
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

ADVERSARIALAUGMENTATIONFORROBUSTSPEECH
SEPARATION
ADVERSARIÁLNÍ AUGMENTACE PRO ROBUSTNÍ SEPARACI ŘEČI

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. JÁN PAVLUS
AUTOR PRÁCE

SUPERVISOR Ing. KATEŘINA ŽMOLÍKOVÁ
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2021/2022

 Master's Thesis Specification

Student: Pavlus Ján, Bc.
Programme: Information Technology and Artificial Intelligence
Specialization: Machine Learning
Title: Adversarial Augmentation for Robust Speech Separation
Category: Speech and Natural Language Processing
Assignment:

1. Get acquainted with the problem of speech separation using neural networks.
2. Get acquainted with generative adversarial networks.
3. Train baseline for speech separation on several datasets.
4. Implement and train learnable augmentation for robust speech separation.
5. Evaluate the method and compare with baseline results.
6. Discuss the results and suggest potential ways to improve them.

Recommended literature:
Luo, Yi, and Nima Mesgarani. "Conv-tasnet: Surpassing ideal time-frequency magnitude
masking for speech separation." IEEE/ACM transactions on audio, speech, and language
processing 27.8 (2019): 1256-1266.
Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information
processing systems 27 (2014).
Qian, Yanmin, Hu Hu, and Tian Tan. "Data augmentation using generative adversarial
networks for robust speech recognition." Speech Communication 114 (2019): 1-9.

Requirements for the semestral defence:
Items 1 to 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Žmolíková Kateřina, Ing.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 18, 2022
Approval date: November 1, 2021

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/25172/2021/xpavlu10 Page 1/1

Abstract
Speech separation is the task of separating single signals from the given mixture of multiple
speakers. Neural networks trained for speech separation usually work well on artificial data
but they often fail on real-world examples. To improve their behavior on real-world mixtures
it is possible to use training data augmentations such as noise addition. Nevertheless, the
power of these augmentations is limited as they have to be manually designed.

In this work, the modified version of the generative adversarial networks (GAN) model
could improve this process by generating augmentations depending on the separation per-
formance on these data. Speech separation could be then made more robust with each
generator and separator training step. This system was subjected to experimentation.
During these experiments, the parameters have been tuned to find the best setting that
will successfully train the GAN model without collapsing. This setting was found and the
most robust model from the training was selected and evaluated. Results show that the
separator model trained by the GAN model does not achieve any significant improvement
from the original separator model pretrained on the WSJ0-2mix dataset during the testing
on the WHAM dataset. Nevertheless, another evaluation shows that the separator model
trained by the GAN model is significantly more robust than the original one towards the
generated noises.

Abstrakt
Separace řečníků se zabývá separácí signálů jednotlivých řečníků z dané směsi vícero řečníků.
Neuronové sítě trénované pro separaci řečníků fungují většinou dobře na uměle smíchaných
nahrávkách, ovšem při použití směsí z reálného světa často selhávají. Pro zlepšení to-
hoto chování, je možné použít augmentaci trénovacích dat, jako je například přidání šumu.
Nicméně tyto augmentace jsou limitovány tím, že musí být ručně navrhnuty.

V této práci je použita modifikovaná verze modelu generativních adversarialních sítí
(GAN), která může zlepšit tuto vlastnost tak, že generuje augmentace na základě míry
zmatení separačního systému. Po každém kroku trénování generátoru a separátoru se
systém separace řečníků stává více robustní. Takto navrhnutý model byl podroben ex-
perimentům. Během těchto experimentů byly různě nastavovány parametry GAN modelu,
aby se nalezlo jejich nejlepší nastavení, které by vedlo ke správnému natrénování modelu,
bez zkolabování do žádného módu. Během experimentů bylo takové nastavení nalezeno.
Z takto natrénovaného modelu byl vybrán nejvíce robustní separátor a ten poté vyhodno-
cen. Výsledky hodnocení neukázaly zlepšení funkčnosti zrobustněného separačního systému
vůči samému nezrobustněnému systému předtrénovanému na WSJ0-2mix datasetu, během
testování na datasetu WHAM. Nicméně výsledky jiného hodnocení experimentů ukázaly,
že separátor vybrán z trénování GAN modelu je značně zrobustněn oproti původnímu.

Keywords
speech separation, GAN, adversarial augmentations, robust neural network

Klíčová slova
separace řečníků, GAN, adversarialní augmentace, robustní neuronová síť

Reference
PAVLUS, Ján. Adversarial Augmentation for Robust Speech Separation. Brno, 2022. Mas-
ter’s thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Kateřina Žmolíková

Rozšířený abstrakt
Separace řečníků se zabývá separácí signálů jednotlivých řečníků ze směsí obsahujících

více hovořících řečníků. Takovéto systémy se mohou použít například pro zlepšení výsledků
systémů pro rozpoznávání řeči, které často selhávají na nahrávkách obsahujících překrývající
se promluvy vícero řečníků.

V dnešní době se pro systémy separace řečníků používají neuronové sítě. Pro jejich
trénink jsou třeba směsice více řečníků, u kterých známe i signály jednotlivých řečníků.
U směsi pořízené nahráním z reálného světa je těžké zjistit signály jednotlivých řečníků.
Pokud by to bylo jednoduše možné, systémy separace řečníků by postrádali svůj smysl.
Proto jsou používány nahrávky uměle smíchané ze signálů jednotlivých řečníků. Systémy
trénované na těchto směsích fungují dobře na dalších uměle smíchaných směsích, ovšem
často selhávají na nahrávkách z reálného světa. To je dáno tím, že umělé směsi neobsahují
šumy, ozvěny a další vlastnosti reálného prostředí.

Pro zlepšení výsledků systémů separace řečníků na směsích z reálného světa je možné
přidat do trénovacích dat různé vlastnosti reálných prostředí, tedy provést augmentaci dat.
Sytémy, které jsou trénovány na augmentovaných datech jsou robustnější a dosahují lepších
výsledků na datech z reálného světa. Existuje mnoho klasických praktik pro augmentování
řečových signálů, jako jsou inverze signálu, přidání šumu, přídání ozvěn, změna tónu, změna
tempa, atd. Klasické praktiky augmentace dat musí být manuálně navrhnuty a z tohoto
hlediska jsou nevýhodné.

Tato práce se zabývá použitím modifikovaného modelu generativních adversariálních
sítí (GAN) pro augmentaci dat. Výhoda GAN modelu je ve schopnosti generování nových
augmentací, které zatím nemusely být manuálně navrhnuty. Model použitý v této práci se
od původního liší diskriminátorem. V původním modelu je diskriminátorem neuronová síť,
která udává, zda jsou generovaná data reálná nebo falešná. Diskriminátor použitého GAN
modelu se skládá ze dvou částí: systému separace řečníků a funkce podobnosti. Generátor
se při tréninku snaží vygenerovat takové augmentované směsi, které co nejvíce zmatou
separátor a budou co nejvíce podobné původní směsi.

Experimenty s navrhnutým GAN modelem používají předtrénovaný systém separace
řečeníků na původních datech a generátor předtrénovaný na úloze vlastní identity. Ex-
perimenty používají dataset WSJ0-2mix nebo jeho augmentovanou verzi WHAM. Během
experimentů bylo nejdříve nalezeno správné nastavení všech parametrů. Nastavit parame-
try GAN modelu není lehké, model je velice náchylný na jakékoliv změny a rychle kolabuje
do jednoho z módů špatného trénování, jako je například příliš silný generátor nebo sep-
arátor. Z experimentů bylo zjištěno, že parametry, které manuálně přepínájí trénink jsou
prakticky nenastavitelné a místo nich je třeba použít parametrů dynamického přepínání.
U tohoto druhu přepínání parametry určují cíl, který musí jednotlivé části během svého
trénování dosáhnout, nežli je trénink přepnut. Nakonec bylo správné nastavení, při kterém
GAN model nekolaboval do žádného z módů špatného trénování, nalezeno.

Z takto natrénovanáho GAN modelu je vybrán nejrobustnější separátor a ten poté eval-
uován. Evaluace prokázala, že zrobustněný separátor, který byl předtrénován na datasetu
WSJ0-2mix neprokazuje zlepšení při evaluaci na testovací sadě datasetu WHAM. Na druhou
stranu zrobustněný separátor je z výsledků evaluace viditelně robustnější vůči generovaným
augmentovaným směsím než-li původní předtrénovaný separátor. Toto chování je dané tím,
že generátor není schopný generovat tak sofistikované šumy jako ty, které jsou obsaženy v
rámci datasetu WHAM. Separátor zrobustněný GAN modelem navrhnutým v této práci
nezrobustní systém vůči všem šumům, ovšem může významně pomoci jako další systém pro
augmentaci dat při zrobustňování systému separace řečníků.

Adversarial Augmentation for Robust Speech Sep-
aration

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Ing. Kateřina Žmolíková. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Ján Pavlus

May 16, 2022

Acknowledgements
I wish to express my deepest gratitude to my supervisor Ing. Kateřina Žmolíková, who
guided me to the needed information, consults me with the results from the parameters
tooling and helped me with problems that showed during the writing of thesis. Without
her persistent help during the consultations, the goal of this project would not have been
realized.

Contents

1 Introduction 3

2 Speech separation using neural networks 5
2.1 Using neural networks . 5
2.2 ConvTasNet . 6
2.3 Training of neural networks for speech separation 7

3 Generative adversarial networks 10
3.1 Training generative adversarial networks . 10
3.2 Training problems of generative adversarial networks 12

3.2.1 Mode collapse . 12
3.2.2 Non convergence . 13
3.2.3 Diminished gradients . 13

3.3 Generative adversarial networks for data augmentation 14

4 Robust speech separation 15
4.1 Data augmentation . 15
4.2 Classic practices . 15

4.2.1 Noise addition . 15
4.2.2 Echoes . 16
4.2.3 Frequency filters . 16
4.2.4 Gain . 17
4.2.5 Pitch . 17
4.2.6 Tempo . 17
4.2.7 Polarity inversion . 17
4.2.8 Audio shift . 17
4.2.9 Channels shuffling . 18
4.2.10 Vocal tract length . 18

4.3 Using generative adversarial networks . 18
4.3.1 Problems with the best model selection 20

5 Implementation 22
5.1 Main process . 22
5.2 Switching of training . 22
5.3 Loss computation . 23
5.4 Evaluation . 24

6 Experiments 25

1

6.1 Dataset . 25
6.2 Initial separator and generator networks setups 26
6.3 Adjustable parameters . 27
6.4 Initial experiment . 27
6.5 Generator loss weights . 28
6.6 Separator and generator batch caps . 28
6.7 Automatic separator and generator batch caps 29
6.8 First evaluation . 31
6.9 Instability in the collapse to the strong generator mode 33
6.10 Problem with the proper switching of the generator and separator training . 34
6.11 Forced generator training and the median filtering 34
6.12 Higher generator SI-SNR target value . 35
6.13 Generator forgetting problem . 38
6.14 Evaluation problem . 39
6.15 Experiments on WHAM dataset . 40

7 Conclusion 43

Bibliography 44

A Experiments using WHAM dataset 47

2

Chapter 1

Introduction

Speech separation is the task of separating the signals from the given mixed signal. One of
the possible usage of these systems is pre-processing for speech recognition systems which
often fail on more overlapped speech. In these cases, the speech separation system could
improve the result of the recognition system by separating individual signals from the mixed
speech. The speech separation systems are nowadays based on neural networks. To train
such a neural network it is necessary to have a mixed signal with well-known original source
signals. For real-world mixtures, single-speaker signals are usually unavailable, and thus it
is necessary to use artificial mixtures. This leads to a problem with bad performance of
speech separation systems on the real-world mixtures. This creates the need to make the
speech separation systems more robust towards the real-world mixtures.

This is caused by the absence of the different noises, echoes and other features of real
environments in the artificial mixtures. To improve the behavior of the speech separation
systems in these situations it is possible to do data augmentation. Using the data augmen-
tations could add these real-world features into the mixtures on which the system is trained
on. There are several well-known methods how to do the data augmentation for the speech
signal, such as the signal inversion, noise addition, etc. The disadvantage of these methods
is that they do not cover all possible augmentations and each new augmentation needs to
be manually designed.

Nevertheless, the generative adversarial networks [8] concept could be used also for
the data augmentation as this concept was originally proposed for the data generation.
Generative adversarial networks could be used to perform data augmentations for speech
separation systems automatically. Their advantage is that they can generate augmentations
depending on the response of the speech separation system.

In this work, a modified version of the generative adversarial networks is used. It consists
of the generator network generating the augmentations, the separator network that should
be trained to be more robust, and the similarity loss function that constraints the generator
network. The separator network and the similarity loss function represent the discriminator
role. For both networks, the ConvTasNet [18] architecture (with different parameters) has
been used. The aim of this system is to generate some new augmentations on the given
mixtures that have never been seen before and force the speech separation system to adapt
to them.

In Chapter 2 the speech separation is described in detail together with the training of
the neural networks. Chapter 3 describes the generative adversarial networks model, its
training and problems occurring during the training. The usage of the generative adversarial
networks for data augmentation is also explained there. Chapter 4 outlines how to make the

3

speech separation system more robust, i.e. the classic methods for data augmentation, and
the modified version of the generative adversarial networks. Chapter 5 describes how the
model is implemented in more detail. The last Chapter 6 shows the experiments proving
the concept of the presented generative adversarial networks model to make the robust
speech separation system.

4

Chapter 2

Speech separation using neural
networks

The sound is represented by a vector of samples called signal. It is possible to hear multiple
sounds in one moment. Such mixture can be modelled as:

𝑦𝑡 =

𝑁∑︁
𝑛=1

𝑠𝑡,𝑛 (2.1)

where 𝑦𝑡 is the mixture to be separated, 𝑠𝑡,𝑛 is the speech signal of a single speaker or noise,
𝑡 is the time index, 𝑛 is the source index, and 𝑁 is the number of sources. The main task
in speech separation is to reconstruct signals 𝑠𝑡,𝑛 from the mixture 𝑦𝑡 with no information
about the signals 𝑠𝑡,𝑛.

The speech separation task could be also explained as a Cocktail party problem. Imagine
a cocktail party where a lot of people talk over each other. The listener present at the party
is trying to focus on one specific speech. The human ear and brain are well adapted to solve
this task, but for computer systems, it is very difficult. In the past, there were attempts to
solve this task with classic methods such as principal component analysis [1] or independent
component analysis [25]. These classic methods usually work well when the task is greatly
simplified, but they fail when silent blocks, echoes, and delays are present.

2.1 Using neural networks
Nowadays neural networks are used for speech separation tasks. These methods usually
work either with the signal in time-domain or its short time Fourier transform. The most
common neural network architectures used for speech separation are convolutional neural
networks in combination with recurrent blocks as for example long short term memory
blocks (LSTM) [13], which work quite well.

Convolutional neural networks contain specific type of layers called convolutional layers.
These layers are composed of convolutional filters with trainable parameters. Filters in
convolutional layer are used to extract useful information from the given signal. For example
the convolutional layer could be trained to perform pseudo short Fourier transform of the
signal.

Recurrent neural networks contain loops that allow information to be stored within the
network. Due to this property recurrent neural networks have the possibility to use context.

5

In other words, they are able to predict next step using the previous information. Recurrent
neural networks are divided to two groups:

• short recurrent neural networks that contain only simple loops. They have possibility
to store only little amount of information and use only a short context given by the
stored information,

• long term recurrent neural networks that contain blocks that are able to store more
information. This leads to the possibility of using longer context. They are two basic
blocks commonly used: Gated Recurrent Units (GRU) and Long short time memory
blocks (LSTM). The difference between them is that GRU contains two gates and
LSTM contains four of them. Gates are used to determine which information the
network should remember or forget.

Considering that the context information in speech processing is very important, using
LSTM blocks in neural networks for speech separation could improve its performance.

2.2 ConvTasNet
In this work, the ConvTasNet [18] neural network architecture is used. This architecture is
mostly used for speech separation. It consists from three parts as it is shown in Figure 2.1:

1. Encoder.

2. Separator.

3. Decoder.

1-D
Conv

LayerNorm

1×1
Conv

1-D
Conv

1-D
Conv

1-D
Conv

1-D
Conv

1-D
Conv

1-D
Conv

1-D
Conv

1-D
Conv

1-D
Conv

𝑑 = 1

𝑑 = 2

𝑑 = 2𝑋−1 PReLU

1×1
Conv

Sigmoid 1-D
Conv

+

×

Encoder Separator Decoder

Input
mixture

Separated
sources

Mixture

M
asks

· · · · · · · · ·

· · ·

Figure 2.1: ConvTasNet neural network architecture.

6

Encoder is the first block of the ConvTasNet. It gets raw speech signal on input. This
block consist of the convolutional block trained to produces representation that resembles
mentioned STFT. We will denote this representation as pseudo-STFT.

The second part ensures the separation. It consists of a series of consecutive convolu-
tional blocks that are placed in series. Each of them stands for a filter that is applied on
longer and longer parts of the context from both sides. The number of these convolutional
blocks in each series determines how much context will be taken into account. The sepa-
ration part takes a pseudo-STFT as an input. Series of convolutional blocks then provides
feature extraction and generation of the separation masks. Separation masks are two di-
mensional matrices of the same shape as the input pseudo STFT. Each mask contains values
between the zero and one. The value represents the probability that the current frequency
block belongs to the speaker separated by the current mask. Separation is then performed
by element wise multiplication of each mask and the input mixture pseudo STFT given by
the encoder. These multiplications produce 𝑁 separated outputs one for each speaker.

Finally it is necessary to rebuild time-domain signal again from the pseudo STFT rep-
resentation. This is provided by the last part of the ConvTasNet architecture, the decoder.
This part consists of the convolutional block similarly to the encoder part. This block is
trained to reverse the pseudo-STFT. Decoder takes separated pseudo STFTs one by one
and generates separated time-domain signals from them.

2.3 Training of neural networks for speech separation
Training the neural network for speech separation is performed on mixtures where the
original single speaker signals are known. This kind of training is called supervised learning.
It is hard to obtain such data from the real-world mixtures. So it is necessary to use artificial
ones. Training the system only on artificial mixtures often leads to bad performance in real-
world usage. This issue will be addressed in more detail in Chapter 4.

The training consists of several steps that are shown in Figure 2.2. Firstly, the neural
network estimates the 𝑁 separated signals from the given mixture to the 𝑁 outputs, where
𝑁 is the fixed number of speakers. It is necessary to know how many speakers have to be
separated before the training. Then the loss function is computed between the estimated
signals and the targets. The computed loss value is used for the training.

The loss function used for the training is scale-invariant signal-to-noise-ratio (SI-SNR)
function [4], which is defined as:

𝑠⃗target :=
⟨^⃗𝑠, 𝑠⃗⟩𝑠⃗
‖𝑠⃗‖2

(2.2)

𝑒⃗noise := ^⃗𝑠− 𝑠⃗target (2.3)

SI-SNR(𝑠⃗, ^⃗𝑠) := 10 log10
‖𝑠⃗target‖2

‖𝑒⃗noise‖2
(2.4)

where ^⃗𝑠 ∈ R1×𝑇 is the estimated source. 𝑠⃗ ∈ R1×𝑇 is the original source signal used as the
target. The ‖𝑠⃗‖2 = ⟨^⃗𝑠, 𝑠⃗⟩ denotes the signal power, where ⟨^⃗𝑠, 𝑠⃗⟩ denotes the dot product
between estimated and original source. The function is scale-invariant because the scale
of the estimated signal does not influence the result. The neural network is trained to
maximize this function.

7

Input
signal

Neural
network Output 1

Output 2

Output 4

Reference 1

Reference 2

Reference N

PIT Reference 1

Reference 2

SISNR

Output 1

Output 2

Output N

Figure 2.2: Basic training of the speech separator using neural networks.

Figure 2.3: Example of PIT method used on the mixtures that consist of the speakers.

When evaluating the output of the speech separation neural network, several estimates
need to be compared to several reference signals in all permutations. This is due to the
fact that neural network does not know which estimated output signal belongs to which

8

reference signal. In the other words signal of the speaker A could be estimated arbitrary
to the first or second output. This gives rise to a permutation problem.

The solution is the permutation invariant training (PIT) method [31] shown in Figure
2.3. This method computes the loss function between all permutations of original and
estimated signals. The best-computed value corresponds to the right permutation of the
estimated outputs and this value is also used for the training of the neural network. This
method is defined as:

^⃗𝑠1, ^⃗𝑠2, · · · , ^⃗𝑠𝑁 = 𝒮(𝑦⃗) (2.5)

𝑙𝑃𝐼𝑇 (S, Ŝ) = min
𝑖

𝑁∑︁
𝑗=1

−SI-SNR(𝑠⃗𝜎𝑖,𝑗 ,
^⃗𝑠𝑗) (2.6)

where 𝒮(𝑦⃗) is separator function, that estimates separated signal as outputs from the given
mixture 𝑦⃗. These signals are represented by vectors ^⃗𝑠1, ^⃗𝑠2, · · · , ^⃗𝑠𝑁 . The 𝑙𝑃𝐼𝑇 (S, Ŝ) function
takes two parameters: S, which is matrix of vectors of target signals and matrix Ŝ, which
consists of vectors of estimated separated signals. Variable 𝑁 represents the number of
single speakers present in the mixture. Permutation 𝜎𝑖,𝑗 is the index of 𝑗-th target signal
in the 𝑖-th permutation of target vectors given by the matrix S. All computed SI-SNR
loss values are compared. The best (minimum) of them marks the best permutation of
references. This value is used for the training of the speech separation neural network.

9

Chapter 3

Generative adversarial networks

A generative adversarial networks (GAN) [8] is a model which is used for data generation.
The GAN model is able to generate new data which have never been seen before. Never-
theless the generated data are from the same domain as the dataset the GAN is trained
on. There are a lot of ways how the GAN could be used. For example data reconstruction,
where the GAN generates missing parts of the data [23]. It is also possible to use it for
grayscale images colorizing [26], artificial face generation [5], face aging [3], text transla-
tion [10], etc. And finally, there is an option to use the GAN for data augmentation, which
is what we used it for in this work.

Loss function

Real data

Discriminator

Generator

Figure 3.1: Architecture of the base concept of the generative adversarial networks model.

3.1 Training generative adversarial networks
The base GAN model architecture is shown in Figure 3.1, it consists of two parts: the
generator and the discriminator. The first part is the generator which is the neural network
that is trained to generates a new data, called fake data. The generator neural network
architecture depends on the type of data that will be generated. In general, the generator
is defined as follows:

𝑔⃗ = 𝒢(𝑧⃗) (3.1)

10

where 𝑧⃗ is random vector generated from some random distribution, for example normal
distribution. The 𝒢(𝑧⃗) is the generator function which takes the random vector 𝑧⃗ as an
input and generates the fake data as an output. These generated data are represented by
the vector 𝑔⃗.

The second part of the GAN model is the discriminator, which is also a neural network.
This network is used to tell whether the given data is fake or real. Formally the discriminator
is defined as follows:

𝑝𝑟𝑒𝑎𝑙(𝑥⃗,𝒟) = 𝒟(𝑥⃗) (3.2)

where 𝑥⃗ is vector of real or fake data. The 𝒟(𝑥⃗) is the discriminator function that takes
the 𝑥⃗ as an input and estimates the probability of the given data 𝑥⃗ is real, which is defined
by 𝑝𝑟𝑒𝑎𝑙(𝑥⃗,𝒟). Conversely, the probability that the data is fake is represented as:

𝑝𝑓𝑎𝑘𝑒(𝑥⃗,𝒟) = 1− 𝑝𝑟𝑒𝑎𝑙(𝑥⃗,𝒟). (3.3)

To train the GAN model the loss function is also needed. The discriminator output is
used as the input for this loss function, which computes loss values for both networks. It is
defined as follows:

ℒ(𝒢,𝒟) = 𝐸𝑥⃗∼𝑝(𝑥⃗)[log(𝑝𝑟𝑒𝑎𝑙(𝑥⃗,𝒟))] + 𝐸𝑧⃗∼𝑝(𝑧⃗)[log(𝑝𝑓𝑎𝑘𝑒(𝒢(𝑧⃗),𝒟))] (3.4)

where 𝒢 is generator function, 𝒟 is discriminator function. The 𝑝(𝑥⃗) is the real data
distribution. The generator generates fake data from random inputs 𝑧⃗ that are given by
the distribution 𝑝(𝑧⃗). Then 𝐸𝑥⃗∼𝑝(𝑥⃗) is expected value over all given real data and in contrary
𝐸𝑧⃗∼𝑝(𝑧⃗) is the expected value over all given fake data.

These two networks then play the min-max game. This game provides the GAN model
training, which consists of two steps:

1. Discriminator neural network training.

2. Generator neural network training.

The first step can be seen in Figure 3.2. In this step, the generator neural network
weights are locked. This is shown by the gray color of the generator box in the figure. The
generated data 𝑔⃗ = 𝒢(𝑧⃗) and the real data 𝑥 are used as the input for discriminator neural
network.

Discriminator is trained to maximize this loss function, this is defined as:

𝒟* = max
ℒ(𝒢,𝒟)

(3.5)

On the other hand in the second step presented by Figure 3.3, the discriminator neural
network’s weights are locked. In this step, the generator neural network is trained to deceive
the discriminator by generating such similar fake data to real ones that the discriminator
will not recognize them as fake. In other words, generator is trained to minimize loss
function, which is defined as:

𝒢* = min
ℒ(𝒢,𝒟)

(3.6)

Unlike discriminator training, only generated data is used in generator training. These
two steps are repeated and both networks are getting better and better in their tasks.

11

Generator

Loss
function

Real data

Discriminator

𝒢(𝑧)

Ԧ𝑥

𝒟(𝑥) max
ℒ 𝒢,𝒟

Figure 3.2: The first step of training the architecture of the generative adversarial networks.
The generative neural network is locked. The discriminator network is trained on generated
(fake) and real data.

Generator

Loss
function

Real data

Discriminator

𝒢(𝑧)

Ԧ𝑥

𝒟(𝑥) min
ℒ 𝒢,𝒟

Figure 3.3: Architecture of generative adversarial networks training in the second step,
where discriminator neural network is locked and generator is trained to deceive the dis-
criminator.

3.2 Training problems of generative adversarial networks
There are several problems in training of the generative adversarial networks [14]:

1. Mode collapse.

2. Non convergence.

3. Diminished gradients.

3.2.1 Mode collapse

Number of data classes in the dataset can be represented as modes. The generator is then
trained to generate the data from these different modes. In the mode collapse training

12

problem, the generator is unable to generate data from all of these modes. Instead it only
generates data from a few of them.

For example, in case of the generator that is trained to generate single-digit numbers,
the modes that data could be generated from are numbers from zero to nine. When the
GAN model fall in the mode collapse problem during the training, then the model is only
able to generate, for example, the numbers two and five.

The reason why this problem occurs is described in following text. The generator is
trained to generate such data that will confuse the discriminator as much as possible. If
the discriminator weights will be locked during training and only the generator will be
trained, it will in some point converge to the state, where it will generate the high quality
data that strongly confuses the discriminator. Nevertheless this data will be generated
independently on the given random vector 𝑧⃗, which is defined in Section 3.1. The generator
will collapse here to the single point which gives the highest quality data.

Now if the discriminator weights will be unlocked and it will start to train again, it will
only get the data generated from the single mode. Therefore, the discriminator will detect
as true or fake the generated data only in the single mode. The reason is that the generator
makes the vector 𝑧⃗ irrelevant.

The described case is the extreme one, but it may occur when the generator gets too
much space during the training and is much stronger then the discriminator.

3.2.2 Non convergence

The generator and separator parts of the GAN model are playing the min-max game during
the training. In this game the first player is trying to maximize its actions and conversely the
second player is trying to minimize them. The point where the one player will not change
its action regardless of what the opponent may do is called Nash equilibrium. According to
game theory, GAN should converge to this point. Nevertheless, it is very difficult to find a
such parameter values that will make the GAN model converge during the training. This
is caused by the fact that the adjustable parameters of the GAN model are very sensitive
to any changes.

3.2.3 Diminished gradients

This problem occurs when the discriminator is much stronger then the generator. Then the
discriminator get to the state where the gradients for the generator training are vanished.
In other words, the generator is unable to confuse the discriminator and due to the high
quality of the discriminator, it is unable to learn anything.

The loss function mentioned in the first article [9] that introduced the GAN model
encountered the problem of vanishing gradients. This means that the gradients are too
small that the neural network is unable to learn anything from them. There is also second
loss function mentioned in the article, which could solve the vanishing gradiens problem.
Nevertheless, it encounters problem of fluctuating gradients, which causes the GAN model
instability. There were many attempts to create loss function which solves these two prob-
lems such as LSGAN [19], WGAN [2], WGAN-GP [11], BEGAN [6], etc. Nevertheless,
none of them solve these problems as it is described in the paper ”Are GANs Created
Equal?“ [17].

13

3.3 Generative adversarial networks for data augmentation
Generative adversarial networks (GAN) could be also used for data augmentation. For
example in the article ”Low-Shot Learning from Imaginary Data“ [27], GAN is used as a
hallucinator. The hallucinator works as follows: When some person looks at image, the
person will also imagine another similar images. For example, if the image is a dog then
the person imagine another dogs or the same dog in a lot of different positions. If the
computer could do this imagination then it could learn better from fewer data. In this
article, GAN model takes image as the real data input 𝑥⃗ and noise as the fake data input
𝑧⃗. Then it provides estimation (hallucination) of similar data, for example, the mentioned
dog in different positions. Generated hallucinations are then classified with discriminator
classification neural network. Outputs of classification are used to compute loss function
and train the generator (hallucinator).

In the another article ”GAN-based, Synthetic Medical Image Augmentation for in-
creased CNN Performance in Liver Lesion Classification“ [7] GAN model is used to gener-
ate synthetic lesions on livers. In this article two GAN architectures are used DCGAN [24]
and ACGAN [21]. The difference between these two architectures is that ACGAN trains
generators to generate samples from given class instead of random ones. This is achieved
by getting the second output from the discriminator part. The second output estimates the
most probable class of the given data. This information is then used with value of the real
fake loss function to train the generator. In medicine it is hard to obtain large datasets,
this is due to the fact that data are sensitive and they contain private information about
the patients. Another fact is that some data are expensive to obtain. Therefore, using a
GAN in the way to extend the dataset is very useful here. Classifier trained on the original
dataset has resulted in a sensitivity value of 78.6% and specificity value of 88.4%. With
the classifier trained on the dataset extended by the presented GAN model, there is an
improvement in both values to the sensitivity of 85.7% and specificity of 92.4%.

There are a many more examples of the GAN model usage. Nevertheless, the mentioned
usages show that it is possible to use the GAN model for the data augmentation and these
augmentations could significantly improve the results of the original models.

14

Chapter 4

Robust speech separation

As it is mentioned in Section 2.3 neural networks used for speech separation are trained on
the mixtures with known single speaker signals. These mixtures are hard to obtain from
the real world. If the single speaker signals could be easily obtained from the real-world
mixture then the speech separation task will be solved and the speech separation system will
be useless. Thus, mixtures used for the speech separation system training are artificially
mixed from the recorded speaker signals. However, the speech separation systems trained
on artificial mixtures achieve good results on these mixtures, they often fail on real-world
mixtures. The reason of the bad results on real-world mixtures is due to the fact that
real-world mixtures contain echoes and noises given by the environment where the mixture
was recorded.

4.1 Data augmentation
To improve the speech separation system behaviour on the real-world mixtures it is possible
to make the speech separation system more robust. The main idea of making a robust
system is to add some other input mixtures, that extend the variance of the training and
validation data. The separation system trained on this extended dataset could better
manage the real-world mixtures. The mixtures that extend the dataset are created from
the original mixtures by the method called data augmentation.

4.2 Classic practices
There are many classic practices to augment the data and extend the original dataset. It
is possible to split these practices into two categories:

1. Practices that add noises and echoes to signal.

2. Practices that work with signal itself.

In this section, some practices from each category will be described.

4.2.1 Noise addition

Examples of noises that could be used for data augmentation are Gaussian noise, Color
noise, White noise, etc. It is also possible to record noises from real-world places such as

15

Original
dataset

Extended
part

Original
dataset

Speech
separation

system

Training

Training Robust speech
separation

system

Extend

Figure 4.1: Base idea of robust speech separation

streets, rooms, airports, and many others. All of these noises are mixed with the original
mixture using weighted sum, which is defined as:

𝑦
(aug)
𝑡 = 𝑤𝑠𝑦𝑡 + 𝑤𝑛𝑛𝑡 (4.1)

where 𝑦
(aug)
𝑡 is augmented mixture, 𝑦𝑡 is original mixture, 𝑛𝑡 is selected noise for augmen-

tation and 𝑤𝑠 and 𝑤𝑛 are mixtures and noise ratios, that determines mixing ratio of the
original mixture and selected noise.

4.2.2 Echoes

Echoes, also called sound reverberation [30] are sound reflections caused by objects placed
the real world spaces. These objects could be for example walls, hills, furniture, etc. For
human ear reverberation with delay between 1.5𝑠 to 2.5𝑠 is still clearly understandable.
The reverberation with these delays could be heard in concert halls and it is possible to
simulate it by the hall reverberation algorithm [20]. Mixtures with simulated reverberation
could be used to make speech separation systems more robust toward environments that
give these echoes.

4.2.3 Frequency filters

All the following techniques described in this section are from the second category. The
first of them is the technique that uses frequency filters. These filters are applied to the
signals and cause changes in the signal’s frequency spectrum. Four well-known types of
filters:

a) Low pass filter, which allows passing only signal frequencies lower than some selected
threshold.

b) High pass filter, which allows only these signals frequencies that are higher than the
selected threshold.

16

c) Band pass filter, which combines two previous filters. This filter allows passing signal’s
frequencies that are inside some selected frequencies range, called bandwidth.

d) Band stop filter, which works opposite to band pass filter. This filter allows passing
signal frequencies that are not inside some selected bandwidth.

Using frequency filters for data augmentation could make the speech separation systems
more robust towards different microphones that are used for data recording. Not all micro-
phones are sensitive to the same range of frequencies.

4.2.4 Gain

Gain is an augmentation practice that works with increasing or decreasing signal volume.
Changes in gain of the signal are done by multiplying or dividing the signal amplitude by
a random amplitude factor. Higher values of the signal amplitude mean a higher volume
of the signal and conversely lower amplitudes mean lower volume. So it is obvious that
moving with signal’s gain should make the model more robust towards different volumes of
recorded signals.

4.2.5 Pitch

Furthermore, it is also possible to shift the pitch of the signal. Shifting the pitch is in
other words shifting of tone. If the pitch is raised, then signal sounds in higher tones, and
conversely when the pitch is reduced, the signal sounds in lower (bass) tones. Considering
that different people speak in different tone, the pitch shift augmentation could make speech
separation system robust towards the people voices that are not presented in the current
dataset.

4.2.6 Tempo

Another data augmentation can be provided by working with the signal’s tempo. Tempo
could be sped up or slowed down. When the tempo is simply sped up, then the signal’s
pitch is also getting higher. Conversely, with the tempo slowing down, the pitch is going
lower. It is possible to use the simple tempo augmentation with this behavior but it is not
always wanted. So to change the tempo but make the signal to sound in the same tones, it
is necessary to use pitch shifting together with tempo changes.

4.2.7 Polarity inversion

The polarity inversion augmentation is provided by multiplying the signal by -1, so in other
words to flip it upside down. This change is not distinguishable from the original signal by
human ears but it can be a problem for the neural networks where this change may make
a big difference in their behavior. So this augmentation can help to make neural networks
more robust towards to that simple change.

4.2.8 Audio shift

The audio shift augmentation is used to shift the audio signal forwards or backwards on
time axis. This technique could be provided with rollover or not. When the rollover is
applied, then the signal is moved as the cyclic buffer. This could raise some problems in

17

neural networks, which use context information. If the rollover is not applied then the
overflowed parts of the signal are lost and zeros are pad in front or back of the signal.

4.2.9 Channels shuffling

In multi-channel signal, it is possible to shuffle channels. For example, in a stereo signal,
it is possible to switch the left and right channels. Channel shuffling could help machine
learning models to combat different positional biases.

4.2.10 Vocal tract length

The speaker signal frequency values also depend on the length and shape of the speaker
vocal tract. Each speaker has different vocal tract which produces different vocal tract
features. It is possible to work with the vocal tract feature in two ways.

The first way is to get rid of this information by using the vocal tract length normal-
ization method (VTLN) [15]. This method works by the warping the frequency axis in the
filter bank analysis, which is warped by the normalization scale factor 𝛼. This factor is
derivated from an estimate of the length of the speaker’s vocal tract. Thus, the vocal of
the each speaker with different vocal tract length (VTL) is scaled to the ”standard“ vocal
tract.

On the other hand, the second way is to use this information and to extend the dataset.
The data added to the dataset should increase the variance of VTL. The method that
could generate data with different VTL features is called vocal tract length perturba-
tion (VTLP) [16]. This method use the same warping method as the VTLN method men-
tioned above, but it used various scale factors 𝛼. Each of that factors simulates different
VTL and generates data which will be added to the dataset and increase the dataset VTL
variance.

4.3 Using generative adversarial networks
In this work the Generative adversarial networks (GAN) are used for data augmentation
on adversarial mixtures. The generator here takes the adversarial mixture as an input,
generates augmentation and put the augmented mixture as an output. The generator is
defined as:

𝑦⃗ (aug) = 𝒢(𝑦⃗) (4.2)

where 𝒢(𝑦⃗) is the generator function that takes the original mixture 𝑦⃗ as an input and
generates augmented mixture 𝑦⃗ (aug) as an output.

Instead of the common GAN architecture, where the discriminator consists of the second
neural network and one loss function, in this architecture, the discriminator consists of two
parts as can be seen in Figure 4.2. The first part uses the speech separation neural network
and the SI-SNR loss function, which is computed between original targets and separated
signals from the augmented mixture. It is defined as:

Ŝ = (^⃗𝑠1, ^⃗𝑠2, · · · , ^⃗𝑠𝑁) = 𝒮(𝑦⃗ (aug)) (4.3)
𝑝 = −𝑙PIT(S, Ŝ) (4.4)

18

where 𝑦⃗ (aug) is the generated noisy mixture which is defined by Equation 4.2. The ma-
trix S consists of all separated signals from the augmented mixture by separator function
𝒮(𝑦⃗ (aug)). And finally 𝑝 is loss value computed by 𝑙PIT(S, Ŝ) defined by Equation 2.6.

The second part represents the similarity between the original 𝑦⃗ and the augmented
𝑦⃗(aug) mixture, otherwise the generator could generate any signal which does not even
corresponds to the reference source. This similarity is computed by the SI-SNR function
defined by Equation 2.4. The second part of the discriminator is defined as:

𝑠 = −SI-SNR(𝑦⃗ (aug), 𝑦⃗) (4.5)

where SI-SNR(𝑦⃗ (aug), 𝑦⃗) is defined by Equation 2.4. The 𝑦⃗ is the original mixture defined
by Equation 2.1 and the 𝑦⃗ (aug) which is defined by Equation 4.2.

The generator goal is to confuse the separator system as much as possible with the
generated augmented mixtures that are as similar as possible to the original mixtures. In
other words, the generator tries to minimize the values 𝑝 and 𝑠. The loss value that is used
for generator training is computed as the weighted sum of these two values 𝑝 and 𝑠. It is
defined as:

𝑙 = 𝑤sim𝑠+ 𝑤sep𝑝 (4.6)

where 𝑤sim is weight of the similarity value 𝑠 and 𝑤sep is the weight of the separator loss
value 𝑝.

Generator

Separator

SI-SNR

SI-SNR

𝒢(𝑦)

𝒮(𝑦)

ℓ𝑃𝐼𝑇(𝑺, ෡𝑺)

SI-SNR(𝑺, ෡𝑺)

Ԧ𝑦

𝑠1, 𝑠2

ℓ𝑃𝐼𝑇(Ԧ𝑔, Ԧ𝑦, 𝑺)

Figure 4.2: Architecture of generative adversarial networks training used in this work. This
figure shows the step where the generator is trained.

As it was mentioned in Section 3.3, the generator and the discriminator play the min-
max game. Thus, the separator should be also trained. The training of the separator is very
similar to the classic speech separation training described in Section 2.3. The only change
is that the generated augmented mixtures are also used during the training. As it is shown
in Figure 4.3 they are added to the training by flipping the unfair coin. The percentage of
the generated augmented mixtures is a hyperparameter that should be tuned.

In each step of the training, the augmented mixture is used with probability 𝑐, while
the original one with probability 1− 𝑐. The probability 𝑐 is set as a hyperparameter. The
augmented or original mixture is given to the separator as an input with the same ground
truth single speaker signals. This should make the speech separation system be more robust
towards the augmented mixtures generated by the generator neural network.

19

SI-SNR

Separator

Unfair coin

Generator

𝒮(𝑦)

𝒢(𝑦)
Ԧ𝑦

𝑠1, 𝑠2

ℓ𝑃𝐼𝑇(𝑺, ෡𝑺)

Figure 4.3: Architecture of generative adversarial networks training used in this work. This
figure shows the step where the discriminator is trained.

4.3.1 Problems with the best model selection

Training of such a system raises a new problem. Which separator and which generator from
which epoch should be chosen as the best one. If the chosen generator will be the generator
with the best-computed loss value on validation data during training, it is possible that
the separator network was weak in this training epoch and the generator network gets a
better result that does not correspond to its trained quality. In other words, with the poor
separator, the poor generator could get better results than the quality generator with the
quality separator.

As mentioned, the problem with the best model choice also applies to the separator
model. With the poor generator which generates practically the same augmented mixtures
as the original ones the separator model will get nice results even when it is not the most
robust one.

In the case of this work, the generator model is not needed. The aim is to make robust
speech separator model, so only the best separator model should be selected. The solution
is to use all generators from the training to generate the augmented mixtures. Then next
step is to use different separators to separate signals from the augmented mixtures and
choose the separator with the best overall score. The whole model selection pipeline is also
shown in Figure 4.4. Generating of augmented mixtures is processed by generating the
random number between the zero and the number of epochs. This number represents the
used generator which will be used to generate the augmented mixture. This is defined as:

𝑖 ∼ 𝒰(0, 𝐸); 𝑖 ∈ N (4.7)

𝑦⃗
(aug)

𝑖𝑗 = 𝒢𝑖(𝑦𝑗) (4.8)

where the 𝑖 is the random integer generated from the uniform discrete distribution 𝒰 of
integers between the zero and 𝐸. The 𝐸 is the number of epochs for which the GAN model
were trained on, it is also the number of all saved generators. The 𝑦𝑗 is the 𝑗-th original
mixture from the validation set. The 𝒢𝑖 is the generator function of the 𝑖-th generator.
Finally, the 𝑦⃗

(aug)
𝑖𝑗 is the 𝑗-th generated augmented mixture be the 𝑖-th generator from the

𝑗-th original mixture.

20

Separated
signals

Mixtures
Randomly
selected

generators

Augmented
mixtures

Each k-th
separator

Evaluate with
known targets

Figure 4.4: The best separator model selection pipeline.

All the generated augmented mixtures will be separated by the selected separator and
the SI-SNR values will be computed, using the PIT, between the separated outputs and
the known targets. This is defined as:

𝑘best = argmin
𝑘

(
1

𝐽

𝐽∑︁
𝑗

(𝑙PIT(𝒮𝑘(𝑦⃗
(aug)

𝑖𝑗),T𝑗))); 𝑘 ∈ (20, 30, 40, . . . , 𝐸) (4.9)

where T𝑗 is the matrix of target signals for the 𝑗-th mixture. The 𝒮𝑘 is the 𝑘-th separator
function, where 𝑘 is from the (20, 30, 40, . . . , 𝐸) which is the vector of indexes of the val-
idated separators. The 𝑙PIT is the PIT loss function defined by Equation 2.6 and 𝑘best is
the index of the best separator.

21

Chapter 5

Implementation

The implementation of the presented generative adversarial networks (GAN) model is based
on Jian Vu’s PyTorch implementation of the ConvTasNet [29]. The PyTorch library [22]
is Python based machine learning library, that contains neural network layers, optimizers,
schedulers, and tensors that can work with the CUDA platform. The used ConvTasNet
module contains the ConvTasNet neural network implementation.

5.1 Main process
The system consists of the Model, Dataloader, and Trainer class. Firstly the mixtures and
the corresponding reference single speaker signals are loaded by the Dataloader. Then the
model is initialized with randomly set weights. It is also possible to load the weights of the
trained model and use them for further training. The Model and the Dataloader are put
into the Trainer class which can train the model.

To train the model the run function of the Trainer class should be called as it is shown
in Figure 5.1. This function loops over the set number of epochs and in each epoch calls
two functions: train and eval. The train function loops over the batches of training data
provided by the given Dataloader. For each batch the compute_loss function is called
that provides the forward pass and loss computation. This function returns a computed
loss value, which is used by the backpropagation algorithm to train the generator or the
separator neural network. The eval function works similarly as the train function, but the
backpropagation algorithm is not called.

5.2 Switching of training
Training of the GAN model includes the min-max game between the generator and sepa-
rator part. This is done by switching the training between these two parts as it is shown
in Figure 5.2. In this work, the generator and separator training is switched several times
during the epoch after at least one batch. The number of batches after which the training
is switched is different for the generator and separator parts and is defined by the hyper-
parameter. There is also a possibility to control the training switch according to results
achieved by each part. In this case, the generator or the separator is trained until it achieves
the results that satisfy the defined goal.

22

run()

train()

eval()

curr_epoch
<

epoch

True

False
return

Dataloaders
Train

Validation

Pretrained models
Separator
Generator

Figure 5.1: Diagram of the main training cycle that is done inside the function run.

compute_loss()

compute_generator_loss()

Generator
training?

compute_separator_loss
(gan_impact)

compute_separator_loss
(gan_impact=0)

compute_similarity_loss()

True False

Figure 5.2: Diagram of the loss computation during the generator and separator training.

5.3 Loss computation
The loss computation part of the Trainer is called depending on which part is currently
trained. As it is mentioned in Section 4.3 the generator loss function is composed of two
parts, the separator and similarity loss functions. To compute these, the generator first
generates an augmented mixture. Then, the separated signals are estimated by the sepa-
rator from the augmented mixture. The gan_impact is here set to 0, because the mixture
is already generated. Then the separator loss function takes these signals as an input and
compares them with the known targets. The second part of the generator loss function is
computed as the SI-SNR between the original and generated augmented mixture. These
two computed values are then summed up with different weights and the backpropagation
is called on the generator neural network.

On the other hand, in the case of the separator training, only the separator loss function
should be computed. The only difference is that some amount of the generated augmented
mixtures must be included in the training. This is implemented by generating the random
number between zero and one. The generated number is then compared to the defined
hyperparameter of the gan_impact of the augmented mixture. If the generated number is

23

smaller than the defined impact then the generated augmented mixture is used as an input
of the separator network and vice versa. The SI-SNR value is then computed between the
estimated outputs and the target signals and the backpropagation is called on the separator
neural network.

5.4 Evaluation
The trained GAN model should be evaluated. The evaluation process is shown in Figure 5.3
Firstly the best separator should be chosen from all epochs. The generate script uses
generators from random generator epochs to augment the validation part of the dataset.
Then the evaluate script evaluates each n-th separator on these augmented data.

The second part of the GAN model evaluation is to evaluate the selected robust separator
on the testing part of the dataset. The separate script estimates single speaker signals from
the testing mixtures. The second script compute_si_snr compares the estimated signals
with references. The SI-SNR values are computed during this comparison and then the
average is computed from them. The computed mean is the evaluation result.

generate(validation)

evaluate(validation)

robust_separator

separate(test)

compute_si_snr(test)

generate(test)

improvement(test)

1.
Evaluation on
real noisy data

2.
Evaluation on

generated
augmentations

Figure 5.3: Diagram of the evaluation process for both evaluations. The left side shows
the evaluation on real noisy data and the right side shows the evaluation on generated
augmentations.

Another evaluation is set to compute the improvement between the original and robust
separator on the augmented data. For this type of evaluation, the generate script is again
used, but now the testing part of the dataset is augmented. Then the separate and com-
pute_si_snr scripts are used to evaluate the original and robust separator. The computed
average SI-SNR values are then used to compare the quality of the robust model.

24

Chapter 6

Experiments

Experiments with a generative adversarial networks (GAN) model used to make the speech
separation more robust are performed with the setup described below. The first experiments
try to find the applicable combinations of parameters, which do not lead to one of the GAN
training problems. The second experiments evaluates the GAN model on the WSJ0-2mix
and WHAM dataset and solve problems raised during experimenting. The last experiments
train the GAN model on the WHAM dataset and evaluate it as well, to proof that the
concept is easily applicable to the different dataset.

6.1 Dataset
Experiments are done on the Wall Street Journal dataset (WSJ0-2mix) [12]. It consists of
three parts, which contain training, cross-validation, and testing data. The dataset contains
both mixtures and parallel single-speaker recordings. Speakers are randomly mixed with
various signal-to-noise ratios (SNR) between 0 dB and 5 dB. All data are downsampled to
8 kHz sample rate. For training, there are 20000 mixtures corresponding to 30 hours, for
cross-validation, there are 5000 mixtures corresponding to 10 hours, and there are 3000
mixtures corresponding to 5 hours for testing. The testing part contains different speakers
than the training and cross-validation parts.

The WSJ0 Hipster Ambient Mixtures (WHAM) [28] is the second dataset used in the
experiments. This dataset pairs each two-speaker mixture in the WSJ0-2mix dataset with
the unique noise background scene. Noises are recorded in San Francisco Bay in urban
environments such as coffee shops, restaurants, bars, office buildings, parks, etc. They are
recorded at a sampling rate of 48 kHz and then downsampled to the 8 kHz to match with
the WSJ0-2mix dataset. There are 80 hours of noises recorded at 44 different locations
and they are separated to the four bins: very quiet, quiet, normal and loud. Each part of
the dataset (training, cross-validation and testing) contains noises from at least two unique
locations in each bin. The sizes of training, cross-validation, and testing parts are the
same as in the raw WSJ0-2mix dataset. Each background noise is mixed into the mixture
by sampling SNR value between -6 dB and 3 dB and then by applying gain to the louder
speaker of the mixture such that the SNR between the louder speaker and the noise is equal
to the sampled SNR value.

25

6.2 Initial separator and generator networks setups
The neural network architecture used for both networks (separator and generator) is Con-
vTasNet [29]. Parameters of the ConvTasNet are shown in Table 6.1. The table also
shows the parameter values for the generator and separator neural networks used in the
experiments.

Table 6.1: Hyperparameters of the ConvTasNet network [18]

.

Symbol Description Generator Separator
𝐹 Number of filters in autoencoder 128 128
𝐿 Length of the filters (in samples) 40 40
𝐵 Number of channels in bottleneck 128 128
𝐻 Number of channels in convolutional blocks 192 192
𝑃 Kernel size in convolutional blocks 3 3
𝑋 Number of convolutional blocks in each repeat 3 7
𝑅 Number of repeats 1 3
𝑂 Number of outputs 1 2

The separator network used for training has been pretrained on one of the above-
mentioned datasets or their combination. So there are three separator networks used in
experiments, each pretrained on one of them. The baseline pretrained scores are shown
in Table 6.2. From the given results it is obvious that the WHAM dataset is much more
difficult than the WSJ0-2mix. This is caused by the noises added to the mixtures. If the
system is trained on the WSJ0-2mix and tested on the WHAM, then the results are quite
poor.

Table 6.2: Baseline results of pretrained separator neural networks. Results are computed
by SI-SNR loss function using PIT method. Datasets in rows are the training ones. Testing
datasets are in columns.

WSJ0-2mix WHAM
SI-SNR [dB] SI-SNR [dB]

WSJ0-2mix 12.46 -2.99
WHAM 9.04 6.09

WSJ0-2mix + WHAM 12.34 6.45

The generator network is much smaller than the separator one and it has been pretrained
for the self-identity task. This is due to the fact that the untrained encoder and decoder
parts of the ConvTasNet leads to the generating nonsense augmented mixtures. It is possible
to train the generator network properly during the GAN model training but it is very
difficult and often leads to a bad GAN model training. Since the aim of the GAN training is
not to train the encoder and decoder parts but to generate augmented mixtures, pretraining
the self-identity removes the encoder and decoder training problem from the GAN model
training process.

26

6.3 Adjustable parameters
The first task of the experiments is to find the right combination of parameters that will
train GAN properly. The adjustable parameters are:

• Separator loss weight 𝑤sep, which sets the importance of the separator loss in gener-
ator training. The generator training loss function is defined by Equation 4.6. The
separator loss value is computed during generator training on the generated aug-
mented mixtures. The generator is trained to maximize the separator loss in order to
confuse the separator as much as possible.

• Similarity loss weight 𝑤sim is used to indicate the importance of the similarity between
the generated augmented mixture and the original one. This loss function is also
computed during training and its role is to constrict the generator so that it would
not generate complete nonsense.

GAN model is switching between the separator and generator training during each
epoch. Two parameters control this:

• Separator batch cap 𝑐sep, which sets how many batches will be used in separator
training turn.

• Generator batch cap 𝑐gen, which sets how many batches will be used in generator
training turn.

For example, when 𝑐sep and 𝑐gen are set to 10, the generator will be trained on the first
ten batches. After this, the training is switched to the separator training, which uses other
ten batches and then switches back. The number of batches for each model can significantly
influence the training and these parameters are difficult to set properly.

The last two adjustable parameters are the ratio of the augmented mixtures during the
separator training 𝑟aug and the similarity loss SI-SNR cap 𝑐sim, which sets the value that is
used to clip the similarity loss to a maximum value. This serves to prevent the similarity
function to be too strong in comparison with the separator loss function.

6.4 Initial experiment
The initial experiment is set with following parameters:

• 𝑤sep = 𝑤sim = 1.0,

• 𝑐sep = 𝑐gen = 10,

• 𝑟aug = 0.5 and

• 𝑐sim = 40.

The purpose of the initial experiment was to inspect the basic behavior of the loss
functions during the training. The results are shown in Figure 6.1. The separator loss
function curve shows that the generator network managed to completely confuse the sep-
arator network. Although this is the task of the generator, in this case, the generator
completely dominated the training to the point that the separator was unable to adapt to
the augmented mixtures. The strength of the generator network is possibly caused by:

27

0 25 50 75 100 125 150
Epochs

100

80

60

40

20

0

20
SI

-S
NR

 [d
B]

GAN/Train separator loss

(a) Training curve of the separator loss function

0 25 50 75 100 125 150
Epochs

40

35

30

25

20

15

10

5

-S
I-S

NR
 [d

B]

GAN/Train similarity loss

(b) Training curve of the similarity loss function

Figure 6.1: Training curves of the separator and similarity loss computed during the gen-
erator training move in each epoch. These curves shows collapse of the GAN model with
initial parameters setting to the imbalance state, where the generator is too strong for the
separator.

1. Too much emphasis on the separator network confusion, which could be adjusted by
the parameters 𝑤sep and 𝑤sim. These adjustments will be examined in Section 6.5, or

2. Too much training space for the generator network, which could be adjusted by the
parameters 𝑐gen and 𝑐sep. These adjustments will be examined in Section 6.6.

6.5 Generator loss weights
The base experiments lead to the imbalance between the generator and separator networks.
There is a chance to solve this imbalance problem by finding the correct weights 𝑤sep and
𝑤sim.

Therefore, next experiments set different combinations of values of the weight parame-
ters. Thus the separator weight 𝑤sep value is reduced by tenths to 0.1 with similarity weight
𝑤sim locked at 1.0. This could reduce the generator strength and help to a better system
balance.

Experiments collapse to two modes, where the generator network:

1. Is too strong and overwhelms the separator network.

2. Generates very similar mixtures to the original ones and does not make any changes.

The first mode is achieved when the 𝑐sep is above the value 0.5 as shown by the orange
curves in Figure 6.2. Lower values collapse to the second mode, where the similarity loss
function has a big influence on the generator as it is shown by the blue curves in Figure 6.2.

6.6 Separator and generator batch caps
Another idea is to solve the collapsing to the first mode by the right combination of the
separator and generator batch cap parameter values. The main issue is that the generator

28

0 25 50 75 100 125 150
Epochs

100

80

60

40

20

0

20
SI

-S
NR

 [d
B]

GAN/Train separator loss

weight=03
weight=07

(a) Training curve of the separator loss function

0 25 50 75 100 125 150
Epochs

40

35

30

25

20

15

10

5

-S
I-S

NR
 [d

B]

GAN/Train similarity loss
weight=03
weight=07

(b) Training curve of the similarity loss function

Figure 6.2: Training curves of the separator and similarity loss computed during the gener-
ator training move in each epoch. The orange curves show the collapse of the GAN model
with 𝑤𝑠𝑒𝑝 = 0.7 to the imbalance state, where the generator is too strong for the separator.
The blue curves show the collapse of the GAN model with 𝑤𝑠𝑒𝑝 = 0.3 to the imbalance
state, where the generator does not generate any augmentations.

confuses the separator too much. Therefore, increasing the separator batch cap 𝑐sep could
help the separator to better adapt to the augmented mixtures. The fixed value 𝑤sep = 0.7
was used in batch cap experiments. This value has been chosen because although the system
with these settings collapses to the first mode, it reduces the impact of the separator loss
function on the generator. The 𝑐sep value is incremented by the unit. Nevertheless, the
system does not stabilize again, it collapses to the second mode when the 𝑐sep >= 13 as it
is shown by the blue curves in Figure 6.3. With lower values of 𝑐sep, the system stays in the
first collapse mode as it is shown by the orange curves in Figure 6.3. Therefore, it means
that the batch cap parameters are not distinguished finely enough.

6.7 Automatic separator and generator batch caps
After these experiments, it turned out that adjusting the batch caps 𝑐sep and 𝑐sim is not
enough to stabilize the training. The constant batch cap values still lead to one of the two
collapse modes described in Section 6.5, i.e. one of the models is too strong while the other
does not learn anything. Here, we explore another way to balance the training, where the
number of batches for each model is adjusted dynamically, based on the SI-SNR value of the
separator. The generator is thus trained until the separator obtains SI-SNR values higher
than parameter 𝑐snrgen and the separator is trained until the separator does not achieve a
-SI-SNR value lower than parameter 𝑐snrsep on the augmented mixtures.

Experiments using this method are initially set with parameters:

• 𝑤sep = 0.6, 0.7, 0.9

• 𝑤sim = 1.0,

• 𝑐snrgen = 0.0

• 𝑐snrsep = −5.0,

29

0 25 50 75 100 125 150
Epochs

100

80

60

40

20

0

20
SI

-S
NR

 [d
B]

GAN/Train separator loss

batchcap=13
batchcap=12

(a) Training curve of the separator loss function

0 25 50 75 100 125 150
Epochs

40

35

30

25

20

15

10

5

-S
I-S

NR
 [d

B]

GAN/Train similarity loss
batchcap=13
batchcap=12

(b) Training curve of the similarity loss function

Figure 6.3: Training curves of the separator and similarity loss computed during the genera-
tor training move in each epoch. The blue curves show the collapse of the GAN model with
𝑐𝑠𝑒𝑝 = 13 to the imbalance state, where the generator does not generate any augmentations.
The orange curves show the collapse of the GAN model with 𝑐𝑠𝑒𝑝 = 12 to the imbalance
state, where the generator is too strong for the separator.

• 𝑟aug = 0.5 and

• 𝑐sim = 20.

0 25 50 75 100 125 150
Epochs

100

80

60

40

20

0

20

SI
-S

NR
 [d

B]

GAN/Train separator loss

(a) Training curve of the sep-
arator loss function computed
during the generator training.

0 25 50 75 100 125 150
Epochs

40

35

30

25

20

15

10

5

-S
I-S

NR
 [d

B]

GAN/Train similarity loss

(b) The training curve of
the similarity loss values com-
puted during the generator
training.

0 20 40 60 80 100 120
Epochs

20

15

10

5

0

-S
I-S

NR
 [d

B]

Separator/Train impacted

(c) Training curve of the sep-
arator loss function computed
on data impacted by the gen-
erator during the separator
training.

Figure 6.4: The training curve of the separator loss computed during the generator training
moves each epoch and the training curve of the computed separator loss function during
the separator training on the augmented mixtures. These curves show, that the curves
converge to the set parameters 𝑐snrgen and 𝑐snrsep. The 𝑐snrsep parameter value is inverted
during the training. Nevertheless, the generated augmented mixtures are very similar to
the original ones, thus the generated augmentations are not so strong.

The 𝑐sim value follows the knowledge from the previous experiment, where the similarity
values around the 40 dB overweight values of the separator loss function during the generator
training. From training curves shown in Figure 6.4 it is evident, that systems trained by
using this method do no longer collapse to the modes mentioned in Section 6.5. The training

30

curve in Subfigure 6.4a that stands for the level of the separator confusion converges to the
SI-SNR value 0 dB which is set by the parameter 𝑐snrgen. The Subfigure 6.4c shows that
the training curve of the separator gained values on the augmented data, which converges
to the value of -5 dB -SI-SNR set by the parameter 𝑐snrsep.

6.8 First evaluation

20 40 60 80 100 120 140

2.250

2.275

2.300

2.325

2.350

2.375

2.400

SI
-S

NR
 [d

B]

Separator 22-03-25-14-48-13_gan_st_small_gt_selfident_simlw_10_splw_07_ag_0_as_-5_gi_05_ssc_20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Generators ids

0

1

2

3

4

5

6

7

8

SI
-S

NR
 [d

B]

Separator 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Generators ids

0

1

2

3

4

5

6

7

8

SI
-S

NR
 [d

B]

Separator 30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Generators ids

0

1

2

3

4

5

6

7

8

SI
-S

NR
 [d

B]

Separator 40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Generators ids

0

1

2

3

4

5

6

7

8

SI
-S

NR
 [d

B]

Separator 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Generators ids

0

1

2

3

4

5

6

7

8

SI
-S

NR
 [d

B]

Separator 60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Generators ids

0

1

2

3

4

5

6

7

8

SI
-S

NR
 [d

B]

Separator 70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Generators ids

0

1

2

3

4

5

6

7

8

SI
-S

NR
 [d

B]

Separator 80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Generators ids

0

1

2

3

4

5

6

7

8

SI
-S

NR
 [d

B]

Separator 90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Generators ids

0

1

2

3

4

5

6

7

8

SI
-S

NR
 [d

B]

Separator 100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Generators ids

0

1

2

3

4

5

6

7

8

SI
-S

NR
 [d

B]

Separator 110

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Generators ids

0

1

2

3

4

5

6

7

8

SI
-S

NR
 [d

B]

Separator 120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Generators ids

0

1

2

3

4

5

6

7

8

SI
-S

NR
 [d

B]

Separator 130

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Generators ids

0

1

2

3

4

5

6

7

8

SI
-S

NR
 [d

B]

Separator 140

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Generators ids

0

1

2

3

4

5

6

7

8

SI
-S

NR
 [d

B]

Separator 150

Figure 6.5: Results from finding the best separator model from trained GAN with parameter
𝑤sep = 0.7. The first chart shows the SI-SNR means of evaluated separators. The other
charts show the results on generated augmented mixtures of the separator models from the
each selected epoch

Since the GAN model does not collapse to the one of the above mention modes it is
possible to evaluate it. Firstly, the best-trained separator model has to be found. This is
provided by generating augmented mixtures by randomly chosen trained generators. Then

31

each tenth separator model is evaluated on all generated augmented mixtures. The model
with the best result is then chosen for the evaluation using the test data. This is described in
more detail in Section 4.3.1. The results of the separator selection are shown in Figure 6.5.
The first chart shows the overall results of each evaluated separator model. The bar charts
show how successful the separator is on the generated augmentations by each generator.
Bars represent groups of generators, which are grouped by their epoch number. From these
bars it is evident that the separators works well on the first ten generator but elsewhere
gain a poor results. Nevertheless, the results achieved by the different separators on the
data generated by the different generators are very similar. This means that the separator
is not being more and more robust during the epochs.

Table 6.3: Results from the first evaluation of the experiments with automated 𝑐gen and
𝑐sep parameter settings. In first column there are different 𝑤sep parameter settings. Other
columns represent results from the evaluation on the tested part of the WSJ0-2mix or
WHAM dataset. The columns with original annotation contain evaluation results of the raw
pretrained separator model on the WSJ0-2mix dataset. The columns with the augmented
annotation contain the evaluation results of the best separator model chosen from the GAN
training.

WSJ0-2mix WSJ0-2mix WHAM WHAM
original robust original robust

SI-SNR [dB] SI-SNR [dB] SI-SNR [dB] SI-SNR [dB]
𝑤sep = 0.6 12.46 12.18 -2.99 -2.89
𝑤sep = 0.7 12.46 11.95 -2.99 -2.78
𝑤sep = 0.9 12.46 11.36 -2.99 -3.05

The separator with the best score is chosen as the best one. This separator is then
evaluated on the WSJ0-2mix and WHAM datasets. The results are shown in Table 6.3.
They show that the trained GAN model with the above-mentioned parameters setting
does not train the separator to be more robust. This is tested by evaluating the best
separator model on the testing part of the WHAM dataset. The SI-SNR result achieved by
the separator model pretrained on the WSJ0-2mix dataset is similar to the model trained
by the GAN, when evaluating both the WSJ0-2mix and WHAM datasets. There are three
experiments using different separator weights, but none of them has achieved better results.

The bad evaluation results could be caused by the fact that although the GAN model
does not collapse to the above mentioned two modes, the generated augmented mixtures
are very similar to the original ones as it is shown in Figure 6.4b, where the curve represents
the similarity loss values. Thus, it would be necessary to move with the 𝑤sim parameter in-
stead of the 𝑤sep. The 𝑤sim parameter constraints generator from generating very different
mixtures, which also constraints the generator’s possibility of generating difficult augmen-
tations. Considering this other experiments are set with the fixed 𝑤sep at value 1.0 and 𝑤sim
set to the values 0.1, 0.2, . . . , 1.0. These experiments could show that the decreasing 𝑤sim
parameter may release the generator to generate the more difficult augmented mixtures.

Experiments show that with high values of 𝑤sim the generator has the major part of
the training time and the separator could adapt to the generated augmentation in a few
batches. With decreasing value of the 𝑤sim the GAN model reaches the point, where hard
augmentation is found in the first few epochs and the separator is then unable to adapt to
this augmentation with the SI-SNR value set by the parameter 𝑐snrsep. This is shown in

32

5 0 5 10 15
Epochs

4

2

0

2

4

6
SI

-S
NR

 [d
B]

GAN/Train separator loss

(a) Training curve of the separator loss func-
tion during the generator training.

0 50 100 150 200
Epochs

15

10

5

0

5

-S
I-S

NR
 [d

B]

Separator/Train impacted

(b) Training curve of the separator loss func-
tion on data impacted by the generator dur-
ing the separator training.

(c) The spectrum of the original not aug-
mented mixture.

(d) Generated augmented mixture spectrum
from the original one on the left.

Figure 6.6: The training curve of the separator loss computed during the generator training
moves each epoch and the training curve of the computed separator loss function during
the separator training on the augmented mixtures. These curves show, that the generator
generates, in first epoch, so strong augmentation that could not be adapted by the separator
with the SI-SNR result which reaches the set 𝑐snrsep value.

Figure 6.6, where the first curve is the separator loss during the generator training, which
shows the creation of the strong augmentation in the first two epochs, and the second curve
is the separator loss on the generated augmented mixtures during the separator training.
The second curve shows that the separator is unable to achieve the value -10 set by the
parameter 𝑐snrsep. In Figure 6.6 the original and augmented mixture is also shown. From
the spectrogram, it is obvious that the separator does not have a chance to adapt. The
𝑤sim value that collapse to the strong generator mode is not stable, in some training it is a
value 0.7 another training makes this collapse at a value 0.6.

6.9 Instability in the collapse to the strong generator mode
The instability in collapse to the strong generator mode during the training was inspected.
The problem is that at the moment when the generator generates the strong augmentation
training is switched to the separator training. The separator is then unable to achieve the

33

required SI-SNR value and does not switch back to the generator training. If the generator
training could be switched on, the similarity loss could make the augmentation slightly
easier and the separator could try again to adapt. There are a total of two ways to achieve
this. The first one is to set the timeout parameter, which switches the training if the
separator is unable to reach the required score in the set number of the maximum provided
batches (timeout). Although this is an elegant solution it raises another parameter that
should be tuned. Thus, in this work, the second solution is used. This solution starts each
epoch with the generator training, which forces the generator to be trained even when the
separator does not achieve the required score.

6.10 Problem with the proper switching of the generator and
separator training

The second problem which arises during the experimentation is that the generator and
separator training is not properly switched although they reach the required SI-SNR score.
This score is computed as mean from the score of all batches used during each separator
and generator training. The score values are reset after the training is switched and other
score values computed during the current part of the training are taken into account for
the mean computation. Nevertheless, when for example the values start from the 5 and
then decrease to the -10, the computed mean is not equal to -10 until the values stabilize
at that value. The higher starting value the longer time should the values be stable so that
the computed mean will switch the training. This behavior leads to GAN model training
that will never switch the training between the generator and separator parts.

The solution is to select only the last few batch results that will be used for the switching
decision. The number of the batch results is defined by the parameter 𝑚window called the
window. Then the median should be computed from the selected values. The median value
and the threshold set by the parameter 𝑚threshold creates space around the median value.
Only values within this space would be used for the mean computation which reduces the
influence of the outliers on the computed mean. The computed mean value is then used
for the train switching decision and makes it more stable. This solution is called median
filtering.

6.11 Forced generator training and the median filtering
The experiments that force the generator training on the start of each epoch and also use
the median filtering during the training switch decision use the following parameters:

• 𝑤sep = 1.0,

• 𝑤sim = 0.1, 0.2, . . . , 1.0

• 𝑐snrgen = −5.0

• 𝑐snrsep = −10.0

• 𝑟aug = 0.5

• 𝑐sim = 20

• 𝑚window = 10

34

(a) Spectrum of the original mixture. (b) Spectrum of the generated augmented mix-
ture.

Figure 6.7: Spectrums of the original and generated augmented mixture. These spectrums
shows how the generator can augment the mixture in way that it is impossible to adapt to
it by the separator. it.

• 𝑚threshold = 5

Experiments with the above settings and 𝑤sim parameter value higher than 0.7 are
unable to achieve the set 𝑐snrgen score during the generator training. However, lower 𝑤sim
parameter values achieves the mentioned score, their similarity loss values are lower than
0 dB. This means that the generated augmented mixtures are very different from the original
mixtures. Thus, the generated augmentations are very difficult and the separator is unable
to learn anything from them. Figure 6.7 shows spectrum of the original and augmented
mixtures with the low 𝑤sim parameter value. It is evident that the generated augmented
mixture in Subfigure 6.7a is different from the original one, which is in Subfigure 6.7b. To
avoid these difficult augmentations the 𝑐snrgen parameter value should be set to a higher
value. The higher value of this parameter stops the generator training earlier than it could
generates very difficult augmented mixtures.

6.12 Higher generator SI-SNR target value
Other experiments are set with the 𝑐snrgen = 0𝑑𝐵. Experiments are again set with the 𝑤sim
parameter values between the 0.1 and 1.0 like in the previous experiments. The separator
adaptation works better in these experiments because generator does not confuse it too
much.

The experiments with 𝑤sim set to the value 0.7 will be described in detail. The experi-
ments have been chosen to give the generator more freedom during the augmented mixtures
generation. In Figure 6.8 it is shown how the number of batches for the training of each part
is switching during the epochs. It is evident that the generator and separator are finally
properly switching the training and do not collapse to any above-mentioned modes. An
example of the generated augmented mixture is shown in Figure 6.9. From the spectrum,
it is evident that the signal contains some augmentation but at the same time, the original
signal is visible. The lines that the generated augmented mixture contains are caused by

35

0 50 100 150 200
Epochs

0

500

1000

1500
SI

-S
NR

 [d
B]

GAN/Batches:Generator batches

(a) Number of batches provided for genera-
tor training during the GAN model training.

0 50 100 150 200
Epochs

0

500

1000

1500

SI
-S

NR
 [d

B]

GAN/Batches:Separator batches

(b) Number of batches provided for separa-
tor training during the GAN model training.

Figure 6.8: These figures show how many batches are provided to each part of the GAN
model during its training.

the ConvTasNet neural network architecture. They appeared during many experiments.
The higher value of 𝑤sim suppresses them but they are still there.

(a) Spectrum of the original mixture. (b) Spectrum of the generated augmented mix-
ture.

Figure 6.9: Spectrums of the original and generated augmented mixture. These spectrums
shows how the generator can augment the mixture in way that the separator can adapt to
it.

Fortunately, the separator network can adapt to them as is shown in Figure 6.10 it
can be seen that the separator can adapt to the generated augmented mixtures. The left
Subfigure 6.10a shows how the generator tries to confuse the separator and it is successful
in many epochs, for example in the epoch 15. It is also evident that the generator generally
confuses the separator to the 5 dB though the 𝑐snrgen value is set to the 0 dB. This is caused
by the generator switching the training more times during one epoch and the confused value
is computed as the mean of all batches given for the generator training.

The Subfigure 6.10b shows the similarity loss curve and it is evident how in the middle
of the training the similarity value fluctuates around the value of −5 dB, then in the end of

36

0 50 100 150 200
Epochs

10

5

0

5

10
SI

-S
NR

 [d
B]

GAN/Train separator loss

(a) Training curve of the sep-
arator loss function computed
during the generator training.

0 50 100 150 200
Epochs

20

15

10

5

0

-S
I-S

NR
 [d

B]

GAN/Train similarity loss

(b) The training curve of
the similarity loss values com-
puted during the generator
training.

0 50 100 150
Epochs

5

0

5

10

-S
I-S

NR
 [d

B]

Separator/Train impacted

(c) Training curve of the sep-
arator loss function computed
on data impacted by the gen-
erator during the separator
training.

Figure 6.10: The training curve of the separator loss computed during the generator training
moves each epoch and the training curve of the computed separator loss function during
the separator training on the augmented mixtures. These curves show, that the curves
converge to the set parameters 𝑐snrgen and 𝑐snrsep. The 𝑐snrsep parameter value is inverted
during the training. Nevertheless, the generated augmented mixtures are very similar to
the original ones, thus the generated augmentations are not so strong.

the training it switches between the very similar generated augmented mixtures and very
different ones. From this similarity curve it is evident that although the similarity function
helps the GAN model from the collapse to the strong generator mode, it also leads to the
states where the generator forget about the learned augmentation. This behaviour will be
discussed later.

The Subfigure 6.10c shows the separator loss value during the separator training on the
generated augmented mixtures in the other words on the data impacted by the generator.
It should be mentioned that the Subfigure 6.10c shows the -SI-SNR value instead of the
Subfigure 6.10a. It is evident that the separator can adapt to the generated augmented
mixtures and train but it could not achieve the value -10 dB which is set to the parameter
𝑐snrsep. Nevertheless, the generator is forced to train at the start of each epoch as it is
mentioned in Section 6.9. This rightly rescued the GAN model from the collapse to the
strong generator mode.

The best separator selection is shown in Figure 6.11. In contrast with the best sepa-
rator selection during the first evaluation which is shown in Figure 6.5, the performance
of the separator on the different generated mixtures by the different generators is not that
stable. Thus, the generator and separator have different strengths during the training. The
separator from the epoch 180, and later, fails more than the previous ones. This could be
caused by the fact that they are less robust but they can also try to adapt to the more
difficult augmentation. This more difficult adaptation could be generated by the generator
that also forgets some other augmentation from the past. If the augmentation is so strong
the separator could also forget the adaptation to these old augmentations to be able to
handle the difficult new one. This raises the generator forgetting problem.

37

25 50 75 100 125 150 175 200
6

4

2

0

2
SI

-S
NR

 [d
B]

Separator 22-04-28-19-01-06_auto_diffsimweight_gan_st_small_gt_selfident_simlw_07_splw_10_ag_0_as_-10_gi_05_ssc_20_mo_5_mw_10

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

4

2

0

2

4

6

8

10

SI
-S

NR
 [d

B]

Separator 10

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

2

0

2

4

6

8

10

SI
-S

NR
 [d

B]

Separator 20

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

4

2

0

2

4

6

8

10

SI
-S

NR
 [d

B]

Separator 30

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

6

4

2

0

2

4

6

8

10

SI
-S

NR
 [d

B]

Separator 40

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

4

2

0

2

4

6

8

SI
-S

NR
 [d

B]

Separator 50

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

4

2

0

2

4

6

8

10

SI
-S

NR
 [d

B]

Separator 60

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

4

2

0

2

4

6

SI
-S

NR
 [d

B]

Separator 70

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

2

0

2

4

6

8

10

SI
-S

NR
 [d

B]

Separator 80

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

4

2

0

2

4

6

8

10

SI
-S

NR
 [d

B]

Separator 90

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

2

0

2

4

6

SI
-S

NR
 [d

B]

Separator 100

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

2

0

2

4

6

SI
-S

NR
 [d

B]

Separator 110

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

2

0

2

4

6

SI
-S

NR
 [d

B]

Separator 120

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

4

2

0

2

4

SI
-S

NR
 [d

B]

Separator 130

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

2

0

2

4

6

8
SI

-S
NR

 [d
B]

Separator 140

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

2

0

2

4

6

8

SI
-S

NR
 [d

B]

Separator 150

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

2

0

2

4

6

SI
-S

NR
 [d

B]

Separator 160

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

2

0

2

4

6

SI
-S

NR
 [d

B]

Separator 170

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

8

7

6

5

4

3

2

1

0

SI
-S

NR
 [d

B]

Separator 180

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

4

3

2

1

0

1

2

SI
-S

NR
 [d

B]

Separator 190

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

8

6

4

2

0

2

4

6

8

SI
-S

NR
 [d

B]

Separator 200

Figure 6.11: Results from finding the best separator model from trained GAN with param-
eter 𝑤sim = 0.7 and used automated training switch with set parameters 𝑐snrgen = 0dB and
𝑐snrsep = −10dB. The first chart shows the SI-SNR means of evaluated separators. The
other charts show the results on generated augmented mixtures of the separator models
from the each selected epoch

6.13 Generator forgetting problem
Using the similarity loss function together with the separator loss function during the gener-
ator training prevents the generator from generating total nonsense. With the combination
of the forced generator training at the start of each epoch, the similarity also helps to the
rescuing the GAN model from the collapse to the strong generator mode. Unfortunately,
it also leads the generator to forget the learned augmentations during the training. The
generator then learns a new augmentation, but training of the separator is in this GAN
model designed to get generated augmented mixtures only from the last generator state.

38

This leads to the forgetting of the separator. If the newly learned augmentation by the
generator is not difficult or it is similar to the previous ones, the separator model still
works well and it is getting more robust. Nevertheless, if the new augmentation is different
the separator decides that it is better to forget the old augmentation to adapt to this new
one. This leads to the not robust separator towards the previous generator states. If the
adaptation to these augmentations takes only a few epochs and then the end of the training
follows or it is quickly forgotten, the separator will not be selected during the best separator
selection. However, the selected separator will be more robust it will probably fail on the
augmentations generated by the generators in after forget states.

To solve this problem the GAN model training should be redesigned. Older versions
of the generator should be stored and used during the training to generate new augmen-
tations. This should protect the separator from the forgetting adaptation to the previous
augmentations and it should be redesigned in future work.

6.14 Evaluation problem
The best separator from each of experiments from Section 6.12 was chosen and then evalu-
ated. The results are shown in Table 6.4. The results show that with the high value of the
parameter 𝑤sim the robust separator achieves a little bit lower results on the testing part
of the WSJ0-2mix dataset in comparison with the pretrained separator model. However
the numbers for the WSJ0-2mix dataset are still acceptable, results also show that on the
testing part of the WHAM dataset any of the trained separators do not achieve better
results than the pretrained separator model. The results are even worse with low value of
the parameter 𝑤sim.

Table 6.4: Results of the experiments with automated 𝑐gen = 0dB and 𝑐sep = −10dB
parameter settings. In first column there are different 𝑤sim parameter settings. Other
columns represent results from the evaluation on the tested part of the WSJ0-2mix or
WHAM dataset. The columns with original annotation contain evaluation results of the raw
pretrained separator model on the WSJ0-2mix dataset. The columns with the augmented
annotation contain the evaluation results of the best separator model chosen from the GAN
training.

WSJ0-2mix WSJ0-2mix WHAM WHAM
𝑤sim original robust original robust

SI-SNR [dB] SI-SNR [dB] SI-SNR [dB] SI-SNR [dB]
0.1 12.46 3.01 -2.99 -5.93
0.2 12.46 7.10 -2.99 -5.22
0.3 12.46 9.99 -2.99 -6.46
0.4 12.46 8.91 -2.99 -4.55
0.5 12.46 10.17 -2.99 -3.21
0.6 12.46 10.29 -2.99 -2.20
0.7 12.46 9.67 -2.99 -2.94
0.8 12.46 11.23 -2.99 -2.946
0.9 12.46 10.93 -2.99 -2.35
1.0 12.46 10.09 -2.99 -3.44

Nevertheless, the WHAM dataset which is mentioned in Section 6.1 contains noises
recorded in the real environments. The generator is unable to generate these noises, but

39

it is possible to generate new different noises. The separator that is made robust by this
generator could fail on the WHAM dataset but still, be robust towards the generated
noises. To evaluate this behavior each mixture in the testing set of the WSJ0-2mix dataset
is augmented by the randomly chosen generator from the training. The raw pretrained
model is then evaluated on these augmented mixtures and then also on the robust one.
The robust separator should perform better on these augmented mixtures than the raw
pretrained separator.

Table 6.5: Results of the experiments on WSJ0-2mix dataset with automated 𝑐gen = 0.0 dB
and 𝑐sep = −10.0 dB parameter settings. In first column there are different 𝑤sim parameter
settings. The second column represents values of the not robust separator pretrained on
WHAM dataset. The third column contains results of the robust separator. These results
shows the comparison between the not robust and robust separator which should prove the
concept of this GAN.

Augmented WSJ0-2mix Augmented WSJ0-2mix
𝑤sim original robust

SI-SNR [dB] SI-SNR [dB]
0.1 -7.68 -3.17
0.2 -6.16 -2.02
0.3 -3.73 -1.69
0.4 -2.69 -0.78
0.5 -1.34 -0.10
0.6 2.15 2.23
0.7 1.99 2.46
0.8 5.15 5.64
0.9 4.22 5.02
1.0 7.12 6.63

The results of this evaluation are shown in Table 6.5. There is a visible improvement
between the original and robust separator for all set 𝑤sim values except the value of 1.0.
Lower values of this parameter give results with a bigger difference between the original
and robust separator. These values are under the zero SI-SNR which is caused by the low
impact of the similarity loss function during the training. Nevertheless, they show that the
GAN model training makes the separator network robust toward the augmented mixtures
generated by the generators during the training.

Figure 6.12 shows the improvement in results for the robust separator in experiment
with parameter 𝑤sim = 0.7. This experiment is described in detail in Section 6.12. In Figure,
the improvement is most evident in the augmented mixtures generated by the generators
from 0-10, 40-110, 120-130, and also 150-160 epochs. These improvements are shown in two
bottom bar charts, where the left bar chart shows the results for the not robust separator
and the right bar chart results for the robust separator.

6.15 Experiments on WHAM dataset
Other experiments are performed on the WHAM dataset with the separator pretrained
on the WHAM dataset. These experiments should firstly show how much the parameters
depend on the current dataset. They should also show the difference in behavior on the
already augmented dataset. Experiments are performed with the following parameters:

40

Original separator Robust separator
0

1

2
SI

-S
NR

 [d
B]

Separators

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

5

0

5

10

SI
-S

NR
 [d

B]

Original separator

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

5

0

5

10

SI
-S

NR
 [d

B]

Robust separator

Figure 6.12: Improvement results for the experiment with parameter 𝑤sim = 0.7. The upper
bar chart shows the results for the not robust (blue) and robust separator (orange). The
two bottom bar charts shows how the not robust and robust separators perform on the
augmented mixtures generated by the generators from different epochs of the GAN model
training. Each bar represents the group of the generators from ten neighboring epochs.

• 𝑤sep = 1.0,

• 𝑤sim = 0.1, 0.2, . . . , 1.0

• 𝑐snrgen = 0.0

• 𝑐snrsep = −5.0

• 𝑟aug = 0.5

• 𝑐sim = 20

• 𝑚window = 10

• 𝑚threshold = 5

The parameter setting is similar to the experiments in Section 6.12. Only the parameter
𝑐snrsep is changed to the value -5.0 dB (-SI-SNR). This is due to the base results of the
separator on the WHAM dataset, where it is possible to achieve 6.09 dB. The experiments
with the value -10.0 dB are also run, but they suffer from the problem that the separator
is unable to achieve such a high value during the adaptation to the generated augmented
mixtures.

The results of these experiments are shown in Table 6.6. These results show the same
behavior as the experiments with the WSJ0-2mix dataset. The only difference is in the
better results for the WHAM dataset, which is caused by the pretraining of the separator
on these data. If the selected separator is more robust than the original separator could be
seen in the evaluation which compares the results of these two separator states.

These results are shown in Table 6.7. The improvements are higher than the 4 dB.
There are bigger improvements than during the experiments on WSJ0-2mix dataset, where
the improvements are around 3 dB or lower.

The GAN model concept for robust separator networks is proved by the experiments
to work. The separator chosen from the GAN model training is more robust towards

41

Table 6.6: Results of the experiments performed on the WHAM dataset with automated
𝑐gen = 0 dB and 𝑐sep = −10 dB parameter settings. In first column there are different
𝑤sim parameter settings. Other columns represent results from the evaluation on the tested
part of the WSJ0-2mix or WHAM dataset. The columns with original annotation contain
evaluation results of the raw pretrained separator model on the WSJ0-2mix dataset. The
columns with the augmented annotation contain the evaluation results of the best separator
model chosen from the GAN training.

WSJ0-2mix WSJ0-2mix WHAM WHAM
𝑤sim original robust original robust

SI-SNR [dB] SI-SNR [dB] SI-SNR [dB] SI-SNR [dB]
0.1 9.04 8.192 6.09 5.76
0.2 9.04 8.08 6.09 5.44
0.3 9.04 7.77 6.09 5.29
0.4 9.04 7.90 6.09 4.68
0.5 9.04 8.11 6.09 5.42
0.6 9.04 7.96 6.09 5.22
0.7 9.04 8.23 6.09 5.22
0.8 9.04 8.29 6.09 5.42
0.9 9.04 7.69 6.09 4.95
1.0 9.04 5.55 6.09 3.42

Table 6.7: Results of the experiments on WHAM dataset with automated 𝑐gen = 0.0 dB
and 𝑐sep = −5.0 dB parameter settings. In first column there are different 𝑤sim parameter
settings. The second column represents values of the not robust separator pretrained on
WHAM dataset. The third column contains results of the robust separator. These results
shows the comparison between the not robust and robust separator which should prove the
concept of this GAN.

Augmented WSJ0-2mix Augmented WSJ0-2mix
𝑤sim original robust

SI-SNR [dB] SI-SNR [dB]
0.1 -9.30 -1.42
0.2 -7.06 -1.75
0.3 -6.43 0.78
0.4 -4.36 2.30
0.5 -3.96 3.46
0.6 -4.08 3.09
0.7 -3.44 3.91
0.8 -3.39 4.02
0.9 -3.33 4.01
1.0 -3.26 -2.82

the generated augmentations. This behaviour is evident on the both of tested datasets.
Nevertheless, the robust separator from the experiments performed on the WSJ0-2mix
dataset does not performs better on the WHAM dataset.

42

Chapter 7

Conclusion

In this work, the generative adversarial networks (GAN) model is used to make a robust
speech separation system. The used model is slightly different from the original one. The
discriminator is the neural network for speech separation pretrained on the base speech
separation task and also the similarity loss which is represented by the SI-SNR computed
between the original and generated augmented mixture.

The GAN model was tuned during the experiments. The model is very sensitive to
changes in parameters, but the right setting was found. Experiments show that the concept
works and makes the system more robust. The evaluation was set to compare the original
pretrained and the robust system results achieved on the testing part of the dataset aug-
mented by random generators from the training. For the model trained on the WSJ0-2mix
dataset, there is an improvement around 3 dB SI-SNR and for the model trained on the
WHAM dataset, there is an improvement around 4 dB and more. Nevertheless, there is
no improvement in the WHAM dataset for the model trained on the WSJ0-2mix dataset.
This is caused by the fact that the noises generated by the trained generators are not as
sophisticated as the noises added by the WHAM dataset. Nevertheless, the trained speech
separation system from the GAN model is still more robust than the original one. The ex-
periments also show that the parameter setting found for the WSJ0-2mix dataset is reusable
with only a few changes for the WHAM datasets.

During the experiment, two problems in the concept were found. The first is that
the generator and separator are join information about the trained augmentation during
the training. This is caused because the separator is trained on the original mixtures
and generated augmented mixtures by the last state of the generator network. To solve
this problem the generated augmented mixtures from the different previous states of the
generator should be also used during the separator training. The second problem is that the
generator is limited by the similarity loss function. The limitation is for example generating
a flipped signal, changes in tempo, etc. It is not possible to make these changes only for
mixtures, because the original single speaker signals will not match. Thus, the solution is
to generate augmented original single speaker signals instead of the mixtures.

These changes lead to the rework of the proposed concept to a less or greater extent.
The new experiments should be also provided to find the right setting and prove if these
suggested solutions work. This could be done in future work. Another dataset could be
also used to prove that the parameter settings are reusable for the different datasets with
only a few changes.

43

Bibliography

[1] Abdi, H. and Williams, L. J. Principal component analysis. Wiley interdisciplinary
reviews: computational statistics. Wiley Online Library. 2010, vol. 2, no. 4,
p. 433–459.

[2] Adler, J. and Lunz, S. Banach wasserstein gan. Advances in Neural Information
Processing Systems. 2018, vol. 31.

[3] Antipov, G., Baccouche, M. and Dugelay, J.-L. Face aging with conditional
generative adversarial networks. In: IEEE. 2017 IEEE international conference on
image processing (ICIP). 2017, p. 2089–2093.

[4] Bahmaninezhad, F., Wu, J., Gu, R., Zhang, S.-X., Xu, Y. et al. A comprehensive
study of speech separation: spectrogram vs waveform separation. ArXiv preprint
arXiv:1905.07497. 2019.

[5] Bao, J., Chen, D., Wen, F., Li, H. and Hua, G. CVAE-GAN: fine-grained image
generation through asymmetric training. In: Proceedings of the IEEE international
conference on computer vision. 2017, p. 2745–2754.

[6] Berthelot, D., Schumm, T. and Metz, L. Began: Boundary equilibrium
generative adversarial networks. ArXiv preprint arXiv:1703.10717. 2017.

[7] Frid Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J. et al.
GAN-based synthetic medical image augmentation for increased CNN performance in
liver lesion classification. Neurocomputing. Elsevier. 2018, vol. 321, p. 321–331.

[8] Goodfellow, I., Pouget Abadie, J., Mirza, M., Xu, B., Warde Farley, D.
et al. Generative adversarial nets. Advances in neural information processing
systems. 2014, vol. 27.

[9] Goodfellow, I., Pouget Abadie, J., Mirza, M., Xu, B., Warde Farley, D.
et al. Generative adversarial nets. Advances in neural information processing
systems. 2014, vol. 27.

[10] Gu, J., Im, D. J. and Li, V. O. Neural machine translation with gumbel-greedy
decoding. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2018,
vol. 32, no. 1.

[11] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. and Courville, A. C.
Improved training of wasserstein gans. Advances in neural information processing
systems. 2017, vol. 30.

44

[12] Hershey, J. R., Chen, Z., Le Roux, J. and Watanabe, S. Deep clustering:
Discriminative embeddings for segmentation and separation. In: 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
2016, p. 31–35.

[13] Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural
computation. MIT Press. 1997, vol. 9, no. 8, p. 1735–1780.

[14] Hui, J. Gan - why it is so hard to train generative adversarial networks! Medium,
Oct 2019. Available at: https://jonathan-hui.medium.com/gan-why-it-is-so-hard-
to-train-generative-advisory-networks-819a86b3750b.

[15] Johnson, K. Vocal tract length normalization. UC Berkeley PhonLab Annual
Report. 2018, vol. 14, no. 1.

[16] Kim, C., Shin, M., Garg, A. and Gowda, D. Improved Vocal Tract Length
Perturbation for a State-of-the-Art End-to-End Speech Recognition System.
In: Interspeech. 2019, p. 739–743.

[17] Lucic, M., Kurach, K., Michalski, M., Gelly, S. and Bousquet, O. Are gans
created equal? a large-scale study. Advances in neural information processing
systems. 2018, vol. 31.

[18] Luo, Y. and Mesgarani, N. Conv-tasnet: Surpassing ideal time–frequency
magnitude masking for speech separation. IEEE/ACM transactions on audio, speech,
and language processing. IEEE. 2019, vol. 27, no. 8, p. 1256–1266.

[19] Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z. et al. Least squares generative
adversarial networks. In: Proceedings of the IEEE international conference on
computer vision. 2017, p. 2794–2802.

[20] McPheron, B., Cintorino, K., Benoit, N., Hasan, A., Oliveira, K. et al. The
Use of Digital Reverberation Projects to Teach Audio Signal Processing. In:. October
2015.

[21] Odena, A., Olah, C. and Shlens, J. Conditional image synthesis with auxiliary
classifier gans. In: PMLR. International conference on machine learning. 2017,
p. 2642–2651.

[22] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J. et al. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In: Wallach, H.,
Larochelle, H., Beygelzimer, A., Alché Buc, F. d', Fox, E. et al.,
ed. Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,
2019, p. 8024–8035. Available at: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf.

[23] Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T. and Efros, A. A.
Context encoders: Feature learning by inpainting. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016, p. 2536–2544.

[24] Radford, A., Metz, L. and Chintala, S. Unsupervised representation learning
with deep convolutional generative adversarial networks. ArXiv preprint
arXiv:1511.06434. 2015.

45

https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[25] Stone, J. V. Independent component analysis: an introduction. Trends in cognitive
sciences. Elsevier. 2002, vol. 6, no. 2, p. 59–64.

[26] Suárez, P. L., Sappa, A. D. and Vintimilla, B. X. Infrared image colorization
based on a triplet dcgan architecture. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops. 2017, p. 18–23.

[27] Wang, Y.-X., Girshick, R., Hebert, M. and Hariharan, B. Low-shot learning
from imaginary data. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2018, p. 7278–7286.

[28] Wichern, G., Antognini, J., Flynn, M., Zhu, L. R., McQuinn, E. et al.
WHAM!: Extending Speech Separation to Noisy Environments. In: Proc.
Interspeech. September 2019.

[29] Wu, J. FUNCWJ/Conv-tasnet: A pytorch implementation of ”Tasnet: Surpassing
ideal time-frequency masking for speech separation“ (see recipes in APS Framework
https://github.com/funcwj/aps). Dec 2018. Available at:
https://github.com/funcwj/conv-tasnet.

[30] Yoshioka, T., Sehr, A., Delcroix, M., Kinoshita, K., Maas, R. et al. Making
machines understand us in reverberant rooms: Robustness against reverberation for
automatic speech recognition. IEEE Signal Processing Magazine. IEEE. 2012,
vol. 29, no. 6, p. 114–126.

[31] Yu, D., Kolbæk, M., Tan, Z.-H. and Jensen, J. Permutation invariant training of
deep models for speaker-independent multi-talker speech separation. In: IEEE. 2017
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2017, p. 241–245.

46

https://github.com/funcwj/conv-tasnet

Appendix A

Experiments using WHAM dataset

0 50 100 150 200
Epochs

0

500

1000

1500

SI
-S

NR
 [d

B]

GAN/Batches:Generator batches

(a) Number of batches provided for genera-
tor training during the GAN model training.

0 50 100 150 200
Epochs

0

500

1000

1500

SI
-S

NR
 [d

B]

GAN/Batches:Separator batches

(b) Number of batches provided for separa-
tor training during the GAN model training.

Figure A.1: These Figures show how many batches are provided to each part of the GAN
model during its training on WHAM dataset with parameter 𝑤sim = 0.7 and used automated
training switch with set parameters 𝑐snrgen = 0dB and 𝑐snrsep = −5 dB.

47

0 50 100 150 200
Epochs

4

2

0

2

4

6

SI
-S

NR
 [d

B]

GAN/Train separator loss

(a) Training curve of the sep-
arator loss function computed
during the generator training.

0 50 100 150 200
Epochs

20

18

16

14

12

10

8

-S
I-S

NR
 [d

B]

GAN/Train similarity loss

(b) The training curve of
the similarity loss values com-
puted during the generator
training.

0 25 50 75 100 125 150
Epochs

4

2

0

2

4

-S
I-S

NR
 [d

B]

Separator/Train impacted

(c) Training curve of the sep-
arator loss function computed
on data impacted by the gen-
erator during the separator
training.

Figure A.2: These Figures show the process of the GAN model training on the WHAM
dataset with parameter 𝑤sim = 0.7 and used automated training switch with set parame-
ters 𝑐snrgen = 0 dB and 𝑐snrsep = −5 dB.. Firstly the training curve of the separator loss
computed during the generator training moves each epoch then similarity loss during the
generator training and the training curve of the computed separator loss function during
the separator training on the augmented mixtures.

(a) Spectrum of the original mixture. (b) Spectrum of the augmented mixture.

Figure A.3: These Figures show the example of the generated augmented mixture during
the GAN model training on the WHAM dataset.

48

25 50 75 100 125 150 175 200
46.0

45.5

45.0

44.5

44.0

43.5

43.0

42.5

SI
-S

NR
 [d

B]

Separator 22-05-06-20-05-34_auto_diffsimweight_gan_st_small_wham_gt_selfident_simlw_07_splw_10_ag_0_as_-5_gi_05_ssc_20_mo_5_mw_10

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

40

30

20

10

0

SI
-S

NR
 [d

B]

Separator 10

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

40

30

20

10

0

SI
-S

NR
 [d

B]

Separator 20

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

40

30

20

10

0

SI
-S

NR
 [d

B]

Separator 30

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

40

30

20

10

0

SI
-S

NR
 [d

B]

Separator 40

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

40

30

20

10

0

SI
-S

NR
 [d

B]

Separator 50

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

40

30

20

10

0

SI
-S

NR
 [d

B]

Separator 60

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

40

30

20

10

0

SI
-S

NR
 [d

B]

Separator 70

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

40

35

30

25

20

15

10

5

0

SI
-S

NR
 [d

B]

Separator 80

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

40

30

20

10

0

SI
-S

NR
 [d

B]

Separator 90

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

40

30

20

10

0

SI
-S

NR
 [d

B]

Separator 100

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

40

30

20

10

0

SI
-S

NR
 [d

B]

Separator 110

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

40

30

20

10

0

SI
-S

NR
 [d

B]

Separator 120

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

40

30

20

10

0

SI
-S

NR
 [d

B]

Separator 130

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

40

30

20

10

0

SI
-S

NR
 [d

B]

Separator 140

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

40

30

20

10

0

SI
-S

NR
 [d

B]

Separator 150

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

40

30

20

10

0

SI
-S

NR
 [d

B]

Separator 160

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

40

30

20

10

0

SI
-S

NR
 [d

B]

Separator 170

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

40

30

20

10

0

SI
-S

NR
 [d

B]

Separator 180

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

40

30

20

10

0

SI
-S

NR
 [d

B]

Separator 190

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

40

30

20

10

0

SI
-S

NR
 [d

B]

Separator 200

Figure A.4: Results from finding the best separator model from trained GAN on the WHAM
dataset with parameter 𝑤sim = 0.7 and used automated training switch with set parameters
𝑐snrgen = 0 dB and 𝑐snrsep = −5 dB. The first chart shows the SI-SNR means of evaluated
separators. The other charts show the results on generated augmented mixtures of the
separator models from the each selected epoch.

49

Original separator Robust separator

2.5

0.0

2.5

SI
-S

NR
 [d

B]

Separators

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

5.0
2.5
0.0
2.5
5.0

SI
-S

NR
 [d

B]

Original separator

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Generators ids

5.0
2.5
0.0
2.5
5.0

SI
-S

NR
 [d

B]

Robust separator

Figure A.5: Improvement between the robust separator and the original one tested on the
testing part augmented by the random generators from the GAN model training on WHAM
dataset with parameter 𝑤sim = 0.7 and used automated training switch with set parameters
𝑐snrgen = 0 dB and 𝑐snrsep = −5 dB. The top Figure shows the mean achieved by each
separator. The bottom Figures shows how the each separator works on the augmentations
from the different generators.

50

	Introduction
	Speech separation using neural networks
	Using neural networks
	ConvTasNet
	Training of neural networks for speech separation

	Generative adversarial networks
	Training generative adversarial networks
	Training problems of generative adversarial networks
	Mode collapse
	Non convergence
	Diminished gradients

	Generative adversarial networks for data augmentation

	Robust speech separation
	Data augmentation
	Classic practices
	Noise addition
	Echoes
	Frequency filters
	Gain
	Pitch
	Tempo
	Polarity inversion
	Audio shift
	Channels shuffling
	Vocal tract length

	Using generative adversarial networks
	Problems with the best model selection

	Implementation
	Main process
	Switching of training
	Loss computation
	Evaluation

	Experiments
	Dataset
	Initial separator and generator networks setups
	Adjustable parameters
	Initial experiment
	Generator loss weights
	Separator and generator batch caps
	Automatic separator and generator batch caps
	First evaluation
	Instability in the collapse to the strong generator mode
	Problem with the proper switching of the generator and separator training
	Forced generator training and the median filtering
	Higher generator SI-SNR target value
	Generator forgetting problem
	Evaluation problem
	Experiments on WHAM dataset

	Conclusion
	Bibliography
	Experiments using WHAM dataset

