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Abstract

Speech separation is the task of separating single signals from the given mixture of multiple
speakers. Neural networks trained for speech separation usually work well on artificial data
but they often fail on real-world examples. To improve their behavior on real-world mixtures
it is possible to use training data augmentations such as noise addition. Nevertheless, the
power of these augmentations is limited as they have to be manually designed.

In this work, the modified version of the generative adversarial networks (GAN) model
could improve this process by generating augmentations depending on the separation per-
formance on these data. Speech separation could be then made more robust with each
generator and separator training step. This system was subjected to experimentation.
During these experiments, the parameters have been tuned to find the best setting that
will successfully train the GAN model without collapsing. This setting was found and the
most robust model from the training was selected and evaluated. Results show that the
separator model trained by the GAN model does not achieve any significant improvement
from the original separator model pretrained on the WSJ0-2mix dataset during the testing
on the WHAM dataset. Nevertheless, another evaluation shows that the separator model
trained by the GAN model is significantly more robust than the original one towards the
generated noises.

Abstrakt

Separace Fecnikili se zabyva separaci signdlti jednotlivych fec¢nikt z dané smési vicero fe¢niki.
Neuronové sité trénované pro separaci recniki funguji vétsinou dobfe na uméle smichanych
nahravkach, ovSsem pii pouziti smési z redlného svéta casto selhavaji. Pro zlepseni to-
hoto chovani, je mozné pouzit augmentaci trénovacich dat, jako je naptiklad pridani Sumu.
Nicméné tyto augmentace jsou limitovany tim, ze musi byt ru¢né navrhnuty.

V této praci je pouzita modifikovana verze modelu generativnich adversarialnich siti
(GAN), kterd miuze zlepsit tuto vlastnost tak, ze generuje augmentace na zikladé miry
zmateni separac¢niho systému. Po kazdém kroku trénovani generdtoru a separatoru se
systém separace Te¢niki stava vice robustni. Takto navrhnuty model byl podroben ex-
perimentim. Béhem téchto experimentt byly rizné nastavovany parametry GAN modelu,
aby se nalezlo jejich nejlepsi nastaveni, které by vedlo ke spravnému natrénovani modelu,
bez zkolabovani do zddného médu. Béhem experimentt bylo takové nastaveni nalezeno.
7 takto natrénovaného modelu byl vybran nejvice robustni separator a ten poté vyhodno-
cen. Vysledky hodnoceni neukéazaly zlepseni funkénosti zrobustnéného separacniho systému
vi¢i samému nezrobustnénému systému predtrénovanému na WSJ0-2mix datasetu, béhem
testovani na datasetu WHAM. Nicméné vysledky jiného hodnoceni experimentt ukazaly,
ze separator vybran z trénovani GAN modelu je znac¢né zrobustnén oproti puvodnimu.
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Rozsireny abstrakt

Separace Tecniku se zabyva separaci signali jednotlivych fecnikti ze smési obsahujicich
vice hovoricich fe¢niki. Takovéto systémy se mohou pouzit napriklad pro zlepseni vysledkt
systému pro rozpoznavani reci, které casto selhavaji na nahravkach obsahujicich prekryvajici
se promluvy vicero fe¢niku.

V dnesni dobé se pro systémy separace recniku pouzivaji neuronové sité. Pro jejich
trénink jsou tfeba smésice vice fe¢niku, u kterych zname i signédly jednotlivych recniki.
U smési porizené nahranim z redlného svéta je tézké zjistit signaly jednotlivych fecniki.
Pokud by to bylo jednoduse mozné, systémy separace recnikti by postradali svij smysl.
Proto jsou pouzivany nahravky uméle smichané ze signdlt jednotlivych fecniki. Systémy
trénované na téchto smeésich funguji dobie na dalsich uméle smichanych smésich, ovsem
casto selhavaji na nahravkéch z redlného svéta. To je dano tim, ze umeélé smési neobsahuji
sumy, ozvény a dalsi vlastnosti redlného prostredi.

Pro zlepseni vysledki systémt separace re¢nikt na smésich z redlného svéta je mozné
pridat do trénovacich dat rizné vlastnosti redlnych prostredi, tedy provést augmentaci dat.
Sytémy, které jsou trénovany na augmentovanych datech jsou robustnéjsi a dosahuji lepsich
vysledku na datech z realného svéta. Existuje mnoho klasickych praktik pro augmentovani
Fecovych signalt, jako jsou inverze signalu, pridani sumu, piidani ozvén, zména ténu, zména
tempa, atd. Klasické praktiky augmentace dat musi byt manualné navrhnuty a z tohoto
hlediska jsou nevyhodné.

Tato prace se zabyva pouzitim modifikovaného modelu generativnich adversarialnich
siti (GAN) pro augmentaci dat. Vyhoda GAN modelu je ve schopnosti generovani novych
augmentaci, které zatim nemusely byt manualné navrhnuty. Model pouzity v této praci se
od puvodniho lisi diskrimindtorem. V puvodnim modelu je diskrimindtorem neuronova sif,
kterd udava, zda jsou generovana data realnd nebo falesna. Diskriminator pouzitého GAN
modelu se sklada ze dvou ¢asti: systému separace fe¢niku a funkce podobnosti. Generator
se pri tréninku snazi vygenerovat takové augmentované smési, které co nejvice zmatou
separator a budou co nejvice podobné puvodni smési.

Experimenty s navrhnutym GAN modelem pouzivaji pfedtrénovany systém separace
fecenikll na puvodnich datech a generator predtrénovany na tuloze vlastni identity. Ex-
perimenty pouzivaji dataset WSJ0-2mix nebo jeho augmentovanou verzi WHAM. Béhem
experimenti bylo nejdiive nalezeno spravné nastaveni vsech parametrii. Nastavit parame-
try GAN modelu neni lehké, model je velice ndchylny na jakékoliv zmény a rychle kolabuje
do jednoho z médi spatného trénovani, jako je napriklad prilis silny generdtor nebo sep-
arator. 7 experimentil bylo zjisténo, ze parametry, které manualné prepindji trénink jsou
prakticky nenastavitelné a misto nich je tfeba pouzit parametri dynamického prepinani.
U tohoto druhu prepinani parametry urcuji cil, ktery musi jednotlivé ¢asti béhem svého
trénovani dosdhnout, nezli je trénink prepnut. Nakonec bylo spravné nastaveni, pri kterém
GAN model nekolaboval do zddného z m6dt spatného trénovani, nalezeno.

7Z takto natrénovandho GAN modelu je vybran nejrobustnéjsi separdtor a ten poté eval-
uovan. Evaluace prokazala, ze zrobustnény separator, ktery byl predtrénovan na datasetu
WSJ0-2mix neprokazuje zlepSeni pri evaluaci na testovaci sadé datasetu WHAM. Na druhou
stranu zrobustnény separator je z vysledkt evaluace viditelné robustnéjsi vici generovanym
augmentovanym smeésim nez-li puvodni predtrénovany separator. Toto chovani je dané tim,
ze generator neni schopny generovat tak sofistikované sumy jako ty, které jsou obsazeny v
ramci datasetu WHAM. Separator zrobustnény GAN modelem navrhnutym v této praci
nezrobustni systém vic¢i vSem Sumtim, ovSem muze vyznamné pomoci jako dalsi systém pro
augmentaci dat pfi zrobustnovani systému separace recniku.
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Chapter 1

Introduction

Speech separation is the task of separating the signals from the given mixed signal. One of
the possible usage of these systems is pre-processing for speech recognition systems which
often fail on more overlapped speech. In these cases, the speech separation system could
improve the result of the recognition system by separating individual signals from the mixed
speech. The speech separation systems are nowadays based on neural networks. To train
such a neural network it is necessary to have a mixed signal with well-known original source
signals. For real-world mixtures, single-speaker signals are usually unavailable, and thus it
is necessary to use artificial mixtures. This leads to a problem with bad performance of
speech separation systems on the real-world mixtures. This creates the need to make the
speech separation systems more robust towards the real-world mixtures.

This is caused by the absence of the different noises, echoes and other features of real
environments in the artificial mixtures. To improve the behavior of the speech separation
systems in these situations it is possible to do data augmentation. Using the data augmen-
tations could add these real-world features into the mixtures on which the system is trained
on. There are several well-known methods how to do the data augmentation for the speech
signal, such as the signal inversion, noise addition, etc. The disadvantage of these methods
is that they do not cover all possible augmentations and each new augmentation needs to
be manually designed.

Nevertheless, the generative adversarial networks [8] concept could be used also for
the data augmentation as this concept was originally proposed for the data generation.
Generative adversarial networks could be used to perform data augmentations for speech
separation systems automatically. Their advantage is that they can generate augmentations
depending on the response of the speech separation system.

In this work, a modified version of the generative adversarial networks is used. It consists
of the generator network generating the augmentations, the separator network that should
be trained to be more robust, and the similarity loss function that constraints the generator
network. The separator network and the similarity loss function represent the discriminator
role. For both networks, the ConvTasNet [18] architecture (with different parameters) has
been used. The aim of this system is to generate some new augmentations on the given
mixtures that have never been seen before and force the speech separation system to adapt
to them.

In Chapter 2 the speech separation is described in detail together with the training of
the neural networks. Chapter 3 describes the generative adversarial networks model, its
training and problems occurring during the training. The usage of the generative adversarial
networks for data augmentation is also explained there. Chapter 4 outlines how to make the



speech separation system more robust, i.e. the classic methods for data augmentation, and
the modified version of the generative adversarial networks. Chapter 5 describes how the
model is implemented in more detail. The last Chapter 6 shows the experiments proving
the concept of the presented generative adversarial networks model to make the robust
speech separation system.



Chapter 2

Speech separation using neural
networks

The sound is represented by a vector of samples called signal. It is possible to hear multiple
sounds in one moment. Such mixture can be modelled as:

N
Y= Stm (2.1)
n=1

where y; is the mixture to be separated, s;,, is the speech signal of a single speaker or noise,
t is the time index, n is the source index, and N is the number of sources. The main task
in speech separation is to reconstruct signals s;, from the mixture y; with no information
about the signals s ,,.

The speech separation task could be also explained as a Cocktail party problem. Imagine
a cocktail party where a lot of people talk over each other. The listener present at the party
is trying to focus on one specific speech. The human ear and brain are well adapted to solve
this task, but for computer systems, it is very difficult. In the past, there were attempts to
solve this task with classic methods such as principal component analysis [1] or independent
component analysis [25]. These classic methods usually work well when the task is greatly
simplified, but they fail when silent blocks, echoes, and delays are present.

2.1 Using neural networks

Nowadays neural networks are used for speech separation tasks. These methods usually
work either with the signal in time-domain or its short time Fourier transform. The most
common neural network architectures used for speech separation are convolutional neural
networks in combination with recurrent blocks as for example long short term memory
blocks (LSTM) [13], which work quite well.

Convolutional neural networks contain specific type of layers called convolutional layers.
These layers are composed of convolutional filters with trainable parameters. Filters in
convolutional layer are used to extract useful information from the given signal. For example
the convolutional layer could be trained to perform pseudo short Fourier transform of the
signal.

Recurrent neural networks contain loops that allow information to be stored within the
network. Due to this property recurrent neural networks have the possibility to use context.



In other words, they are able to predict next step using the previous information. Recurrent
neural networks are divided to two groups:

e short recurrent neural networks that contain only simple loops. They have possibility
to store only little amount of information and use only a short context given by the
stored information,

e long term recurrent neural networks that contain blocks that are able to store more
information. This leads to the possibility of using longer context. They are two basic
blocks commonly used: Gated Recurrent Units (GRU) and Long short time memory
blocks (LSTM). The difference between them is that GRU contains two gates and
LSTM contains four of them. Gates are used to determine which information the
network should remember or forget.

Considering that the context information in speech processing is very important, using
LSTM blocks in neural networks for speech separation could improve its performance.

2.2 ConvTasNet

In this work, the ConvTasNet [18] neural network architecture is used. This architecture is
mostly used for speech separation. It consists from three parts as it is shown in Figure 2.1:

1. Encoder.

2. Separator.

3. Decoder.
Encoder Separator Decoder
[ [ *l
1D | D | LD
Conv Conv d=2 | Conv | PReLU
I.nliute T : T : T 51 Se(l))ar?éced
mixtur sources
1-D | | 1D ] D] Conv
Conv Conv Conv
1 1 1 - -
1-D 1-D | | 1-D | | i 1D | Sigmoid 1-D
Conv Conv Conv B Conv Conv
T
1 >< 1 4/[ .. T
Conv
®
LayerNorm =
X
Mixture

Figure 2.1: ConvTasNet neural network architecture.



Encoder is the first block of the ConvTasNet. It gets raw speech signal on input. This
block consist of the convolutional block trained to produces representation that resembles
mentioned STFT. We will denote this representation as pseudo-STFT.

The second part ensures the separation. It consists of a series of consecutive convolu-
tional blocks that are placed in series. Each of them stands for a filter that is applied on
longer and longer parts of the context from both sides. The number of these convolutional
blocks in each series determines how much context will be taken into account. The sepa-
ration part takes a pseudo-STFT as an input. Series of convolutional blocks then provides
feature extraction and generation of the separation masks. Separation masks are two di-
mensional matrices of the same shape as the input pseudo STFT. Each mask contains values
between the zero and one. The value represents the probability that the current frequency
block belongs to the speaker separated by the current mask. Separation is then performed
by element wise multiplication of each mask and the input mixture pseudo STFT given by
the encoder. These multiplications produce N separated outputs one for each speaker.

Finally it is necessary to rebuild time-domain signal again from the pseudo STFT rep-
resentation. This is provided by the last part of the ConvTasNet architecture, the decoder.
This part consists of the convolutional block similarly to the encoder part. This block is
trained to reverse the pseudo-STFT. Decoder takes separated pseudo STFTs one by one
and generates separated time-domain signals from them.

2.3 Training of neural networks for speech separation

Training the neural network for speech separation is performed on mixtures where the
original single speaker signals are known. This kind of training is called supervised learning.
It is hard to obtain such data from the real-world mixtures. So it is necessary to use artificial
ones. Training the system only on artificial mixtures often leads to bad performance in real-
world usage. This issue will be addressed in more detail in Chapter 4.

The training consists of several steps that are shown in Figure 2.2. Firstly, the neural
network estimates the N separated signals from the given mixture to the N outputs, where
N is the fixed number of speakers. It is necessary to know how many speakers have to be
separated before the training. Then the loss function is computed between the estimated
signals and the targets. The computed loss value is used for the training.

The loss function used for the training is scale-invariant signal-to-noise-ratio (SI-SNR)
function [4], which is defined as:

. §’,s s
Starget ‘= < _:>2 (2.2)
151
€noise 1= § — gtarget (23)
- S ||§targetH2
SLSNR(, §) 1= 10 log, o xeetl (2.4)
||€noiseH

where § € R'*T is the estimated source. §€ R'*T is the original source signal used as the
target. The [|5]? = (5,5) denotes the signal power, where (5,5) denotes the dot product
between estimated and original source. The function is scale-invariant because the scale
of the estimated signal does not influence the result. The neural network is trained to
maximize this function.



Neural

Reference 1
network

Reference 2

Reference N

Figure 2.2: Basic training of the speech separator using neural networks.

;

Figure 2.3: Example of PIT method used on the mixtures that consist of the speakers.

When evaluating the output of the speech separation neural network, several estimates
need to be compared to several reference signals in all permutations. This is due to the
fact that neural network does not know which estimated output signal belongs to which



reference signal. In the other words signal of the speaker A could be estimated arbitrary
to the first or second output. This gives rise to a permutation problem.

The solution is the permutation invariant training (PIT) method [31] shown in Figure
2.3. This method computes the loss function between all permutations of original and
estimated signals. The best-computed value corresponds to the right permutation of the
estimated outputs and this value is also used for the training of the neural network. This
method is defined as:

§’17?27"' 7§N = S(ﬁ) (25)
~ N ~
Ipr7(S,8) = min Y ~ —SI-SNR(5,, ;, 5;) (2.6)

=1

where S(%) is separator function, that estimates separated signal as outputs from the given
mixture ¢/. These signals are represented by vectors §’1, §’2, cee g ~. The lprr(S, S) function
takes two parameters: S, which is matrix of vectors of target signals and matrix S, which
consists of vectors of estimated separated signals. Variable N represents the number of
single speakers present in the mixture. Permutation o;; is the index of j-th target signal
in the i-th permutation of target vectors given by the matrix S. All computed SI-SNR
loss values are compared. The best (minimum) of them marks the best permutation of
references. This value is used for the training of the speech separation neural network.



Chapter 3

Generative adversarial networks

A generative adversarial networks (GAN) [8] is a model which is used for data generation.
The GAN model is able to generate new data which have never been seen before. Never-
theless the generated data are from the same domain as the dataset the GAN is trained
on. There are a lot of ways how the GAN could be used. For example data reconstruction,
where the GAN generates missing parts of the data [23]. It is also possible to use it for
grayscale images colorizing [26], artificial face generation [5], face aging [3], text transla-
tion [10], etc. And finally, there is an option to use the GAN for data augmentation, which
is what we used it for in this work.

Generator

Discriminator Loss function

Real data

Figure 3.1: Architecture of the base concept of the generative adversarial networks model.

3.1 Training generative adversarial networks

The base GAN model architecture is shown in Figure 3.1, it consists of two parts: the
generator and the discriminator. The first part is the generator which is the neural network
that is trained to generates a new data, called fake data. The generator neural network
architecture depends on the type of data that will be generated. In general, the generator
is defined as follows:

J=62) (3.1)



where Z' is random vector generated from some random distribution, for example normal
distribution. The G(Z) is the generator function which takes the random vector Z' as an
input and generates the fake data as an output. These generated data are represented by
the vector g.

The second part of the GAN model is the discriminator, which is also a neural network.
This network is used to tell whether the given data is fake or real. Formally the discriminator
is defined as follows:

preal(f’ D) = D(f) (32)

where 7 is vector of real or fake data. The D(Z) is the discriminator function that takes
the Z as an input and estimates the probability of the given data Z is real, which is defined
by preai(Z, D). Conversely, the probability that the data is fake is represented as:

pfake(fa D) =1- preal(fga D) (33)

To train the GAN model the loss function is also needed. The discriminator output is
used as the input for this loss function, which computes loss values for both networks. It is
defined as follows:

L(G,D) = Egp(a)[108(Preat (¥, D))] + Ezp(z)[l0g(psare(9(2), D))] (3.4)

where G is generator function, D is discriminator function. The p(Z) is the real data
distribution. The generator generates fake data from random inputs 2z’ that are given by
the distribution p(2). Then Ez. ) is expected value over all given real data and in contrary
Ez p(z) is the expected value over all given fake data.

These two networks then play the min-max game. This game provides the GAN model

training, which consists of two steps:

1. Discriminator neural network training.

2. Generator neural network training.

The first step can be seen in Figure 3.2. In this step, the generator neural network
weights are locked. This is shown by the gray color of the generator box in the figure. The
generated data § = G(2) and the real data x are used as the input for discriminator neural
network.

Discriminator is trained to maximize this loss function, this is defined as:

D* = max (3.5)
L£(G,D)

On the other hand in the second step presented by Figure 3.3, the discriminator neural
network’s weights are locked. In this step, the generator neural network is trained to deceive
the discriminator by generating such similar fake data to real ones that the discriminator
will not recognize them as fake. In other words, generator is trained to minimize loss
function, which is defined as:

G"* = min (3.6)
£(G,D)

Unlike discriminator training, only generated data is used in generator training. These
two steps are repeated and both networks are getting better and better in their tasks.

11



Generator

Loss

Discriminator )
function

Real data

Figure 3.2: The first step of training the architecture of the generative adversarial networks.
The generative neural network is locked. The discriminator network is trained on generated
(fake) and real data.

G2

Generator

Loss

Discriminator )
I function
Real data

Figure 3.3: Architecture of generative adversarial networks training in the second step,
where discriminator neural network is locked and generator is trained to deceive the dis-
criminator.

3.2 Training problems of generative adversarial networks

There are several problems in training of the generative adversarial networks [14]:
1. Mode collapse.
2. Non convergence.

3. Diminished gradients.

3.2.1 Mode collapse

Number of data classes in the dataset can be represented as modes. The generator is then
trained to generate the data from these different modes. In the mode collapse training

12



problem, the generator is unable to generate data from all of these modes. Instead it only
generates data from a few of them.

For example, in case of the generator that is trained to generate single-digit numbers,
the modes that data could be generated from are numbers from zero to nine. When the
GAN model fall in the mode collapse problem during the training, then the model is only
able to generate, for example, the numbers two and five.

The reason why this problem occurs is described in following text. The generator is
trained to generate such data that will confuse the discriminator as much as possible. If
the discriminator weights will be locked during training and only the generator will be
trained, it will in some point converge to the state, where it will generate the high quality
data that strongly confuses the discriminator. Nevertheless this data will be generated
independently on the given random vector 2, which is defined in Section 3.1. The generator
will collapse here to the single point which gives the highest quality data.

Now if the discriminator weights will be unlocked and it will start to train again, it will
only get the data generated from the single mode. Therefore, the discriminator will detect
as true or fake the generated data only in the single mode. The reason is that the generator
makes the vector 2 irrelevant.

The described case is the extreme one, but it may occur when the generator gets too
much space during the training and is much stronger then the discriminator.

3.2.2 Non convergence

The generator and separator parts of the GAN model are playing the min-max game during
the training. In this game the first player is trying to maximize its actions and conversely the
second player is trying to minimize them. The point where the one player will not change
its action regardless of what the opponent may do is called Nash equilibrium. According to
game theory, GAN should converge to this point. Nevertheless, it is very difficult to find a
such parameter values that will make the GAN model converge during the training. This
is caused by the fact that the adjustable parameters of the GAN model are very sensitive
to any changes.

3.2.3 Diminished gradients

This problem occurs when the discriminator is much stronger then the generator. Then the
discriminator get to the state where the gradients for the generator training are vanished.
In other words, the generator is unable to confuse the discriminator and due to the high
quality of the discriminator, it is unable to learn anything.

The loss function mentioned in the first article [9] that introduced the GAN model
encountered the problem of vanishing gradients. This means that the gradients are too
small that the neural network is unable to learn anything from them. There is also second
loss function mentioned in the article, which could solve the vanishing gradiens problem.
Nevertheless, it encounters problem of fluctuating gradients, which causes the GAN model
instability. There were many attempts to create loss function which solves these two prob-
lems such as LSGAN [19], WGAN [2], WGAN-GP [11], BEGAN [6], etc. Nevertheless,
none of them solve these problems as it is described in the paper ,Are GANs Created
Equal?“ [17].
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3.3 Generative adversarial networks for data augmentation

Generative adversarial networks (GAN) could be also used for data augmentation. For
example in the article ,Low-Shot Learning from Imaginary Data® [27], GAN is used as a
hallucinator. The hallucinator works as follows: When some person looks at image, the
person will also imagine another similar images. For example, if the image is a dog then
the person imagine another dogs or the same dog in a lot of different positions. If the
computer could do this imagination then it could learn better from fewer data. In this
article, GAN model takes image as the real data input Z and noise as the fake data input
Z. Then it provides estimation (hallucination) of similar data, for example, the mentioned
dog in different positions. Generated hallucinations are then classified with discriminator
classification neural network. Outputs of classification are used to compute loss function
and train the generator (hallucinator).

In the another article ,,GAN-based, Synthetic Medical Image Augmentation for in-
creased CNN Performance in Liver Lesion Classification® [7] GAN model is used to gener-
ate synthetic lesions on livers. In this article two GAN architectures are used DCGAN [24]
and ACGAN |[21]. The difference between these two architectures is that ACGAN trains
generators to generate samples from given class instead of random ones. This is achieved
by getting the second output from the discriminator part. The second output estimates the
most probable class of the given data. This information is then used with value of the real
fake loss function to train the generator. In medicine it is hard to obtain large datasets,
this is due to the fact that data are sensitive and they contain private information about
the patients. Another fact is that some data are expensive to obtain. Therefore, using a
GAN in the way to extend the dataset is very useful here. Classifier trained on the original
dataset has resulted in a sensitivity value of 78.6% and specificity value of 88.4%. With
the classifier trained on the dataset extended by the presented GAN model, there is an
improvement in both values to the sensitivity of 85.7% and specificity of 92.4%.

There are a many more examples of the GAN model usage. Nevertheless, the mentioned
usages show that it is possible to use the GAN model for the data augmentation and these
augmentations could significantly improve the results of the original models.
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Chapter 4

Robust speech separation

As it is mentioned in Section 2.3 neural networks used for speech separation are trained on
the mixtures with known single speaker signals. These mixtures are hard to obtain from
the real world. If the single speaker signals could be easily obtained from the real-world
mixture then the speech separation task will be solved and the speech separation system will
be useless. Thus, mixtures used for the speech separation system training are artificially
mixed from the recorded speaker signals. However, the speech separation systems trained
on artificial mixtures achieve good results on these mixtures, they often fail on real-world
mixtures. The reason of the bad results on real-world mixtures is due to the fact that
real-world mixtures contain echoes and noises given by the environment where the mixture
was recorded.

4.1 Data augmentation

To improve the speech separation system behaviour on the real-world mixtures it is possible
to make the speech separation system more robust. The main idea of making a robust
system is to add some other input mixtures, that extend the variance of the training and
validation data. The separation system trained on this extended dataset could better
manage the real-world mixtures. The mixtures that extend the dataset are created from
the original mixtures by the method called data augmentation.

4.2 Classic practices

There are many classic practices to augment the data and extend the original dataset. It
is possible to split these practices into two categories:

1. Practices that add noises and echoes to signal.
2. Practices that work with signal itself.

In this section, some practices from each category will be described.

4.2.1 Noise addition

Examples of noises that could be used for data augmentation are Gaussian noise, Color
noise, White noise, etc. It is also possible to record noises from real-world places such as
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Figure 4.1: Base idea of robust speech separation

streets, rooms, airports, and many others. All of these noises are mixed with the original
mixture using weighted sum, which is defined as:

ygaug) = WgYt + wnpny (4.1)

au, . . . o . . . .
where yt( 8 i augmented mixture, y; is original mixture, n; is selected noise for augmen-
tation and ws and w, are mixtures and noise ratios, that determines mixing ratio of the
original mixture and selected noise.

4.2.2 Echoes

Echoes, also called sound reverberation [30] are sound reflections caused by objects placed
the real world spaces. These objects could be for example walls, hills, furniture, etc. For
human ear reverberation with delay between 1.5s to 2.5s is still clearly understandable.
The reverberation with these delays could be heard in concert halls and it is possible to
simulate it by the hall reverberation algorithm [20]. Mixtures with simulated reverberation
could be used to make speech separation systems more robust toward environments that
give these echoes.

4.2.3 Frequency filters

All the following techniques described in this section are from the second category. The
first of them is the technique that uses frequency filters. These filters are applied to the
signals and cause changes in the signal’s frequency spectrum. Four well-known types of
filters:

a) Low pass filter, which allows passing only signal frequencies lower than some selected
threshold.

b) High pass filter, which allows only these signals frequencies that are higher than the
selected threshold.
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¢) Band pass filter, which combines two previous filters. This filter allows passing signal’s
frequencies that are inside some selected frequencies range, called bandwidth.

d) Band stop filter, which works opposite to band pass filter. This filter allows passing
signal frequencies that are not inside some selected bandwidth.

Using frequency filters for data augmentation could make the speech separation systems
more robust towards different microphones that are used for data recording. Not all micro-
phones are sensitive to the same range of frequencies.

4.2.4 Gain

Gain is an augmentation practice that works with increasing or decreasing signal volume.
Changes in gain of the signal are done by multiplying or dividing the signal amplitude by
a random amplitude factor. Higher values of the signal amplitude mean a higher volume
of the signal and conversely lower amplitudes mean lower volume. So it is obvious that
moving with signal’s gain should make the model more robust towards different volumes of
recorded signals.

4.2.5 Pitch

Furthermore, it is also possible to shift the pitch of the signal. Shifting the pitch is in
other words shifting of tone. If the pitch is raised, then signal sounds in higher tones, and
conversely when the pitch is reduced, the signal sounds in lower (bass) tones. Considering
that different people speak in different tone, the pitch shift augmentation could make speech
separation system robust towards the people voices that are not presented in the current
dataset.

4.2.6 Tempo

Another data augmentation can be provided by working with the signal’s tempo. Tempo
could be sped up or slowed down. When the tempo is simply sped up, then the signal’s
pitch is also getting higher. Conversely, with the tempo slowing down, the pitch is going
lower. It is possible to use the simple tempo augmentation with this behavior but it is not
always wanted. So to change the tempo but make the signal to sound in the same tones, it
is necessary to use pitch shifting together with tempo changes.

4.2.7 Polarity inversion

The polarity inversion augmentation is provided by multiplying the signal by -1, so in other
words to flip it upside down. This change is not distinguishable from the original signal by
human ears but it can be a problem for the neural networks where this change may make
a big difference in their behavior. So this augmentation can help to make neural networks
more robust towards to that simple change.

4.2.8 Audio shift

The audio shift augmentation is used to shift the audio signal forwards or backwards on
time axis. This technique could be provided with rollover or not. When the rollover is
applied, then the signal is moved as the cyclic buffer. This could raise some problems in
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neural networks, which use context information. If the rollover is not applied then the
overflowed parts of the signal are lost and zeros are pad in front or back of the signal.

4.2.9 Channels shuffling

In multi-channel signal, it is possible to shuffle channels. For example, in a stereo signal,
it is possible to switch the left and right channels. Channel shuffling could help machine
learning models to combat different positional biases.

4.2.10 Vocal tract length

The speaker signal frequency values also depend on the length and shape of the speaker
vocal tract. Each speaker has different vocal tract which produces different vocal tract
features. It is possible to work with the vocal tract feature in two ways.

The first way is to get rid of this information by using the vocal tract length normal-
ization method (VTLN) [15]. This method works by the warping the frequency axis in the
filter bank analysis, which is warped by the normalization scale factor «. This factor is
derivated from an estimate of the length of the speaker’s vocal tract. Thus, the vocal of
the each speaker with different vocal tract length (VTL) is scaled to the ,standard“ vocal
tract.

On the other hand, the second way is to use this information and to extend the dataset.
The data added to the dataset should increase the variance of VTL. The method that
could generate data with different VTL features is called vocal tract length perturba-
tion (VILP) [16]. This method use the same warping method as the VITLN method men-
tioned above, but it used various scale factors «. Each of that factors simulates different
VTL and generates data which will be added to the dataset and increase the dataset VI'L
variance.

4.3 Using generative adversarial networks

In this work the Generative adversarial networks (GAN) are used for data augmentation
on adversarial mixtures. The generator here takes the adversarial mixture as an input,
generates augmentation and put the augmented mixture as an output. The generator is
defined as:

i e = G(g) (4.2)

where G(¥) is the generator function that takes the original mixture % as an input and
generates augmented mixture § @U8) as an output.

Instead of the common GAN architecture, where the discriminator consists of the second
neural network and one loss function, in this architecture, the discriminator consists of two
parts as can be seen in Figure 4.2. The first part uses the speech separation neural network
and the SI-SNR loss function, which is computed between original targets and separated
signals from the augmented mixture. It is defined as:

5y, ) = S ©@U8)) (4.3)
p= —lpit(S,S)

YJR

S = (5,
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where 7 (28 is the generated noisy mixture which is defined by Equation 4.2. The ma-
trix S consists of all separated signals from the augmented mixture by separator function
S(7 @12)). And finally p is loss value computed by Iprp(S, S) defined by Equation 2.6.

The second part represents the similarity between the original ¢ and the augmented
7®18) mixture, otherwise the generator could generate any signal which does not even
corresponds to the reference source. This similarity is computed by the SI-SNR function
defined by Equation 2.4. The second part of the discriminator is defined as:

s = —SI-SNR(7 @®), 7 (4.5)

where SI-SNR (7 ®"¢) 7/ is defined by Equation 2.4. The 7 is the original mixture defined
by Equation 2.1 and the ¢ 8) which is defined by Equation 4.2.

The generator goal is to confuse the separator system as much as possible with the
generated augmented mixtures that are as similar as possible to the original mixtures. In
other words, the generator tries to minimize the values p and s. The loss value that is used

for generator training is computed as the weighted sum of these two values p and s. It is
defined as:

| = Wsim$ + Wsepp (4.6)

where wgipy, is weight of the similarity value s and weep is the weight of the separator loss
value p.

Lpir (4,5, S) Ly 2pi7(S,8)
SI-SNR(S, S) )
SI-SNR

SliS—Z) I

<

Figure 4.2: Architecture of generative adversarial networks training used in this work. This
figure shows the step where the generator is trained.

As it was mentioned in Section 3.3, the generator and the discriminator play the min-
max game. Thus, the separator should be also trained. The training of the separator is very
similar to the classic speech separation training described in Section 2.3. The only change
is that the generated augmented mixtures are also used during the training. As it is shown
in Figure 4.3 they are added to the training by flipping the unfair coin. The percentage of
the generated augmented mixtures is a hyperparameter that should be tuned.

In each step of the training, the augmented mixture is used with probability ¢, while
the original one with probability 1 — ¢. The probability c is set as a hyperparameter. The
augmented or original mixture is given to the separator as an input with the same ground
truth single speaker signals. This should make the speech separation system be more robust
towards the augmented mixtures generated by the generator neural network.
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Figure 4.3: Architecture of generative adversarial networks training used in this work. This
figure shows the step where the discriminator is trained.

4.3.1 Problems with the best model selection

Training of such a system raises a new problem. Which separator and which generator from
which epoch should be chosen as the best one. If the chosen generator will be the generator
with the best-computed loss value on validation data during training, it is possible that
the separator network was weak in this training epoch and the generator network gets a
better result that does not correspond to its trained quality. In other words, with the poor
separator, the poor generator could get better results than the quality generator with the
quality separator.

As mentioned, the problem with the best model choice also applies to the separator
model. With the poor generator which generates practically the same augmented mixtures
as the original ones the separator model will get nice results even when it is not the most
robust one.

In the case of this work, the generator model is not needed. The aim is to make robust
speech separator model, so only the best separator model should be selected. The solution
is to use all generators from the training to generate the augmented mixtures. Then next
step is to use different separators to separate signals from the augmented mixtures and
choose the separator with the best overall score. The whole model selection pipeline is also
shown in Figure 4.4. Generating of augmented mixtures is processed by generating the
random number between the zero and the number of epochs. This number represents the
used generator which will be used to generate the augmented mixture. This is defined as:

i~U0,E)ieN (4.7)
7.5 = G (4.8)

where the i is the random integer generated from the uniform discrete distribution U of
integers between the zero and E. The E is the number of epochs for which the GAN model
were trained on, it is also the number of all saved generators. The y; is the j-th original
mixture from the validation set. The G; is the generator function of the i-th generator.
Finally, the gj’i](aug) is the j-th generated augmented mixture be the i-th generator from the
j-th original mixture.
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Figure 4.4: The best separator model selection pipeline.

All the generated augmented mixtures will be separated by the selected separator and
the SI-SNR values will be computed, using the PIT, between the separated outputs and
the known targets. This is defined as:

1

J
st = argmin(5 zj:(zm(sk(gi;a“g)), T;))); k € (20,30,40,. .., E) (4.9)

where T is the matrix of target signals for the j-th mixture. The S, is the k-th separator
function, where k is from the (20, 30,40, ..., E) which is the vector of indexes of the val-
idated separators. The lprp is the PIT loss function defined by Equation 2.6 and kpegt is
the index of the best separator.
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Chapter 5

Implementation

The implementation of the presented generative adversarial networks (GAN) model is based
on Jian Vu’s PyTorch implementation of the ConvTasNet [29]. The PyTorch library [22]
is Python based machine learning library, that contains neural network layers, optimizers,
schedulers, and tensors that can work with the CUDA platform. The used ConvTasNet
module contains the ConvTasNet neural network implementation.

5.1 Main process

The system consists of the Model, Dataloader, and Trainer class. Firstly the mixtures and
the corresponding reference single speaker signals are loaded by the Dataloader. Then the
model is initialized with randomly set weights. It is also possible to load the weights of the
trained model and use them for further training. The Model and the Dataloader are put
into the Trainer class which can train the model.

To train the model the run function of the Trainer class should be called as it is shown
in Figure 5.1. This function loops over the set number of epochs and in each epoch calls
two functions: train and eval. The train function loops over the batches of training data
provided by the given Dataloader. For each batch the compute loss function is called
that provides the forward pass and loss computation. This function returns a computed
loss value, which is used by the backpropagation algorithm to train the generator or the
separator neural network. The ewval function works similarly as the train function, but the
backpropagation algorithm is not called.

5.2 Switching of training

Training of the GAN model includes the min-max game between the generator and sepa-
rator part. This is done by switching the training between these two parts as it is shown
in Figure 5.2. In this work, the generator and separator training is switched several times
during the epoch after at least one batch. The number of batches after which the training
is switched is different for the generator and separator parts and is defined by the hyper-
parameter. There is also a possibility to control the training switch according to results
achieved by each part. In this case, the generator or the separator is trained until it achieves
the results that satisfy the defined goal.
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Figure 5.1: Diagram of the main training cycle that is done inside the function run.
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Figure 5.2: Diagram of the loss computation during the generator and separator training.

5.3 Loss computation

The loss computation part of the Trainer is called depending on which part is currently
trained. As it is mentioned in Section 4.3 the generator loss function is composed of two
parts, the separator and similarity loss functions. To compute these, the generator first
generates an augmented mixture. Then, the separated signals are estimated by the sepa-
rator from the augmented mixture. The gan_impact is here set to 0, because the mixture
is already generated. Then the separator loss function takes these signals as an input and
compares them with the known targets. The second part of the generator loss function is
computed as the SI-SNR between the original and generated augmented mixture. These
two computed values are then summed up with different weights and the backpropagation
is called on the generator neural network.

On the other hand, in the case of the separator training, only the separator loss function
should be computed. The only difference is that some amount of the generated augmented
mixtures must be included in the training. This is implemented by generating the random
number between zero and one. The generated number is then compared to the defined
hyperparameter of the gan_impact of the augmented mixture. If the generated number is
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smaller than the defined impact then the generated augmented mixture is used as an input
of the separator network and vice versa. The SI-SNR value is then computed between the
estimated outputs and the target signals and the backpropagation is called on the separator
neural network.

5.4 Evaluation

The trained GAN model should be evaluated. The evaluation process is shown in Figure 5.3
Firstly the best separator should be chosen from all epochs. The generate script uses
generators from random generator epochs to augment the validation part of the dataset.
Then the evaluate script evaluates each n-th separator on these augmented data.

The second part of the GAN model evaluation is to evaluate the selected robust separator
on the testing part of the dataset. The separate script estimates single speaker signals from
the testing mixtures. The second script compute si snr compares the estimated signals
with references. The SI-SNR values are computed during this comparison and then the
average is computed from them. The computed mean is the evaluation result.

generate(validation)

1. evaluate(validation) 2.
Evaluation on ‘ Evaluation on
real noisy data generated

robust_separator augmentations

\ 4
separate(test) generate(test)

compute_si_snr(test)

improvement(test)

\ 4

Figure 5.3: Diagram of the evaluation process for both evaluations. The left side shows
the evaluation on real noisy data and the right side shows the evaluation on generated
augmentations.

Another evaluation is set to compute the improvement between the original and robust
separator on the augmented data. For this type of evaluation, the generate script is again
used, but now the testing part of the dataset is augmented. Then the separate and com-
pute__si_snr scripts are used to evaluate the original and robust separator. The computed
average SI-SNR values are then used to compare the quality of the robust model.
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Chapter 6

Experiments

Experiments with a generative adversarial networks (GAN) model used to make the speech
separation more robust are performed with the setup described below. The first experiments
try to find the applicable combinations of parameters, which do not lead to one of the GAN
training problems. The second experiments evaluates the GAN model on the WSJ0-2mix
and WHAM dataset and solve problems raised during experimenting. The last experiments
train the GAN model on the WHAM dataset and evaluate it as well, to proof that the
concept is easily applicable to the different dataset.

6.1 Dataset

Experiments are done on the Wall Street Journal dataset (WSJ0-2mix) [12]. It consists of
three parts, which contain training, cross-validation, and testing data. The dataset contains
both mixtures and parallel single-speaker recordings. Speakers are randomly mixed with
various signal-to-noise ratios (SNR) between 0dB and 5dB. All data are downsampled to
8kHz sample rate. For training, there are 20000 mixtures corresponding to 30 hours, for
cross-validation, there are 5000 mixtures corresponding to 10 hours, and there are 3000
mixtures corresponding to 5 hours for testing. The testing part contains different speakers
than the training and cross-validation parts.

The WSJO Hipster Ambient Mixtures (WHAM) [28] is the second dataset used in the
experiments. This dataset pairs each two-speaker mixture in the WSJ0-2mix dataset with
the unique noise background scene. Noises are recorded in San Francisco Bay in urban
environments such as coffee shops, restaurants, bars, office buildings, parks, etc. They are
recorded at a sampling rate of 48 kHz and then downsampled to the 8 kHz to match with
the WSJ0-2mix dataset. There are 80 hours of noises recorded at 44 different locations
and they are separated to the four bins: very quiet, quiet, normal and loud. Each part of
the dataset (training, cross-validation and testing) contains noises from at least two unique
locations in each bin. The sizes of training, cross-validation, and testing parts are the
same as in the raw WSJ0-2mix dataset. Each background noise is mixed into the mixture
by sampling SNR value between -6 dB and 3dB and then by applying gain to the louder
speaker of the mixture such that the SNR between the louder speaker and the noise is equal
to the sampled SNR value.
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6.2 Initial separator and generator networks setups

The neural network architecture used for both networks (separator and generator) is Con-
vTasNet [29]. Parameters of the ConvTasNet are shown in Table 6.1. The table also
shows the parameter values for the generator and separator neural networks used in the
experiments.

Table 6.1: Hyperparameters of the ConvTasNet network [18]

Symbol Description Generator | Separator
F Number of filters in autoencoder 128 128
L Length of the filters (in samples) 40 40
B Number of channels in bottleneck 128 128
H Number of channels in convolutional blocks 192 192
P Kernel size in convolutional blocks 3 3
X Number of convolutional blocks in each repeat 3 7
R Number of repeats 1 3
0] Number of outputs 1 2

The separator network used for training has been pretrained on one of the above-
mentioned datasets or their combination. So there are three separator networks used in
experiments, each pretrained on one of them. The baseline pretrained scores are shown
in Table 6.2. From the given results it is obvious that the WHAM dataset is much more
difficult than the WSJ0-2mix. This is caused by the noises added to the mixtures. If the
system is trained on the WSJ0-2mix and tested on the WHAM, then the results are quite
poor.

Table 6.2: Baseline results of pretrained separator neural networks. Results are computed
by SI-SNR loss function using PIT method. Datasets in rows are the training ones. Testing
datasets are in columns.

WSJ0-2mix | WHAM
SI-SNR [dB] | SI-SNR [dB]

WSJ0-2mix 12.46 -2.99
WHAM 9.04 6.09
WSJO0-2mix + WHAM 12.34 6.45

The generator network is much smaller than the separator one and it has been pretrained
for the self-identity task. This is due to the fact that the untrained encoder and decoder
parts of the ConvTasNet leads to the generating nonsense augmented mixtures. It is possible
to train the generator network properly during the GAN model training but it is very
difficult and often leads to a bad GAN model training. Since the aim of the GAN training is
not to train the encoder and decoder parts but to generate augmented mixtures, pretraining
the self-identity removes the encoder and decoder training problem from the GAN model
training process.
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6.3 Adjustable parameters

The first task of the experiments is to find the right combination of parameters that will
train GAN properly. The adjustable parameters are:

» Separator loss weight wsep, which sets the importance of the separator loss in gener-
ator training. The generator training loss function is defined by Equation 4.6. The
separator loss value is computed during generator training on the generated aug-
mented mixtures. The generator is trained to maximize the separator loss in order to
confuse the separator as much as possible.

e Similarity loss weight wgin is used to indicate the importance of the similarity between
the generated augmented mixture and the original one. This loss function is also
computed during training and its role is to constrict the generator so that it would
not generate complete nonsense.

GAN model is switching between the separator and generator training during each
epoch. Two parameters control this:

o Separator batch cap csep, Which sets how many batches will be used in separator
training turn.

o Generator batch cap cgen, which sets how many batches will be used in generator
training turn.

For example, when csep and cgen are set to 10, the generator will be trained on the first
ten batches. After this, the training is switched to the separator training, which uses other
ten batches and then switches back. The number of batches for each model can significantly
influence the training and these parameters are difficult to set properly.

The last two adjustable parameters are the ratio of the augmented mixtures during the
separator training ra,e and the similarity loss SI-SNR cap cgim, which sets the value that is
used to clip the similarity loss to a maximum value. This serves to prevent the similarity
function to be too strong in comparison with the separator loss function.

6.4 Initial experiment

The initial experiment is set with following parameters:
* Wsep = Wsim = 1.0,
* Csep = Cgen = 10,
e Taug = 0.5 and
e Csim = 40.

The purpose of the initial experiment was to inspect the basic behavior of the loss
functions during the training. The results are shown in Figure 6.1. The separator loss
function curve shows that the generator network managed to completely confuse the sep-
arator network. Although this is the task of the generator, in this case, the generator
completely dominated the training to the point that the separator was unable to adapt to
the augmented mixtures. The strength of the generator network is possibly caused by:
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Figure 6.1: Training curves of the separator and similarity loss computed during the gen-
erator training move in each epoch. These curves shows collapse of the GAN model with
initial parameters setting to the imbalance state, where the generator is too strong for the
separator.

1. Too much emphasis on the separator network confusion, which could be adjusted by
the parameters wsep and wsim. These adjustments will be examined in Section 6.5, or

2. Too much training space for the generator network, which could be adjusted by the
parameters Cgen and ceep. These adjustments will be examined in Section 6.6.

6.5 Generator loss weights

The base experiments lead to the imbalance between the generator and separator networks.
There is a chance to solve this imbalance problem by finding the correct weights wsep, and
Wsim -

Therefore, next experiments set different combinations of values of the weight parame-
ters. Thus the separator weight wgep value is reduced by tenths to 0.1 with similarity weight
Wsim locked at 1.0. This could reduce the generator strength and help to a better system
balance.

Experiments collapse to two modes, where the generator network:

1. Is too strong and overwhelms the separator network.
2. Generates very similar mixtures to the original ones and does not make any changes.

The first mode is achieved when the cgp, is above the value 0.5 as shown by the orange
curves in Figure 6.2. Lower values collapse to the second mode, where the similarity loss
function has a big influence on the generator as it is shown by the blue curves in Figure 6.2.

6.6 Separator and generator batch caps

Another idea is to solve the collapsing to the first mode by the right combination of the
separator and generator batch cap parameter values. The main issue is that the generator
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(a) Training curve of the separator loss function (b) Training curve of the similarity loss function

Figure 6.2: Training curves of the separator and similarity loss computed during the gener-
ator training move in each epoch. The orange curves show the collapse of the GAN model
with wge, = 0.7 to the imbalance state, where the generator is too strong for the separator.
The blue curves show the collapse of the GAN model with wse, = 0.3 to the imbalance
state, where the generator does not generate any augmentations.

confuses the separator too much. Therefore, increasing the separator batch cap ceep could
help the separator to better adapt to the augmented mixtures. The fixed value wsep = 0.7
was used in batch cap experiments. This value has been chosen because although the system
with these settings collapses to the first mode, it reduces the impact of the separator loss
function on the generator. The cgp value is incremented by the unit. Nevertheless, the
system does not stabilize again, it collapses to the second mode when the cgep, >= 13 as it
is shown by the blue curves in Figure 6.3. With lower values of cgp, the system stays in the
first collapse mode as it is shown by the orange curves in Figure 6.3. Therefore, it means
that the batch cap parameters are not distinguished finely enough.

6.7 Automatic separator and generator batch caps

After these experiments, it turned out that adjusting the batch caps csep and cgim is not
enough to stabilize the training. The constant batch cap values still lead to one of the two
collapse modes described in Section 6.5, i.e. one of the models is too strong while the other
does not learn anything. Here, we explore another way to balance the training, where the
number of batches for each model is adjusted dynamically, based on the SI-SNR value of the
separator. The generator is thus trained until the separator obtains SI-SNR values higher
than parameter cgnrgen and the separator is trained until the separator does not achieve a
-SI-SNR value lower than parameter cgnrsep On the augmented mixtures.
Experiments using this method are initially set with parameters:

. wep = 0.6, 0.7, 0.9
e Wsim = 1.0,
® Csnrgen — 0.0

® Csnrsep — —5.0,
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Figure 6.3: Training curves of the separator and similarity loss computed during the genera-
tor training move in each epoch. The blue curves show the collapse of the GAN model with
Csep = 13 to the imbalance state, where the generator does not generate any augmentations.
The orange curves show the collapse of the GAN model with cg, = 12 to the imbalance
state, where the generator is too strong for the separator.

e Tayg = 0.5 and

® Cgim — 20.
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(a) Training curve of the sep-
arator loss function computed
during the generator training.

(b) The training curve of
the similarity loss values com-
puted during the generator
training.
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erator during the separator

training.

Figure 6.4: The training curve of the separator loss computed during the generator training
moves each epoch and the training curve of the computed separator loss function during
the separator training on the augmented mixtures. These curves show, that the curves
converge to the set parameters csnrgen and Csnrsep- The csnrsep Parameter value is inverted
during the training. Nevertheless, the generated augmented mixtures are very similar to
the original ones, thus the generated augmentations are not so strong.

The cgim value follows the knowledge from the previous experiment, where the similarity
values around the 40 dB overweight values of the separator loss function during the generator
training. From training curves shown in Figure 6.4 it is evident, that systems trained by
using this method do no longer collapse to the modes mentioned in Section 6.5. The training
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curve in Subfigure 6.4a that stands for the level of the separator confusion converges to the
SI-SNR value 0dB which is set by the parameter cgnrgen. The Subfigure 6.4c shows that
the training curve of the separator gained values on the augmented data, which converges
to the value of -5dB -SI-SNR set by the parameter csnrgep-

6.8 First evaluation
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Figure 6.5: Results from finding the best separator model from trained GAN with parameter
Wsep = 0.7. The first chart shows the SI-SNR means of evaluated separators. The other
charts show the results on generated augmented mixtures of the separator models from the
each selected epoch

Since the GAN model does not collapse to the one of the above mention modes it is

possible to evaluate it. Firstly, the best-trained separator model has to be found. This is
provided by generating augmented mixtures by randomly chosen trained generators. Then
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each tenth separator model is evaluated on all generated augmented mixtures. The model
with the best result is then chosen for the evaluation using the test data. This is described in
more detail in Section 4.3.1. The results of the separator selection are shown in Figure 6.5.
The first chart shows the overall results of each evaluated separator model. The bar charts
show how successful the separator is on the generated augmentations by each generator.
Bars represent groups of generators, which are grouped by their epoch number. From these
bars it is evident that the separators works well on the first ten generator but elsewhere
gain a poor results. Nevertheless, the results achieved by the different separators on the
data generated by the different generators are very similar. This means that the separator
is not being more and more robust during the epochs.

Table 6.3: Results from the first evaluation of the experiments with automated cgen and
Csep Parameter settings. In first column there are different wee, parameter settings. Other
columns represent results from the evaluation on the tested part of the WSJO-2mix or
WHAM dataset. The columns with original annotation contain evaluation results of the raw
pretrained separator model on the WSJ0-2mix dataset. The columns with the augmented
annotation contain the evaluation results of the best separator model chosen from the GAN
training.

WSJ0-2mix | WSJO0-2mix WHAM WHAM
original robust original robust
SI-SNR [dB] | SI-SNR [dB] | SI-SNR [dB] | SI-SNR [dB]
Wsep = 0.6 12.46 12.18 -2.99 -2.89
Wsep = 0.7 12.46 11.95 -2.99 -2.78
Weep = 0.9 12.46 11.36 -2.99 -3.05

The separator with the best score is chosen as the best one. This separator is then
evaluated on the WSJ0-2mix and WHAM datasets. The results are shown in Table 6.3.
They show that the trained GAN model with the above-mentioned parameters setting
does not train the separator to be more robust. This is tested by evaluating the best
separator model on the testing part of the WHAM dataset. The SI-SNR result achieved by
the separator model pretrained on the WSJ0-2mix dataset is similar to the model trained
by the GAN, when evaluating both the WSJ0-2mix and WHAM datasets. There are three
experiments using different separator weights, but none of them has achieved better results.

The bad evaluation results could be caused by the fact that although the GAN model
does not collapse to the above mentioned two modes, the generated augmented mixtures
are very similar to the original ones as it is shown in Figure 6.4b, where the curve represents
the similarity loss values. Thus, it would be necessary to move with the wgi, parameter in-
stead of the wgep. The wgim parameter constraints generator from generating very different
mixtures, which also constraints the generator’s possibility of generating difficult augmen-
tations. Considering this other experiments are set with the fixed wsep at value 1.0 and wgim
set to the values 0.1,0.2,...,1.0. These experiments could show that the decreasing wsin
parameter may release the generator to generate the more difficult augmented mixtures.

Experiments show that with high values of wg,, the generator has the major part of
the training time and the separator could adapt to the generated augmentation in a few
batches. With decreasing value of the wgi, the GAN model reaches the point, where hard
augmentation is found in the first few epochs and the separator is then unable to adapt to
this augmentation with the SI-SNR value set by the parameter csyrsep. This is shown in
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Figure 6.6: The training curve of the separator loss computed during the generator training
moves each epoch and the training curve of the computed separator loss function during
the separator training on the augmented mixtures. These curves show, that the generator
generates, in first epoch, so strong augmentation that could not be adapted by the separator
with the SI-SNR result which reaches the set cgnrsep value.

Figure 6.6, where the first curve is the separator loss during the generator training, which
shows the creation of the strong augmentation in the first two epochs, and the second curve
is the separator loss on the generated augmented mixtures during the separator training.
The second curve shows that the separator is unable to achieve the value -10 set by the
parameter cgnrsep. In Figure 6.6 the original and augmented mixture is also shown. From
the spectrogram, it is obvious that the separator does not have a chance to adapt. The
wsim value that collapse to the strong generator mode is not stable, in some training it is a
value 0.7 another training makes this collapse at a value 0.6.

6.9 Instability in the collapse to the strong generator mode

The instability in collapse to the strong generator mode during the training was inspected.
The problem is that at the moment when the generator generates the strong augmentation
training is switched to the separator training. The separator is then unable to achieve the
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required SI-SNR value and does not switch back to the generator training. If the generator
training could be switched on, the similarity loss could make the augmentation slightly
easier and the separator could try again to adapt. There are a total of two ways to achieve
this. The first one is to set the timeout parameter, which switches the training if the
separator is unable to reach the required score in the set number of the maximum provided
batches (timeout). Although this is an elegant solution it raises another parameter that
should be tuned. Thus, in this work, the second solution is used. This solution starts each
epoch with the generator training, which forces the generator to be trained even when the
separator does not achieve the required score.

6.10 Problem with the proper switching of the generator and
separator training

The second problem which arises during the experimentation is that the generator and
separator training is not properly switched although they reach the required SI-SNR score.
This score is computed as mean from the score of all batches used during each separator
and generator training. The score values are reset after the training is switched and other
score values computed during the current part of the training are taken into account for
the mean computation. Nevertheless, when for example the values start from the 5 and
then decrease to the -10, the computed mean is not equal to -10 until the values stabilize
at that value. The higher starting value the longer time should the values be stable so that
the computed mean will switch the training. This behavior leads to GAN model training
that will never switch the training between the generator and separator parts.

The solution is to select only the last few batch results that will be used for the switching
decision. The number of the batch results is defined by the parameter myindow called the
window. Then the median should be computed from the selected values. The median value
and the threshold set by the parameter mgpnreshold creates space around the median value.
Only values within this space would be used for the mean computation which reduces the
influence of the outliers on the computed mean. The computed mean value is then used
for the train switching decision and makes it more stable. This solution is called median
filtering.

6.11 Forced generator training and the median filtering

The experiments that force the generator training on the start of each epoch and also use
the median filtering during the training switch decision use the following parameters:

* Wsep = 1.0,

e Wgim = 0.1,0.2,...,1.0
* Csnrgen = —9.0

* Csursep = —10.0

* Tayg = 0.5

e Csim = 20

* Myindow = 10
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Figure 6.7: Spectrums of the original and generated augmented mixture. These spectrums
shows how the generator can augment the mixture in way that it is impossible to adapt to
it by the separator. it.

® Mthreshold = 5

Experiments with the above settings and wgy, parameter value higher than 0.7 are
unable to achieve the set cgnrgen score during the generator training. However, lower wgim
parameter values achieves the mentioned score, their similarity loss values are lower than
0dB. This means that the generated augmented mixtures are very different from the original
mixtures. Thus, the generated augmentations are very difficult and the separator is unable
to learn anything from them. Figure 6.7 shows spectrum of the original and augmented
mixtures with the low wgy, parameter value. It is evident that the generated augmented
mixture in Subfigure 6.7a is different from the original one, which is in Subfigure 6.7b. To
avoid these difficult augmentations the csnrgen parameter value should be set to a higher
value. The higher value of this parameter stops the generator training earlier than it could
generates very difficult augmented mixtures.

6.12 Higher generator SI-SNR target value

Other experiments are set with the csnrgen = 0dB. Experiments are again set with the wgin,
parameter values between the 0.1 and 1.0 like in the previous experiments. The separator
adaptation works better in these experiments because generator does not confuse it too
much.

The experiments with wg;y, set to the value 0.7 will be described in detail. The experi-
ments have been chosen to give the generator more freedom during the augmented mixtures
generation. In Figure 6.8 it is shown how the number of batches for the training of each part
is switching during the epochs. It is evident that the generator and separator are finally
properly switching the training and do not collapse to any above-mentioned modes. An
example of the generated augmented mixture is shown in Figure 6.9. From the spectrum,
it is evident that the signal contains some augmentation but at the same time, the original
signal is visible. The lines that the generated augmented mixture contains are caused by
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Figure 6.8: These figures show how many batches are provided to each part of the GAN
model during its training.

the ConvTasNet neural network architecture. They appeared during many experiments.
The higher value of wgj, suppresses them but they are still there.

(a) Spectrum of the original mixture. (b) Spectrum of the generated augmented mix-
ture.

Figure 6.9: Spectrums of the original and generated augmented mixture. These spectrums
shows how the generator can augment the mixture in way that the separator can adapt to
it.

Fortunately, the separator network can adapt to them as is shown in Figure 6.10 it
can be seen that the separator can adapt to the generated augmented mixtures. The left
Subfigure 6.10a shows how the generator tries to confuse the separator and it is successful
in many epochs, for example in the epoch 15. It is also evident that the generator generally
confuses the separator to the 5dB though the csnrgen value is set to the 0 dB. This is caused
by the generator switching the training more times during one epoch and the confused value
is computed as the mean of all batches given for the generator training.

The Subfigure 6.10b shows the similarity loss curve and it is evident how in the middle
of the training the similarity value fluctuates around the value of —5dB, then in the end of

36



GAN/Train separator loss

0 50 100 150 200
Epochs
(a) Training curve of the sep-
arator loss function computed
during the generator training.

GAN/Train similarity loss

I
= I
5] [ o

-SI-SNR [dB]

I
—
7

I
N
=]

0 50 Epl':)OCO"‘S 150 200
(b) The training curve of
the similarity loss values com-
puted during the generator
training.

Separator/Train impacted

w

o

-SI-SNR [dB]

|
o)

0 50 EDOCh;OO 150
(¢) Training curve of the sep-
arator loss function computed
on data impacted by the gen-
erator during the separator

training.

Figure 6.10: The training curve of the separator loss computed during the generator training
moves each epoch and the training curve of the computed separator loss function during
the separator training on the augmented mixtures. These curves show, that the curves
converge to the set parameters csnrgen and Csnrsep- The csnrsep Parameter value is inverted
during the training. Nevertheless, the generated augmented mixtures are very similar to
the original ones, thus the generated augmentations are not so strong.

the training it switches between the very similar generated augmented mixtures and very
different ones. From this similarity curve it is evident that although the similarity function
helps the GAN model from the collapse to the strong generator mode, it also leads to the
states where the generator forget about the learned augmentation. This behaviour will be
discussed later.

The Subfigure 6.10c shows the separator loss value during the separator training on the
generated augmented mixtures in the other words on the data impacted by the generator.
It should be mentioned that the Subfigure 6.10c shows the -SI-SNR, value instead of the
Subfigure 6.10a. It is evident that the separator can adapt to the generated augmented
mixtures and train but it could not achieve the value -10dB which is set to the parameter
Cenrsep-  Nevertheless, the generator is forced to train at the start of each epoch as it is
mentioned in Section 6.9. This rightly rescued the GAN model from the collapse to the
strong generator mode.

The best separator selection is shown in Figure 6.11. In contrast with the best sepa-
rator selection during the first evaluation which is shown in Figure 6.5, the performance
of the separator on the different generated mixtures by the different generators is not that
stable. Thus, the generator and separator have different strengths during the training. The
separator from the epoch 180, and later, fails more than the previous ones. This could be
caused by the fact that they are less robust but they can also try to adapt to the more
difficult augmentation. This more difficult adaptation could be generated by the generator
that also forgets some other augmentation from the past. If the augmentation is so strong
the separator could also forget the adaptation to these old augmentations to be able to
handle the difficult new one. This raises the generator forgetting problem.
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Figure 6.11: Results from finding the best separator model from trained GAN with param-
eter wgim = 0.7 and used automated training switch with set parameters cgnrgen = 0dB and
Csnrsep = —10dB. The first chart shows the SI-SNR means of evaluated separators. The
other charts show the results on generated augmented mixtures of the separator models
from the each selected epoch

6.13 Generator forgetting problem

Using the similarity loss function together with the separator loss function during the gener-
ator training prevents the generator from generating total nonsense. With the combination
of the forced generator training at the start of each epoch, the similarity also helps to the
rescuing the GAN model from the collapse to the strong generator mode. Unfortunately,
it also leads the generator to forget the learned augmentations during the training. The
generator then learns a new augmentation, but training of the separator is in this GAN
model designed to get generated augmented mixtures only from the last generator state.
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This leads to the forgetting of the separator. If the newly learned augmentation by the
generator is not difficult or it is similar to the previous ones, the separator model still
works well and it is getting more robust. Nevertheless, if the new augmentation is different
the separator decides that it is better to forget the old augmentation to adapt to this new
one. This leads to the not robust separator towards the previous generator states. If the
adaptation to these augmentations takes only a few epochs and then the end of the training
follows or it is quickly forgotten, the separator will not be selected during the best separator
selection. However, the selected separator will be more robust it will probably fail on the
augmentations generated by the generators in after forget states.

To solve this problem the GAN model training should be redesigned. Older versions
of the generator should be stored and used during the training to generate new augmen-
tations. This should protect the separator from the forgetting adaptation to the previous
augmentations and it should be redesigned in future work.

6.14 Evaluation problem

The best separator from each of experiments from Section 6.12 was chosen and then evalu-
ated. The results are shown in Table 6.4. The results show that with the high value of the
parameter wgiy, the robust separator achieves a little bit lower results on the testing part
of the WSJ0-2mix dataset in comparison with the pretrained separator model. However
the numbers for the WSJ0-2mix dataset are still acceptable, results also show that on the
testing part of the WHAM dataset any of the trained separators do not achieve better
results than the pretrained separator model. The results are even worse with low value of
the parameter wgim.

Table 6.4: Results of the experiments with automated cgen = 0dB and ceep = —10dB
parameter settings. In first column there are different wgy, parameter settings. Other
columns represent results from the evaluation on the tested part of the WSJO-2mix or
WHAM dataset. The columns with original annotation contain evaluation results of the raw
pretrained separator model on the WSJ0-2mix dataset. The columns with the augmented
annotation contain the evaluation results of the best separator model chosen from the GAN
training.

WSJ0-2mix | WSJO0-2mix WHAM WHAM
Weim original robust original robust

SI-SNR [dB] | SI-SNR [dB] | SI-SNR [dB] | SI-SNR [dB]
0.1 12.46 3.01 -2.99 -5.93
0.2 12.46 7.10 -2.99 -5.22
0.3 12.46 9.99 -2.99 -6.46
0.4 12.46 8.91 -2.99 -4.55
0.5 12.46 10.17 -2.99 -3.21
0.6 12.46 10.29 -2.99 -2.20
0.7 12.46 9.67 -2.99 -2.94
0.8 12.46 11.23 -2.99 -2.946
0.9 12.46 10.93 -2.99 -2.35
1.0 12.46 10.09 -2.99 -3.44

Nevertheless, the WHAM dataset which is mentioned in Section 6.1 contains noises
recorded in the real environments. The generator is unable to generate these noises, but
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it is possible to generate new different noises. The separator that is made robust by this
generator could fail on the WHAM dataset but still, be robust towards the generated
noises. To evaluate this behavior each mixture in the testing set of the WSJ0-2mix dataset
is augmented by the randomly chosen generator from the training. The raw pretrained
model is then evaluated on these augmented mixtures and then also on the robust one.
The robust separator should perform better on these augmented mixtures than the raw
pretrained separator.

Table 6.5: Results of the experiments on WSJ0-2mix dataset with automated cgen = 0.0dB
and cgep = —10.0dB parameter settings. In first column there are different wg;, parameter
settings. The second column represents values of the not robust separator pretrained on
WHAM dataset. The third column contains results of the robust separator. These results
shows the comparison between the not robust and robust separator which should prove the
concept of this GAN.

Augmented WSJ0-2mix | Augmented WSJ0-2mix
Weim original robust
SI-SNR [dB] SI-SNR [dB]

0.1 -7.68 -3.17
0.2 -6.16 -2.02
0.3 -3.73 -1.69
0.4 -2.69 -0.78
0.5 -1.34 -0.10
0.6 2.15 2.23

0.7 1.99 2.46

0.8 5.15 5.64

0.9 4.22 5.02

1.0 7.12 6.63

The results of this evaluation are shown in Table 6.5. There is a visible improvement
between the original and robust separator for all set wgy, values except the value of 1.0.
Lower values of this parameter give results with a bigger difference between the original
and robust separator. These values are under the zero SI-SNR, which is caused by the low
impact of the similarity loss function during the training. Nevertheless, they show that the
GAN model training makes the separator network robust toward the augmented mixtures
generated by the generators during the training.

Figure 6.12 shows the improvement in results for the robust separator in experiment
with parameter wgiy, = 0.7. This experiment is described in detail in Section 6.12. In Figure,
the improvement is most evident in the augmented mixtures generated by the generators
from 0-10, 40-110, 120-130, and also 150-160 epochs. These improvements are shown in two
bottom bar charts, where the left bar chart shows the results for the not robust separator
and the right bar chart results for the robust separator.

6.15 Experiments on WHAM dataset

Other experiments are performed on the WHAM dataset with the separator pretrained
on the WHAM dataset. These experiments should firstly show how much the parameters
depend on the current dataset. They should also show the difference in behavior on the
already augmented dataset. Experiments are performed with the following parameters:
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Figure 6.12: Improvement results for the experiment with parameter wgiy = 0.7. The upper
bar chart shows the results for the not robust (blue) and robust separator (orange). The
two bottom bar charts shows how the not robust and robust separators perform on the
augmented mixtures generated by the generators from different epochs of the GAN model
training. Each bar represents the group of the generators from ten neighboring epochs.

o Wsep = 1.0,

o Wem = 0.1,0.2,...,1.0
* Csnrgen = 0.0

* Csnrsep = —9.0

* Tayg = 0.5

e Csim = 20

* Myindow = 10

® Mihreshold = O

The parameter setting is similar to the experiments in Section 6.12. Only the parameter
Csnrsep 18 changed to the value -5.0dB (-SI-SNR). This is due to the base results of the
separator on the WHAM dataset, where it is possible to achieve 6.09 dB. The experiments
with the value -10.0dB are also run, but they suffer from the problem that the separator
is unable to achieve such a high value during the adaptation to the generated augmented
mixtures.

The results of these experiments are shown in Table 6.6. These results show the same
behavior as the experiments with the WSJ0-2mix dataset. The only difference is in the
better results for the WHAM dataset, which is caused by the pretraining of the separator
on these data. If the selected separator is more robust than the original separator could be
seen in the evaluation which compares the results of these two separator states.

These results are shown in Table 6.7. The improvements are higher than the 4 dB.
There are bigger improvements than during the experiments on WSJ0-2mix dataset, where
the improvements are around 3dB or lower.

The GAN model concept for robust separator networks is proved by the experiments
to work. The separator chosen from the GAN model training is more robust towards
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Table 6.6: Results of the experiments performed on the WHAM dataset with automated
Cgen = 0dB and c¢gp = —10dB parameter settings. In first column there are different
Wsim parameter settings. Other columns represent results from the evaluation on the tested
part of the WSJ0-2mix or WHAM dataset. The columns with original annotation contain
evaluation results of the raw pretrained separator model on the WSJ0-2mix dataset. The
columns with the augmented annotation contain the evaluation results of the best separator
model chosen from the GAN training.

WSJ0-2mix | WSJ0-2mix WHAM WHAM
Wsim original robust original robust

SI-SNR [dB] | SI-SNR [dB] | SI-SNR [dB] | SI-SNR [dB]
0.1 9.04 8.192 6.09 5.76
0.2 9.04 8.08 6.09 5.44
0.3 9.04 7.77 6.09 5.29
0.4 9.04 7.90 6.09 4.68
0.5 9.04 8.11 6.09 5.42
0.6 9.04 7.96 6.09 5.22
0.7 9.04 8.23 6.09 5.22
0.8 9.04 8.29 6.09 5.42
0.9 9.04 7.69 6.09 4.95
1.0 9.04 5.55 6.09 3.42

Table 6.7: Results of the experiments on WHAM dataset with automated cgen = 0.0dB
and cgep = —5.0dB parameter settings. In first column there are different wg;, parameter
settings. The second column represents values of the not robust separator pretrained on
WHAM dataset. The third column contains results of the robust separator. These results
shows the comparison between the not robust and robust separator which should prove the
concept of this GAN.

Augmented WSJO0-2mix | Augmented WSJ0-2mix
Weim original robust
SI-SNR [dB] SI-SNR [dB]
0.1 -9.30 -1.42
0.2 -7.06 -1.75
0.3 -6.43 0.78
0.4 -4.36 2.30
0.5 -3.96 3.46
0.6 -4.08 3.09
0.7 -3.44 3.91
0.8 -3.39 4.02
0.9 -3.33 4.01
1.0 -3.26 -2.82

the generated augmentations. This behaviour is evident on the both of tested datasets.
Nevertheless, the robust separator from the experiments performed on the WSJO0-2mix
dataset does not performs better on the WHAM dataset.

42



Chapter 7

Conclusion

In this work, the generative adversarial networks (GAN) model is used to make a robust
speech separation system. The used model is slightly different from the original one. The
discriminator is the neural network for speech separation pretrained on the base speech
separation task and also the similarity loss which is represented by the SI-SNR computed
between the original and generated augmented mixture.

The GAN model was tuned during the experiments. The model is very sensitive to
changes in parameters, but the right setting was found. Experiments show that the concept
works and makes the system more robust. The evaluation was set to compare the original
pretrained and the robust system results achieved on the testing part of the dataset aug-
mented by random generators from the training. For the model trained on the WSJ0-2mix
dataset, there is an improvement around 3dB SI-SNR and for the model trained on the
WHAM dataset, there is an improvement around 4 dB and more. Nevertheless, there is
no improvement in the WHAM dataset for the model trained on the WSJ0-2mix dataset.
This is caused by the fact that the noises generated by the trained generators are not as
sophisticated as the noises added by the WHAM dataset. Nevertheless, the trained speech
separation system from the GAN model is still more robust than the original one. The ex-
periments also show that the parameter setting found for the WSJ0-2mix dataset is reusable
with only a few changes for the WHAM datasets.

During the experiment, two problems in the concept were found. The first is that
the generator and separator are join information about the trained augmentation during
the training. This is caused because the separator is trained on the original mixtures
and generated augmented mixtures by the last state of the generator network. To solve
this problem the generated augmented mixtures from the different previous states of the
generator should be also used during the separator training. The second problem is that the
generator is limited by the similarity loss function. The limitation is for example generating
a flipped signal, changes in tempo, etc. It is not possible to make these changes only for
mixtures, because the original single speaker signals will not match. Thus, the solution is
to generate augmented original single speaker signals instead of the mixtures.

These changes lead to the rework of the proposed concept to a less or greater extent.
The new experiments should be also provided to find the right setting and prove if these
suggested solutions work. This could be done in future work. Another dataset could be
also used to prove that the parameter settings are reusable for the different datasets with
only a few changes.
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Appendix A

Experiments using WHAM dataset

GAN/Batches:Generator batches GAN/Batches:Separator batches
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(a) Number of batches provided for genera- (b) Number of batches provided for separa-
tor training during the GAN model training. tor training during the GAN model training.

Figure A.1: These Figures show how many batches are provided to each part of the GAN
model during its training on WHAM dataset with parameter wgiy, = 0.7 and used automated
training switch with set parameters csnrgen = 0dB and csnrsep = —5 dB.
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Figure A.2: These Figures show the process of the GAN model training on the WHAM
dataset with parameter wgy, = 0.7 and used automated training switch with set parame-
ters csprgen = 0dB and cgnrsep = —5dB.. Firstly the training curve of the separator loss
computed during the generator training moves each epoch then similarity loss during the
generator training and the training curve of the computed separator loss function during
the separator training on the augmented mixtures.

(b) Spectrum of the augmented mixture.

(a) Spectrum of the original mixture.

Figure A.3: These Figures show the example of the generated augmented mixture during
the GAN model training on the WHAM dataset.
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Figure A.4: Results from finding the best separator model from trained GAN on the WHAM
dataset with parameter wgiy, = 0.7 and used automated training switch with set parameters
Csnrgen = 0dB and cenrsep = —5dB. The first chart shows the SI-SNR means of evaluated
separators. The other charts show the results on generated augmented mixtures of the
separator models from the each selected epoch.
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Figure A.5: Improvement between the robust separator and the original one tested on the
testing part augmented by the random generators from the GAN model training on WHAM
dataset with parameter wgiy, = 0.7 and used automated training switch with set parameters
Csnrgen = 0dB and cgnrsep = —5dB. The top Figure shows the mean achieved by each
separator. The bottom Figures shows how the each separator works on the augmentations
from the different generators.
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