo cameras used by Sojourner) rigidly mounted to the front and
back of the rover [48], a pair of Pancams (panoramic cameras) mounted on a ”head“ (ro-
tating mast at the height of human eyes) [47] and a pair of Navcams (engineering cameras
used for three-dimensional imagery of surroundings) located on the same mast as Pancams
[48]. Better camera equipment along with performance improvements of processor power
resulted in different navigation method.

2.3 Curiosity rover
Curiosity rover was launched in year 2011 and landed on the surface of Mars on 6th August
2012. Mission known by its name Mars Science Laboratory (MSL) was determined to
search for mainly biological compounds. The rover platform is biggest launched so far with
weight of approximately 900 kilograms and size of a small SUV [46]. This rover is a newer
generation of Mars Exploration Rovers with improved on-board computational power. The
MSL has radiation-hardened 200 MHz processor based on PowerPC 750 architecture which
is ten times faster than previous to twin rovers of MER [5]. This mission has seen large
reuse of navigation software already developed for MER mission including local and global
navigation algorithms. The notable changes for this mission was the usage of new sensors
some of which are described in this section. These sensors include cameras and better
science instruments. All sensors and instruments on-board can be seen in the Figure 2.3.

Camera systems

Curiosity camera system consists more or less of same types of cameras as previous MER
missions. The camera systems are hazard avoidance cameras ”HazCams“, navigation cam-
eras ”NavCams“ [6] and cameras located on a rotating mast ”MastCams“ [19]. HazCams

12

Figure 2.3: MSL instruments
Source: [45].

are rigidly mounted to the body of rover in the front and rear. Stereo imaging capability
allows them to take pictures with three-dimensional perspective. HazCams take pictures
with Field of View (FOV) of 124 degrees, in gray-scale format with filter for red wavelength
of 650 nanometers. HazCams and NavCams are engineering stereoscopic cameras used for
autonomous navigation and collision avoidance. NavCams unlike HazCams are located on
the rotating mast so called ”head“, pointing down towards ground providing field of view
of 45 degrees. These cameras have also the capability of stereoscopic images in the same
wavelength as HazCams. HazCams and NavCams both take images with resolution of 1024
by 1024 pixels [6].

Engineering cameras are accompanied by a set of science cameras. These cameras in-
clude MastCams, ChemCam and Mars Hand Lens Imager (MAHLI) [45]. Scientific cameras
are not necessary for navigation but their use will be mentioned just for completion and to
highlight some of the science experiments on-board. The MastCams are pair of stereoscopic
color imaging cameras used for imaging of mars surface in three-dimensions. These cam-
eras are located on the rotating mast and are equipped with a zoom lens [19]. ChemCam
analyzes elemental composition of Martian rocks after a powerful laser beam has been fired
at them. The last scientific camera described is MAHLI. This camera provides closeup view
of minerals. Geologist back on Earth can then examine features on Mars rock which are
smaller than width of human hair [17]. A less profound imaging system is Mars Descent
Imager (MARDI). This system was not used after landing [18].

13

Chapter 3

Rover navigation principles

The MER and MSL missions use their cameras as main source for navigation information
[2]. These rovers have the ability to track as much as 16,000 point per single image. The
computing performance improvements being the main reason for such improvement. MER
is able to travel autonomously up to ten times the speed of Sojourner, which results in
larger area rover is able explore.

One of the greatest improvements allowing this level of speed was the use of visual
odometry (see Section 3.2). The wheel odometry used on the previous generation of rover
was suffering from inaccuracies accumulated over time. This is bound to be solved by visual
odometry.

The usage of stereo cameras allows rover co create three dimensional representation
of terrain. The rover is then able to create a map of environment in front of it’s sensors
and along path as it moves. This is done together with use of visual odometry. The
autonomous navigation system called AutoNav [2] uses these points to determine the height
of the terrain, density of rocks, excessive tilts and roughness of surface as can be seen in
the Figure 3.1. The surrounding environment is mapped on a grid map with grid size of
diameter of the wheel. Different parts of terrain are then marked with a goodness value.

Goodness values indicate traversability of terrain. High value is traverseble and low
values indicate hazardous areas. The obstacles are inflated by the diameter of circle en-
capsulating rover. Map is updated every step. Single step is between 0.5 and 2 meters
depending on how many obstacles are nearby.

A more recent addition is use of global cost-map. The cost map is a uniform grid. Each
cell has inverse value from values in goodness map. The cost map classifies cells by their
occupancy. Cells with lower cost are considered to be traversable where as high cost value
is given to cells containing obstacles or more hard to traverse terrain. A combination of
visual odometry and feature detected in images is used to create this map. This system
allow a use of two dimensional planning algorithm called Field D* [7].

This chapter will explore in more detail different approaches which where described
in previous paragraphs. The Section 3.1 will describe one approach to odometer which is
similar to ones used on planetary rovers. The Section 3.2 will describe a visual odometry
approach. The last Section 3.3 will explore a different approach which will take advantage
of map to localize a rover. This approach will then be used in later chapters.

14

Figure 3.1: Showcase of AutoNav.
Source: [2].

3.1 Odometer
Earthbound vehicles of the past or planetary rovers such as Sojourner use localization data
based on encoders. This approach takes advantage of measurement of number of wheel
rotations. The accuracy of this approach is compromised once mechanical properties of the
surface are unpredictable or unstable.

Slip should be considered by making this data less relied upon or by determining prob-
abilistic nature of position information given by this source. Error created by slippage of
wheel is not immediate but accumulates over time.

The calculations presented will use encoder data of two non-steerable wheels of the rover
to determine a dead-reckoning odometry sample for single step. Accuracy can be improved
by averaging and calculating odometry of each wheel present on the vehicle. Odometry for
one set of wheels is sufficient for our use-case. The only condition for is that wheels are in
contact with ground at all time.

The dead-reckoning approach uses model of robot equivalent to differential drive robot
and is based on code provided in an open-source differential drive solution [4]. This approach
may be used for rover types such as differential drive or for rear wheels of Ackermann
steering geometry [8]. The later described rover model will be using six wheels with fixed
middle axle.

The assumption is made that a path raveled by the rover can be approximated using
multiple arc segments. Encoders present on motors or software controlling position of
wheels can present data about position of wheels. Data about position of the wheel is
expected to reflect real world orientation of the wheel. A distance traveled by the wheel
can be calculated if previous and current position of the wheel are know. The difference
in distances traveled by right and left wheels allows a calculation of relative yaw angle.
Distance traveled by the rover is determined as average of distances traveled by left and
right wheels. A relative position is estimated as a position on arc segment with arc length
of measured distance and center angle of relative yaw. The new position and new yaw angle
are then calculated form the previous position and the previous yaw angle.

15

https://github.com/ros-controls/ros_controllers/tree/noetic-devel/diff_drive_controller

The overall position will be in a coordinate frame of odometry. This frame can be local
or represent other coordinate system such as North East Down (NED) or East North Up
(ENU). The Figure 3.2 shows estimation using arc segments in ENU with x-axis in the
direction of East and y-axis in the direction of North. Value of ∆̂𝜓 is estimated relative
yaw angle measured in radians, �̂� 𝑖 is current position estimate, �̂� 𝑖−1 is previous position
estimate, �̂� is estimated center point of the turn and �̂� is estimated radius of the turn. The
estimate of distance traveled by vehicle ∆�̂� in ∆𝑡 = 𝑡𝑖 − 𝑡𝑖−1 will equal to average of both
distances traveled by left ∆𝑑𝑙𝑒𝑓𝑡 and right wheel ∆𝑑𝑟𝑖𝑔ℎ𝑡. Estimated paths traveled by right
and left wheels can be seen in this figure. All position are expected to be in two-dimensions
and measured in meters, distances are expected to be measured in meters, time is measured
in seconds.

∆��

��−1

���� ()

���ℎ �)

��

 �3

�

�

��

�

Figure 3.2: Previous and current pose estimates

∆�̂� =
∆𝑑𝑙𝑒𝑓𝑡 + ∆𝑑𝑟𝑖𝑔ℎ𝑡

2
(3.1)

The arcs traveled by both wheels and rover will have the same center point. If a distance
of both wheels, labeled 𝑙3 (see section 6.2), is known the ∆�̂� can be derived from equations
of arc length. A positive value of 𝑟 is considered to be a left turn.

∆𝑑𝑙𝑒𝑓𝑡 =

(︂
𝑟 − 𝑙3

2

)︂
∆�̂� (3.2)

𝑟 =
∆𝑑𝑙𝑒𝑓𝑡

∆�̂�
+
𝑙3
2

(3.3)

∆𝑑𝑟𝑖𝑔ℎ𝑡 =

(︂
𝑟 +

𝑙3
2

)︂
∆�̂� (3.4)

𝑟 =
∆𝑑𝑟𝑖𝑔ℎ𝑡

∆�̂�
− 𝑙3

2
(3.5)

∆𝑑𝑙𝑒𝑓𝑡

∆�̂�
+
𝑙3
2

=
∆𝑑𝑟𝑖𝑔ℎ𝑡

∆�̂�
− 𝑙3

2
(3.6)

∆�̂� =
∆𝑑𝑟𝑖𝑔ℎ𝑡 − ∆𝑑𝑙𝑒𝑓𝑡

𝑙3
(3.7)

16

The value of �̂� can be now derived from equation for angular distance of an arc or from
other previously defined equations.

∆�̂� = ∆�̂��̂� (3.8)

�̂� =
∆�̂�

∆�̂�
(3.9)

�̂� =
𝑙3(∆𝑑𝑙𝑒𝑓𝑡 + ∆𝑑𝑟𝑖𝑔ℎ𝑡)

2(∆𝑑𝑟𝑖𝑔ℎ𝑡 − ∆𝑑𝑙𝑒𝑓𝑡)
(3.10)

If the measurement of 𝑑𝑙 and ∆𝑑𝑟𝑖𝑔ℎ𝑡 was made in time ∆𝑡 the estimated velocity 𝑣 and
estimated angular velocity �̂� will equal to

𝑣 =
∆�̂�

∆𝑡
(3.11)

�̂� =
∆�̂�

∆𝑡
(3.12)

The new position is then found by first searching for a point on a arc defined by center
point �̂� and radius �̂� at which rover would have same yaw angle as previous yaw estimate
�̂�𝑖−1. This position is equivalent to last position estimate �̂� 𝑖−1. A position on a arc where
rover has current yaw angle �̂�𝑖 is found next. This position is equivalent to current position
estimate �̂� 𝑖.

3.2 Visual odometry
Visual odometry unlike wheel odometry does not measure distance traveled by wheel rota-
tion but rather by detecting specific features between two or more consecutive images. The
simple explanation of this approach is to take multiple images in different time and compare
them to each other. The movement of camera between these images will result in move-
ment of features present in images. Resulting features can be later used for purposes other
than odometry. A three-dimensional map can be created since a known three-dimensional
positions of features is available. This form of map creation principle is being used by plan-
etary rovers such as MER or MSL. Rovers use this approach to detect and later evaluate
obstacles near the vehicle.

Visual odometry approaches may use different kinds of image sensors. This includes
single camera, stereo camera pair or even a depth camera. Images used as source for visual
odometry needed to be rectified. The approach used for calibration will be introduced in
the Section 4.2.1. Available algorithms provide motion and position error estimate. Depth
cameras and stereo cameras provide higher accuracy of tracked features. Packages such
as viso2, ORB-SLAM2 [29] and others provide feature complete visual odometry solutions.
The package RTAB-Map [15] provides multiple visual odometry approaches. It implements
two before mentioned approaches and allows the use of stereo cameras. The common
principle used by RTAB-Map splits process of visual odometry into five different parts
listed below.

∙ Feature detection.

∙ Feature matching or optical flow.

∙ Motion estimation.

17

http://wiki.ros.org/visio2

∙ Pose update.

∙ Feature map or key frame update.

A different kind of feature detection algorithm or approach can be configured in a ini-
tialization phase. This is used to fine-tune performance of this algorithm which may be
needed depending on an exact environment configuration. The specific implementation
considered for purposes of this work is previously mentioned RTAB-Map. A stereo camera
configuration is used.

3.3 Simultaneous Localization and Mapping
The main goal of the navigation algorithm presented in this thesis is to create a map and to
know a position on the map. This approach should take a limited amount of available data
and process it in a way which is suitable for navigation. There exist multiple approaches to
do so. Approaches used by planetary rovers which have been explained at at the start of this
Chapter do not take the advantage of previously created maps. Knowledge of previously
visited areas can be an advantage if a location on the map is re-visited multiple times.
This approach can than re-evaluate its position relative to map, which can improve overall
accuracy of produced map and tracked location.

Problem of Simultaneous Localization and Mapping (SLAM) also known as Concurrent
Mapping and Localization (CML), as defined by book of Probabilistic Robotics [49], arises
when robot does not have access to a map of the environment nor does it have access to
its own poses. The only information know are measurements and controls. Robot needs
to acquire map of the environment whilst also localizing it on it. Online SLAM problem
involves estimating these parameters for a current moment in time. Many algorithm for
online SLAM problem discard past measurements and controls once they are processed. A
full SLAM aims to estimate these parameters over full time.

Existing algorithms provide more optimal solutions to the problem of SLAM. Choice
for different approaches was settled to be on solution provided by MATLAB Navigation
Toolbox with name of publication Real-time loop closure in 2D LIDAR SLAM [11]. This
approach uses data from multiple sources including laser scans and initial pose estimate to
create accurate map of the environment. Laser scans are in two-dimensional form. The
algorithm uses loop closure detection and pose graph optimization to make more accurate
estimations. The full implementation exceed reach of this work but simpler concepts and
insight into working of this approach need to be discussed. Knowledge of these principles
is necessary for proper integration of algorithm into designed navigation solution.

3.3.1 Occupancy grid-map

Map provided by the SLAM is in a grid-map form. This representation is more equivalent
to a raster image where each pixel represents single cell. Information stored in the cell
is in a form of probability of cell being occupied. Grid-map processing then takes all
cells with their corresponding probabilities and creates map containing only binary values.
Information about cell being occupied or free is saved. The occupancy threshold is a value
at which cell is considered to be occupied. Other threshold can determine probability at
which cell is considered to be free. Single or both of these thresholds can be used to create
binary map form of the occupancy map [21].

18

3.3.2 Scan matching

Pose changes between two different scans can be computed from scan-to-scan matching
algorithm. This can adjust for an error generated by initial estimate using odometry source.
The most efficient approach to scan matching uses only current and previous scan match,
which is called scan-to-scan matching. On its own scan-to-scan matching accumulates error
over time. Scan-to-map matching matches new scans against global map and tries to find
optimal match, this improves position especially for use with pixel-accurate methods. The
scan-to-map matching is however more resource expensive, which manifests itself especially
on larger maps. Approach used in this case splits map into sub-map containing most recent
scans to make it more efficient. Scan matching is done against recent sub-map. After
amount of new scans is inserted into sub-map, the sub-map is finished and no new scans
are added to it. Poses of matched scans are saved to pose graph [11].

3.3.3 Pose graph optimization

Further improvements to reduction accumulated error is through optimization of pose
graph. Pose graph is structure witch attaches each scan to its pose in map. Further
reduction of pose error is possible, if graph is periodically optimized as new sub maps are
added. The start of this optimization can be triggered when loop closure is detected [11].
The result of this optimization should improve overall pose in a global map.

3.3.4 Loop closure detection

Finished sub-maps are added as candidates for loop closure detection. The process of loop
closure detection tries to scan-match newly scanned areas to already explored parts of the
map. Match will occur if the scan with greater correlation than set threshold is found.
The search is preformed in a selected radius. Adjustment to pose and optimization to
pose-graph is made if a match happens [26].

19

Chapter 4

Research of used navigation
algorithm

Rover navigation on a planetary surface is a challenging task when a limited set of sensors
and available navigation data is considered. Earthbound vehicles are equipped with sensors
capable of accurate pose estimate in real-time. Systems such as GPS or European Galileo
provide exact navigation information in virtually all places on the Earth’s surface. These
systems work on the basis of multiple satellites providing constant signal to the vehicle. The
navigation on the surface of planet other than Earth’s cannot be based on expectation of
constant position updates from such systems. Planets such as Mars do not have navigation
infrastructure capable of providing this kind of service. The accurate estimate of pose may
not be possible or available for long duration of time. Rover is in this case depending on
on-board sensors. Overall overview of sensors data used and outputs of the navigation
algorithm can be seen in the Figure 4.1.

Figure 4.1: Navigation algorithm architecture

Navigation algorithm used for problem of localization must be able to identify motion
and pose relative to the surrounding environment of the rover. A map of surrounding
environment is requirement for autonomous and safe navigation and path planning. The
map may already be available or unknown. The navigation in already known environment
is commonly used for in non-changing environment such as household. The localization in
this environment may be provided using Monte Carlo localization [49] based on reference
grid map and sensor data.

The case for planetary exploration has an unknown map. This requires the use of
previously mentioned SLAM. SLAM algorithm may be used to map two-dimensional or
three-dimensional environment depending on data provided. This form of mapping gen-

20

erates maps in form of two-dimensional grid or three-dimensional octree structures [12].
Sensors providing information about depth may use two-dimensional SLAM. Image-only
based approach, Visual Simultaneous Localization and Mapping (V-SLAM) [15], uses data
provided by single or stereo pair of cameras to create three-dimensional map of the envi-
ronment. Both SLAM approaches may take advantage of initial pose estimate.

The navigation algorithm will take advantage of selection sensors based of sensors used
on existing Mars rovers. It will process available data into form of two dimensional scan.
Existing two-dimensional SLAM algorithm will be used to create a map of the environment
and track rover’s location. More detailed flowchart presented in the Figure 4.2 provides a
overview of different parts of navigation algorithm.

Figure 4.2: Overview of the navigation algorithm

21

4.1 Sensors
Planetary roves sent throughout the years have been equipped with different variety of
sensors. Modern and commercially available counterparts to these sensors are considered
as it is more desirable for future work. Today’s market provides selection of sensors which
can be used for navigation. A number of different cameras and depth sensors which can be
considered today’s version of those used on Mars missions will be described in this section.

4.1.1 Stereoscopic camera

One kind of imaging sensor commonly used for planetary rover navigation is the stereoscopic
camera. Camera consists of two separate sensors distanced from each other by a known
length. Two sensors are imaging same space from different angles or positions. If a feature
is detected by both cameras at the same time (considering cameras are calibrated) the
triangulation can be used to determine distance of it from these sensors [36]. Stereoscopic
camera provides a more accurate pose estimate when used for visual odometry described
in the Section 3.2.

4.1.2 Depth camera

One approach used for range imaging is a depth camera. Depth cameras, considered for this
algorithm, provide image in the form of RGB-D [16]. As a name may suggest the output
image consists of four different channels, Red (R), Green (G), Blue (B) and Depth (D).
Depth perception is achieved in similar way to stereoscopic imaging. Most depth cameras
use 3 different imaging sensors. Infrared projector is used in addition to project points
on the surface in front of sensors. Two infrared sensors are detecting projected points. A
method is used to determine three-dimensional position of projected points. This directly
results in depth perception without need for additional processing on the receiving end.
Third camera is used for RGB observation of environment and it can be used for later
processing.

4.1.3 Light Detection and Ranging

A different approach to depth perception is through Light Detection and Ranging (LiDAR).
The LiDAR uses laser beam range finder to determine distance information [32]. The
distance is determined by measuring time it takes for the sent signal to return. This
approach is similar to RADAR systems, hence the name. Commercial LiDAR sensors
provide measurement of 360 degrees around one point. A form of scan can be a one-
dimensional line or two-dimensional image. The lidar will sent beams of light in multiple
direction around the point of rotation. Sending rate of these beams can be changed on-the-
go which allows adjustable resolution of measurements.

22

4.2 Image processing
Raw data acquired by a camera is not a suitable input for processing algorithm such as
visual odometry. This section will describe camera calibration method used to process raw
image data in way such that they can be later used in the researched navigation algorithm.

4.2.1 Camera calibration

Most of feature detection algorithms expect input images to be in a form equivalent to a
pinhole camera [36]. The image generated by real-world camera is distorted due to usage
of lenses.

Image calibration is done using software capable of determining distortion parameters.
Software such as MATLAB’s Single Camera Calibrator App, MATLAB’s Stereo Camera
Calibrator or open-source library OpenCV provide this functionality. The calibration pro-
cess uses a physical calibration pattern in a form of checkerboard, an asymmetrical circle
pattern or a symmetrical circle pattern. The result of calibration will be a list of distortion
coefficients.

OpenCV documentation [37] describes calibration process as estimation or radial and
tangential distortions. Distortion coefficients are described by coefficients (𝑘1, 𝑘2, 𝑝1, 𝑝2, 𝑘3)
where 𝑘1, 𝑘2, 𝑘3 are used for radial correction and 𝑝1, 𝑝2 are coefficients for tangential cor-
rection. Radial correction is done to remove fish-eye lens effect. This is mainly due to
geometry of selected lenses and is more profound on lenses with high field of view. Tangen-
tial correction is done to remove orientation distortion. This distortion is result of imaging
plane not being parallel to lenses when taking an image.

Reverse transformation is then applied on every image taken by calibrated camera,
resulting in pinhole camera-like image. This image is considered to be rectified. Unrectified
images may cause problems later down the line, especially when exact real-world position
of object has to be estimated.

Figure 4.3: Camera calibration with OpenCV.
Source: [37].

23

https://www.mathworks.com/help/vision/ug/single-camera-calibrator-app.html
https://www.mathworks.com/help/vision/ref/stereocameracalibrator-app.html
https://www.mathworks.com/help/vision/ref/stereocameracalibrator-app.html
https://opencv.org/

4.3 Relative pose
A odometry estimate will give an absolute position in defined coordinate frame. The nav-
igation algorithm requires a position relative to coordinate frame of last scan. This is cal-
culated form previous odometry position from as described in the Section 3.1. Information
needed is current position 𝑃 𝑖 and a previous position 𝑃 𝑖−1, both position are represented
as a point in two dimensions measured in meters. Yaw angles 𝜓𝑖−1 and 𝜓𝑖 are required as
well and are expected to be in radians. The communication interface between navigation
algorithm and odometry block uses quaternion for orientation. The yaw angle needs to be
acquired by converting quaternion to Euler angles. A difference of positions in a form of
vector 𝑝 is then calculated as 𝑝 = 𝑃 𝑖 − 𝑃 𝑖−1. This will be a two-dimensional row vector.
Relative yaw angle is calculated as difference of ∆𝜓 = 𝜓𝑖 − 𝜓𝑖−1. The vector 𝑝 does not
represent position in coordinate frame of previous scan. In order to transform it a proper
coordinate frame an inverse rotation around origin by angle of 𝜓𝑖−1 is needed.

𝑀−1
𝜓𝑖−1

=

[︂
cos (−𝜓𝑖−1) sin (−𝜓𝑖−1)
− sin (−𝜓𝑖−1) cos (−𝜓𝑖−1)

]︂
(4.1)

(4.2)

The relative position in coordinate frame of previous scan 𝑃 𝑟𝑒𝑙 is then calculated as multi-
plication of a vector by a matrix.

𝑃 𝑟𝑒𝑙 = 𝑝𝑀−1
𝜓𝑖−1

(4.3)

4.4 Data synchronization
Selected SLAM algorithm expect data form multiple sensors to be available. Data acquired
from sensors may not be synchronized. This causes two contradictory information to be
received at the same time. In an ideal situation, the data provided by both sensors would
the same be at the moment in time. This would be true for received data. Different real-
world sensors and networking solutions provide different data-rates and data delays. This
requires usage of time stamps. Time stamp provide a simple description about when the
data was created or measured.

Synchronization process used in this algorithm expects different rates for data publish-
ing among sensors. At first, current time stamp is established and only data with newer
timestamp is received. Second expectation is about sensors publishing data in different
rates. The odometry data is expected to be received more frequently then depth sensor
data. If network delay between sensors and mapping software in not too long, additional
synchronization between two data sources is not needed. Depth information is received and
odometry is expected to arrive in short time span after.

24

4.5 Point-cloud processing
Images taken in RGB-D provide depth information in a form of a point-cloud. This kind of
point-cloud is defined in a way similar to a raster image taken by a camera. It contains image
resolution and depth information in an array representing pixels. Additional information
such as projected color and FOV may be included providing more information.

X [m]

Y [m]

Z [m]

Figure 4.4: Point-cloud directly from the camera

The full height of image taken by a camera sensor will cover more FOV than is needed
for obstacle detection. This can be seen in the Figure 4.4. Square sensor with FOV of
120 degrees may contain usable data only on up to middle of the sensor. Simple filtering
as image cropping may be used for this approach. More sophisticated approach uses a
selection of area in three dimensions after 2D image is transformed into a three-dimensional
point-cloud structure. Projects such as Point Cloud Library (PCL) [41] or MATLAB point-
cloud implementation in Computer Vision Toolbox [20] provide point-cloud segmentation
algorithms for different three-dimensional volumes. Order of processing steps done on
point-cloud is described in the Figure 4.5. Segmentation algorithm used in a point-cloud
processing pipeline are introduces in following sections.

25

Figure 4.5: Point-cloud processing pipeline

4.5.1 Ground plane filtering

Generated point-cloud will contain points of objects of interest such as obstacles or rocks.
These object are surrounded by points on the ground or obstacles, which are not of interest.
The ground by itself should not be considered a obstacle which would not be the case if no
further processing is used. The filtering algorithm should separate out any points which are
considered to be non-threatening. The approach used for filtering of ground is described as
plane fitting [24].

Simple plane fitting algorithm would detects small deviations as not being a part of
ground plane. This problem is solved using maximum allowable distance from an inlier
point (a point approximately fitted to the plane) and an maximal angular rate [24]. These
two parameters provide option to set a distance from plane in case of first parameter and a
maximum absolute angle from defined normal vector of plane in case of second parameter.
This will remove point which may originate from noise. Maximal angular rate allows to
filter out misalignment and relatively small terrain slopes.

26

X [m]

Y [m]

Z [m]

Figure 4.6: Point-cloud with ground plane filtered out

4.5.2 Region of interest

Points representing obstacles will be contained only in a small volume of overall point-
cloud. Three-dimensional volume used for reduction of working area is Region Of Interest
(ROI). This type of segmentation allows definition of box in three dimensions [23]. Total
of six different values need to be specified for filtering. Set of two values define lower and
upper boundary, three of these sets define boundaries for each axis. Segmentation result
will contain segment of point-cloud in specified region. This will result in highly reduced
number of points in the point-cloud. Later filtering operations will speed up the process.

The filtered area used in our application selects any point in region in front of the vehicle
up to a height of 0.5 meters. The distance is limited to 20 meters. The overall boundary
definition per each axis is specified in the Table 4.1.

Table 4.1: Region of interest boundaries

Axis Lower boundary [m] Upper boundary [m]
X 0 20

Y −20 20

Z 0.05 0.5

27

Figure 4.7: Point-cloud segment inside of ROI

4.5.3 Down-sampling

The ROI segmentation provides smaller but overall still rather large size of point-cloud.
This comes as a result of resolution of image acquired from a sensor. If input image is of
resolution 1000x1000 pixels and the previous processes reduce overall size of point image
to 1

10 , the result will still contain 100-thousand points. This is just too many for SLAM
algorithm anticipated to be used. The step of down-sampling is expected to reduce size of
this point-cloud into more manageable size of ≈ 1000 points.

Large amount of down-sampling algorithms are available in point-cloud processing li-
braries [22, 39]. Some of these methods provide performance advantage or higher accuracy.
The main goal behind it is to reduce the number of points in the point-cloud. In our case,
two methods are considered for down-sampling. Grid averaging method returns points
filtered using grid-box filter of a defined three-dimensional box size in a grid [22]. The ran-
dom sampling takes random points with predefined probability, the resulting point-cloud
will approximate only a fraction of points defined by the random sampling probability [22].

Combination of both algorithms is used. Both of these approaches have their advan-
tages. The random sampling algorithm requires less processing power compared to the grid
sampling, which provides evenly spaced out points. To take the most of both approaches,
the sampling firstly takes random samples from point-cloud with a rate of 5%, then the grid-
average sampling takes resulting samples and reduces them into one point in 5 centimeter
cubes in a grid.

28

0

5

10

X [m]

-5
0

5

Y [m]

0

1

2

3

Z [m]

Figure 4.8: Down-sampled point-cloud

4.6 Two-dimensional scan
A two-dimensional LiDAR scan is a representation of two-dimensional point-cloud defined
by set of angles and distances or a list of points in 2D space defined by a tuple (𝑥, 𝑦). This
form of data structure is used as a input to the selected SLAM algorithm. The result of
processes described in previous parts of this section was three dimensional point-cloud. This
step uses a projection of points onto a plane. Acquired points are expected to define most
distinct edges and features in nearby environment of the rover. These points are expected
to be on the surfaces of objects representing obstacles. The projection takes coordinates
of all points and extracts only information about (𝑥, 𝑦) positions of point. This effectively
projects points onto x-y plane. Points are then used to create data structure equivalent to
a LiDAR scan.

29

Chapter 5

MATLAB implementation of the
navigation solution

MATLAB provides an all purpose system for different problem solving tasks. Proper tool-
boxes provide tools from linear algebra to advanced sensor simulation, image processing,
autonomous driving, physics simulation and others. This makes it an ideal software for
use in navigation. Navigation, and Image Processing Toolboxes will be used in our case.
This chapter will discuss main parts of implementation handling point-cloud processing,
and map creation. The integration of the algorithm into a simulation environment will be
discussed in the next chapter. The base of the implementation of the navigation algorithm
will be discussed in sequential order. First section will explain synchronization and trans-
formations done on data received from sensors. Second part of this chapter will take a
look into processing of three-dimensional point-cloud provided by RGB-D image. The later
section will introduce configuration needed for SLAM algorithm to work properly and the
generation of the output map and attitude.

5.1 Data acquisition, synchronization and pre-processing
Data provided by sensors described in the Section 4.1 will be sent over through a local
network. Receiving process of all provided information is done through MATLAB’s ROS
Toolbox and will be discussed in the Section 6.6. This toolbox allows us to simultaneously
receive and send data. Receiving is done through structures odometrySub, lidarSub,
pointCloudSub. Use of local network expects little to none network delay. Another expec-
tation is in data from sensors being received on a lower frequency than the data from the
odometry source. If network communication is close to real-time, no additional synchro-
nization may be needed. This expectation is reflected in implementation. Blocking calls
are established to receive data point-cloud and LiDAR data first then odometry.

Asynchronous reception of messages would be needed, if data would be out-of-sync.
This may be done by defining subscriber structure with a callback function. The odometry
callback function would then save odometry data with a timestamp into circular buffer of
pre-defined size. The timestamp of depth sensor’s message would be used to find closes
odometry timestamp. Closest timestamped pair would be used in later processing to avoid
non-synchronized messages.

Coordinate frame transformation is done as pre-processing step on sensor data. Impor-
tance principles behind this step will be discussed in the Section 6.6.

30

https://www.mathworks.com/products/matlab.html

Odometry data contains position in three dimensions, orientation defined by quaternion,
linear and angular velocities and a co-variance matrix. Data used by SLAM algorithm
expect odometry as relative pose to a previous scan. Relative pose should contain position
in x-y plane and orientation.

A transformation of quaternion into Euler angles is done first. This step uses method
quat2eul. Only last angle in vector of output angles is needed. A relative pose is then
established by use of equations defined in the Section 4.3. The relative position in x-y plane
and the relative heading are then combined into single pose relPose.

5.2 Input data processing
Point-cloud is a three-dimensional representation data structure. RGB-D format provides
point-cloud in a form similar to a raster image. The depth data is stored in a grid rep-
resenting pixels. This form of representation is converted and then processed using MAT-
LAB Computer Vision Toolbox [20]. Conversion form RGB-D image is achieved using
constructor of point-cloud structure. The method calls pointCloud(readXYZ(ptCloud))
and provides conversion of RGB-D point-cloud into three-dimensional point-cloud used for
processing.

Filtering the point cloud is done using different segmentation methods. Any form of
segmentation is done in two steps. First a set of points to which a defined segmentation
constrain applies is found. Secondly indexes of found points are used to select them from
original point-cloud.

Two segmentation methods are used. First method is for segmenting of ground plane.
This is achieved through function pcfitplane. This function returns array of indices,
which are selected from original point-cloud using function select. Second segmentation
method selects ROI with function findPointsInROI. Same select call is used to get new
point-cloud.

Down-sampling is provided through function pcdownsample. This method combines
both down-sampling approaches mentioned in the Section 4.5.3. Method used is selected
with appropriate parameter of down-sampling method ’random’ or ’gridAverage’. This
step will return sampled point-cloud according to selected method and other configurable
parameters.

Parameter of point-cloud .Location is used to get location of every point in three-
dimensional space. Only 𝑥 and 𝑦 positions are extracted. Structure containing two-
dimensional LiDAR scan is created with extracted x-y locations using method lidarScan.
This structure is later used for SLAM.

5.3 MATLAB Navigation Toolbox
The main part of navigation in unknown terrain is creation of map and knowledge of location
relative to the map’s origin. As was mentioned before this, is achieved thorough SLAM.
Localization and mapping is provided by MATLAB Navigation Toolbox [25]. This toolbox
provides methods for working with SLAM algorithm described in the Section 3.3. Provided
solution allows program to periodically add new scans and map updates. This section will
describe configuration procedure and steps towards exporting a map. Integration of this
map and pose into simulation environment will be described in the Section 6.6.

31

https://www.mathworks.com/help/robotics/ref/quat2eul.html
https://www.mathworks.com/help/vision/ref/pointcloud.html
https://www.mathworks.com/help/vision/ref/pcfitplane.html
https://www.mathworks.com/help/vision/ref/pointcloud.select.html
https://www.mathworks.com/help/vision/ref/pointcloud.findpointsinroi.html
https://www.mathworks.com/help/vision/ref/pcdownsample.html
https://www.mathworks.com/help/robotics/ref/lidarscan.html

5.3.1 Integration of simultaneous localization and mapping

The structure containing parameters and overall configuration of SLAM approach used has
to be created in order to use this algorithm. Function lidarSLAM creates this structure.
A maximum scan range and resolution of underlying map are set by parameters of called
function. Returned structure allows fine-tuning of other values. Some of the values include
thresholds for loop closure detection and search radius for loop closure.

New scans are registered using function addScan, this function takes created scan, SLAM
structure and relative pose estimate. It results in three return variables containing in-
formation about success of scan addition, information about detected loop closures and
information about results of optimization.

5.3.2 Map and pose output

Process for generating a map starts once a new scan is successfully added and can be
optionally turned off. Generated map will take a form of cost-map containing probable
occupation of the cell. Poses and scans have to be acquired from SLAM object first.
Method scanAndPoses takes SLAM object and returns list of scans and poses. The map is
acquired form created scans and pose through function buildMap. This function takes list
of scans, list of poses of scans, map resolution and maximum range of sensor as its input
parameters. Generated map is suitable for visualization in MATLAB. Further processing
is done in order to create suitable output. A example of produced map with traversed path
can be seen in the Figure 5.1.

Figure 5.1: Example map and position output

32

https://www.mathworks.com/help/nav/ref/lidarslam.html
https://www.mathworks.com/help/nav/ref/lidarslam.addscan.html
https://www.mathworks.com/help/nav/ref/lidarslam.scansandposes.html
https://www.mathworks.com/help/nav/ref/buildmap.html

Chapter 6

Integration of the navigation
solution into a simulator

The algorithm by itself needs a testing environment providing input data. This can be
achieved from real-world sources or a simulation. Sufficient amount of data from surface
of another planet is not accessible so a simulation environment needs to be configured.
A proper simulation environment should have the ability to be used for purposes of in-
put data and rover simulation. This chapter will discuss robot model, model of Martian
surface, models of sensors used as inputs, control software of the rover and integration of
implemented algorithm.

6.1 Rover platform
The rover platform is inspired by the first Mars Rover sent by NASA, the rover Sojourner.
This section describes designed approximation of the rover. Goal is to make Sojourner
rover fully controllable. Rover model will be placed in a simulation environment Gazebo
(see Section 6.3) which will provide it with other functionalities such as sensor models and
integration into Robot Operating System (ROS).

The choice for rover Sojourner was made as tribute to a first successful rover mission.
As one of total of three successful rovers sent so far, it established path toward unmanned
rover exploration. The challenge of modelling such rover is the unavailability of existing
3D models. Unlike later missions as MSL or MER the provided information is limited to
images and rough dimension measurements. Small overall size of this rover makes it a
suitable platform for future work, mainly as physical model for real-world testing of the
researched algorithm.

The model has been created using set of reference images of model in Smithsonian Na-
tional Air and Space museum. Overall dimensions provided by NASA include height width
and length of the rover. A reference volume was created for approximate dimension esti-
mation. Free 3D modelling software Blender was used to create rough model for dimension
measurements as can be seen in the Figure 6.1. These measurements were then used in
parametric Computer Aided Design (CAD) software for precise 3D model creation. Up to
ten different parts of the rover have been modeled. These include simplified drive-train,
body and solar panel.

The overall mechanical model of rover is simplified for simulation purposes. The original
vehicle has six-wheels, three on right and left side. Each wheel provides driving power in

33

http://gazebosim.org/
https://www.ros.org/
https://airandspace.si.edu/collection-objects/rover-marie-curie-mars-pathfinder-engineering-test-vehicle/nasm_A20150317000
https://airandspace.si.edu/collection-objects/rover-marie-curie-mars-pathfinder-engineering-test-vehicle/nasm_A20150317000
https://www.blender.org/

form of electric motor. Two rear and two front wheels have ability to be steered. Steering is
expected to be independent and limited in range to ± 60 degrees. Dimensions of the rover’s
drive-train, later referred to a simplified model for control, are 𝑙1 = 0.22[𝑚], 𝑙2 = 0.2[𝑚]
and 𝑙3 = 0.36[𝑚].

Suspension on original rover consist of seven different parts. Created model does contain
all of those parts. Original suspension allows all six wheels to be on the ground in virtually
all cases, which improves driving ability. Our simplified model has requirement of middle
pair of wheels to be on the ground at all times. This is due to use of odometer. Original
suspension was simplified in a way so this condition is satisfied. Front and middle wheels of
the model are linked together with a independent swing arm. This allows front and middle
wheel to contact the ground in most situations.

Rover is equipped with simulated form of sensors described in the Chapter 4. All sensors
are located in the front of the rover. Simulated sensors include:

∙ LiDAR,

∙ stereo-graphic camera,

∙ depth camera.

Figure 6.1: Rough measurements of reference images

6.1.1 3D model

The 3D model was created using SolveSpace modelling software. Overall drawing containing
all reference dimensions was firstly created as shown in the Figure 6.2. This drawing
contains positions of all necessary components. The model itself can be split into two
different parts.

First part is body. Rover body models overall shape of the rover. The more car-like
shape is used as a base of the model to which other parts are attached. The center of this
part is considered to be geometric center of the bounding box. The second part of the
body is a solar panel. This part’s purpose is purely visual. Full body has two simplified
collision boxes to reduce computational demand due to higher polygon count. A bounding
box of body and solar panel are used as collision boxes. The simulation software allows us

34

http://solvespace.com/index.pl

to define inertial and mass properties of these two parts. Inertial and mass estimates are
only approximate and are configured by a parameter. This allows us to later adjust it to
reflect real world model. The mass of 4 kilograms is set as body mass, solar panel weights
1 kilogram. Inertia of both sub-parts is simulated by simplified model of bounding box and
is set with macro provided in mybot Gazebo tutorial.

A drive-train may be considered as a second part of body. It can be split into right-
side, left-side and single connecting part. Right and left sides are symmetrical. The model
takes advantage of all six wheels. Wheel model is simplified into a cylinder. Steerable
wheels are connected to the suspension using a separate steering joints with range of ±
60 degrees. Every wheel is connected to its parent part using a revolute joint. Steering
joints are present on the front and rear wheels. Both steering and wheel joints have motors
assigned. This allows every wheel to be controlled independently. The collision model for
a wheel is equivalent to its shape, the collision model for part used in steering is simplified
into 2 centimetre wide sphere.

The suspension model is consisting only of one moving part for each side. This part
connects front and middle wheels and allows them both to swing independently from the
rest or the rover. Real-world rover suspension contains 7 moving parts. Each part of the
suspension is present in the model but model itself is simplified.

The parts are exported into .stl file format. This allows them to be used in robot
description file. The robot description file is in .xacro file format. This file format is being
used by multiple ROS nodes to describe configuration of the rover. It allows us to define
exact position, rotation, collision boxes, inertial properties, friction properties, colour and
meshes used for different parts of rover. It allows us to separately define different parts and
to then connect them together using joints with different properties. Set properties are then
used by simulation software to model rover. Four different .xacro files are used to describe
rover model. They are split to overall rover description, macros, material definition and
simulation specific configuration. Rendering of fully assembled rover without sensors done
in Blender can be seen in the Figure 6.3 and in the Figure 6.4.

Figure 6.2: CAD model with all required dimensions

35

https://github.com/HumaRobotics/mybot_gazebo_tutorial

Figure 6.3: 3D model form the right side

Figure 6.4: 3D model from the left side

6.2 Rover control
The rover steering is done using steering command. Command consists of two values linear
velocity 𝑣𝑐𝑚𝑑 and angular velocity 𝜔𝑐𝑚𝑑. Units used in these variables are 𝑚.𝑠−1 for linear
velocity and 𝑟𝑎𝑑.𝑠−1 for angular velocity. The resulting path will be in a from of arc if the
rover travels at a constant speed with a constant angular rate. The radius of arc for a given
command 𝑟𝑐𝑚𝑑 for cases where 𝜔𝑐𝑚𝑑 ̸= 0 equals to

𝑟𝑐𝑚𝑑 =
|𝑣𝑐𝑚𝑑|
𝜔𝑐𝑚𝑑

(6.1)

The value of 𝑟𝑐𝑚𝑑 is adjusted for reversing so steering angle will not change direction
for the same angular velocity. Different behavior for reversing is not needed since the
vehicle will be able to do in-place turns and sensors are expected to be on the front side.
This equation by itself does not take into account physical limits of steerable wheels. The
classification of different types of turn present in the Figure 6.5 is used to solve problems
posed by mentioned limits.

36

Figure 6.5: Turn classification

This classification is used to determine values of 𝜔 and 𝑣. New values of angular velocity
and linear velocity are used for calculation of steering angles and angular velocities of wheels.
The classification will use value of 𝑙3 described later in the Figure 6.6. Equations for this
classification are described in the Table 6.1.

Table 6.1: Turn calcification

Turn Condition 𝜔 𝑣

Left 𝑟𝑐𝑚𝑑 ∈ ⟨2𝑙33 ,∞) 𝜔𝑐𝑚𝑑 𝑣𝑐𝑚𝑑

Sharp left 𝑟𝑐𝑚𝑑 ∈ (0, 2𝑙33) 3|𝑣𝑐𝑚𝑑|
2𝑙3

𝑣𝑐𝑚𝑑
Right 𝑟𝑐𝑚𝑑 ∈ (−∞,−2𝑙3

3 ⟩ 𝜔𝑐𝑚𝑑 𝑣𝑐𝑚𝑑

Sharp left 𝑟𝑐𝑚𝑑 ∈ (−2𝑙3
3 , 0) −3|𝑣𝑐𝑚𝑑|

2𝑙3
𝑣𝑐𝑚𝑑

In-place 𝑟𝑐𝑚𝑑 = 0 𝜔𝑐𝑚𝑑 𝑣𝑐𝑚𝑑
None 𝜔𝑐𝑚𝑑 = 0 ∧ 𝑣𝑐𝑚𝑑 ∈ R 0 𝑣𝑐𝑚𝑑

The center point of the turn circle 𝐶 is in local coordinate frame of the rover where
x-axis is in forward direction, y-axis is to the left and origin is in the center of the middle
axle. The local coordinate frame of the rover can be seen in the Figure 6.6. Position is
determined from radius 𝑟 calculated using new values of angular velocity 𝜔 and velocity 𝑣.
Once again behavior for reversing is not considered. These equation are defined only for
turn types where 𝜔 ̸= 0.

𝑟 =
|𝑣|
𝜔

(6.2)

𝐶 =
[︀
0, 𝑟

]︀
(6.3)

Position of turn center is then transformed into coordinate frame of each wheel. A
simplified rover model is used to describe placements of different part of the rover. Param-
eters describing simplified model of rover shown in the Figure 6.6 are 𝑙1 (distance from axis
of rotation of front wheels to axis of rotation of middle wheels), 𝑙2 (distance from axis of

37

rotation of middle wheels to axis of rotation of rear wheels), 𝑙3 (distance of right and left
wheel pairs, measured from center of wheels). All distances are expected to be measured in
meters. Positions of wheels in the coordinate frame of the rover are presented in the Table
6.2.

�3

�1�2

�

�

Figure 6.6: Simplified model of the rover

Table 6.2: Positions of wheels

Wheel 𝑃𝑤ℎ𝑒𝑒𝑙

Right front
[︀
𝑙1, − 𝑙3

2

]︀
Right middle

[︀
0, − 𝑙3

2

]︀
Right rear

[︀
−𝑙2, − 𝑙3

2

]︀
Left front

[︀
𝑙1,

𝑙3
2

]︀
Left middle

[︀
0, 𝑙3

2

]︀
Left rear

[︀
−𝑙2, 𝑙3

2

]︀
The transformation of center point of the arc 𝐶 into a coordinate frame of each wheel

labeled as 𝐶𝑤ℎ𝑒𝑒𝑙 is then done for all cases other than no turn.

𝐶𝑤ℎ𝑒𝑒𝑙 = 𝐶 − 𝑃𝑤ℎ𝑒𝑒𝑙 (6.4)

The angular velocity on newly created arc will be the same for wheels and rover. The radius
of arc is defined as distance of the transformed center point ||𝐶𝑤ℎ𝑒𝑒𝑙|| from origin of the
coordinate frame. The absolute value of tangential velocity at which a wheel should rotate
in cases other than no turn is equal to

|𝑣𝑤ℎ𝑒𝑒𝑙| = ||𝐶𝑤ℎ𝑒𝑒𝑙||.|𝜔| (6.5)

The direction of 𝑣𝑤ℎ𝑒𝑒𝑙 is determined form a class of turn and direction of 𝑣 or direction
of 𝜔. Different cases are described in following list.

∙ Left, sharp left, right and sharp right turn, both sides - 𝑠𝑔𝑛(𝑣𝑤ℎ𝑒𝑒𝑙) = 𝑠𝑔𝑛(𝑣).

∙ In-place turn, right side - 𝑠𝑔𝑛(𝑣𝑤ℎ𝑒𝑒𝑙) = 𝑠𝑔𝑛(𝜔).

∙ In-place turn, left side - 𝑠𝑔𝑛(𝑣𝑤ℎ𝑒𝑒𝑙) = −𝑠𝑔𝑛(𝜔).

∙ No turn, both sides - 𝑣𝑤ℎ𝑒𝑒𝑙 = 𝑣.

38

Angular velocities of motor of the wheels 𝜔𝑤ℎ𝑒𝑒𝑙 can be calculated if radius of the wheel
𝑟𝑤ℎ𝑒𝑒𝑙 is know.

𝜔𝑤ℎ𝑒𝑒𝑙 =
𝑣𝑤ℎ𝑒𝑒𝑙
𝑟𝑤ℎ𝑒𝑒𝑙

(6.6)

Line from local origin to center of the turn will be perpendicular to desired direction
of wheels. Angle 𝛽𝑤ℎ𝑒𝑒𝑙 will equal to angle between direction of x-axis and line from origin
to the center of the turn. The values of 𝐶𝑤ℎ𝑒𝑒𝑙𝑥 and 𝐶𝑤ℎ𝑒𝑒𝑙𝑦 will represent position of
center point in x and y-axis of local coordinate frame respectively. The value of 𝛽𝑤ℎ𝑒𝑒𝑙 is
calculated for all classes of turn except no turn.

𝛽𝑤ℎ𝑒𝑒𝑙 = 𝑎𝑡𝑎𝑛2(𝐶𝑤ℎ𝑒𝑒𝑙𝑦, 𝐶𝑤ℎ𝑒𝑒𝑙𝑥) (6.7)

The value of steering angle 𝛼𝑤ℎ𝑒𝑒𝑙 will depend on direction of the turn, the type of the turn
and the side the wheel is on.

∙ Left and sharp left turn, both sides - 𝛼𝑤ℎ𝑒𝑒𝑙 = 𝛽𝑤ℎ𝑒𝑒𝑙 − 𝜋
2 .

∙ Right and sharp right turn, both sides - 𝛼𝑤ℎ𝑒𝑒𝑙 = 𝛽𝑤ℎ𝑒𝑒𝑙 + 𝜋
2 .

∙ In-place turn, left side - 𝛼𝑤ℎ𝑒𝑒𝑙 = 𝛽𝑤ℎ𝑒𝑒𝑙 + 𝜋
2 .

∙ In-place turn, right side - 𝛼𝑤ℎ𝑒𝑒𝑙 = 𝛽𝑤ℎ𝑒𝑒𝑙 − 𝜋
2 .

∙ No turn, both sides - 𝛼𝑤ℎ𝑒𝑒𝑙 = 0

The different angles and center of the turn for front left wheel are shown in the Figure
6.7. Axis 𝑥𝑤ℎ𝑒𝑒𝑙 represents local x-axis, axis 𝑦𝑤ℎ𝑒𝑒𝑙 represents local y-axis in the coordinate
frame of the wheel. All other variables have been described in previous parts of this section.
The controlling software is implemented in Python 2.7.

�
� �ℎ���
�ℎ���

�
�ℎ���

�

�

�ℎ���

�ℎ���

Figure 6.7: Wheel coordinate frame

6.3 Simulation environment
Researched algorithm expects to be supplied by live sensor data. This requires appropriate
simulation environment. Provided feature-set guides the choice if this environment.

Gazebo offers the ability to accurately and efficiently simulate populations of robots
in complex indoor and outdoor environments [33]. It provides extensive set of features
including tools for robot modelling and environment modeling. It simulates different types
of joints, physical properties of robot parts such as mass, collision shape and moments

39

https://www.python.org/download/releases/2.7/

of inertia. A selection of plugins provides simulation of sensors such as cameras, lasers
and depth sensors with ability to introduce measurement error. The most notable feature
is integration with ROS. This provides simulator with great amount of packages which
supplying control, autonomous planning and SLAM algorithms.

6.3.1 Physics configuration

Multiple facts about real-world features of environment have to be taken into consideration
in order to simulate environment properties on planetary surface. The decision was to
simulate environment on the Martian surface thus physical properties of this environment
have been set. The diameter of planet Mars is approximately 1

2 to the diameter of the Earth,
this results in gravitational acceleration on the surface to be 3.71𝑚.𝑠−1 [30]. Gravitational
acceleration may affect traction of wheels on the surface. Gazebo allows the definition of
gravitational acceleration. A simulation uses a flat-surface model. This means, it does not
simulate planet as a approximate spherical model but approximates small subsection using
a model of a flat plane. Coordinate frame is defined by world coordinate frame with x-axis
in the forward direction, y-axis in the left direction and z-axis upwards. Our use-case will
consider local ENU coordinate system with x-axis to the East, y-axis to the North and
z-axis Up. Gravitation acceleration towards plane is set as:[︀

0 0 −3.71
]︀
𝑚.𝑠−1 (6.8)

A negative value is set on the z-axis since direction of z-axis is up and gravity is accelerating
down. Mars surface has properties of surface friction yet unknown. We will consider an
ideal case scenario where a soil has coefficient of friction 𝜇 = 1.

6.3.2 Model of the Martian surface

A 3D model of surface was created for purposes of simulation. Base of the surface is
modeled as a textured flat plane of size 200 × 200 meters. A repeating ground texture
pattern is shown in the Figure 6.8. The flat surface is by itself not sufficient for a SLAM
algorithm. SLAM algorithm and visual odometry expect features to be present in the sur-
rounding environment. A selection of rocks provides a good feature set. Blender Extra
meshes add-on provides a random rock generation capability. Generated rocks are used to
create obstacles.

Figure 6.8: Repeating ground texture

40

The scene is designed using four different sets of rocks. A multiple rock sizes include
small rocks (≈ 0.5 meters), medium sized rocks (≈ 2 meters) and large rocks (≈ 5 meters).
The scene is surrounded by a range of larger rocks and overhangs. The overall scene size is
≈ 30 × 25 meters.

The placement of rocks is done in a pattern providing open spaces, narrow passages
and dangerous obstacles which can be seen in the Figure 6.9. This provides a generic set
of distinct features that can be used for navigation.

Figure 6.9: Martian surface model for simulation

6.3.3 Light Detection and Ranging sensor model

A LiDAR is simulated using laser simulation plugin. This plugin allows definition of pa-
rameter such as range and angular resolution. Noise uses Gaussian distribution with zero
mean and standard deviation of 0.01. Modeled LiDAR modeled, the SLAMTEC RPLiDAR
A1 has accuracy of 1% of measured distance. Other technical parameters include statically
set angular range of 180 degrees limited to 1

2 of the original range. The number of samples
is set to 1000 which is 1

2 of minimal setting of 2000. The shape of LiDAR is simplified into
a basic cylinder.

6.3.4 Stereoscopic camera model

Gazebo simulation provides a module for simulation of multi-camera systems with a multi-
camera plugin. This plugin allows definition of two cameras needed to simulate stereoscopic
camera. Real-world sensor counterpart is considered to be the Intel R○ RealSenseTM Track-
ing Camera T265. This sensor provides two wide angle lenses with FOV of 163 degrees. A
image with resolution of 848 by 800 pixels is provided by both sensors. Distance between
right and left lens is described to be 64 mm. The distortion parameters of image are not
taken into account since they were not presented in the data-sheet. A 3D model of camera
is represented by a box with dimensions of 24.5× 108× 12.5 mm (height × width × depth)
according to data-sheet [13].

41

http://gazebosim.org/tutorials?tut=ros_gzplugins#Laser
https://www.slamtec.com/en/Lidar/A1Spec
https://www.slamtec.com/en/Lidar/A1Spec
http://gazebosim.org/tutorials?tut=ros_gzplugins#Multicamera
http://gazebosim.org/tutorials?tut=ros_gzplugins#Multicamera
https://www.intelrealsense.com/tracking-camera-t265/
https://www.intelrealsense.com/tracking-camera-t265/

6.3.5 Depth camera model

A current available solutions for depth cameras cameras include family of Intel R○ RealSenseTM

Depth Cameras. This family of sensors offers multiple options ranging form different types
of Infra-Red (IR) projector, different sensor resolution, differing FOV and presence of In-
ertial Measurement Unit (IMU).

Intel R○ RealSenseTM Depth Camera D435 is considered for simulation. This sensor pro-
vides 86 degrees of horizontal FOV and resolution of 1280x720 depth points. A maximum
range of measured distance is around 10 meters a minimum range is 0.105 meters. Infor-
mation about resolution of distribution of depth perception is not provided in a data-sheet,
the same is true for image calibration parameters. 3D model of sensor is represented by box
with size of 25 × 90 × 25 mm (height × width × depth) according to information defined
in data-sheet [14].

The simulation of the sensor is done using Gazebo Openni Kinect plugin. Plugin al-
lows definition of before mentioned parameters defining resolution and depth properties.
Plugin has ability to distort image based on parameters described in the Section 4.2.1. All
distortion parameters are set to zero due to lack of this information in the data-sheet.

6.3.6 Model of the odometer

Gazebo by itself combines together simulation of functionality of actuators and encoders
and provides different options for control. Simulation environment offers implementation in
a form of Gazebo differential drive plugin. This plugin is used to control two middle wheels.
It is configured to publish odometry data from simulated encoders. The future work can
extend on creating a odometry based on true encoders on physical rover. This could be im-
plemented into controlling software. If this approach would be chosen a full implementation
of method described in the Section 3.1 or similar would need to be performed.

6.4 Data visualisation
Tool rviz is a 3D software providing visualization capabilities to ROS. It provides visuali-
sation of any ROS topic with supported message types. Image, laser scan and point-cloud
are some of supported message formats. Other data types such as octrees are supported by
third party packages. A three-dimensional view-port is the main advantage of this form of
visualization. View-port is able to display 3D model of rover defined in a URDF description
file and 3D representation of sensor data.

A selected configuration of displayed topics can be saved into a configuration file for
future use. Topics which are displayed in rviz for our use case include:

∙ rover 3D model,

∙ sensor data,

∙ map.

The Figure 6.10 shows rover model in rviz visualization software. This visualization includes
the rover and a map generated by researched and implemented navigation solution.

42

https://www.intelrealsense.com/depth-camera-d435/
http://gazebosim.org/tutorials?tut=ros_gzplugins#OpenniKinect
http://gazebosim.org/tutorials?tut=ros_gzplugins#DifferentialDrive
http://wiki.ros.org/rviz

Figure 6.10: The rover model visualized in rviz

6.5 Robot Operating System
Robot Operating System (ROS) is an open-source collection of different tools, packages
and conventions which aim to provide simple interface for implementation of Guidance
Navigation Control (GNC) and other solutions. This system strongly encourages modular
approach and re-usability. It can be used in variety of different applications including UAV,
UGV and others. The ROS documentation [34] defines three levels of concepts:

∙ File-system level - this level contain number of different principles used to identify
ROS resources which are present o the disk.

– Package, a main unit for organizing software in ROS. Package contains processing
node, libraries, specific configuration files, data-sets and others.

– Metapackage, a specialized package which represent a group of related packages.
– Package Manifests, a metadata about a package. It contains name, version,

description, license information, dependencies, and other meta information.
– Repositories, a collection of packages which share a common Version Control

System (VCS) and can be released together.
– Message type, a description of message, defines the data structures for messages.
– Service type, a description of service, defines the request and response data

structures for services.

∙ Computation Graph level - this level defines the peer-to-peer network of ROS pro-
cesses that are processing data together. Computation Graph consist of:

– Nodes, a processes performing computations.
– Master, a main node which provides registration and lookup in a computational

graph.
– Parameter Server allows any configuration data to be stored in central location.
– Message, a named unit of data used for communication of nodes.
– Topic, a semantic used for communication of messages.
– Service, a interface providing request/response semantic.
– Bag, a format used to store and and later playback captured messages.

43

https://www.ros.org/

∙ Community level - concepts of this level enable separate communities to exchange
software and knowledge with each other. Concepts of this level include:

– Distribution, a collection of packages, and conventions defined by a single version.
– Repositories, a federated network of code repositories.
– The ROS Wiki, a documentation of ROS and available packages.
– Bug Ticket System, Mailing Lists, ROS Answers and Blog.

Our solution will be dependent on ROS distribution Melodic Morenia. This distribution
requires use of Linux operating system Ubuntu 18.04 LTS (Bionic Beaver) for which all
supported ROS packages for are compiled.

6.5.1 Coordinate frames

Any sensors which provides information about position such as camera, LiDAR, odometry,
motor position or range-finder is always measuring in its own coordinate frame. For example
LiDAR sensor does only know what is directly in font of it and output is representation of
this. Applications such as mapping require data to be in a common coordinate frame.

Transformation tree is a tree structure with nodes representing coordinate frames and
edges defining transformations between them. Any parent may have multiple child coor-
dinate frames. A way of node announcing transformation between it and parent frame is
through stamped transformation messages [50]. These messages are sent through topics
/tf [50] and /tf_static [35]. Sources of transformation messages can be rover model itself
or components of rover such as motors, servos and encoders. Other kind of publishers are
for example odometry sources or mapping nodes where a position to a point of origin e. g.
starting position on the map or initial odometry position, is published.

Any node which needs sensor information provided by sensor with defined coordinate
frame is responsible for transformation of this information into coordinate frame of it’s
interest. MATLAB supplies helper structures which automatically update locally stored
transformation tree and allow any transformation between two nodes in this tree.

The ROS defines a convention of order and naming of the coordinate frames. A spec-
ification contains 4 coordinate frames used for different components of navigation system.
The transformation between related coordinate frames should be in this order [27]:

∙ earth - A coordinate frame with origin of earth-centered, earth-fixed (ECEF). This
reference frame has axis defined as x-axis in direction from center to 0∘ longitude and
0∘ latitude, y-axis goes from center to 90∘ longitude and 0∘ latitude and z-axis form
center to the north pole.

∙ map - A world-fixed reference frame. The map has defined direction of z-axis which is
upwards. The orientation of map is dependent on starting conditions. This coordinate
frame can have aligned x-axis to the east, y-axis to the north and z-axis upwards if it
is referenced directly to frame such as earth. The map frame should be positioned
on surface of ellipsoid defined by WGS84 in this case.

44

http://wiki.ros.org/melodic
https://releases.ubuntu.com/18.04/

∙ odom - This coordinate frames is computed using odometry source such as odometer
or visual odometry. The usage of specific source may create slip which makes it
inaccurate for world navigation. The transformation between map and odom should
adjust for created error.

∙ base_link - A reference frame attached to the base of the robot. It can be attached
to robot in any position or orientation. Our use-case will consider axes of base_link
coordinate frame to be in the forward direction for x-axis, y-axis to the right and
z-axis up. The origin is considered to be in the middle of middle axle and at height
where rover should contact the ground.

The ROS adds upon these convention with a naming for the suffixes of coordinate frames.
The suffixes such as _enu and _optical define different conventions for axis and use-cases
of coordinate frames [9].

We will consider only coordinate frames map, odom and base_link. The map co-
ordinate frame will represent coordinate frame with x-axis to the east and y-axis to the
north pole of the planet Mars, this coordinate frame will be on the surface with z-axis in
upwards direction. The odom coordinate frame will be used by selected odometry source
to define transformation between the odometry coordinate frame and the base_link co-
ordinate frame. The rover by itself will have other coordinate frames for its different parts
such as cameras, LiDAR and encoders.

6.6 MATLAB Robot Operating System Toolbox
Researched navigation algorithm is a ROS node. Any MATLAB script which needs to
communicate with other ROS node has to firstly initialize a node. This is done through
method rosinit and equivalent for stopping this node rosshutdown. Initialized ROS node
allows use of other functionalities for information exchange with other ROS nodes. The
data is acquired form other ROS nodes on topics:

∙ /laser/scan - LiDAR scan.

∙ /sojourner/odom - Odometer.

∙ /stereo/odom - Visual odometry.

∙ /sojourner/world_odom - Ground-truth information (used for evaluation).

∙ /camera/depth/points - RGB-D point cloud.

∙ /tf - Transformations between coordinate frames .

∙ /tf_static - Static transformations between coordinate frames .

The node published data to the following list of topics:

∙ /matlab_map - Binary occupancy map.

∙ /tf - Transfromation from map to odom coordinate frame.

45

https://www.mathworks.com/help/ros/ref/rosinit.html
https://www.mathworks.com/help/ros/ref/rosshutdown.html

Data is constantly received in an infinite while cycle. Every new iteration a subscriber
receives messages in a blocking call.

A configuration parameters which configure sources of information are set first. This is
done through parameter server interface provided by toolbox through rosparam. Parame-
ters of the navigation node include:

∙ publish_map - Allow publishing of map including transformations and map data.

∙ use_rgbd - Use RGB-D point-cloud filtering and processing as source for SLAM
algorithm instead of LiDAR scan.

∙ visual_odom - Configure use of visual odometry instead of odometer.

∙ get_ground_truth - Option to receive and save information about the ground-
truth.

MATLAB provides interface for transformation with ROS coordinate frames. This
functionality is enabled by firstly initializing new local transformation tree structure with
method rostf. Structure is used for transforming data and for creation or update of existing
transformation tree.

Transformation of three-dimensional point-cloud data supplied by depth camera is done
first. Data acquired form sensors contains positions in coordinate frame of sensor. These
position are not the same as positions relative to rover body coordinate frame. Point-cloud
data is transformed using transformation tree to coordinate frame named base_link with
method transform. This coordinate frame represents center of the middle wheel axle of
the rover on a ground plane.

A data processing form previous chapters accrues here. Results are then published.
Data published includes two different sources, first a transformation to coordinate frame of
map. This requires the use of single publisher for map data and already defined transfor-
mation tree structure. A map publisher publishes under topic /matlab_map with type of
nav_msgs/OccupancyGrid.

Created map needs to be converted form probabilistic values into binary values. This is
done by through a function occupancyMatrix and by comparing its results. Values grater
than occupied threshold are stored. Parameter .OccupiedThreshold of occupancy map
is used to determine occupied cells. A produced logical two-dimensional matrix is used to
create binary occupancy map with function binaryOccupancyMap. Additional parameters
of binary occupancy map need to be inherited from original occupancy map. These include
map resolution and positions of local and global map origins. Binary occupancy map is
then saved into a message of type nav_msgs/OccupancyGrid, the coordinate frame is set
to /map and timestamp is set to current ROS time provided by rostime(’now’).

Transformation to coordinate frame of map has to be published in order for map to be
usable for navigation. The latest pose in this coordinate frame is a result of SLAM. This
pose information is a single three-dimensional vector. Vector contains x and y-position in
first two fields and heading in third. A transformation order in transformation tree expects
position transform to be expected first, then followed by a rotation. This is a reverse from
pose provided form SLAM. Additionally not a direct transformation to coordinate frame
called base_link but transformation to odom (coordinate frame of odometry) coordinate
frame is needed. This encouraged creation of two intermediate transformation frames from
odometry frame to represent transformation to current position of coordinate frame based
on current odometry information. A transformation from two intermediate frames into
coordinate frame of map is established next.

46

https://www.mathworks.com/help/ros/ref/rosparam.html
https://www.mathworks.com/help/ros/ref/transformationtree.html
https://www.mathworks.com/help/ros/ref/transform.html
http://docs.ros.org/melodic/api/nav_msgs/html/msg/OccupancyGrid.html
https://www.mathworks.com/help/nav/ref/occupancymap.occupancymatrix.html
https://www.mathworks.com/help/nav/ref/binaryoccupancymap.html
https://www.mathworks.com/help/ros/ref/time.html

Chapter 7

Evaluation of achieved results

This chapter will discuss testing-cases for evaluation of navigation algorithm. Firstly an
overview of test-cases will be provided then a evaluation method of different approaches will
be discussed. A search for more optimal configuration of researched navigation algorithm
will be discussed in a dedicated section. Later sections will then evaluate achieved result
and discuss further improvements and possibilities of future work.

7.1 Test cases
A simulation environment described in previous chapter includes an obstacle course. Path
through this obstacle course is considered. The test track will consist of right turns, left
turns and straight segments. Overall full path will take a shape similar to number eight.
The path will start and end in roughly the same place as can be seen in the Figure 7.1.

Figure 7.1: Traversed path

The path is traversed by rover and data provided by sensors is recorded through ap-
plication rosbag. This will provide repeatably of results. Rosbag’s playback functionality
provides a real-time flow of data as would be present if full simulation was run. Recorded
data includes transformation frames, odometry, ground-truth position, visual odometry,

47

http://wiki.ros.org/rosbag

wheel based odometry, LiDAR scan and point-cloud of RGB-D image. Rover will travel at
a speed of 0.05𝑚.𝑠−1 with maximum turn rate of 0.05𝑟𝑎𝑑.𝑠−1.

Evaluation of navigation algorithm will be done for different combinations of sensors.
Combinations described in following list will be considered as test-cases.

∙ LiDAR and odometer.

∙ LiDAR and visual odometry.

∙ RGB-D point-cloud and odometer.

∙ RGB-D point-cloud and visual odometry.

7.2 Statistical evaluation
Navigation data by itself does not provide a measurable parameter for determination of
accuracy or quality. In order to estimate the quality of resulting position a Ground-truth
(GT) position is used. A position measured relative to GT is considered to be an error in
position 𝑃𝑒𝑟𝑟. Calculation is done as difference of GT and position on the path 𝑃 . Position
error is further split into it’s part in the x-axis 𝑃𝑒𝑟𝑟𝑥 and in the y-axis 𝑃𝑒𝑟𝑟𝑦. Two different
statistical methods are used. First method evaluating data is arithmetic mean. Arithmetic
mean or average is determined through equation:

𝑥 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖) (7.1)

Values of arithmetic mean are calculated for three different parameters. These are 𝑃𝑒𝑟𝑟𝑥,
𝑃𝑒𝑟𝑟𝑦 and ||𝑃𝑒𝑟𝑟|| =

√︀
𝑃𝑒𝑟𝑟𝑥2 + 𝑃𝑒𝑟𝑟𝑦2, as 𝑥. Results for one test-case will be in three

different values of arithmetical mean.
Standard deviation is approach used to determine spread of values of error. This is used

together with average as a determining factor for quality of given navigation approach. The
equation used for calculation of standard deviation is described as

𝜎 =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑥)2 (7.2)

This calculation is done for values of 𝑃𝑒𝑟𝑟𝑥, 𝑃𝑒𝑟𝑟𝑦 and ||𝑃𝑒𝑟𝑟|| as these parameters are of
interest. The result thus will be in three different values of standard deviation.

48

7.3 Search for optimal parameters of navigation algorithm
The SLAM algorithm presented in previous sections allows fine-tuning of two significant
parameters. These include loop-closure threshold and search radius of loop-closure detector.
The different values of these parameters determine quality of produced pose and map. This
requires a optimal set of these two parameters to be found. One approach is to choose a
random set of parameters with desired result. Our approach uses method of selected samples
to determine more optimal parameters. Initial limits for edges of searched intervals were
selected using a random method. The method takes values standard deviation and mean
as targets for optimization. These values are considered only for parameter ||𝑃𝑒𝑟𝑟||. A
search for a local minimal value is done. Functions describing values of standard deviation
and mean are rather complex an may be even impossible to describe by analytical form.
Values depend on parameters such as data given by sensors, data-rate, current position of
the rover and many others. If a consideration of computing power requirements for a single
calculation is taken into account a choice of approaches is rather limited.

Table 7.1: Searched intervals and selected samples

LiDAR RGB-D

LoopClosureThreshold [1] Interval (300, 450) (500, 2000)
Samples {300, 350, 400, 450} {500, 1000, 1500, 2000}

LoopClosureSearchRadius [m] Interval (1, 7) (2.5, 10)
Samples {1, 3, 5, 7} {2.5, 5, 7.5, 10}

The Table 7.1 shows values used for search of optimal parameters. The approach will
take combination of sampled values of LoopClosureThreshold and LoopClosureSearchRa-
dius. Values of standard deviation and arithmetic mean will be evaluated for each combi-
nation. A linearly sampled values containing boundaries of intervals are considered. Four
samples are taken from each interval which will result in 16 different combinations of values.
The sampled values of standard deviation and arithmetic mean for LiDAR can be seen in in
the Table 7.2. The sampled values of standard deviation and arithmetic mean for RGB-D
can be seen in in the Table 7.3. Sampling was done with wheel based odometry for both
cases.

Table 7.2: Arithmetic mean and standard deviation samples for LiDAR

𝑥[𝑚]
LoopClosureSearchRadius [m]

1 3 5 7

Lo
op

C
lo

su
re

T
hr

es
ho

ld
[1

]

300 0.8635 12.93 0.4461 0.4949

350 2.297 0.4543 0.5218 0.5377

400 3.591 0.3765 0.6149 0.5244

450 1.591 0.5118 0.5191 0.475

𝜎[𝑚]
LoopClosureSearchRadius [m]

1 3 5 7

Lo
op

C
lo

su
re

T
hr

es
ho

ld
[1

]

300 0.4825 9.32 0.2659 0.3077

350 1.38 0.3226 0.3534 0.3549

400 1.525 0.3568 0.3265 0.3311

450 2.63 0.2474 0.3444 0.3775

49

Table 7.3: Arithmetic mean and standard deviation samples for RGB-D

𝑥[𝑚]
LoopClosureSearchRadius [m]

2.5 5 7.5 10

Lo
op

C
lo

su
re

T
hr

es
ho

ld
[1

]

500 11.99 1.357 0.8367 1.381

1000 7.074 1.288 0.7481 0.7218

1500 12.05 0.937 3.076 1.265

2000 11.89 0.7927 0.9109 1.042

𝜎[𝑚]
LoopClosureSearchRadius [m]

2.5 5 7.5 10

Lo
op

C
lo

su
re

T
hr

es
ho

ld
[1

]

500 8.389 0.858 0.7564 1.186

1000 20.55 1.183 0.903 0.7924

1500 8.173 0.9421 3.88 1.107

2000 8.097 1.193 1.4 0.8509

Values of LoopClosureSearchRadius = 3𝑚 and LoopClosureThreshold = 400 were se-
lected for LiDAR. Values of LoopClosureSearchRadius = 10𝑚 and LoopClosureThreshold
= 1000 were selected for RGB-D. These values provide a approximate local minimum for a
combination of standard deviation and mean error thus making a good option for accurate
map creation and localization.

7.4 Results of testing
Each test case mentioned in the Section 7.1 was evaluated using methods mention in the
Section 7.2. The parameters of SLAM algorithm were set according to estimated optimum
found in the Section 7.3. Results form each test case are provided in a list of tables presented
in this section and in appendices. Firstly a an error of odometry source is estimated. This
error will be common among all test cases since the same data set is used.

Table 7.4: Odometer statistics

[𝑚] 𝑃𝑒𝑟𝑟𝑦 𝑃𝑒𝑟𝑟𝑦 ||𝑃𝑒𝑟𝑟𝑦||
𝑥 -3.711 1.036 4.042
𝜎 3.262 0.607 3.084

Table 7.5: Visual odometry statistics

[𝑚] 𝑃𝑒𝑟𝑟𝑦 𝑃𝑒𝑟𝑟𝑦 ||𝑃𝑒𝑟𝑟𝑦||
𝑥 1.510 -0.393 1.793
𝜎 1.112 0.942 1.158

A rather large error is expected to be present when only odometry source is used for
navigation. This is especially true for odometer as can be seen in the Table 7.4. Visual
odometry is there to improve precision of position tracking and as can be seen in the Table
7.5 a error is smaller then in case of odometer. Result for navigation algorithm will be
considered acceptable if a value of mean or standard deviation for ||𝑃𝑒𝑟𝑟|| is smaller than
these values.

50

The test case of LiDAR with a use of odometer is different from one used to determine
optimal parameters. This allows us to determine expected difference for selected param-
eters. The overall values are better in our case and are within 0.1𝑚 of ones measured
previously. The performance of algorithm in this test-case can be seen in the Appendix A.
Overall mean value of error is improved from odometer by 3.7794𝑚. The value of standard
deviation is improved by 2.9467𝑚 as can be seen in the Table 7.6.

Table 7.6: LiDAR and odometer statistics

[𝑚] 𝑃𝑒𝑟𝑟𝑦 𝑃𝑒𝑟𝑟𝑦 ||𝑃𝑒𝑟𝑟𝑦||
𝑥 0.208 -0.006 0.263
𝜎 0.147 0.152 0.137

The premise of visual odometry is to provide greater accuracy independent of physical
properties of soil. The accuracy of it alone is better than accuracy of odometer. This accu-
racy is improved more in case of used SLAM solution. The produced map with combination
of visual odometry and LiDAR can be seen in the Appendix B. The gain in accuracy is
notable even for visual odometry where mean error is reduced by 1.5583𝑚 and standard
deviation is improved by 1.0390𝑚. This can be seen in the Table 7.7. Overall performance
is slightly improved from previous combination of LiDAR and odometer.

Another information is present in both the Table 7.6 and the Table 7.7 is the difference
between mean value of error for x-axis and y-axis. The value is significantly larger in case
of x-axis. The reason to this phenomena can be explained by considering previously known
information. The method used for transformation of data into coordinate frame of rover
cannot transform LiDAR scan. This will result in scan being misaligned with position on
the map. The difference in position of LiDAR and coordinate frame of rover is 0.215𝑚.

Table 7.7: LiDAR and visual odometry statistics

[𝑚] 𝑃𝑒𝑟𝑟𝑦 𝑃𝑒𝑟𝑟𝑦 ||𝑃𝑒𝑟𝑟𝑦||
𝑥 0.147 0.015 0.235
𝜎 0.142 0.165 0.119

A RGB-D point-cloud is sourced from camera with horizontal FOV of 86 degrees. This
is in comparison to LiDAR less than a half. A result of this is smaller size of of samples and
less surrounding information. The SLAM algorithm depends on as much of this information
as possible. The expected result is then a lower accuracy. The main goal is in this case to
achieve more accurate position information than with odometry alone. This can be seen
with odometer in the Appendix C. The overall accuracy is lower than with LiDAR. The
accuracy compared to odometry is improved. This is true for both mean error where it is
3.3957𝑚 lower and standard deviation which is 2.8424𝑚 lower as can be seen in the Table
7.8.

The last test case takes into account visual odometry and RGB-D point-cloud. The
overall results of standard deviation and mean error are higher then for odometer. This
can be due to selection of parameters optimised for use with odometer. The improvements
according to visual odometry can be still considered significant. Relative improvements to
visual odometry are of 0.7277𝑚 in case of standard deviation and 0.9465𝑚 in case of mean.
This can be seen in the Table 7.9. Overall map and position graph present in the Appendix

51

Table 7.8: RGB-D point-cloud and odometer statistics

[𝑚] 𝑃𝑒𝑟𝑟𝑦 𝑃𝑒𝑟𝑟𝑦 ||𝑃𝑒𝑟𝑟𝑦||
𝑥 0.018 -0.044 0.646
𝜎 0.504 0.471 0.241

D is less accurate than in case of LiDAR. The main significant inaccuracy is caused towards
first sharp right turn. This might be caused by small amount of detected features when turn
begins. A inaccuracy of odometry is also significant in this section which might increase
overall inaccuracy for SLAM.

Table 7.9: RGB-D point-cloud and visual odometry statistics

[𝑚] 𝑃𝑒𝑟𝑟𝑦 𝑃𝑒𝑟𝑟𝑦 ||𝑃𝑒𝑟𝑟𝑦||
𝑥 -0.058 -0.578 0.847
𝜎 0.527 0.538 0.430

The Table 7.10 shows an overview of best to worst performing navigation approaches
discussed in this section. This table provides new set of values describes as improvement over
reference. These two values present a difference of error produced by a selected odometry
source and an error produced by the SLAM algorithm. The best approach is a combination
of LiDAR and visual odometry. The best improvement over odometry source is offered by
combination of LiDAR and odometer. The more unexpected result is in case of RGB-D
and visual odometry where better reference position did not result in improvement over
combination with odometer. The overall worst performer is plain odometer. Combination
with visual odometry or odometer have seen small differences for both LiDAR and RGB-D.
The greatest difference between the use of visual odometry and odometer can be seen in
case of the RGB-D. The RGB-D point-cloud has seen a worse result for the visual odometry
and better for the odometer. Overall conclusion of this result is that the usage of SLAM
increases the accuracy over both the visual odometry and the odometer.

Table 7.10: Best to worst performing results

Combination ||𝑃𝑒𝑟𝑟|| Improvement over reference
𝑥[𝑚] 𝜎[𝑚] 𝑥[𝑚] 𝜎[𝑚]

1. LiDAR and visual odometry 0.2348 0.1188 1.5583 1.0390
2. LiDAR and odometer 0.2627 0.1368 3.7794 2.9467
3. RGB-D and odometer 0.6464 0.2411 3.3957 2.8424
4. RGB-D and visual odometry 0.8467 0.4301 0.9465 0.7277
5. Visual odometry 1.7932 1.1578 - -
6. Odometer 4.0421 3.0835 - -

52

Chapter 8

Conclusion

Autonomous navigation of unmanned vehicles is essential part of unmanned missions. This
problem has seen a development in recent years. A selection of navigation principles used
by planetary rovers have been researched in this thesis. The focus was on problematic of
localization in an environment. The work later researched the problem of localization and
mapping in a form of SLAM.

A navigation algorithm has been integrated to take advantage of sensors available to a
planetary rover. This algorithm was built on top of an existing SLAM approach and added
filtering of input data supplied from sensors. This solution was implemented in MATLAB
with selection of toolboxes.

A rover model was constructed in the Gazebo simulation environment. Robot was
based on fist planetary rover Sojourner. A focus was given towards control of designed rover
platform. The bare-bones platform was then equipped with a selection of sensors measuring
different parameters of surrounding environment. Sensor selection included depth camera,
stereoscopic camera and LiDAR.

Algorithm was integrated as a ROS node in order to take advantage of data provided
by Gazebo simulation environment. Output map and pose were then published for other
ROS nodes to take advantage of. A list of parameters configurable through ROS was
implemented to setup navigation solution.

The solution was tested in a designed scene. This scene contained multiple obstacles
and provided simulation of Mars surface. Combinations of different sensors were tested on a
test track. Results of these tests were then statistically evaluated in comparison to optimal
solution in a form of ground-truth. A optimal configuration for selected SLAM approach
was determined first. Different sensor configurations were then tested with determined
optimal configuration and results determining performance of these configurations have
been presented. The best performing result was determined to be a combination of LiDAR
and visual odometry.

8.1 Future improvements
Results of this work provide multiple different areas which may be of interest for future
work. A navigation algorithm itself can be improved to provide accurate positions for larger
landscapes. A position in latitude longitude and altitude is a better navigation solution
for long range missions. This future goal can be achieved with use of different sensor such
as stereo camera and algorithms for feature detection in images. A new algorithm can be

53

designed for this case. The rover platform can be improved to contain IMU. This would
make it possible to include attitude as a part of location information. Information about
changes in altitude provides the ability to classify steep slopes, which are not accessible by
rover, as obstacles.

Other area of improvements can be towards more optimal results when a RGB-D point-
cloud is used. This can be achieved by use of multiple depth cameras or with combination of
data from multiple sources. Main goal would be to increase FOV around the rover. Other
approach can use three dimensional scan matching and projection of features detected as
obstacles onto a two-dimensional map can be used.

A provided tensing environment can be extended to contain a three-dimensional surface
model with different set of obstacles or more open areas for long-range navigation. Rover
platform provides a base for testing of other navigation approaches such V-SLAM or other
three-dimensional SLAM approaches. The option of this platform being transformed into
real-world model can be exercised to provide real-world testing results.

A different area where improvement can be made is in visualization software. Package
rviz provides extensive functionality for display of data. The main improvement in visual-
ization software can be the ability to visualize three dimensional model of terrain or direct
rover control with mission objectives or other goals.

54

Bibliography

[1] Amos, J. China’s Tianwen-1 Mars rover rockets away from Earth. BBC, Jul 2020
[cit. 25. July 2020]. Available at:
https://www.bbc.com/news/science-environment-53504797.

[2] National Aeronautics and Space Administration. Autonomous Planetary
Mobility - NASA Mars [online]. [cit. 18. January 2020]. Available at:
https://mars.nasa.gov/mer/mission/technology/autonomous-planetary-mobility/.

[3] Barbosa, w. b. R. C. and Barbosa, R. C. China lands Chang’e-4 mission on the
far side of the Moon. Jan 2019. Available at: https:
//www.nasaspaceflight.com/2019/01/china-returning-moon-change-4-mission/.

[4] Bence, M. Diff_drive_controller - ROS Wiki. Open Source Robotics Foundation
[cit. 25. February 2020]. Available at: http://wiki.ros.org/diff_drive_controller.

[5] National Aeronautics and Space Administration. Brains | Rover – NASA’s
Mars Exploration Program [online]. [cit. 22. January 2020]. Available at:
https://mars.nasa.gov/msl/spacecraft/rover/brains/.

[6] National Aeronautics and Space Administration. Cameras | Rover –
NASA’s Mars Exploration Program [online]. [cit. 22. January 2020]. Available at:
https://mars.nasa.gov/msl/spacecraft/rover/cameras/.

[7] Carsten, J., Rankin, A., Ferguson, D. and Stentz, A. Global Planning on the
Mars Exploration Rovers: Software Integration and Surface Testing [online]. 2009 [cit.
25. January 2020]. Available at: https:
//www-robotics.jpl.nasa.gov/publications/Joseph_Carsten/dstar_jfr09_final.pdf.

[8] DataGenetics. Ackerman Steering [online]. 2016 [cit. 21. February 2020]. Available
at: http://datagenetics.com/blog/december12016/index.html.

[9] Foote, T. and Purvis, M. Standard Units of Measure and Coordinate Conventions.
Stanford Artificial Intelligence Laboratory et al., Oct 2010. [cit. 21. July 2020].
Available at: https://www.ros.org/reps/rep-0103.html.

[10] Harvey, B. Soviet and Russian lunar exploration. 1st ed. Springer and Praxis
Publishing, 2007. ISBN 0387218963.

[11] Hess, W., Kohler, D., Rapp, H. and Andor, D. Real-time loop closure in 2D
LIDAR SLAM. In: IEEE. 2016 IEEE International Conference on Robotics and
Automation (ICRA). 2016, p. 1271–1278.

55

https://www.bbc.com/news/science-environment-53504797
https://mars.nasa.gov/mer/mission/technology/autonomous-planetary-mobility/
https://www.nasaspaceflight.com/2019/01/china-returning-moon-change-4-mission/
https://www.nasaspaceflight.com/2019/01/china-returning-moon-change-4-mission/
http://wiki.ros.org/diff_drive_controller
https://mars.nasa.gov/msl/spacecraft/rover/brains/
https://mars.nasa.gov/msl/spacecraft/rover/cameras/
https://www-robotics.jpl.nasa.gov/publications/Joseph_Carsten/dstar_jfr09_final.pdf
https://www-robotics.jpl.nasa.gov/publications/Joseph_Carsten/dstar_jfr09_final.pdf
http://datagenetics.com/blog/december12016/index.html
https://www.ros.org/reps/rep-0103.html

[12] Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C. and Burgard, W.
OctoMap: An efficient probabilistic 3D mapping framework based on octrees.
Autonomous robots. Springer. 2013, vol. 34, no. 3, p. 189–206.

[13] Intel R○. Intel R○ RealSenseTM Tracking Camera Datasheet [online]. September 2019
[cit. 30. June 2020]. Available at: https://www.intelrealsense.com/wp-content/
uploads/2019/09/Intel_RealSense_Tracking_Camera_Datasheet_Rev004_release.pdf.

[14] Intel R○. Intel R○ RealSenseTM Product Family D400 Series Datasheet [online]. June
2020 [cit. 30. June 2020]. Available at: https://www.intelrealsense.com/wp-content/
uploads/2020/06/Intel-RealSense-D400-Series-Datasheet-June-2020.pdf.

[15] Labbé, M. and Michaud, F. RTAB-Map as an open-source lidar and visual
simultaneous localization and mapping library for large-scale and long-term online
operation. Journal of Field Robotics. Wiley Online Library. 2019, vol. 36, no. 2,
p. 416–446.

[16] Litomisky, K. Consumer rgb-d cameras and their applications. Rapport technique,
University of California. 2012, vol. 20.

[17] National Aeronautics and Space Administration. MAHLI | Instruments –
NASA’s Mars Exploration Program [online]. [cit. 22. January 2020]. Available at:
https://mars.nasa.gov/msl/spacecraft/instruments/mahli/.

[18] National Aeronautics and Space Administration. MARDI | Instruments –
NASA’s Mars Exploration Program [online]. [cit. 22. January 2020]. Available at:
https://mars.nasa.gov/msl/spacecraft/instruments/mardi/.

[19] National Aeronautics and Space Administration. Mastcam | Instruments –
NASA’s Mars Exploration Program [online]. [cit. 22. January 2020]. Available at:
https://mars.nasa.gov/msl/spacecraft/instruments/mastcam/.

[20] MathWorks R○. Computer Vision Toolbox Documentation [online]. 2020 [cit. 3. May
2020]. Available at: https://www.mathworks.com/help/vision/.

[21] MathWorks R○. Create occupancy map with probabilistic values - MATLAB [online].
2020 [cit. 2. July 2020]. Available at:
https://www.mathworks.com/help/nav/ref/occupancymap.html.

[22] MathWorks R○. Downsample a 3-D point cloud - MATLAB [online]. 2020 [cit. 1. July
2020]. Available at: https://www.mathworks.com/help/vision/ref/pcdownsample.html.

[23] MathWorks R○. Find points within a region of interest in the point cloud -
MATLAB [online]. 2020 [cit. 1. July 2020]. Available at:
https://www.mathworks.com/help/vision/ref/pointcloud.findpointsinroi.html.

[24] MathWorks R○. Fit plane to 3-D point cloud - MATLAB [online]. 2020 [cit. 1. July
2020]. Available at: https://www.mathworks.com/help/vision/ref/pcfitplane.html.

[25] MathWorks R○. Navigation Toolbox Documentation [online]. 2020 [cit. 3. May 2020].
Available at: https://www.mathworks.com/help/nav/.

56

https://www.intelrealsense.com/wp-content/uploads/2019/09/Intel_RealSense_Tracking_Camera_Datasheet_Rev004_release.pdf
https://www.intelrealsense.com/wp-content/uploads/2019/09/Intel_RealSense_Tracking_Camera_Datasheet_Rev004_release.pdf
https://www.intelrealsense.com/wp-content/uploads/2020/06/Intel-RealSense-D400-Series-Datasheet-June-2020.pdf
https://www.intelrealsense.com/wp-content/uploads/2020/06/Intel-RealSense-D400-Series-Datasheet-June-2020.pdf
https://mars.nasa.gov/msl/spacecraft/instruments/mahli/
https://mars.nasa.gov/msl/spacecraft/instruments/mardi/
https://mars.nasa.gov/msl/spacecraft/instruments/mastcam/
https://www.mathworks.com/help/vision/
https://www.mathworks.com/help/nav/ref/occupancymap.html
https://www.mathworks.com/help/vision/ref/pcdownsample.html
https://www.mathworks.com/help/vision/ref/pointcloud.findpointsinroi.html
https://www.mathworks.com/help/vision/ref/pcfitplane.html
https://www.mathworks.com/help/nav/

[26] MathWorks R○. Perform localization and mapping using lidar scans - MATLAB
[online]. 2020 [cit. 3. July 2020]. Available at:
https://www.mathworks.com/help/nav/ref/lidarslam.html.

[27] Meeussen, W. Coordinate Frames for Mobile Platforms. Stanford Artificial
Intelligence Laboratory et al., Oct 2010 [cit. 21. July 2020]. Available at:
https://www.ros.org/reps/rep-0105.html.

[28] Morrison, J. and Nguyen, T. On-board software for the mars pathfinder
microrover [online]. 1996 [cit. 25. November 2019]. Available at:
https://www-robotics.jpl.nasa.gov/publications/Tam_Nguyen/SWROVER.pdf.

[29] Mur-Artal, R. and Tardós, J. D. ORB-SLAM2: an Open-Source SLAM System
for Monocular, Stereo and RGB-D Cameras. CoRR. 2016, abs/1610.06475. Available
at: http://arxiv.org/abs/1610.06475.

[30] National Aeronautics and Space Administration. By the Numbers | Mars -
NASA Solar System Exploration [online]. [cit. 20. June 2020]. Available at:
https://solarsystem.nasa.gov/planets/mars/by-the-numbers/.

[31] National Aeronautics and Space Administration. Mars 2020 Perseverance
Rover. 2020 [cit. 30. July 2020]. Available at: https://mars.nasa.gov/mars2020/.

[32] National Oceanic and Atmospheric Administration (NOAA) Coastal
Services Center. Lidar 101: An Introduction to Lidar Technology, Data, and
Applications. [online]. 2012 [cit. 21. February 2020]. Available at:
https://coast.noaa.gov/data/digitalcoast/pdf/lidar-101.pdf.

[33] Open Source Robotics Foundation. Gazebo [online]. [cit. 10. July 2020].
Available at: http://gazebosim.org/.

[34] Open Source Robotics Foundation. ROS/Concepts - ROS Wiki [online]. Open
Source Robotics Foundation [cit. 6. June 2020]. Available at:
http://wiki.ros.org/ROS/Concepts.

[35] Open Source Robotics Foundation. Tf2/Migration - ROS Wiki [online]. Open
Source Robotics Foundation [cit. 6. June 2020]. Available at:
http://wiki.ros.org/tf2/Migration#Addition_of_.2BAC8-tf_static_topic.

[36] OpenCV. Camera Calibration and 3D Reconstruction [online]. [cit. 8. March 2020].
Available at: https://docs.opencv.org/2.4/modules/calib3d/doc/
camera_calibration_and_3d_reconstruction.html.

[37] OpenCV. Camera calibration With OpenCV [online]. [cit. 8. March 2020]. Available
at: https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/
camera_calibration.html.

[38] National Aeronautics and Space Administration. Overview - NASA Mars:
Mars Exploration Rovers Overview [online]. [cit. 18. January 2020]. Available at:
https://mars.nasa.gov/mer/mission/overview/.

[39] PointClouds.org. Point Cloud Library (PCL): Module filters. [cit. 2. July 2020].
Available at: https://pointclouds.org/documentation/group__filters.html.

57

https://www.mathworks.com/help/nav/ref/lidarslam.html
https://www.ros.org/reps/rep-0105.html
https://www-robotics.jpl.nasa.gov/publications/Tam_Nguyen/SWROVER.pdf
http://arxiv.org/abs/1610.06475
https://solarsystem.nasa.gov/planets/mars/by-the-numbers/
https://mars.nasa.gov/mars2020/
https://coast.noaa.gov/data/digitalcoast/pdf/lidar-101.pdf
http://gazebosim.org/
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/tf2/Migration#Addition_of_.2BAC8-tf_static_topic
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
https://mars.nasa.gov/mer/mission/overview/
https://pointclouds.org/documentation/group__filters.html

[40] Rincon, P. China lands Jade Rabbit robot rover on Moon. BBC, Dec 2013. Available
at: https://www.bbc.com/news/science-environment-25356603.

[41] Rusu, R. B. and Cousins, S. 3D is here: Point Cloud Library (PCL). In: IEEE
International Conference on Robotics and Automation (ICRA). Shanghai, China:
[b.n.], May 9-13 2011.

[42] Jet Propulsion Laboratory and California Institute of Technology
and the National Aeronautics and Space Administration. Description of
the Rover Sojourner [online]. 1996 [cit. 25. November 2019]. Available at:
https://mars.jpl.nasa.gov/MPF/rover/descrip.html.

[43] Space Encyclopedia ASTROnote. Lunokhod crews [online]. 2020 [cit. 10. January
2020]. Available at: http://www.astronaut.ru/luna/crew.htm.

[44] Stone, H. W. Mars Pathfinder Microrover: A Small, Low-Cost, Low-Power
Spacecraft [online]. 1996 [cit. 25. November 2019]. Available at: http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.4648&rep=rep1&type=pdf.

[45] National Aeronautics and Space Administration. Summary | Instruments –
NASA’s Mars Exploration Program [online]. [cit. 22. January 2020]. Available at:
https://mars.nasa.gov/msl/spacecraft/instruments/summary/.

[46] National Aeronautics and Space Administration. Summary | Rover –
NASA’s Mars Exploration Program [online]. [cit. 22. January 2020]. Available at:
https://mars.nasa.gov/msl/spacecraft/rover/summary/.

[47] National Aeronautics and Space Administration. The Panoramic Camera
(Pancam) - NASA Mars [online]. [cit. 18. January 2020]. Available at:
https://mars.nasa.gov/mer/mission/instruments/pancam/.

[48] National Aeronautics and Space Administration. The Rover’s ”Eyes” and
Other ”Senses” - NASA Mars [online]. [cit. 18. January 2020]. Available at:
https://mars.nasa.gov/mer/mission/rover/eyes-and-senses/.

[49] Thrun, S., Burgard, W., Fox, D. and Arkin, R. Probabilistic Robotics. MIT
Press, 2005. Intelligent Robotics and Autonomous Agents series. Available at:
https://books.google.sk/books?id=2Zn6AQAAQBAJ. ISBN 9780262201629.

[50] Tully, F., Eitan, M.-E. and Meeussen, W. Tf - ROS Wiki [online]. Open Source
Robotics Foundation [cit. 6. June 2020]. Available at: http://wiki.ros.org/tf.

58

https://www.bbc.com/news/science-environment-25356603
https://mars.jpl.nasa.gov/MPF/rover/descrip.html
http://www.astronaut.ru/luna/crew.htm
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.4648&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.4648&rep=rep1&type=pdf
https://mars.nasa.gov/msl/spacecraft/instruments/summary/
https://mars.nasa.gov/msl/spacecraft/rover/summary/
https://mars.nasa.gov/mer/mission/instruments/pancam/
https://mars.nasa.gov/mer/mission/rover/eyes-and-senses/
https://books.google.sk/books?id=2Zn6AQAAQBAJ
http://wiki.ros.org/tf

Appendix A

LiDAR and odometer

59

-4 -2 0 2 4 6 8 10 12 14

East (X) [m]

-10

-5

0

5

10

15

N
o
rt

h
 (

Y
)

[m
]

Positions

Ground truth

SLAM

Odometry

Begin drive forward

Begin left turn

Begin right turn

60

61

Appendix B

LiDAR point-cloud and visual
odometry

62

-6 -4 -2 0 2 4 6 8

East (X) [m]

-8

-6

-4

-2

0

2

4

6

8

10

12

N
o
rt

h
 (

Y
)

[m
]

Positions

Ground truth

SLAM

Odometry

Begin drive forward

Begin left turn

Begin right turn

63

64

Appendix C

RGB-D and odometer

65

-4 -2 0 2 4 6 8 10 12 14

East (X) [m]

-10

-5

0

5

10

15

N
o
rt

h
 (

Y
)

[m
]

Positions

Ground truth

SLAM

Odometry

Begin drive forward

Begin left turn

Begin right turn

66

67

Appendix D

RGB-D point-cloud and visual
odometry

68

-5 0 5 10

East (X) [m]

-8

-6

-4

-2

0

2

4

6

8

10

12

N
o

rt
h

 (
Y

)
[m

]

Positions

Ground truth

SLAM

Odometry

Begin drive forward

Begin left turn

Begin right turn

69

70

	Abbreviations
	Symbols
	Introduction
	Historical evolution of planetary exploration rovers
	Sojourner rover
	Spirit and Opportunity rovers
	Curiosity rover

	Rover navigation principles
	Odometer
	Visual odometry
	Simultaneous Localization and Mapping
	Occupancy grid-map
	Scan matching
	Pose graph optimization
	Loop closure detection

	Research of used navigation algorithm
	Sensors
	Stereoscopic camera
	Depth camera
	Light Detection and Ranging

	Image processing
	Camera calibration

	Relative pose
	Data synchronization
	Point-cloud processing
	Ground plane filtering
	Region of interest
	Down-sampling

	Two-dimensional scan

	MATLAB implementation of the navigation solution
	Data acquisition, synchronization and pre-processing
	Input data processing
	MATLAB Navigation Toolbox
	Integration of simultaneous localization and mapping
	Map and pose output

	Integration of the navigation solution into a simulator
	Rover platform
	3D model

	Rover control
	Simulation environment
	Physics configuration
	Model of the Martian surface
	Light Detection and Ranging sensor model
	Stereoscopic camera model
	Depth camera model
	Model of the odometer

	Data visualisation
	Robot Operating System
	Coordinate frames

	MATLAB Robot Operating System Toolbox

	Evaluation of achieved results
	Test cases
	Statistical evaluation
	Search for optimal parameters of navigation algorithm
	Results of testing

	Conclusion
	Future improvements

	Bibliography
	LiDAR and odometer
	LiDAR point-cloud and visual odometry
	RGB-D and odometer
	RGB-D point-cloud and visual odometry

