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Abstract 
Speech separation is the task of separating single signals from the given mixture of multiple 
speakers. Neura l networks trained for speech separation usually work well on artificial data 
but they often fail on real-world examples. To improve their behavior on real-world mixtures 
it is possible to use t ra ining data augmentations such as noise addi t ion. Nevertheless, the 
power of these augmentations is l imi ted as they have to be manual ly designed. 

In this work, the modified version of the generative adversarial networks ( G A N ) model 
could improve this process by generating augmentations depending on the separation per­
formance on these data. Speech separation could be then made more robust w i th each 
generator and separator t raining step. This system was subjected to experimentation. 
Dur ing these experiments, the parameters have been tuned to find the best setting that 
w i l l successfully t ra in the G A N model without collapsing. Th is setting was found and the 
most robust model from the t ra ining was selected and evaluated. Results show that the 
separator model trained by the G A N model does not achieve any significant improvement 
from the original separator model pretrained on the W S J 0 - 2 m i x dataset during the testing 
on the W H A M dataset. Nevertheless, another evaluation shows that the separator model 
trained by the G A N model is significantly more robust than the original one towards the 
generated noises. 

Abstrakt 
Separace řečn íků se zabývá sepa rac í s ignálů j edno t l i vých řečn íků z d a n é směsi vícero řečn íků . 
Neuronové s í tě t r é n o v a n é pro separaci ř ečn íků fungují vě t š inou d o b ř e na u mě le smíchaných 
n a h r á v k á c h , ovšem př i použ i t í směsí z r eá lného svě ta čas to selhávají . P ro zlepšení to­
hoto chování , je m o ž n é použ í t augmentaci t rénovac ích dat, jako je n a p ř í k l a d p ř i d á n í š u m u . 
N icméně tyto augmentace jsou l imi továny t í m , že mus í bý t r u č n ě navrhnuty. 

V t é t o p rác i je p o u ž i t a modif ikovaná verze modelu gene ra t ivn ích adversa r i a ln ích sítí 
( G A N ) , k t e r á m ů ž e zlepšit tuto vlastnost tak, že generuje augmentace na zák l adě m í r y 
z m a t e n í s e p a r a č n í h o sy s t ému . P o k a ž d é m kroku t r énován í g e n e r á t o r u a s e p a r á t o r u se 
s y s t é m separace řečn íků s t ává více r o b u s t n í . Takto n a v r h n u t ý model b y l podroben ex­
p e r i m e n t ů m . B ě h e m t ěch to e x p e r i m e n t ů byly r ů z n ě n a s t a v o v á n y parametry G A N modelu, 
aby se nalezlo jejich nejlepší na s t aven í , k t e r é by vedlo ke s p r á v n é m u n a t r é n o v á n í modelu, 
bez zkolabování do ž á d n é h o m ó d u . B ě h e m e x p e r i m e n t ů bylo t akové n a s t a v e n í nalezeno. 
Z takto n a t r é n o v a n é h o modelu by l v y b r á n nejvíce r o b u s t n í separator a ten p o t é vyhodno­
cen. Výs ledky h o d n o c e n í n e u k á z a l y z lepšení funkčnost i z r o b u s t n ě n é h o s e p a r a č n í h o s y s t é m u 
vůči s a m é m u n e z r o b u s t n ě n é m u s y s t é m u p ř e d t r é n o v a n é m u na W S J 0 - 2 m i x datasetu, b ě h e m 
te s tován í na datasetu W H A M . N i c m é n ě výs ledky j i ného h o d n o c e n í e x p e r i m e n t ů ukázaly , 
že separator v y b r á n z t r énován í G A N modelu je značně z r o b u s t n ě n oproti p ů v o d n í m u . 
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Rozšířený abstrakt 
Separace řečn íků se zabývá sepa rac í s igná lů j edno t l i vých ř ečn íků ze směsí obsahuj íc ích 

více hovořících řečn íků . Takové to s y s t é m y se mohou použ í t n a p ř í k l a d pro zlepšení výs ledků 
s y s t é m ů pro r o z p o z n á v á n í řeči, k t e r é čas to selhávají na n a h r á v k á c h obsahuj íc ích překrývaj íc í 
se p romluvy vícero řečníků . 

V dnešn í d o b ě se pro s y s t é m y separace řečn íků používa j í neu ronové s í tě . P r o jejich 
t r é n i n k jsou t ř e b a směsice více řečníků , u k t e rých z n á m e i s ignály j edno t l i vých řečníků . 
U směsi poř ízené n a h r á n í m z r eá lného svě ta je t ěžké zjistit s ignály j e d n o t l i v ý c h řečníků . 
P o k u d by to bylo j e d n o d u š e možné , s y s t é m y separace řečn íků by p o s t r á d a l i svůj smysl. 
Proto jsou použ ívány n a h r á v k y u mě le smíchané ze s ignálů j edno t l i vých řečn íků . S y s t é m y 
t r é n o v a n é na t ěch to směsích fungují d o b ř e na dalš ích u mě le smíchaných směsích, ovšem 
čas to selhávají na n a h r á v k á c h z r eá lného svě ta . To je d á n o t í m , že u mě lé směsi neobsahuj í 
šumy, ozvěny a dalš í vlastnosti r eá lného p ros t ř ed í . 

P ro z lepšení výs ledků s y s t é m ů separace řečn íků na směsích z r eá lného svě ta je m o ž n é 
p ř i d a t do t rénovac ích dat r ů z n é vlastnosti reá lných p ros t ř ed í , tedy provés t augmentaci dat. 
Sytémy, k t e r é jsou t r é n o v á n y na augment ováných datech jsou robus tně j š í a dosahuj í lepších 
výs ledků na datech z r eá lného svě ta . Existuje mnoho klas ických prakt ik pro a u g m e n t o v á n í 
řečových s ignálů , jako jsou inverze s ignálu , p ř i d á n í š u m u , p ř i d á n í ozvěn, z m ě n a tónu , z m ě n a 
tempa, atd. Klas ické prak t iky augmentace dat m u s í bý t m a n u á l n ě navrhnuty a z tohoto 
hlediska jsou n e v ý h o d n é . 

Tato p r á c e se zabývá p o u ž i t í m modif ikovaného modelu gene ra t ivn ích adversa r i á ln ích 
sítí ( G A N ) pro augmentaci dat. V ý h o d a G A N modelu je ve schopnosti generování nových 
augmentaci, k t e r é z a t í m nemusely bý t m a n u á l n ě navrhnuty. M o d e l p o u ž i t ý v t é t o p rác i se 
od p ů v o d n í h o liší d i s k r i m i n á t o r e m . V p ů v o d n í m modelu je d i s k r i m i n á t o r e m neu ronová síť, 
k t e r á udává , zda jsou gene rovaná data r e á l n á nebo falešná. D i s k r i m i n á t o r p o u ž i t é h o G A N 
modelu se sk l ádá ze dvou čás t í : s y s t é m u separace řečn íků a funkce podobnosti . G e n e r á t o r 
se př i t r é n i n k u snaž í vygenerovat t akové a u g m e n t o v a n é směsi , k t e r é co nejvíce zmatou 
s e p a r á t o r a budou co nejvíce p o d o b n é p ů v o d n í směsi . 

Exper imenty s n a v r h n u t ý m G A N modelem používaj í p ř e d t r é n o v a n ý s y s t é m separace 
řečeníků na p ů v o d n í c h datech a g e n e r á t o r p ř e d t r é n o v a n ý na úloze v l a s tn í identity. E x ­
perimenty používa j í dataset W S J 0 - 2 m i x nebo jeho augmentovanou verzi W H A M . B ě h e m 
e x p e r i m e n t ů bylo ne jdř íve nalezeno s p r á v n é n a s t a v e n í všech p a r a m e t r ů . Nastavi t parame­
t ry G A N modelu nen í lehké, model je velice náchy lný na jakékol iv z m ě n y a rychle kolabuje 
do jednoho z m ó d ů š p a t n é h o t r énován í , jako je n a p ř í k l a d příl iš silný g e n e r á t o r nebo sep­
a r á t o r . Z e x p e r i m e n t ů bylo z j iš těno, že parametry, k t e r é m a n u á l n ě p řep ína j í t r é n i n k jsou 
prakt icky n e n a s t a v i t e l n é a m í s t o nich je t ř e b a použ í t p a r a m e t r ů d y n a m i c k é h o p ř ep ínán í . 
U tohoto druhu p ř e p í n á n í parametry určuj í cíl, k t e r ý m u s í j edno t l ivé čás t i b ě h e m svého 
t r énován í d o s á h n o u t , nežli je t r é n i n k p ř e p n u t . Nakonec bylo s p r á v n é nas t aven í , p ř i k t e r é m 
G A N model nekolaboval do ž á d n é h o z m ó d ů š p a t n é h o t r énován í , nalezeno. 

Z takto n a t r é n o v a n á h o G A N modelu je v y b r á n ne j robus tně j š í s e p a r á t o r a ten p o t é eval-
uován . Evaluace p rokáza l a , že z r o b u s t n ě n ý s e p a r á t o r , k t e r ý b y l p ř e d t r é n o v á n na datasetu 
W S J 0 - 2 m i x neprokazuje z lepšení př i evaluaci na tes tovac í s adě datasetu W H A M . N a druhou 
stranu z r o b u s t n ě n ý s e p a r á t o r je z výs ledků evaluace v id i te lně robus tně j š í vůč i gene rovaným 
a u g m e n t o v a n ý m směs ím než-li p ů v o d n í p ř e d t r é n o v a n ý s e p a r á t o r . Toto chování je d a n é t í m , 
že g e n e r á t o r nen í schopný generovat tak sofistikované š u m y jako ty, k t e r é jsou obsaženy v 
r á m c i datasetu W H A M . S e p a r á t o r z r o b u s t n ě n ý G A N modelem n a v r h n u t ý m v t é t o p rác i 
n e z r o b u s t n í s y s t é m vůči v š e m š u m ů m , ovšem m ů ž e v ý z n a m n ě pomoci jako dalš í s y s t é m pro 
augmentaci dat př i z r o b u s t ň o v á n í s y s t é m u separace řečníků . 
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Chapter 1 

Introduction 

Speech separation is the task of separating the signals from the given mixed signal. One of 
the possible usage of these systems is pre-processing for speech recognition systems which 
often fail on more overlapped speech. In these cases, the speech separation system could 
improve the result of the recognition system by separating ind iv idua l signals from the mixed 
speech. The speech separation systems are nowadays based on neural networks. To t ra in 
such a neural network it is necessary to have a mixed signal w i th well-known original source 
signals. For real-world mixtures, single-speaker signals are usually unavailable, and thus it 
is necessary to use art if icial mixtures. Th is leads to a problem wi th bad performance of 
speech separation systems on the real-world mixtures. Th is creates the need to make the 
speech separation systems more robust towards the real-world mixtures. 

This is caused by the absence of the different noises, echoes and other features of real 
environments in the art if icial mixtures. To improve the behavior of the speech separation 
systems i n these situations it is possible to do data augmentation. Us ing the data augmen­
tations could add these real-world features into the mixtures on which the system is trained 
on. There are several well-known methods how to do the data augmentation for the speech 
signal, such as the signal inversion, noise addit ion, etc. The disadvantage of these methods 
is that they do not cover a l l possible augmentations and each new augmentation needs to 
be manual ly designed. 

Nevertheless, the generative adversarial networks [8] concept could be used also for 
the data augmentation as this concept was originally proposed for the data generation. 
Generative adversarial networks could be used to perform data augmentations for speech 
separation systems automatically. Thei r advantage is that they can generate augmentations 
depending on the response of the speech separation system. 

In this work, a modified version of the generative adversarial networks is used. It consists 
of the generator network generating the augmentations, the separator network that should 
be trained to be more robust, and the s imilar i ty loss function that constraints the generator 
network. The separator network and the s imilar i ty loss function represent the discriminator 
role. For both networks, the ConvTasNet [18] architecture (with different parameters) has 
been used. The a im of this system is to generate some new augmentations on the given 
mixtures that have never been seen before and force the speech separation system to adapt 
to them. 

In Chapter 2 the speech separation is described in detail together w i th the t ra ining of 
the neural networks. Chapter 3 describes the generative adversarial networks model, its 
t ra ining and problems occurring during the t raining. The usage of the generative adversarial 
networks for data augmentation is also explained there. Chapter 4 outlines how to make the 
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speech separation system more robust, i.e. the classic methods for data augmentation, and 
the modified version of the generative adversarial networks. Chapter 5 describes how the 
model is implemented i n more detail . The last Chapter 6 shows the experiments proving 
the concept of the presented generative adversarial networks model to make the robust 
speech separation system. 
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Chapter 2 

Speech separation using neural 
networks 

The sound is represented by a vector of samples called signal. It is possible to hear multiple 
sounds in one moment. Such mixture can be modelled as: 

N 

yt = ^2st,n (2.1) 
n=l 

where yt is the mixture to be separated, st,n is the speech signal of a single speaker or noise, 
t is the t ime index, n is the source index, and iV is the number of sources. The main task 
in speech separation is to reconstruct signals st,n from the mixture yt w i t h no information 
about the signals st,n-

The speech separation task could be also explained as a Cock t a i l party problem. Imagine 
a cocktai l party where a lot of people talk over each other. The listener present at the party 
is t ry ing to focus on one specific speech. The human ear and brain are well adapted to solve 
this task, but for computer systems, it is very difficult. In the past, there were attempts to 
solve this task wi th classic methods such as pr incipal component analysis [1] or independent 
component analysis [25]. These classic methods usually work well when the task is greatly 
simplified, but they fail when silent blocks, echoes, and delays are present. 

2.1 Using neural networks 

Nowadays neural networks are used for speech separation tasks. These methods usually 
work either w i th the signal i n t ime-domain or its short t ime Fourier transform. The most 
common neural network architectures used for speech separation are convolutional neural 
networks in combinat ion wi th recurrent blocks as for example long short term memory 
blocks ( L S T M ) [13], which work quite well . 

Convolut ional neural networks contain specific type of layers called convolutional layers. 
These layers are composed of convolutional filters w i th trainable parameters. Fi l ters in 
convolutional layer are used to extract useful information from the given signal. For example 
the convolutional layer could be trained to perform pseudo short Fourier transform of the 
signal. 

Recurrent neural networks contain loops that allow information to be stored wi th in the 
network. Due to this property recurrent neural networks have the possibil i ty to use context. 

5 



In other words, they are able to predict next step using the previous information. Recurrent 
neural networks are divided to two groups: 

• short recurrent neural networks that contain only simple loops. They have possibil i ty 
to store only l i t t le amount of information and use only a short context given by the 
stored information, 

• long te rm recurrent neural networks that contain blocks that are able to store more 
information. This leads to the possibil i ty of using longer context. They are two basic 
blocks commonly used: Ga ted Recurrent Uni t s ( G R U ) and L o n g short t ime memory 
blocks ( L S T M ) . The difference between them is that G R U contains two gates and 
L S T M contains four of them. Gates are used to determine which information the 
network should remember or forget. 

Considering that the context information in speech processing is very important , using 
L S T M blocks i n neural networks for speech separation could improve its performance. 

2.2 ConvTasNet 

In this work, the ConvTasNet [18] neural network architecture is used. This architecture is 
mostly used for speech separation. It consists from three parts as it is shown in Figure 2.1: 

1. Encoder. 

2. Separator. 

3. Decoder. 

Encoder Separator Decoder 

Input 
mixture 

1-D 
Conv 

X 
1-D 

Conv 
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Conv 
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Conv 

LayerNorm 
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l x l 
Conv 

Sigmoid 

Separated 
sources 

1-D 
Conv 

X 
Mixture 

Figure 2.1: ConvTasNet neural network architecture. 



Encoder is the first block of the ConvTasNet . It gets raw speech signal on input . This 
block consist of the convolutional block trained to produces representation that resembles 
mentioned S T F T . We w i l l denote this representation as pseudo-STFT. 

The second part ensures the separation. It consists of a series of consecutive convolu­
t ional blocks that are placed i n series. Each of them stands for a filter that is applied on 
longer and longer parts of the context from both sides. The number of these convolutional 
blocks in each series determines how much context w i l l be taken into account. The sepa­
rat ion part takes a p seudo-STFT as an input . Series of convolutional blocks then provides 
feature extraction and generation of the separation masks. Separation masks are two d i ­
mensional matrices of the same shape as the input pseudo S T F T . E a c h mask contains values 
between the zero and one. The value represents the probabi l i ty that the current frequency 
block belongs to the speaker separated by the current mask. Separation is then performed 
by element wise mul t ip l ica t ion of each mask and the input mixture pseudo S T F T given by 
the encoder. These mult ipl icat ions produce N separated outputs one for each speaker. 

F ina l ly it is necessary to rebui ld t ime-domain signal again from the pseudo S T F T rep­
resentation. This is provided by the last part of the ConvTasNet architecture, the decoder. 
This part consists of the convolutional block s imilar ly to the encoder part. This block is 
trained to reverse the pseudo-STFT. Decoder takes separated pseudo S T F T s one by one 
and generates separated t ime-domain signals from them. 

2.3 Training of neural networks for speech separation 

Training the neural network for speech separation is performed on mixtures where the 
original single speaker signals are known. This k ind of t ra ining is called supervised learning. 
It is hard to obtain such data from the real-world mixtures. So it is necessary to use artificial 
ones. Tra in ing the system only on artif icial mixtures often leads to bad performance i n real-
world usage. This issue w i l l be addressed in more detai l i n Chapter 4. 

The t ra ining consists of several steps that are shown in Figure 2.2. Firs t ly , the neural 
network estimates the iV separated signals from the given mixture to the iV outputs, where 
iV is the fixed number of speakers. It is necessary to know how many speakers have to be 
separated before the training. Then the loss function is computed between the estimated 
signals and the targets. The computed loss value is used for the training. 

The loss function used for the t ra ining is scale-invariant signal-to-noise-ratio (SI-SNR) 
function [4], which is defined as: 

._ (IlM to o) 
•'target •— n-.n2 K^'^J 

\\s\\ 
Cnoise •— S "̂ target (^-3) 

II" II2 

SI -SNR(s , J) := 10 l o g 1 0 " ^ a r g e t l ' (2.4) 
uoise 

where s £ M l x T is the estimated source. s £ M l x T is the original source signal used as the 
target. The | |s | | 2 = (s,s) denotes the signal power, where (s,s) denotes the dot product 
between estimated and original source. The function is scale-invariant because the scale 
of the estimated signal does not influence the result. The neural network is trained to 
maximize this function. 
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Figure 2.2: Basic t ra ining of the speech separator using neural networks. 

£ P I T ( 5 , 5 ) 

Figure 2.3: Example of P I T method used on the mixtures that consist of the speakers. 

W h e n evaluating the output of the speech separation neural network, several estimates 
need to be compared to several reference signals i n a l l permutations. Th is is due to the 
fact that neural network does not know which estimated output signal belongs to which 
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reference signal. In the other words signal of the speaker A could be estimated arbi trary 
to the first or second output. Th is gives rise to a permutat ion problem. 

The solution is the permutat ion invariant t ra ining (P IT) method [31] shown i n Figure 
2.3. Th is method computes the loss function between a l l permutations of original and 
estimated signals. The best-computed value corresponds to the right permutat ion of the 
estimated outputs and this value is also used for the t ra ining of the neural network. This 
method is defined as: 

si,s2, ••• ,sN = S(y) (2.5) 
N 

lPIT(S, S) = mmJ2 - S I - S N R ( s C T . ., Itj) (2.6) 
i = i 

where S(y) is separator function, that estimates separated signal as outputs from the given 
mixture y. These signals are represented by vectors si, s2, • • • , SN- The IPIT(S, S) function 
takes two parameters: S, which is mat r ix of vectors of target signals and mat r ix S, which 
consists of vectors of estimated separated signals. Variable iV represents the number of 
single speakers present i n the mixture. Permuta t ion CTJJ is the index of j - t h target signal 
in the i - th permutat ion of target vectors given by the matr ix S. A l l computed S I - S N R 
loss values are compared. The best (minimum) of them marks the best permutat ion of 
references. Th is value is used for the t ra ining of the speech separation neural network. 
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Chapter 3 

Generative adversarial networks 

A generative adversarial networks ( G A N ) [8] is a model which is used for data generation. 
The G A N model is able to generate new data which have never been seen before. Never­
theless the generated data are from the same domain as the dataset the G A N is trained 
on. There are a lot of ways how the G A N could be used. For example data reconstruction, 
where the G A N generates missing parts of the data [23]. It is also possible to use it for 
grayscale images colorizing [26], art if icial face generation [5], face aging [3], text transla­
t ion [10], etc. A n d finally, there is an option to use the G A N for data augmentation, which 
is what we used it for i n this work. 

Figure 3.1: Archi tecture of the base concept of the generative adversarial networks model. 

3.1 Training generative adversarial networks 

The base G A N model architecture is shown i n Figure 3.1, it consists of two parts: the 
generator and the discriminator. The first part is the generator which is the neural network 
that is trained to generates a new data, called fake data. The generator neural network 
architecture depends on the type of data that w i l l be generated. In general, the generator 
is defined as follows: 

9 = Q{z) (3.1) 
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where z is random vector generated from some random distr ibut ion, for example normal 
dis tr ibut ion. The Q{z) is the generator function which takes the random vector z as an 
input and generates the fake data as an output. These generated data are represented by 
the vector g. 

The second part of the G A N model is the discriminator, which is also a neural network. 
This network is used to te l l whether the given data is fake or real. Formal ly the discriminator 
is defined as follows: 

preai{x,V)=V{x) (3.2) 

where x is vector of real or fake data. The T>(x) is the discriminator function that takes 
the x as an input and estimates the probabil i ty of the given data x is real, which is defined 
by Preal (%, T^) • Conversely, the probabil i ty that the data is fake is represented as: 

Pfake(x,V) = 1 -Preal(x,T>). (3.3) 

To t ra in the G A N model the loss function is also needed. The discriminator output is 
used as the input for this loss function, which computes loss values for both networks. It is 
defined as follows: 

C(G,V) = E^m[log(preai(x,V))} + E^p{g)[log(pfake(g(z),V))} (3.4) 

where Q is generator function, T> is discriminator function. The p(x) is the real data 
dis tr ibut ion. The generator generates fake data from random inputs z that are given by 
the dis t r ibut ion p(z). Then Eg^prg\ is expected value over a l l given real data and in contrary 
Ez~P(z) is the expected value over a l l given fake data. 

These two networks then play the min-max game. This game provides the G A N model 
t raining, which consists of two steps: 

1. Discr iminator neural network training. 

2. Generator neural network training. 

The first step can be seen i n Figure 3.2. In this step, the generator neural network 
weights are locked. This is shown by the gray color of the generator box i n the figure. The 
generated data g = G(z) and the real data x are used as the input for discriminator neural 
network. 

Discr iminator is trained to maximize this loss function, this is defined as: 

V* = max (3.5) 

O n the other hand i n the second step presented by Figure 3.3, the discriminator neural 
network's weights are locked. In this step, the generator neural network is t rained to deceive 
the discriminator by generating such similar fake data to real ones that the discriminator 
w i l l not recognize them as fake. In other words, generator is trained to minimize loss 
function, which is defined as: 

Q* = m i n (3.6) 

Unl ike discriminator t raining, only generated data is used i n generator t raining. These 
two steps are repeated and both networks are getting better and better i n their tasks. 
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Figure 3.2: The first step of t ra ining the architecture of the generative adversarial networks. 
The generative neural network is locked. The discriminator network is t rained on generated 
(fake) and real data. 
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Figure 3.3: Archi tecture of generative adversarial networks t ra ining in the second step, 
where discriminator neural network is locked and generator is trained to deceive the dis­
criminator. 

3.2 Training problems of generative adversarial networks 

There are several problems i n t ra ining of the generative adversarial networks [14]: 

1. Mode collapse. 

2. N o n convergence. 

3. Diminished gradients. 

3.2.1 M o d e collapse 

Number of data classes i n the dataset can be represented as modes. The generator is then 
trained to generate the data from these different modes. In the mode collapse t raining 
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problem, the generator is unable to generate data from a l l of these modes. Instead it only 
generates data from a few of them. 

For example, i n case of the generator that is t rained to generate single-digit numbers, 
the modes that data could be generated from are numbers from zero to nine. W h e n the 
G A N model fall i n the mode collapse problem during the training, then the model is only 
able to generate, for example, the numbers two and five. 

The reason why this problem occurs is described in following text. The generator is 
trained to generate such data that w i l l confuse the discriminator as much as possible. If 
the discriminator weights w i l l be locked dur ing t ra ining and only the generator w i l l be 
trained, it w i l l i n some point converge to the state, where it w i l l generate the high quali ty 
data that strongly confuses the discriminator. Nevertheless this data w i l l be generated 
independently on the given random vector z, which is defined in Section 3.1. The generator 
w i l l collapse here to the single point which gives the highest quali ty data. 

Now if the discriminator weights w i l l be unlocked and it w i l l start to t ra in again, it w i l l 
only get the data generated from the single mode. Therefore, the discriminator w i l l detect 
as true or fake the generated data only in the single mode. The reason is that the generator 
makes the vector z irrelevant. 

The described case is the extreme one, but it may occur when the generator gets too 
much space during the t ra ining and is much stronger then the discriminator. 

3.2.2 N o n convergence 

The generator and separator parts of the G A N model are playing the min-max game during 
the training. In this game the first player is t ry ing to maximize its actions and conversely the 
second player is t ry ing to minimize them. The point where the one player w i l l not change 
its action regardless of what the opponent may do is called Nash equi l ibr ium. Accord ing to 
game theory, G A N should converge to this point. Nevertheless, it is very difficult to find a 
such parameter values that w i l l make the G A N model converge during the training. Th is 
is caused by the fact that the adjustable parameters of the G A N model are very sensitive 
to any changes. 

3.2.3 D i m i n i s h e d gradients 

This problem occurs when the discriminator is much stronger then the generator. Then the 
discriminator get to the state where the gradients for the generator t ra ining are vanished. 
In other words, the generator is unable to confuse the discriminator and due to the high 
quali ty of the discriminator, it is unable to learn anything. 

The loss function mentioned i n the first article [9] that introduced the G A N model 
encountered the problem of vanishing gradients. Th is means that the gradients are too 
small that the neural network is unable to learn anything from them. There is also second 
loss function mentioned in the article, which could solve the vanishing gradiens problem. 
Nevertheless, it encounters problem of fluctuating gradients, which causes the G A N model 
instability. There were many attempts to create loss function which solves these two prob­
lems such as L S G A N [19], W G A N [2], W G A N - G P [11], B E G A N [6], etc. Nevertheless, 
none of them solve these problems as it is described in the paper „Are G A N s Created 
Equal?" [17]. 
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3.3 Generative adversarial networks for data augmentation 

Generative adversarial networks ( G A N ) could be also used for data augmentation. For 
example in the article „Low-Shot Learning from Imaginary Da ta" [27], G A N is used as a 
hallucinator. The hallucinator works as follows: W h e n some person looks at image, the 
person w i l l also imagine another similar images. For example, i f the image is a dog then 
the person imagine another dogs or the same dog i n a lot of different positions. If the 
computer could do this imaginat ion then it could learn better from fewer data. In this 
article, G A N model takes image as the real data input x and noise as the fake data input 
z. Then it provides estimation (hallucination) of similar data, for example, the mentioned 
dog in different positions. Generated hallucinations are then classified wi th discriminator 
classification neural network. Outputs of classification are used to compute loss function 
and t ra in the generator (hallucinator). 

In the another article „GAN-based , Synthetic Med ica l Image Augmenta t ion for in ­
creased C N N Performance i n L iver Lesion Classification" [7] G A N model is used to gener­
ate synthetic lesions on livers. In this article two G A N architectures are used D C G A N [24] 
and A C G A N [21]. The difference between these two architectures is that A C G A N trains 
generators to generate samples from given class instead of random ones. Th is is achieved 
by getting the second output from the discriminator part. The second output estimates the 
most probable class of the given data. This information is then used w i t h value of the real 
fake loss function to t ra in the generator. In medicine it is hard to obtain large datasets, 
this is due to the fact that data are sensitive and they contain private information about 
the patients. Another fact is that some data are expensive to obtain. Therefore, using a 
G A N in the way to extend the dataset is very useful here. Classifier trained on the original 
dataset has resulted in a sensitivity value of 78.6% and specificity value of 88.4%. W i t h 
the classifier t rained on the dataset extended by the presented G A N model, there is an 
improvement in both values to the sensitivity of 85.7% and specificity of 92.4%. 

There are a many more examples of the G A N model usage. Nevertheless, the mentioned 
usages show that it is possible to use the G A N model for the data augmentation and these 
augmentations could significantly improve the results of the original models. 
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Chapter 4 

Robust speech separation 

A s it is mentioned i n Section 2.3 neural networks used for speech separation are trained on 
the mixtures w i t h known single speaker signals. These mixtures are hard to obtain from 
the real world. If the single speaker signals could be easily obtained from the real-world 
mixture then the speech separation task w i l l be solved and the speech separation system w i l l 
be useless. Thus, mixtures used for the speech separation system tra ining are artificially 
mixed from the recorded speaker signals. However, the speech separation systems trained 
on art if icial mixtures achieve good results on these mixtures, they often fail on real-world 
mixtures. The reason of the bad results on real-world mixtures is due to the fact that 
real-world mixtures contain echoes and noises given by the environment where the mixture 
was recorded. 

4.1 Data augmentation 

To improve the speech separation system behaviour on the real-world mixtures it is possible 
to make the speech separation system more robust. The main idea of making a robust 
system is to add some other input mixtures, that extend the variance of the t ra ining and 
validat ion data. The separation system trained on this extended dataset could better 
manage the real-world mixtures. T h e mixtures that extend the dataset are created from 
the original mixtures by the method called data augmentation. 

4.2 Classic practices 

There are many classic practices to augment the data and extend the original dataset. It 
is possible to split these practices into two categories: 

1. Practices that add noises and echoes to signal. 

2. Practices that work wi th signal itself. 

In this section, some practices from each category w i l l be described. 

4.2.1 No i se a d d i t i o n 

Examples of noises that could be used for data augmentation are Gaussian noise, Color 
noise, W h i t e noise, etc. It is also possible to record noises from real-world places such as 
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Figure 4.1: Base idea of robust speech separation 

streets, rooms, airports, and many others. A l l of these noises are mixed wi th the original 
mixture using weighted sum, which is defined as: 

( a u§) i / A 1 ^ 
y\ b' = wsyt + wnnt (4.1) 

where y ^ ^ is augmented mixture, yt is original mixture, nt is selected noise for augmen­
ta t ion and ws and wn are mixtures and noise ratios, that determines mix ing ratio of the 
original mixture and selected noise. 

4.2.2 E c h o e s 

Echoes, also called sound reverberation [30] are sound reflections caused by objects placed 
the real world spaces. These objects could be for example walls, hills, furniture, etc. For 
human ear reverberation wi th delay between 1.5s to 2.5s is s t i l l clearly understandable. 
The reverberation wi th these delays could be heard i n concert halls and it is possible to 
simulate it by the ha l l reverberation algori thm [20]. Mixtures w i th simulated reverberation 
could be used to make speech separation systems more robust toward environments that 
give these echoes. 

4.2.3 F r e q u e n c y filters 

A l l the following techniques described in this section are from the second category. The 
first of them is the technique that uses frequency filters. These filters are applied to the 
signals and cause changes i n the signal's frequency spectrum. Four well-known types of 
filters: 

a) L o w pass filter, which allows passing only signal frequencies lower than some selected 
threshold. 

b) H i g h pass filter, which allows only these signals frequencies that are higher than the 
selected threshold. 
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c) B a n d pass filter, which combines two previous filters. Th is filter allows passing signal's 
frequencies that are inside some selected frequencies range, called bandwidth. 

d) B a n d stop filter, which works opposite to band pass filter. Th i s filter allows passing 
signal frequencies that are not inside some selected bandwidth. 

Us ing frequency filters for data augmentation could make the speech separation systems 
more robust towards different microphones that are used for data recording. Not a l l micro­
phones are sensitive to the same range of frequencies. 

4.2.4 G a i n 

G a i n is an augmentation practice that works wi th increasing or decreasing signal volume. 
Changes in gain of the signal are done by mul t ip ly ing or d iv id ing the signal ampli tude by 
a random ampli tude factor. Higher values of the signal ampli tude mean a higher volume 
of the signal and conversely lower amplitudes mean lower volume. So it is obvious that 
moving wi th signal's gain should make the model more robust towards different volumes of 
recorded signals. 

4.2.5 P i t c h 

Furthermore, it is also possible to shift the p i tch of the signal. Shifting the pi tch is in 
other words shifting of tone. If the pi tch is raised, then signal sounds i n higher tones, and 
conversely when the pi tch is reduced, the signal sounds i n lower (bass) tones. Considering 
that different people speak in different tone, the pi tch shift augmentation could make speech 
separation system robust towards the people voices that are not presented i n the current 
dataset. 

4.2.6 T e m p o 

Another data augmentation can be provided by working wi th the signal's tempo. Tempo 
could be sped up or slowed down. W h e n the tempo is s imply sped up, then the signal's 
pi tch is also getting higher. Conversely, w i th the tempo slowing down, the pi tch is going 
lower. It is possible to use the simple tempo augmentation wi th this behavior but it is not 
always wanted. So to change the tempo but make the signal to sound i n the same tones, it 
is necessary to use pi tch shifting together w i th tempo changes. 

4.2.7 P o l a r i t y invers ion 

The polari ty inversion augmentation is provided by mul t ip ly ing the signal by -1 , so i n other 
words to flip it upside down. This change is not distinguishable from the original signal by 
human ears but it can be a problem for the neural networks where this change may make 
a big difference i n their behavior. So this augmentation can help to make neural networks 
more robust towards to that simple change. 

4.2.8 A u d i o shift 

The audio shift augmentation is used to shift the audio signal forwards or backwards on 
t ime axis. Th is technique could be provided w i t h rollover or not. W h e n the rollover is 
applied, then the signal is moved as the cyclic buffer. Th is could raise some problems in 
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neural networks, which use context information. If the rollover is not applied then the 
overflowed parts of the signal are lost and zeros are pad i n front or back of the signal. 

4.2.9 C h a n n e l s shuffling 

In multi-channel signal, it is possible to shuffle channels. For example, i n a stereo signal, 
it is possible to switch the left and right channels. Channel shuffling could help machine 
learning models to combat different posi t ional biases. 

4.2.10 V o c a l t ract l ength 

The speaker signal frequency values also depend on the length and shape of the speaker 
vocal tract. E a c h speaker has different vocal tract which produces different vocal tract 
features. It is possible to work w i t h the vocal tract feature i n two ways. 

The first way is to get r id of this information by using the vocal tract length normal­
izat ion method ( V T L N ) [15]. This method works by the warping the frequency axis i n the 
filter bank analysis, which is warped by the normalizat ion scale factor a. This factor is 
derivated from an estimate of the length of the speaker's vocal tract. Thus, the vocal of 
the each speaker w i th different vocal tract length ( V T L ) is scaled to the „ s t a n d a r d " vocal 
tract. 

O n the other hand, the second way is to use this information and to extend the dataset. 
The data added to the dataset should increase the variance of V T L . The method that 
could generate data w i th different V T L features is called vocal tract length perturba­
t ion ( V T L P ) [16]. This method use the same warping method as the V T L N method men­
tioned above, but it used various scale factors a. E a c h of that factors simulates different 
V T L and generates data which w i l l be added to the dataset and increase the dataset V T L 
variance. 

4.3 Using generative adversarial networks 

In this work the Generative adversarial networks ( G A N ) are used for data augmentation 
on adversarial mixtures. The generator here takes the adversarial mixture as an input, 
generates augmentation and put the augmented mixture as an output. The generator is 
defined as: 

y ( a u g ) = Q(y) ( 4 . 2 ) 

where Q{y) is the generator function that takes the original mixture y as an input and 
generates augmented mixture y ( a u g ) as an output. 

Instead of the common G A N architecture, where the discriminator consists of the second 
neural network and one loss function, i n this architecture, the discriminator consists of two 
parts as can be seen i n Figure 4.2. The first part uses the speech separation neural network 
and the S I - S N R loss function, which is computed between original targets and separated 
signals from the augmented mixture. It is defined as: 

S = Cs1,h,--- ,"sN) = S ( y ^ ) ( 4 . 3 ) 

P = - Z P I T ( S , S ) ( 4 . 4 ) 

18 



where 
y-(aug) i g 

the generated noisy mixture which is defined by Equa t ion 4 . 2 . The ma­
t r ix S consists of a l l separated signals from the augmented mixture by separator function 
S{y ( a u § ) ) . A n d finally p is loss value computed by £ P I T ( S , S ) defined by Equa t ion 2 . 6 . 

The second part represents the similar i ty between the original y and the augmented 
y ( a u §) mixture, otherwise the generator could generate any signal which does not even 
corresponds to the reference source. This s imilar i ty is computed by the S I - S N R function 
defined by Equa t ion 2 . 4 . The second part of the discriminator is defined as: 

s = - S I - S N R ( y ( a u g ) , j / ) ( 4 . 5 ) 
where S I - S N R ( y ^us\y) is defined by Equa t ion 2 . 4 . The y is the original mixture defined 
by Equa t ion 2 .1 and the y ( a u g- ) which is defined by Equa t ion 4 . 2 . 

The generator goal is to confuse the separator system as much as possible w i th the 
generated augmented mixtures that are as similar as possible to the original mixtures. In 
other words, the generator tries to minimize the values p and s. The loss value that is used 
for generator t ra ining is computed as the weighted sum of these two values p and s. It is 
defined as: 

I = WslmS + WsepP ( 4 . 6 ) 

where u)sim is weight of the similar i ty value s and wsep is the weight of the separator loss 
value p. 

Figure 4.2: Archi tecture of generative adversarial networks t ra ining used i n this work. This 
figure shows the step where the generator is trained. 

A s it was mentioned i n Section 3 . 3 , the generator and the discriminator play the min-
max game. Thus, the separator should be also trained. The t ra ining of the separator is very 
similar to the classic speech separation t ra ining described in Section 2 . 3 . The only change 
is that the generated augmented mixtures are also used dur ing the training. A s it is shown 
in Figure 4 . 3 they are added to the t ra ining by flipping the unfair coin. The percentage of 
the generated augmented mixtures is a hyperparameter that should be tuned. 

In each step of the training, the augmented mixture is used wi th probabil i ty c, while 
the original one wi th probabi l i ty 1 — c. The probabil i ty c is set as a hyperparameter. The 
augmented or original mixture is given to the separator as an input w i th the same ground 
t ru th single speaker signals. Th is should make the speech separation system be more robust 
towards the augmented mixtures generated by the generator neural network. 
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Figure 4.3: Archi tecture of generative adversarial networks t ra ining used i n this work. This 
figure shows the step where the discriminator is trained. 

4.3.1 P r o b l e m s w i t h the best m o d e l selection 

Training of such a system raises a new problem. W h i c h separator and which generator from 
which epoch should be chosen as the best one. If the chosen generator w i l l be the generator 
w i th the best-computed loss value on validat ion data during training, it is possible that 
the separator network was weak in this t ra ining epoch and the generator network gets a 
better result that does not correspond to its trained quality. In other words, w i th the poor 
separator, the poor generator could get better results than the quali ty generator w i t h the 
quali ty separator. 

A s mentioned, the problem wi th the best model choice also applies to the separator 
model. W i t h the poor generator which generates pract ical ly the same augmented mixtures 
as the original ones the separator model w i l l get nice results even when it is not the most 
robust one. 

In the case of this work, the generator model is not needed. The a i m is to make robust 
speech separator model , so only the best separator model should be selected. The solution 
is to use a l l generators from the t ra ining to generate the augmented mixtures. Then next 
step is to use different separators to separate signals from the augmented mixtures and 
choose the separator w i th the best overall score. The whole model selection pipeline is also 
shown in Figure 4.4. Generat ing of augmented mixtures is processed by generating the 
random number between the zero and the number of epochs. This number represents the 
used generator which w i l l be used to generate the augmented mixture. Th is is defined as: 

i ~U(0,E);i eN (4.7) 

4 ( a U S ) = W ) (4-8) 

where the i is the random integer generated from the uniform discrete dis t r ibut ion IA of 
integers between the zero and E. The E is the number of epochs for which the G A N model 
were trained on, it is also the number of a l l saved generators. The y*j is the j - t h original 
mixture from the val idat ion set. The Qi is the generator function of the i - th generator. 
Final ly , the is the j - t h generated augmented mixture be the i - th generator from the 
j - t h original mixture. 
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A l l the generated augmented mixtures w i l l be separated by the selected separator and 
the S I - S N R values w i l l be computed, using the P I T , between the separated outputs and 
the known targets. This is defined as: 

1 3 

fcbest = a r g m i n ( - ^ P I T ( S f c ( y > u s ) ) , T,))); k G (20, 30,40,. . . , E) (4.9) 
3 

where Tj is the matr ix of target signals for the j - t h mixture. The is the k-th separator 
function, where k is from the (20, 30, 4 0 , . . . , E) which is the vector of indexes of the val­
idated separators. The Ipn is the P I T loss function defined by Equa t ion 2.6 and fcbest is 
the index of the best separator. 
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Chapter 5 

Implementation 

The implementat ion of the presented generative adversarial networks ( G A N ) model is based 
on J ian Vu ' s P y T o r c h implementat ion of the ConvTasNet [29]. The P y T o r c h l ibrary [22] 
is P y t h o n based machine learning library, that contains neural network layers, optimizers, 
schedulers, and tensors that can work w i t h the C U D A platform. The used ConvTasNet 
module contains the ConvTasNet neural network implementation. 

5.1 M a i n process 

The system consists of the M o d e l , Dataloader, and Trainer class. F i r s t l y the mixtures and 
the corresponding reference single speaker signals are loaded by the Dataloader. Then the 
model is ini t ia l ized wi th randomly set weights. It is also possible to load the weights of the 
trained model and use them for further t raining. The M o d e l and the Dataloader are put 
into the Trainer class which can t ra in the model. 

To t ra in the model the run function of the Trainer class should be called as it is shown 
in Figure 5.1. Th is function loops over the set number of epochs and i n each epoch calls 
two functions: train and eval. The train function loops over the batches of t ra ining data 
provided by the given Dataloader. For each batch the compute_loss function is called 
that provides the forward pass and loss computat ion. Th is function returns a computed 
loss value, which is used by the backpropagation algori thm to t ra in the generator or the 
separator neural network. The eval function works s imilar ly as the train function, but the 
backpropagation a lgor i thm is not called. 

5.2 Switching of training 

Training of the G A N model includes the min-max game between the generator and sepa­
rator part. This is done by switching the t ra ining between these two parts as it is shown 
in Figure 5.2. In this work, the generator and separator t ra ining is switched several times 
during the epoch after at least one batch. The number of batches after which the t raining 
is switched is different for the generator and separator parts and is defined by the hyper-
parameter. There is also a possibil i ty to control the t ra ining switch according to results 
achieved by each part. In this case, the generator or the separator is t rained un t i l it achieves 
the results that satisfy the defined goal. 
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Figure 5 .1: Diagram of the main t ra ining cycle that is done inside the function run. 
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(gan_impact) 
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compute_similarity_loss() 
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Figure 5.2: Diagram of the loss computat ion during the generator and separator training. 

5.3 Loss computation 

The loss computat ion part of the Trainer is called depending on which part is currently 
trained. A s it is mentioned in Section 4.3 the generator loss function is composed of two 
parts, the separator and s imilar i ty loss functions. To compute these, the generator first 
generates an augmented mixture . Then , the separated signals are estimated by the sepa­
rator from the augmented mixture. The gan_impact is here set to 0, because the mixture 
is already generated. Then the separator loss function takes these signals as an input and 
compares them wi th the known targets. The second part of the generator loss function is 
computed as the S I - S N R between the original and generated augmented mixture . These 
two computed values are then summed up wi th different weights and the backpropagation 
is called on the generator neural network. 

O n the other hand, i n the case of the separator t raining, only the separator loss function 
should be computed. The only difference is that some amount of the generated augmented 
mixtures must be included i n the training. Th is is implemented by generating the random 
number between zero and one. The generated number is then compared to the defined 
hyper parameter of the gan_impact of the augmented mixture. If the generated number is 
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smaller than the defined impact then the generated augmented mixture is used as an input 
of the separator network and vice versa. The S I - S N R value is then computed between the 
estimated outputs and the target signals and the backpropagation is called on the separator 
neural network. 

5.4 Evaluation 

The trained G A N model should be evaluated. The evaluation process is shown in Figure 5.3 
F i r s t ly the best separator should be chosen from a l l epochs. The generate script uses 
generators from random generator epochs to augment the validat ion part of the dataset. 
Then the evaluate script evaluates each n-th separator on these augmented data. 

The second part of the G A N model evaluation is to evaluate the selected robust separator 
on the testing part of the dataset. The separate script estimates single speaker signals from 
the testing mixtures. The second script compute_si_snr compares the estimated signals 
w i th references. The S I - S N R values are computed during this comparison and then the 
average is computed from them. The computed mean is the evaluation result. 

1. 
Evaluation on 
real noisy data 

generate(validation) 

evaluate(validation) 

robust_separator 

2. 

Evaluation on 
generated 

augmentations 

separate(test) 

compute_si_snr(test) 

generate(test) 

T 
improvement(test) 

Figure 5.3: Diagram of the evaluation process for both evaluations. The left side shows 
the evaluation on real noisy data and the right side shows the evaluation on generated 
augmentations. 

Another evaluation is set to compute the improvement between the original and robust 
separator on the augmented data. For this type of evaluation, the generate script is again 
used, but now the testing part of the dataset is augmented. Then the separate and com-
pute_si_snr scripts are used to evaluate the original and robust separator. The computed 
average S I - S N R values are then used to compare the quali ty of the robust model. 
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Chapter 6 

Experiments 

Experiments w i th a generative adversarial networks ( G A N ) model used to make the speech 
separation more robust are performed wi th the setup described below. The first experiments 
t ry to find the applicable combinations of parameters, which do not lead to one of the G A N 
training problems. The second experiments evaluates the G A N model on the W S J 0 - 2 m i x 
and W H A M dataset and solve problems raised during experimenting. The last experiments 
t ra in the G A N model on the W H A M dataset and evaluate it as well , to proof that the 
concept is easily applicable to the different dataset. 

6.1 Dataset 

Experiments are done on the W a l l Street Journal dataset (WSJ0-2mix) [12] . It consists of 
three parts, which contain training, cross-validation, and testing data. The dataset contains 
both mixtures and parallel single-speaker recordings. Speakers are randomly mixed wi th 
various signal-to-noise ratios (SNR) between O d B and 5 d B . A l l data are downsampled to 
8 k H z sample rate. For t raining, there are 20000 mixtures corresponding to 30 hours, for 
cross-validation, there are 5000 mixtures corresponding to 10 hours, and there are 3000 
mixtures corresponding to 5 hours for testing. The testing part contains different speakers 
than the t ra ining and cross-validation parts. 

The W S J 0 Hipster Ambient Mixtures ( W H A M ) [28] is the second dataset used i n the 
experiments. Th is dataset pairs each two-speaker mixture i n the W S J 0 - 2 m i x dataset w i th 
the unique noise background scene. Noises are recorded in San Francisco B a y in urban 
environments such as coffee shops, restaurants, bars, office buildings, parks, etc. They are 
recorded at a sampling rate of 48 k H z and then downsampled to the 8 k H z to match wi th 
the W S J 0 - 2 m i x dataset. There are 80 hours of noises recorded at 44 different locations 
and they are separated to the four bins: very quiet, quiet, normal and loud. Each part of 
the dataset (training, cross-validation and testing) contains noises from at least two unique 
locations in each b in . The sizes of t raining, cross-validation, and testing parts are the 
same as i n the raw W S J 0 - 2 m i x dataset. Each background noise is mixed into the mixture 
by sampling S N R value between -6 d B and 3 d B and then by applying gain to the louder 
speaker of the mixture such that the S N R between the louder speaker and the noise is equal 
to the sampled S N R value. 
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6.2 Initial separator and generator networks setups 

The neural network architecture used for both networks (separator and generator) is C o n -
vTasNet [29]. Parameters of the ConvTasNet are shown i n Table 6.1. The table also 
shows the parameter values for the generator and separator neural networks used i n the 
experiments. 

Table 6.1: Hyperparameters of the ConvTasNet network [18] 

Symbol Description Generator Separator 
F Number of filters in autoencoder 128 128 
L Length of the filters (in samples) 40 40 
B Number of channels in bottleneck 128 128 
H Number of channels in convolutional blocks 192 192 
P Kernel size in convolutional blocks 3 3 
X Number of convolutional blocks in each repeat 3 7 
R Number of repeats 1 3 
O Number of outputs 1 2 

The separator network used for t ra ining has been pretrained on one of the above-
mentioned datasets or their combination. So there are three separator networks used in 
experiments, each pretrained on one of them. The baseline pretrained scores are shown 
in Table 6.2. F r o m the given results it is obvious that the W H A M dataset is much more 
difficult than the W S J 0 - 2 m i x . Th is is caused by the noises added to the mixtures. If the 
system is trained on the W S J 0 - 2 m i x and tested on the W H A M , then the results are quite 
poor. 

Table 6.2: Baseline results of pretrained separator neural networks. Results are computed 
by S I - S N R loss function using P I T method. Datasets in rows are the t raining ones. Testing 
datasets are i n columns. 

WSJ0-2mix W H A M 
SI-SNR [dB] SI-SNR [dB] 

WSJ0-2mix 12.46 -2.99 
W H A M 9.04 6.09 

WSJ0-2mix + W H A M 12.34 6.45 

The generator network is much smaller than the separator one and it has been pretrained 
for the self-identity task. T h i s is due to the fact that the untrained encoder and decoder 
parts of the ConvTasNet leads to the generating nonsense augmented mixtures. It is possible 
to t ra in the generator network properly during the G A N model t ra ining but it is very 
difficult and often leads to a bad G A N model t raining. Since the a i m of the G A N t ra ining is 
not to t ra in the encoder and decoder parts but to generate augmented mixtures, pretraining 
the self-identity removes the encoder and decoder t ra ining problem from the G A N model 
t ra ining process. 
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6.3 Adjustable parameters 

The first task of the experiments is to find the right combinat ion of parameters that w i l l 
t ra in G A N properly. The adjustable parameters are: 

• Separator loss weight wsep, which sets the importance of the separator loss in gener­
ator t raining. The generator t ra ining loss function is defined by Equa t ion 4.6. The 
separator loss value is computed during generator t ra ining on the generated aug­
mented mixtures. The generator is t rained to maximize the separator loss i n order to 
confuse the separator as much as possible. 

• S imi lar i ty loss weight u> sim is used to indicate the importance of the s imilar i ty between 
the generated augmented mixture and the original one. Th i s loss function is also 
computed during t ra ining and its role is to constrict the generator so that it would 
not generate complete nonsense. 

G A N model is switching between the separator and generator t ra ining dur ing each 
epoch. Two parameters control this: 

• Separator batch cap c s e p , which sets how many batches w i l l be used in separator 
t ra ining turn. 

• Generator batch cap c g e n , which sets how many batches w i l l be used in generator 
t ra ining turn. 

For example, when c s e p and c g e n are set to 10, the generator w i l l be trained on the first 
ten batches. After this, the t ra ining is switched to the separator t raining, which uses other 
ten batches and then switches back. The number of batches for each model can significantly 
influence the t ra ining and these parameters are difficult to set properly. 

The last two adjustable parameters are the ratio of the augmented mixtures dur ing the 
separator t ra ining r a u g and the s imilar i ty loss S I - S N R cap c s i m , which sets the value that is 
used to cl ip the s imilar i ty loss to a m a x i m u m value. Th is serves to prevent the s imilar i ty 
function to be too strong i n comparison wi th the separator loss function. 

6.4 Initial experiment 

The in i t i a l experiment is set w i t h following parameters: 

• ^ s e p = ^ s i r n = 1-0, 

• C S ep = Cgen = 10, 

• ^auff = 0.5 and 

The purpose of the in i t i a l experiment was to inspect the basic behavior of the loss 
functions during the t raining. The results are shown i n Figure 6.1. The separator loss 
function curve shows that the generator network managed to completely confuse the sep­
arator network. A l though this is the task of the generator, i n this case, the generator 
completely dominated the t ra ining to the point that the separator was unable to adapt to 
the augmented mixtures. The strength of the generator network is possibly caused by: 
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(a) Training curve of the separator loss function (b) Training curve of the similarity loss function 

Figure 6.1: Tra in ing curves of the separator and s imilar i ty loss computed during the gen­
erator t ra ining move i n each epoch. These curves shows collapse of the G A N model w i th 
in i t i a l parameters setting to the imbalance state, where the generator is too strong for the 
separator. 

1. Too much emphasis on the separator network confusion, which could be adjusted by 
the parameters wsep and u> sim. These adjustments w i l l be examined i n Section 6.5, or 

2. Too much t ra ining space for the generator network, which could be adjusted by the 
parameters c g e n and c s e p . These adjustments w i l l be examined i n Section 6.6. 

6.5 Generator loss weights 

The base experiments lead to the imbalance between the generator and separator networks. 
There is a chance to solve this imbalance problem by finding the correct weights wsep and 

Therefore, next experiments set different combinations of values of the weight parame­
ters. Thus the separator weight wsep value is reduced by tenths to 0.1 wi th s imilar i ty weight 
u>sim locked at 1.0. This could reduce the generator strength and help to a better system 
balance. 

Experiments collapse to two modes, where the generator network: 

1. Is too strong and overwhelms the separator network. 

2. Generates very similar mixtures to the original ones and does not make any changes. 

The first mode is achieved when the c s e p is above the value 0.5 as shown by the orange 
curves i n Figure 6.2. Lower values collapse to the second mode, where the similar i ty loss 
function has a big influence on the generator as it is shown by the blue curves i n Figure 6.2. 

6.6 Separator and generator batch caps 

Another idea is to solve the collapsing to the first mode by the right combinat ion of the 
separator and generator batch cap parameter values. The ma in issue is that the generator 
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Figure 6.2: Tra in ing curves of the separator and s imilar i ty loss computed dur ing the gener­
ator t ra ining move in each epoch. The orange curves show the collapse of the G A N model 
w i th wsep = 0.7 to the imbalance state, where the generator is too strong for the separator. 
The blue curves show the collapse of the G A N model w i th wsep = 0.3 to the imbalance 
state, where the generator does not generate any augmentations. 

confuses the separator too much. Therefore, increasing the separator batch cap c s e p could 
help the separator to better adapt to the augmented mixtures. The fixed value u> s e p = 0.7 
was used in batch cap experiments. This value has been chosen because although the system 
wi th these settings collapses to the first mode, it reduces the impact of the separator loss 
function on the generator. The c s e p value is incremented by the unit . Nevertheless, the 
system does not stabilize again, it collapses to the second mode when the c s e p > = 13 as it 
is shown by the blue curves in Figure 6.3. W i t h lower values of c s e p , the system stays in the 
first collapse mode as it is shown by the orange curves in Figure 6.3. Therefore, it means 
that the batch cap parameters are not distinguished finely enough. 

6.7 Automatic separator and generator batch caps 

After these experiments, it turned out that adjusting the batch caps c s e p and c s i m is not 
enough to stabilize the training. The constant batch cap values s t i l l lead to one of the two 
collapse modes described i n Section 6.5, i.e. one of the models is too strong while the other 
does not learn anything. Here, we explore another way to balance the training, where the 
number of batches for each model is adjusted dynamically, based on the S I - S N R value of the 
separator. The generator is thus trained un t i l the separator obtains S I - S N R values higher 
than parameter c s n r g e n and the separator is trained un t i l the separator does not achieve a 
- S I - S N R value lower than parameter c s n r s e p on the augmented mixtures. 

Experiments using this method are in i t ia l ly set wi th parameters: 

. wsep = 0.6, 0.7, 0.9 

• ^ s i r n = 1-0, 

• Cgnrgen = 0.0 

• C s n r s e P — 5.0, 
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Figure 6.3: Tra in ing curves of the separator and s imilar i ty loss computed during the genera­
tor t ra ining move in each epoch. The blue curves show the collapse of the G A N model w i th 
csep = 13 to the imbalance state, where the generator does not generate any augmentations. 
The orange curves show the collapse of the G A N model w i th csep = 12 to the imbalance 
state, where the generator is too strong for the separator. 

^aug = 0.5 and 

20. 

GAN/Train separator loss 

20 j 
0- ~ 

5 - 2 0 

I - 4 0 

in 
S - 6 0 

- 8 0 -

- 1 0 0 - M i i i i i i -

0 25 50 75 100 125 150 
Epochs 

(a) Training curve of the sep­
arator loss function computed 
during the generator training. 

GAN/Train similarity loss 

25 50 75 100 125 150 
Epochs 

(b) The training curve of 
the similarity loss values com­
puted during the generator 
training. 

0 20 40 60 80 100 120 
Epochs 

(c) Training curve of the sep­
arator loss function computed 
on data impacted by the gen­
erator during the separator 
training. 

Figure 6.4: The t ra ining curve of the separator loss computed during the generator t raining 
moves each epoch and the training curve of the computed separator loss function during 
the separator t ra ining on the augmented mixtures. These curves show, that the curves 
converge to the set parameters c s n r g e n and C s n r S e P . The c s n r s e p parameter value is inverted 
during the training. Nevertheless, the generated augmented mixtures are very similar to 
the original ones, thus the generated augmentations are not so strong. 

The Csim value follows the knowledge from the previous experiment, where the s imilar i ty 
values around the 40 d B overweight values of the separator loss function during the generator 
t raining. F r o m tra ining curves shown in Figure 6.4 it is evident, that systems trained by 
using this method do no longer collapse to the modes mentioned i n Section 6.5. The t raining 
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curve i n Subfigure 6.4a that stands for the level of the separator confusion converges to the 
S I - S N R value O d B which is set by the parameter c s n r g e n - The Subfigure 6.4c shows that 
the t ra ining curve of the separator gained values on the augmented data, which converges 
to the value of - 5 d B - S I - S N R set by the parameter c s n r s e p . 

6.8 First evaluation 

Figure 6.5: Results from finding the best separator model from trained G A N w i t h parameter 
u^sep = 0.7. The first chart shows the S I - S N R means of evaluated separators. The other 
charts show the results on generated augmented mixtures of the separator models from the 
each selected epoch 

Since the G A N model does not collapse to the one of the above mention modes it is 
possible to evaluate i t . Firs t ly , the best-trained separator model has to be found. This is 
provided by generating augmented mixtures by randomly chosen trained generators. Then 
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each tenth separator model is evaluated on a l l generated augmented mixtures. The model 
w i th the best result is then chosen for the evaluation using the test data. Th is is described in 
more detail in Section 4.3.1. The results of the separator selection are shown in Figure 6.5. 
The first chart shows the overall results of each evaluated separator model . The bar charts 
show how successful the separator is on the generated augmentations by each generator. 
Bars represent groups of generators, which are grouped by their epoch number. F r o m these 
bars it is evident that the separators works well on the first ten generator but elsewhere 
gain a poor results. Nevertheless, the results achieved by the different separators on the 
data generated by the different generators are very similar. Th is means that the separator 
is not being more and more robust dur ing the epochs. 

Table 6.3: Results from the first evaluation of the experiments w i th automated c g e n and 
c s e p parameter settings. In first column there are different wsep parameter settings. Other 
columns represent results from the evaluation on the tested part of the W S J 0 - 2 m i x or 
W H A M dataset. The columns wi th original annotat ion contain evaluation results of the raw 
pretrained separator model on the W S J 0 - 2 m i x dataset. The columns wi th the augmented 
annotation contain the evaluation results of the best separator model chosen from the G A N 
training. 

WSJ0-2mix WSJ0-2mix W H A M W H A M 
original robust original robust 

SI-SNR [dB] SI-SNR [dB] SI-SNR [dB] SI-SNR [dB] 
W s e p = 0.6 12.46 12.18 -2.99 -2.89 
W s e p = 0.7 12.46 11.95 -2.99 -2.78 
Wsep = 0.9 12.46 11.36 -2.99 -3.05 

The separator w i th the best score is chosen as the best one. This separator is then 
evaluated on the W S J 0 - 2 m i x and W H A M datasets. The results are shown i n Table 6.3. 
They show that the trained G A N model w i th the above-mentioned parameters setting 
does not t ra in the separator to be more robust. This is tested by evaluating the best 
separator model on the testing part of the W H A M dataset. The S I - S N R result achieved by 
the separator model pretrained on the W S J 0 - 2 m i x dataset is similar to the model trained 
by the G A N , when evaluating both the W S J 0 - 2 m i x and W H A M datasets. There are three 
experiments using different separator weights, but none of them has achieved better results. 

The bad evaluation results could be caused by the fact that al though the G A N model 
does not collapse to the above mentioned two modes, the generated augmented mixtures 
are very similar to the original ones as it is shown i n Figure 6.4b, where the curve represents 
the s imilar i ty loss values. Thus , it would be necessary to move wi th the u> sim parameter in­
stead of the tt>sep. The tt)sim parameter constraints generator from generating very different 
mixtures, which also constraints the generator's possibil i ty of generating difficult augmen­
tations. Considering this other experiments are set w i t h the fixed wsep at value 1.0 and ws[m 

set to the values 0.1, 0 . 2 , . . . , 1.0. These experiments could show that the decreasing ws[m 

parameter may release the generator to generate the more difficult augmented mixtures. 
Experiments show that w i th high values of u> sim the generator has the major part of 

the t ra ining t ime and the separator could adapt to the generated augmentation i n a few 
batches. W i t h decreasing value of the ws{m the G A N model reaches the point, where hard 
augmentation is found i n the first few epochs and the separator is then unable to adapt to 
this augmentation wi th the S I - S N R value set by the parameter Cgm-sep. Th is is shown in 
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Figure 6.6: The t ra ining curve of the separator loss computed during the generator t raining 
moves each epoch and the t raining curve of the computed separator loss function during 
the separator t ra ining on the augmented mixtures. These curves show, that the generator 
generates, i n first epoch, so strong augmentation that could not be adapted by the separator 
wi th the S I - S N R result which reaches the set csnrseD value. 

Figure 6.6, where the first curve is the separator loss during the generator training, which 
shows the creation of the strong augmentation i n the first two epochs, and the second curve 
is the separator loss on the generated augmented mixtures during the separator t raining. 
The second curve shows that the separator is unable to achieve the value -10 set by the 
parameter c s n r s e p . In Figure 6.6 the original and augmented mixture is also shown. F r o m 
the spectrogram, it is obvious that the separator does not have a chance to adapt. The 
u'sim value that collapse to the strong generator mode is not stable, i n some t ra ining it is a 
value 0.7 another t ra ining makes this collapse at a value 0.6. 

6.9 Instability in the collapse to the strong generator mode 

The instabi l i ty i n collapse to the strong generator mode during the t ra ining was inspected. 
The problem is that at the moment when the generator generates the strong augmentation 
t ra ining is switched to the separator t raining. The separator is then unable to achieve the 
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required S I - S N R value and does not switch back to the generator t raining. If the generator 
t ra ining could be switched on, the similar i ty loss could make the augmentation slightly 
easier and the separator could t ry again to adapt. There are a to ta l of two ways to achieve 
this. The first one is to set the timeout parameter, which switches the t ra ining if the 
separator is unable to reach the required score in the set number of the m a x i m u m provided 
batches (timeout). A l though this is an elegant solution it raises another parameter that 
should be tuned. Thus, i n this work, the second solution is used. This solution starts each 
epoch wi th the generator training, which forces the generator to be trained even when the 
separator does not achieve the required score. 

6.10 Problem with the proper switching of the generator and 
separator training 

The second problem which arises during the experimentation is that the generator and 
separator t ra ining is not properly switched although they reach the required S I - S N R score. 
This score is computed as mean from the score of a l l batches used during each separator 
and generator t raining. The score values are reset after the t ra ining is switched and other 
score values computed during the current part of the t ra ining are taken into account for 
the mean computat ion. Nevertheless, when for example the values start from the 5 and 
then decrease to the -10, the computed mean is not equal to -10 un t i l the values stabilize 
at that value. The higher start ing value the longer t ime should the values be stable so that 
the computed mean w i l l switch the training. This behavior leads to G A N model t raining 
that w i l l never switch the t ra ining between the generator and separator parts. 

The solution is to select only the last few batch results that w i l l be used for the switching 
decision. The number of the batch results is defined by the parameter m w i n d o w called the 
window. T h e n the median should be computed from the selected values. The median value 
and the threshold set by the parameter m th re sho id creates space around the median value. 
On ly values wi th in this space would be used for the mean computat ion which reduces the 
influence of the outliers on the computed mean. The computed mean value is then used 
for the t ra in switching decision and makes it more stable. This solution is called median 
filtering. 

6.11 Forced generator training and the median filtering 

The experiments that force the generator t ra ining on the start of each epoch and also use 
the median filtering during the t ra ining switch decision use the following parameters: 

• wsep = 1.0, 

. wsim = 0 . 1 , 0 . 2 , . . . , 1.0 

snrgen = - 5 . 0 

-snrsep = - 1 0 . 0 

aug = 0.5 

• C s i 'SHU = 20 
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(a) Spectrum of the original mixture. (b) Spectrum of the generated augmented mix­
ture. 

Figure 6.7: Spectrums of the original and generated augmented mixture . These spectrums 
shows how the generator can augment the mixture i n way that it is impossible to adapt to 
it by the separator, i t . 

• W-threshold = 5 

Experiments w i th the above settings and ws[m parameter value higher than 0.7 are 
unable to achieve the set 

Csnrgen score dur ing the generator t raining. However, lower ws[m 

parameter values achieves the mentioned score, their s imilar i ty loss values are lower than 
0 d B . Th is means that the generated augmented mixtures are very different from the original 
mixtures. Thus, the generated augmentations are very difficult and the separator is unable 
to learn anything from them. Figure 6.7 shows spectrum of the original and augmented 
mixtures w i th the low u> sim parameter value. It is evident that the generated augmented 
mixture in Subfigure 6.7a is different from the original one, which is i n Subfigure 6.7b. To 
avoid these difficult augmentations the c s n r g e n parameter value should be set to a higher 
value. The higher value of this parameter stops the generator t ra ining earlier than it could 
generates very difficult augmented mixtures. 

6.12 Higher generator SI -SNR target value 

Other experiments are set w i t h the c s n r g e n = OdB. Experiments are again set w i th the ws[m 

parameter values between the 0.1 and 1.0 like in the previous experiments. The separator 
adaptation works better i n these experiments because generator does not confuse it too 
much. 

The experiments w i th u> sim set to the value 0.7 w i l l be described i n detail . The experi­
ments have been chosen to give the generator more freedom during the augmented mixtures 
generation. In Figure 6.8 it is shown how the number of batches for the t ra ining of each part 
is switching during the epochs. It is evident that the generator and separator are finally 
properly switching the t ra ining and do not collapse to any above-mentioned modes. A n 
example of the generated augmented mixture is shown i n Figure 6.9. F r o m the spectrum, 
it is evident that the signal contains some augmentation but at the same time, the original 
signal is visible. The lines that the generated augmented mixture contains are caused by 
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GAN/Batches:Generator batches 

0 50 100 150 200 
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(a) Number of batches provided for genera­
tor training during the G A N model training. 

Figure 6.8: These figures show how many 
model dur ing its t raining. 

GAN/Batches:Separator batches 

0 50 100 150 200 
Epochs 

(b) Number of batches provided for separa­
tor training during the GAN model training. 

batches are provided to each part of the G A N 

the ConvTasNet neural network architecture. They appeared dur ing many experiments. 
The higher value of u) s im suppresses them but they are s t i l l there. 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

(a) Spectrum of the original mixture. (b) Spectrum of the generated augmented mix­
ture. 

Figure 6.9: Spectrums of the original and generated augmented mixture . These spectrums 
shows how the generator can augment the mixture in way that the separator can adapt to 
it. 

Fortunately, the separator network can adapt to them as is shown in Figure 6.10 it 
can be seen that the separator can adapt to the generated augmented mixtures. The left 
Subfigure 6.10a shows how the generator tries to confuse the separator and it is successful 
in many epochs, for example in the epoch 15. It is also evident that the generator generally 
confuses the separator to the 5 d B though the c s n r g e n value is set to the O d B . This is caused 
by the generator switching the t ra ining more times during one epoch and the confused value 
is computed as the mean of a l l batches given for the generator training. 

The Subfigure 6.10b shows the s imilar i ty loss curve and it is evident how in the middle 
of the t ra ining the s imilar i ty value fluctuates around the value of —5 d B , then i n the end of 
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(a) Training curve of the sep­
arator loss function computed 
during the generator training. 

GAN/Train similarity loss 

Epoch: 

(b) The training curve of 
the similarity loss values com­
puted during the generator 
training. 

Separator/Train impacted 
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(c) Training curve of the sep­
arator loss function computed 
on data impacted by the gen­
erator during the separator 
training. 

Figure 6.10: The t ra ining curve of the separator loss computed during the generator t raining 
moves each epoch and the t raining curve of the computed separator loss function during 
the separator t ra ining on the augmented mixtures. These curves show, that the curves 
converge to the set parameters cSnrgen and csnrsep- The Csnrsep parameter value is inverted 
during the t raining. Nevertheless, the generated augmented mixtures are very similar to 
the original ones, thus the generated augmentations are not so strong. 

the t ra ining it switches between the very similar generated augmented mixtures and very 
different ones. F r o m this s imilar i ty curve it is evident that al though the s imilar i ty function 
helps the G A N model from the collapse to the strong generator mode, it also leads to the 
states where the generator forget about the learned augmentation. Th is behaviour w i l l be 
discussed later. 

The Subfigure 6.10c shows the separator loss value during the separator t raining on the 
generated augmented mixtures in the other words on the data impacted by the generator. 
It should be mentioned that the Subfigure 6.10c shows the - S I - S N R value instead of the 
Subfigure 6.10a. It is evident that the separator can adapt to the generated augmented 
mixtures and t ra in but it could not achieve the value -10 d B which is set to the parameter 
Csnrsep- Nevertheless, the generator is forced to t ra in at the start of each epoch as it is 
mentioned i n Section 6.9. This r ightly rescued the G A N model from the collapse to the 
strong generator mode. 

The best separator selection is shown i n Figure 6.11. In contrast w i t h the best sepa­
rator selection during the first evaluation which is shown i n Figure 6.5, the performance 
of the separator on the different generated mixtures by the different generators is not that 
stable. Thus, the generator and separator have different strengths during the t raining. The 
separator from the epoch 180, and later, fails more than the previous ones. This could be 
caused by the fact that they are less robust but they can also t ry to adapt to the more 
difficult augmentation. This more difficult adaptat ion could be generated by the generator 
that also forgets some other augmentation from the past. If the augmentation is so strong 
the separator could also forget the adaptat ion to these old augmentations to be able to 
handle the difficult new one. This raises the generator forgetting problem. 
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Figure 6.11: Results from finding the best separator model from trained G A N wi th param­
eter u>sim = 0.7 and used automated t ra ining switch wi th set parameters c s n r g e n = O d B and 
Csnrsep = — 1 0 d B . The first chart shows the S I - S N R means of evaluated separators. The 
other charts show the results on generated augmented mixtures of the separator models 
from the each selected epoch 

6.13 Generator forgetting problem 

Using the s imilar i ty loss function together w i th the separator loss function during the gener­
ator t ra ining prevents the generator from generating total nonsense. W i t h the combination 
of the forced generator t ra ining at the start of each epoch, the s imilar i ty also helps to the 
rescuing the G A N model from the collapse to the strong generator mode. Unfortunately, 
it also leads the generator to forget the learned augmentations during the training. The 
generator then learns a new augmentation, but t ra ining of the separator is i n this G A N 
model designed to get generated augmented mixtures only from the last generator state. 
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This leads to the forgetting of the separator. If the newly learned augmentation by the 
generator is not difficult or it is s imilar to the previous ones, the separator model s t i l l 
works well and it is getting more robust. Nevertheless, i f the new augmentation is different 
the separator decides that it is better to forget the old augmentation to adapt to this new 
one. This leads to the not robust separator towards the previous generator states. If the 
adaptation to these augmentations takes only a few epochs and then the end of the t raining 
follows or it is quickly forgotten, the separator w i l l not be selected dur ing the best separator 
selection. However, the selected separator w i l l be more robust it w i l l probably fail on the 
augmentations generated by the generators i n after forget states. 

To solve this problem the G A N model t ra ining should be redesigned. Older versions 
of the generator should be stored and used during the t ra ining to generate new augmen­
tations. This should protect the separator from the forgetting adaptat ion to the previous 
augmentations and it should be redesigned in future work. 

6.14 Evaluation problem 

The best separator from each of experiments from Section 6.12 was chosen and then evalu­
ated. The results are shown i n Table 6.4. The results show that w i th the high value of the 
parameter u> sim the robust separator achieves a l i t t le bit lower results on the testing part 
of the W S J 0 - 2 m i x dataset i n comparison w i t h the pretrained separator model. However 
the numbers for the W S J 0 - 2 m i x dataset are s t i l l acceptable, results also show that on the 
testing part of the W H A M dataset any of the trained separators do not achieve better 
results than the pretrained separator model . The results are even worse wi th low value of 
the parameter u> s m i . 

Table 6.4: Results of the experiments w i th automated c g e n = O d B and c s e p = —10 d B 
parameter settings. In first column there are different wSim parameter settings. Other 
columns represent results from the evaluation on the tested part of the W S J 0 - 2 m i x or 
W H A M dataset. The columns wi th original annotat ion contain evaluation results of the raw 
pretrained separator model on the W S J 0 - 2 m i x dataset. The columns wi th the augmented 
annotation contain the evaluation results of the best separator model chosen from the G A N 
training. 

WSJ0-2mix WSJ0-2mix W H A M W H A M 
^ s i m original robust original robust 

SI-SNR [dB] SI-SNR [dB] SI-SNR [dB] SI-SNR [dB] 
0.1 12.46 3.01 -2.99 -5.93 
0.2 12.46 7.10 -2.99 -5.22 
0.3 12.46 9.99 -2.99 -6.46 
0.4 12.46 8.91 -2.99 -4.55 
0.5 12.46 10.17 -2.99 -3.21 
0.6 12.46 10.29 -2.99 -2.20 
0.7 12.46 9.67 -2.99 -2.94 
0.8 12.46 11.23 -2.99 -2.946 
0.9 12.46 10.93 -2.99 -2.35 
1.0 12.46 10.09 -2.99 -3.44 

Nevertheless, the W H A M dataset which is mentioned in Section 6.1 contains noises 
recorded i n the real environments. The generator is unable to generate these noises, but 
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it is possible to generate new different noises. The separator that is made robust by this 
generator could fail on the W H A M dataset but s t i l l , be robust towards the generated 
noises. To evaluate this behavior each mixture in the testing set of the W S J 0 - 2 m i x dataset 
is augmented by the randomly chosen generator from the t ra ining. The raw pretrained 
model is then evaluated on these augmented mixtures and then also on the robust one. 
The robust separator should perform better on these augmented mixtures than the raw 
pretrained separator. 

Table 6.5: Results of the experiments on W S J 0 - 2 m i x dataset w i th automated c g e n = 0.0 d B 
and c s e p = — lO .OdB parameter settings. In first column there are different u> sim parameter 
settings. The second column represents values of the not robust separator pretrained on 
W H A M dataset. The th i rd column contains results of the robust separator. These results 
shows the comparison between the not robust and robust separator which should prove the 
concept of this G A N . 

Augmented WSJ0-2mix Augmented WSJ0-2mix 
original robust 

SI-SNR [dB] SI-SNR [dB] 
0.1 -7.68 -3.17 
0.2 -6.16 -2.02 
0.3 -3.73 -1.69 
0.4 -2.69 -0.78 
0.5 -1.34 -0.10 
0.6 2.15 2.23 
0.7 1.99 2.46 
0.8 5.15 5.64 
0.9 4.22 5.02 
1.0 7.12 6.63 

The results of this evaluation are shown in Table 6.5. There is a visible improvement 
between the original and. robust separator for a l l S6t ws{m values except the value of 1.0. 
Lower values of this parameter give results w i th a bigger difference between the original 
and robust separator. These values are under the zero S I - S N R which is caused by the low 
impact of the s imilar i ty loss function during the training. Nevertheless, they show that the 
G A N model t ra ining makes the separator network robust toward the augmented mixtures 
generated by the generators during the training. 

Figure 6.12 shows the improvement i n results for the robust separator i n experiment 
w i th parameter u> s m i = 0.7. Th is experiment is described i n detai l in Section 6.12. In Figure, 
the improvement is most evident in the augmented mixtures generated by the generators 
from 0-10, 40-110, 120-130, and also 150-160 epochs. These improvements are shown i n two 
bot tom bar charts, where the left bar chart shows the results for the not robust separator 
and the right bar chart results for the robust separator. 

6.15 Experiments on W H A M dataset 

Other experiments are performed on the W H A M dataset w i th the separator pretrained 
on the W H A M dataset. These experiments should firstly show how much the parameters 
depend on the current dataset. They should also show the difference i n behavior on the 
already augmented dataset. Experiments are performed wi th the following parameters: 
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Figure 6.12: Improvement results for the experiment w i th parameter u> s m i = 0.7. The upper 
bar chart shows the results for the not robust (blue) and robust separator (orange). The 
two bo t tom bar charts shows how the not robust and robust separators perform on the 
augmented mixtures generated by the generators from different epochs of the G A N model 
t raining. E a c h bar represents the group of the generators from ten neighboring epochs. 

• wsep = 1.0, 

. wsim = 0 . 1 , 0 . 2 , . . . , 1.0 

• c s n r g e n — 0.0 

• c s n r s e p — 5.0 

• ra,ug = 0.5 

• Cgim = 20 

• 771 window 10 

• W-threshold = 5 

The parameter setting is similar to the experiments i n Section 6.12. O n l y the parameter 
Csnrsep is changed to the value - 5 . 0 d B ( -SI-SNR). Th is is due to the base results of the 
separator on the W H A M dataset, where it is possible to achieve 6.09 d B . The experiments 
wi th the value -10.0 d B are also run, but they suffer from the problem that the separator 
is unable to achieve such a high value during the adaptat ion to the generated augmented 
mixtures. 

The results of these experiments are shown i n Table 6.6. These results show the same 
behavior as the experiments w i th the W S J 0 - 2 m i x dataset. The only difference is i n the 
better results for the W H A M dataset, which is caused by the pretraining of the separator 
on these data. If the selected separator is more robust than the original separator could be 
seen in the evaluation which compares the results of these two separator states. 

These results are shown i n Table 6.7. The improvements are higher than the 4 d B . 
There are bigger improvements than during the experiments on W S J 0 - 2 m i x dataset, where 
the improvements are around 3 d B or lower. 

The G A N model concept for robust separator networks is proved by the experiments 
to work. The separator chosen from the G A N model t ra ining is more robust towards 
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Table 6.6: Results of the experiments performed on the W H A M dataset w i th automated 
Cgen = O d B and c s e p = — 1 0 d B parameter settings. In first column there are different 
u'sim parameter settings. Other columns represent results from the evaluation on the tested 
part of the W S J 0 - 2 m i x or W H A M dataset. The columns wi th original annotat ion contain 
evaluation results of the raw pretrained separator model on the W S J 0 - 2 m i x dataset. The 
columns wi th the augmented annotation contain the evaluation results of the best separator 
model chosen from the G A N training. 

WSJ0-2mix WSJ0-2mix W H A M W H A M 
original robust original robust 

SI-SNR [dB] SI-SNR [dB] SI-SNR [dB] SI-SNR [dB] 
0.1 9.04 8.192 6.09 5.76 
0.2 9.04 8.08 6.09 5.44 
0.3 9.04 7.77 6.09 5.29 
0.4 9.04 7.90 6.09 4.68 
0.5 9.04 8.11 6.09 5.42 
0.6 9.04 7.96 6.09 5.22 
0.7 9.04 8.23 6.09 5.22 
0.8 9.04 8.29 6.09 5.42 
0.9 9.04 7.69 6.09 4.95 
1.0 9.04 5.55 6.09 3.42 

Table 6.7: Results of the experiments on W H A M dataset w i th automated c g e n = 0.0 d B 
and c s e p = —5.OdB parameter settings. In first column there are different u'sim parameter 
settings. The second column represents values of the not robust separator pretrained on 
W H A M dataset. The th i rd column contains results of the robust separator. These results 
shows the comparison between the not robust and robust separator which should prove the 
concept of this G A N . 

Augmented WSJ0-2mix Augmented WSJ0-2mix 
original robust 

SI-SNR [dB] SI-SNR [dB] 
0.1 -9.30 -1.42 
0.2 -7.06 -1.75 
0.3 -6.43 0.78 
0.4 -4.36 2.30 
0.5 -3.96 3.46 
0.6 -4.08 3.09 
0.7 -3.44 3.91 
0.8 -3.39 4.02 
0.9 -3.33 4.01 
1.0 -3.26 -2.82 

the generated augmentations. This behaviour is evident on the bo th of tested datasets. 
Nevertheless, the robust separator from the experiments performed on the W S J 0 - 2 m i x 
dataset does not performs better on the W H A M dataset. 

42 



Chapter 7 

Conclusion 

In this work, the generative adversarial networks ( G A N ) model is used to make a robust 
speech separation system. The used model is slightly different from the original one. The 
discriminator is the neural network for speech separation pretrained on the base speech 
separation task and also the s imilar i ty loss which is represented by the S I - S N R computed 
between the original and generated augmented mixture. 

The G A N model was tuned during the experiments. The model is very sensitive to 
changes i n parameters, but the right setting was found. Experiments show that the concept 
works and makes the system more robust. The evaluation was set to compare the original 
pretrained and the robust system results achieved on the testing part of the dataset aug­
mented by random generators from the t raining. For the model trained on the W S J 0 - 2 m i x 
dataset, there is an improvement around 3 d B S I - S N R and for the model trained on the 
W H A M dataset, there is an improvement around 4 d B and more. Nevertheless, there is 
no improvement i n the W H A M dataset for the model trained on the W S J 0 - 2 m i x dataset. 
This is caused by the fact that the noises generated by the trained generators are not as 
sophisticated as the noises added by the W H A M dataset. Nevertheless, the t rained speech 
separation system from the G A N model is s t i l l more robust than the original one. The ex­
periments also show that the parameter setting found for the W S J0-2mix dataset is reusable 
wi th only a few changes for the W H A M datasets. 

Dur ing the experiment, two problems i n the concept were found. The first is that 
the generator and separator are jo in information about the trained augmentation during 
the t raining. Th is is caused because the separator is t rained on the original mixtures 
and generated augmented mixtures by the last state of the generator network. To solve 
this problem the generated augmented mixtures from the different previous states of the 
generator should be also used dur ing the separator t raining. The second problem is that the 
generator is l imi ted by the s imilar i ty loss function. The l imi ta t ion is for example generating 
a flipped signal, changes i n tempo, etc. It is not possible to make these changes only for 
mixtures, because the original single speaker signals w i l l not match. Thus, the solution is 
to generate augmented original single speaker signals instead of the mixtures. 

These changes lead to the rework of the proposed concept to a less or greater extent. 
The new experiments should be also provided to find the right setting and prove i f these 
suggested solutions work. Th is could be done i n future work. Another dataset could be 
also used to prove that the parameter settings are reusable for the different datasets w i th 
only a few changes. 
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Appendix A 

Experiments using W H A M dataset 
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(a) Number of batches provided for genera­
tor training during the G A N model training. 
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(b) Number of batches provided for separa­
tor training during the GAN model training. 

Figure A . l : These Figures show how many batches are provided to each part of the G A N 
model during its t ra ining on W H A M dataset w i t h parameter wsim = 0.7 and used automated 
t ra ining switch w i t h set parameters c s n r g e n = O d B and c s n r s e p = — 5 d B . 
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GAN/Train separator loss 
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(a) Training curve of the sep­
arator loss function computed 
during the generator training. 

GAN/Train similarity loss 
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(b) The training curve of 
the similarity loss values com­
puted during the generator 
training. 

Separator/Train impacted 
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(c) Training curve of the sep­
arator loss function computed 
on data impacted by the gen­
erator during the separator 
training. 

Figure A . 2 : These Figures show the process of the G A N model t ra ining on the W H A M 
dataset w i th parameter ws[m = 0.7 and used automated t ra ining switch w i t h set parame­
ters c s n r g e n = 0 d B and c s n r s e p = —5dB. . F i r s t l y the t ra ining curve of the separator loss 
computed dur ing the generator t ra ining moves each epoch then s imilar i ty loss dur ing the 
generator t raining and the t ra ining curve of the computed separator loss function during 
the separator t ra ining on the augmented mixtures. 
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(a) Spectrum of the original mixture. (b) Spectrum of the augmented mixture. 

Figure A . 3 : These Figures show the example of the generated augmented mixture during 
the G A N model t ra ining on the W H A M dataset. 
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Figure A . 4 : Results from finding the best separator model from trained G A N on the W H A M 
dataset w i th parameter u) s im = 0.7 and used automated t ra ining switch wi th set parameters 
Csnrgen = 0 d B and Cgnrsep = — 5 d B . The first chart shows the S I - S N R means of evaluated 
separators. The other charts show the results on generated augmented mixtures of the 
separator models from the each selected epoch. 
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Figure A . 5 : Improvement between the robust separator and the original one tested on the 
testing part augmented by the random generators from the G A N model t ra ining on W H A M 
dataset w i th parameter u> sim = 0.7 and used automated t ra ining switch wi th set parameters 
Csnrgen = 0 d B and c s n r s e p = — 5 d B . The top Figure shows the mean achieved by each 
separator. The bo t tom Figures shows how the each separator works on the augmentations 
from the different generators. 
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