
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

INCENTIVE STRATEGIES FORTRANSACTION-FEEREGIME
OF PROOF-OF-WORK BLOCKCHAINS

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR RASTISLAV BUDINSKÝ
AUTOR PRÁCE

SUPERVISOR Ing. IVAN HOMOLIAK, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023

Institut: Department of Intelligent Systems (UITS)

Student: Budinský Rastislav

Programme: Information Technology

Specialization: Information Technology

Category: Modelling and Simulation

Academic year: 2022/23

Assignment:

1. Get familiar with existing Proof-of-Work consensus protocols and their incentive schemes. Focus
on the analysis of the drawbacks of such schemes, especially in the case of the transaction-fee
regime.

2. Study existing simulation testbeds for Proof-of-Work consensus protocols and compare their
properties.

3. Propose a new incentive scheme aimed at the transaction-fee regime.
4. Implement a proof-of-concept model of the proposed scheme and perform its simulation under

various conditions.
5. Discuss the results and state the recommendations for various use cases.

Literature:
Carlsten, Miles, et al. "On the instability of bitcoin without the block reward." Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security. 2016.
Homoliak, Ivan, et al. "The security reference architecture for blockchains: Towards a
standardized model for studying vulnerabilities, threats, and defenses." arXiv preprint
arXiv:1910.09775 (2019).

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Homoliak Ivan, Ing., Ph.D.

Head of Department: Hanáček Petr, doc. Dr. Ing.

Beginning of work: 1.11.2022

Submission deadline: 10.5.2023

Approval date: 3.11.2022

Bachelor's Thesis Assignment
148520

Incentive Strategies for Transaction-Fee Regime of Proof-of-Work BlockchainsTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
In this thesis, we review the undercutting attacks in the transaction-fee-based regime of
Proof-of-Work (PoW) blockchains with the longest chain fork-choice rule. Next, we focus
on the problem of fluctuations in mining revenue and the mining gap – i.e., a situation, in
which the immediate reward from transaction fees does not cover miners’ expenditures.

To mitigate these issues, we propose a solution that splits transaction fees from a mined
block into two parts – (1) an instant reward for the miner of a block and (2) a deposit
sent to one or more Fee-Redistribution Contracts (ℱℛ𝒞s) that are part of the consensus
protocol. At the same time, these redistribution contracts reward the miner of a block with
a certain fraction of the accumulated funds of the incoming fees over a predefined time.
This setting enables us to achieve several interesting properties that are beneficial for the
incentive stability and security of the protocol.

With our solution, the fraction of Default-Compliant miners who strictly do not
execute undercutting attack is lowered from the state-of-the-art result of 66% to 30%.

Abstrakt
V tejto práci sa zaoberáme tkz. undercutting útokmi v blockchainoch založených na
transakčných poplatkoch (Proof-of-Work, PoW) s pravidlom voľby najdlhšieho reťazca pri
vzniknutí forkov. Ďalej sa zameriame na problém kolísania výnosov z ťažby a tkz. mining
gap – teda situáciu, v ktorej okamžitá odmena z transakčných poplatkov nepokryje výdaje
ťažiarov.

Na zmiernenie týchto problémov navrhujeme riešenie, ktoré rozdeľuje transakčné poplat-
ky z vyťaženého bloku na dve časti – (1) okamžitú odmenu pre ťažiara bloku a (2) vk-
lad odoslaný do jedného alebo viacerých kontraktov na prerozdelenie poplatkov nazvaných
poplatky-prerozdeľovacie kontrakty (Fee-Redistribution Contracts –ℱℛ𝒞s), ktoré sú súčasťou
konsenzuálneho protokolu. Tieto poplatky-prerozdeľovacie kontrakty zároveň odmeňujú
minera bloku určitým zlomkom naakumulovaných prostriedkov z prichádzajúcich poplatkov
za vopred stanovený čas. Toto nastavenie nám umožňuje dosiahnuť niekoľko zaujímavých
vlastností, ktoré sú prospešné pre stabilnú incentívu pre minerov a bezpečnosť protokolu.

S naším riešením sa zlomok Default-Compliant minerov, ktorí priamo nevykonávajú
undercutting útok, zníži z pôvodného výsledku 66% na 30%.

Keywords
Bitcoin, blockchain, block, mining, PoW, Proof-of-Work, transaction-fee regime, undercut-
ting attack, mining gap, mining revenue fluctuation, fee-redistribution contracts

Klíčová slova
Bitcoin, blockchain, blok, ťaženie, PoW, Proof-of-Work, režimy s poplatkami, undercutting
útok, mining gap

Reference
BUDINSKÝ, Rastislav. Incentive Strategies for Transaction-Fee Regime of Proof-of-Work
Blockchains. Brno, 2023. Bachelor’s thesis. Brno University of Technology, Faculty of
Information Technology. Supervisor Ing. Ivan Homoliak, Ph.D.

Incentive Strategies for Transaction-Fee Regime
of Proof-of-Work Blockchains

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Mr. Ing. Ivan Homoliak Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Rastislav Budinský

May 5, 2023

Acknowledgements
I would like to thank to my supervisor Ing. Ivan Homoliak Ph.D. for professional guidance,
consultation and many valuable advices. I would also like to show my gratitude to my
supervisor for great collaboration on a research paper, which preceded this thesis. Lastly I
would to thank to Ergo core developer Alexander Cherpunoy for his initial inputs about this
idea and Ing. Ivana Stančíková for consultancy and help with afford-mentioned preceding
research paper we created together.

Contents

1 Introduction 4

2 Extended Abstract 6
2.1 Problémy, ktorým sa primárne venujeme . 6
2.2 Navrhované riešenie . 8
2.3 Výsledky riešenia . 8
2.4 Príspevky . 8

3 Preliminaries 10
3.1 Blockchain technology . 10
3.2 Mempool . 12
3.3 Transaction . 12
3.4 Block . 13
3.5 Block reward . 13
3.6 Total supply . 14
3.7 Transaction fees . 14
3.8 Proof of Work . 15
3.9 Mining . 16

4 Current Problems with Transaction-Fee-Based Regimes 17
4.1 Fluctuation of miner’s reward . 17
4.2 Undercutting attack . 18
4.3 Mining gap . 19
4.4 Extisting solutions . 20

5 Proposed Solution 22
5.1 Overview . 22
5.2 Prioritization of transactions with higher feerate 23
5.3 Fee-Redistribution Contracts . 23
5.4 Example . 24
5.5 Traditional way in transaction-fee-based regime 25
5.6 Initial setup of ℱℛ𝒞s contracts . 25

6 Experiments 27
6.1 Simulator . 27
6.2 Experiment I – Different lengths of ℱℛ𝒞s 31
6.3 Experiment II – Multi-contract ℱℛ𝒞 . 31
6.4 Experiment III – Effective length of ℱℛ𝒞 33

1

6.5 Experiment IV – Historical data of miner’s reward fluctuation 35
6.6 Experiment V – Undercutting attack with ℱℛ𝒞s used 37

7 Security Analysis and Discussion 40
7.1 Contract-drying attack . 40
7.2 Possible improvements . 41
7.3 Epoch like ℱℛ𝒞s . 41
7.4 Adjustment of mining difficulty . 41
7.5 Allowing soft fork implementation . 42
7.6 So called out-of-band fees . 42
7.7 Utilization of Fee-Redistribution Contracts 43

8 Conclusion 44

Bibliography 46

A Fee-Redistribution Contracts on Ergo Blockchain 48
A.1 Brief introduction into Ergo . 48
A.2 Smart contract overview . 48
A.3 Implementation . 49

B Contents of Included Storage Device 51

2

List of Figures

3.1 Blockchain cryptographically linked. Image source [19]. 12
3.2 Illustration of pending transactions in mempool and transactions in a block.

Image source [1]. 13
3.3 Example of Bitcoin transaction with fee for miner as “Unclaimed”. Image

source [2]. 14
3.4 Example of Bitcoin block. Image source [3]. 15
3.5 Process of mining in PoW blockchain. Image source [15]. 16

4.1 Fluctuation in transaction fees Q4 2017. Data provided by [23]. 18
4.2 Undercutting attack from the original paper [23]. 19

5.1 Overview of our solution. 23

6.1 Experiment I investigating various C𝑠 and 𝜆s of a single ℱℛ𝒞, where ℱℛ𝒞1.𝜆 =
2016 and ℱℛ𝒞2.𝜆 = 5600. Fees in mempool show the total value of fees in
the mempool able to be mined (i.e., representing the baseline). Block Value
is the actual reward a miner received in block 𝐵 as a sum of the fees he
obtained directly (i.e. M * 𝐵.𝑓𝑒𝑒𝑠) and the reward he got from ℱℛ𝒞 (i.e.,
𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚[𝐻]). Expected income from Contract represents the reward of a
miner obtained from ℱℛ𝒞 (i.e., 𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚[𝐻]). 32

6.2 Experiment II investigating various Cs in the setting with multiple ℱℛ𝒞s
with their corresponding 𝜆 = {1008, 2016, 4032, 8064} and 𝜌 = {0.07, 0.14, 0.28, 0.51}.
𝜕𝐶𝑙𝑎𝑖𝑚s represents contributions of individual ℱℛ𝒞s to the total reward of
the miner (i.e., its 𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚 component). 34

6.3 Experiment II – multiple ℱℛ𝒞s using various distributions of 𝜌 and their
impact on 𝜕𝐶𝑙𝑎𝑖𝑚, where C = 0.7. 35

6.4 Experiment III comparing 4 ℱℛ𝒞s and 1 ℱℛ𝒞, both configurations having
the same effective_𝜆. 36

6.5 Experiment IV – Direct recreation of Figure 4.1 into a scenario against our
solution with ℱℛ𝒞s. 37

6.6 Stacked area chart showing equilibrium distributions of different mining
strategies. The number of Default-Compliant miners in our ℱℛ𝒞 ap-
proach is ∼30% (in contrast to ∼ 66% of [5]). 39

3

Chapter 1

Introduction

Cryptocurrencies provide block rewards to incentivize miners in producing new blocks.
Transaction fees also contribute to the revenue of miners, motivating them to include trans-
actions in blocks. Miners maximize their profits by prioritizing the transactions with the
highest ratio of fees to transaction size. In Bitcoin and its numerous clones [13], the block
reward is divided by a factor of two approx. every four years (i.e., after every 210k blocks),
which will eventually result in a pure transaction-fee-based regime with no income for min-
ers from block reward.

Not much thought was given to this problem in the Bitcoin whitepaper [18], citing the
author, “Once a predetermined number of coins have entered circulation, the incentive can
transition entirely to transaction fees and be completely inflation free.”

Before 2016, there was also a belief that the dominant source of the miners’ income
does not impact the security of the blockchain. However, Carlsten et al. [5] pointed out
the effects of the high variance of the miners’ revenue per block caused by exponentially
distributed block arrival time in transaction-fee-based protocols. The authors showed that
undercutting (i.e., forking) a wealthy block is a profitable strategy for a malicious miner.
Nevertheless, Daian et al. [7] showed that this attack is viable even in blockchains containing
traditional block rewards due to front-running competition of arbitrage bots who are willing
to extremely increase transaction fees to earn Maximum Extractable Value profits.

In this paper, we focus on mitigation of the undercutting attack in transaction-fee-
based regime of PoW blockchains. We also discuss related problems present (not only) in
transaction-fee-based regime. In particular, we focus on minimizing the mining gap [5, 21],
(i.e., the situation, where the immediate reward from transaction fees does not cover miners’
expenditures) as well as balancing significant fluctuations in miners’ revenue.

To mitigate these issues, we propose a solution that splits transaction fees from a mined
block into two parts – (1) an instant reward for the miner and (2) a deposit sent into one
or more fee-redistribution contracts (ℱℛ𝒞s). At the same time, these ℱℛ𝒞s reward the
miner of a block with a certain fraction of the accumulated funds over a fixed period of
time (i.e., the fixed number of blocks). This setting enables us to achieve several interesting
properties that are beneficial for the stability and security of the protocol.

4

Contributions

In detail, our contributions are as follows:

1. We propose an approach that normalizes the mining rewards coming from transaction
fees by one or more ℱℛ𝒞s that perform moving average on a certain portion of the
transaction fees.

2. We evaluate our approach using various fractions of the transaction fees from a block
distributed between a miner and ℱℛ𝒞s. We experiment with the various numbers
and lengths of ℱℛ𝒞s, and we demonstrate that usage of multiple ℱℛ𝒞s of various
lengths has the best advantages mitigating the problems we are addressing; however,
even using a single ℱℛ𝒞 is beneficial.

3. We demonstrated that with our approach, the mining gap can be minimized since the
miners at the beginning of the mining round can get the reward from ℱℛ𝒞s, which
stabilizes their income.

4. We conduct a simple experiment on historical real-world data as example to demon-
strate the benefit of using ℱℛ𝒞s compared to baseline without our solution to directly
show the impact of our approach.

5. We empirically demonstrate that using our approach, the threshold of Default-
Compliant miners who strictly do not execute undercutting attack is lowered from
66% (as reported in the original work [5]) to 30%.

Organization

This thesis is organized as follows. Chapter 3 Defines basic terms used in this thesis
In Chapter 4 defines the problem that we are dealing with. In Chapter 5, we describe
our approach. In Chapter 6, we conduct the experiments to evaluate our approach in
terms of lowering the profitability of undercutting attacks. In Chapter 7 we conduct
security analysis of our solution and discuss possible improvements and other factors.
Finally, in Chapter 8 we summarize our findings of our proposed solution in this
thesis.

5

Chapter 2

Extended Abstract

V tejto bakalárskej práci nadväzujeme na problémy skúmané vo vedeckom článku z roku
2016, ktorý napísali Carlsten et al. [5]. Problémy, ktorými sa zaoberajú v tejto práci a
rovnako aj my, sú demonštrované na Proof-of-Work blockchaine Bitcoin. Jedná sa o prob-
lémy podrezávacích útokov (ang. undercutting attack), medzera v príjmoch z odmien (ang.
minig gap), a fluktuácie odmeny pre minerov. Tieto problémy vyplývajú zo skutočnosti,
že každá kryptomena, s maximálnym obmedzeným počtom mincí v obehu (ang. capped
supply), ako je Bitcoin, bude eventuálne závislá len na odmenách z transakčných poplatkov.
Toto bude jediný spôsob motivácie pre ťažiarov (ang. miner) zabezpečovať sieť.

V súčasnej situácii sú mineri motivovaní stále sa zmenšujúcou odmenou z bloku, tzv.
block reward. V budúcnosti tomu však tak nebude. V relatívne blízkej budúcnosti sa
očakáva, že block reward z blokov bude menší ako z transakčných poplatkov. Približne
od roku 2140 už nebudú žiadne block rewardy v Bitcoine. Treba podotknúť, že problémy
prezentované v tejto výskumnej práci, sa síce prejavujú už teraz, avšak ich skutočný dopad
môže byť nižší, ako sa pôvodne predpokladalo.

To však neznamená, že tieto problémy sú menej dôležité. Skôr to znamená, že v reálnych
systémoch sa nemusia vyskytovať tak často alebo mať taký veľký vplyv, ako sa pôvodne
predpokladalo, keď bol článok prvýkrát zverejnený. Existujú aj iné výskumné práce, ktoré
zvyčajne navrhujú riešenie len jedného z prezentovaných problémov. Naviac niektoré z
týchto riešení skôr navrhujú preventívny prístup, ktorý ale nepovažujeme za dostatočne
prísny. Navrhujeme riešenie, ktoré by malo riešiť viacero z prezentovaných problémov.
Zároveň riešenie je jednoduché na pochopenie a ľahko začleniteľné do súčasných a budúcich
blockchainov.

2.1 Problémy, ktorým sa primárne venujeme

Carlsten et al. [5] skúmali a opísali viacero problémov. Poskytli pádne argumenty za týmito
problémami, ktoré demonštrovali na simulátore, vytvorenom v tejto práci. Spolu s kom-
bináciou s novými dátami ukazujeme viac príkladov z reálneho sveta a testujeme s nimi naše
riešenie. V tejto práci sa zameriame na zmiernenie účinkov nasledujúcich troch problémov
zo spomínanej výskumnej práce.

2.1.1 Fluctuation of miner’s reward

Kolísanie odmien minera je situácia, kedy sa v priebehu určitého časového úseku odmeny z
transakcií výraznejšie menia, čo vedie ku kolísaniu odmien medzi jednotlivými vyťaženými

6

blokmi. To priamo ovplyvňuje základné predpoklady teórie hier, čo vyúsťuje k naruše-
niu celkovej bezpečnosti systému. Chápeme, že tento problém možno pozorovať na báze
niekoľkých blokov, ide však o chaotické správanie, ktoré je obtiažne analyzovať. Preto túto
variantu v našej práci neuvažujeme.

Z tohto dôvodu sa radšej zameriame na predvídateľnejšie a opakovateľnejšie časové
rámce ako napríklad vrámci dňa, týždňa či mesiaca, čo možno považovať za opodstat-
nené obavy, ako ukazujú tieto grafy z roku 2017 [23]. Z grafov môžeme vyčítať rozdiely
až viac ako 15% v ziskovosti minerov medzi jednotlivými, po sebe nasledujúcimi dňami v
týždni. Ďalším príkladom môže byť očakávané zvýšenie dopytu počas sviatkov či prázdnin.

Radi by sme zmiernili vplyv týchto výkyvov, aby sme zachovali predvídateľnejšiu zisko-
vosť minerov a vytvorili prostredie, z ktorého profituje aj konečný užívateľ.

2.1.2 Undercutting attack

Tento typ útoku bol prvýkrát predstavený v [5] a bol podporený vykonanou simuláciou v
tom istom článku. Pre jednoduchosť is uvedemie 3 typy minerov.

Poctivý miner, ktorý dodržiava protokolárne pravidlá. Ťaží na najvyššom bloku a
neuprednostňuje maximalizáciu vlastnej ziskovosti.

Celkom poctivý miner, ktorý dodržiava väčšinu pravidiel protokolu, ale snaží sa
maximalizovať svoju ziskovosť. Týmto porušuje napr. pravidlo najdlhšieho reťazca (ang.
longest-chain rule).

Posledným typom je útočný miner, ktorý nedodržiava viaceré pravidlá protokolu.
Zároveň aktívne útočí na náš systém tým, že sa snaží narušiť celkový konsenzus siete.
Avšak stále vytvára platné bloky. Tento miner sa snaží pomocou útokov maximalizovať
svoju vlastnú ziskovosť z ťažby.

Útočný miner sa pokúša znovu vyťažiť už existujúci blok takým spôsobom, že novo-
vytvorený blok obsahuje len podmnožinu zo všetkých transakcií, zahrnutých v pôvodnom
bloku. Ďalej ponechá niektoré transakcie nevyťažené a tým motivuje ďalšieho minera
ťažiť na práve jeho bloku. To znamená, že ak má jeden blok veľa transakcií s vysokými
poplatkami (ang. high feerate), t. j. vyšším pomerom poplatkov za bajt, útočný miner
tento blok znovu vyťaží. Popri tom zahrnie iba podmnožinu všetkých týchto vysokohod-
notných transakcií a zvyšok ponechá pre (celkom) poctivého minera, ktorý ich opätovne
vyťaží. Týmto profitujú obidvaja mineri.

To priamo vedie k tomu, že často dochádza k rozdeľovaniu blockchainu (ang. fork) a
odrádza poctivých minerov. Tým ich motivuje, aby prešli na celkom poctivých minerov.
Častejšie forky vedú k dlhšiemu času medzi vyťaženými blokami (ang. mean block time).
Toto negatívne ovplyvňuje skúsenosti koncového používateľa pri interakciách s blockchainom.

2.1.3 Mining gap

Tento problém robí nerentabilné pre minerov ťažiť hneď po vyťažení nového bloku, pretože
tento blok zahŕňa väčšinu transakcií, z jeho tzv. mempoolu. Ak by nejaký miner práve teraz
vyťažil nový blok, tento blok by obsahoval väčšinu naších transakcií. V našom mempoole
by ostalo veľmi málo alebo žiadne transakcie. Vyťažením bloku v tomto momente by nám
neprinieslo dostatočnú odmenu z transakcií, a teda príjmy by nepokryli naše výdavky. To
znamená, že mineri sa môžu rozhodnúť neťažiť, kým nezhromaždia dostatok transakcií v
ich mempoole, aby poplatky z týchto transakcií pokryli ich výdavky. Toto môže viesť k
preskakovaniu medzi rôznymi protokolmi, aby si udržal zisk. Takéto skákanie je väčšinou

7

problémom ťažiteľných protokolov odolných voči ASIC-om. Toto opäť vedie k zhoršenej
skúseností pre koncového užívateľa.

2.2 Navrhované riešenie
Navrhujeme riešenie, ktoré rozdeľuje transakčné poplatky, ktoré by za normálnych okolností
išli priamo minerovi bloku, na dve časti.

Prvá časť (1) ako okamžitá odmena pre minera bloku. Aktuálne iba (1) by zodpovedala
súčasnej situácii ako napr. v Bitcoine. Zaisťuje, že miner je motivovaný uprednostňovať
transakcie s vyššími poplatkami a zahrnúť ich do vyťaženého bloku.

Druhá časť (2) záloha zaslaná do jedného alebo viacerých tzv. poplatky-prerozdeľujúcich
kontraktov (ang. Fee-Redistribution Contracts) (ℱℛ𝒞s), ktoré sú súčasťou konsenzuálneho
protokolu. Cieľom týchto kontraktov je spriemerovať prijaté finančné prostriedky získané z
(2) od minerov.

Takýto kontrakt zároveň odmieňa minera bloku určitým zlomkom naakumulovaných
prostriedkov v kontrakte, teda sú spriemerované. Môžeme mať kombináciu viacerých kon-
traktov, kde by každý kontrakt dostal iný podiel z vyzbieranej časti (2) a prostriedky by
priemeroval za iné obdobie. Pomer medzi (1) a (2) je jedno z nastavení, ktoré je potrebné
ustanoviť. To vedie k viacerým výhodám, napríklad rôzne kontrakty sa môžu pokúsiť
spriemerovať odmeny voči rôznym časovým rámcom a zmierniť či úplne odstrániť prezen-
tované problémy za určitých rozumných predpokladov.

2.3 Výsledky riešenia
Môžeme si empiricky overiť, že naše riešenie výrazne zmiernilo problém tzv. mining gapu
(popr. ho úplne odstránilo) správnym nastavením ℱℛ𝒞s tým, že vždy poskytneme kvázi
garantovanú odmenu z kontraktov. To znamená, že miner by nemusel zastavovať ťažbu ani
preskakovať medzi protokolmi, kým nebude jeho mempool primerane saturovaný transak-
ciami.

Ďalej ponúka vlastnosť spriemerovania posuvným oknom (ang. sliding window). Týmto
priamo znižujeme efekt problému kolísania príjmov minerov z ťažby. Dosahuje sa to
spriemerovaním príjmov, teda zníženiu odchyliek, za vopred definované časové obdobia,
ktoré je možné nastaviť v jednotlivých kontraktoch.

Nakoniec, s konzervatívne zvolenými parametrami ℱℛ𝒞s, sme znížili minimálny potreb-
ný počet poctivých minerov. Teda bod, v ktorom už nie je undercutting útok pre útočného
minera rentabilný, z pôvodných 66% na 30%. Čo vedie k zníženiu hranice tohto útoku o
približne 55%.

2.4 Príspevky
Navrhli sme potenciálne riešenie pre Bitcoin a iné kryptomeny, ktoré majú obmedzený
maximálny počet mincí v obehu. Tieto blockchainy budú eventuálne závislými iba na
transakčných poplatkoch. Toto riešenie však nepodlieha len takýmto blockchainom, avšak
na tieto blockchainy vplýva najviac. Poskytli sme riešenie, ktorého cieľom je zachovať
obmedzený maximálny počet mincí v obehu, ale aby boli transakčné poplatky z ťažby
predvídateľnejšie a udržateľnejšie. Toto riešenie je možno implementovať prostredníctvom

8

soft-forku na mnohých súčasných blockchainoch. Toto vedie k oveľa príjemnejšiemu riešeniu
na rozdiel od riešení založených na hard-forkoch. Definitívne nastavenie kontraktov však
neposkytujeme a malo by to byť predmetom skúmania jednotlivých protokolov.

Naše riešenie nie je predmetom len pre prerozdeľovanie transakčných poplatkov ako
demonštrujeme v Appendix A

9

Chapter 3

Preliminaries

Blockchain technology was firstly introduced in the original whitepaper from year 2008
[18] as a result of the 2008 financial crisis. The next year this technology was implemented
with first Bitcoins, the native cryptocurrency coin of the Bitcoin blockchain, mined on
January 3rd. 2009. Bitcoin was created with the intention to offer fully transparent option
of transacting value besides the existing legacy financial system. Many new use cases were
discovered taking the advantage of such system. Ever since then, thousands of alternative
cryptocurrencies have emerged trying to solve many shortcomings of the design of Bitcoin
and extending it with new features.

Besides alternative way of exchanging financial value in native coins, new generation
blockchains offer exchange of custom assets, persistent storage or execution of code. The
main benefit of adding these features to such system is it allows using them without the
need of a middleman. This is achieved by utilizing modern cryptography primitives, game
theory [22] in incentivizing miners or validators to ensure validity of transaction in these
systems and many more fields.

3.1 Blockchain technology
Blockchain can be seen as an immutable shared database or as a public ledger. Blockchain
at it’s core is a structure holding a sequence of cryptographically linked blocks. Therefore,
the name blockchain – chain of blocks. Each block is constructed based on the rules of the
underlying protocol, where in a block we can usually find multiple records of transactions
created by the participants of the system during a certain time period, timestamp etc.

A single transaction must contain some mandatory data, such as arbitrary user can
verify the validity of such transaction. A block is then appended on top of the blockchain,
and it cryptographically refers to the previous top of the blockchain. These references
ensure a random block from the structure can not be altered or removed, as this would
result in breaking the referencing and making a sequence of blocks, from this block, invalid.

A protocol, using such structure, then introduces an interface for defining the main
structure of individual blocks, possible interactions by different groups of users with the
protocol etc. resulting in system of users interacting using this protocol. In such systems,
there are usually no overarching authorities1 that would control the system. Rather, these
systems rely on consensus rules, which are interpreted via consensus nodes [11] and are
actively participating in the consensus.

1We are describing permissionless blockchains such as Bitcoin

10

Consensus nodes hold the whole copy of blockchain and can verify existing blocks and
newly added blocks satisfy predefined conditions. There is no such a thing as a central copy
of the blockchain, but rather the copy is obtained by interacting with consensus nodes.
Furthermore, by obtaining the history of blockchain from consensus nodes we can expect
differences between individual copies of blockchain of top block(s) as this is intended to be
eventually consistent database so to speak.

From now we will be using the word blockchain interchangeably between the structure
definition and as the system of users using a protocol, which uses blockchain structure at
it’s core.

The blockchain has usually the following properties:

Decentralized. The system does not have any central authority. This results in a sys-
tem based on peer to peer architecture between consensus nodes. The blockchain copy is
distributed across consensus nodes of the system, making it also distributed.

Permisionless. Any participant can join the network and can become any part of the
system e.g. regular user creating transactions, consensus node etc. Permission is granted
to any user, who wants to join the system [11].

Trustless. At the core, the system is built around cryptographic primitives. Meaning, a
participant in such a system does not need to trust any particular user, but he can verify
everything by himself.

Consensus. It is achieved by the consensus nodes in the system, interactions with other
consensus nodes and following the protocol rules. This ensures a general agreement of the
status of the blockchain structure.

Persistent. Once a transaction is in a block, that is part of the blockchain and fork of
the chain does not happen in the near future, it will be persisted quasi forever.

Immutable. Nothing in the blockchain can be changed once it is generally accepted
across consensus nodes in the blockchain structure. This is the result of blocks being
cryptographically linked and referenced in a linear fashion in the blockchain structure.
However, this immutability can be only considered after some time has passed, when we
expect no forks to take place. This time is usually referred to as finality time.

Security. As long as the cryptographical assumptions of underlying cryptographical prim-
itives hold true, the system can be considered secured. However, we would additionally need
to ensure we have enough honest participants in this system.

Transparent. Any participant can access and verify transactions created in the blockchain
by himself. All information is publicly visible to all users.

11

Figure 3.1: Blockchain cryptographically linked. Image source [19].

3.2 Mempool
A mempool is a pool of all transactions pending to be included in a block. Mempool is
also distributed across consensus nodes (even though every consensus node has its own
mempool), which receive new transactions, share the mempool with other peer consensus
nodes and include a subset of these transactions when creating a new block.

Once a block is created all the transactions from this block are removed from the
mempool to ensure the mempool contains only pending and unconfirmed transactions.
Transactions included in a block have moved from unconfirmed status to confirmed status.

3.3 Transaction
A transaction can hold arbitrary data, but usually they are constructed from one of the
functionalities of the underlying blockchain e.g. a transfer of coins or tokens, execution of
script etc. In most blockchains, a mandatory transaction fee has to be paid to incentivize
consensus nodes to accept our transaction and prevent spamming attacks.

Transactions are usually signed by their respective sender before they are sent to a
consensus node, and before they are propagated from such node across the network. Signing
transaction is done by asymmetric cryptography using private and public key pairs. We
use private key to encrypt the data of the transaction and public key to verify the original
content of the data. Or we can encrypt data by a public key and decrypt them only by the
corresponding private key.

However, transactions can be executing some arbitrary scripts rather than just being
signed by the sender as simple transfer transaction. Such scripts are called smart con-
tracts [20] in blockchain terminology.

Once a transaction is added to a block and this block becomes part of the blockchain,
it is usually considered confirmed. Moreover, in real blockchains occasional forks or other

12

Figure 3.2: Illustration of pending transactions in mempool and transactions in a block.
Image source [1].

actions might occur, which revert some of the top blocks resulting in the blocks not being
part of the final blockchain anymore.

To consider transaction permanent we have to wait for the finality of a transaction [11],
which is a recommended number of blocks, that should be built on top of the block with
our transaction.

3.4 Block
A block consists of two parts – a header and a body. The header contains metadata such
hash of the previous block, on top of which this one was created, Merkle tree root hash of
all transactions, timestamp, nonce etc. The body contains the set of transactions included
in this block and other related data. Put in other words a block aggregates all pending
transaction during certain time frame from the mempool and makes these transactions
confirmed.

However, a block usually has a limitation on how many transactions it can include
arising from the block size (blockspace) i.e. the maximum size of bytes a block can have.
This limitation makes the body of block a scarce resource.

For reference the size of Bitcoin block is 1 MB, which restrict the maximum number of
transactions in such block to 12195 [6] transactions. Please note, the transaction count is
done by assuming only simple transactions utilizing SegWit soft-fork.

3.5 Block reward
A block reward is generated with a new block being created. It usually creates new native
coins of the protocol and rewards it to the creator of the block. This helps to incentivize
miners or validators to secure the protocol, and it also helps with distributing the coins in
more fair fashion between the participants of the blockchain.

Most blockchains rely on this scheme to ensure the security of the protocol by inviting
miners or validators to validate the transactions.

13

Figure 3.3: Example of Bitcoin transaction with fee for miner as “Unclaimed”. Image
source [2].

3.6 Total supply
Blockchains are usually divided into two groups by the way they handle the supply of all
coins – one has maximum capped supply as it is the case in Bitcoin and the other group
without the maximum supply as in Ethereum.

When a blockchain has a capped supply it will eventually deplete the block rewards.
After which point there will be no more generated incentive for miners or validators from
the block reward, and they will rely solely on transaction fees.

This resulted in the second type of blockchains without this limitation as a simple form
of a workaround. However, this results in constant inflation of new coins into the circulation.

3.7 Transaction fees
A transaction fee is a fee included with a transaction which serves multiple purposes. Some
of the main ones are the following:

• It incentivizes the miner or validator to accept our transaction into his mempool.
Furthermore, with increasing the transaction fee we can ensure a higher chance of
having our transaction included in a block as there is limited size of transactions,
which can be included in a block because of a block size.

• It helps to prevent flooding the blockchain with transaction.

• To execute a code in a transaction, most notably a smart contract execution on
blockchains such as Ethereum. This can be understood as paying a fee for running
the code on the consensus node.

Feerate is a ratio of transaction fee and size of transaction in bytes [23]. From the side
of miner or validator this can be seen as how profitable it is to prioritize including this

14

Figure 3.4: Example of Bitcoin block. Image source [3].

transaction over other transactions and miners or validators usually sort transactions in
their respective mempool based on this parameter.

Blockchains with capped supply will eventually incentivize miners or validators only
with transactions fees.

3.8 Proof of Work

Proof of Work (PoW) blockchains are a type of blockchains, where consensus is reached
by dedicating computing power to calculate cryptographic hashes in order to create a new
block in the blockchain by the process called mining.

Mining is done by a miner who is seen by the system as a consensus node. This way a
miner secures the protocol and in return for finding a block he expects a reward to cover
his expenses for mining equipment and utilities.

15

Figure 3.5: Process of mining in PoW blockchain. Image source [15].

Higher the computing power, called hashrate, a blockchain has, the more secured it can
be considered. That is why the system has to make sure it rewards and incentivizes miners
to mine in such a system.

3.9 Mining
Is a process specific to PoW, done by a miner. He tries to find such order of block parameters
most notable a value of nonce, where the resulting hash of this block’s header would be
under a target set by the system. With more miners joining the network, the smaller the
chance of finding such solution. This leads to miners grouping together and forming mining
pools.

Next to the block reward a miner receives in return from mining, he also receives
transaction fees from transactions he includes in the final block. If a blockchain does not
provide the block reward, a miner relies solely on these transaction fees as his only income
from mining and securing the blockchain. This is why he might prefer some transactions
over other transactions to maximize his revenue.

16

Chapter 4

Current Problems with
Transaction-Fee-Based Regimes

In this chapter, we will briefly discuss the problems of PoW blockchains relying mostly
only on transactions fees to incentivize miners to secure such blockchains. These problems
were deeply examined in the original paper from 2016 [5], which this thesis builds upon
and provides a solution for few of the presented shortcomings. These shortcomings were
displayed on Bitcoin blockchain with additional simulations.

4.1 Fluctuation of miner’s reward
Fluctuations can be split into 2 main categories. Into the first category fall unpredictable
fluctuations, which happen from ad hoc events. This can be an example of high volume
of transactions in short period of time, such as we have seen for example on blockchain as
Ethereum with NFT collection mints. We do not take this category under consideration in
this thesis, especially as they are subject of brief time periods. Furthermore, it would be
impossible to predict these events on protocol level in advance.

The second group of fluctuations is somewhat predictable and repeatable. Having com-
mon averages of volumes in transactions regularly repeated over a presented period of time,
which will be subject to when we talk about the fluctuation of miner’s reward (revenue).
Such fluctuations can be seen as average usage of blockchain via transactions with coins
and tokens exchanged for goods and services on a rather repeatable basis.

We can see such example in Figure 4.1 displaying averaged transaction fees during
two different time frames collected in Q4 of 2017 on Bitcoin blockchain. We can see the
discrepancies might be over 15% from one day to another within a week’s time period.

Transaction fees are direct miner’s revenue on Bitcoin blockchain in situation, where the
block rewards are fully depleted or are insignificant compared to transaction fees. And such
fluctuations in transaction fee rewards have some undesirable effects. With the assumption
of most miners securing our blockchain as long as they are profitable, high volatility in
their revenue might repel them from mining and securing our blockchain. Thus, directly
resulting in less secured protocol for such PoW blockchains.

Apart from the example in Figure 4.1 we can also assume similar scenario across year’s
time period with holidays during different parts of year, e.g. we can assume increased
demand before Christmas holidays and decrease after New Year’s Eve. We would like to
mitigate the effect of these repeatable fluctuations for the sake of all participants to result

17

(a) Weekly fluctuation.

(b) Daily fluctuation.

Figure 4.1: Fluctuation in transaction fees Q4 2017. Data provided by [23].

in more predictable and less volatile environment for miners securing our protocol and
resulting in more secured protocol leading to better user experience.

4.2 Undercutting attack

This attack was firstly introduced and researched in afford-mentioned paper [5]. The orig-
inal authors ran few simulations proving it a real type of attack.

The malicious miner, who was introduced in [5], attempts to obtain transaction fees by
re-mining a top block of the longest chain. By re-mining the top block, he includes a subset
of all transactions in his newly re-mined block. The rest of these “generous” transactions
(having higher feerate Paragraph 3.7 than transactions from surrounding blocks) from the
originally mined block, is left in the mempool. This is done by not being included in the
re-mined block, leaving them unclaimed for the next miner. This is showed in Figure 4.2.

By leaving some transactions from the original undercut block the malicious miner
motivates the next miner to mine on top of his block, yielding such miner additional revenue
by allowing him to include these unclaimed transactions from the mempool. By miners
mining on top of this re-mined block they take part in the undercutting attack.

18

Figure 4.2: Undercutting attack from the original paper [23].

This is especially valid strategy for certain blocks. Where such block has much higher
value compared to blocks before it, meaning this block yielded its miner significantly higher
revenue, than to miners of few previous blocks. Furthermore, if this block takes most of
“generous” transactions from the mempool, leaving only transactions with smaller feerate.
Thus, such block can be a subject of undercutting attack. To provide a simple example we
can again consider a new NFT series drop and block minting this series would have a much
higher feerate for minting transactions in order to ensure the drop.

Also it is assumed the blockchain contains miners, who are honest except they do not
obey the longest-chain rule but rather try to prioritize their own profitability. This results
in leaving the true honest miners, following the longest-chain rule, into a disadvantage.
Successful execution of undercutting attacks might directly result in higher orphan rate1,
unreliability of the system (such as longer block time) and double spending.

4.3 Mining gap
If the protocol does not provide any block reward and all the miner’s revenue comes from
the transaction fees from transactions, he includes in a block, the miner no longer has a
guarantee of being profitable during the whole time he mines even if he successfully mines
a block. This is the main premise behind the mining gap.

This comes from the fact, that when a new block is mined and added to the blockchain
and a miner receives this update, he would have to remove all the included transactions in
this block from his mempool. Leaving the miner less transactions in the mempool he can
include in the next block. Thus, it is argued a miner does not have to be able to covert his
expenses such as electricity costs, internet connection costs etc.

We will describe the situation of miner mining right after a new block was found.
He would have to remove all transactions included in this block from his mempool thus
leaving him possibly no transactions. However, he would still be trying to mine for the
next block, increasing his expenses in the meanwhile, for potentially finding a block with
zero transactions. Even if he found such block, he would not gain any profit from it as it

1ratio of valid blocks which are not part of the chain. This also happens normally because of network
delay etc.

19

might have few to none fees from transactions. Such situation persists even as the miner is
receiving new transactions, as they might not be coming fast enough in the beginning.

Not mining and waiting for the mempool to fill with new transactions to start mining
again might not be a feasible strategy. For ASIC-resistant blockchains, a miner might decide
to hop between such blockchains, as he is not restricted to mining on PoW blockchains
secured with the same cryptographic primitives. However, this is rather speculative guess.

4.4 Extisting solutions

The work of Carlsten et al. [5] is the inspiration for our paper, which for the first time
describes undercutting attacks arising from the exponential distribution of block creation
time and significant differences in transaction fees. The authors simulated Bitcoin under
transaction-fee-based regime and found that there exist the minimal threshold of Default-
Compliant miners equal to 66%. However, our paper is not the first trying to target some
subset of problems discovered or mentioned in afford-mentioned work. We will take a look
at a few similar solutions. Furthermore, we would like to extend some knowledge displayed
in these works and the facts we have used throughout our own work.

Gong et al. [10] argue that using all accumulated fees in the mempool regardless of the
block size limit is infeasible in practice and can inflate the profitability of undercutting that
was originally described in [5]. Furthermore, Houy [12] demonstrates that a constraint on
the block size limit (thus the number of transactions) has economic importance and allows
transaction fees not dropping to zero. Therefore, Gong et al. [10] model the profitability
of undercutting with the block size limit presented, which bounds the claimable fees in a
mining round. The authors presented a countermeasure that selectively assembles transac-
tions into the new block, while claiming fewer fees to avoid undercutting. We argue that in
contrast to our approach, this solution cannot be enforced by the consensus protocol, and
thus might still enable undercutting to occur. It tries to preemptively include only some
subset of transactions with high feerate and leave some others for the next miner, resulting
in rather preventive solution.

However, based on facts from these works we have decided with updating the simulator
we have included changes simulating “fullMempool” option Paragraph 6.1.4, which essen-
tially results in having capped amount of fees per simulated block. This fact can be also
usually confirmed on the Bitcoin blockchain using [17], where we during the creation of our
work saw multiple blocks being filled with unconfirmed transactions.

Zhou et al. [24] deal with the problem of a mining gap, which is more significant when
the throughput of blockchain is high. Therefore, the authors propose the self-adaptive
algorithm to adjust the block size every 1000 blocks and thus ensure that blocks have
enough space to pack new transactions.

Lastly, even though Bitcoin-NG paper [9] does not present offer a solution for our
problems, which we focus on in this paper, we found a similar idea of splitting fees as we
introduce with our ratio C and M respectively in Chapter 5. The subject of Bitcoin-NG [9]
is to propose a new consensus mechanism, however it also contains an idea of splitting the
transaction fees between two entities – the current leader and the miner of the block –
which should incentivize the miner to include blocks created by the leader. This is similar
approach in a way, as we also allow the miner to take only portion of the fees directly.

20

However, the other part goes to a different party and no averaging is happening here.
Furthermore, the main point of paper [9] is to showcase a blockchain with some features of
Bitcoin while being more scalable with smaller confirmation time.

21

Chapter 5

Proposed Solution

Here, we describe our proposed solution in more detail. In sum, our proposed solution
collects a percentage from all transaction fees, which are usually paid in a native cryptocur-
rency coin, collected in the mined blocks into one or multiple fee-redistribution contracts
(i.e., ℱℛ𝒞s). Miners of the blocks, who must contribute to these contracts, are at the same
time rewarded from them, while the received reward approximates a moving average of the
incoming transaction fees across the fixed sliding window of the blocks.

The fraction of transaction fees (i.e., C ∈ ⟨0, 1⟩) from the mined block is sent to ℱℛ𝒞s
and the remaining fraction of transaction fees (i.e., M ∈ ⟨0, 1⟩) is directly assigned to the
miner, such that C+M = 1.

The role of M is to keep the incentive for the miners to prioritize transactions with higher
feerate Paragraph 3.7 in tack, in order to keep the free-market biding feature unchanged.
Leaving this feature for users creating transactions as option to have a chance to bid higher
feerate in order to have their transaction included in sooner block.

While the role of C is to mitigate the problems, this paper is focused on, such as
fluctuating miner’s revenue, undercutting attacks and the mining gap by averaging the
collected fees. And rewarding the miner with averaged reward over different time period,
based on individual contracts. Roughly said, a miner can expect M of his reward directly
from the collected fees and C as averaged reward of fees collected in individual contracts.

5.1 Overview
We depict the overview of our approach in Figure 5.1, and it consists of the following steps:

1. Using ℱℛ𝒞, the miner calculates the reward for the next block 𝐵 he receives from the
(i.e., 𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚(ℱℛ𝒞) – see Equation 5.4) that will be paid by ℱℛ𝒞 to the miner of
that block.

2. The miner mines the block 𝐵 using the selected set of transactions with the highest
feerate to maximize the profit from his mempool.

3. The miner of the mined block 𝐵 directly receives a certain fraction of all the collected
transaction fees (i.e., 𝐵.𝑓𝑒𝑒𝑠 * M) and the remaining part (i.e., 𝐵.𝑓𝑒𝑒𝑠 * C) the
miner must send to ℱℛ𝒞.

4. The miner obtains 𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚 from ℱℛ𝒞.

22

Figure 5.1: Overview of our solution.

Our approach is embedded into the consensus protocol, and therefore consensus nodes
are obliged to respect it in order to ensure that their blocks are valid, accepted by the
network, resulting in receiving rewards from mining such blocks. It can be implemented
utilizing smart contracts [20] of the underlying blockchain platform Appendix A. In the
environment with constant transaction fees, a miner would receive the same amount with
or without our solution.

5.2 Prioritization of transactions with higher feerate

In public blockchains (especially with the transaction-fee-based regime) there exists a mech-
anism to ensure prioritization in processing of transactions with higher feerate, which might
result into fluctuations in rewards of the miners. This feature allows users to have their
transactions processed in a sooner block if the mempool holds too many transactions to be
fit into a single block. In our approach, we preserve the transaction prioritization since we
directly attribute a part of the transaction fees to the miner (i.e., M).

5.3 Fee-Redistribution Contracts
We define the fee-redistribution contract as a following tuple:

ℱℛ𝒞 = (𝜈, 𝜆, 𝜌), (5.1)

where

• 𝜈 is the accumulated amount of usually native blockchain coins in the contract &

• 𝜆 denotes the size of ℱℛ𝒞’ sliding window in terms of the number of preceding blocks
that contributed to 𝜈 &

23

• And 𝜌 is the parameter defining the ratio for redistribution of incoming collected
transaction fees to the particular ℱℛ𝒞 among multiple contracts, while the sum of 𝜌
across all ℱℛ𝒞s must be equal to 1 (i.e. see Equation 5.2).

∑︁
𝑥 ∈ ℱℛ𝒞𝑠

𝑥.𝜌 = 1. (5.2)

In contrast to a single ℱℛ𝒞, multiple ℱℛ𝒞s enable better adjustment of compensa-
tion to miners during periods of higher transaction fee fluctuations or in an unpredictable
environment (we show this in Section 6.4). With multiple ℱℛ𝒞s we can aim individual
ℱℛ𝒞 to target different time periods as mentioned in Section 4.1. We denote the state

of ℱℛ𝒞s at the blockchain’s height 𝐻 as ℱℛ𝒞𝑠[𝐻]. Then, we determine the reward from
ℱℛ𝒞[𝐻] ∈ ℱℛ𝒞𝑠[𝐻] for the miner of the next block with height 𝐻 + 1 as follows:

𝜕𝐶𝑙𝑎𝑖𝑚
ℱℛ𝒞[𝐻]

[𝐻+1] =
ℱℛ𝒞[𝐻].𝜈

ℱℛ𝒞[𝐻].𝜆
, (5.3)

while the reward obtained from all ℱℛ𝒞s is

𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚[𝐻+1] =
∑︁

𝒳[𝐻] ∈ ℱℛ𝒞𝑠
[𝐻]

𝜕𝐶𝑙𝑎𝑖𝑚
𝒳[𝐻]

[𝐻+1]. (5.4)

Then, the total reward of the miner who mined the block 𝐵[𝐻+1] with all transaction fees
𝐵[𝐻+1].𝑓𝑒𝑒𝑠 is

𝑟𝑒𝑤𝑎𝑟𝑑𝑇[𝐻+1] = 𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚[𝐻+1] +M *𝐵[𝐻+1].𝑓𝑒𝑒𝑠. (5.5)

The new state of contracts at the height 𝐻 + 1 is

ℱℛ𝒞𝑠[𝐻+1] = {𝒳[𝐻+1](𝜈, 𝜆, 𝜌) | (5.6)

𝜆 = 𝒳[𝐻].𝜆, (5.7)
𝜌 = 𝒳[𝐻].𝜌, (5.8)
𝜈 = 𝒳[𝐻].𝜈 − 𝜕𝐶𝑙𝑎𝑖𝑚[𝐻+1] + 𝑑𝑒𝑝𝑜𝑠𝑖𝑡 * 𝜌, (5.9)

𝑑𝑒𝑝𝑜𝑠𝑖𝑡 = 𝐵[𝐻+1].𝑓𝑒𝑒𝑠 * C}, (5.10)

where 𝑑𝑒𝑝𝑜𝑠𝑖𝑡 represents the fraction C of all collected transaction fees from the block
𝐵[𝐻+1] that are deposited across all ℱℛ𝒞s in ratios respecting Equation 5.2.

5.4 Example

We present an example using Bitcoin [18] to demonstrate our approach. We assume that the
current height of the blockchain is 𝐻, and we utilize only a single ℱℛ𝒞 with the following
parameters:

ℱℛ𝒞[𝐻] = (2016, 2016, 1).

We set M = 0.4 and C = 0.6, which means a miner directly obtains 40% of the 𝐵[𝐻+1].𝑓𝑒𝑒𝑠
and ℱℛ𝒞 obtains remaining 60%.

24

Next, we compute the reward from ℱℛ𝒞 obtained by the miner of the block with height
𝐻 + 1 as

𝜕𝐶𝑙𝑎𝑖𝑚[𝐻+1] =
ℱℛ𝒞[𝐻].𝜈

ℱℛ𝒞[𝐻].𝜆
=

2016

2016
= 1 BTC,

resulting into
𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚[𝐻+1] = 𝜕𝐶𝑙𝑎𝑖𝑚[𝐻+1] = 1 BTC.

Further, we assume that the total reward collected from transactions in the block with
height 𝐻 + 1 is 𝐵[𝐻+1].𝑓𝑒𝑒𝑠 = 2 BTC. Hence, the total reward obtained by the miner of
the block 𝐵[𝐻+1] is

𝑟𝑒𝑤𝑎𝑟𝑑𝑇[𝐻+1] = 𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚[𝐻+1] +M *𝐵[𝐻+1].𝑓𝑒𝑒𝑠

= 1 + 0.4 * 2
= 1.8 BTC,

and the contribution of transaction fees from 𝐵[𝐻+1] to the ℱℛ𝒞 is

𝑑𝑒𝑝𝑜𝑠𝑖𝑡 = 𝐵[𝐻+1].𝑓𝑒𝑒𝑠 * C = 1.2 BTC.

Therefore, the value of 𝜈 in ℱℛ𝒞 is updated at height H + 1 as follows:

𝑣[𝐻+1] = ℱℛ𝒞[𝐻].𝜈 − 𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚[𝐻+1] + 𝑑𝑒𝑝𝑜𝑠𝑖𝑡

= 2016− 1 + 1.2 BTC
= 2016.2 BTC.

5.5 Traditional way in transaction-fee-based regime

In traditional systems (running in transaction-fee-based regime) 𝑟𝑒𝑤𝑎𝑟𝑑𝑇[𝐻+1] would be
equal to the sum of all collected transaction fees 𝐵[𝐻+1].𝑓𝑒𝑒𝑠 (i.e., 2 BTC); hence, using
M = 1. In our approach, 𝑟𝑒𝑤𝑎𝑟𝑑𝑇[𝐻+1] can only be equal to the sum of all transaction fees
in the block 𝐵[𝐻+1], if:

𝐵[𝐻+1].𝑓𝑒𝑒𝑠 =
𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚[𝐻+1]

C
. (5.11)

In our example, a miner can mine the block 𝐵[𝐻+1] while obtaining the same total reward
as the sum of all transaction fees in the block if the transactions carry 1.66 BTC in fees:

𝐵[𝐻+1].𝑓𝑒𝑒𝑠 =
1

0.6
= 1.66 BTC.

Even though at first sight this might appear as defect it is by design and in Section 6.5
we will show how our design makes mining on blockchains with only transaction fees more
predictable and sustainable.

5.6 Initial setup of ℱℛ𝒞s contracts
We propose to initiate the contracts in our approach by some genesis value that enables
even start or implement this feature on existing blockchains such as Bitcoin while it is

25

generating significantly higher miner’s revenue from block reward compared to transaction
fees.

To enable an even start, we propose to initiate ℱℛ𝒞s of our approach by a genesis value.
The following formula calculates the genesis values per ℱℛ𝒞 and initializes starting state
of ℱℛ𝒞𝑠[0]:

{ℱℛ𝒞𝑥
[0](𝜈, 𝜆, 𝜌) | 𝜈 = 𝑓𝑒𝑒𝑠 * C * 𝜌 * 𝜆}, (5.12)

where 𝑓𝑒𝑒𝑠 is the expected average of transaction fees coming from users of the blockchain.

Note, this paper is not subject to setting individual parameters in the final blockchain.
Rather, it tries to demonstrate how this solution works and how different parameters influ-
ence the behavior. The parameters should be adjusted on individual basis for blockchains
and should be considered by the creators to match their expected features.

26

Chapter 6

Experiments

In this chapter, we will focus on conducting multiple experiments in order to explore a
way to evaluate our solution. To showcase how different parameters influence the behavior
of our solution and what for should individual parameters be used for. We will provide a
summary overview of all important parameters in the beginning of each experiment.

6.1 Simulator

6.1.1 General overview

The simulator is of type Discrete system, and its behavior can be described in 5 steps,
however it still follows the simple 3 steps of initialization of environment, execution of
simulation and lastly harvesting and representing the results.

During initialization the simulator calculates a target time period, meaning it calculates
for how many simulation seconds it will run. This is calculated from input parameter of
expected blocks in the final blockchain. This parameter gets multiplied by the expected
blocktime and results in defining the simulator’s timeline. Furthermore, it sets up settings
for blockchain characteristic features as expected blocktime, block reward, incoming fees
etc., and also initializes individual learning miners (our learning models) to initial values
and defined spread of miners. Original authors [5] have included 2 main learning strategies,
multiplicative and EXP3.

Now the simulator proceeds to execute individual runs of simulation, which involves
steps from 2nd to 4th of this simulator. First step is to reset the blockchain to default state
and prepare our learning models for miners before the run of a single simulation. The next
step is to simulate this run, which is described later in Section 6.1.2. Lastly we evaluate the
resulting blockchain and profitability of individual miners (in case we have multiple mining
strategies) and update weights of all our mining strategies.

At the final stage of the simulation, the simulator prints summary information and
leaves files with the final weights of the different mining strategies. With our changes, the
simulator can also leave files with the information from the last run of simulation about the
final blockchain’s block rewards collected by the miners of corresponding blocks and the fee
scenario for that run of simulation.

27

6.1.2 Single run of simulation

In each event, either an advancement in time by a second or new block found, we let indi-
vidual miners, with different strategies, calculate their chances of finding a block. During
the calculation of chances of finding a block, the miner considers more information for his
next steps from the blockchain available to him. These might include the value of top block,
transactions in the mempool etc., which can be used by his strategy. This is also true for
other parts of simulation mentioned below. However, in order to keep this overview simple
we omit these details.

Then a broadcast round takes place, where depending on the length of miners’ private
chain and his strategy, he decides whether to broadcast his chain or not. Here, the simulator
allows using network delays, which can be optionally set up in the initialization phase.
Note, the honest miner broadcasts and publishes as soon as he finds a block. Up next, a
publishing round is evaluated from previously broadcasted blocks. After these steps, the
known blockchain of all miners should be updated to let them decide on their next mining
steps.

These simplified steps are repeated until we reach our target time period.

For more information about the simulator, we advise the reader to read the original
paper [5], or read the updated source code (attached with this work), which can be also
found on [4].

6.1.3 Changes in simulator

We used the original simulator [14] with slight modifications to the way rewards are calcu-
lated and issued to miners from the blocks. We have added an option to create a custom
scenario for incoming fees from transactions. This option replaces the fixed income per time
unit (second) i.e. linearly incoming total value in fees, however this is still possible with
our option. Finally, we have integrated our proposed solution in order to run simulation
with our solution and to be able to directly recreate the original experiment for comparison
with the problem defined in Section 4.2.

6.1.4 Custom fee scenario

We have added the option to create a configuration JSON file named feeSimulation.json.
The configuration defines the following properties:

• mean – default value of mean for normal distribution function

• deviation – default value of deviation for normal distribution function

• fullMempool – boolean value (explained in Paragraph 6.1.4)

• timeline – array of individual fee epochs.

Parameters for individual fee epochs

• start – blockheight, at which this epoch starts

• epochType – specifies strategy for generating fees

• values – array expecting integral values used in epochType.

28

And finally individual epochType-s

• 0 – fixed reward per block specified by values[0]

• 1 – linearly changing fees per block starting from values[0] (block start) until
values[1]

• 2 – normal distribution N∼(values[0],values[1]),

where the epochs are sorted by the start attribute and if the simulation has no more
defined epochs, then epochType = 2 with values mean & deviation is used.

The fullMempool parameter was introduced in order to allow compatibility with the orig-
inal simulator but to also allow us to simulate a more realistic behavior such as reproduction
of Figure 4.1.

• True means mined block gets the amount specified by scenario unrelated to time it
took to mine this block.

• False results adding 1
BLOCKTIME * 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, where

– BLOCKTIME represents expected blocktime, which is 600 seconds as per Bitcoin
– seconds represents the time it took to mine this block,

meaning the longer it takes a miner to mine this block, the higher reward he gets i.e.
if he mined this block for average blocktime, he would receive reward specified by the
scenario.

We have changed the source code to reflect the expected behavior, written in the
feeSimulation.json file. This means how fees are being generated (added) to the simu-
lated protocol during simulation to not break the expected functionality of the simulator.

6.1.5 Contracts

Similarly to the previous point, we have created a JSON config file named feeContracts.json
to set up the ℱℛ𝒞s in the simulator, where individual ℱℛ𝒞 corresponds to the definition
in Equation 5.1. The following parameters are expected in the config file:

• toContracts – corresponds to C

• contracts – array of individual contracts,

where individual contracts are defined with following parameters:

• value – corresponds to ℱℛ𝒞.𝜈

• length – corresponds to ℱℛ𝒞.𝜆

• percentage – corresponds to ℱℛ𝒞.𝜌.

29

Furthermore, we have adjusted how a miner calculates his expected reward for individual
mining strategies as this influences how a miner decides, on which chain he mines or whether
he will execute the undercutting attack. These strategies are defined in the simulator, and
they simulate differently behaving miners such as honest miner, undercutting miner etc.
This had to be done as with the introduction of ℱℛ𝒞s a miner is not able to undercut the
whole value of a block but just a M fraction from the total block value.

6.1.6 Input arguments

In order to make running simulation easier and faster without the need to recompile the
whole executable with every slight modification, except the two JSON config files previously
mentioned, we have decided to pass some commonly used parameters to the executable.
These parameters are following in their respective order:

• expected number of blocks in the longest chain in a single run of simulation, not
considering forks

• total number of simulation runs.

6.1.7 Common features of experiments

We evaluated our proof-of-concept implementation of ℱℛ𝒞s on a long term scenario that
we designed to demonstrate significant changes in the total transaction fees in the mempool
evolving across the time. This scenario is depicted in the resulting graphs of most of our
experiments, where our designed scenario of fees is represented by the “Fees in mempool”
series such as Section 6.2 and Section 6.3.

We experimented with different parameters and investigated how they influenced the
total rewards miners receive from ℱℛ𝒞s versus the baseline without our solution. Mainly
these included a setting of C as well as different lengths of individual 𝜆s of ℱℛ𝒞s. Note that
we used the value of transaction fees per block equal to 50 BTC, alike in the original paper
introducing undercutting attacks [5]. This corresponds to the 𝑓𝑒𝑒𝑠 = 50𝐵𝑇𝐶, accordingly
to which we created the initial setup of ℱℛ𝒞s as per Equation 5.12, and usually the start
of the designed scenario starts from this value in terms of fees.

Also, in all our experiments but the last one (i.e., Section 6.6), we enabled the fullMem-
pool option Paragraph 6.1.4 (i.e. True, meaning fixed reward per block) to ensure more
realistic conditions. Besides this option we also used only honest miners across all our
experiments except the last one, which is based around different, some of them malicious,
miners.

Lastly, many experiments are conducted under less usual conditions, compared to reality,
to allow us to better understand the impact of our solution.

30

6.2 Experiment I – Different lengths of ℱℛ𝒞s

We will observe both parameters simultaneously (i.e. ratio of M&C and ℱℛ𝒞.𝜆) as sepa-
rating them is not a viable option.

6.2.1 Methodology

The purpose of this experiment was to investigate the amount of the reward a miner received
with our approach versus the baseline (i.e., the full reward is based on all transaction fees).
In this experiment, we investigated how C influences the total reward of the miner and how
𝜆 of the sliding window averaged the rewards. In detail, we created two independent ℱℛ𝒞s
with different 𝜆 – one was set to 2016 (i.e., ℱℛ𝒞1), and the second one was set to 5600 (i.e.,
ℱℛ𝒞2). We simulated these two ℱℛ𝒞s with three different values of C ∈ {0.5, 0.7, 0.9}
while keeping the same scenario. The defined ℱℛ𝒞1 and ℱℛ𝒞2 respectively:

ℱℛ𝒞𝑠1 = {ℱℛ𝒞1(_, 2016, 1)}
ℱℛ𝒞𝑠2 = {ℱℛ𝒞1(_, 5600, 1)}

Note, the 𝑣𝑎𝑙𝑢𝑒 is dynamically calculated based on value of C using Equation 5.12 with
𝑓𝑒𝑒𝑠 = 50𝐵𝑇𝐶 for the initial setup.

6.2.2 Results

The results of this experiment, are depicted in Figure 6.1. Across all runs of our experiment
we can observe that ℱℛ𝒞2 adapts slower as compared to ℱℛ𝒞1, which leads to more
significant averaging of the total reward paid to the miner. This means with falling fees, the
miners can keep relatively higher compensations. Even though more significant averaging
is desired, we can see faster adaptation to changing environment by ℱℛ𝒞1, what a miner
would prefer with rising fees.

We can see the averaging of the final reward is at the same time influenced by ratio
of M&C. The higher the C parameter, the higher the averaging. However, the less direct
reward to the miner from the transaction fees he includes in a block. Higher C is desired,
however it is questionable at what point we will see diminishing returns in terms of miners
not needing to prioritize higher feerate transactions.

6.3 Experiment II – Multi-contract ℱℛ𝒞

6.3.1 Methodology

In this experiment, we investigated how multiple contract ℱℛ𝒞s dealt with the same sce-
nario as before – i.e., varying C. Furthermore, we investigated in detail how individual
ℱℛ𝒞s contributed to the 𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚[𝐻+1] by their individual 𝜕𝐶𝑙𝑎𝑖𝑚

ℱℛ𝒞[𝐻]

[𝐻+1] . This time,
we varied only the parameter C ∈ {0.5, 0.7, 0.9}, and we considered four ℱℛ𝒞s setup:

ℱℛ𝒞𝑠 = {
ℱℛ𝒞1(_, 1008, 0.07),ℱℛ𝒞2(_, 2016, 0.14),
ℱℛ𝒞3(_, 4032, 0.28),ℱℛ𝒞4(_, 8064, 0.51)},

where their lengths 𝜆 were set to consecutive powers of two (to see differences in more in-
tensive averaging spread across longer intervals), and their redistribution ratios 𝜌 were set

31

(a) ℱℛ𝒞1 and C = 0.5. (b) ℱℛ𝒞2 and C = 0.5.

(c) ℱℛ𝒞1 and C = 0.7. (d) ℱℛ𝒞2 and C = 0.7.

(e) ℱℛ𝒞1 and C = 0.9. (f) ℱℛ𝒞2 and C = 0.9.

Figure 6.1: Experiment I investigating various C𝑠 and 𝜆s of a single ℱℛ𝒞, where ℱℛ𝒞1.𝜆 =
2016 and ℱℛ𝒞2.𝜆 = 5600. Fees in mempool show the total value of fees in the mempool
able to be mined (i.e., representing the baseline). Block Value is the actual reward a miner
received in block 𝐵 as a sum of the fees he obtained directly (i.e. M * 𝐵.𝑓𝑒𝑒𝑠) and the
reward he got from ℱℛ𝒞 (i.e., 𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚[𝐻]). Expected income from Contract represents
the reward of a miner obtained from ℱℛ𝒞 (i.e., 𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚[𝐻]).

32

to maximize the potential of averaging by longer ℱℛ𝒞s (see details below in Section 6.3.3).
However, we will show additional data, that is valuable in multi-ℱℛ𝒞 environment. The
purpose of this experiment is to show, how different ℱℛ𝒞s inside ℱℛ𝒞𝑠 setup are affected
and their impact on the final reward going to the miner. Meaning, individual ℱℛ𝒞s can
target different time averaging windows.

6.3.2 Results

The results of this experiment are depicted in Figure 6.2. We have verified the expected
advantages of using multi-ℱℛ𝒞 setup. We can observe that the shorter ℱℛ𝒞s quickly
adapted to new changes, and the longer ℱℛ𝒞s kept more steady income for the miner.
In this sense, we can see that 𝜕𝐶𝑙𝑎𝑖𝑚4 held steadily over longer periods of lower fees in
the scenario, while for example 𝜕𝐶𝑙𝑎𝑖𝑚1 fluctuated more. While taking the advantage of
having multiple ℱℛ𝒞s we are targeting different time frames with different 𝜆s .

Since the scenarios of fees evolution in the mempool was the same across our first two
experiments, we can compare the ℱℛ𝒞 with 𝜆 = 5600 from Section 6.2 and the current setup
involving four ℱℛ𝒞s – both had some similarities. This was done intentionally to compare,
if we are able to interchange multi-ℱℛ𝒞 setup with a single ℱℛ𝒞 using 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒_𝜆, which
we will introduce in Section 6.4.

6.3.3 Different 𝜌s

In Figure 6.3 we investigated different values of 𝜌 in the same set of four contracts and
their impact on 𝜕𝐶𝑙𝑎𝑖𝑚s to ensure our assumptions are correct. The results show how
different values of 𝜌s behave in respect to their relative 𝜆s of multiple ℱℛ𝒞s. To maximize
the potential of averaging, the results incline towards a correlation between 𝜌, and it’s
respective 𝜆 should take place.

6.4 Experiment III – Effective length of ℱℛ𝒞

6.4.1 Methodology

In this experiment, we investigated whether it is possible to use a single ℱℛ𝒞 setup to
replace a multiple ℱℛ𝒞s while preserving the same effect on the 𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚. This came
as an idea to investigate this option in order to simplify the setup and consolidate multiple
ℱℛ𝒞s into a single one. This would also result in saving more space in the blockchain.
To quantify a difference between such cases, we introduced a new metric of ℱℛ𝒞𝑠, called
effective_𝜆, which can be calculated as follows:

effective_𝜆(ℱℛ𝒞𝑠) =
∑︁

𝑥 ∈ ℱℛ𝒞𝑠
𝑥.𝜌 * 𝑥.𝜆. (6.1)

As the example, we were interested in comparing a single ℱℛ𝒞 with 4 ℱℛ𝒞s, both config-
urations having the equal effective_𝜆. The configurations of these two cases are as follow:
(1) ℱℛ𝒞(_, 5292, 1) and (2)

ℱℛ𝒞𝑠 = {
ℱℛ𝒞1(_, 1008, 0.07),ℱℛ𝒞2(_, 2016, 0.19),
ℱℛ𝒞3(_, 4032, 0.28),ℱℛ𝒞4(_, 8064, 0.46)}.

33

(a) Scenario with 4 ℱℛ𝒞s,
C = 0.5.

(b) 𝜕𝐶𝑙𝑎𝑖𝑚s and 𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚,
C = 0.5.

(c) 𝜕𝐶𝑙𝑎𝑖𝑚s normalized by 𝜌,
C = 0.5.

(d) Scenario with 4 ℱℛ𝒞s,
C = 0.7.

(e) 𝜕𝐶𝑙𝑎𝑖𝑚s and 𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚,
C = 0.7.

(f) 𝜕𝐶𝑙𝑎𝑖𝑚s normalized by 𝜌,
C = 0.7.

(g) Scenario with 4 ℱℛ𝒞s,
C = 0.9.

(h) 𝜕𝐶𝑙𝑎𝑖𝑚s and 𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚,
C = 0.9.

(i) 𝜕𝐶𝑙𝑎𝑖𝑚s normalized by 𝜌,
C = 0.9.

Figure 6.2: Experiment II investigating various Cs in the setting with multiple ℱℛ𝒞s with
their corresponding 𝜆 = {1008, 2016, 4032, 8064} and 𝜌 = {0.07, 0.14, 0.28, 0.51}. 𝜕𝐶𝑙𝑎𝑖𝑚s
represents contributions of individual ℱℛ𝒞s to the total reward of the miner (i.e., its
𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚 component).

34

We can easily verify that the effective_𝜆 of 4 ℱℛ𝒞s is the same as in a single ℱℛ𝒞 using
Equation 6.1: 0.07 * 1008 + 0.19 * 2016 + 0.28 * 4032 + 0.46 * 8064 = 5292.

We conducted this experiment using a custom fee evolution scenario involving mainly
linearly increasing/decreasing fees in the mempool (see Figure 6.4a), and we set C to 0.7
for both configurations. The new scenario of the transaction fees evolving in the mempool
was chosen to contain extreme changes in fees, emphasizing possible differences between
the setups. We are aware of this not being the most accurate real world comparison, but
the main focus of this experiment was to display a scenario with the highest difference.

6.4.2 Results

In Figure 6.4b, we show the relative difference in percentages of 𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚 rewards between
the settings of 4 ℱℛ𝒞s versus 1 ℱℛ𝒞. It is clear that the setting of 4 ℱℛ𝒞s in contrast
to a single ℱℛ𝒞 provided better reward compensation in times of very low fees value in
the mempool, while it provided smaller reward in the times of higher values of fees in the
mempool. Therefore, we concluded that it is not possible to replace a setup of multiple
ℱℛ𝒞s with a single one, even though in a more realistic environment we might see much
smaller differences due to more balanced spread of fees across time in mempool. This can
be partially seen as comparison between Figure 6.1 and Figure 6.2 where we intentionally
run with very similar effective_𝜆.

(a) 𝜌 correlating with 𝜆. (b) 𝜌 equal for every ℱℛ𝒞.
(c) 𝜌 negatively correlating with
𝜆.

Figure 6.3: Experiment II – multiple ℱℛ𝒞s using various distributions of 𝜌 and their impact
on 𝜕𝐶𝑙𝑎𝑖𝑚, where C = 0.7.

6.5 Experiment IV – Historical data of miner’s reward fluc-
tuation

This experiment tries to directly target fluctuation of miner’s revenue presented in Sec-
tion 4.1. We will observe similarly to previous experiments, the baseline (i.e. miner’s
reward without our solution) compared to the rewards received by the miner with our so-
lution. We will be recreating the real world data from Figure 4.1 into our custom scenario,
and we will examine multiple single contract ℱℛ𝒞s with different lengths.

6.5.1 Methodology

The baseline scenario is represented once again with the “Fees in mempool” series. We
have recreated the Figure 4.1 directly, meaning each day consists of 144 blocks (as per
Bitcoin) and each day will have fixed fee income as per the charts from 2017. Each day was

35

(a) A custom fee scenario for Experiment III.
(b) A relative difference in 𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚 between 4
ℱℛ𝒞s and a single ℱℛ𝒞.

Figure 6.4: Experiment III comparing 4 ℱℛ𝒞s and 1 ℱℛ𝒞, both configurations having the
same effective_𝜆.

calculated by the following formula, while we were still aiming for the 50BTC average fees
as previously.

𝑓𝑒𝑒𝑠 = 50𝐵𝑇𝐶

𝐵𝑑𝑎𝑦𝐼𝑛𝑊𝑒𝑒𝑘.𝑓𝑒𝑒𝑠 =
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑑𝑎𝑦𝐼𝑛𝑊𝑒𝑒𝑘

100
1
7

* 𝑓𝑒𝑒𝑠

And as mentioned, the whole 144 blocks would have the same value for the corresponding
day of 𝐵𝑑𝑎𝑦𝐼𝑛𝑊𝑒𝑒𝑘.𝑓𝑒𝑒𝑠. In total, we run 3 simulations, each consisting of one simulation run
for one setup of ℱℛ𝒞 and simulated total of 49 weeks. The data represented in Figure 6.5
were taken as the results from simulated week 46 & 47. The total number of weeks was
selected large enough to show clear data, without any potential adjustments of ℱℛ𝒞s during
the first weeks, of how an adapted ℱℛ𝒞 would react to changes.

We run the experiment with 3 following ℱℛ𝒞s:

ℱℛ𝒞1 = {ℱℛ𝒞1(_, 1008, 1)}
ℱℛ𝒞2 = {ℱℛ𝒞1(_, 2016, 1)}
ℱℛ𝒞3 = {ℱℛ𝒞1(_, 8064, 1)}

where the initial value of ℱℛ𝒞s (i.e. ℱℛ𝒞.𝜈) is calculated as defined in Equation 5.12.

6.5.2 Results

As we present in Figure 6.5 it is clear our solution influences the historical data as we would
expect. Where the fluctuations between days are much less visible and the jumps are mostly
impacted solely by the M ratio. This is visible from the “Expected income from Contract”
series, which is fluent and averages the incoming fees. We once again demonstrate how
longer 𝜆 does more impactful averaging.

This experiment was to show the direct effect when trying to mitigate only one fluc-
tuation’s time period. In reality, we would expect to have setup of multiple ℱℛ𝒞s with
different 𝜌 so the real averaging might be slightly smaller.

36

(a) ℱℛ𝒞1 with 𝜆 = 1008. (b) ℱℛ𝒞2 with 𝜆 = 2016. (c) ℱℛ𝒞3 with 𝜆 = 8064.

Figure 6.5: Experiment IV – Direct recreation of Figure 4.1 into a scenario against our
solution with ℱℛ𝒞s.

6.6 Experiment V – Undercutting attack with ℱℛ𝒞s used

We focused on reproducing the experiment from Section 5.5 of [5]. We were searching for
the minimal ratio of Default-Compliant miners, at which the undercutting attack is no
longer a profitable strategy. Default-Compliant miners are honest miners in a way that
they follow the rules of the consensus protocol, such as building on top of the longest chain.
In case we have two chains, Default-Compliant miner mines on the older chain from his
point of view.

We executed several simulations, each consisting of multiple games (i.e., 300k as in [5])
with various fractions of Default-Compliant miners. From the remaining miners, we
evenly created learning miners, who learn on the previous runs of games and switch with
a certain probability to the best mining strategy out of the following.

• PettyCompliant: This miner behaves as Default-Compliant except one dif-
ference. In the case of seeing two chains, he does not mine on the oldest block,
but rather the most profitable block for him. Thus, this miner is not the (directly)
attacking miner and with no malicious miners forking the chain, he behaves most
of the time exactly the same as Default-Compliant. However, existence of this
type of miner supports the undercutting miners and disincentivizes the occurrence of
Default-Complaint miners.

• LazyFork: This miner checks which out of two options is more profitable: (1) mining
on the longest-chain block or (2) undercutting that block. In either way, he leaves half
of the mempool fees for the next miners, which prevents another LazyFork miner
to undercut him.

• Function-Fork() The behavior of the miner is parameterized with a function f(.)
expressing the level of his undercutting. The higher the output number, the less
reward he receives and more he leaves to incentivize other miners to mine on top of
his block. This miner undercuts every time he forks the chain, and he has to undercut
with his function f(.) parameter.

6.6.1 Methodology

With the missing feature for difficulty re-adjustment (present in our work as well as in [5])
the higher orphan rate occurs, which might directly impact our ℱℛ𝒞-based approach.
If the orphanage rate is around 40%, roughly corresponding to reproducing the original

37

experiment [5] with unchanged simulator, our blocks would take on average 40% longer to
be created, increasing the block creation time (i.e., time to mine a block). In reality the
blockchain would adjust for this with lowering the difficulty to increase the production of
blocks, however this is not part of the simulator and was not built with this in mind. With
that, the mean blocktime differs from what we expect when starting the simulation with
our parameters. This does not affect the original simulator as much, as there are no ℱℛ𝒞𝑠
that would change the total reward for the miner who found the block.

To extrapolate the total value in the final blockchain in the original simulator, i.e., sum
of all rewards of miners of all the transaction fees, in the longest chain is:

(ℎ𝑒𝑎𝑑().𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝− 𝑔𝑒𝑛𝑒𝑠𝑖𝑠().𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝) * 𝑓𝑒𝑒𝑅𝑎𝑡𝑒,

where the 𝑓𝑒𝑒𝑅𝑎𝑡𝑒 in this context means something different than previous mentions. Here
the 𝑓𝑒𝑒𝑅𝑎𝑡𝑒 corresponds to constant fees incoming every second into the mempool (as in the
original simulator), ℎ𝑒𝑎𝑑() returns the highest block from the longest chain, and 𝑔𝑒𝑛𝑒𝑠𝑖𝑠()
returns the genesis block.

Nevertheless, this is not true for ℱℛ𝒞-based simulations, as the initial setup of ℱℛ𝒞𝑠
is calculated with 𝑓𝑒𝑒𝑠 = 50 BTC (as per the original simulations). However, with longer
block creation time and transaction fees being calculated from it, the value of 𝑓𝑒𝑒𝑠 also
changes. Without any adjustments, this results in ℱℛ𝒞𝑠 initially paying smaller reward
back to the miner before they are saturated. To mitigate this problem, we increased the
initial values of individual ℱℛ𝒞s by the orphanage rate from the previous game before each
run.

This results in very similar conditions, which can be empirically verified by comparing
the final value in the longest chain of our simulation versus the original simulations. We
decided to use this approach to be as close as possible to the original experiment. This is
particularly important when the fullMempool parameter Paragraph 6.1.4 is equal to False
(see Section 6.1), which means that the incoming transaction fees to mempool are calculated
based on the block creation time. In our simulations, we used the following parameters:
100 miners, 10 000 blocks per game, 300 000 games (in each simulation run), exp3 learning
model, and C = 0.7. Modeling of fees utilized the same parameters as in the original
paper [5]: the fullMempool parameter disabled, a constant inflow of 5 000 000 000 Satoshi
(i.e., 50 BTC) every 600s. We have tried to recreate the original experiment as closely as
possible, but we have picked the value C rather empirically based on previous experiments.
We consider this value rather relaxed.

For more details about the learning strategies and other parameters, we refer the reader
to [5].

Setup of ℱℛ𝒞𝑠

Since we have a steady inflow of fees to the mempool, we do not need to average the
income for the miner. Therefore, we used only a single ℱℛ𝒞 defined as ℱℛ𝒞(7 056 000 000
000, 2016, 1), where the initial value of ℱℛ𝒞.𝜈 was adjusted according to Equation 5.12,
assuming 𝑓𝑒𝑒𝑠 = 50 BTC. Even though the ℱℛ𝒞.𝜆 influences the final reward for the
miner, we do not think it makes drastic changes to the results. However, it is chosen rather
small to leave more room for slight fluctuations. In next runs of any game, ℱℛ𝒞.𝜈 was
increased by the orphanage rate from the previous run, as mentioned above, to ensure a
rather consistent environment.

38

(a) Equilibrium distributions without ℱℛ𝒞.
(b) Equilibrium distributions with
ℱℛ𝒞.

Figure 6.6: Stacked area chart showing equilibrium distributions of different mining strate-
gies. The number of Default-Compliant miners in our ℱℛ𝒞 approach is ∼30% (in
contrast to ∼ 66% of [5]).

6.6.2 Results

The results of this experiment are depicted in Figure 6.6, and they demonstrate that with
our approach using ℱℛ𝒞s, we lowered down the number of Default-Compliant miners
(i.e., purple meeting red) from the original 66% to 30%. This means that the profitabil-
ity of undercutting miners is avoided with at least 30% of Default-Compliant miners,
indicating a more robust result. This implies a more robust system against undercutting
attacks, which were presented in the paper [5], on the protocol level.

39

Chapter 7

Security Analysis and Discussion

7.1 Contract-drying attack
This is a new attack that might potentially occur in our scheme; however, it is the abusive
attack aimed at attacking the functionality of our scheme and not on maximizing the
profits of the adversary. In this attack, the adversary aims at getting his reward only
from ℱℛ𝒞s and does not include transactions in the block (or includes only a number
of them). This might result in slow drying of the funds from ℱℛ𝒞s and would mean
less reward for future honest miners. Moreover, the attacker can mine in well times of
higher saturation of ℱℛ𝒞s and after some time decide to switch off the mining. This might
cause a deterioration in profitability for honest miners, consequently leading to deteriorated
security w.r.t., undercutting attacks. With that, it might possibly occur in cycles with times
of higher saturation (i.e. start of the attack) and lower saturation of ℱℛ𝒞s (i.e. the end of
the attack).

The attacker successfully executing this attack for multiple blocks would likely lead to
increased number of transactions in the mempool since the attacker includes less transac-
tions in the block (thus more in the mempool) than the honest miners. The users of the
blockchain might opt for higher transactions fees to ensure they will get eventually included
in the next “healthy” block. Therefore, if an honest miner mines a block, he gets higher
reward and at the same time deposits a higher amount from transaction fees to ℱℛ𝒞s,
which indicates a certain self-regulation of our approach, mitigating this kind of attack.

Additionally, we can think of lowering the impact of this attack by rewarding the miner
with the full 𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚[𝐻+1] by ℱℛ𝒞s only if the block contains enough transaction fees
(e.g., specified by the network-regulated minimum threshold). It is based on collected fees
rather than amount of transactions, as the miner might create artificial transactions with
small fees. However, this assumes that there is always a reasonable amount of fees in the
mempool, which might not be the case all the time and might result in a situation where the
miners temporarily stop mining if there is not enough transactions to mine. However, we do
not consider this to be a realistic threat to our solution. Nonetheless, it would require more
research to investigate this solution or a better solution mitigating this type of potential
abusive attack, which we left for future work.

40

7.2 Possible improvements
ℱℛ𝒞 can contain the parameter enabling the interval of the possible change in the reward
paid by ℱℛ𝒞𝑥 (i.e., 𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚𝑥

[𝐻+1]) from the median of its value (computed over 𝜆 or
perhaps a new parameter for the length). If 𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚𝑥

[𝐻+1] would drastically increase
from its median value as significantly more fees would come into the mempool, then ℱℛ𝒞𝑥

[𝐻]

would reward the miner with a certain value (specified by the parameter) from the interval
⟨𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚𝑥

[𝐻+1]⟩ instead of the full 𝑛𝑒𝑥𝑡𝐶𝑙𝑎𝑖𝑚𝑥
[𝐻+1]. This would be particularly

useful for ℱℛ𝒞s with a small 𝜆 parameter. The parameter used for sampling might contain
a stochastic function (e.g., exponential) attributing a higher likelihood of getting the values
not far from the median. This is somewhat similar to how difficulty adjustments in Bitcoin
work, where in case of difficulty the maximum it can change between epochs is 300%.
However, we left the evaluation of this technique to future work.

7.3 Epoch like ℱℛ𝒞s
ℱℛ𝒞 can instead of sliding window work similarly to how mining epochs in PoW blockchains
work. Providing the same reward for the whole time of the epoch of the corresponding ℱℛ𝒞.
Where in the beginning of each epoch for individual ℱℛ𝒞s we would calculate the:

𝜕𝐶𝑙𝑎𝑖𝑚
ℱℛ𝒞[𝐸]

[𝐸+1] =
ℱℛ𝒞[𝐸].𝜈

ℱℛ𝒞[𝐸].𝜆

(please note the change to using E – epoch of the particular ℱℛ𝒞 corresponding to it’s 𝜆)
would instead of being calculated for individual blocks as in Chapter 5, calculate it for the
whole 𝜆 of the corresponding ℱℛ𝒞.

This would mean the 𝜕𝐶𝑙𝑎𝑖𝑚
ℱℛ𝒞[𝐸]

[𝐸+1] would be calculated once and for the whole duration
of 𝜆 blocks would stay the same. While at the same time all the reward coming to the ℱℛ𝒞
would be collected for the next epoch.

This solution would not reflect the changes better than current solution especially for
ℱℛ𝒞s with longer 𝜆s, however it would lead to even more predictable rewards. However,
this would come at a cost of more complex logic and memory footprint for ℱℛ𝒞s. It
would need to have additional parameter for holding a state calculating how deep inside an
epoch the individual ℱℛ𝒞 and when to recalculate the 𝜕𝐶𝑙𝑎𝑖𝑚

ℱℛ𝒞[𝐸]

[𝐸+1] . In addition, another

parameter holding the 𝜕𝐶𝑙𝑎𝑖𝑚
ℱℛ𝒞[𝐸]

[𝐸+1] for this duration would be needed.
Nonetheless, we believe the next idea presented in Section 7.4 would make more sense

in regard to this solution.

7.4 Adjustment of mining difficulty
If the PoW blockchain with the longest chain fork-choice rule uses transaction-fee-based
regime, the profitability of miners might be more volatile. This assumption comes from
the fact the blockchain incentivizes miners only by transaction fees and with the problem
of fluctuation described in Section 4.1, which can lead to varying time between blocks,
decreased security w.r.t. undercutting attacks, etc. Although our solution with ℱℛ𝒞s helps
in mitigation of this problem, we propose another functionality that resides in adjusting
the mining difficulty based on the total collected fees during the epoch. In detail, the
difficulty can be increased with higher fees collected from transactions during the epoch

41

and vice versa. Expecting a higher influx or departure of miners as the rewards from ℱℛ𝒞s
would change. This means, that if we calculate profitability solely in native currency and the
transaction fees increases during the epoch, we can partially adjust the difficulty next to the
current difficulty adjusting mechanism. This would especially make sense in combination
with Section 7.3. Further research would be needed to evaluate this proposition.

7.5 Allowing soft fork implementation
With many changes to the protocol, hard forks are required, which makes many communities
disregard such changes. We believe so, as this splits the original protocol into two protocols,
and it is up to the users to choose the one they would like to stay on. This split can be seen
in examples such as Bitcoin or Ethereum having many hard forked versions. Leading it to
years long debates about the block size wars on Bitcoin protocol. We believe our solution
should not encounter this problem, which results in higher chance of being adopted.

It should be possible to implement on most of current blockchains, where we would
create a smart contract [20] including the logic of our ℱℛ𝒞-based solution. Even the multi
contract ℱℛ𝒞s could be possibly created within a single smart contract, which would lead to
smaller memory and transaction footprint on the final blockchain. Furthermore, we would
create protocol rules, which would enforce miners to send C fraction from all collected fees
into ℱℛ𝒞(s). This would result in old nodes still being able to process new transactions
including a smart contract execution as valid, while miners with old consensus rules would
get their blocks rejected by the updated nodes – a soft fork.

7.6 So called out-of-band fees
Out-of-Band fees are referred to any fees being paid outside the protocol, e.g. transaction
fee not being paid in BTC in case of Bitcoin.

This can be utilized by a user, such as big exchanges, trusted wallet providers etc. with
an agreement with a miner, such as big mining pool. Where the user would contact miner
of his transaction, which will have none to very low transaction fee. Under normal circum-
stances such a transaction would not make it into the block as it’s feerate Paragraph 3.7 is
too low for a rational miner to include it. However, if the user has a mutual agreement with
some miners, that upon including such transaction they would pay them out-of-band fees
one of the miners will include this transaction. Then the user will pay them this out-of-band
fee, which can be away from the protocol, i.e. traditional fiat currency payment, or he can
create a payment on Bitcoin network directly to the miner’s public key.

Even though this is not used widely nowadays, because of no general advantage, the
implementation of redistribution contracts would lead to higher utilization of such schemes.
Furthermore, it would directly lead to higher centralization of miners into the biggest pools,
as a user trying to use out-of-band fees would contact only the biggest mining pools and
smaller pools would be loosing on this revenue. Also, a user not utilizing out-of-band fees
might be overpaying in transaction fees in order to get their transaction included compared
to user directly paying out-of-band fees. In the process, destroying the healthy free fee
market that is being currently used.

Preferring out-of-band fees. As with redistribution contracts the miner would be losing
his income in favor of a future miner, he might opt to receive a bit smaller fee if this fee

42

goes directly to him, i.e. circumventing C fraction. Also, this would benefit the user as he
would be paying smaller fee overall as the miner would prefer out-of-band fees.

7.7 Utilization of Fee-Redistribution Contracts
However, it is still possible to use redistribution contracts on schemes, where out-of-band
fees would not be possible. One such example can be found on Ergo blockchain [8], where
a new novel feature of Storage Rent fee was introduced.

This means each UTXO box [16], which was not spent in over four years, is a subject
to Storage Rent fee, where the miner can claim some value in Ergs (or destroy the box and
keep its tokens) defined by protocol. Presented as a potential solution to bloating, resulting
in additional revenue for miners. However, this fee is not subject of out-of-band fees, as the
user paying this fee has forgotten to move his box in order to prevent the Storage Rent fee
and for the miner it would be extremely hard to contact owner of box, soon to be subject
of Storage Rent fee, just by his address.

We also provide an example code snippet for general redistribution contracts on Ergo
blockchain for observation in Appendix A.

43

Chapter 8

Conclusion

The main motivation for this paper on how to solve possible bitcoin’s future problem and a
motivation for blockchains of future to consider this Proof of Concept into their design. In
this work, we focused on three problems related to transaction-fee-based regime blockchains
with the longest chain fork choice rule: (1) the instability of mining rewards, (2) the
possibility of undercutting attacks, and (3) the mining gap. However, this solution is not
exclusive only to PoW blockchains or collecting transaction fees as shown in Appendix A
but further research would be needed for blockchains such as Proof-of-Stake based etc.

To mitigate these problems, we proposed the approach approximating a moving average
based on the fee-redistributions contracts that accumulate a certain fraction of transaction
fees and at the same time reward the miners from their reserves. In this way, the miners are
sufficiently rewarded even at the time of very low transaction fees, such as the beginning
of the mining round, entering the mining protocol by new miners, market deviations, etc.

In order to create this work we have studied not only the work of Carlsten et al. [5],
but also got ourselves familiar with different solutions. We have decided to come up with a
solution enforced by the protocol rather than relying on an avoidance-like solution. Based on
our setup, we came up with a solution, which we proposed under Chapter 5 and vigorously
executed multiple experiments in Chapter 6. We observed the behavior of our solution
with different parameters and their combinations. We have tested most scenarios with
fixed income per block (i.e. fullMempool Paragraph 6.1.4 set to True) as the block limit
size is the hard constraint in most blockchains not allowing to exceed a certain amount of
transactions. This can be usually verified on website such as [17].

Besides directly replicating the undercutting attack, our approach brings a higher tol-
erance to this particular type of attack, and increases the minimal threshold of Default-
Compliant miner that strictly do not perform undercutting attack from 66% reported in
state-of-the-art to 30%.

We believe it is possible to use this solution on most blockchains with a soft fork, which
leads to higher chance of being adopted by the underlying protocols. Therefore, making
mining on transaction-fee-based regime blockchains more sustainable and predictable. Re-
sulting in more healthy environment for all honest participants of the particular blockchain.

However, with existence of so called out-of-band fees this solution might lead to higher
centralization of miners in mining pools, which should be avoided. Thus, unless a solu-
tion mitigating usage of out-of-band fees, to circumvent sending funds to fee-redistribution
contracts, is not discovered, fee-redistribution contracts should not be recommended as a
solution for transaction-fee-based regimes.

44

45

Bibliography

[1] bits.monospace.live. Monospace live. 2023. Available at:
https://bits.monospace.live/.

[2] Bjercke, B. and Finlow Bates, K. Decoupling Bitcoins from Their Transaction
History Using the Coinbase Transaction. march 2020.

[3] Bjercke, B. and Finlow Bates, K. Decoupling Bitcoins from Their Transaction
History Using the Coinbase Transaction. 2020. Available at:
https://luxsci.com/blog/understanding-blockchains-and-bitcoin-technology.html.

[4] Budinský, R. Changed Bitcoin mining simulator [online]. 2023. Available at:
https://github.com/The-Huginn/mining_simulator.

[5] Carlsten, M., Kalodner, H., Weinberg, S. M. and Narayanan, A. On the
instability of bitcoin without the block reward. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. 2016, p. 154–167.

[6] cdecker. With 100% segwit transactions, what would be the max number of
transaction confirmation possible on a block? [online]. [cit. 2023-11-02]. Available at:
https://bitcoin.stackexchange.com/a/59501.

[7] Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X. et al. Flash boys 2.0:
Frontrunning in decentralized exchanges, miner extractable value, and consensus
instability. In: IEEE. 2020 IEEE Symposium on Security and Privacy (SP). 2020,
p. 910–927.

[8] Ergoplatform.org. Ergo blockchain. 2022. Available at:
https://ergoplatform.org/en/.

[9] Eyal, I., Gencer, A. E., Sirer, E. G. and Van Renesse, R. {Bitcoin-NG}: A
scalable blockchain protocol. In: 13th USENIX symposium on networked systems
design and implementation (NSDI 16). 2016, p. 45–59.

[10] Gong, T., Minaei, M., Sun, W. and Kate, A. Towards overcoming the
undercutting problem. In: Springer. International Conference on Financial
Cryptography and Data Security. 2022, p. 444–463.

[11] Homoliak, I., Venugopalan, S., Reijsbergen, D., Hum, Q., Schumi, R. et al.
The Security Reference Architecture for Blockchains: Toward a Standardized Model
for Studying Vulnerabilities, Threats, and Defenses. IEEE Communications Surveys
& Tutorials. 2021, vol. 23, no. 1, p. 341–390. DOI: 10.1109/COMST.2020.3033665.

46

https://bits.monospace.live/
https://luxsci.com/blog/understanding-blockchains-and-bitcoin-technology.html
https://github.com/The-Huginn/mining_simulator
https://bitcoin.stackexchange.com/a/59501
https://ergoplatform.org/en/

[12] Houy, N. The economics of Bitcoin transaction fees. GATE WP. 2014, vol. 1407.

[13] Hum, Q., Tan, W. J., Tey, S. Y., Lenus, L., Homoliak, I. et al. CoinWatch: A
clone-based approach for detecting vulnerabilities in cryptocurrencies. In: IEEE. 2020
IEEE International Conference on Blockchain (Blockchain). 2020, p. 17–25.

[14] Kalodner, H. Bitcoin mining simulator [online]. 2015. Available at:
https://github.com/citp/mining_simulator.

[15] Khatwani, S. Bitcoin nonce. 2023. Available at:
https://themoneymongers.com/bitcoin-nonce/.

[16] Lopp, J. Unspent transactions outputs in Bitcoin. 2015. Available at:
https://blog.lopp.net/the-challenges-of-optimizing-unspent-output-selection/.

[17] mempool.space. Mempool Statistics. 2022. Available at: https://mempool.space/.

[18] Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized
Business Review. 2008, p. 21260.

[19] Rodriguez, G. What is blockchain. 2023. Available at:
https://money.com/what-is-blockchain/.

[20] Szabo, N. The idea of smart contracts. Nick Szabo’s papers and concise tutorials.
1997, vol. 6, no. 1, p. 199.

[21] Tsabary, I. and Eyal, I. The gap game. In: Proceedings of the 2018 ACM SIGSAC
conference on Computer and Communications Security. 2018, p. 713–728.

[22] Tucker, A. W. and Luce, R. D. Contributions to the Theory of Games. Princeton
University Press, 1959.

[23] Wiki, B. Miner Fees. 2022. Available at: https://en.bitcoin.it/wiki/Miner_fees.

[24] Zhou, D., Ruan, N. and Jia, W. A robust throughput scheme for bitcoin network
without block reward. In: IEEE. 2019 IEEE 21st International Conference on High
Performance Computing and Communications; IEEE 17th International Conference
on Smart City; IEEE 5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). 2019, p. 706–713.

47

https://github.com/citp/mining_simulator
https://themoneymongers.com/bitcoin-nonce/
https://blog.lopp.net/the-challenges-of-optimizing-unspent-output-selection/
https://mempool.space/
https://money.com/what-is-blockchain/
https://en.bitcoin.it/wiki/Miner_fees

Appendix A

Fee-Redistribution Contracts on
Ergo Blockchain

A.1 Brief introduction into Ergo

Ergo is eUTXO [16] based blockchain, i.e. similar to Bitcoin, however it is quasi Turing
complete. It allows writing smart contracts and these contracts are similarly to Bitcoin
guarding scripts of the particular UTXO box. Each box has few registers, which can be
used to store information. One of the registers for example contains the guarding script,
another contains information about tokens in a box, e.g. NFTs. Furthermore, each script
can be created with parameters inside it.

When one wants to spend a box he has to off-chain execute the smart contract, i.e.
guarding script, which can enforce what outputs must be created. Writing smart contracts
is a bit different from platforms such as Ethereum. You write the assumptions, outcomes
and conditions, that have to be met. This resembles functional programming opposed to
procedural or OO programming as it is based on sigma calculus and reference client is writ-
ten in Scala language. Resulting in smart contracts being mostly propositions evaluating
to true or false in the end.

Note: on one address multiple same boxes, i.e. with the same guarding script, might
be. To identify the correct one, we use NFTs to uniquely identify the wanted one. That is
why in the code example NFT token is used. For more details, such as Blockchain context
variables, follow this link.

A.2 Smart contract overview
The Contract ensures whenever it is spent a new box with the same guarding script is
created as first output from transaction, preserving the identifying NFT of the box Para-
graph A.1. Furthermore, it guarantees it can be spent only once per block and is spent in
the currently mined block, i.e. not in the past or future. Then it checks how much a miner
has claimed and how much value is in the next box with redistribution contracts.

We also ensure the individual redistribution contracts have their values updated cor-
rectly.

48

https://docs.ergoplatform.com/dev/scs/blockchain-context/

A.3 Implementation

// fetch first transaction output box
val contractOut = OUTPUTS(0)

// ensure nft identifier is preserved
val correctNftOut = contractOut.tokens(0)._1 == redistributionNft

// created for current blockchain height
val heightCorrect = contractOut.creationInfo._1 == HEIGHT

// box is spendable only once per block
val heightIncreased = HEIGHT > SELF.creationInfo._1

// script is preserved in the output box
val correctProposition =

contractOut.propositionBytes == SELF.propositionBytes

// extracting Erg value going to miner
val minerReward =

OUTPUTS.slice(1, OUTPUTS.size - 1)
.fold(0L, { (sum: Long , output: Box) => output.value + sum })

// register holding values of individual redistribution contracts
val values = SELF.R4[Coll[Long]].get

val indices = values.indices

// register holding update values of individual
// redistribution contracts after miner’s claim
val newValues = contractOut.R4[Coll[Long]].get

// we calculate nextClaim from current state of redistribution contracts
val claimableReward = indices

.fold(0L, { (sum: Long , i: Int) => sum + values(i) / params(i)._1 })

// miner has claimed at most nextClaim , i.e. claimableReward
val correctMinerClaim = minerReward <= claimableReward

// this should always be positive
val collectedFees = contractOut.value - (SELF.value - minerReward)

// ensuring values of individual
// redistribution contracts are correctly updated
val correctValues = allOf(Coll({

indices.forall({ (i: Int) => ({
// how much miner took from individual contracts ,
// ratio has to be kept
val partialClaim = (minerReward * params(i)._2) / 100

// we calculate what will be added to redistribution contract
val addedValue = (collectedFees * params(i)._2) / 100

49

// ensure updated values in redistribution contracts are correct
newValues(i) >= values(i) - partialClaim + addedValue
})

})
}))

// all previous propositions have to hold true at the same time
sigmaProp(

allOf(
Coll(

correctNftOut ,
heightCorrect ,
heightIncreased ,
correctProposition ,
correctMinerClaim ,
correctValues

)
)

)

Listing A.1: Ergoscript example of redistribution contracts

50

Appendix B

Contents of Included Storage
Device

Attached CD drive has following structure:

• src/ - source code of simulator

– Readme.md - User’s manual for installation and usage
– LICENSE.txt - licenses
– Makefile - for compiling sources
– feeContracts.json - Configuration file for ℱℛ𝒞-s
– feeSimulation.json - Configuration file for transaction fees
– BlockSim/ - core source codes for simulator
– StratSim/ - source codes for running simulations
– scripts/ - different scripts for conducting experiments
– repo.txt - link to Github repository of this simulator
– strat - executable for simulation produced by Makefile

• docs/ - source codes for generating this pdf, including Makefile

• xbudin05.pdf - this pdf file

51

	Introduction
	Extended Abstract
	Problémy, ktorým sa primárne venujeme
	Navrhované riešenie
	Výsledky riešenia
	Príspevky

	Preliminaries
	Blockchain technology
	Mempool
	Transaction
	Block
	Block reward
	Total supply
	Transaction fees
	Proof of Work
	Mining

	Current Problems with Transaction-Fee-Based Regimes
	Fluctuation of miner's reward
	Undercutting attack
	Mining gap
	Extisting solutions

	Proposed Solution
	Overview
	Prioritization of transactions with higher feerate
	Fee-Redistribution Contracts
	Example
	Traditional way in transaction-fee-based regime
	Initial setup of -s contracts

	Experiments
	Simulator
	Experiment I – Different lengths of -s
	Experiment II – Multi-contract
	Experiment III – Effective length of
	Experiment IV – Historical data of miner's reward fluctuation
	Experiment V – Undercutting attack with -s used

	Security Analysis and Discussion
	Contract-drying attack
	Possible improvements
	Epoch like -s
	Adjustment of mining difficulty
	Allowing soft fork implementation
	So called out-of-band fees
	Utilization of Fee-Redistribution Contracts

	Conclusion
	Bibliography
	Fee-Redistribution Contracts on Ergo Blockchain
	Brief introduction into Ergo
	Smart contract overview
	Implementation

	Contents of Included Storage Device

