

Study of subcellular localization of auxin-inactivating enzymes in *Arabidopsis thaliana*: from cloning to fusion protein expression in plants

MASTER THESIS

Author:	Anna Chesnokova, BSc
Study program:	N1501 Biology
Field of study:	Experimental biology
Form of study:	Full-time
Thesis supervisor:	Federica Brunoni, Ph.D.
Thesis co-supervisor:	Anita Ament, MSc
Thesis submission deadline:	2024

Bibliografická identifikace

Jméno a příjmení autora	Anna Chesnokova	
Název práce	Studium subcelulární lokalizace enzymů inaktivujících auxin u Arabidopsis thaliana: od klonování po expresi fúzního proteinu v rostlinách	
Typ práce	Diplomová	
Pracoviště	Laboratoř růstových regulátorů	
Vedoucí práce	Federica Brunoni, Ph.D.	
Rok obhajoby práce	2024	
Abstrakt	Auxiny jsou rostlinné hormony, které hrají klíčovou roli v růstu a vývoji rostlin. Některé aspekty metabolismu auxinů však stále vyžadují další zkoumání. Jedním z takových aspektů je inaktivace pomocí konjugace s aminokyselinami prostřednictvím enzymů patřících do rodiny GRETCHEN HAGEN 3 (GH3). Cílem práce je určit prostorovou lokalizaci enzymů GH3s řízených jejich nativním promotorem v rostlinách <i>Arabidopsis thaliana</i> . Za tímto účelem byly enzymy GH3s fúzovány se zeleným fluorescenčním proteinem (GFP) a vytvořeny expresní konstrukty. Pomocí konfokální laserové skenovací mikroskopie byla analyzována subcelulární lokalizace konstruktů AtGH3s-GFP. Připravené vektory pro transformaci rostlin a výsledné transgenní linie by mohly přispět k dalšímu výzkumu zaměřenému na pochopení metabolismu auxinu v rostlinách.	
Klíčová slova	Arabidopsis thaliana; auxin; GH3s; klonovací metody; konfokální laserová mikroskopie	
Počet stran	58	
Počet příloh	18	
Jazyk	Angličtina	

Author's first name and surname	Anna Chesnokova
Title of thesis	Study of subcellular localization of auxin- inactivating enzymes in <i>Arabidopsis</i> <i>thaliana</i> : from cloning to fusion protein expression in plants
Type of thesis	Master
Department	Laboratory of Growth Regulators
Supervisor	Federica Brunoni, Ph.D.
The year of presentation	2024
Abstract	Auxin is a plant hormone that plays a key role in plant growth and development. Several mechanisms, such as auxin biosynthesis, transport, and inactivation regulate cellular auxin homeostasis in plants. Conjugation of auxin with amino acids by amido synthetases belonging to the GRETCHEN HAGEN 3 (GH3) family is one of the main inactivation pathways. This thesis aims to uncover the spatial localization of GH3 enzymes in <i>Arabidopsis thaliana</i> plants. This was achieved by expressing GH3 enzymes as fusion proteins with green fluorescent protein (GFP) to create expression constructs. The subcellular localization of the GH3-GFP fusion protein was analyzed using confocal laser microscopy. Prepared plant transformation vectors and resulting transgenic lines could contribute to setting up a baseline for further research to understand how GH3 enzymes contribute to auxin metabolism in plants.
Keywords	<i>Arabidopsis thaliana</i> ; auxin; GH3s; cloning; protein localization; fluorescent tags; confocal laser microscopy
Number of pages	58
Number of appendices	18
Language	English

"Prohlašuji, že jsem předloženou diplomovou práci vypracovala samostatně za použití citované literatury."

V Olomouci dne 07.05.2024

Anna Chesnokova

Acknowledgment

I want to thank my supervisors Federica Brunoni, PhD, and Anita Ament, MSc, for their valuable advice and guidance during the experiments. I also thank the Laboratory of Growth Regulators for providing me with educational opportunities in science. Special thanks to the entire laboratory team for their unwavering support in every aspect. My heartfelt appreciation also to my family and friends for their moral support and motivation.

The list of contents

List of abbreviations	8
1. Introduction	9
2. Goals of the thesis	10
3. Theoretical part	11
3.1 Auxin role and biosynthesis	11
3.1.1 Tryptophan dependent pathway	12
3.1.2. Tryptophan independent pathway	13
3.2. Auxin transport in plants	13
3.2.1. Auxin transport on subcellular level	14
3.3 Auxin signaling	15
3.4 Auxin metabolism	16
3.4.1. Gretchen Hagen 3 (GH3) protein family	16
3.5. Molecular cloning	17
3.5.1. Cloning vectors	18
3.5.2. GreenGate cloning	19
3.5.3. TA cloning	20
3.5.4. PCR	20
3.5.5. Screening Strategies	21
3.5.6. Competent cells transformation	22
3.5.7. Molecular cloning impact	22
3.6. Agrobacterium-mediated plant transformation	23
3.7. Confocal microscopy	24
4. Experimental part	25
4.1 Material and equipment	25
4.1.1 Chemicals	25
4.1.2 Enzymes	26
4.1.3 Instruments	26
4.1.4 Software	27
4.1.5 Biological material	27
4.1.6 Antibiotics	27
4.2 Methods	27
4.2.1 Genomic DNA extraction	27
4.2.2 Plasmid isolation	
4.2.3 Preparation of Luria-Broth (LB) medium	
4.2.4 Preparation of MS agar plates	
4.2.5 PCR amplification and PCR clean-up	
4.2.6 Electrophoresis	

4.2.7 BsaI/T4 ligation	
4.2.8 Colony PCR	
3.2.9 TA cloning	
3.2.10 Green Gate reaction	
4.2.11 Competent cells transformation	
4.2.12 Floral dip method	35
4.2.13 Selection of transformants (T1)	35
4.2.14 Confocal microscopy	35
5. Results	36
5.1 Genomic DNA extraction and PCR amplification	36
5.2 BsaI/T4 ligation in pGGC000 Green Gate module	37
5.3 TA cloning with <i>pDrive</i>	39
5.4 Green Gate cloning	41
5.5 Selection of transformants	44
5.6 Confocal imaging	44
6. Discussion	46
7. Conclusion	51
8. Literature	52
Attachments	59

List of abbreviations

4-Cl-IAA - 4-chloroindole-3-acetic acid
AMI - Amidase
AMP - Adenosine Monophosphate
ARF - Auxin Response Factor
ATP - Adenosine Triphosphate
AtNIT - Arabidopsis thaliana nitrilase
A.thaliana - Arabidopsis thaliana
BSA - Bovine serum albumin
bp - base pairs
CYP - Cytochrome
dNTPs - Deoxynucleotide triphosphates
E. coli - Escherichia coli
EDTA - Ethylenediaminetetraacetic acid
ELFO - Electrophoresis
ER - Endoplasmic reticulum
ERF13 - Ethylene Responsive Factor 13
Fw - Forward
g - gravitational force
gDNA – genomic DNA
GFP - Green fluorescent protein
GH3s - GRETCHEN HAGEN 3 enzymes
GMOs - Genetically Modified Organisms
HDGS - homology-dependent gene silencing
IAA - Indole-3-acetic acid
IAA-aa - IAA-amino acid conjugates
IAOx - Indole-3-acetaldoxime
IAM - Indole-3-acetamide
IAMT1 - IAA Carboxyl Methyltransferase
IAN - Indole-3-acetonitrile
IBA - Indole-3-butyric acid
ILR/ILL - IAA-Leu-Resistant1/ILR1-like
IpyA - Indole-3-pyruvic acid
INS - Indole Synthase

JA - Jasmonate JA-Ile - Jasmonoyl-isoleucine KO - Knockout LB - Luria-Bertani MES - 2-(N-morpholine)ethane sulfonic acid MCS - Multiple Cloning Site mQH2O - Milli-Q water MPK - Mitogen-Activated Protein Kinase MS - Murashige and Skoog medium MW - Molecular weight NAP - Nuclear Auxin Pathways ORI - Origin of Replication oxIAA - 2-oxindole-3-acetic acid PAT - Polar auxin transport PBC - Pelleted bacterial culture PCR - Polymerase Chain Reaction PAA - Phenylacetic acid RT - Room temperature rpm - Revolutions per minute TAA - Tryptophan aminotransferase TARs - tryptophan aminotransferase-related proteins T-DNA - Transferred DNA TAE - Tris-acetate-EDTA Ti plasmid - Tumor-inducing plasmid Tris - 2-amino-2-hydroxymethylpropane-1,3diol Trp - Tryptophan TMK - Transmembrane Kinases UMAMiT - Multiple Acids Move In And Out proteins WAT - Walls Are Thin group of proteins X-gal - 5-bromo-4-chloro-3-indolyl-beta-Dgalactopyranoside

1. Introduction

Phytohormones are small molecular weight signaling molecules that are produced within the plant. In extremely low concentrations, they can regulate all aspects of plant growth and development. One of the most important plant hormones is the auxin indole-3-acetic acid (IAA) that is essential for optimal plant growth, development and it responds to environmental stimuli such as light and gravity. Auxin exert its function through concentration gradients within organs, tissues, and cells. These gradients result from coordinated local biosynthesis, metabolism, and transport.

Subgroup II members of the GRETCHEN HAGEN 3 (GH3) protein family typically conjugate amino acids to IAA. This reaction is the plant's primary inactivation response to excess auxin cellular concentrations and takes place in the cytoplasm. As a small molecule, IAA could potentially enter the nucleus via diffusion through the nuclear pores without restriction to activate the auxin-signaling cascade. However, auxin fluxes are instead mediated by specific efflux and influx carriers that are localized at the endoplasmic reticulum (ER) membrane, where they are predicted to regulate cellular IAA homeostasis *via* their transportation in and out of the ER compartment. While this is an emerging model for regulating auxin movement to the nucleus, it still needs to be fully understood how inactivation pathways contribute to maintaining auxin balance within the cell.

Determining the GH3 spatial localization could help advance our understanding of GH3mediated mechanisms. To date, synthesis of IAA-amino acid conjugates is believed to occur in the cytosol, as cytosolic localization was demonstrated for GH3.17 by isopycnic glucose gradient. While this method allows inspecting the proteins' presence in a specific cellular compartment, getting comprehensive information about the protein's subcellular localization may be challenging as each subcellular compartment needs to be individually verified. If not, it may result in incomplete, misleading information. Therefore, in this work we have utilized commonly used GFP tagging of the protein approach. The main advantage of this method is the *in vivo* localization of the protein of interest. The main goal of this work is to determine the subcellular localization of GH3 proteins by generating *Arabidopsis thaliana* stable transgenic lines expressing GFP-fusion proteins under their native genomic locus.

2. Goals of the thesis

The goals of the thesis:

- Literature review that is focused on molecular cloning techniques, as well as auxin synthesis, metabolism, and signaling;
- Design and preparation of plant transformation vectors for the expression of *Arabidopsis* GH3-GFP fusion proteins for subcellular localization studies in *planta*;
- Generation of *Arabidopsis* transgenic lines by *Agrobacterium*-mediated transformation with transgenic line selection;
- Subcellular localization study of GFP-tagged proteins by confocal laser scanning microscopy.

3. Theoretical part

3.1 Auxin role and biosynthesis

The existence of auxin was famously inferred by Darwin's work on coleoptile phototropism. He showed that the seedling's response to unidirectional light producing a growth stimulus originated at the coleoptile tip. When the stimulus was traveling downward, it caused lower cells on the shaded side to grow faster compared to those on the illuminated side. The mobile growth regulator hypothesized by Darwin with these experiments was later identified by Went in 1928 as indole-3-acetic acid (IAA), the most abundant active auxin form in plants¹. Besides IAA, several other naturally occurring molecules exhibit auxin-like activity: indole-3-butyric acid (IBA), 4-chloroindole-3-acetic acid (4-Cl-IAA), and phenylacetic acid (PAA) (Figure 1). Auxin and its derivates act like morphogens; their gradient determines developmental patterns. At the same time, auxin is transported from cell to cell, similar to mammalian hormones, and triggers plants' response to environmental stimuli². Auxins regulate various physiological processes during plant development, including the formation of bilateral symmetry in the embryo, root emergence, apical dominance, as well as environmental responses, such as gravitropism and phototropism^{2,3}.

Figure 1. Chemical structures of most common natural auxins in plants.

The phenyl acetic acid (PAA) (Figure 1) is a less studied type of auxins. The PAA is synthesized from amino acid phenylalanine *via* the phenylpyruvate pathway⁴. Some data show its involvement in the formation of root primordial cells in some terrestrial plants⁵. Next, 4-chloroindole-3-acetic acid (4-Cl-IAA) was exclusively found in ovaries without growing embryos. These findings indicate that 4-Cl-IAA is a key signaling molecule in floret senescence⁶. The particular mechanisms of action of these hormones are unknown. While 4-Cl-AA is involved in fruit and seed formation, IAA and indole-butyric acid (IBA) affect mainly root development⁷. IBA is a precursor molecule that serves as a storage form of IAA⁸. Furthermore, IBA produces plant responses independent of IAA or it is converted to IAA, where it contributes to IAA function in plant development, stress responses, or both⁷.

As auxin plays a pivotal role in almost all aspects of plant growth and development, regulating optimal levels of active auxin within cells is necessary. The levels of free IAA can be controlled by transport, interconversion of modified auxin forms, and biosynthesis⁷. The aromatic amino acid L-tryptophan (Trp) has been solidly established as a key precursor of auxin biosynthesis. However, two main IAA production routes exist: Trp-dependent and Trp-independent⁹. The existence of multiple IAA biosynthetic pathways ensures redundancy and robustness in auxin production. If one pathway is disturbed or inhibited, plants could still produce auxin and maintain essential growth and developmental processes in non-optimal conditions.

3.1.1 Tryptophan-dependent pathway

The tryptophan-dependent pathway occurs in two distinct compartments of the cell. First, aromatic amino acids, including tryptophan, are synthesized in plastids. Then tryptophan is translocated to the cytoplasm where downstream reactions can occur⁹. Trp-dependent auxin biosynthesis includes several parallel pathways (Figure 2) named after intermediate molecules: IAOx (indole-3-acetaldoxime), IAM (indole-3-acetamide), and IpyA (indole-3-pyruvic acid)⁴.

Tryptophan deamination results in the synthesis of IpyA by tryptophan aminotransferase (TAA1) and TAA1-related proteins (TARs). Afterward, the YUCCA (YUC) family of flavin monooxygenases converts IpyA to IAA⁴.

The conversion from Trp to IAOx is mediated by two cytochrome isozymes of the Monooxygenase P450 (CYP) family, CYP79B2 and CYP79B3⁹. IAOx is converted to IAN (indole-3-acetonitrile) by another enzyme of the P450 family – CYP71A13. AtNIT1, AtNIT2, and AtNIT3 are gene products with nitrilase activity. They take part in the conversion of IAN to IAA¹⁰. Specifically, they convert nitriles to carboxylic acids.

Although whether the conversion of Trp to IAM occurs is still unknown, IAM can be converted to active IAA through the action of AMIDASE1 (AMI1)^{7,11}.

IAA Trp-dependent biosynthetic pathway

IAA Trp-independent biosynthetic pathway

Figure 2. Potential IAA Trp-dependent and Trp-independent biosynthetic pathways^{7,9,12}.

So far, IpyA pathway is the only complete Trp-dependent auxin biosynthesis pathway, and it is considered the main pathway for IAA synthesis in plants. The role of IAOx and IAM pathways still has to be further elucidated⁹.

3.1.2. Tryptophan-independent pathway

After discovering that maize and *Arabidopsis* mutants lacking in Trp biosynthesis were still producing IAA, a Trp-independent mechanism for auxin production was proposed¹³. Later research¹⁴ suggested that cytosolic indole synthase (INS) mediates Trp-independent IAA production by converting indole-3-glycerolphosphate to indole (Figure 2). However, the molecular mechanism behind the indole to IAA conversion is unknown¹².

3.2. Auxin transport in plants

Typically, auxin is synthesized in flowers and leaves and then is transported by phloem to target tissues. One type of transport unique to auxin is polar auxin transport (PAT)¹⁵. This transport includes both active and passive ways of auxin movement and is mediated through influx and efflux carriers¹⁶. According to the chemiosmotic hypothesis, all auxins are weak acids in either proton-dissociated or nondissociated state¹⁷. Therefore, their movement

between cells depends on pH, and the transport of cellular IAA relies on the collective action of auxin transporters. In the apoplast's slightly acidic conditions (around pH 5.5), a small portion of IAA is in the nondissociated form (IAAH) and can enter cells by passive lipophilic diffusion. Most IAA exists in a proton-dissociated form (IAA-), requiring transporters for active uptake into cells. Since the cytoplasm has a higher pH than the apoplast (around pH 7.0), the equilibrium shifts towards the proton-dissociated form, which cannot passively diffuse across the plasma membrane. To exit the cell, IAA relies on efflux transporters. Since then, candidates for auxin carrier proteins have been identified^{15,18}.

The PIN-formed (PIN) family of proteins is a significant class of efflux transporters. They are frequently distributed polarly within cells, resulting in directed auxin transport only *via* membranes with PINs. The PIN family consists of eight members divided into two subclades based on the lengths of the hydrophilic loop¹⁹. Canonical or "long" PINs (PIN1, PIN2, PIN3, PIN4 and PIN7 proteins) have subcellular polar localization finely corresponding to the directionality of auxin movement and explaining auxin asymmetrical distribution at intercellular level^{20–23}. It seems that auxin alone is one of the most important regulators of its transport, but regulation of carrier-mediated transport can take effect on a few different levels^{17,24}. The role of PINs in various developmental processes, such as vascular differentiation, apical dominance, patterning, organ polarity, embryogenesis, organogenesis, phyllotaxis, and tropisms, have been reported and widely discussed^{25,26}.

Another group of proteins involved in auxin transport is the AUX1/LIKE AUX1 family of permeases. In *Arabidopsis*, this small gene family consists of four members: *AUX1, LAX1, LAX2* and *LAX3*. Unlike PINs, AUX proteins facilitate the influx of auxin into cells. Similarly to PINs, AUX protein activity and localization are tightly regulated to ensure proper auxin transport and response. These proteins typically contain several transmembrane domains that ensure selective transport of auxin molecules from the extracellular space into the cytoplasm of cells. The expression and activity of AUX proteins are influenced by various factors such as hormones, environmental cues, and developmental signals. One of the critical regulators of AUX protein activity is auxin itself. Mutants that lack functional AUX proteins often exhibit defects in various auxin-dependent processes, further highlighting the importance of these proteins in auxin transport and plant development²⁷.

3.2.1. Auxin transport on subcellular level

Contrary to cell-to-cell auxin transport driven by plasma membrane PINs, the ER-localized PIN5 and PIN8 ("short", noncanonical PINs) ensure the compartmentalization of intracellular auxin pools^{28,29}. Studies have shown that PIN5 and PIN8 act antagonistically.

Opposite values in analogous experiments indicate that PIN5 may convey auxin transport from the cytoplasm to the ER, whereas PIN8 conveys transport in the opposite direction^{28,29}.

PIN-like transporters (PILS) are yet another ER-localized family of transporters contributing to subcellular auxin distribution³⁰⁻³². It is believed that auxin transport in the ER would sequester molecules in the cell compartment, restricting the abundance of signaling molecules in the nucleus³¹.

WALLS ARE THIN1 (WAT1/UmamiT5) of the UmamiT (USUALLY MULTIPLE ACIDS MOVE IN AND OUT) family of proteins is considered to harbor auxin transport, which was demonstrated in *Arabidopsis* vacuoles³³.

3.3 Auxin signaling

The understanding of auxin signaling has significantly improved in the past decades. Auxin effects through the nuclear auxin pathways (NAP) consist of protein-protein interactions. There are three groups of them: TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) family of coreceptors, AUXIN/INDOLE-3-ACETIC ACID INDUCIBLE (Aux/IAA) family of transcriptional repressors, and AUXIN RESPONSE FACTORS (ARF) transcription factors family³⁴.

One of the most critical pathways in auxin metabolism is the inhibition pathway, which prevents overstimulation by auxin in plants. The TIR1/AFB/IAA pairs act as coreceptors for auxin. The binding of the TIR1/AFBs pair to auxin triggers ubiquitination and further degradation of Aux/IAA transcriptional repressors. Without Aux/IAAs, ARFs (ARF10, ARF16) are no longer inhibited and start the transcription of auxin target genes³⁵.

Auxin has alternative signaling pathways, controlled by TRANSMEMBRANE KINASEs (TMKs) and MITOGEN-ACTIVATED PROTEIN KINASE (MPKs). TMK1 protein plays a role in extracellular auxin signaling by massive protein phosphorylation³⁴. However, the precise roles of TMK2 and TMK3 in auxin signaling remain unclear. Another key protein for plant development and later root growth is Ethylene Responsive Factor 13 (ERF13). It is proved³⁶ that its degradation, carried by MPK14-mediated phosphorylation, is essential to regulating the auxin signaling cascade.

TMKs and TIR1/AFBs participate in general auxin signaling and are also crucial in keeping the balance between apoplastic acidification and alkalization³⁴. The right balance is the main condition for effective auxin-mediated cell proliferation and plant growth.

3.4 Auxin metabolism

The main IAA inactivation mechanisms include oxidation, glycosylation, amino acid conjugation, and methylation. The last three processes are reversible. Therefore, they allow adjustable auxin release without the necessity for *de novo* auxin production³⁷. However, some auxin forms, such as 2-oxindole-3-acetic acid (oxIAA), are irreversibly changed and safeguard against auxin toxicity in the presence of auxin overflow³⁸.

The key catabolic mechanism for inactivating auxin is the oxidation of IAA to oxIAA, which is mediated by DIOXIGENASE FOR AUXIN OXIDATION (DAO) enzyme, with further glycosylation to oxIAA-glc²². This pathway is considered a major route for auxin inactivation, as oxIAA-glc is the most prevalent IAA metabolite in *A.thaliana*³⁹. A recent study showed³⁹ that IAA inactivation is coordinately regulated by a GH3-ILR1-DAO framework. According to this model, GH3 proteins first conjugate IAA. This reaction is reversible as ILR/ILL (IAA-Leu-Resistant/ILR1-like) amidohydrolases can hydrolyze conjugates back to the active form. Alternatively, IAA amino acid conjugates can be irreversibly oxidized by DAO and oxIAA-aa can be further hydrolyzed to form oxIAA³⁹.

In the past, it was thought that linking IAA with either aspartate (Asp) or glutamate (Glu) would mark these molecules for degradation. In contrast, conjugation with other amino acids would create storage forms of the hormone⁴⁰. However, it has been recently shown that the production of IAA-Asp and IAA-Glu does not lead to degradation; instead, these conjugates also serve as storage forms of auxin³⁹.

Furthermore, the differences in expression levels between *DAO* and *GH3* genes suggest that DAO has slower enzyme kinetics compared to GH3 proteins⁴², which helps to keep basal auxin concentrations in standard growth conditions. In contrast, GH3 proteins rapidly increase cellular IAA concentrations in response to environmental factors⁴³.

The last proposed type of auxin inactivation is methylation *via* IAA CARBOXYL METHYLTRANSFERASE 1 (IAMT1), which converts IAA to IAA methyl ester (MeIAA). However, the exact metabolism and function of MeIAA remain unknown⁴⁴.

3.4.1. Gretchen Hagen 3 (GH3) protein family

Gretchen Hagen 3 (*GH3*) genes encode acyl acid amido synthetases that catalyze ATPdependent conjugation of phytohormones. Their mechanism consists of two steps. Firstly, acidic phytohormone is adenylated, forming an intermediate molecule with AMP. Then, amino acid nucleofilically attacks AMP, creating conjugated amino acid product (Figure 3)^{45,46}. This mechanism contributes to maintening active phytohormone levels by balancing the synthesis of the hormone and formation of amide-linked conjugates. The genome of *Arabidopsis* consists of 19 *GH3* genes, the exact role of which is difficult to determine due to their genetic redundancy⁴⁵. However, these 19 members of *GH3* family can be classified into three subgroups based on their sequence similarity and substrate preference. Subgroup I consists of two members, GH3.10 and GH3.11, which catalyze the conjugation of jasmonate (JA) with isoleucine, resulting in the formation of jasmonoyl-isoleucine (JA-Ile)⁴⁷. Next, subgroup II consists of eight members: *GH3.1, GH3.2, GH3.3, GH3.4, GH3.5, GH3.6, GH3.9* and *GH3.17*. All subgroup II proteins effectively conjugate auxin with amino acids, resulting in temporary auxin inactivation^{48,49}. Lastly, subgroup III comprises nine members: *GH3.7, GH3.8, GH3.12, GH3.13, GH3.14, GH3.15, GH3.16, GH3.18, GH3.19*⁵⁰. Some members, such as GH3.12, have been demonstrated to conjugate isochlorismate with glutamate, that can be converted to salicylic acid⁴⁹.

Three members belonging to Subgroup II of the GH3 protein family, such as GH3.3, GH3.4 and GH3.17, will be investigated in this thesis. Recent studies⁴⁵ showed that GH3.17 may play prominent role in root elongation, while GH3.3 an GH3.4 may contribute to lateral root formation and affect the primary root growth⁴⁵.

Figure 3. General reaction catalyzed by IAA-amido synthetases belonging to the GH3 family⁴⁷.

3.5. Molecular cloning

Gene cloning comprises the *in vitro* creation of new DNA molecules containing unique combinations of genes or oligonucleotides and the propagation of recombinant DNA molecules *in vivo via* the replication mechanisms of bacteria and other microorganisms. The term "clone" comes from the Greek word for "bud" or "twig"⁵¹. It was initially used in biomedical sciences as a term for a set of genetically identical organisms. As they derive from a single organism, clones are supposed to be identical. The ability to make numerous identical clones of a DNA molecule ("molecular cloning", achievable both *in vivo* or *in vitro*) or a cell is referred to as cloning⁵².

Molecular cloning includes specific, unique tools and terminology. A DNA construct is created by a segment of DNA carried on a vector that can be used to insert genetic material into a target tissue or cell. A vector is any particle (such as plasmids, cosmids, Lambda phages) used to transport a foreign nucleic sequence artificially - usually DNA - into another cell, where it can be duplicated and/or expressed⁵³. Recombinant DNA is a vector that contains foreign DNA. Plasmids are the most widely used vectors. Typically, the vectors used in DNA constructs contain several essential features: an origin of replication (ORI), a multiple cloning site (MCS), and a selectable marker⁵³.

In general, there are five main steps of molecular cloning: preparation of the insert and vector, ligation, transformation, screening of the clones, and selection of the transformants⁵¹.

3.5.1. Cloning vectors

The most well-known double-stranded vectors are plasmids. They can replicate independently of the host chromosome. Naturally, plasmids contain genes that benefit the survival of the organism⁵⁴. A plasmid cloning vector is commonly used to clone DNA fragments of up to 15 kbp. The pBR322 plasmid was one of the first commonly used as a cloning vector⁵⁵. There are five main categories of plasmids by original function. Howeve, one plasmid can belong to more than one group⁵⁶: fertility F-plasmids, resistance plasmids (R), Col plasmids, degradative plasmids, and virulence plasmids.

One of the main parts of vector is the ORI, which is responsible for the self-replication and sharing plasmid copies to the daughter cells. MCS is a specific DNA sequence for restriction enzymes used to insert the target DNA into the plasmid. MCS plays a significant role in the cloning methods. The promoter region is a sequence located upstream of inserted gene and directs to start of transcription. Promoters come in various types: native, constitutive, inducible and repressible⁵⁴. Native promoters initially consist of a single fragment from the 5' region of a given gene. An inducible promoter controls the expression of the target gene in specific circumstances. They activate gene transcription when exposed to a certain small chemical, such as lactose and galactose. Opposite to inducible promoters, repressible promoters are inhibiting gene expression in the presence of specific small chemicals, such as tryptophan or ethanol. The next part of the vector is the terminator. It defines the end of transcription. Therefore, only the gene of interest will be transcribed. Another type of the vector sequence is the primer binding site, which is complementary to the sequence of a PCR (polymerase chain reaction) primer used for amplification of the region of interest⁵⁴. Last but not least, is a selectable marker. It is a gene that brings identifiable characteristic to a vector. The most used ones are antibiotic resistance genes and genes encoding fluorescent proteins.

3.5.2. GreenGate cloning

GreenGate is a cloning technique for the fast building of plant transformation constructs. It relies on the Golden Gate technique. Ready-to-use plant transformation vectors are constructed from six pre-cloned entry modules and a destination vector in a single-tube reaction. The method includes release of DNA fragments from entry modules using the type IIS restriction endonuclease *BsaI*⁵⁷. Each DNA fragment is flanked at its 5'-end by the same overhang as the 3'-end of its previous neighbor. All overhangs vary from each other by at least two of the four nucleotides. Once DNA fragments are released, they can be ligated in specific order between the destination vector's left and right border sequences by *T4* DNA ligase (Figure 4). These six pUSC19-based modules include plant promoter, N-terminal tag, coding sequence (*i.e.*. the gene of interest), C-terminal tag, plant terminator and plant resistance cassette⁵⁷. All modules can be modified, and the gene's coding region should be inserted in the module designed for coding sequence. In addition, the pGreen-IIS-based destination vector encodes a different antibiotic resistance than the entry vectors. It carries recognition sites in an orientation that removes them from the backbone after type IIS digestion, exposing overhangs compatible with those of the outer insert modules⁵⁷.

Plant transformation vector

Figure 4. The process of generating a plant transformation vector by GreenGate cloning strategy, created in Biorender.

3.5.3. TA cloning

TA cloning is a technique that creates complementary single-stranded overhangs between the insert and vector using Taq polymerase's terminal transferase activity. Taq polymerase adds a single deoxyadenosine (dA) to the 3'-ends of double-stranded DNA, a unique feature not found in all thermostable DNA polymerases⁵⁸. Vectors with T overhangs (overhangs with the deoxythymidine on 3'-end) can be bought or prepared individually by using a bluntend restriction enzyme, mixing with terminal transferase enzyme and dideoxythymidine triphosphate (ddTTP), which lacks the 3' hydroxyl group. The lack of the hydroxyl group guarantees that only one T is attached to the vector ends. Alternatively, the vector can be cleaved using restriction enzymes that produce T overhang straightly⁵⁸.

The TA cloning process starts with generating the insert in a PCR reaction using Taq polymerase, which attaches a single A to the 3`-ends of the PCR product. Subsequently, the PCR products are fused with a vector containing complementary 3' deoxythymidine (T) overhangs. DNA ligase is then utilized to join the vector and insert together. The disadvantage of this method is that proofreading DNA polymerases cannot be used, as they are incapable of producing A-overhangs⁵⁹. However, this limitation could be solved by incubating the PCR reaction with Taq polymerase after performing the PCR reaction with the DNA-proofreading polymerase.

3.5.4. PCR

A straightforward enzymatic procedure called PCR enables the *in vitro* amplification of a particular DNA region from a complex DNA pool. PCR can produce enough copies of DNA from minimal levels. Therefore, DNA can be examined with standard laboratory techniques. As a result, PCR is considered a sensitive assay⁶⁰. The critical component of PCR is the Taq polymerase, a thermostable DNA polymerase, which utilizes DNA primers made especially for the target DNA region to be amplified. After first step, denaturation, which breaks double-stranded DNA into two separated strands, follows primers annealing. Thermostable Taq polymerase recognizes primers and production of DNA amplicons begins in 5' to 3' orientation⁶¹. The final phase is called elongation and occurs after the last cycle. Its purpose is to guarantee that every amplicon will have their second strand produced⁶². The target region can be created in significant quantities by the PCR process, as with every cycle, the number of DNA molecules is doubled⁶³.

3.5.5. Screening Strategies

Selection and screening strategies are used to validate if transformation of foreign DNA into host cells was effective. There are two main types of selection: positive and negative.

The most often used negative selection method is blue-white selection. β -galactosidase is a naturally occurring protein in *E.coli* encoded by the *lacZ* gene of the *lac* operon. In its native form, it forms a homotetramer, which cuts lactose into glucose and galactose⁶⁴. Nterminal deletion makes a mutant β -galactosidase from the M15 strain of *E.coli* inactive, as the ω -peptide cannot form a tetramer. However, in the presence of the protein's N-terminal part, the α -peptide, in this mutant form of the protein, may fully rebound to its active tetrameric structure. The ω -peptide-containing *lacZ* deletion (*lacZAM15*) is carried by the host *E.coli* strain in this screening approach, whereas the plasmids utilized carry the *lacZa* sequence, which encodes the α -peptide⁶⁵. Both are ineffective, but when both peptides are expressed simultaneously, they combine to generate a functioning β -galactosidase to produce an insoluble pigment that is vivid blue. Growing bacteria on X-Gal may produce blue and white colonies. Blue colonies suggest that the vector may have an unbroken *lacZa* (no DNA insert present), but white colonies, where X-gal is not hydrolyzed, indicate the presence of an insert in lacZ α that prevents the β -galactosidase from being active⁶⁶.

The other well-studied method is antibiotic selection. When the inserted plasmid has a marker for antibiotic resistance, selection is straightforward. Transformed cells are placed on a medium containing the appropriate antibiotic. The cells that proliferate should be those harboring plasmids containing selected antibiotic resistance⁶⁷.

The most precise ways of selection are PCR methods, such as Colony PCR and Sanger sequencing. These techniques use specific primers to identify the presence of the inserted gene. Colony PCR is a technique for detecting an inserted construct or plasmid into bacteria or yeast. In colony PCR, primers are designed to produce a specific, known-size product only in the presence of the wanted construct. Ideally, the product will have a different size if the desired DNA insertion did not occur⁶⁸. By using a very crude cell preparation, the tiny quantity of template DNA produces an easily visible band on an agarose gel after PCR amplification. Consequently, colony PCR is an effective method for quick and striaghtforward sorting through a potentially huge number of positive colonies from false ones⁶⁹.

3.5.6. Competent cells transformation

The majority of techniques for transforming bacteria are based on the findings of Mandel and Higa⁷⁰ and Cohen *et al*⁷¹, who demonstrated the possibility of transfecting bacteria with bacteriophage and DNA plasmids by incubating them with an ice-cold CaCl₂ solution and briefly heating them after that. Through this process, bacterial cells are brought into a brief stage of "competence" that allows them to absorb DNA. After transformation, cells are incubated into a recovery medium to refurbish the cell membrane and the cell wall⁷². Other methods of transformation are electroporation and heat shock.

The electroporation method uses an electric pulse, which produces an irregular electric field and creates pores in the plasma membrane. That helps the foreign DNA to move into a host cell. After that, the cell membrane locks itself again and traps the DNA inside. A comparison between electroporation and the heat shock method demonstrates that electroporation is more efficient, in terms of higher colony numbers and faster procedure⁷³. One of the method's limitations is that it requires electroporation cuvettes and an electroporator, a specialized piece of instrumentation, while the heat shock method can be performed using standard Eppendorf tubes and a conventional thermoblock. Furthermore, a common issue with electroporation is the existence of air bubbles or salts lasted because of wrong competent cell preparation, which might lead to an arcing in the cuvette and in that case losing the sample⁷³.

In the heat shock transformation, the membrane potential of competent cells is reduced by the temperature pulse, which reduces the potential barrier for negatively charged DNA to enter the cytoplasm⁷⁴. Chemically competent cells are frequently formed in pellets by adding salt, such as CaCl₂. The negative charge on the phospholipid and DNA is eliminated by applying salt, which helps the DNA to move toward the cell⁷⁵.

3.5.7. Molecular cloning impact

The advancement of genetic engineering techniques has enabled the manipulation of microbe genomes to produce substances with little intrinsic value but significant medical or commercial benefit to mankind. Small portions of DNA could be replicated with great precision using molecular cloning. The high number of copies makes it easier to analyze the DNA sequence, content, and genes within specific DNA fragments. Molecular cloning has excellent benefits in areas such as gene function analysis, recombinant protein production and generation of genetically modified organisms (GMOs).

To investigate the function of a gene, either gain-of-function or interference studies using microRNA can be performed by cloning the cDNA into an expression vector to induce overexpression in the target organism. Besides RNA interference, there are other ways to inhibit gene function, such as the CRISPR/Cas9 editing method, Zinc-Finger Nucleases (ZFNs), and transcription activator-like (TAL) effector nucleases (TALENs)⁷⁶. Furthermore, adding particular mutations can determine genes' effectiveness in gene function, whether through site-directed mutations or the creation of protein mutants⁵³.

Molecular biology and the production of relevant proteins have been revolutionized by cloning. By cloning the gene that encodes a specific protein into an appropriate expression system, scientists can generate substantial quantities of this protein for research, therapeutic or industrial purposes. For example, extraneous genes have been inserted into the DNA of *E.coli* to enable the creation of beneficial proteins such as interferons, human hormones insulin, somatostatin, and somatotropin⁵².

Molecular cloning techniques have enabled scientists to insert certain genes into organisms, creating GMOs. This has resulted in agricultural breakthroughs such as the producing crops with better features such as insect resistance, disease resistance, and nutritional value⁷⁷.

3.6. Agrobacterium-mediated plant transformation

Among the various techniques used to introduce foreign genetic material into plants, Agrobacterium-mediated plant transformation, known as the floral dip method, is commonly used. With this method, a naturally occurring bacteria in soil, Agrobacterium tumefaciens, is used as vector to deliver foreign DNA into the plant cells leading to heritable changes in the plant genome. The process includes growing *Arabidopsis* to the flowering stage, dipping plant floral buds in a Agrobacterium growth culture medium containing sucrose or hormones, gathering seeds several weeks later, and identifying transformed progeny by selection on media containing antibiotic or herbicide⁷⁸. The optimal period for conducting the floral dip is when plants have a substantial number of unopened flower buds. The fact that transformed progeny are usually hemizygous for the transgene at a particular locus indicates that transformation takes place subsequent to the divergence of the ovarian and anther cell types⁷⁹. Agrobacterium-mediated transformation is suitable not only for introducing certain gene constructs into plants, but also for a random mutagenesis technique for gene-tagging as transformed plants can be obtained at high numbers⁸⁰. Beside sucrose media there is a second crucial component - surfactant Silwet - which allows chemicals and Agrobacterium to enter a plant tissue, particularly female gametes⁸¹.

In detail, the plant is infected by *Agrobacterium via* its *Ti* plasmid. The *Ti* plasmid incorporates T-DNA, a portion of its DNA, into the chromosomal DNA of its host plant cells. The periplasmic space contains a chvE protein, which is encoded by a chromosomal gene and serves for recognizing sugars⁸². Attachment occurs in two stages. This mechanism is mediated by four major genes: *chvA*, *chvB*, *pscA*, and *att*. The first three genes' proteins appear to be responsible for the creation of cellulose fibrils. These fibrils also serve as anchors for the bacteria, assisting in forming a microcolony. VirC2 ensures proper processing and is also essential for single-copy system integration⁸³.

3.7. Confocal microscopy

Confocal laser scanning microscopy is an optical imaging technique that uses a spatial pinhole to exclude out-of-focus light during image generation to increase the optical resolution and contrast of a micrograph⁸⁴. The optical sectioning method, which allows for reconstructing three-dimensional structures within an object, is made possible by taking many two-dimensional photographs of the object (z-stack) at different depths in the sample. A traditional microscope allows light to penetrate as far into the material as possible. In contrast, a confocal microscope only concentrates a smaller beam of light at one particular depth level. A confocal microscope focuses both illumination and detection lenses on a single, diffraction-limited point in the sample. This particular spot is the only spot imaged by the detector throughout a scan⁸⁴. While the original design's pinholes, objective lenses, and low-noise detectors remain the fundamental elements of a conventional confocal microscope, fast scanning mirrors, wavelength selection filters, and laser illumination are also commonly included. Usually, the laser is focused on two scanning mirrors that move the beam in x and y directions over a single field of view⁸⁵, creating an image.

In this diploma thesis, confocal microscopy was used to observe the subcellular localization of proteins fused to a green fluorescent protein (GFP). GFP is a fluorophore, originally isolated from the jellyfish *Aequorea victoria*⁸⁶. The cell generates the fluorophore spontaneously by cyclizing the tripeptide Ser65-Tyr66-Gly67, forming a heterocyclic imidazolinone ring and oxidizing Tyr66 with molecular oxygen⁸⁶.

4. Experimental part

4.1 Material and equipment

4.1.1 Chemicals

2-(N-morpholine)ethane sulfonic acid (MES) - Duchefa Biochemie (Netherlands) 2-amino-2-hydroxymethylpropane-1,3-diol (Tris) - Duchefa Biochemie (Netherlands) 5x Green GoTaq Flexi Reaction Buffer – Promega (Czech Republic) Acetic acid – Penta (Czech Republic) Agarose - Merck Life Science (Germany) Alfa Aesar Gellan Gum - Thermo Fisher Scientific (USA) 10 mM ATP – Thermo Fisher Scientific (USA) Bacteriological agar - Sigma-Aldrich (USA) dNTPs - Thermo Fisher Scientific (USA) DreamTaq Green PCR Master Mix (2x) - Thermo Fisher Scientific (USA) E.Z.N.A. ® Plant DNA Kit – Omega Bio-tek (USA) Ethanol - Lachner (Czech Republic) Ethylenediaminetetraacetic acid (EDTA) - Penta (Czech Republic) 10x FastDigest Green buffer - Thermo Fisher Scientific (USA) GelRed - Sigma-Aldrich (USA) Glycerol - Sigma-Aldrich (USA) Hydrochloric acid 37% (HCl) – Penta (Czech Republic) Isopropanol - Lachner (Czech Republic) LB Broth - Sigma-Aldrich (USA) Magnesium Chloride - Penta (Czech Republic) Milli-Q water (from Milli-Q Reference Water Purification System) - Merck Life Science (Germany) Murashige & Skoog including vitamins - Duchefa Biochemie (Netherlands) NucleoSpin® Gel and PCR Clean-up – Takara Bio (USA) GeneRuler 1 kB Plus DNA Ladder - Thermo Fisher Scientific (USA) Polyoxyethylene sorbitan monolaurate 20 (Tween 20) - Sigma-Aldrich (USA) Phusion HF Buffer Pack - Thermo Fisher Scientific (USA) Silwet L-77 - Sigma-Aldrich (USA) Sodium hypochloride – Carl Roth (Germany) Sucrose - Lachner (Czech Republic)

TriTrack DNA Loading Dye (6x) - Thermo Fisher Scientific (USA) QIAprep Spin Miniprep Kit – Qiagen (USA)

4.1.2 Enzymes

DreamTaq DNA Polymerase - Thermo Fisher Scientific (USA) Eco31I (*Bsa*I) 10 U- Thermo Fisher Scientific (USA) GoTaq G2 Flexi DNA polymerase - Promega (Czech Republic) Phusion High-Fidelity DNA Polymerase - Thermo Fisher Scientific (USA) T4 DNA Ligase 30 U - Thermo Fisher Scientific (USA)

4.1.3 Instruments

Airstream Gen 3 Horizontal Laminar Flow Cabinet - Esco Micro Pte. Ltd. (Singapore) Confocal microscope LSM 900 - Zeiss (Germany) Electroporator ECM 399 - BTX (USA) Fume cupboard - MERCI (Czech Republic) ICT incubator - P-Lab (Czech Republic) INCU-Line incubator - VWR International, Avantor (USA) IKA IKAMAG Magnetic Mixer - IKA (Germany) Mega Star 600R refrigerated centrifuge - VWR International, Avantor (USA) Memmert incubator - VWR International, Avantor (USA) Microcentrifuge/vortex Combi-spin PCV-2400 - Keison products (UK) Microwave oven - Sencor (Japan) Milli-Q Reference Water Purification System - Merck Life Science (Germany) NanoDrop OneC - Thermo Fisher Scientific (USA) pH Meter Ultra-Basic Bench-top Meter - Biotech (France) POS-300 Orbital Shaking Platform - Keison products (UK) Precision Balances - Mettler Toledo (USA) Plant Growth Chamber Sanyo MLR-351H - SANYO Electric Co., Ltd. (Japan) SANOclav Laboratory autoclave La-MCS - SANOclav (Germany) Thermocycler Doppio - VWR International, Avantor (USA) ThermoMixer Temperature Control Device - Eppendorf AG (Hamburg, Germany) Transilluminator Gel Doc EZ System - Bio-Rad Laboratories (USA) UV-1600PC Spectrophotometer - VWR International, Avantor (USA)

4.1.4 Software

Geneious Prime – Dotmatics (New Zealand) ImageLab – Bio-Rad (USA) ZEN blue/black – Zeiss (Germany)

4.1.5 Biological material

Arabidopsis thaliana, ecotype Columbia (Col-0) Escherichia coli NEB5α Escherichia coli TOP 10 Agrobacterium tumefaciens GV3101 (pSoup)

4.1.6 Antibiotics

Kanamycin - Duchefa Biochemie (Netherlands) Carbenicillin - Duchefa Biochemie (Netherlands) Rifampicin - Duchefa Biochemie (Netherlands) Spectinomycin - Duchefa Biochemie (Netherlands) Tetracycline - Duchefa Biochemie (Netherlands)

4.2 Methods

4.2.1 Genomic DNA extraction

Genomic DNA (gDNA) was extracted by E.Z.N.A. ® Plant DNA Kit or DNA extraction buffer.

Arabidopsis leaves were ground in liquid nitrogen, and 100 mg of the sample was transferred to a nuclease-free 1,5-ml microcentrifuge tube. Six hundred μ l of the P1 Buffer was added to the sample following vortexing until all clumps disappeared. Samples were incubated at 65 °C for 10 minutes, and mixed twice during the incubation by inverting the tube. Afterward, 140 μ l of the P2 Buffer was added, followed by thorough vortexing. Samples were centrifugated at 10,000 g for 10 minutes. The cleared lysate was transferred to a new 1,5-ml microcentrifuge tube, 0,7 volumes of 100 % isopropanol were added, and

samples were thoroughly mixed. Centrifugation at 14,000 *g* for 2 minutes was performed to pellet DNA. The supernatant was discarded. The tube containing DNA was inverted on a paper towel for 1 minute to allow any residual liquid to drain. Three hundred μ l of sterile deionized water heated to 65 °C was added and pellet was resuspended by vortexing. Next, 4 μ l of RNase A was added, and samples were vortexed briefly. One hundred and fifty μ l of P3 Buffer and 300 μ l of absolute ethanol were added, and samples were vortexed immediately to obtain a homogeneous mixture. A HiBind® DNA mini-column was inserted into a collection tube. The entire sample was transferred to the column and was centrifuged at 10,000 *g* for 1 minute. The flow-through was discarded, and 650 μ l DNA washing buffer was added. Centrifugation at 10,000 *g* for one minute was carried out, and the washing step was repeated. The column was centrifuged at 10,000 *g* for two minutes to dry. The HiBind® DNA mini-column was transferred into a new 1,5-ml microcentrifuge tube with the addition of 50 μ l mQH₂O heated to 65 °C. Samples were incubated at room temperature for five minutes. The DNA was eluted by centrifugation at 10000 *g* for one minute.

Alternatively, DNA was extracted using a genomic DNA extraction buffer containing 50 mM of Tris-HCl (pH 7,2), 300 mM NaCl, and 10 % sucrose. The solution was topped up to ten ml with mQH₂O and autoclaved on a liquid cycle (121 °C for 15-20 minutes). Approximately 100 mg of fresh leaves with 500 μ l of genomic DNA extraction buffer were homogenized with beadmill (3 beads, 27 Hz, 3 minutes) and incubated at 95 °C for one minute. Samples was centrifuged at 3000 g, at 22 °C for two minutes. One μ l of supernatant was used for the PCR reaction.

4.2.2 Plasmid isolation

Isolation of plasmids was performed using a QIAprep® Miniprep kit. Selected colonies were inoculated in 6 ml of LB medium supplemented with the corresponding antibiotic, and grown at 37 °C overnight. The day after, the bacterial culture was pelleted at 6800 g for three minutes, and the pellet was resuspended in 250 µl of buffer P1. Then, 250 µl buffer P2 were added, and the mixture was mixed by inverting the tube 4–6 times. Next, 350 µl buffer N3 was added, and the mixture was gently remixed. Samples were centrifuged for ten minutes at 17,900 g, forming a compact white pellet. The supernatant was transferred to the QIAprep spin column. Centrifugation at 17,900 g for one minute was carried out, and the flow-through was discarded. The column was washed by adding 700 µl PE Buffer, followed by one minute centrifugation at 17,900 g. The flow-through was discarded, and centrifugation was performed for two minutes to remove residual washing buffer. The column was placed in a clean 1,5-ml microcentrifuge tube, and samples were incubated in a preheated thermoblock at 70 °C for 5 minutes. Fifty μ l of mQH2O water was added to the colum, incubated at RT (room temperature) for five minutes, and then centrifuged for two minutes to elute.

4.2.3 Preparation of Luria-Broth (LB) medium

LB medium was prepared by dissolving 25 g of LB Broth in 900 ml of mQH₂O. pH was adjusted to 7-7,2, and the solution was topped up to 1000 ml with mQH₂O. To prepare LB agar plates, 1,5% bactoagar was added into the LB medium. The medium was autoclaved on a liquid cycle (121 °C for 15 minutes). LB medium containing bactoagar was supplemented with either 60 μ g/ml spectinomycin, 100 μ g/ml carbenicillin, or 50 μ g/ml kanamycin. For *Agrobacterium* selection, LB agar plates were supplemented with 60 μ g/ml spectinomycin, 50 μ g/ml rifampicin, and 5 μ g/ml tetracycline and poured into Ø 90mm round Petri dishes.

4.2.4 Preparation of MS agar plates

Half-strength MS medium was prepared by dissolving 4,4 g of MS salts + vitamins, 0,5 g of MES, and 10 g of saccharose in 900 ml of mQH₂O. Reagents were stirred until completely dissolved. pH was adjusted on 5,7, and the solution was topped up to 1000 ml with mQH₂O. After pH adjustment, 0,57 % of Gellan Gum was added, and the medium was autoclaved on a liquid cycle (121 °C for 15 minutes). The medium was supplemented with 30 μ g/ml of Hygromycin B and poured in Ø145 mm round Petri dishes.

4.2.5 PCR amplification and PCR clean-up

PCR was used to amplify coding regions of *AtGH3.3*, *AtGH3.4* and *AtGH3.17* genes. Ten μ l of gDNA were mixed with 0,5 μ l of the Phusion DNA polymerase, 10 μ l of 5xPhusion HF buffer, 1 μ l of 10 μ M dNTPs, 2,5 μ l of 10 μ M forward (Fw) and reverse (Rv) primer pairs (Table 2) and 21,5 μ l of mQH₂O. After mixing, samples were spun down and transferred to a thermocycler to initiate PCR amplification. The PCR amplification parameters are described in Table 1. If amplicons were used for TA cloning strategy, 0,7 units of GoTaq Polymerase were added to the mixture and additional ten-minute incubation at 72 °C was performed.

Time (minutes)	Cycles (number)
0:30	1
0:30	35
0:30	35
4	35
	Time (minutes) 0:30 0:30 0:30 4

Table 1. Thermocycler parameters for PCR amplification

72	10	
8	60	

Table 2. Primers used for amplification of the coding region of GH3s from genomic DNA

Primer name	Primer sequence
AtGH3.3_GG_Fw	AACAGGTCTCAGGCTCAACAATGACCGTTGATTCAGCTCTGCG
AtGH3.3_GG_Rv	AACAGGTCTCTCTGAACGACGACGTTCTGGTGACCA
AtGH3.4_GG_Fw	AACAGGTCTCAGGCTCAACAATGGCTGTTGATTCGCTTCTTCA
AtGH3.4_GG_Rv	AACAGGTCTCTCTGAATGACGTCGTTCTGGCGACCA
AtGH3.17_GG_Fw	AACAGGTCTCAGGCTCAACAATGATACCAAGTTACGAC
AtGH3.17_GG_Rv	AACAGGTCTCTCTGAAGAATCTAAACCAAGTGG

1

The size of PCR amplicons was verified using agarose electrophoresis, and PCR products were processed using NucleoSpin® Gel and PCR Clean-up Kit.

The 40 µl of the PCR reaction were mixed with 80 µl of NTI buffer, loaded in the NucleoSpin® Column, and centrifuged for 30 seconds at 11,000 g. The flow-through was discarded, and 650 µl of NT3 buffer were added. The sample was centrifuged under the same conditions as in the previous step. To dry silica membrane, centrifugation was performed at 11,000 g for one minute to remove the remaining Buffer NT3. All columns were additionally incubated for five minutes at 70 °C. The NucleoSpin column was placed into a new tube and 35 µl of mQH₂O were added to the center of the column, and further incubated for five-minute at RT. The samples were eluted by centrifugation at 11,000 g for two minutes.

4.2.6 Electrophoresis

In 80 ml of the 1 % agarose in TAE buffer, 6 μ l of GelRed was added. The agarose-GelRed mixture was poured into an electrophoresis gel caster, and wells for sample loading were prepared using a comb. The gel solidifies in approximately 10-15 minutes. The gel was placed into the electrophoresis chamber, and the chamber was filled with 1x TAE buffer. GeneRuler 1 kB Plus DNA Ladder was used as a marker. If a PCR reaction buffer did not contain any loading dye, 1,2 μ l of TriTrack dye was added to 10 μ l of each sample. The electrophoresis run was performed for 30 minutes at 100V. After 30 minutes, the gel was placed on a UV transilluminator tray, and the GelDoc EZ Gel Documentation system visualized the bands.

The 50x TAE contained 50 mM EDTA dipotassium salt, 2 M Tris-base, and 1 M glacial acetic acid. The pH was adjusted to 8,5 by KOH. TAE working buffer (1x) was prepared by mixing 20 ml of 50x TAE buffer with 980 ml of mQH₂O.

4.2.7 BsaI/T4 ligation

The coding region of *AtGH3.3*, *AtGH3.4* and *AtGH3.17* was inserted into the *pGGC000* GreenGate entry vector by mixing 9 μ l of PCR product with 1,5 μ l of *pGGC000* plasmid, 1,5 μ l of 10x FD Buffer, 1 μ l of 10 mM ATP, 1 μ l of *Bsa*l and 1 μ l T4 DNA ligase. Samples were spun down and incubated in a thermocycler, with cycling parameters described in Table 3.

Temperature (°C)	Time (minutes)	Cycles (number)
37	5	50
16	5	50
50	5	1
80	5	1
10	1 hour	

Table 3. Thermocycler parameters for Bsa1/T4 ligation

TOP 10 competent cells were transformed with the generated constructs, transformed bacterial cells were plated on LB media supplemented with carbenicillin and plates were incubated at 37 °C. Positive bacterial colonies were selected by colony PCR method (Table 4). Primers used for colony PCR were designed with the forward primer specific for each insert and the T7 reverse primer specific for the vector.

Table 4. The list of primers used for the colony PCR and Sanger sequencing of pDrive and pGGC000 vectors harboring AtGH3.3, AtGH3.4, and AtGH3.17 coding regions.

Primer name	Primer sequence
T7_prom_Rv	AATACGACTCACTATAGG
AtGH3.3_Fw	GACGTCCTAACGATCCGTACA
AtGH3.3_Rv	ATAACGGTTAAGCCCAGCATA
AtGH3.4_Fw	CTTCAGGACGTCGGATTCAGA
AtGH3.4_Rv	ACGGTAGAGCCCCGCGTAGGT
AtGH3.17_Fw	TTTCAGAAACAGACCATTCAA
AtGH3.17_Rv	ACAGAGTAGGCGATATTCTAA
SP6_prom_Fw	ATTTAGGTGACACTATAGA

4.2.8 Colony PCR

For colony PCR, eight colonies were picked from selective plates to verify the presence of DNA insert in the plasmid harboring the resistance to the antibiotic. A small portion of the

colony surface was rubbed with the pipette tip. Then, the tip was incubated in the PCR tube containing the PCR reaction mixture: 4 μ l of 5x GoTaq Flexi Buffer, 3 μ l of MgCl₂ (25 mmol·l⁻¹), 0,4 μ l of dNTPs (10 mmol·l⁻¹), 0,1 μ l of GoTaq G2 Flexi DNA polymerase, 10,5 μ l of mQH₂O and 1 μ l of each forward and reverse primers (Table 4). Pipette tips were removed and samples were incubated in a thermocycler following the cycling parameters described in Table 5.

Temperature (°C)	Time (min)	Cycles (nr)
95	5	1
95	0:30	30
55	0:30	30
72	4	30
72	5	1
8	15	1

Table 5. Thermocycler parameters for colony PCR program

3.2.9 TA cloning

The amplified coding regions of *AtGH3.3*, *AtGH3.4* and *AtGH3.17* genes were cloned into a *pDrive* vector by TA cloning. Approximately 150 ng of amplified DNA (Table 8) was mixed with 1 μ l of *pDrive* vector (50 ng/ μ l) and 5 μ l of 2x Ligation Master Mix. The mixture was spun down and incubated at 4 °C for 2 hours. After two hours, TOP10 competent cells were transformed with *pDrive* vectors containing coding regions of *AtGH3.3*, *AtGH3.4* or *AtGH3.17* genes. Transformed competent cells were plated on LB agar plates containing kanamycin, 1 mM IPTG and 20 µg/ml X-Gal.

A colony PCR was carried out to verify the presence of *pDrive* plasmid carrying the desired insert in positive bacterial colonies. Primers used for colony PCR were designed with the forward primer specific for each insert and the T7 reverse primer specific for the vector (Table 4). For positive colonies, liquid cultures were prepared and corresponding plasmids were isolated. The plasmids, along with the primers listed in Table 4, were sent for Sanger sequencing at SEQme in Dobriš, Czech Republic. The sequencing reaction consisted of 5 μ l of purified plasmid, 2,5 μ l of mQH₂O, and 2,5 μ l of the specific primer.

3.2.10 Green Gate reaction

pDrive-AtGH3.3, *pDrive-AtGH3.4*, and *pDrive-AtGH3.17* plasmids were used as entry modules to assembly the final plant transformation vectors. The coding region of every gene was cloned under the control of the corresponding native promoter (pN, previously cloned),

followed by C-terminal GFP tag, plant terminator and plant resistance cassette (Table 6). For the assembly, modules and reagents were mixed in corresponding volumes: 1,5 μ l of 10x FD Buffer, 1,5 μ l of 10 mM ATP, 1,5 μ l of *pGGA-pNAtGH3s* (100 ng/ μ l), 1,5 μ l of *pGGB003* (100 ng/ μ l), 1,5 μ l of *pDrive-AtGH3s* (concentrations are in Table 9), 1,5 μ l of *pGGD001* (100 ng/ μ l), 1,5 μ l of *pGGE001* (100 ng/ μ l), 1,5 μ l of *pGGE001* (100 ng/ μ l), 1,5 μ l of *pGGZ003* (100 ng/ μ l), 1 μ l of *Bsa*l (10 U/ μ l), 1 μ l of T4 DNA ligase (30 U/ μ l). Afterward, samples were incubated in a thermocycler following the cycling parameters described in Table 3.

GreenGate modules	Туре	
pGGA-pNAtGH3s	Native promoter sequence of the specific gene	
pGGB003	B-dummy (empty vector if no N-tag is needed)	
pDrive-AtGH3s	coding region of the specific gene	
pGGD001	GFP-linker	
pGGE001	Terminator sequence	
pGGF005	Plant resistance cassette	
pGGZ003	Destination vector	

Table 6. Description of GreenGate modules

Ligation reactions were used to transform competent cells, and transformed cells were plated on selective LB agar plates. To verify the correctness of the final assembly, colony PCR was performed on positive bacterial colonies using gene-specific Fw primer and eGFP Rv primer (Table 7). Confirmed positive colonies were grown in liquid LB medium, and corresponding plasmids were isolated. These plasmids, along with primers specified in Table 7, were subsequently sent for Sanger sequencing. The sequencing reaction consisted of 5 μ l of purified plasmid, mixed with 2,5 μ l of mQH2O and 2,5 μ l of the primer.

Table 7. The list of primers used for colony PCR and Sanger sequencing of final transformation vectors

Primer name	Primer sequence		
AtGH3.3_Fw	GACGTCCTAACGATCCGTACA		
AtGH3.3_Rv	ATAACGGTTAAGCCCAGCATA		
AtGH3.4_Fw	CTTCAGGACGTCGGATTCAGA		
AtGH3.4_Rv	ACGGTAGAGCCCCGCGTAGGT		
AtGH3.17_Fw	TTTCAGAAACAGACCATTCAA		
AtGH3.17_Rv	ACAGAGTAGGCGATATTCTAA		

Hygr_Fw	CTTGACCAACTCTATCAGAGC
Hygr_Rv	ATCGACCCTGCGCCCAAGCTG
E9_Fw	CGCTATCGAACTGTGAAATGG
E9_Rv	GCCTAGTGAATAAGCATAATGG
LB_T-DNA_Rv	TGGCAGGATATATTGTGGTGTAA
RB_T-DNA_Fw	TTTACCCGCCAATATATCCTGTCA
eGFP_Fw	GCAGCGTGCAGCTCGCCGACC
eGFP_Rv	TTGTACAGCTCGTCCATGCCG
pUBQ10_Fw	AACAATACCCAAAGAGCTC
pUBQ10_Rv	ATACGAAATTGGGATCGAACG

4.2.11 Competent cells transformation

TOP 10 competent cells were thawed on ice and gently mixed with 10 μ l of the ligation reaction. After mixing, the tubes were kept in ice for 30 minutes. Afterward, the tube containing the mixture was heated at 42 °C for 45 seconds, placed on ice for two minutes, and resuspended with 800 μ l of liquid LB medium. Bacteria were grown at 37 °C in a shaking incubator for 60 minutes. The competent cells were pelleted at 2000 *g* for 5 minutes. About 700 μ l of supernatant was discarded, the remaining 100 μ l was used to resuspend pellet and plated to LB agar plates supplemented with antibiotics. The plates were incubated at 37 °C overnight to allow bacterial growth. Single bacterial colonies were used for colony PCR and plasmid isolation.

Agrobacterium-competent cells were transformed by electroporation. Electroporation consisted of combining 50 µl of electrocompetent agrobacteria with 1 µl of pNAtGH3.3:GH3.3cdr:GFP:HygR, pNAtGH3.4:GH3.4cdr:GFP:HygR either or pNAtGH3.17:GH3.17cdr:GFP:HygR vectors. The mixture was transferred to an ice-cooled cuvette and subjected to electroporation at 1800 V. The cells were transferred to 1,5 ml tube with 1 ml of LB medium and incubated for 3 hours on a shaker at 28 °C. Subsequently, bacterial cells were plated on LB agar plates containing antibiotics (*i.e.*, spectinomycin, rifampicin, gentamicin, and tetracycline). After a 48-hour incubation at 28 °C, individual colonies were grown in liquid LB selective medium containing identical antibiotic mixture as mentioned above. A 10-ml liquid culture was prepared and incubated on a shaker for 24 hours at 28 °C.

4.2.12 Floral dip method

Four-six weeks old *Arabidopsis* plants, ecotype Columbia (Col-0), still carrying unopened floral buds, were used for floral dip transformation. *Agrobacterium* cells harboring *pNAtGH3.3:GH3.3cdr:GFP:HygR*, *pNAtGH3.4:GH3.4cdr:GFP:HygR* or *pNAtGH3.17:GH3.17cdr:GFP:HygR* were grown overnight at 28 °C, 130 rpm in 200 ml of LB medium supplemented with spectinomycin, rifampicin, gentamycin, and tetracycline. The next day, the bacterial cultures were pelleted at 3000 g for 15 minutes, and pellet was resuspended in a 5% sucrose solution containing 0,03% Silwet L-77. Afterward, floral buds were dipped in the mixture for two minutes. Transformed plants were kept in the dark overnight. The next day plants were transferred to a growth chamber and grown under longday conditions (16 h photoperiod; 22 ± 1 °C), and the floral dip was repeated after five days. Once siliques were dry, seeds were harvested.

4.2.13 Selection of primary transformants (T1)

Seeds were sterilized by chlorine gas method. Tubes containing approximately 200 mg of seeds were placed with an open lid in a desiccator, and exposed to a mixture of 15 ml of mQH₂O, 25 ml of bleach (NaClO) and 10 ml of 37% HCl for 2 hours. Sterilized seeds were transferred to the flowbox, and 1 ml of sterile mQH₂O was added to each tube. Next, water was removed, 0,1 % agarose solution was added, and seeds were sowed on hygromycin B-containing half-strength MS plates. Plates were sealed and kept in the dark at 4 °C for 48 hours for stratification. Seeds were germinated under long-day conditions (16 h photoperiod; 22 ± 1 °C) in a growth cabinet. After ten days, the presence of hygromycin-resistant transformants was inspected. Hygromycin-resistant seedlings were larger than non-resistant seedlings, as hygromycin causes growth retardation of sensitive seedlings. Selected resistant seedlings were transferred to the soil, and grown under long-day conditions. Collected seeds represented the first generation of transformants (T₁).

4.2.14 Confocal microscopy

GFP signal from selected T_1 hygromycin-resistant seedlings harboring *pNAtGH3.4:GH3.4cdr:GFP:HygR* or *UBQ10:AtGH3.3-GFP:HygR* (positive control), and *A. thaliana* (Col-0) (negative control) was inspected by confocal microscopy. Ten-day-old seedlings grown under long-day conditions (16 h photoperiod, 22 ± 1 °C) were mounted on a glass slide with approximately 150 µl of mQH₂O and with a coverslip. Visualization was conducted using a Zeiss confocal microscope with a 20x objective. The fluorescent signal was visualized as eGFP (excitation wavelength 488 nm, emission wavelength 509 nm).

5. Results

5.1 Genomic DNA extraction and PCR amplification

Genomic DNA extraction is a method aimed at isolating DNA from other cellular components. The isolated gDNA was quantified using a micro-volume Nanodrop spectrophotometer (Table 8). "gDNA_1" and "gDNA_2" samples were extracted by E.Z.N.A. ® Plant DNA kit, while "gDNA_3" and "gDNA_4" samples were extracted by genomic DNA extraction buffer.

The $A_{260/280}$ and $A_{260/230}$ values are critical to determine the DNA quality, as they refer to DNA purity and contaminants presence. The A260/280 ratio is used to evaluate residual protein contamination from the nucleic acid isolation process, as nucleic acids absorb at 260 nm and proteins absorb at 280 nm. Absorption at 230 nm can indicate contamination by organic compounds such as phenolate ions or thiocyanates. An $A_{260/280}$ ratio of approximately 1,8 is considered indicative of "pure" DNA. Expected 260/230 absorbance values would typically range from 2,0 to 2,2.

The highest DNA concentrations were obtained for DNA extracted using genomic DNA extraction buffer (gDNA_3 = 231,6 ng/µl, gDNA_4 = 114,4 ng/µl), while "gDNA_1" and "gDNA_2", isolated with E.Z.N.A. (B) Plant DNA kit, exhibited approximately three times lower concentrations. The "gDNA_2" sample displayed the best $A_{260/280}$ ratio with a value of 1,74, whereas the lowest ratio was observed for "gDNA_4" with 1,51. The $A_{260/230}$ ratio values were relatively low for all samples, ranging from 0,22 for "gDNA_4" to 1,3 for "gDNA_2".

Name	Concentration (ng/µl)	A260/280	A260/230
σDNA 1	50.2	1.87	0.59
2 PNA 2	79.7	1,87	1.20
gDNA_2	78,7	1,74	1,50
gDNA_3	231,6	1,65	0,26
gDNA_4	114,4	1,51	0,22

Table 8. gDNA concentrations and purity, isolated from A.thaliana Col-0 plants.

PCR amplification was carried out to amplify the coding regions of *GH3.3*, *GH3.4*, *GH3.17* genes. Primers contained *Bsa*I restriction sites, and the stop codon was removed for the reverse primers (Figure 5). To check the integrity of the isolated DNA, electrophoresis
on agarose gel was performed (Figure 6). The expected sizes of the *GH3.3*, *GH3.4*, and *GH3.17* amplicons were 2410 bp, 2154 bp, and 2446 bp, respectively. Figure 6 displays bands corresponding to the estimated sizes of the DNA amplicons. However, there are also additional bands, which could correspond to non-specific amplification, DNA contamination, or other experimental artifacts.

Figure 5. Representation of the GH3.4 PCR product, created in Geneious Prime. Overhanging primers were used for the addition of the BsaI restriction site to both ends of the gene.

Figure 6. Agarose gel electropherogram of amplified coding regions. Lane 2, AtGH3.3; Lane 3, AtGH3.4; Lane 4, AtGH3.17. Lane 1 and 5, 1 kB Plus DNA Ladder (marker).

5.2 BsaI/T4 ligation in pGGC000 Green Gate module

Plasmid *pGGC000* carries resistance to ampicillin and was used as the GreenGate module to carry inserts. Insertion of the three genes *GH3.3*, *GH3.4*, *GH3.17* in respective vectors was performed by *BsaI*/T4 ligation (Attachments 1-2, Figure 7).

Figure 7. Representation of pGGC000 plasmid with inserted AtGH3.4 gene, created in Geneious Prime. The plasmid is 4,810 bp and carries the origin of replication ORI, lac operator (required for lactose metabolism), CAP binding site (positive regulator of lac operon), SP6 promoter, AtGH3.4 inserted gene sequence, T7 promoter, and ampicillin resistance cassette.

Colony PCR was conducted on transformed bacteria to confirm the presence of the target gene in the recombinant plasmid. Results of colony PCR were visualized by electrophoresis (Figure 8). The expected size of the amplicons was around 2000 bp. Multiple bands corresponding to the expected size were detected for all three constructs on the agarose gel. Besides them, there were additional bands around 5000 bp and 500 bp. However, Sanger sequencing confirmed unsuccessful transformation.

Figure 8. Agarose gel electropherograms of pGGCAtGH3.3 (A), pGGCAtGH3.4 (B), and pGGCAtGH3.17 (C) PCR amplicons. In each electropherogram, the 1 kB Plus DNA Ladder (marker) was loaded in the first and last lanes. Lanes 2-9 exhibit colony-PCR products obtained from transformed TOP 10 E.coli colonies grown on LB medium.

5.3 TA cloning with *pDrive*

TA cloning method is used to insert amplified DNA fragments harboring A-overhangs directly into a linearized vector. Coding regions of three distinct genes *AtGH3.3*, *AtGH3.4*, and *AtGH3.17* were inserted into *pDrive* vectors (Attachments 3-4, Figure 9).

Figure 9. Representation of pDrive vector with inserted AtGH3.4 gene, created in Geneious Prime. The plasmid is 5,966 bp and carries the origin of replication ORI, f1 ORI, lac operator with LacZa (required for lactose metabolism), CAP binding site (positive regulator of lac operon), SP6 promoter, AtGH3.4 inserted gene sequence, T7 promoter, ampicillin, and kanamycin resistance

To verify the presence of target genes in a plasmid, transformed bacteria were subjected to colony PCR. Eight white colonies from every construct (*pDrive-AtGH3.3*, *pDrive-AtGH3.4*, *pDrive-AtGH3.17*) were inspected (Figure 10). Results of colony PCR were visualized by electrophoresis (Figure 11). The transformation was successful, as amplicons of the expected size (around 2000 bp) were obtained from all picked colonies for each construct. However, colonies 3 and 4 from *pDrive-AtGH3.17*-transformed *E.coli* population did not return a clear amplicon. The electropherogram of *pDrive-AtGH3.3* (Figure 11A)

illustrated several additional bands around 1000 bp. The first positive colony was selected for further experiments for all three constructs.

Figure 10. The example of blue-white screening for transformed TOP10 competent cells carrying pDrive-AtGH3.4. The colonies carrying recombinant protein appear white.

Figure 11. Agarose gel electropherograms of pDrive-AtGH3.3 (A), pDrive-AtGH3.4 (B), and pDrive-AtGH3.17 (C) PCR amplicons. In each electropherogram, the 1 kB Plus DNA Ladder (marker) was loaded in the first and last lanes. Lanes 2-9 show colony-PCR products obtained from transformed TOP 10 E.coli colonies grown on LB medium.

The DNA concentration and purity of plasmids containing the gene inserts was quantified to ensure optimal sequencing results (Table 9). The *pDrive-AtGH3.3* plasmid exhibited the highest concentration at 409,2 ng/µl, whereas the lowest concentration was observed for *pDrive-AtGH3.17* at 253,3 ng/µl. In terms of purity, all three vectors displayed an average $A_{260/280}$ ratio of 1,85, indicating their high purity. The *pDrive-AtGH3.3* plasmid also demonstrated the best $A_{260/230}$ purity ratio.

Table 9. Recombinant pDrive vectors' concentrations and purity

Name	Concentration (ng/µl)	A260/280	A260/230
pDrive-AtGH3.3	409,2	1,85	2,20
pDrive-AtGH3.4	342,5	1,87	2,32
pDrive-AtGH3.17	253,3	1,84	2,19

Sequencing results confirmed the presence of the target gene sequences within the recombinant plasmids without nucleotide alterations, thereby validating the efficiency of TA cloning (Attachment 5-7). Figure 12 illustrates sequencing results of the *GH3.4* coding region, inserted to the *pDrive* vector.

Figure 12. Representation of the GH3.4 gene sequence inserted into pDrive vector, created in Geneious Prime.

5.4 Green Gate cloning

Green Gate cloning is a technique that allows assembling several DNA elements into a single destination vector. Six entry vectors (pGGA-pNAtGH3s, pGGB003, pDrive-AtGH3s, pGGD001, pGGE001, pGGF005) were used in a reaction with the destination vector pGGZ003 carrying spectinomycin resistance to generate the final assembly vector (Attachments 8-9, Figure 13).

Figure 13. Representation of pNAtGH3.4:AtGH3.4cdr-GFP vector, created in Geneious Prime. The plasmid is 9,783 bp and carries origin of replication ORI, native promoter pNAtGH3.4, AtGH3.4 inserted gene sequence, GFP sequence with a linker, tRbcs (terminator), HygrR (hygromycin resistance cassette), pSa ori (origin of replication for bacteria), SmR (spectinomycin resistance cassette)

To confirm the correct assembly of the plant transformation vector, colony PCR was carried out. Eight colonies from each construct (*pNAtGH3.3:AtGH3.3cdr-GFP*, *pNAtGH3.4:AtGH3.4cdr-GFP*, *pNAtGH3.17:AtGH3.17cdr-GFP*) were selected. The results of the colony PCR were visualized by electrophoresis (Figure 14). The expected amplicon size was approximately 2000 bp for all three constructs, and amplicons of this size indicated possible successful assembly. Figure 14 shows that each colony from each construct returned a band of expected size, confirming the efficiency of the Green Gate cloning method. For further experiments the first positive colony of each construct was inoculated, plasmid was isolated and sent for sequence validation.

Figure 14. Agarose gel electropherograms of pNAtGH3.3:AtGH3.3cdr-GFP (A), pNAtGH3.4:AtGH3.4cdr-GFP (B), and pNAtGH3.17:AtGH3.17cdr-GFP (C) PCR amplicons. In each electropherogram, the 1 kB Plus DNA Ladder (marker) was loaded in the first and last lanes. Lanes 2-9 exhibit colony-PCR products obtained from transformed TOP 10 E.coli colonies grown on LB medium.

Concentrations and purity of recombinant vectors pNAtGH3.3:AtGH3.3cdr-GFP, pNAtGH3.4:AtGH3.4cdr-GFP, and pNAtGH3.17:AtGH3.17cdr-GFP were validated to ensure optimal sequencing results (Table 10). The pNAtGH3.3:AtGH3.3cdr-GFP vector had the highest concentration at 927,6 ng/µl, while the pNAtGH3.4:AtGH3.4cdr-GFP vector had the lowest concentration at 475,7 ng/µl. The purity ratios for all three constructs showed minimal deviation, with an average A_{260/280} value of 1,85, and an average A_{260/230} value of 2,3.

Table 10. Final Green Gate recombinant pGGZ003 vectors' concentrations and purity

Name	Concentration (ng/µl)	A260/280	A260/230
pNAtGH3.3:AtGH3.3cdr-GI	FP 927,6	1,87	2,34
pNAtGH3.4:AtGH3.4cdr-Gl	FP 475,7	1,90	2,40
pNAtGH3.17:AtGH3.17cdr-C	GFP 502,0	1,77	2,10

Sequencing results confirmed the correctness of the assembly of all modules and the sequence (Attachments 10-21). Figure 15 illustrates sequencing results of the *pNAtGH3.4:AtGH3.4cdr-GFP* vector, highlighting the correct assembling of the *GH3.4* coding region and GFP coding sequence.

Figure 15. Representation of the GH3.4 gene sequence, assembled to a GFP sequence via the GFP linker, created in Geneious Prime.

5.5 Selection of transformants

Selection of transformed seeds was performed on ¹/₂ MS plates supplemented with 30 µg/ml hygromycin B. After a ten-day growth period, the identification of hygromycin-resistant seedlings was based on cotyledon size and vigor. Seedlings exibiting robust growth and larger cotyledons were considered as transgenic. Larger seedlings were observed in pNAtGH3.4:AtGH3.4cdr-GFP plant population. These seedlings were transferred to the soil for continued growth and development (Figure 16). In contrast, no transformants were detected for the plants transformed with pNAtGH3.3:AtGH3.3cdr-GFP and pNAtGH3.17:AtGH3.17cdr-GFP. The seeds collected from this initial screening give rise to the first generation of transformants T_1 .

Figure 16. Selection of T_0 transformants on $\frac{1}{2}$ MS round plates supplemented with 30 μ g/ml hygromycin B. Transformant harboring pNAtGH3.4:AtGH3.4cdr-GFP construct is highlighted by an orange circle. The transgenic seedling displayed a different morphology to non-transformant seedlings, such as larger size, hypocotyl, and cotyledon growth.

5.6 Confocal imaging

Confocal microscopy was used to visualize and compare the fluorescence signals from the negative control Col-0, a transgenic line expressing the *pNAtGH3.4:AtGH3.4cdr-GFP*, and the positive control *UBQ10::AtGH3.3-GFP* (Figure 17). All images were obtained using uniform imaging parameters to ensure comparability across the samples.

The GFP fluorescence signal was detected in the positive control, confirming the successful expression of the transgene and validating the reliability of the imaging setup. In contrast, the negative control samples did not show any GFP fluorescence signal, indicating the absence of the transgene and the specificity of the observed signal.

Confocal imaging of the T_1 generation of the *pNAtGH3.4:AtGH3.4cdr-GFP* transgenic line revealed a fluorescence profile similar to the negative control, meaning that the GFP fluorescence was not detected in the transgenic line.

Figure 17. Confocal images from negative Col-0 control (A), pNAtGH3.4:AtGH3.4cdr-GFP (B), and positive control UBQ10-GH3.3-GFP (C) in 10-day seedlings of A.thaliana. Observed with standard settings at 20 times magnification. The yellow arrow (\uparrow) indicates nucleus, blue arrow (\uparrow) indicates cytosol. Scale bar is 50 µm.

6. Discussion

Auxin is an essential plant hormone, whose metabolism is tightly regulated by several mechanisms, such as biosynthesis, degradation, and inactivation. This thesis focused on three *Arabidopsis* proteins belonging to the GRETCHEN HAGEN 3 family that directly play a role in the conjugation of auxin to amino acids, which leads to temporary auxin inactivation⁸⁷. Since the first *GH3* gene was isolated from soybean in 1984⁸⁸, not all the genes from this family have been fully characterized. This diploma thesis contributed to the creation of three plant transformation vectors containing the coding regions of three *Arabidopsis* genes *GH3.3*, *GH3.4*, and *GH3.17*. These genes were placed under their corresponding native promoters, followed by a C-terminal GFP tag, plant terminator, and plant resistance cassette. Those vectors were used to transform *A.thaliana* Col-0 plants, leading to a selection of transformed progeny for the *pNAtGH3.4:AtGH3.4cdr-GFP* line. The transgenic line underwent confocal microscopy analysis, providing data that might contribute to understanding the native localization of the GH3.4 protein in *Arabidopsis*.

In the first part of this thesis, the experiments were performed to prepare plant transformation vectors. The first step was to extract the gDNA from *Arabidopsis* leaves using gDNA extraction buffer. Although the extracted DNA had sufficient concentrations (231,6 ng/µl and 114,4 ng/µl), the purity of extracted DNA was low and DNA amplification of selected gene region did not lead to a result. According to P. Desjardins⁸⁹, pure nucleic acids usually have a 260/280 ratio of around 2.0 and 260/230 typically ranges from 1.8 to 2.2. The sufficient purity of extracted DNA was accomplished by using the E.Z.N.A.® Plant DNA Kit (Table 8). DNA extracted by this method was used in downstream applications.

Onwards, extracted gDNA was used as a template for PCR amplification of the coding regions of *GH3.3*, *GH3.4* and *GH3.17* genes. The genes of interest were amplified using overhanging primers that contained *Bsa*I recognition sites (Figure 5). Additionally, for reverse primers, the stop codon was removed, to ensure GH3-GFP fusion proteins in frame translation. PCR products were checked *via* agarose gel electrophoresis, which visualized bands corresponding to the expected sizes of the DNA amplicons (Figure 6). Amplified DNA was used for the *Bsa*I/T4 ligation cloning with a *pGGC000* vector. This entry vector advantageously had T7 and SP6 bacteriophage promoters and *lac* operon for the blue-white screening⁵⁷ (Attachments 1-2, Figure 7). The prepared vectors were first inserted into TOP 10 *E.coli*, and transformation was verified by colony PCR and sequencing. The amplicons were expected to be roughly 2000 bp. On the agarose gel, bands of the expected size were observed in all three cases (Figure 8). Besides bands of expected sizes, additional bands

around 5000 bp and 500 bp were also observed on electropherograms. Those bands could appear due to incomplete DNA amplification cycles, which can be the result of shorter DNA fragments, such as primer dimers, heteroduplexes, chimeras or hairpin structures⁹⁰. Another possible reason of unspecific bands is DNA thermal damage⁹¹. There are three main negative effects of thermal damage: A+G depurination, the oxidation of guanine to 8-oxoG, and cytosine deamination to uracil. In addition to causing incorrect nucleotide incorporation during replication, high temperatures increase DNA degradation, resulting in lower yield⁹¹. Sanger sequencing confirmed that the transformation was unsuccessful. During the second repetition of the same experiment, troubleshooting steps were undertaken. This included optimizing the concentration of the gDNA amplicon, using unopened buffers, and preparing fresh solutions (dNTPs). Additionally, a different competent cell strain for transformation was tested; TOP 10 was used for the first trial, while NEB5a for the second attempt. The troubleshooting steps did not have an effect on the outcome of the cloning. The exact reason for the unsuccessful outcome remained unclear. The most frequent reasons of unsuccessful cloning are damaged template or a template with low purity⁹², irrelevantly chosen polymerases and restriction endonucleases⁹³, long sequence of the cloning gene and repeated sequences⁹⁴.

Following the first unsuccessful cloning attempt, a different strategy was adopted. A TA cloning with a *pDrive* vector was tested. This vector also had T7 and SP6 bacteriophage promoters and *lac* operon, but contained kanamycin and ampicillin resistance cassettes (Attachments 3-4, Figure 9). Taq-polymerase amplified coding regions of three genes with T-overhangs were inserted into *pDrive* vectors with complementary A-overhangs. The ligation products were then transformed into the TOP 10 competent cells, followed by blue-white screening. Screening divided all bacterial colonies into two groups: white - recombinant ones and blue – non-recombinant ones (Figure 10). White colonies were picked for colony PCR. Results of the colony PCR were visualized by agarose gel electrophoresis, and amplicons were observed as bands around 2000 bp for each vector (Figure 11). Additional bands of unexpected size were considered impurities or false primers' aligning⁹⁵. Sanger sequencing confirmed the successful transformation (Attachments 5-7, Figure 12).

The subsequent step involved GreenGate cloning method, which was chosen by efficiency in saving time and effort, since both digestion and ligation steps carry out simultaneously in a single-tube reaction⁵⁷. Comparing to conventual cloning methods, such as traditional restriction enzyme cloning, Gateway cloning or TOPO cloning, GreenGate allows to assemble six modules at the same time with no need to purify insert DNA fragments and vector⁵⁷. GreenGate was successfully used in gene expression analysis⁹⁶,

protein subcellular localization⁹⁷, and generating transgenic lines⁹⁸. The *pDrive* vectors containing the coding regions of either *GH3.3*, *GH3.4* or *GH3.17* were used as alternative module C and assembled with *pGGA-pNAtGH3s* (native promoter for each gene), *pGGB003*, *pGGD001* (GFP tag), *pGGE001*, and pGGF005 into the *pGGZ003* destination vector using *BsaI*/T4 ligation cloning⁵⁷ (Attachments 8-9, Figure 13). TOP 10 competent cells were transformed with the final assembly vectors *pNAtGH3.3:AtGH3.3cdr-GFP*, *pNAtGH3.4:AtGH3.4cdr-GFP*, and *pNAtGH3.17:AtGH3.17cdr-GFP*, and subsequently subjected to colony PCR. Electrophoresis visualized the colony PCR results and confirmed the presence of the expected bands of 2000 bp for each vector (Figure 14). Three final vectors were sent for sequencing, which confirmed the correct assembly and sequence of *pNAtGH3.3:AtGH3.3cdr-GFP*, *pNAtGH3.17:AtGH3.17:cdr-GFP* (Attachments 10-21, Figure 15).

Three final vectors were transformed to the Agrobacterium electrocompetent cells. Plant transformation mediated by Agrobacterium through the floral-dip method is a widely used plant transformation technique, characterized by its simplicity, high-efficiency with reduced time and non-destructivity for plants⁹⁹. Thus, transformation with the generated constructs of Col-0 Arabidopsis plants with unopened floral buds (4-6 weeks) was performed by floral dip. Seeds resulting from this transformation belonged to the T₀ generation and underwent a selection process, based on hygromycin-B antibiotic resistance. The genetically modified seedlings distinguished from non-transgenic seedlings by their larger size, hypocotyl and cotyledon growth, and overall resilience¹⁰⁰(Figure 16). Transformation on Arabidopsis with the the pNAtGH3.4:AtGH3.4cdr-GFP vector was successful, T₀ transgenic seedlings were selected and cultivated until the subsequent T_1 generation of seeds was collected. *Arabidopsis* plants with inserted pNAtGH3.3:AtGH3.3cdr-GFP and pNAtGH3.17:AtGH3.17cdr-GFP vectors did not contain any recombinant seedlings, so thetransformation process was repeated. Despite several floral dip repetitions, these lines failed to produce transgenic progeny. Study of the S. De Buck¹⁰¹ states that floral dip transformation yields an average 4-6 recombinant T-DNA copies per transformant. Additionally, transgene after transformation can undergo different unexpected modifications, leading to gene silencing. The most well-studied silencing is homologydependent gene silencing (HDGS)¹⁰². This phenomenon suggests that homology between the transgene, and either the native gene or another transgene leads to gene silencing. All of the above together with bad plant condition before transformation, such as weak or stressed plants, can be considered as the reason of the lack of the transgenic lines for pNAtGH3.3:AtGH3.3cdr-GFP and pNAtGH3.17:AtGH3.17cdr-GFP vectors.

Inspection of the GFP signal in the generated transgenic line by confocal laser scanning microscopy represented the last step of this thesis. Detection was performed with 10-day Arabidopsis seedlings of T_1 generation expressing pNAtGH3.4:AtGH3.4cdr-GFP. As positive control, UBQ10::AtGH3.3-GFP stable transgenic line was used, and as negative control Arabidopsis Col-0 was used (Figure 17). Highly intense GFP signal in roots was observed in the positive control, confirming the overexpression of the fusion protein due to constitutive promoter. Constitutive promoters ensure stable gene expression consistently across different tissues and developmental stages. They are especially beneficial in fluorescent microscopy of transgenes, as they provide prolonged expression of the fluorescently-tagged proteins¹⁰³. Alongside, negative control didn't show any specific fluorescence signal besides autofluorescence, which is consistent with the expected result because the plants did not contain any GFP tag. Autofluorescence is the natural ability of certain biomolecules to emit fluorescent light when excited by specific wavelengths of light. Chlorophyll and multiple cell wall components can exhibit autofluorescence after excitation by ultraviolet, blue or green light 104 . The T₁ generation of plants transformed with the pNAtGH3.4:AtGH3.4cdr-GFP vector did not show any fluorescence signal besides autofluorescence, similar to the negative control, suggesting a lack of GFP signal in the transformed plant line. Generally, GFP signal may not be observed under a native promoter due to low protein expression levels, inappropriate observation timing and protein localization, unexpected protein post-translational modifications, or limitations of detection methods¹⁰⁵. According to the Arabidopsis gene expression map (Arabidopsis eFP Browser)¹⁰⁶, the expression levels of the GH3.4 protein significantly vary across different stages of seed development. The main purpose of this diploma thesis was to inspect the localization of GH3s proteins, which was done on 10-day seedlings. At this developmental stage, GH3.4 protein expression in the root is lower compared to other stages. This could explain the low GFP signal detection by confocal microscopy, even though the seeds harbored a recombinant vector with a GFP tag. However, the pNAtGH3.4:AtGH3.4cdr-GFP transgenic line might have an important role in studying the key pathways of Arabidopsis and its response under different conditions. Changes in hormone levels during stress (surplus/the lack of water, chemicals, etc.) trigger the expression of other proteins in the plant that should help it survive the adverse conditions. Recent studies on ARFs group¹⁰⁷ of proteins and CLE9 peptide¹⁰⁸ show that they change their expression levels as a response to gradient concentration of abscisic acid, hydrogen peroxide, nitric oxide, and salt (NaCl) treatments. Using the tagged GH3.4 protein, it is possible to track its expression levels under

different conditions, which might extend the understanding of IAA metabolism and the possible interaction with other plant hormones.

7. Conclusion

In the theoretical part of the diploma thesis, in-depth literature review was conducted on auxins, particularly on biosynthesis, degradation, and inactivation mechanisms mediated by GH3s enzymes. The latter part of the theoretical section mainly explored cloning strategies and confocal laser microscopy.

The experimental section consisted of several steps. The initial step involved extracting gDNA from *Arabidopsis* using the E.Z.N.A.® Plant DNA Kit and a gDNA extraction buffer. It was experimentally demonstrated that the E.Z.N.A.® Plant DNA Kit yielded better results compared to the gDNA extraction buffer. The main goal of the subsequent step was to incorporate three *Arabidopsis* genes (*GH3.3*, *GH3.4*, *GH3.17*) into the *pGGC000* Green Gate module using *BsaI*/T4 ligation.

After an unsuccessful transformation attempt, the cloning method was changed to TA cloning with a *pDrive* vector. This change led to the creation of three Green Gate entry vectors: *pDrive-AtGH3.3cdr*, *pDrive-AtGH3.4cdr*, and *pDrive-AtGH3.17cdr*. Subsequently, those vectors served as modules for the creation of final GreenGate assembly vector with a GFP tag: *pNAtGH3.3:AtGH3.3cdr-GFP*, *pNAtGH3.4:AtGH3.4cdr-GFP*, *pNAtGH3.17cdr-GFP*. The *Arabidopsis* transformation was achieved through the *Agrobacterium*-mediated floral dip method, with *Agrobacterium* carrying the corresponding vectors. The experiment succeeded in creation of a *pNAtGH3.4:AtGH3.4cdr-GFP Arabidopsis* transgenic line. No transgenic lines were obtained with the two other vectors.

Ten-day-old seedlings from the T_1 generation of *Arabidopsis* expressing *pNAtGH3.4:AtGH3.4cdr-GFP*, along with the positive control *Arabidopsis* expressing *UBQ10::AtGH3.3-GFP* and the negative control *Arabidopsis* Col-0, were used for GFP signal inspection by laser confocal microscopy. The transgenic line expressing *pNAtGH3.4:AtGH3.4cdr-GFP* did not exhibit any fluorescence, and its lack of signal was identical to that of the negative control. However, this line may be used for further studies related to IAA metabolism, such as for investigating changes in GH3.4 expression in response to specific hormones or alternated biotic and abiotic conditions.

Two additional vectors were designed to be used for plant transformation, and further protein localization driven by native promoter.

8. Literature

(1) Davies, P. J. (1987). Plant Hormones and Their Role in Plant Growth and Development. Leiden, Boston, MA: Martinus Nijhoff Publishers, 681 pp. http://dx.doi.org/10.1007/978-94-009-3585-3

(2) Gomes, G. L. B.; Scortecci, K. C. (2021) Auxin and Its Role in Plant Development: Structure, Signalling, Regulation and Response Mechanisms. *Plant Biology*. *23* (6), 894–904. https://doi.org/10.1111/plb.13303.

(3) Du, M.; Spalding, E. P.; Gray, W. M. (2020) Rapid Auxin-Mediated Cell Expansion. *Annual Review of Plant Biology*. 71 (1), 379–402. https://doi.org/10.1146/annurev-arplant-073019-025907.

(4) Cao, X.; Yang, H.; Shang, C.; Ma, S.; Liu, L.; Cheng, J. (2019) The Roles of Auxin Biosynthesis YUCCA Gene Family in Plants. *International Journal of Molecular Sciences*. 20 (24), 6343. https://doi.org/10.3390/ijms20246343.

(5) Schneider, E. A.; Kazakoff, C. W.; Wightman, F. (1985) Gas Chromatography-Mass Spectrometry Evidence for Several Endogenous Auxins in Pea Seedling Organs. *Planta.* 165 (2), 232–241. https://doi.org/10.1007/BF00395046.

(6) Dziurka, K.; Dziurka, M.; Warchoł, M.; Czyczyło-Mysza, I.; Marcińska, I.; Noga, A.; Kapłoniak, K.; Skrzypek, E. (2019) Endogenous Phytohormone Profile during Oat (Avena Sativa L.) Haploid Embryo Development. *In Vitro Cellular & Developmental Biology – Plant.* 55 (2), 221–229. https://doi.org/10.1007/s11627-019-09967-5.

(7) Korasick, D. A.; Enders, T. A.; Strader, L. C. (2013) Auxin Biosynthesis and Storage Forms. *Journal of Experimental Botany*. 64 (9), 2541–2555. https://doi.org/10.1093/jxb/ert080.

(8) Strader, L.; Monroe-Augustus, M.; Rogers. K.; Lin, G.; Bartel, B. (2008) *Arabidopsis* iba response5 Suppressors Separate Responses to Various Hormones. Genetics, Volume 180, Issue 4, Pages 2019–2031, https://doi.org/10.1534/genetics.108.091512

(9) Casanova-Sáez, R.; Mateo-Bonmatí, E.; Ljung, K. (2021) Auxin Metabolism in Plants. *Cold Spring Harbor Perspectives in Biology.* 13 (3), a039867. https://doi.org/10.1101/cshperspect.a039867.

(10) Vorwerk, S.; Biernacki, S.; Hillebrand, H.; Janzik, I.; Müller, A.; Weiler, E. W.; Piotrowski, M. (2001) Enzymatic Characterization of the Recombinant Arabidopsis Thaliana Nitrilase Subfamily Encoded by the NIT 2/ NIT 1/ NIT 3-Gene Cluster. *Planta*. 212 (4), 508–516. https://doi.org/10.1007/s004250000420.

(11) Mano, Y.; Nemoto, K.; Suzuki, M.; Seki, H.; Fujii, I.; Muranaka, T. (2010) The AMI1 Gene Family: Indole-3-Acetamide Hydrolase Functions in Auxin Biosynthesis in Plants. *Journal of Experimental Botany*. 61 (1), 25–32. https://doi.org/10.1093/jxb/erp292.

(12) Nonhebel, H. M. (2015) Tryptophan-Independent Indole-3-Acetic Acid Synthesis: Critical Evaluation of the Evidence. *Plant Physiology*. 169 (2), 1001–1005. https://doi.org/10.1104/pp.15.01091.

(13) Wright, A. D.; Sampson, M. B.; Neuffer, M. G.; Michalczuk, L.; Slovin, J. P.; Cohen, J. D. (1979) 1991 Indole-3-Acetic Acid Biosynthesis in the Mutant Maize *Orange Pericarp*, a Tryptophan Auxotroph. *Science*. 254 (5034), 998–1000. https://doi.org/10.1126/science.254.5034.998.

(14) Zhang, R.; Wang, B.; Ouyang, J.; Li, J.; Wang, Y. (2008) *Arabidopsis* Indole Synthase, a Homolog of Tryptophan Synthase Alpha, Is an Enzyme Involved in the Trp-Independent Indole-Containing Metabolite Biosynthesis. *Journal of Integrative Plant Biology*. 50 (9), 1070–1077. https://doi.org/10.1111/j.1744-7909.2008.00729.x.

(15) Petrášek, J.; Friml, J. (2009) Auxin Transport Routes in Plant Development. *Development*. 136 (16), 2675–2688. https://doi.org/10.1242/dev.030353.

(16) Friml, J.; Vieten, A.; Sauer, M.; Weijers, D.; Schwarz, H.; Hamann, T.; Offringa, R.; Jürgens, G. (2003) Efflux-Dependent Auxin Gradients Establish the Apical–Basal Axis of Arabidopsis. *Nature*. 426 (6963), 147–153. https://doi.org/10.1038/nature02085.

(17) Friml, J.; Palme, K. (2002) Polar Auxin Transport – Old Questions and New Concepts? *Plant Molecular Biology*. 49 (3/4), 273–284. https://doi.org/10.1023/A:1015248926412.

(18) Zazimalova, E.; Murphy, A. S.; Yang, H.; Hoyerova, K.; Hosek, P. (2010) Auxin Transporters--Why So Many? *Cold Spring Harbor Perspectives in Biology*. 2 (3), a001552–a001552. https://doi.org/10.1101/cshperspect.a001552.

(19) Vieten, A.; Sauer, M.; Brewer, P. B.; Friml, J. (2007) Molecular and Cellular Aspects of Auxin-Transport-Mediated Development. *Trends in Plant Science*. 12 (4), 160–168. https://doi.org/10.1016/j.tplants.2007.03.006.

(20) Gälweiler, L.; Guan, C.; Müller, A.; Wisman, E.; Mendgen, K.; Yephremov, A.; Palme, K. (1979) 1998 Regulation of Polar Auxin Transport by AtPIN1 in *Arabidopsis* Vascular Tissue. *Science*. 282 (5397), 2226–2230. https://doi.org/10.1126/science.282.5397.2226.

(21) Friml, J.; Vieten, A.; Sauer, M.; Weijers, D.; Schwarz, H.; Hamann, T.; Offringa, R.; Jürgens, G. (2003) Efflux-Dependent Auxin Gradients Establish the Apical–Basal Axis of Arabidopsis. *Nature*. 426 (6963), 147–153. https://doi.org/10.1038/nature02085.

(22) Benková, E.; Michniewicz, M.; Sauer, M.; Teichmann, T.; Seifertová, D.; Jürgens, G.; Friml, J. (2003) Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. *Cell*. 115 (5), 591–602. https://doi.org/10.1016/S0092-8674(03)00924-3.

(23) Swarup, R.; Bennett, M. (2003) Auxin Transport. *Developmental Cell*. 5 (6), 824–826. https://doi.org/10.1016/S1534-5807(03)00370-8.

(24) Adamowski, M.; Friml, J. (2015) PIN-Dependent Auxin Transport: Action, Regulation, and Evolution. *Plant Cell*. 27 (1), 20–32. https://doi.org/10.1105/tpc.114.134874.

(25) Sorefan, K.; Girin, T.; Liljegren, S. J.; Ljung, K.; Robles, P.; Galván-Ampudia, C. S.; Offringa, R.; Friml, J.; Yanofsky, M. F.; Østergaard, L. (2009) A Regulated Auxin Minimum Is Required for Seed Dispersal in Arabidopsis. *Nature*. 459 (7246), 583–586. https://doi.org/10.1038/nature07875.

(26) Vandenbussche, F.; Petrášek, J.; Žádníková, P.; Hoyerová, K.; Pešek, B.; Raz, V.; Swarup, R.; Bennett, M.; Zažímalová, E.; Benková, E.; Van Der Straeten, D. (2010) The Auxin Influx Carriers AUX1 and LAX3 Are Involved in Auxin-Ethylene Interactions during Apical Hook Development in *Arabidopsis Thaliana* Seedlings. *Development*. 137 (4), 597–606. https://doi.org/10.1242/dev.040790.

(27) Swarup, R.; Bhosale, R. (2019) Developmental Roles of AUX1/LAX Auxin Influx Carriers in Plants. *Frontiers in Plant Science*. 10:1306. doi:10.3389/fpls.2019.01306.

(28) Mravec, J.; Skůpa, P.; Bailly, A.; Hoyerová, K.; Křeček, P.; Bielach, A.; Petrášek, J.; Zhang, J.; Gaykova, V.; Stierhof, Y.-D.; Dobrev, P. I.; Schwarzerová, K.; Rolčík, J.; Seifertová, D.; Luschnig, C.; Benková, E.; Zažímalová, E.; Geisler, M.; Friml, J. (2009) Subcellular Homeostasis of Phytohormone Auxin Is Mediated by the ER-Localized PIN5 Transporter. *Nature*. 459 (7250), 1136–1140. https://doi.org/10.1038/nature08066.

(29) Ding, Z.; Wang, B.; Moreno, I.; Dupláková, N.; Simon, S.; Carraro, N.; Reemmer, J.; Pěnčík, A.; Chen, X.; Tejos, R.; Skůpa, P.; Pollmann, S.; Mravec, J.; Petrášek, J.; Zažímalová, E.; Honys, D.; Rolčík, J.; Murphy, A.; Orellana, A.; Geisler, M.; Friml, J. (2012) ER-Localized Auxin Transporter PIN8 Regulates Auxin Homeostasis and Male Gametophyte Development in Arabidopsis. *Nat Commun.* 3 (1), 941. https://doi.org/10.1038/ncomms1941.

(30) Béziat, C.; Barbez, E.; Feraru, M. I.; Lucyshyn, D.; Kleine-Vehn, J. (2017) Light Triggers PILS-Dependent Reduction in Nuclear Auxin Signalling for Growth Transition. *Nat Plants*. 3 (8), 17105. https://doi.org/10.1038/nplants.2017.105.

(31) Barbez, E.; Kubeš, M.; Rolčík, J.; Béziat, C.; Pěnčík, A.; Wang, B.; Rosquete, M. R.; Zhu, J.; Dobrev, P. I.; Lee, Y.; Zažímalovà, E.; Petrášek, J.; Geisler, M.; Friml, J.; Kleine-Vehn, J. (2012) A Novel Putative Auxin Carrier Family Regulates Intracellular Auxin Homeostasis in Plants. *Nature*. 485 (7396), 119–122. https://doi.org/10.1038/nature11001.

(32) Feraru, E.; Feraru, M. I.; Barbez, E.; Waidmann, S.; Sun, L.; Gaidora, A.; Kleine-Vehn, J. (2019) PILS6 Is a Temperature-Sensitive Regulator of Nuclear Auxin Input and Organ Growth in *Arabidopsis Thaliana. Proceedings of the National Academy of Sciences.* 116 (9), 3893–3898. https://doi.org/10.1073/pnas.1814015116.

(33) Ranocha, P.; Dima, O.; Nagy, R.; Felten, J.; Corratgé-Faillie, C.; Novák, O.; Morreel, K.; Lacombe, B.; Martinez, Y.; Pfrunder, S.; Jin, X.; Renou, J.-P.; Thibaud, J.-B.; Ljung, K.; Fischer, U.; Martinoia, E.; Boerjan, W.; Goffner, D. (2013) Arabidopsis WAT1 Is a Vacuolar Auxin Transport Facilitator Required for Auxin Homoeostasis. *Nature Communications*. 4 (1), 2625. https://doi.org/10.1038/ncomms3625.

(34) Caumon, H.; Vernoux, T. (2023) A matter of time: auxin signaling dynamics and the regulation of auxin responses during plant development. *Journal of Experimental Botany*. Volume 74, Issue 14, pages 3887–3902. https://doi.org/10.1093/jxb/erad132

(35) Ottoline Leyser. (2018) Auxin Signaling, *Plant Physiology*, Volume 176, Issue 1, Pages 465–479, https://doi.org/10.1104/pp.17.00765

(36) Bingsheng, L.; Kaijing, W.; Kongqin, H.; Te, T.; Feng, Z.; Zipeng, Y.; Dajian, Z.; Yinghua, S.; Yalin, S.; Xiansheng, Z.; Zhaojun, D. (2021) MPK14-mediated auxin signaling controls lateral root development via ERF13-regulated very-long-chain fatty acid biosynthesis. *Molecular Plant*. Volume 14, Issue 2, pages 285-297. https://doi.org/10.1016/j.molp.2020.11.011.

(37) Wang, Q.; De Gernier, H.; Duan, X.; Xie, Y.; Geelen, D.; Hayashi, K.; Xuan, W.; Geisler, M.; ten Tusscher, K.; Beeckman, T.; Vanneste, S. (2023) GH3-mediated Auxin Inactivation Attenuates Multiple Stages of Lateral Root Development. *New Phytologist*. https://doi.org/10.1111/nph.19284.

(38) Woodward, A. W. (2005) Auxin: Regulation, Action, and Interaction. *Ann Bot.* 95 (5), 707–735. https://doi.org/10.1093/aob/mci083.

(39) Hayashi, K.; Arai, K.; Aoi, Y.; Tanaka, Y.; Hira, H.; Guo, R.; Hu, Y.; Ge, C.; Zhao, Y.; Kasahara, H.; Fukui, K. (2021) The Main Oxidative Inactivation Pathway of the Plant Hormone Auxin. *Nat Commun.* 12 (1), 6752. https://doi.org/10.1038/s41467-021-27020-1.

(40) Östin, A.; Kowalyczk, M.; Bhalerao, R. P.; Sandberg, G. (1998) Metabolism of Indole-3-Acetic Acid in Arabidopsis. *Plant Physiol.* 118 (1), 285–296. https://doi.org/10.1104/pp.118.1.285.

(41) Ludwig-Müller, J. (2011) Auxin Conjugates: Their Role for Plant Development and in the Evolution of Land Plants. *J Exp Bot*. 62 (6), 1757–1773. https://doi.org/10.1093/jxb/erq412.

(42) Brunoni, F.; Collani, S.; Casanova-Sáez, R.; Šimura, J.; Karady, M.; Schmid, M.; Ljung, K.; Bellini, C. (2020) Conifers Exhibit a Characteristic Inactivation of Auxin to Maintain Tissue Homeostasis. *New Phytologist*. 226 (6), 1753–1765. https://doi.org/10.1111/nph.16463.

(43) Mellor, N.; Band, L. R.; Pěnčík, A.; Novák, O.; Rashed, A.; Holman, T.; Wilson, M. H.; Voß, U.; Bishopp, A.; King, J. R.; Ljung, K.; Bennett, M. J.; Owen, M. R. (2016) Dynamic Regulation of Auxin Oxidase and Conjugating Enzymes *AtDAO1* and *GH3* Modulates Auxin Homeostasis. *Proceedings of the National Academy of Sciences*. 113 (39), 11022–11027. https://doi.org/10.1073/pnas.1604458113.

(44) Fukui, K.; Arai, K.; Tanaka, Y.; Aoi, Y.; Kukshal, V.; Jez, J. M.; Kubes, M. F.; Napier, R.; Zhao, Y.; Kasahara, H.; Hayashi, K. (2022) Chemical Inhibition of the Auxin Inactivation Pathway Uncovers the Roles of Metabolic Turnover in Auxin Homeostasis. *Proceedings of the National Academy of Sciences*. 119 (32). https://doi.org/10.1073/pnas.2206869119.

(45) Guo, R.; Hu, Y.; Aoi, Y.; Hira, H.; Ge, C.; Dai, X.; Kasahara, H.; Zhao, Y. (2022) Local Conjugation of Auxin by the GH3 Amido Synthetases Is Required for Normal Development of Roots

and Flowers in Arabidopsis. *Biochemical and Biophysical Research Communications*. 589, 16–22. https://doi.org/10.1016/j.bbrc.2021.11.109.

(46) Chen, Q.F., Westfall, C.S., Hicks, L.M., Wang, S.P. and Jez, J.M. (2010) Kinetic basis for the conjugation of auxin by a GH3 family indoleacetic acid-amido synthetase. *Journal of biological chemistry*. 285: 29780–29786. https://doi.org/10.1074/jbc.M110.146431

(47) Staswick, P. E.; Tiryaki, I. (2004) The Oxylipin Signal Jasmonic Acid Is Activated by an Enzyme That Conjugates It to Isoleucine in Arabidopsis. *Plant Cell.* 16 (8), 2117–2127. https://doi.org/10.1105/tpc.104.023549.

(48) Delfin, J. C.; Kanno, Y.; Seo, M.; Kitaoka, N.; Matsuura, H.; Tohge, T.; Shimizu, T. (2022) AtGH3.10 Is Another Jasmonic Acid-amido Synthetase in *Arabidopsis Thaliana*. *The Plant Journal*. 110 (4), 1082–1096. https://doi.org/10.1111/tpj.15724.

(49) Okrent, R. A.; Brooks, M. D.; Wildermuth, M. C. (2009) Arabidopsis GH3.12 (PBS3) Conjugates Amino Acids to 4-Substituted Benzoates and Is Inhibited by Salicylate. *Journal of Biological Chemistry*. 284 (15), 9742–9754. https://doi.org/10.1074/jbc.M806662200.

(50) Westfall, C.; Herrmann, J.; Chen, Q.; Wang, S.; Jez, J. (2010) Modulating plant hormones by enzyme action: The GH3 family of acyl acid amido synthetases. *Plant signaling & behavior*. 5. 1607-12. https://doi.org/10.4161/psb.5.12.13941.

(51) Sgaramella, V.; Bernardi, A. (2001) DNA Cloning. *Brenner's Encyclopedia of Genetics:* Second Edition, 348–352. https://doi.org/10.1016/B978-0-12-374984-0.00417-4.

(52) Blackstock, J. C. (1989) Gene Cloning. *Guide to Biochemistry*. 230–241. https://doi.org/10.1016/B978-0-7236-1151-6.50025-X.

(53) Lessard, J. C. (2013) Molecular Cloning. *Methods in Enzymology*. 529, 85–98. https://doi.org/10.1016/B978-0-12-418687-3.00007-0.

(54) Esser, K.; Kück, U.; Lang-Hinrichs, C.; Lemke, P.; Osiewacz, H. D.; Stahl, U.; Tudzynski, P. (1986) *Plasmids of Eukaryotes*; Springer Berlin Heidelberg: Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-82585-9.

(55) Davis, L. G.; Dibner, M. D.; Battey, J. F. (1986) PBR322. In *Basic Methods in Molecular Biology*; Elsevier. pp 24–25. https://doi.org/10.1016/B978-0-444-01082-7.50010-2.

(56) Thomas, C. M.; Summers, D. (2008) Bacterial Plasmids. In *eLS*; Wiley, https://doi.org/10.1002/9780470015902.a0000468.pub2.

(57) Lampropoulos, A.; Sutikovic, Z.; Wenzl, C.; Maegele, I.; Lohmann, J. U.; Forner, J. (2013) GreenGate - A Novel, Versatile, and Efficient Cloning System for Plant Transgenesis. *PLoS One*. 8 (12), e83043. https://doi.org/10.1371/journal.pone.0083043.

(58) Clark, D. P.; Pazdernik, N. J.; McGehee, M. R. (2019) Cloning Genes for Synthetic Biology. *Molecular Biology*; Elsevier, pp 199–239. https://doi.org/10.1016/B978-0-12-813288-3.00007-0.

(59) Carson, S.; Heather, B.; Witherow, S.; Srougi, M.; (2019) Lab Session 3 - Completion of Vector Preparation and Polymerase Chain Reaction Amplification of egfp, Molecular Biology Techniques (Fourth Edition). *Academic Press*, 23-30 pages. https://doi.org/10.1016/B978-0-12-815774-9.00003-4.

(60) Garibyan, L.; Avashia, N. (2013) Polymerase Chain Reaction. *Journal of Investigative Dermatology*. 133 (3), 1–4. https://doi.org/10.1038/jid.2013.1.

(61) Gibbs, R. A. (1990) DNA Amplification by the Polymerase Chain Reaction. *Anal Chem.* 62 (13), 1202–1214. https://doi.org/10.1021/ac00212a004.

(62) Delidow, B. C.; Lynch, J. P.; Peluso, J. J.; White, B. A. (1996) Polymerase Chain Reaction: Basic Protocols. In *PCR Protocols*; Humana Press: New Jersey. pp 1–30. https://doi.org/10.1385/0-89603-244-2:1.

(63) Zhu, H.; Zhang, H.; Xu, Y.; Laššáková, S.; Korabečná, M.; Neužil, P. (2020) PCR Past, Present and Future. *Biotechniques*. 69 (4), 317–325. https://doi.org/10.2144/btn-2020-0057.

(64) Ullmann, A.; Jacob, F.; Monod, J. (1967) Characterization by in Vitro Complementation of a Peptide Corresponding to an Operator-Proximal Segment of the β -Galactosidase Structural Gene of Escherichia Coli. *J Mol Biol.* 24 (2), 339–343. https://doi.org/10.1016/0022-2836(67)90341-5.

(65) Langley, K. E.; Villarejo, M. R.; Fowler, A. V; Zamenhof, P. J.; Zabin, I. (1975) Molecular Basis of Beta-Galactosidase Alpha-Complementation. *Proceedings of the National Academy of Sciences*. 72 (4), 1254–1257. https://doi.org/10.1073/pnas.72.4.1254.

(66) Messing, J.; Gronenborn, B.; Müller-Hill, B.; Hans Hopschneider, P. (1977) Filamentous Coliphage M13 as a Cloning Vehicle: Insertion of a HindII Fragment of the Lac Regulatory Region in M13 Replicative Form in Vitro. *Proceedings of the National Academy of Sciences*. 74 (9), 3642–3646. https://doi.org/10.1073/pnas.74.9.3642.

(67) Martín, J. F.; Gil, J. A. (1984) Cloning and Expression of Antibiotic Production Genes. *Nat Biotechnol.* 2 (1), 63–72. https://doi.org/10.1038/nbt0184-63.

(68) Bergkessel, M.; Guthrie, C. (2013) Colony PCR. Methods Enzymol. pp 299–309. https://doi.org/10.1016/B978-0-12-418687-3.00025-2.

(69) Walch, G.; Knapp, M.; Rainer, G.; Peintner, U. (2016) Colony-PCR Is a Rapid Method for DNA Amplification of Hyphomycetes. *Journal of Fungi.* 2 (2), 12. https://doi.org/10.3390/jof2020012.

(70) Mandel, M.; Higa, A. (1970) Calcium-Dependent Bacteriophage DNA Infection. *J Mol Biol*. 53 (1), 159–162. https://doi.org/10.1016/0022-2836(70)90051-3.

(71) Cohen, S. N.; Chang, A. C. Y.; Hsu, L. (1972) Nonchromosomal Antibiotic Resistance in Bacteria: Genetic Transformation of *Escherichia Coli* by R-Factor DNA. *Proceedings of the National Academy of Sciences*. 69 (8), 2110–2114. https://doi.org/10.1073/pnas.69.8.2110.

(72) Aune, T. E. V.; Aachmann, F. L. (2010) Methodologies to Increase the Transformation Efficiencies and the Range of Bacteria That Can Be Transformed. *Appl Microbiol Biotechnol.* 85 (5), 1301–1313. https://doi.org/10.1007/s00253-009-2349-1.

(73) Carter, M.; Shieh, J. (2015) Gene Delivery Strategies. In *Guide to Research Techniques in Neuroscience*; Elsevier. pp 239–252. https://doi.org/10.1016/B978-0-12-800511-8.00011-3.

(74) Panja, S.; Saha, S.; Jana, B.; Basu, T. (2006) Role of Membrane Potential on Artificial Transformation of *E.coli* with Plasmid DNA. *J Biotechnol*. 127 (1), 14–20. https://doi.org/10.1016/j.jbiotec.2006.06.008.

(75) Asif, A.; Mohsin, H.; Tanvir, R.; Rehman, Y. (2017) Revisiting the Mechanisms Involved in Calcium Chloride Induced Bacterial Transformation. *Front Microbiol.* 8. https://doi.org/10.3389/fmicb.2017.02169.

(76) Kim, H.; Kim, J.-S. (2014) A Guide to Genome Engineering with Programmable Nucleases. *Nat Rev Genet.* 15 (5), 321–334. https://doi.org/10.1038/nrg3686.

(77) Bawa, A. S.; Anilakumar, K. R. (2013) Genetically Modified Foods: Safety, Risks and Public Concerns—a Review. *J Food Sci Technol.* 50 (6), 1035–1046. https://doi.org/10.1007/s13197-012-0899-1.

(78) Clough, S. J.; Bent, A. F. (1998) Floral Dip: A Simplified Method for *Agrobacterium* - mediated Transformation of *Arabidopsis Thaliana*. *The Plant Journal*. 16 (6), 735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x

(79) Bechtold, N.; Pelletier, G. (1998) In Planta *Agrobacterium*-Mediated Transformation of Adult Arabidopsis Thaliana Plants by Vacuum Infiltration. In *Arabidopsis Protocols*; Humana Press: Totowa, NJ. pp 259–266. https://doi.org/10.1385/0-89603-391-0:259.

(80) Azpiroz-Leehan, R. (1997) T-DNA Insertion Mutagenesis in Arabidopsis: Going Back and Forth. *Trends in Genetics*. 13 (4), 152–156. https://doi.org/10.1016/S0168-9525(97)01094-9.

(81) Desfeux, C.; Clough, S. J.; Bent, A. F. (2000) Female Reproductive Tissues Are the Primary Target of *Agrobacterium* -Mediated Transformation by the Arabidopsis Floral-Dip Method. *Plant Physiol.* 123 (3), 895–904. https://doi.org/10.1104/pp.123.3.895.

(82) Hwang, H.-H.; Yu, M.; Lai, E.-M. (2017) *Agrobacterium* -Mediated Plant Transformation: Biology and Applications. *Arabidopsis Book*. 15, e0186. https://doi.org/10.1199/tab.0186.

(83) Michielse, C. B.; Ram, A. F. J.; Hooykaas, P. J. J.; Hondel, C. A. M. J. J. van den. (2004) Role of Bacterial Virulence Proteins in *Agrobacterium*-Mediated Transformation of Aspergillus Awamori. *Fungal Genetics and Biology*. 41 (5), 571–578. https://doi.org/10.1016/j.fgb.2004.01.004.

(84) Vesely, P. (2006) 2007 Handbook of Biological Confocal Microscopy, 3rd Ed. By James B. Pawley, Editor. Springer Science + Business Media. 28 + 985 pages. *Scanning*. 29 (3), 91–91. https://doi.org/10.1002/sca.20059.

(85) Elliott, A. D. (2020) Confocal Microscopy: Principles and Modern Practices. *Curr Protoc Cytom.* 92 (1). https://doi.org/10.1002/cpcy.68.

(86) Heim, R.; Cubitt, A.; Tsien, R. (1995) Improved green fluorescence. *Nature*. 373:663–64. https://doi.org/10.1038/373663b0

(87) Joseph M. Jez (2022) Connecting primary and specialized metabolism: Amino acid conjugation of phytohormones by GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetases, Current Opinion in Plant Biology, Volume 66, 102194. https://doi.org/10.1016/j.pbi.2022.102194.

(88) Hagen, G.; Kleinschmidt, A.; Guilfoyle, T. (1984) Auxin-regulated gene-expression in intact soybean hypocotyl and excised hypocotyl sections. *Planta*, 162, 147–153. https://doi.org/10.1007/BF00410211

(89) Desjardins P.; Conklin D. (2010) NanoDrop Microvolume Quantitation of Nucleic Acids. *Journal of Visualized Experiments* 45: e2565. https://doi.org/10.3791/2565

(90) Acinas, S.; Sarma-Rupavtarm, R.; Klepac-Ceraj, V.; Polz, M. (2005) PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. *Applied and Environmental Microbiology*; 71(12):8966-9. https://doi.org/10.1128/AEM.71.12.8966-8969.2005.

(91) Pienaar, E.; Theron, M.; Nelson, M.; Viljoen, H. (2006) A quantitative model of error accumulation during PCR amplification. *Computational Biology and Chemistry*. 30(2):102-11 https://doi.org/10.1016/j.compbiolchem.2005.11.002.

(92) Fulton, T.; Stiller, M. (2011) PCR Amplification, Cloning, and Sequencing of Ancient DNA. Ancient DNA, Volume 840, pages 111–119. https://doi.org/10.1007/978-1-61779-516-9_15

(93) Matsumura, I. (2015) Why Johnny can't clone: Common pitfalls and not so common solutions. *BioTechniques*, *59*(*3*). https://doi.org/10.2144/000114324

(94) Bhuiyan, A.; Asakawa, S.; (2023) Synthesis and cloning of long repeat sequences using singlestranded circular DNA. *Frontiers in Bioengineering and Biotechnology*. 11:1115159. https://doi.org/10.3389/fbioe.2023.1115159

(95) Takahiro, K. (2003) Bias and artifacts in multitemplate polymerase chain reactions (PCR), *Journal of Bioscience and Bioengineering*, Volume 96, Issue 4, pages 317-323, https://doi.org/10.1016/S1389-1723(03)90130-7.

(96) Pinski, A.; Betekhtin, A. (2023) Efficient *Agrobacterium*-mediated transformation and genome editing of *Fagopyrum tataricum*. *Frontiers in Plant Science*. 14:1270150. https://doi.org/10.3389/fpls.2023.1270150

(97) López-Salmerón, V.; Schürholz, A.; Li, Z.; Schlamp, T.; Wenzl, C.; Lohmann, J.; Wolf, S. (2019) Inducible, Cell Type-Specific Expression in *Arabidopsis thaliana* Through LhGR-Mediated Trans-Activation. *Journal of Visualized Experiments*, (146). https://doi.org/10.3791/59394

(98) Kümpers, B.; Han, J.; Vaughan-Hirsch, J.; Redman, N.; Ware, A.; Atkinson, J.; Leftley, N.; Janes, G.; Castiglione, G.; Tarr, PT.; Pyke, K.; Voß, U.; Wells, D.; Bishopp, A. (2022) Dual expression and anatomy lines allow simultaneous visualization of gene expression and anatomy. *Plant Physiology*. 188(1):56-69. https://doi.org/10.1093/plphys/kiab503

(99) Zhang, X.; Henriques, R.; Lin, S.-S.; Niu, Q.-W.; Chua, N.-H. (2006) *Agrobacterium*-mediated transformation of Arabidopsis thaliana using the floral dip method. *Nature Protocols*, 1(2), 641–646. doi:10.1038/nprot.2006.97

(100) Harrison, S.; Mott, E.; Parsley, K. (2006) A rapid and robust method of identifying transformed *Arabidopsis thaliana* seedlings following floral dip transformation. *Plant Methods* 2, 19. https://doi.org/10.1186/1746-4811-2-19

(101) De Buck, S.; Podevin, N.; Nolf, J.; Jacobs, A; Depicker, A. (2009) The T-DNA integration pattern in *Arabidopsis* transformants is highly determined by the transformed target cell. *Plant Journal*. 60(1):134-45. https://doi.org/10.1111/j.1365-313X.2009.03942.x

(102) Cogoni, C.; Macino, G. (1999) Homology-dependent gene silencing in plants and fungi: a number of variations on the same theme. *Current Opinion in Microbiology*, Volume 2, Issue 6, pages 657-662. https://doi.org/10.1016/S1369-5274(99)00041-7

(103) Grefen, C.; Donald, N.; Hashimoto, K.; Kudla, J.; Schumacher, K.; Blatt, M. (2010) A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. *Plant Journal*. 64(2):355-65. https://doi.org/10.1111/j.1365-313X.2010.04322.x

(104) Pegg, T.; Gladish, D.; Baker, R. (2021). Algae to angiosperms: Autofluorescence for rapid visualization of plant anatomy among diverse taxa. *Applications in Plant Sciences*, 9(6). https://doi.org/10.1002/aps3.11437

(105) Brooks, E.; Elorriaga, E.; Liu, Y.; Duduit, J.; Yuan, G.; Tsai, C.; Tuskan, G.; Ranney, T.; Yang, X.; Liu, W. (2023) Plant Promoters and Terminators for High-Precision Bioengineering. *Biodesign Research.* 7;5:0013. https://doi.org/10.34133/bdr.0013.

(106) Schmid, M.; Davison, T; Henz, S; Pape, U.; Demar, M.; Vingron, M.; Schölkopf, B.; Weigel, D.; Lohmann, J. (2005) A gene expression map of *Arabidopsis thaliana* development. *Nature Genetics*. 37(5):501-6. doi:10.1038/ng1543.

(107) Li, K.; Wang, S.; Wu, H.; Wang, H. (2020) Protein Levels of Several Arabidopsis Auxin Response Factors Are Regulated by Multiple Factors and ABA Promotes *ARF*6 Protein Ubiquitination. *International Journal of Molecular Sciences*. 21(24):9437. https://doi.org/10.3390/ijms21249437

(108) Zhang, L.; Shi, X.; Zhang, Y.; Wang, J.; Yang, J.; Ishida, T.; Jiang, W.; Han, X.; Kang, J.; Wang, X.; Pan, L.; Lv, S.; Cao, B.; Zhang, Y.; Wu, J.; Han, H.; Hu, Z.; Cui, L.; Sawa, S.; He, J.; Wang, G. (2019) CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in *Arabidopsis thaliana*. *Plant Cell Environment*. 42(3):1033-1044. https://doi.org/10.1111/pce.13475

Attachments

Attachment 1. Representation of pGGC00 plasmid with inserted AtGH3.3 gene, created in Geneious Prime. The plasmid is 5,066 bp and carries the origin of replication ori, lac operator (required for lactose metabolism), CAP binding site (positive regulator of lac operon), SP6 promoter, AtGH3.3 inserted gene sequence, T7 promoter, and ampicillin resistance cassette

Attachment 2. Representation of pGGC00 plasmid with inserted AtGH3.17 gene, created in Geneious Prime. The plasmid is 5,141 bp and carries the origin of replication ori, lac operator (required for lactose metabolism), CAP binding site (positive regulator of lac operon), SP6 promoter, AtGH3.17 inserted gene sequence, T7 promoter, and ampicillin resistance cassette.

Attachment 3. Representation of pDrive vector with inserted AtGH3.3 gene, created in Geneious Prime. The plasmid is 6,218 bp and carries the origin of replication ori, f1 ori, lac operator with LacZa (required for lactose metabolism), CAP binding site (positive regulator of lac operon), SP6 promoter, AtGH3.3 inserted gene sequence, T7 promoter, ampicillin, and kanamycin resistance cassette.

Attachment 4. Representation of pDrive vector with inserted AtGH3.17 gene, created in Geneious Prime. The plasmid is 6,297 bp and carries the origin of replication ori, f1 ori, lac operator with LacZa (is required for lactose metabolism), CAP binding site (positive regulator of lac operon), SP6 promoter, AtGH3.17 inserted gene sequence, T7 promoter, ampicillin, and kanamycin resistance cassette.

pDrive-AtGH3.3 3 1 1.ab1	ATACGACTCACTATAGGGAAAGCTCGGTACCACGCATGCTGCAGACGCGTTACGTATCGG	300
3_2_1.ab1 (reversed)		
pDrive-AtGH3.3 3_1_1.ab1 3_2_1.ab1 (reversed)	ATCCAGAATTCGTGATCGTTGATTCAGCTCTGCG GTTGATTCAGCTCTGCG	334 17
pDrive-AtGH3.3 3_1_1.ab1 3_2_1.ab1 (reversed)	ATCTCCGATGATGCACTCACCGTCCACTAAGGACGTGAAGGCTCTAAGGTTCATTGAGGA ATCTCCGATGATGCACTCACCGTCCACTAAGGACGTGAAGGCTCTAAGGTTCATTGAGGA	394 77
pDrive-AtGH3.3 3_1_1.ab1 3_2_1.ab1 (reversed)	GATGACACGTAACGTCGATTTCGTTCAGAAGAAAGTGATTAGAGAGATACTTAGTCGTAA GATGACACGTAACGTCGATTTCGTTCAGAAGAAAGTGATTAGAGAGATACTTAGTCGTAA	454 137
pDrive-AtGH3.3 3_1_1.ab1 3_2_1.ab1 (reversed)	CTCGGACACTGAGTACCTGAAACGGTTTGGTCTCAAGGGATTCACTGACCGTAAAACATT CTCGGACACTGAGTACCTGAAACGGTTTGGTCTCAAGGGATTCACTGACCGTAAAACATT	514 197
pDrive-AtGH3.3 3_1_1.ab1 3_2_1.ab1 (reversed)	TAAGACCAAAGTTCCGGTGGTTATCTACGATGATCTTAAACCGGAGATTCAACGTATTGC TAAGACCAAAGTTCCGGTGGTTATCTACGATGATCTTAAACCGGAGATTCAACGTATTGC	574 257
pDrive-AtGH3.3 3_1_1.ab1 3_2_1.ab1 (reversed)	CAATGGTGACCGGTCAATGATCTTGTCTTCTTACCCCATCACAGAGTTCCTCACAAGGTA CAATGGTGACCGGTCAATGATCTTGTCTTCTTACCCCATCACAGAGTTCCTCACAAGGTA	634 317
pDrive-AtGH3.3 3_1_1.ab1 3_2_1.ab1 (reversed)	TATACTTAACCCAAAATGTATATTATGTTATCTTAGACTCTTAGACAGAGTTAATCATCT TATACTTAACCCAAAATGTATATTATGTTATCTTAGACTCTTAGACAGAGTTAATCATCT	694 377
pDrive-AtGH3.3 3_1_1.ab1 3_2_1.ab1 (reversed)	ATAATTGTGGATTAATCTTGTTTTGTATCCAGCTCTGGGACATCAGCTGGTGAAAGGAAG ATAATTGTGGATTAATCTTGTTTTGTATCCAGCTCTGGGACATCAGCTGGTGAAAGGAAG	754 437
pDrive-AtGH3.3 3_1_1.ab1 3_2_1.ab1 (reversed)	TTGATGCCAACCATTGATGAAGACATGGACCGACGTCAGCTTTTATACAGTCTTCTCATG TTGATGCCAACCATTGATGAAGACATGGACCGACGTCAGCTTTTATACAGTCTTCTCATG	814 497
pDrive-AtGH3.3 3_1_1.ab1 3_2_1.ab1 (reversed)	CCTGTGATGAATCTGTAAGTTACAGTTATTTAATTTGCAATTAACTTCTATTTTGTAGTA CCTGTGATGAATCTGTAAGTTACAGTTATTTAATTTGCAATTAACTTCTATTTTGTAGTA	874 557
pDrive-AtGH3.3 3_1_1.ab1 3_2_1.ab1 (reversed)	ATATCTACGTGCCAAGATTAATACGTTAAAATTGGAAAAATTATGAATTAATCTAATTTA ATATCTACGTGCCAAGATTAATACGTTAAAATTGGAAAAATTATGAATTAATCTAATTTA	934 617
pDrive-AtGH3.3 3_1_1.ab1 3_2_1.ab1 (reversed)	TATTAAAATTTTAGCAAAAATATTTTAAATCTGAACTTTGGACTCTACATTCTAAATTTA TATTAAAAATTTTAGCAAAAATATTTTAAATCTGAACTTTGGACTCTACATTCTAAATTTA	994 677
pDrive-AtGH3.3 3_1_1.ab1 3_2_1.ab1 (reversed)	AAACGTGAAGACTAAATGCTGAGGTTTAAACCATAAATCAGAAACCTTAAACCCTAATTC AAACGTGAAGACTAAATGCTGAGGTTTAAACCATAAATCAGAAACCTTAAACCCTAATTC	1054 737
pDrive-AtGH3.3 3_1_1.ab1 3_2_1.ab1 (reversed)	ТТGАААТТТААААААТТААСАСТААААТАТАААССАААТСАТАТАТАТТТАСТТААТТТС ТТGАААТТТААААААТТААСАСТААААТАТАААССАААТСАТАТАТАТТТАСТТААТТТС	1114 797
pDrive-AtGH3.3 3_1_1.ab1 3_2_1.ab1 (reversed)	AAAAGATCTAATTAACATGTGTTTTGCTTTAGTTCATATTTTGTCAGATTTTTTTGTCA AAAAGATCTAATTAACATGTGTTTTGCTTTA	1174 857
pDrive-AtGH3.3 3_1_1.ab1 3_2_1.ab1 (reversed)	ATTACGTACATCCTTTAAAATGTTATTTCACTATCGCAATAACGTAACATTTTTTTT	1234 917

Attachment 5. Sequence alignment of pDrive-AtGH3.3cdr with a fragment of the GH3.3 gene resulting from the sequencing and confirming the correctness of the inserted sequence.

Consensus pDrive-AtGH3.4 AtGH3.4_1 AtGH3.4_2	TCGGATCCAGAATTCGTGATGCTGTTGATTCGCTTCTTCAATCTGGGATGGCTTCACCGA TCGGATCCAGAATTCGTGATGCTGTTGATTCGCTTCTTCAATCTGGGATGGCTTCACCGA ATTCGCTTCTTCAATCTGGGATGGCTTCACCGA	356 356 33
Consensus pDrive-AtGH3.4 AtGH3.4_1 AtGH3.4_2	CGACATCTGAGACAGAGGTGAAGGCTCTCAAGTTCATTGAGGAGATTACTCGGAACCCTG CGACATCTGAGACAGAGGTGAAGGCTCTCAAGTTCATTGAGGAGATTACTCGGAACCCTG CGACATCTGAGACAGAGGTGAAGGCTCTCAAGTTCATTGAGGAGATTACTCGGAACCCTG	416 416 93
Consensus pDrive-AtGH3.4 AtGH3.4_1 AtGH3.4_2	ACTCGGTTCAAGAAAAGGTTCTTGGAGAGAGATACTTAGTCGTAACTCGAACACGGAATATC ACTCGGTTCAAGAAAAGGTTCTTGGAGAGATACTTAGTCGTAACTCGAACACGGAATATC ACTCGGTTCAAGAAAAGGTTCTTGGAGAGATACTTAGTCGTAACTCGAACACGGAATATC	476 476 153
Consensus pDrive-AtGH3.4 AtGH3.4_1 AtGH3.4_2	TGAAACGGTTCGATCTTAATGGTGCCGTTGATAGGAAATCGTTCAAGAGCAAAGTTCCGG TGAAACGGTTCGATCTTAATGGTGCCGTTGATAGGAAATCGTTCAAGAGCAAAGTTCCGG TGAAACGGTTCGATCTTAATGGTGCCGTTGATAGGAAATCGTTCAAGAGCAAAGTTCCGG	536 536 213
Consensus pDrive-AtGH3.4 AtGH3.4_1 AtGH3.4_2	TGGTAATCTACGAAGATTTGAAGACGGATATTCAACGTATATCCAACGGTGATCGTTCTC TGGTAATCTACGAAGATTTGAAGACGGATATTCAACGTATATCCAACGGTGATCGTTCTC TGGTAATCTACGAAGATTTGAAGACGGATATTCAACGTATATCCAACGGTGATCGTTCTC	596 596 273
Consensus pDrive-AtGH3.4 AtGH3.4_1 AtGH3.4_2	CGATCTTGTCTTCTCATCCCATCACCGAGTTTCTCACAAGGTATGTTACTTAAGTCAACC CGATCTTGTCTTCTCATCCCATCACCGAGTTTCTCACAAGGTATGTTACTTAAGTCAACC CGATCTTGTCTTCTCATCCCATCACCGAGTTTCTCACAAGGTATGTTACTTAAGTCAACC	656 656 333
Consensus pDrive-AtGH3.4 AtGH3.4_1 AtGH3.4_2	AACTATATCAATGATTAATATCGTTTCTTTTGTTTTTACAACTTTATCAAGGAGTACCAA AACTATATCAATGATTAATATCGTTTCTTTTGTTTTTACAACTTTATCAAGGAGTACCAA AACTATATCAATGATTAATATCGTTTCTTTTGTTTTTACAACTTTATCAAGGAGTACCAA	716 716 393
Consensus pDrive-AtGH3.4 AtGH3.4_1 AtGH3.4_2	TCCCCTTGTACTAGGTCACCATCCTTTTAGTAATGACTAAAACGTTGTTATAAAAAAATT TCCCCTTGTACTAGGTCACCATCCTTTTAGTAATGACTAAAACGTTGTTATAAAAAAAA	776 776 453
Consensus pDrive-AtGH3.4 AtGH3.4_1 AtGH3.4_2	CAATGACGGGATTTTGATCACCATAATACAAATTGTTAAAAAATATTTTATAGAATACTA CAATGACGGGATTTTGATCACCATAATACAAATTGTTAAAAAATATTTTATAGAATACTA CAATGACGGGATTTTGATCACCATAATACAAATTGTTAAAAAAATATTTTATAGAATACTA	836 836 513
Consensus pDrive-AtGH3.4 AtGH3.4_1 AtGH3.4_2	TACAGTTTTTTTACCGTAATTAATTTGTAATGTTTTGTGTGTATTGCAGCTCTGGAACAT TACAGTTTTTTTACCGTAATTAATTTGTAATGTTTTGTGTGTATTGCAGCTCTGGAACAT TACAGTTTTTTTACCGTAATTAATTTGTAATGTTTTGTGTGTATTGCAGCTCTGGAACAT	896 896 573
Consensus pDrive-AtGH3.4 AtGH3.4_1 AtGH3.4_2	CTGCTGGCGAGAGGAAATTAATGCCGACAATTGAAGAAGACATAAACCGACGTCAGCTTT CTGCTGGCGAGAGGAAATTAATGCCGACAATTGAAGAAGACATAAACCGACGTCAGCTTT CTGCTGGCGAGAGGAAATTAATGCCGACAATTGAAGAAGACATAAACCGACGTCAGCTTT	956 956 633
Consensus pDrive-AtGH3.4 AtGH3.4_1 AtGH3.4_2	TAGGCAATCTTCTCATGCCTGTGATGAATCTGTTAGTATATTACTTTTAACATTATTAAA TAGGCAATCTTCTCATGCCTGTGATGAATCTGTTAGTATATTACTTTTAACATTATTAAA TAGGCAATCTTCTCATGCCTGTGATGAATCTGTTAGTATATTACTTTTAACATTATTAAA	1016 1016 693
Consensus pDrive-AtGH3.4 AtGH3.4_1 AtGH3.4_2	CAAAATTGTAACGATTTATAAAATTAACCAAAAATGTTTAACAACTACAGCTACGTGCCG CAAAATTGTAACGATTTATAAAATTAACCAAAAATGTTTAACAACTACAGCTACGTGCCG CAAAATTGTAACGATTTATAAAATTAACCAAAAATGTTTAACAACTACAGCTACGTGCCG	1076 1076 753
Consensus pDrive-AtGH3.4 AtGH3.4_1 AtGH3.4_2	GGATTAGACAAAGGCAAAGGTTTATACTTCTTATTTGTGAAGTCGGAGTCTACGACATCA GGATTAGACAAAGGCAAAGGTTTATACTTCTTATTTGTGAAGTCGGAGTCTACGACATCA GGATTAG	1136 1136 813

Attachment 6. Sequence alignment of pDrive-AtGH3.4cdr with a fragment of the GH3.4 gene resulting from the sequencing and confirming the correctness of the inserted sequence.

Consensus pDrive-AtGH3.17	ATCCAGAATTCGTGATATACCAAGTTACGACCCAAA ATCCAGAATTCGTGATATACCAAGTTACGACCCAAA	336 336
seq2		
Consensus pDrive-AtGH3.17 17_1_1.ab1 seq2	TGATACAGAGGCTGGTCTCAAGCTTCTCGAGGATCTGACAACAAATGCAGAGGCTATCCA TGATACAGAGGCTGGTCTCAAGCTTCTCGAGGATCTGACAACAAATGCAGAGGCTATCCA CTGGTCTCAAGCTTCTCGAGGATCTGACAACAAATGCAGAGGCTATCCA	396 396 49
Consensus pDrive-AtGH3.17 17_1_1.ab1 seq2	ACAACAAGTTCTTCACCAAATACTCTCTCAAAAACTCTGGAACTCAATATCTCCGAGCATT ACAACAAGTTCTTCACCAAATACTCTCTCAAAAACTCTGGAACTCAATATCTCCGAGCATT ACAACAAGTTCTTCACCAAATACTCTCTCAAAACTCTGGAACTCAATATCTCCGAGCATT	456 456 109
Consensus pDrive-AtGH3.17 17_1_1.ab1 seq2	TCTGGACGGAGAAGCCGACAAGAATCAACAAAGCTTCAAAAAACAAAGTCCCTGTGGTGAA TCTGGACGGAGAAGCCGACAAGAATCAACAAAGCTTCAAAAAACAAAGTCCCTGTGGTGAA TCTGGACGGAGAAGCCGACAAGAATCAACAAAGCTTCAAAAAACAAAGTCCCTGTGGTGAA	516 516 169
Consensus pDrive-AtGH3.17 17_1_1.ab1 seq2	TTATGACGACGTAAAGCCTTTCATTCAACGAATCGCTGATGGAGAATCATCTGATATCGT TTATGACGACGTAAAGCCTTTCATTCAACGAATCGCTGATGGAGAATCATCTGATATCGT TTATGACGACGTAAAGCCTTTCATTCAACGAATCGCTGATGGAGAATCATCTGATATCGT	576 576 229
Consensus pDrive-AtGH3.17 17_1_1.ab1 seq2	CTCTGCTCAGCCCATCACAGAACTCCTCACTAGGTAAACATATTTTTTCACCAAATTCTA CTCTGCTCAGCCCATCACAGAACTCCTCACTAGGTAAACATATTTTTTCACCAAATTCTA CTCTGCTCAGCCCATCACAGAACTCCTCACTAGGTAAACATATTTTTTCACCAAATTCTA	636 636 289
Consensus pDrive-AtGH3.17 17_1_1.ab1 seq2	CAAAAACTATCGTTATATACTGTTCTCTTAAGAATTTTCGTTATACTTATTAGTAATTTC CAAAAACTATCGTTATATACTGTTCTCTTAAGAATTTTCGTTATACTTATTAGTAATTTC CAAAAACTATCGTTATATACTGTTCTCTTAAGAATTTTCGTTATACTTATTAGTAATTTC	696 696 349
Consensus pDrive-AtGH3.17 17_1_1.ab1 seq2	TTTGAGTTAATATTGGATGCAGTTCGGGGACTTCTGCAGGAAAGCCGAAGTTGATGCCTT TTTGAGTTAATATTGGATGCAGTTCGGGGGACTTCTGCAGGAAAGCCGAAGTTGATGCCTT TTTGAGTTAATATTGGATGCAGTTCGGGGGACTTCTGCAGGAAAGCCGAAGTTGATGCCTT	756 756 489
Consensus pDrive-AtGH3.17 17_1_1.ab1 seq2	CTACAGCTGAAGAATTGGAAAGGAAGACATTTTTTCTACAGCATGCTTGTGCCTATCATGA CTACAGCTGAAGAATTGGAAAGGAAGACATTTTTTCTACAGCATGCTTGTGCCTATCATGA CTACAGCTGAAGAATTGGAAAGGAAGAACATTTTTCTACAGCATGCTTGTGCCTATCATGA	816 816 469
Consensus pDrive-AtGH3.17 17_1_1.ab1 seq2	ACAAGTAATAAATGAGTTTTTATTACTTCAATCTTAATTTACGTAATTAAT	876 876 529
Consensus pDrive-AtGH3.17 17_1_1.ab1 seq2	ТТӨТӨСАТТААТАТСТСТТАААТТСАТТСТСАТТССААААТАААААА	936 936 589
Consensus pDrive-AtGH3.17 17_1_1.ab1 seq2	САБАААТАТТТСТТААБААААТААААААСАСААТАБТАТАТААТААТТТТТБТАБСАТСС САБАААТАТТТСТТААБААААТААААААСАСААТАБТАТААТААТАТТТТБТАБСАТСС САБАААТАТТТСТТААБААААТААААААСАСААТАБТАТААТААТТТТТБТАБСАТСС	996 996 649
Consensus pDrive-AtGH3.17 17_1_1.ab1 seq2	AACAGAAACAATATACGTAACCAGCTCTCTTATTGGGCTTAAAACATTTAGGAAATATAT AACAGAAACAATATACGTAACCAGCTCTCTTATTGGGCTTAAAACATTTAGGAAATATAT AACAGAAACAATATACGTAACCAGCTCTCTTATTGGGCTTAAAACATTTAGGAAATATAT	1056 1056 709
Consensus pDrive-AtGH3.17 17_1_1.ab1 seq2	TTGGCTTCTCTTTGCTACAAAACACCCTTGCAGATTGAATATGTAGGATCCTAGTTACACT TTGGCTTCTCTTTGCTACAAAACACCCTTGCAGATTGAATATGTAGGATCCTAGTTACACT TTGGCTTCTCTTTGCTACAAAAACACCCTTGCAGATTGAATATGTAGGATCCTAGTTACACT	1116 1116 769
Consensus pDrive-AtGH3.17 17_1_1.ab1 seq2	CATGAGAGGGCAAAAATAAATCAATTATATCTGTTTTCTTTAGTCAAAAGATTAAAACAG CATGAGAGGGCAAAAATAAATCAATTATATCTGTTTTCTTTAGTCAAAAGATTAAAACAG CATGAGAGGGCAAAAATAAATCAATTATATCTGTTTTCTTTAGTCAAAAGATTAAAACAG	1176 1176 829
Consensus pDrive-AtGH3.17 17_1_1.ab1 seq2	TGAAGGAATTTTTTTTGATAGATTGGATTGTGTTTACATATTTGAAATTGCAGATATGT TGAAGGAATTTTTTTTGATAGATTGGATTG	1236 1236 889

Attachment 7. Sequence alignment of pDrive-AtGH3.17cdr with a fragment of the GH3.17 gene resulting from the sequencing and confirming the correctness of the inserted sequence.

Attachment 8. Representation of pNAtGH3.3:AtGH3.3cdr-GFP vector, created in Geneious Prime. The plasmid is 13,027 bp and carries origin of replication ori, native promoter pNAtGH3.3, AtGH3.3 gene, GFP sequence with a linker, tRbcs (terminator), HygrR (hygromycin resistance cassette), pSa ori (origin of replication for bacteria), SmR (spectinomycin resistance cassette)

Attachment 9. Representation of pNAtGH3.17:AtGH3.17cdr-GFP vector, created in Geneious Prime. The plasmid is 13,094 bp and carries origin of replication ori, native promoter pNAtGH3.17, AtGH3.17 gene, GFP sequence with a linker, tRbcs (terminator), HygrR (hygromycin resistance cassette), pSa ori (origin of replication for bacteria), SmR (spectinomycin resistance cassette)

Attachment 10. Sequence alignment of pNAtGH3.3:AtGH3.3cdr-GFP with a fragment of AtGH3.3 coding region resulting from the sequencing and confirming the correctness of assembly (part 1).

			N+RHR R
	-GFP CGTCATCGTTACTGGAGCCATGGCTCAGTATATCCCCGATGCTTGAGTACTATAGCGGCGG GFP CGTCATCGTTACTGGAGCCCATGGCTCAGTATATCCCCGATGCTTGAGTACTATAGCGGCGG CGTCATCGTTACTGGAGCCATGGCTCAGTATATCCCCGATGCTTGAGTACTATAGCGGCGG CGTCATCGTTACTGGAGCCATGGCTCAGTATATCCCCGATGCTTGAGTACTATAGCGGCGG	: AtGH3 . 3cdr	Consensus pNAtGH3.3 AtGH3.3 AtGH3.3 AtGH3.3 AtGH3.3 AtGH3.3 4 AtGH3.3 4
	-GFP TCAAGACAATAGTTGGGGAAGGTATTATTACTAAGATTTGGCCTAACACTAAGTACCTTGA TCAAGACAATAGTTGGGGAAGGTATTATTACTAAGATTTGGCCTAACACTAAGTACCTTGA TCAAGACAATAGTTGGGGAAGGTATTATTACTAAGATTTGGCCTAACACTAAGTACCTTGA TCAAGACAATAGTTGGGGAAGGTATTATTACTAAGATTTGGCCTAACACTAAGTACCTTGA	: AtGH3 . 3 cdr	Consensus pNAtGH3.3 AtGH3.3 AtGH3.3 AtGH3.3 AtGH3.3 AtGH3.3 AtGH3.3 AtGH3.3 AtGH3.3 AtGH3.3 AtGH3.3 3 AtGH3.3 3 AtGH3.3 3 AtGH3.3 3 4 AtGH3.3 3 3 4 AtGH3.3 3 3 4 AtGH3.3 3 3 4 AtGH3.3 3 3 4 AtGH3.3 3 3 3 4 AtGH3.3 3 3 3 4 AtGH3.3 3 3 3 4 3 3 3 3 4 3 3 3 3 4 3 3 3 3
ក្រសួលផងត្ត ស្រួលផងត្ត	GTCCAAGATCTTGACCAAACCGGACCAAGAACTGGCTGATTTCATAACTTCGGTATGTG GFP GTCCAAGATCTTGACCAAACCGGACCAAGAACTGGCTGATTTCATAACTTCGGTATGTGG GTCCAAGATCTTGACCAAACCGGACCAAGAACTGGCTGATTTCATAACTTCGGTATGTGG GTCCAAGATCTTGACCAAACCGGACCAAGAACTGGCTGATTTCATAACTTCGGTATGTGG	8 : AtGH3. 3rd-	Consensus pNAtGH3.3 AtGH3.3_2 AtGH3.3_3 AtGH3.3_3 AtGH3.3_4 AtGH3.3_6 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8 A AtGH3.3_8 AtGH
8 4 8 4 V	-GFP CGATATCTCCACCGGTACCTTAAGTTCAAGAATCTCTGACCCGGCCATTAAAGAGAGAG	9 9 9	Consensus pNUAtGH3.3 AtGH3.3 AtGH3.3 AtGH3.3 AtGH3.3 AtGH3.3 AtGH3.3 AtGH3.3 AtGH3.3 AtGH3.3 AtGH3.3 AtGH3.3 AtGH3.3 3 3 AtGH3.3 3 AtGH3.3 3 3 AtGH3.3 3 3 AtGH3.3 3 3 AtGH3.3 3 3 AtGH3.3 3 3 4 AtGH3.3 3 3 3 AtGH3.3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
44044	-GFP CGCTTCTGGTCTCCCTCCGTGCCATTGGATTCCTTCAAACCAATTGGAAAGAACTCGCCGA CGCTTCTGGTCTCCCTCCGTGCCATTGGATTCCTTCAAACCAATTGGAAAGAACTCGCCGA CGCTTCTGGTCTCCCTCCGTGCCATTGGATTCCTTCAAACCAATTGGAAAGAACTCGCCGA CGCTTCTGGTCTCCCTCCGTGCCATTGGATTCCTTCAAACCAATTGGAAAGAACTCGCCGA	0 : AtGH3. 3cd?	Consensus ppNAtGH3 .3 AtGH3 .3 _2 AtGH3 .3 _2 AtGH3 .3 _4 AtGH3 .3 _4 AtGH3 .3 _4 AtGH3 .3 _6 AtGH3 .3 _6 AtGH3 .3 _8 AtGH3 .3 _8 AtGH3 .3 _8
684833	-GFP CACGCAGATGCTTTGTGGTCTCCTTATGCGTCACGAAGTCCTCCGTCTCGGCGCCGTCTT CACGCAGATGCTTTGTGGTCTCCTTATGCGTCACGAAGTCCTCCGTCTCGGCGCCGTCTT CACGCAGATGCTTTGTGGTCTCCTTATGCGTCACGAAGTCCTCCGTCTCGGCGCCGTCTT CACGCAGATGCTTTGTGGTCTCCCTTATGCGTCACGAAGTCCTCCGTCTCGGCGCCGTCTT	: AtGH3 . 3 cdr	Consensus pNAtGH3.3_1 AtGH3.3_1 AtGH3.3_3 AtGH3.3_3 AtGH3.3_3 AtGH3.3_5 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_7 AtGH3.3_7 AtGH3.3_7
	-GFP CAACGTGTACACGAAGCCCTTAACGAAGCCATCCTTTGTCCAGACTCATCCCCAAAGCATGTA -GFP CAACGTGTACACGAAGCCCTAACGAAGCCATCCTTTGTCCAGACTCATCCCCAAAGCATGTA CAACGTGTACACGAGCCCTAACGAAGCCATCCTTTGTCCAGACTCATCCCCAAAGCATGTA - AGACTCATCCCCAAAGCCATGTA - AGACTCATCCCCAAAGCCATGTA	: AtGH3.3cdr	Consensus pNAtGH3.3_1 AtGH3.3_1 AtGH3.3_2 AtGH3.3_2 AtGH3.3_4 AtGH3.3_6 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8

_		
Ionsensus	GTTACCGATGGCTTGCACGATGTATGCATCGTCCGAGAGTTACTTTGGGATCAACTTGAA	7740
pNAtGH3.3:AtGH3.3cdr-GFP	GTTACCGATGGCTTGCACGATGTATGCATCGTCCGAGAGTTACTTTGGGATCAACTTGAA	7740
\tGH3.3_1		5728
AtGH3.3_2		4537
AtGH3.3_3		3638
AtGH3.3_4	GTTACCGATGGCTTGCACGATGTATGCATCGTCCGAGAGTTACTTTGGGATCAACTTGAA	818
AtGH3.3_5	GTTACCGATGGCTTGCACGATGTATGCATCGTCCGAGAGTTACTTTGGGATCAACTTGAA	441
AtGH3.3_6		
AtGH3.3_7		
AtGH3.3_8		
AtGH3.3_9		
AtGH3.3_10		
_		
Ionsensus	ACCAATGTGTAAACCTTCTGAGGTTTCTTATACCATTATGCCAAACATGGCATACTTCGA	7800
NAtGH3.3:AtGH3.3cdr-GFP	ACCAATGTGTAAACCTTCTGAGGTTTCTTATACCATTATGCCAAACATGGCATACTTCGA	7888
AtGH3.3 1		5788
\tGH3.3_2		4597
1+GH3 3 3		3698
1+6H3 3 4	ΔCCΔΔΤGTGTΔΔΔCCTTCTGΔGGTTTCTTΔTΔCCΔTTΔTGCCΔΔΔCΔTGGCΔTΔCTTCGΔ	878
1+6H3 3 5	ΔCCΔΔΤGTGTΔΔΔCCTTCTGΔGGTTTCTTΔTΔCCΔTTΔTGCCΔΔΔCΔTGGCΔTΔCTTCGΔ	501
1+6H3 3 6		
1+6H3 3 7		
1+GH3 3 8		
1+GH2 3 0		
ACU10.0_0		
(GID: 5_10		
openeur	STITUTOCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860
Ionsensus MAEGH3 3-AEGH3 3-AE-GED	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860
Ionsensus NAtGH3.3:AtGH3.3cdr-GFP	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860
Consensus SNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860 5848
Consensus pNAtGH3.3:AtGH3.3cdr-GFP 4tGH3.3_1 4tGH3.3_2	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860 5848 4657
Consensus DNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_3	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860 5848 4657 3758
Consensus DNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 DefH3.3_5	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860 5848 4657 3758 938
Consensus SNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_5	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860 5848 4657 3758 938 561
Consensus SNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_6	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860 5848 4657 3758 938 561
Consensus SNAtGH3.3:AtGH3.3cdr-GFP \tGH3.3_1 \tGH3.3_2 \tGH3.3_3 \tGH3.3_3 \tGH3.3_4 \tGH3.3_5 \tGH3.3_6 \tGH3.3_7	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860 5848 4657 3758 938 561
Consensus SNAtGH3.3:AtGH3.3cdr-GFP 4tGH3.3_1 4tGH3.3_2 4tGH3.3_3 4tGH3.3_4 4tGH3.3_5 4tGH3.3_6 4tGH3.3_7 4tGH3.3_8 4tGH3.3_8	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860 5848 4657 3758 938 561
Consensus SNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_8 AtGH3.3_9 AtGH3.3_9	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860 5848 4657 3758 938 561
Consensus SNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8 AtGH3.3_9 AtGH3.3_10	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860 5848 4657 3758 938 561
Consensus SNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8 AtGH3.3_9 AtGH3.3_10 -	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860 5848 4657 3758 938 561
Consensus NAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_7 AtGH3.3_9 AtGH3.3_10 Consensus	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860 5848 4657 3758 938 561 7920
Consensus SNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8 AtGH3.3_9 AtGH3.3_10 Consensus SNAtGH3.3:AtGH3.3cdr-GFP	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860 5848 4657 3758 938 561 7920 7920 7920
Consensus SNAtGH3.3:AtGH3.3cdr-GFP \tGH3.3_1 \tGH3.3_2 \tGH3.3_3 \tGH3.3_4 \tGH3.3_6 \tGH3.3_6 \tGH3.3_6 \tGH3.3_7 \tGH3.3_8 \tGH3.3_9 \tGH3.3_10 Consensus SNAtGH3.3:AtGH3.3cdr-GFP \tGH3.3_1	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860 5848 4657 3758 938 561 7920 7920 5908
Consensus SNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_6 AtGH3.3_7 AtGH3.3_8 AtGH3.3_9 AtGH3.3_10 Consensus SNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3 AtGH3.	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860 5848 4657 3758 938 561 7920 7920 7920 5908 4717
Consensus SNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_7 AtGH3.3_9 AtGH3.3_10 Consensus SNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 At	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860 5848 4657 3758 938 561 7920 7920 7920 5908 4717 3818
Consensus SNAtGH3.3:AtGH3.3cdr-GFP \tGH3.3_1 \tGH3.3_2 \tGH3.3_3 \tGH3.3_4 \tGH3.3_5 \tGH3.3_6 \tGH3.3_7 \tGH3.3_7 \tGH3.3_7 \tGH3.3_9 \tGH3.3_10 Consensus SNAtGH3.3:AtGH3.3cdr-GFP \tGH3.3_1 \tGH3.3_2 \tGH3.3_2 \tGH3.3_3 \tGH3.3_3 \tGH3.3_3 \tGH3.3_4	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860 5848 4657 3758 938 561 7920 7920 7920 5908 4717 3818 998
Consensus SNAtGH3.3:AtGH3.3cdr-GFP 4tGH3.3_1 4tGH3.3_2 4tGH3.3_3 4tGH3.3_4 4tGH3.3_5 4tGH3.3_6 4tGH3.3_6 4tGH3.3_7 4tGH3.3_7 4tGH3.3_7 4tGH3.3_9 4tGH3.3_10 Consensus SNAtGH3.3_10 Consensus SNAtGH3.3_1 4tGH3.3_1 4tGH3.3_2 4tGH3.3_2 4tGH3.3_3 4tGH3.3_3 4tGH3.3_4 4tGH3.3_5	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860 5848 4657 3758 938 561 7920 7920 7920 5988 4717 3818 998 621
Consensus SNAtGH3.3:AtGH3.3cdr-GFP 4tGH3.3_1 4tGH3.3_2 4tGH3.3_3 4tGH3.3_4 4tGH3.3_5 4tGH3.3_6 4tGH3.3_7 4tGH3.3_7 4tGH3.3_7 4tGH3.3_9 4tGH3.3_9 4tGH3.3_10 Consensus SNAtGH3.3_10 Consensus SNAtGH3.3_1 4tGH3.3_2 4tGH3.3_2 4tGH3.3_2 4tGH3.3_2 4tGH3.3_3 4tGH3.3_5 4tGH3.3_6	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860 5848 4657 3758 938 561 7920 7920 7920 5908 4717 3818 998 621
Consensus SNAtGH3.3:AtGH3.3cdr-GFP 4tGH3.3_1 4tGH3.3_2 4tGH3.3_3 4tGH3.3_4 4tGH3.3_5 4tGH3.3_6 4tGH3.3_7 4tGH3.3_7 4tGH3.3_7 4tGH3.3_9 4tGH3.3_9 4tGH3.3_10 Consensus SNAtGH3.3:AtGH3.3cdr-GFP 4tGH3.3_1 4tGH3.3_2 4tGH3.3_3 4tGH3.3_3 4tGH3.3_5 4tGH3.3_6 4tGH3.3_7	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860 5848 4657 3758 938 561 7920 7920 7920 5908 4717 3818 998 621
Consensus SNAtGH3.3:AtGH3.3cdr-GFP \tGH3.3_1 \tGH3.3_2 \tGH3.3_3 \tGH3.3_4 \tGH3.3_5 \tGH3.3_6 \tGH3.3_7 \tGH3.3_7 \tGH3.3_7 \tGH3.3_9 \tGH3.3_10 Consensus SNAtGH3.3:AtGH3.3cdr-GFP \tGH3.3_1 \tGH3.3_2 \tGH3.3_2 \tGH3.3_3 \tGH3.3_5 \tGH3.3_6 \tGH3.3_7 \tGH3.3_6 \tGH3.3_7 \tGH3.3_6 \tGH3.3_7 \tGH3.3_6 \tGH3.3_7 \tGH3.3_8	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860 5848 4657 3758 938 561 7920 7920 7920 5908 4717 3818 998 621
Consensus SNAtGH3.3:AtGH3.3cdr-GFP \tGH3.3_1 \tGH3.3_2 \tGH3.3_3 \tGH3.3_4 \tGH3.3_5 \tGH3.3_6 \tGH3.3_6 \tGH3.3_7 \tGH3.3_9 \tGH3.3_10 Consensus SNAtGH3.3:AtGH3.3cdr-GFP \tGH3.3_1 \tGH3.3_2 \tGH3.3_2 \tGH3.3_3 \tGH3.3_4 \tGH3.3_5 \tGH3.3_6 \tGH3.3_7 \tGH3.3_7 \tGH3.3_7 \tGH3.3_7 \tGH3.3_7 \tGH3.3_7 \tGH3.3_7 \tGH3.3_7 \tGH3.3_7 \tGH3.3_7 \tGH3.3_9	GTTTCTCCCTCATCATGAAGTCCCAACCGAAAAATCCGAACTTGTGGAGCTAGCT	7860 7860 5848 4657 3758 938 561 7920 7920 7920 5908 4717 3818 998 621

Attachment 11. Sequence alignment of pNAtGH3.3:AtGH3.3cdr-GFP with a fragment of AtGH3.3 coding region resulting from the sequencing and confirming the correctness of assembly (part 2).

Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3 1	AATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTG AATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTG	8638 8634 6628
AtGH3.3_2		5437
AtGH3.3_3		4538
AtGH3.3_4		1718
AtGH3.3_5		1341
AtGH3.3_6	AATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTG	389
AtGH3.3_7	TCGAGCTG	8
Atons.s_s		
ACGH2 3 10		
Access_10		
Consensus	GACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACC	8698
pNAtGH3.3:AtGH3.3cdr-GFP	GACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACC	8694
AtGH3.3 1		6688
AtGH3.3 2		5497
AtGH3.3_3		4598
AtGH3.3_4		1778
AtGH3.3_5		1401
AtGH3.3_6	GACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACC	449
AtGH3.3_7	GACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACC	68
AtGH3.3_8		
AtGH3.3_9		
Aton5.5_10		
Concensus	TACGGCAAGCTGAACCTGAAGTTCATCTGCACCGGCAAGCTGCCCGTGCCCTGGCCC	8759
oNA+GH3_3-A+GH3_3-de-GED	TACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCC	8754
A+6H3 3 1	TACOCAAGCTGACCCTGACCTCCACCACCGCCAAGCTGCCCTGGCCC	6748
AtGH3.3 2		5557
AtGH3.3 3		4658
AtGH3.34		1838
AtGH3.35		1461
AtGH3.3_6	TACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCC	509
AtGH3.3_7	TACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCC	128
AtGH3.3_8		
AtGH3.3_9		
AtGH3.3_10		
Consensus pNAtGH3.3:AtGH3.3cdr-GFP	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG	8818 8814
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG	8818 8814 6808
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG	8818 8814 6808 5617
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG	8818 8814 6808 5617 4718
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG	8818 8814 6808 5617 4718 1898 1521
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG	8818 8814 6808 5617 4718 1898 1521 569
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG 	8818 8814 6808 5617 4718 1898 1521 569 188
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_8	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG	8818 8814 6808 5617 4718 1898 1521 569 188
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_8 AtGH3.3_9	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG	8818 8814 6808 5617 4718 1898 1521 569 188
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8 AtGH3.3_9 AtGH3.3_10	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG	8818 8814 6808 5617 4718 1898 1521 569 188
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_8 AtGH3.3_9 AtGH3.3_10	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG	8818 8814 6808 5617 4718 1898 1521 569 188
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8 AtGH3.3_9 AtGH3.3_10 Consensus	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCCGTGC	8818 8814 6808 5617 4718 1898 1521 569 188 8878
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8 AtGH3.3_9 AtGH3.3_10 Consensus pNAtGH3.3:AtGH3.3cdr-GFP	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTCACGCCGTGCCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTCCGCCGTGCCGT	8818 8814 6808 5617 4718 1898 1521 569 188 8878 8878 8878
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_6 AtGH3.3_6 AtGH3.3_7 AtGH3.3_8 AtGH3.3_9 AtGH3.3_10 Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG	8818 8814 6808 5617 4718 1898 1521 569 188 8878 8878 8878
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_6 AtGH3.3_6 AtGH3.3_7 AtGH3.3_8 AtGH3.3_9 AtGH3.3_10 Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_3 AtGH3.3_2 AtGH3.3_3 AtGH3.3_3 AtGH3.3_3 At	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCCAGTGCTTCAGCCGCTACCCCGACCACATG	8818 8814 6808 5617 4718 1898 1521 569 188 8878 8878 8878 8874 6868 5677
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8 AtGH3.3_9 AtGH3.3_10 Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_2 AtGH3.3_3 AtGH3.3_2 AtGH3.3_3 At	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCCAGTGCTTCAGCCGCTACCCCGACCACATG	8818 8814 6808 5617 4718 1898 1521 569 188 8878 8878 8874 6868 5677 4778
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_7 AtGH3.3_9 AtGH3.3_9 AtGH3.3_10 Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_2 AtGH3.3_3 At	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC	8818 8814 6808 5617 4718 1898 1521 569 188 8878 8878 8878 8878 8874 6868 5677 4778 1958
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_6 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_7 AtGH3.3_9 AtGH3.3_9 AtGH3.3_9 AtGH3.3_10 Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_4 AtGH3.3_6	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC	8818 8814 6808 5617 4718 1898 1521 569 188 8878 8878 8878 8878 8878 8878 8878
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_6 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_7 AtGH3.3_9 AtGH3.3_9 AtGH3.3_10 Consensus pNAtGH3.3_10 Consensus pNAtGH3.3_1 AtGH3.3_1 AtGH3.3_2 AtGH3.3_2 AtGH3.3_3 AtGH3.3_5 AtGH3.3_5 AtGH3.3_6 AtGH3.3_6 AtGH3.3_6 AtGH3.3_7	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC	8818 8814 6808 5617 4718 1898 1521 569 188 8878 8878 8878 8878 8878 8878 8878
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8 AtGH3.3_9 AtGH3.3_9 AtGH3.3_10 Consensus pNAtGH3.3_10 Consensus pNAtGH3.3_1 AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_7 AtGH3.3_7	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC	8818 8814 6888 5617 4718 1898 1521 569 188 8878 8878 8878 8878 8878 8878 8878
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_6 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8 AtGH3.3_9 AtGH3.3_9 AtGH3.3_10 Consensus pNAtGH3.3_10 Consensus pNAtGH3.3_1 AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_5 AtGH3.3_6 AtGH3.3_6 AtGH3.3_7 AtGH3.3_8 AtGH3.3_8 AtGH3.3_9	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC	8818 8814 6808 5617 4718 1898 1521 569 188 8878 8878 8878 8878 8878 8878 8878
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8 AtGH3.3_9 AtGH3.3_10 Consensus pNAtGH3.3_10 Consensus pNAtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_3 AtGH3.3_6 AtGH3.3_6 AtGH3.3_6 AtGH3.3_7 AtGH3.3_6 AtGH3.3_7 AtGH3.3_8 AtGH3.3_9 AtGH3.3_9 AtGH3.3_9 AtGH3.3_9 AtGH3.3_9 AtGH3.3_9	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC	8818 8814 6808 5617 4718 1898 1521 569 188 8878 8878 8878 8878 8874 6868 85677 4778 1958 1581 629 248
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8 AtGH3.3_9 AtGH3.3_10 Consensus pNAtGH3.3_1AtGH3.3cdr-GFP AtGH3.3_2 AtGH3.3_3 AtGH3.3_5 AtGH3.3_5 AtGH3.3_6 AtGH3.3_6 AtGH3.3_6 AtGH3.3_7 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8 AtGH3.3_7 AtGH3.3_8 AtGH3.3_7 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8 AtGH3.3_7 A	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG AAGCCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC	8818 8814 6808 5617 4718 1898 1521 569 188 8878 8878 8878 8878 8874 6868 885577 4778 1958 1581 629 248
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_6 AtGH3.3_9 AtGH3.3_10 Consensus pNAtGH3.3_10 Consensus pNAtGH3.3_2 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_6 AtGH3.3_7 AtGH3.3_8 AtGH3.3_10 Consensus	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACCGCCACGCCA	8818 8814 6808 5617 4718 1898 1521 569 188 8878 8878 8878 8874 6868 5677 4778 1958 1581 629 248 8938
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_6 AtGH3.3_9 AtGH3.3_10 Consensus pNAtGH3.3_10 Consensus pNAtGH3.3_2 AtGH3.3_2 AtGH3.3_4 AtGH3.3_5 AtGH3.3_5 AtGH3.3_6 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_6 AtGH3.3_7 A	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC ATTCTTCAAGGACGACGGCAACTACAAGACCCGCGCGCCGAGGTGAAGTTCGAGGGGCGACCACC	8818 8814 6808 5617 4718 1898 1521 569 188 8878 8878 8878 8874 6868 5677 4778 1958 1581 629 248 8938 8938
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_6 AtGH3.3_7 AtGH3.3_9 AtGH3.3_10 Consensus pNAtGH3.3:1AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_4 AtGH3.3_5 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_6 AtGH3.3_7 AtGH3.3_9 AtGH3.3_9 AtGH3.3_9 AtGH3.3_9 AtGH3.3_9 AtGH3.3_9 AtGH3.3_10 Consensus pNAtGH3.3_10 Consensus pNAtGH3.3_10	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCGCGCG	8818 8814 6808 5617 4718 1898 1521 569 188 8878 8878 8878 8878 8878 8878 8874 6865 5677 4778 1958 1581 629 248 8938 8938 8938
Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_6 AtGH3.3_7 AtGH3.3_9 AtGH3.3_9 AtGH3.3_10 Consensus pNAtGH3.3:AtGH3.3cdr-GFP AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_6 AtGH3.3_7 AtGH3.3_9 AtGH3.3_9 AtGH3.3_9 AtGH3.3_9 AtGH3.3_9 AtGH3.3_7 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_7 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_3 AtGH3.3_2 AtGH3.3_3 AtGH3.3_2 AtGH3.3_3 At	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG AAGCAGCACGACCTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCGCGCG	8818 8814 6808 5617 4718 1898 1521 569 188 8878 8878 8878 8874 6868 5677 4778 1958 1581 629 248 8938 8934 6928 5737
Consensus pNAtGH3. 3: AtGH3. 3cdr-GFP AtGH3. 3_1 AtGH3. 3_2 AtGH3. 3_4 AtGH3. 3_5 AtGH3. 3_6 AtGH3. 3_7 AtGH3. 3_6 AtGH3. 3_7 AtGH3. 3_8 AtGH3. 3_9 AtGH3. 3_10 Consensus pNAtGH3. 3: AtGH3. 3cdr-GFP AtGH3. 3_1 AtGH3. 3_2 AtGH3. 3_4 AtGH3. 3_5 AtGH3. 3_6 AtGH3. 3_6 AtGH3. 3_7 AtGH3. 3_6 AtGH3. 3_7 AtGH3. 3_6 AtGH3. 3_7 AtGH3. 3_10 Consensus pNAtGH3. 3: AtGH3. 3cdr-GFP AtGH3. 3_1 AtGH3. 3_2 AtGH3. 3_3 AtGH3. 3_3 AtGH3. 3_3 AtGH3. 3_3 AtGH3. 3_1	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACCTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC ATTCTTCAAGGACGACGGCAACTACAAGACCCGCCGCGCGAGGTGAAGTTCGAGGGGCGACCACC	8818 8814 6808 5617 4718 1898 1521 5699 188 8878 8878 8878 8878 8878 8878 887
Consensus pNAtGH3. 3: AtGH3. 3cdr-GFP AtGH3. 3_1 AtGH3. 3_2 AtGH3. 3_4 AtGH3. 3_4 AtGH3. 3_5 AtGH3. 3_6 AtGH3. 3_7 AtGH3. 3_7 AtGH3. 3_8 AtGH3. 3_9 AtGH3. 3_10 Consensus pNAtGH3. 3: AtGH3. 3cdr-GFP AtGH3. 3_1 AtGH3. 3_2 AtGH3. 3_4 AtGH3. 3_5 AtGH3. 3_6 AtGH3. 3_7 AtGH3. 3_6 AtGH3. 3_7 AtGH3. 3_6 AtGH3. 3_7 AtGH3. 3_6 AtGH3. 3_7 AtGH3. 3_10 Consensus pNAtGH3. 3: AtGH3. 3cdr-GFP AtGH3. 3_1 AtGH3. 3_1 AtGH3. 3_2 AtGH3. 3_3 AtGH3. 3_3 AtGH3. 3_4 AtGH3. 3_5	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC TTCTTCAAGGACGACGACTTCTTCAAGTCCGCCATGCCCGCAGGGCGAAGGTTCGAGGAGCGCACCACC TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGCG	8818 8814 6808 5617 4718 1898 1521 569 188 8878 8878 8878 8878 8878 8878 8878
Consensus pNAtGH3. 3: AtGH3. 3cdr-GFP AtGH3. 3_1 AtGH3. 3_2 AtGH3. 3_4 AtGH3. 3_4 AtGH3. 3_6 AtGH3. 3_6 AtGH3. 3_7 AtGH3. 3_7 AtGH3. 3_8 AtGH3. 3_9 AtGH3. 3_9 AtGH3. 3_10 Consensus pNAtGH3. 3: AtGH3. 3cdr-GFP AtGH3. 3_1 AtGH3. 3_4 AtGH3. 3_5 AtGH3. 3_9 AtGH3. 3_9 AtGH3. 3_7 AtGH3. 3_6 AtGH3. 3_7 AtGH3. 3_6 AtGH3. 3_7 AtGH3. 3_2 AtGH3. 3_2 AtGH3. 3_2 AtGH3. 3_2 AtGH3. 3_1 AtGH3. 3_2 AtGH3. 3_4 AtGH3. 3_5 AtGH3. 3_5 AtGH3. 3_5 AtGH3. 3_6	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC ATTCTTCAAGGACGACGACGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACC TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGCG	8818 8814 6808 5617 4718 1898 1521 569 188 8878 8878 8878 8878 8878 8878 8878
Consensus pNAtGH3. 3: AtGH3. 3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_4 AtGH3.3_4 AtGH3.3_6 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8 AtGH3.3_9 AtGH3.3_9 AtGH3.3_10 Consensus pNAtGH3.3_14 AtGH3.3_2 AtGH3.3_2 AtGH3.3_4 AtGH3.3_5 AtGH3.3_7 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8 AtGH3.3_7 AtGH3.3_7 AtGH3.3_7 AtGH3.3_7 AtGH3.3_9 AtGH3.3_10 Consensus pNAtGH3.3_10 Consensus pNAtGH3.3_12 AtGH3.3_12 AtGH3.3_14 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_3 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_6 AtGH3.3_6 AtGH3.3_7	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGGGCACCACTC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGGGCGACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAAGGGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAAGGGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAAGGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAAGGCGCACCATC TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAAGGTGAAGTTCGAGGGGCGACCACC TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACC TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGGCGACACC TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGGCGACACC	8818 8814 6808 5617 4718 1898 1521 569 188 8878 8878 8878 8878 8878 8878 8878
Consensus pNAtGH3. 3: AtGH3. 3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_4 AtGH3.3_4 AtGH3.3_6 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8 AtGH3.3_9 AtGH3.3_9 AtGH3.3_10 Consensus pNAtGH3.3_14 AtGH3.3_12 AtGH3.3_2 AtGH3.3_2 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_9 AtGH3.3_9 AtGH3.3_9 AtGH3.3_7 AtGH3.3_7 AtGH3.3_9 AtGH3.3_10 Consensus pNAtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_3 AtGH3.3_2 AtGH3.3_5 AtGH3.3_5 AtGH3.3_7 AtGH3.3_8 AtGH3.3_7 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8 AtGH3.3_7 AtGH3.3_8 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8 AtGH3.3_7 AtGH3.3_7 AtGH3.3_7 AtGH3.3_7 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8 AtGH3.3_7 AtGH3.3_8 AtGH3.3_7 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8 AtGH3.3_7 AtGH3.3_8 AtGH3.3_7 AtGH3.3_8 AtGH3.3_7 AtGH3.3_8 AtGH3.3_8 AtGH3.3_7 AtGH3.3_8 AtGH3.3_8 AtGH3.3_7 AtGH3.3_8 AtGH3.3_8 AtGH3.3_7 AtGH3.3_8 AtGH3.3_8 AtGH3.3_7 AtGH3.3_8 AtGH3.3_7 AtGH3.3_8 AtGH3.3_8 AtGH3.3_7 AtGH3.3_8 AtGH3.3_7 AtGH3.3_8 AtGH3.3_7 AtGH3.3_8 AtGH3.3_7 AtGH3.3_8 AtGH3.3_7 AtGH3.3_8 AtGH3.3_7 AtGH3.3_8 AtGH3.3_7 AtGH3.3	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG AAGCAGCACGACCTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACCACC TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACC TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACC TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGCG	8818 8814 6808 5617 4718 1898 1521 569 188 8878 8878 8878 8878 8878 8878 8878
Consensus pNAtGH3. 3: AtGH3. 3cdr-GFP AtGH3.3_1 AtGH3.3_2 AtGH3.3_4 AtGH3.3_4 AtGH3.3_6 AtGH3.3_6 AtGH3.3_7 AtGH3.3_7 AtGH3.3_8 AtGH3.3_9 AtGH3.3_9 AtGH3.3_10 Consensus pNAtGH3.3_10 Consensus pNAtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_4 AtGH3.3_5 AtGH3.3_6 AtGH3.3_7 AtGH3.3_6 AtGH3.3_9 AtGH3.3_9 AtGH3.3_9 AtGH3.3_9 AtGH3.3_9 AtGH3.3_10 Consensus pNAtGH3.3_10 Consensus pNAtGH3.3_12 AtGH3.3_10 Consensus pNAtGH3.3_14 AtGH3.3_12 AtGH3.3_12 AtGH3.3_14 AtGH3.3_2 AtGH3.3_2 AtGH3.3_2 AtGH3.3_3 AtGH3.3_3 AtGH3.3_5 AtGH3.3_7 AtGH3.	ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG ACCCTCGTGACCACCTTCTACAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCACTG AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACC TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACC TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACC TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACC TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACC TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACC TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACC TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCC	8818 8814 6808 5617 4718 1898 1521 569 188 8878 8878 8878 8878 8878 8878 8878

Attachment 12. Sequence alignment of pNAtGH3.3:AtGH3.3cdr-GFP with a fragment of GFP coding region resulting from the sequencing and confirming the correctness of assembly (part 1).

Consensus	CTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGG	899
pNAtGH3.3:AtGH3.3cdr-GFP	CTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGG	899
AtGH3.3_1		698
AtGH3.3_2		579
AtGH3.3_3		489
AtGH3.3_4		207
AtGH3.35		170
AtGH3.3 6	CTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGG	74
AtGH3.37	CTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGG	36
AtGH3.38		
AtGH3.3 9		
A+GH3_3_10		
Consensus	CACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAG	985
nNA+6H3 3·A+6H3 3rdn-6ED		005
A+GH3 3 1		794
A+GH3 3 2		520
AcGH3.3_2 AAGH3.3_3		202
Atons.5_5		495
Atuno.5_4		213
Atuno.3_5		1/6
AtGH3.3_6	CACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAG	88
AtGH3.3_7	CACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAG	42
AtGH3.3_8		
AtGH3.3_9		
AtGH3.3_10		
C		011
-NAAGU2 2. AAGU2 2. da GED	AACCOCATCAACCITCAACATCCCCCACACATCCACCACCCCCCCC	011
pwatuns.s:atuns.scar-urm	AACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTC	240
Atons.s_1		7.16
Aton5.5_2		291
Atons.s_s		261
AtGH3.3_4		219
AtGH3.3_5		182
AtGH3.3_6	AACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTC	86
AtGH3.3_7	AACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTC	- 48
AtGH3.3_8		
AtGH3.3_9		
AtGH3.3_10		
c		
Consensus	OCCOACCACTACCAOCAOAACACCCCCATCOOCOACOOCCCCOTOCTGCCGCCGACAAC	917
pNAtGH3.3:AtGH3.3cdr-GFP	ULUALLAL FACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCCGCGACAAC	917
AtGH3.3_1		716
AtGH3.3_2		597
AtGH3.3_3		507
AtGH3.3_4		225
AtGH3.35		188
AtGH3.3 6	GCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCCGGCCAAAC	92
AtGH3.3 7	GCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCCGGCCAAC	54
AtGH3.3 8		-
		-
Atoms.s 9		

Attachment 13. Sequence alignment of pNAtGH3.3:AtGH3.3cdr-GFP with a fragment of GFP coding region resulting from the sequencing and confirming the correctness of assembly (part 2).

Consensus VP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_4 AtGH3.4_5 AtGH3.4_6 AtGH3.4_7 AtGH3.4_8 Consensus	AGTCCTAAGGAAGCCATCCTCTGCTGTGACTCGTCTCAAAGCATGTATACGCAAATGCTA AGTCCTAAGGAAGCCATCCTCTGCTGTGACTCGTCTCAAAGCATGTATACGCAAATGCTA AGTCCTAAGGAAGCCATCCTCTGCTGTGACTCGTCTCAAAGCATGTATACGCAAATGCTA 	4077 4077 2008 497 4137
<pre>(P_AtGH3.4:AtGH3.4cds:GFP:HygR \tGH3.4_1 \tGH3.4_2 \tGH3.4_3 \tGH3.4_4 \tGH3.4_5 \tGH3.4_6 \tGH3.4_6 \tGH3.4_7 \tGH3.4_8</pre>	TGTGGTCTCTTAATGCGCCATGAAGTTAACCGACTCGGTGCGGTGTTTCCTTCTGGTCTC TGTGGTCTCTTAATGCGCCATGAAGTTAACCGACTCGGTGCGGTGTTTCCTTCTGGTCTC 	4137 2068 557 39
Lonsensus VP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_4 AtGH3.4_5 AtGH3.4_6 AtGH3.4_7 AtGH3.4_8	CTCCGTGCCATAAGCTTCCTCCAGAACAATTGGAAGGAACTTTCTCAGGATATCTCAACC CTCCGTGCCATAAGCTTCCTCCAGAACAATTGGAAGGAACTTTCTCAGGATATCTCAACC CTCCGTGCCATAAGCTTCCTCCAGAACAATTGGAAGGAACTTTCTCAGGATATCTCAACC CTCCGTGCCATAAGCTTCCTCCAGAACAATTGGAAGGAACTTTCTCAGGATATCTCAACC	4197 4197 2128 617 99
Consensus VP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_4 AtGH3.4_5 AtGH3.4_6 AtGH3.4_7 AtGH3.4_8	GGGACCCTAAGTTCTAAAATCTTTGATCATGCGATTAAAACTCGAATGTCGAATATTTTG GGGACCCTAAGTTCTAAAATCTTTGATCATGCGATTAAAACTCGAATGTCGAATATTTTG GGGACCCTAAGTTCTAAAATCTTTGATCATGCGATTAAAACTCGAATGTCGAATATTTTG GGGACCCTAAGTTCTAAAATCTTTGATCATGCGATTAAAACTCGAATGTCGAATATTTTG	4257 4257 2188 677 159
Lonsensus VP_AtGH3.4:AtGH3.4cds:GFP:HygR ttGH3.4_1 ttGH3.4_2 ttGH3.4_3 ttGH3.4_4 ttGH3.4_5 ttGH3.4_5	AACAAACCTGATCAAGAACTGGCTGAGTTTTTGATAGGGGTTTGTTCGCAAGAGAATTGG AACAAACCTGATCAAGAACTGGCTGAGTTTTTGATAGGGGTTTGTTCGCAAGAGAATTGG AACAAACCTGATCAAGAACTGGCTGAGTTTTTGATAGGGGTTTGTTCGCAAGAGAATTGG AACAAACCTGATCAAGAACTGGCTGAGTTTTTGATAGGGGTTTGTTCGCAAGAGAATTGG	4317 4317 2248 737 219
1tGH3.4_7 1tGH3.4_8		
AtGH3.4_0 AtGH3.4_7 AtGH3.4_8 Consensus VP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_2 AtGH3.4_3 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_6 AtGH3.4_7 AtGH3.4_8	GAAGGAATAATCACAAAGATATGGCCTAACACAAAGTACCTTGATGTGATTGTTACTGGT GAAGGAATAATCACAAAGATATGGCCTAACACAAAGTACCTTGATGTGATTGTTACTGGT GAAGGAATAATCACAAAGATATGGCCTAACACAAAGTACCTTGATGTGATTGTTACTGGT GAAGGAATAATCACAAAGATATGGCCTAACACAAAGTACCTTGATGTGATTGTTACTGGT	4377 4377 2308 797 279
AtGH3.4_0 AtGH3.4_7 AtGH3.4_7 AtGH3.4_8 Consensus VP_AtGH3.4_1 AtGH3.4_1 AtGH3.4_2 AtGH3.4_2 AtGH3.4_3 AtGH3.4_4 AtGH3.4_5 AtGH3.4_6 AtGH3.4_7 AtGH3.4_8 Consensus VP_AtGH3.4_1 AtGH3.4_1 AtGH3.4_2 AtGH3.4_2 AtGH3.4_3 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_5 AtGH3.4_2 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_5 AtGH3.4_7 AtGH3.4_6 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_6 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_7 AtGH3.4_8	GAAGGAATAATCACAAAGATATGGCCTAACACAAAGTACCTTGATGTGATTGTTACTGGT GAAGGAATAATCACAAAGATATGGCCTAACACAAAGTACCTTGATGTGATTGTTACTGGT GAAGGAATAATCACAAAGATATGGCCTAACACAAAGTACCTTGATGTGATTGTTACTGGT GAAGGAATAATCACAAAGATATGGCCTAACACAAAGTACCTTGATGTGATTGTTACTGGT GAAGGAATAATCACAAAGATATGGCCTAACACAAAGTACCTTGATGTGATTGTTACTGGT GCAATGGCTGAGTATATCCCAATGTTGGAGTACTATAGCGGTGGGTTACCAATGGCAAGC GCAATGGCTGAGTATATCCCCAATGTTGGAGTACTATAGCGGTGGGTTACCAATGGCAAGC GCAATGGCTGAGTATATCCCCAATGTTGGAGTACTATAGCGGTGGGTTACCAATGGCAAGC GCAATGGCTGAGTATATCCCCAATGTTGGAGTACTATAGCGGTGGGTTACCAATGGCAAGC GCAATGGCTGAGTATATCCCCAATGTTGGAGTACTATAGCGGTGGGTTACCAATGGCAAGC	4377 4377 2308 797 279 4437 4437 2368 857 339

Attachment 14. Sequence alignment of pNAtGH3.4:AtGH3.4cdr-GFP with a fragment of AtGH3.4 coding region resulting from the sequencing and confirming the correctness of assembly (part 1).

Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR	TCGGAGGTTTCTTACACAATCTTCCCCAACATGGCCTACTTCGAATTCCTCCCACATAAT TCGGAGGTTTCTTACACAATCTTCCCCAACATGGCCTACTTCGAATTCCTCCCCACATAAT	4557 4557
AtGH3.4 1		2488
AtGH3.4 2	TCGGAGGTTTCTTACACAATCTTCCCCAACATGGCCTACTTCGAATTCCTCC	977
4t6H3 4 3	TEGGAGGETTECTTACACAATETTECECCAACATGGECTACTTEGAATTECTECECACATAAT	459
A+GH3 4 4		
4+6H3 4 5		
A+6H3 A 6		
ACG13.4_0		
ACGH3.4_7		
Acolo.4_0		
~		
Consensus	CACGATGGAGATGGAGGAGTAGAAGCAACCTCACTTGTGGAGCTAGCT	4617
NP_AtGH3.4:AtGH3.4cds:GFP:HygR	CACGATGGAGATGGAGGAGTAGAAGCAACCTCACTTGTGGAGCTAGCT	4617
AtGH3.4_1		2548
AtGH3.4_2		1037
AtGH3.4_3	CACGATGGAGATGGAGGAGTAGAAGCAACCTCACTTGTGGAGCTAGCT	519
AtGH3.4_4		
AtGH3.4_5		
AtGH3.4 6		
AtGH3.47		
AtGH3.4 8		
Consensus	664446646TAT64ACTTGTGATCAC64CCT4C6C6666CTCT4CC6TT4C4646TT66C	4677
NP A+GH3 A+A+GH3 Acde+GED+Hund	66AAA66A6TAT6AACTT6T6ATCAC6ACCTAC6C6666CTCTACC6TTACA6A6TT66C	4677
A+6H3 A 1		2688
A+GH3 / 2		1007
ALAND 4_2	SGAAASGASTATGAACTTGTGATCACGACCTACGCGGGGGCTCTACCGTTACACACTTCCC	109/
ACU13.4_3	OGAAAGGAGTATGAACTTGTGATCACGACCTACGCGGGGETCTACCGTTACAGAGTTGGC	279
Aton3.4_4		
AtGH3.4_5		
AtGH3.4_6		
AtGH3.4_7		
AtGH3.4_8		
Consensus	GACATTCTTCGTGTCACGGGGTTTCATAATTCCGCTCCACAGTTCAAATTCATACGGAGA	4737
NP AtGH3.4:AtGH3.4cds:GFP:HygR	GACATTCTTCGTGTCACGGGGTTTCATAATTCCGCTCCACAGTTCAAATTCATACGGAGA	4737
AtGH3.4 1		2668
AtGH3.4 2		1157
A+GH3_4_3	GACATTCTTCGTGTCACGGGGTTTCATAATTCCGCTCCACAGTTCAAATTCATACGGAGA	639
4+6H3 4 4		
A+6H3 4 5		
A+6H3 / 6		
AcGH3.4_0		
Actino.4_/		
Acdn3.4_0		
C		
	SAGAATGTTTTGCTAAGCATTGAATCTGATAAAAACAGACGAGGCTGATTTACAAAAGGCA	4707
ND ACUS ALACUS ALACUS	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA	4797
NP_AtGH3.4:AtGH3.4cds:GFP:HygR	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA	4797 4797
NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA	4797 4797 2728
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA	4797 4797 2728 1217
NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA 	4797 4797 2728 1217 699
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA	4797 4797 2728 1217 699
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_4 AtGH3.4_5	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA	4797 4797 2728 1217 699
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_5 AtGH3.4_5 AtGH3.4_6	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA	4797 4797 2728 1217 699
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_4 AtGH3.4_5 AtGH3.4_6 AtGH3.4_7	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA	4797 4797 2728 1217 699
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_4 AtGH3.4_5 AtGH3.4_6 AtGH3.4_7 AtGH3.4_7 AtGH3.4_8	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA	4797 4797 2728 1217 699
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_4 AtGH3.4_5 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_8	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA	4797 4797 2728 1217 699
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_5 AtGH3.4_5 AtGH3.4_6 AtGH3.4_7 AtGH3.4_8 Consensus	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC	4797 4797 2728 1217 699 4857
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_5 AtGH3.4_5 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_8 Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HypR	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC	4797 4797 2728 1217 699 4857 4857
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_4 AtGH3.4_5 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_7 AtGH3.4_8 Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC	4797 4797 2728 1217 699 4857 4857 2788
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_7 AtGH3.4_7 AtGH3.4_7 AtGH3.4_8 Consensus NP_AtGH3.4_8 Consensus NP_AtGH3.4_1 AtGH3.4_2	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC	4797 4797 2728 1217 699 4857 4857 2788 1277
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_6 AtGH3.4_7 AtGH3.4_6 Consensus NP_AtGH3.4_8 Consensus NP_AtGH3.4_1 AtGH3.4_1 AtGH3.4_1 AtGH3.4_3	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC	4797 4797 2728 1217 699 4857 4857 2788 1277 759
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_5 AtGH3.4_5 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_6 Consensus NP_AtGH3.4_8 Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_3 AtGH3.4_4	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC	4797 4797 2728 1217 699 4857 4857 2788 1277 759
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_4 AtGH3.4_5 AtGH3.4_6 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_6 Consensus NP_AtGH3.4_8 Consensus NP_AtGH3.4_1 AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_3 AtGH3.4_3	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC	4797 4797 1217 699 4857 4857 2788 1277 759
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_4 AtGH3.4_5 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_6 Consensus NP_AtGH3.4_7 AtGH3.4_8 Consensus NP_AtGH3.4_1 AtGH3.4_1 AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_3 AtGH3.4_6	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC	4797 4797 1217 699 4857 4857 2788 1277 759
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_5 AtGH3.4_5 AtGH3.4_6 AtGH3.4_7 AtGH3.4_8 Consensus NP_AtGH3.4_8 Consensus NP_AtGH3.4_1 AtGH3.4_1 AtGH3.4_3 AtGH3.4_3 AtGH3.4_3 AtGH3.4_3 AtGH3.4_3 AtGH3.4_5 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC	4797 4797 2728 1217 699 4857 4857 2788 1277 759
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_5 AtGH3.4_5 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_8 Consensus NP_AtGH3.4_8 Consensus NP_AtGH3.4_1 AtGH3.4_1 AtGH3.4_1 AtGH3.4_2 AtGH3.4_2 AtGH3.4_3 AtGH3.4_5 AtGH3.4_5 AtGH3.4_6 AtGH3.4_7 AtGH3.4_6 AtGH3.4_7 AtGH3.4_7	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC	4797 4797 2728 1217 699 4857 4857 2788 1277 759
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_5 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_7 AtGH3.4_8 Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_7 AtGH3.4_7 AtGH3.4_8	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGAGGCTGATTTACAAAAGGCA GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC	4797 4797 2728 1217 699 4857 4857 2788 1277 759
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_4 AtGH3.4_5 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_8 Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_4 AtGH3.4_6 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_7 AtGH3.4_8 Consensus	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC	4797 4797 1217 699 4857 4857 2788 1277 759
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_5 AtGH3.4_5 AtGH3.4_6 AtGH3.4_7 AtGH3.4_8 Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_3 AtGH3.4_3 AtGH3.4_3 AtGH3.4_3 AtGH3.4_4 AtGH3.4_5 AtGH3.4_6 AtGH3.4_7 AtGH3.4_8 Consensus	GAGAATGTTTTGCTAAGCATTGAATCTGATACAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATACAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAAGACTATACCTGCGTCATTACGTAGAACACGTGTGATCGAGCTACTTAGTAGA	4797 4797 2728 1217 699 4857 4857 2788 1277 759 4917
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_5 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_6 AtGH3.4_7 AtGH3.4_8 Consensus NP_AtGH3.4_1 AtGH3.4_1 AtGH3.4_2 AtGH3.4_2 AtGH3.4_3 AtGH3.4_4 AtGH3.4_5 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_7 AtGH3.4_7 AtGH3.4_7 AtGH3.4_7 AtGH3.4_7 AtGH3.4_7 AtGH3.4_7 AtGH3.4_6 AtGH3.4_7 AtGH3.4_7 AtGH3.4_6 AtGH3.4_7 AtGH3.4_6 AtGH3.4_7 AtGH3.4_6 AtGH3.4_7 AtGH3.4_6 AtGH3.4_7 AtGH3.4_6 AtGH3.4_7 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_6 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_6 AtGH3.4_7 AtGH3.4_6 At	GAGAATGTTTTGCTAAGCATTGAATCTGATACAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATACAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGGAGCAAGGAACACGTGTGATCGAGTATACGAGC	4797 4797 2728 1217 699 4857 4857 2788 1277 759 4917 4917 4917
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_6 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_6 AtGH3.4_8 Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_7 AtGH	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC	4797 4797 2728 1217 699 4857 2788 1277 759 4917 4917 2848
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_4 AtGH3.4_5 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_8 Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_4 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_6 AtGH3.4_7 AtGH3.4_8 Consensus NP_AtGH3.4_8 Consensus NP_AtGH3.4_1 AtGH3.4_1 AtGH3.4_2 AtGH3.4_2 AtGH3.4_2 AtGH3.4_2 AtGH3.4_3 Consensus NP_AtGH3.4_1 AtGH3.4_1 AtGH3.4_1 AtGH3.4_2	GAGAATGTTTTGCTAAGCATTGAATCTGATATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC 	4797 4797 1217 699 4857 4857 2788 1277 759 4917 4917 2848 1337
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_5 AtGH3.4_5 AtGH3.4_6 AtGH3.4_7 AtGH3.4_8 Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_3 AtGH3.4_3 AtGH3.4_5 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_7 AtGH3.4_7 AtGH3.4_8 Consensus NP_AtGH3.4_1 AtGH3.4_1 AtGH3.4_2 AtGH3.4_2 AtGH3.4_2 AtGH3.4_2 AtGH3.4_3	GAGAATGTTTTGCTAAGCATTGAATCTGATACAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATACAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAAGACTATACCTGGTCATTACGTAATCTACTGGGAGCTACTTAGTAGA TACGCAGATACGAAGACTATACCTGGTCATTACGTAATCTACTGGGAGCTACTTAGTAGA TACGCAGATACGAAGACTATACCTGGTCATTACGTAATCTACTGGGAGCTACTTAGTAGA	4797 4797 2728 1217 699 4857 4857 2788 1277 759 4917 2848 1337 819
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_4 AtGH3.4_5 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_8 Consensus NP_AtGH3.4_8 Consensus NP_AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_4 AtGH3.4_5 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_7 AtGH3.4_7 AtGH3.4_7 AtGH3.4_7 AtGH3.4_7 AtGH3.4_7 AtGH3.4_7 AtGH3.4_8 Consensus NP_AtGH3.4_1 AtGH3.4_1 AtGH3.4_3 AtGH3.4_3 AtGH3.4_3 AtGH3.4_3 AtGH3.4_3 AtGH3.4_3 AtGH3.4_3	GAGAATGTTTTGCTAAGCATTGAATCTGATACAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATACAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAAGACTATACCTGGTCATTACGTAATCTACTGGGAGCTACTTAGTAGA TACGCAGATACGAAGACTATACCTGGTCATTACGTAATCTACTGGGAGCTACTTAGTAGA TACGCAGATACGAAGACTATACCTG	4797 4797 2728 1217 699 4857 4857 2788 1277 759 4917 4917 2848 1337 819
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_5 AtGH3.4_6 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_6 AtGH3.4_7 AtGH3.4_8 Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGGAGCAAGGAACCACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAAGACTATACCTGGTCATTACGTAATCTACTGGGAGCTACTTAGTAGA TACGCAGATACGAAGACTATACCTGGTCATTACGTAATCTACTGGGAGCTACTTAGTAGA TACGCAGATACGAAGACTATACCTGGTCATTACGTAATCTACTGGGAGCTACTTAGTAGA	4797 4797 2728 1217 699 4857 2788 1277 759 4917 4917 2848 1337 819
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_4 AtGH3.4_5 AtGH3.4_6 AtGH3.4_7 AtGH3.4_7 AtGH3.4_8 Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_6 AtGH3.4_7 AtGH3.4_6 AtGH3.4_7 AtGH3.4_8 Consensus NP_AtGH3.4_8 Consensus NP_AtGH3.4_1 AtGH3.4_1 AtGH3.4_2 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5	GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC TACGCAGATACGAAGACTATACCTGGTCATTACGTAATCTACTGGGAGCTACTTAGTAGA TACGCAGATACGAAGACTATACCTGGTCATTACGTAATCTACTGGGAGCTACTTAGTAGA	4797 4797 1217 699 4857 4857 2788 1277 759 4917 4917 2848 1337 819
Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_5 AtGH3.4_5 AtGH3.4_6 AtGH3.4_7 AtGH3.4_7 AtGH3.4_1 AtGH3.4_1 AtGH3.4_3 AtGH3.4_3 AtGH3.4_3 AtGH3.4_4 AtGH3.4_5 AtGH3.4_6 AtGH3.4_7 AtGH3.4_8 Consensus NP_AtGH3.4_1 AtGH3.4_7 AtGH3.4_8 Consensus NP_AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_2 AtGH3.4_3 AtGH3.4_2 AtGH3.4_3 AtGH3.4_3 AtGH3.4_3 AtGH3.4_3 AtGH3.4_3 AtGH3.4_5 AtGH3.4_5 AtGH3.4_6 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7	GAGAATGTTTTGCTAAGCATTGAATCTGATACAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATACAAAACAGACGAGGCTGATTTACAAAAGGCA GAGAATGTTTTGCTAAGCATTGAATCTGATAAAACAGACGAGGCTGATTTACAAAAGGCA GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAGGTTGCTTGCAGGAGCAAGGAACACGTGTGATCGAGTATACGAGC GTGGAGAATGCGTCGAAGACTATACCTGGTCATTACGTAATCTACTGGGAGCTACTTAGTAGA TACGCAGATACGAAGACTATACCTGGTCATTACGTAATCTACTGGGAGCTACTTAGTAGA TACGCAGATACGAAGACTATACCTGGTCATTACGTAATCTACTGGGAGCTACTTAGTAGA	4797 4797 2728 1217 699 4857 2788 1277 759 4917 4917 2848 1337 819

Attachment 15. Sequence alignment of pNAtGH3.4:AtGH3.4cdr-GFP with a fragment of AtGH3.4 coding region resulting from the sequencing and confirming the correctness of assembly (part 2).

onsensus	TGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCG	5397
P A+6H3 A:A+6H3 Acdc:6E9	P-HumP 1646C44655C546546C151TC4CC566515515CCC4TCC155TC545C1654C55C5	5397
+GH2 / 1		2210
Con5.4_1		3320
tans.4_2		181/
tGH3.4_3		1299
tGH3.4_4	TGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCG	399
tGH3.4 5		
tGH3.4 6		
+6H3 4 7		
-GH2 4 9		
Carb.4_0		
onsensus	ACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCA	5457
P_AtGH3.4:AtGH3.4cds:GFF	P:HygR ACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCA	5457
tGH3.4 1		3388
tGH3.4 2		1877
±6H3.4 3		1359
+6H3 / /	ACSTANACSSCCACAASTTCASCSTSTCCSSCSASSSCSASSSCSATSCCACCTACSSCA	450
COND.4_4		405
tans.4_5	-CGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCA	29
tGH3.4_6		
tGH3.4_7		
tGH3.4_8		
_		
onsensus	ASCESACCCESAASTECATCESCACCASCAASCESCCCESTSCCCESSCCCACCCECS	5517
D A+GH3 A+A+GH3 Acde+GE0	P.HP. ASCTSACCTSAASTTCATCTSCACCASCASCASCTSCCCSTSCCCTSSCCCACCTCS	5517
- Acono.4. Acono.4cos.or	- Type Addreaded that checkeed addreaded accorded accorded to the contract of	2440
ton5.4_1		3440
tuns.4_2		1937
t0H3.4_3		1419
tGH3.4_4	AGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCG	519
tGH3.4 5	AGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCG	119
tGH3.4 6		
+6H3 4 7		
AGH3 / 9		
tano.4_0		
onsensus	TGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGC	5577
P AtGH3.4:AtGH3.4cds:GFF	P:HygR TGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGC	5577
tGH3.4 1		3568
+6H3 4 2		1007
CG13.4_2		4470
tans.4_5		1479
tGH3.4_4	IGACCACCI I CACCI ACGOCGI GCAGI GCI I CAGCOCI ACCCCGACCACA I GAAGCAGC	579
tGH3.4_5	TGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGC	179
tGH3.4_6		
tGH3.4 7		
+GH3 4 8		
	ACGACTTCTTCA AGTCCGCCATGCCCGA AGGCTACGTCCAGGAGCGCACCATCTTCTCA	6627
onsensus	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA	5637
onsensus P_AtGH3.4:AtGH3.4cds:GFF	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA	5637 5637
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA	5637 5637 3568
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA	5637 5637 3568 2057
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA	5637 5637 3568 2057 1539
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_4	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA	5637 5637 3568 2057 1539 639
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_3 tGH3.4_5	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA	5637 5637 3568 2057 1539 639 239
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3.4_5 tGH3.4_6	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA	5637 5637 3568 2057 1539 639 239
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3.4_5 tGH3.4_6 cGH2.4_7	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA	5637 5637 3568 2057 1539 639 239
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3.4_5 tGH3.4_6 tGH3.4_7	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA	5637 5637 3568 2057 1539 639 239
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_8	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA	5637 5637 3568 2057 1539 639 239
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_8	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA	5637 5637 3568 2057 1539 639 239
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_8 onsensus	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGGCGACACCCTGGTGA	5637 5637 3568 2057 1539 639 239 5697
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA P:HygR AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA	5637 5637 3568 2057 1539 639 239 239
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_6 tGH3.4_6 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACGACGACGGCAACTACAAGACCCGCGCGCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA P:HygR AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA	5637 5637 3568 2057 1539 639 239 5697 5697 3628
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_6 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA P:HygR AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA	5637 5637 3568 2057 1539 639 239 5697 5697 5697 3628 2117
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA AGGACGACGGCAACTACAAGACCCGCGCGCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA P:HygR AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA	5637 5637 3568 2057 1539 639 239 5697 5697 5697 3628 2117 1599
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 +GH3.4_3 +GH3.4_3 +GH3.4_3 +GH3.4_4 +GH3.4_3 +GH3.4_4 +GH3.4_4 +GH3.4_4 +GH3.4_4 +GH3.4_4 +GH3.4_4 +GH3.4_4 +GH3.4_4 +GH3.4_4 +GH3.4_4 +GH3.4_4 +GH3.4_4 +GH3.4_4 +GH3.4_4 +GH3.4_5 +GH3.4_5 +GH3.4_6 +GH3.4_6 +GH3.4_6 +GH3.4_6 +GH3.4_7 +GH3.4_6 +GH3.4_7 +GH3.4_6 +GH3.4_7 +GH3.4_6 +GH3.4_7 +GH3.4_6 +GH3.4_7 +GH3.4_6 +GH3.4_7 +GH3.4_6 +GH3.4_7 +GH3.4_6 +GH3.4_7 +GH3.4_6 +GH3.4_7 +GH3.4_6 +GH3.4_7 +GH3.4_7 +GH3.4_6 +GH3.4_7 +GH3	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACGACGGCAACTACAAGACCCGCGCGCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA P:HygR AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA	5637 5637 3568 2057 1539 639 239 239 5697 5697 3628 2117 1599 600
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_6 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_3 tGH3.4_3 tGH3.4_3 tGH3.4_5	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCCATCTTCTTCA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA P:HygR AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA	5637 5637 3568 2057 1539 239 239 5697 5697 3628 2117 1599 699 292
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_5	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA P:HygR AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA	5637 5637 3568 2057 1539 239 239 5697 5697 5697 3628 2117 1599 699 299
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_6 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCCATCTTCTTCA ACGACTTCTTCAAGTCCGCCCGCGCGCAAGGCTACGTCCAGGAGCGCACCCATCTTCTTCA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA	5637 5637 3568 2057 1539 639 239 5697 5697 3628 2117 1599 699 299
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_6 tGH3.4_6 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCACTTTCTTCA ACGACGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA P:HygR AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGCG	5637 5637 3568 2057 1539 639 239 5697 5697 5697 3628 2117 1599 699 299
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_3 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_5 tGH3.4_5 tGH3.4_5 tGH3.4_5 tGH3.4_7 tGH3.4_7 tGH3.4_8	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA	5637 5637 3568 2057 1539 639 239 5697 5697 3628 2117 1599 699 299
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_8	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGACCCCATCTTCTTCA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA	5637 5637 3568 2057 1539 639 239 5697 5697 3628 2117 1599 699 299
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_6 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_8 onsensus	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACCGCCGCGCAACTACAAGACCCGCGCCGAAGGCTACGTCCGGGGGCGACACCATCTTCTTCA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGCG	5637 5637 3568 2057 1539 639 239 5697 3628 2117 1599 699 299 5757
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3_4cds:GFF	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGACCCATCTTCTTCA ACGACGACGACGGCAACTACAAGACCCGCGCCGAAGGTACGTCCGAGGAGCGCACCCCTGGTGA P:HygR AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA ACGGCATCGAGCTGCAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACACCCTGGTGA ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACACGC	5637 5637 3568 2057 1539 639 239 5697 5697 3628 2117 1599 699 299
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA AGGACGACGGCAACTACAAGACCCGCGCCGAAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGGCCACCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA ACCGCATCGAGGCGAACTACAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC P:HygR	5637 5637 3568 2057 1539 639 239 5697 5697 3628 2117 1599 299 5757 5757 5757 3628
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_2 tGH3	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACCGCCGCCAACTACAAGACCCGCGCCGAAGGCTACGTCCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGGCCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGGCCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGGCCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC P:HygR ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC	5637 5637 3568 2057 1539 639 239 5697 3628 2117 1599 699 299 5757 5757 3688
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_2 tGH3.4_5 tGH3.4_5 tGH3.4_2 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGACCCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGACCCATCTTCTTCA AGGACGACGGCAACTACAAGACCCGCGCCGAAGGTGAAGTTCGAGGGCGACACCCTGGTGA P:HygR AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGGCCTCGACTTCCAAGGAGGACGGCAACATCCTGGGGCACAAGC P:HygR ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC	5637 5637 3568 2057 1539 639 239 5697 5697 3628 2117 1599 699 299 5757 5757 3688 2177
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCCGCGCGCGAAGGCTACGTCCAGGAGCGCACCACTTCTTCTA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGGCCACCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC P:HygR ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC 	5637 5637 3568 2057 1539 639 239 5697 5697 3628 2117 1599 299 5757 5757 5757 3688 2177 1659
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_5 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3.4_2 tGH3.4_2 tGH3.4_4 tGH3.4_2 tGH3.4_2 tGH3.4_4 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3.4_2 tGH3.4_4 tGH3.4_2 tGH3.4_4 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACCGCCGCCACCACCACCACGCCCGCAGGCTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGGCCACGGCCGCGCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC P:HygR ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC	5637 5637 3568 2057 1539 639 239 5697 3628 2117 1599 699 299 5757 5757 3688 2177 1659 759
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_5 tGH3.4_5 tGH3.4_5 tGH3.4_7 tGH3.4_5 tGH3.4_7 tGH3.4_5 tGH3.4_7 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGACCCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGACCCATCTTCTTCA ACGACGACGACGGCAACTACAAGACCCGCGCCGAAGGTGAAGTTCGAGGGCGACACCCTGGTGA P:HygR AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA ACGCACTCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC	5637 5637 3568 2057 1539 639 239 5697 5697 3628 2117 1599 699 299 5757 5757 3688 2177 1659 759 359
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_3 tGH3.4_3 tGH3.4_3 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_5 tGH3.4_6 tGH3.4_5 tGH3.4_6	P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCCGCGCCGAAGGCTACGTCCAGGAGCGCACCACTTCTTCA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGCG	5637 5637 3568 2057 1539 639 239 5697 5697 3628 2117 1599 299 5757 5757 5757 5757 5757 5757 57
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_5 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_5 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3.4_5 tGH3.4_7 tGH3	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCCATGCCCGAAGGCTACGTCCAGGAGCGCACCCATCTTCTTCA ACGACTTCTTCAAGTCCGCCCCCGCCGAAGGCTACGTCCAGGAGCGCACCCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAAGGCGACACCCTGGTGA P:HygR AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGCGCGAGGTGAAGTTCGAGGGCGACACCCCTGGTGA AGGACGACGGCAACTACAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC P:HygR ACCCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGGCGGCAACATCCTGGGGCACAAGC P:HygR ACCGCCATCGAGCTGAAGGGCATCGACTTCAAGGAGGGCAGGCA	5637 5637 3568 2057 1539 639 239 5697 3628 2117 1599 699 299 5757 5757 3628 2117 1599 699 299
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_5 tGH3.4_5 tGH3.4_5 tGH3.4_7 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_3 tGH3.4_2 tGH3.4_3	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGACCCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGACCCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGACCCATCTTCTTCA ACGACGACGACGGCAACTACAAGACCCGCGCCGAAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGGCCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC	5637 5637 3568 2057 1539 639 239 5697 5697 5697 3628 2117 1599 699 299 5757 5757 3688 2177 1659 759 359
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_1 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_5 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_7 tGH3.4_8	P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCCGCGCCGAAGGTACGTCCAGGAGCGCACCACCTTGTTCA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGCG	5637 5637 3568 2057 1539 639 239 5697 5697 3628 2117 1599 299 5757 5757 5757 3688 2177 1659 759 359
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_5 tGH3.4_5 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTCTTCAAGTCCGCCATGCCCGCAGGCTACGTCCAGGAGCGCACCCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGGCCTCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC P:HygR ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC	5637 5637 3568 2057 1539 639 239 5697 3628 2117 1599 699 299 299 5757 5757 3628 2117 1599 699 299
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_5 tGH3.4_5 tGH3.4_7 tGH3.4_5 tGH3.4_7 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGGCGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGCGGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC P:HygR ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAACGACCACGCCACAACGTCAACGCGCAACATCCTGGGGCACCAAGC ACCGCATCGAGCTGAACGACAGCCACGCCACAACGCCGCAACATCCTGGGGCACCAAGC ACCGCATCGAGCTGAACGACCACGCCACAACGCCACACGCCACACCTCGGGCACCAAGC ACCGCATCGAGCTGAACGACCACACGCCACAACGCCACACGCAACATCCTGGGGCACCAAGC ACCGCATCGAGCTGAACGACGCACCACGCCACAACGCCGCAACATCCTGGGGCACCAAGC ACCGCATCGAACTACAACAGCCACAACGCCACAACGCCGCACAACGCCACAACGCCACAACGCACACGCACAACGCA	5637 5637 3568 2057 1539 639 239 5697 3628 2117 1599 699 299 5757 5757 3688 2177 1659 359 5817
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_1 tGH3.4_1 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_1 tGH3.4_2 tGH3.4_5 tGH3.4_2 tGH3.4_5 tGH3.4_1 tGH3.4_2 tGH3.4_5 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_3 tGH3.4_2 tGH3.4_3	P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCACTTCTTTCA ACGACTTCTTCAAGTCCGCCCGCGCCGAAGGTACGTCCAAGGAGCGCACCCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGCGCATCGAGGCGAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAACGCCACAACGCCACAACGCGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAACGCCACAACGCCACAACGCCGCAACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAACGACCACCACACGCCACAACGCCGCAACAACTCCTGGGGCACAAGC ACCGCATCGAGCTGAACGACCACCACGCCACAACGCCGCACAACGCCGCAACATCCTGGGCCACAAGC ACCGCATCGAGCTGAACTACAACAGCCACCACGCCACAACGCCGCAACGGCAACATCCTGGGCACAAGC ACCGCATCGAACTACAACAACCAGCCACAACGCCACAACGCCGCAACAACGCCGC	5637 5637 3568 2057 1539 639 239 5697 5697 3628 2117 1599 299 5757 5757 5757 3688 2177 1659 759 359 5817 5817
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3.4_5 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3.4_2 tGH3.4_4 tGH3.4_2 tGH3.4_4 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3.4_2 tGH3.4_4 tGH3.4_4 tGH3.4_2 tGH3.4_3 tGH3.4_4	P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCACTTCTTTCA ACGACGACGGCAACTACAAGACCCGCGCCGAAGGTACGTCCAGGAGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGGGACACCCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGGGACACCCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGGGACACCCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGGGACACCCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGGGACACCCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGGGACACCCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGAGCCGGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAACGGCACGACACGGCATCGACTTCAAGGAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAACGGCAACGGCACGACTGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAACTACAACAGCCCACACGTCTATATCATGGCCGACAAGCAGAAGGAACGGCA ACCGCATCGAGCTGAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGGAACGGCA	5637 5637 3568 2057 1539 639 239 5697 3628 2117 1599 699 299 299 5757 5757 3628 2117 1599 699 299 299 5757 5757 3628 2177 3628 2177 359 5817 5817 358
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_1 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_5 tGH3.4_5 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_5 tGH3.4_7 tGH3.4_2 tGH3.4_7 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCCATGCCCGAAGGCTACGTCCAGGAGCGCACCACTTCTTCTA ACGACTTCTTCAAGTCCGCCCCGCCGAAGGCTACGTCCAGGAGCGCACCACTTCTTCA ACGACTTCTTCAAGTCCGCCCCGCCGCCGAAGGTGAAGTTCGAAGGCGACCCCTGGTGA P:HygR AGGACGACGGCAACTACAAGACCCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGAGCCCGCGCCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC P:HygR ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGCAGAAGAACGGCA ACCGCATCGAACTACAACAACGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCA P:HygR TGGAGTACAACTACAACAACAACGCCACAACGTCTATATCATGGCCGACAAGCACAAGCAGAAAGAA	5637 5637 3568 2057 1539 639 239 5697 3628 2117 1599 299 5757 3628 2117 1599 299 5757 3688 2177 1659 359 5817 5817 5817 5817
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_3 tGH3.4_2 tGH3.4_5 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_3 tGH3.4_2 tGH3.4_3	P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCACTCTTCTTCA AGGACGACGGCAACTACAAGACCCGCGCCGAAGGTCAAGTTCGAAGGGCGACCACCCTGGTGA P:HygR AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAAGGGCGACACCCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGCAGGTGAAGTTCGAAGGGCGACACCCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGCAGGTGAAGTTCGAAGGGCGACACCCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGCAGGTGAAGTTCGAAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGCAGGTGAAGTTCGAAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGCAGGTGAAGTTCGAAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGGCCACCGCCGCAGGTGAAGTTCGAAGGCGACACCCTGGTGA ACCGCATCGAAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC P:HygR ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGCCACCACGTCTATATCATGGCCGACAAGCAGAAGAACGGCA P:HygR TGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCA	5637 5637 3568 2057 1539 639 239 5697 5697 3628 2117 1599 299 299 5757 5757 5757 5757 5757 3688 2177 1659 759 359 5817 5817 35817 35817 3548
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_2 tGH3.4_3 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_2 tGH3.4_3 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_3 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_3 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_3 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_3 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_3 tG	P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA AGGACGACGGCAACTACAAGACCCGCGCCGAAGGTGAAGTTCGAGGGCGACACCCTGGTGA P:HygR AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCCAACTACAAGACCCGGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCCAACTACAAGGCCACCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGCCACCACGTCTATATCATGGCCGACAAGCAAG	5637 5637 3568 2057 1539 639 239 5697 3628 2117 1599 299 299 5757 5757 3628 2117 1599 299 299 5757 5757 3628 2117 1559 759 359 5817 5817 5817 3748 2237 1719
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_1 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_5 tGH3.4_5 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_5 tGH3.4_7 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_5 tGH3.4_2 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_2 tGH3.4_6 tGH3.4_2 tGH3.4_6 tGH3.4_7 tGH3.4_7	P:HygR ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTACTACAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA AGGACGACGGCAACTACAAGACCCGCGCCGAAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGGCCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA AGGACGACGGCAACTACAAGGCCACCGCCGCGCGAGGCGCAACATCCTGGGGCACAAGC P:HygR ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAACGGCCACCACGTCTATATCATGGCCGACAAGCAGAAGAACGGCA CCGCATCGAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCA CCGCATCGAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCA CCGCATCGAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCA	5637 5637 3568 2057 1539 639 239 5697 3628 2117 1599 299 5757 5757 3688 2177 1599 359 5817 5817 5817 5817 5817 5817 5817
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_3 tGH3.4_4 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3.4_5 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_5 tGH3.4_1 tGH3.4_5 tGH3.4_2 tGH3.4_5 tGH3.4_1 tGH3.4_5 tGH3.4_1 tGH3.4_5 tGH3.4_1 tGH3.4_5 tGH3.4_1 tGH3.4_5 tGH3.4_1 tGH3.4_5 tGH3.4_1 tGH3.4_6 tGH3.4_7 tGH3.4_5 tGH3.4_1 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA AGGACGACGGCAACTACAAGACCCGCGCCGAAGGTGAAGTTCGAGGGCGACACCCCTGGTGA P:HygR AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCCTGGTGA AGGACGACGGCAACTACAAGAGCCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCCTGGTGA AGGACGACGGCAACTACAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC P:HygR ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGAGCGGCAACATCCTGGGGCACCAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGAGCGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGAGCGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGAGCGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAAGGGCATCGACTTCAAGGAGGAGCGGCAACATCCTGGGGCACCAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGAGCGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGGGCGCGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTGACTTCAAGGAGGAGGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAACGGCACCGACCACGTCTATATCATGGCCGACAAGCAGGAGAAGGACGGCA TGGAGTACAACTACAACTACAACGCCACAACGTCTATATCATGGCCGACAAGCAGGAAGAACGGCA TGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGGAAGAACGGCA	5637 5637 3568 2057 1539 639 239 5697 5697 3628 2117 1599 299 299 5757 5757 5757 3688 2177 1659 759 359 5817 5817 35817 35817 35817 35817 35817 35819 419
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_8 onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_4 tGH3.4_5 tGH3.4_6 tGH3.4_2 tGH3.4_6 tGH3.4_3 tGH3.4_6 tGH3.4_3 tGH3.4_6 tGH3.4_5 tGH3.4_6	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACGACGGCAACTACAAGACCCGCGCGCGAGGTGAAGTTCGAGGGCGACACCCCTGGTGA P:HygR AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCCTGGTGA AGGACGACGGCAACTACAAGACCCGGCGCGAGGTGAAGTTCGAGGGCGACACCCCTGGTGA AGGACGACGGCAACTACAAGACCCGGCGCGAGGTGAAGTTCGAGGGCGACACCCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGCAGGTGAAGTTCGAGGGCGACACCCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGCAGGTGAAGTTCGAGGGCGACACCCCTGGTGA AGGACGACGGCAACTACAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC P:HygR ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC ACCGCATCGAGCTGAACGGCACGACCACGTCTATATCATGGCCGACAAGCAGGAAGAACGGCA TGGAGTACAACTACAACAACGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAAGGACGGCA	5637 5637 3568 2057 1539 639 239 5697 3628 2117 1599 299 299 5757 5757 3628 2117 1599 299 299 5757 5757 3628 2117 1559 759 359 5817 5817 3748 2237 1719 819 419
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_1 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_5 tGH3.4_7 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_6 tGH3.4_7 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGCAGGCTGAAGGTTCGAGGGCGACCACCCTGGTGA AGGACGACGGCAACTACAAGACCCGCGCCGCG	5637 5637 3568 2057 1539 639 239 5697 3628 2117 1599 299 299 5757 3628 2117 1599 299 299 5757 3688 2177 1659 359 359 5817 5817 5817 3748 2237 1719 819 419
onsensus P_AtGH3.4:AtGH3.4cds:GFF tGH3.4_1 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_6 tGH3.4_7 tGH3.4_7 tGH3.4_7 tGH3.4_1 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_5 tGH3.4_7 tGH3.4_1 tGH3.4_7 tGH3.4_7 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_2 tGH3.4_3 tGH3.4_2 tGH3.4_3 tGH3.4_5 tGH3.4_2	ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA ACGACCGCCGCGCAACTACAAGACCCGCGCGCGAAGGTCGAAGTTCGAGGGCGACCACCCTGGTGA AGGACGACGGCGGCAACTACAAGACCCGCGCCGCG	5637 5637 3568 2057 1539 639 239 5697 5697 3628 2117 1599 299 5757 5757 5757 3688 2177 1659 759 359 5817 5817 3748 2237

Attachment 16. Sequence alignment of pNAtGH3.4:AtGH3.4cdr-GFP with a fragment of GFP coding region resulting from the sequencing and confirming the correctness of assembly (part 1).

5877 5877 3888 2297 1779 479 479	5937 5937 5358 539 539 43	5997 5997 2417 1899 599 183 183	6857 6857 3988 2477 1959 1659 163	6117 6117 2537 2537 2648 2648 719 719 223
TCAAGETGAACTTCAAGATCCGCCACAACATCGAGGGACGGGCAGCGTGGCGTCGCCGGACC TCAAGGTGAACTTCAAGGATCCGGCCACAACATCGGAGGGACGGGCGGG	ACTACCA6CA6AACACCCCCATC666C6AC66CCCC6T6CT6CT6CC6GACAACCACTACC ACTACCA6CA6GAACACCCCCCATC666C6AC666C666C66T6CT66CT66	TGAGCACCCAGTCCGCCCTGAGCAAAGACCCCCAACGAGAGAAGCGCGCGATCACATGGTCCTGC TGAGCACCCCAGTCCGCCCTGAGCAAAGGACCCCCAACGAGAGAAGCGGGATCACATGGTCCTGC TGAGCACCCCAGTCCGCCCTGAGCAAAGACCCCCAACGAGAAAGCGGGATCACATGGTCCTGC TGAGCACCCCAGTCCGCCCTGAGCAAAGACCCCCAACGAGAAAGCGGGATCACATGGTCCTGC TGAGCACCCCAGTCCGGCCCTGAGGCAAAGGACCCCCAACGAGAAAGCGGGATCACATGGTCCTGC TGAGCACCCCAGTCCGGCCCTGAGGCCCCCAACGAGAAAGCGGCGGATCACATGGTCCTGC	TGGAGATTCGTGGACCGCCGCGCGCGGGATCACTCACGGCATGGACGGAGCTGTACAAGTAGCTGG TGGGAGTTCGTGACCGCCCGCCGGGGATCACTCACCCGGCATGGAGCGGAGCTGTACAAGTAGCTGGC TGGGAGTTCGTGACCGGCCGGGGGATCACTCACGGCATGGACGGAGCTGTAGAAGTAGCTGGC TGGGAGTTCGTGACCGGCCGGGGGATCACTCACGGGCATGGAGCGGAGCTGTAGCTAGC	AAAGCTTTCGTTCGTATCATCGGTTTCGGTTCGTTCGTTC
Consensus NP_AtGH3.4:AtGH3.4:GFP:HygR AtGH3.4_1 AtGH3.4_3 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7	Consensus NP_AtGH3.4:AtGH3.4cds:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_3 AtGH3.4_5 AtGH3.4_5 AtGH3.4_6 AtGH3.4_7 AtGH3.4_7 AtGH3.4_7	Consensus NP AtGH3.4:AtGH3.4:GFP:HygR AtGH3.4_1 AtGH3.4_2 AtGH3.4_5 AtGH3.4_5 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_7 AtGH3.4_8	Consensus NP_AtGH3.4:AtGH3.4:GFP:HygR AtGH3.4_1 AtGH3.4_3 AtGH3.4_3 AtGH3.4_5 AtGH3.4_5 AtGH3.4_5 AtGH3.4_7 AtGH3.4_7 AtGH3.4_7	Consensus NP AtGH3.4:AtGH3.4:GFP:HygR AtGH3.4_1 AtGH3.4_3 AtGH3.4_5 AtGH3.4_5 AtGH3.4_6 AtGH3.4_6 AtGH3.4_7 AtGH3.4_8

Attachment 17. Sequence alignment of pNAtGH3.4:AtGH3.4cdr-GFP with a fragment of GFP coding region resulting from the sequencing and confirming the correctness of assembly (part 2).
Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1	TTCAGAAACAGACCATTCAACAAGTACAACGTCTACACTAGCCCTGACCAGACCATTCTT TTCAGAAACAGACCATTCAACAAGTACAACGTCTACACTAGCCCTGACCAGACCATTCTT	7200 7200 5193
AtGH3.17_2 AtGH3.17_3		4040 3904
AtGH3.17_5 AtGH3.17_5 AtGH3.17_6	CCTGACCAGACCATTCTT	18
AtGH3.17_7 AtGH3.17_8		
Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17 1	TGTCAAGACAGCAAGCAGAGCATGTACTGTCAGCTTCTCTGCGGTCTAGTACAGCGATCT TGTCAAGACAGCAAGCAGGAGCATGTACTGTCAGCTTCTCTGCGGTCTAGTACAGCGATCT	7260 7260 5253
AtGH3.17_2		4100
AtGH3.17_4 AtGH3.17_5 AtGH3.17_6	TGTCAAGACAGCAAGCAAGCATGTACTGTCAGCTTCTCTGCGGTCTAGTACAGCGATCT TGTCAAGACAGCAAGCAAGCATGTACTGTCAGCTTCTCTGCGGTCTAGTACAGCGATCT	297 78
AtGH3.17_7 AtGH3.17_8		
Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1	CATGTCCTAAGAGTCGGAGCTGTCTTTGCCTCTGCCTTTCTTCGAGCAGTCAAGTTCTTG CATGTCCTAAGAGTCGGAGCTGTCTTTGCCTCTGCCTTTCTTCGAGCAGTCAAGTTCTTG	7320 7320 5313
AtGH3.17_2 AtGH3.17 3		4160 4024
AtGH3.17_4 AtGH3.17_5 AtGH3.17_6	CATGTCCTAAGAGTCGGAGCTGTCTTTGCCTCTGCCTTTCTTCGAGCAGTCAAGTTCTTG CATGTCCTAAGAGTCGGAGCTGTCTTTGCCTCTGCCTTTCTTCGAGCAGTCAAGTTCTTG	357 138
AtGH3.17_7 AtGH3.17_8		
Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17 1	GAGGATCATTACAAAGAGCTTTGCGCTGACATTAGAACCGGTACTGTCACTAGCTGGATC GAGGATCATTACAAAGAGCTTTGCGCTGACATTAGAACCGGTACTGTCACTAGCTGGATC	7380 7380 5373
AtGH3.17_2 AtGH3.17_3		4220 4984
AtGH3.17_4 AtGH3.17_5	GAGGATCATTACAAAGAGCTTTGCGCTGACATTAGAACCGGTACTGTCACTAGCTGGATC GAGGATCATTACAAAGAGCTTTGCGCTGACATTAGAACCGGTACTGTCACTAGCTGGATC	417 198
AtGH3.17_7 AtGH3.17_7 AtGH3.17_8		
Concentration		7440
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1	ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATG6CCCAAATCAAGAATTG	7440 7440 5433
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3	ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCCAAATCAAGAATTG	7440 7440 5433 4280 4144
Consensas pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_5	ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCCAAATCAAGAATTG	7440 7440 5433 4280 4144 477 258
Consensas pNAcGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8	ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCCAAATCAAGAATTG	7440 7440 5433 4280 4144 477 258
Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17 1	ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG GCTGATGAAATTGAGAGTGAGTGCGCTGAAAAGTCGTGGGAAGGAA	7440 5433 4280 4144 477 258 7500 7500 5493
Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_5 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_3	ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG GCTGATGAAATTGAGAGTGAGTGCGCCGAAAAGTCGTGGGAAGGAA	7440 7440 5433 4280 4144 477 258 7500 7500 7500 5493 4340 4340
Consensus pMAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_5 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pMAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_3 AtGH3.17_5 AtGH3.17_5 AtGH3.17_5	ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGAGTGCGCTGAAAAGTCGTGGGAAGGAA	7449 7449 5433 4280 4144 477 258 7500 7500 7500 7500 5493 4340 4204 537 318
Consensus pMAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pMAtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8	ACTGACTCATCCTGCAGAGACTCCGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGACTCCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGAGCTGGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG GCTGATGAAATTGAGAGTGAGTGCGCTGAAAAGTCGTGGGAAGGAA	7440 7440 5433 4280 4144 477 258 7500 7500 7500 7500 5493 4340 4204 537 318
Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_5 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7	ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGAGCTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG GCTGATGAAATTGAGAGTGAGTGCGCTGAAAAGTCGTGGGAAGGAA	7440 7440 5433 4280 4144 477 258 7500 7500 5493 4340 4204 537 318 7560 7560 7560 7560
Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_5 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_2 AtGH3.17_5 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_1 AtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_2 AtGH3.17_1 AtGH3.17_2	ACTGACTCATCCTGCAGAGACTCCGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGACTCCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGACTCCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGAGTGCGCTGAAAAGTCGTGGGAAGGAA	7440 7440 5433 4280 4144 477 258 7500 7500 5493 4340 4204 537 318 7560 7560 5553 4400
Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_2 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_2 AtGH3.17_2 AtGH3.17_5 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_2 AtGH3.17_2 AtGH3.17_3 AtGH3.17_3 AtGH3.17_4	ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGAGCTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG GCTGATGAAATTGAGAGTGAGTGCGCTGAAAAGTCGTGGGAAGGAA	7440 7440 5433 4280 4144 477 258 7500 7500 7500 7500 5493 4340 4204 537 318 7560 7560 7560 7560 5553 4400 4264 597
Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_3 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_2 AtGH3.17_5 AtGH3.17_3 AtGH3.17_5 AtGH3.17_5 AtGH3.17_5 AtGH3.17_6	ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGAGCTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGAGTGCGCTGGAAAAGTCGTGGGAAGGAA	7440 7440 5433 4280 4144 477 258 7500 7500 5493 4340 4204 537 318 7560 7560 7560 7560 7560 7560 7560 7560
Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_2 AtGH3.17_2 AtGH3.17_3 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_5 AtGH3.17_6 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8	ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGAGCTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGAGTGCGCTGAAAAGTCGTGGGAAGGAA	7440 7440 5433 4280 4144 477 258 7500 7500 5493 4340 4204 537 318 7560 7560 7560 7560 7560 7560 7560 7560
Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_3 AtGH3.17_3 AtGH3.17_3 AtGH3.17_7 AtGH3.17_6 AtGH3.17_7 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_6 AtGH3.17_7 AtGH3	ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGAGCTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG GCTGATGAAATTGAGAGTGAGTGCGCTGAAAAGTCGTGGGAAGGAA	7440 7440 5433 4280 4144 477 258 7500 7500 7500 7500 5493 4340 4204 537 318 7560 7560 7560 7560 5553 4400 4264 597 378 7620 7620 7620 5613
Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_1 AtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_3 AtGH3.17_3 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_5 AtGH3.17_6 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_2 AtGH3.17_3	ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGAGCTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGAGTGCGCTGAAAAGTCGTGGGAAGGAA	7440 7440 5433 4280 4144 477 258 7500 7500 7500 7500 5493 4340 4204 537 318 7560 7560 7560 7560 7560 7560 7560 7560
Consensus pMAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pMAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_5 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pMAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_2 AtGH3.17_3 AtGH3.17_5 AtGH3.17_4 AtGH3.17_5 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_1 AtGH3.17_1 AtGH3.17_1 AtGH3.17_1 AtGH3.17_1 AtGH3.17_1 AtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_3 AtGH3.17_3 AtGH3.17_3 AtGH3.17_3 AtGH3.17_3 AtGH3.17_4	ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGAGCTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGATGAAATTGAGAGTGAGTGCGCTGAAAAGTCGTGGGAAGGAA	7440 7440 5433 4280 4144 477 258 7500 7500 5493 4340 4204 537 318 7560 7560 5553 4300 5553 4300 5553 4400 4264 597 378 7620 7620 7620 7620 7620 7620 7620 7620
Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_2 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_3 AtGH3.17_5 AtGH3.17_6 AtGH3.17_5 AtGH3.17_7 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_1 AtGH3.17_1 AtGH3.17_1 AtGH3.17_3 AtGH3.17_5 AtGH	ACTGACTCATCCTGCAGAGAGACTCGGTCTTGTCGATCCTTAATGGCCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGAGACTCGGTCTTGTCGATCCTTAATGGCCCAAATCAAGAATTG ACTGACTCATCCTGCAGAGAGTGCGGTCGGTAAAAGTCGTGGGAAGGAA	7440 7440 5433 4280 4144 477 258 7500 7500 5493 4340 4204 537 318 7560 7560 5553 4400 4204 5553 4400 4204 5553 4400 4264 597 378 7620 7620 7620 7620 7620 7620 7620 7620

Attachment 18. Sequence alignment of pNAtGH3.17:AtGH3.17cdr-GFP with a fragment of AtGH3.17 coding region resulting from the sequencing and confirming the correctness of assembly (part 1).

Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_5 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7	TGTTACTTTGGTATCAACCTTAATCCGTTGTGTGATCCTGCCGATGTTTCCTACACGCTT TGTTACTTTGGTATCAACCTTAATCCGTTGTGTGATCCTGCCGATGTTTCCTACACGCTT TGTTACTTTGGTATCAACCTTAATCCGTTGTGTGATCCTGCCGATGTTTCCTACACGCTT TGTTACTTTGGTATCAACCTTAATCCGTTGTGTGATCCTGCCGATGTTTCCTACACGCTT CTTCCTAACATGGCTTACTTCGAGTTCTTGCCCGTCGACGACAAATCCCACGAAGAGATT CTTCCTAACATGGCTTACTTCGAGTTCTTGCCCGTCGACGACAAATCCCACGAAGAGAGATT CTTCCTAACATGGCTTACTTCGAGTTCTTGCCCGTCGACGACAAATCCCACGAAGAGAGATT CTTCCTAACATGGCTTACTTCGAGTTCTTGCCCGTCGACGACAAATCCCACGAAGAGAGATT	7680 7680 5673 4520 4384 717 498 7740 7740 5733 4580 4444 777 558
AtGH3.17_8		
Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_8	CACTTTGCAACTCACTCCAACACCGATGATGATGATGATGCTCTCAAGGAAGATCTCATC CACTTTGCAACTCACTCCAACACCGATGATGATGATGATGCTCTCAAGGAAGATCTCATC CACTTTGCAACTCACTCCAACACCGATGATGATGATGATGCTCTCAAGGAAGATCTCATC CACTTTGCAACTCACTCCAACACCGATGATGATGATGATGCTCTCAAGGAAGATCTCATC	7800 7800 5793 4640 4504 837 618
Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7	GTCAATCTTGTTAATGTCGAAGTCGGTCAATACTACGAAATCGTCATCACTACATTCACA GTCAATCTTGTTAATGTCGAAGTCGGTCAATACTACGAAATCGTCATCACTACATTCACA GTCAATCTTGTTAATGTCGAAGTCGGTCAATACTACGAAATCGTCATCACTACATTCACA GTCAATCTTGTTAATGTCGAAGTCGGTCAATACTACGAAATCGTCATCACTACATTCACA	7860 7860 5853 4700 4564 897 678
AtGH3.17_8 Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_8	GGTCAGTGACTCTCTATACGAACACAATCTAGGTCTGATGTGGATTCCTAAAACGGATAG GGTCAGTGACTCTCTATACGAACACAATCTAGGTCTGATGTGGATTCCTAAAACGGATAG GGTCAGTGACTCTCTATACGAACACAATCTAGGTCTGATGTGGATTCCTAAAACGGATAG GGTCAGTGACTCTCTATACGAACACAATCTAGGTCTGATGTGGATTCCTAAAACGGATAG	7920 7920 5913 4760 4624 957 738
Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_8	TAACTTGTAGCACAAGTGACCTGTTACATATGTTTTTGTCAATAGGTTTGTACAGATACA TAACTTGTAGCACAAGTGACCTGTTACATATGTTTTTGTCAATAGGTTTGTACAGATACA TAACTTGTAGCACAAGTGACCTGTTACATAT	7980 7980 5973 4820 4684 1017 798
Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8	GAGTAGGCGATATTCTAAAAGTGACGGGTTTCCACAACAAAGCGCCTCAATTCCGTTTCG GAGTAGGCGATATTCTAAAAGTGACGGGTTTCCACAACAAAGCGCCTCAATTCCGTTTCG GAGTAGGCGATATTCTAAAAGTGACGGGTTTCCACAACAAAGCGCCTCAATTCCGTTTCG	8040 8040 6033 4880 4744 1077 858

Attachment 19. Sequence alignment of pNAtGH3.17:AtGH3.17cdr-GFP with a fragment of AtGH3.17 coding region resulting from the sequencing and confirming the correctness of assembly (part 2).

Consensus		8766
NA+6H3 17:A+6H3 17cdo-6ED	ATCOSCOSCOSCTOCAATOSTSAGCAAGOGCGAGGAGCTGTTCACCOGGGTGGTGCCCAT	8788
ALCUS 47 4		6602
ACOID 17_1		0055
Aton5.1/_2		5540
AtGH3.17_3		5404
AtGH3.17_4		1737
AtGH3.17 5		1518
AtGH3.17 6		
AtGH3.17 7		
4+6H3 17 8		
Concentration	CETAGTEGAGETGGAEGGAEGAEGAEGAEGAEGAEGAEGAEGAEGAEGAEGA	2760
NAVOUS AS AVOUS AS A COS		0700
pNAtons.1/:Atons.1/cor-orP	CETGGTCGAGETGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGA	6/00
AtGH3.1/_1		6/53
AtGH3.17_2		5600
AtGH3.17_3		5464
AtGH3.17_4		1797
AtGH3.17 5		1578
AtGH3.17 6	TCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGA	55
AtGH3.17 7		
A+6H3 17 8		
C	SSSCSATSCCACCTACSSCAASCTGACCCTGAASCTCATCTSCACCACCSSCAASCTSCC	9930
LUNSERSUS	CODECATOCACCTACCOCAACCTCACCCTCAACTTCATCTCCACCCCCCAACCTCCC	0020
pNAton3.1/:Aton3.1/cdr-orP	GOOCGATOCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCC	6626
AtGH3.17_1		6813
AtGH3.17_2		5660
AtGH3.17_3		5524
AtGH3.17 4		1857
AtGH3.17 5		1638
AtGH3.17 6	666CGAT6CCACCTAC66CAA6CT6ACCCT6AA6TTCATCT6CACCACC66CAA6CT6CC	115
A+6H3 17 7		
A+6H3 17 8		
Acolo.17_5		
C	CREASE CONCERNMENT OF CONCERNMENT OF CONCERNMENT OF CONCERNMENT	0000
Lonsensus	Condecendecenderente and accalente accine added to caller the addedentation	0000
MALEUR AR ALCUR AR L COR.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
pNAtGH3.17:AtGH3.17cdr-GFP	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA	8880
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA	8880 6873
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA	8880 6873 5720
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA	8880 6873 5720 5584
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA	8880 6873 5720 5584 1917
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA	8880 6873 5720 5584 1917 1698
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA	8880 6873 5720 5584 1917 1698 175
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA	8880 6873 5720 5584 1917 1698 175
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA	8880 6873 5720 5584 1917 1698 175
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA	8880 6873 5720 5584 1917 1698 175
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_8		8880 6873 5720 5584 1917 1698 175
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA	8880 6873 5720 5584 1917 1698 175 8940
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17:AtGH3.17cdr-GFP	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CCCCGACCACGACGACCCCCGGACCTCCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA	8880 6873 5720 5584 1917 1698 175 8940 8940
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_3 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCCTA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA	8880 6873 5720 5584 1917 1698 175 8940 8940 6933
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA	8880 6873 5720 5584 1917 1698 175 8940 8940 8940 6933 5780
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCCTA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA	8880 6873 5720 5584 1917 1698 175 8940 8940 6933 5780 5644
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA	8880 6873 5720 5584 1917 1698 175 8940 8940 6933 5780 5644 1977
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA	8880 6873 5720 5584 1917 1698 175 8940 8940 8940 6933 5780 5647 1758
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_2 AtGH3.17_3 AtGH3.17_5 AtGH3.17_5 AtGH3.17_6	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA	8880 6873 5720 5584 1917 1698 175 8940 8940 8940 6933 5780 5644 1977 1758 235
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_3 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_5 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA	8880 6873 5720 5584 1917 1698 175 8940 8940 6933 5780 5644 1977 1758 235
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_3 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCCTA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA	8880 6873 5720 5584 1917 1698 175 8940 8940 6933 5780 5644 1977 1758 235
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA	8880 6873 5720 5584 1917 1698 175 8940 8940 6933 5780 5644 1977 1758 235
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_3 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_5 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA	8880 6873 5720 5584 1917 1698 175 8940 8940 6933 5780 5644 1977 1758 235
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_5 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_8	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACGACGACGACGCCATGCCCGCAAGGCTACGTCCA	8880 6873 5720 5584 1917 1698 175 8940 8940 8940 6933 5780 5644 1977 1758 235
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_3 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_5 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17:AtGH3.17cdr-GFP	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA GGAGCGCACCATCTTCTTCAAGGACGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTT GGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTT	8880 6873 5720 5584 1917 1698 175 8940 8940 6933 5780 5644 1977 1758 235 9000 9000
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_5 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_8	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACGACTTCTTCAAGTCCGCCCATGCCCGAAGGCTACGTCCA GGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTT GGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTT	8880 6873 5720 5584 1917 1698 175 8940 8940 6933 5780 5644 1977 1758 235 9000 9000 9000 9000
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_3 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_1 AtGH3.17_2	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CCCCGACCACATGAAGCAGCACGACCTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA GGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTT GGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTT	8880 6873 5720 5584 1917 1698 175 8940 8940 6933 5780 5644 1977 1758 235 9000 9000 6993 5840
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_5 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_3 AtGH3.17_3 AtGH3.17_3 AtGH3.17_1 AtGH3.17_1 AtGH3.17_1 AtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_3	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CCCCGACCACATGAAGCAGCACGACCTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA GGAGCGCACCATGTCTTCTCAAGGACGACGACGCAACTACAAGACCCGCGCCGAAGGCTACGTCCA	8880 6873 5720 5584 1917 1698 175 8940 8940 6933 5784 1977 1758 235 9000 9000 9000 9000 9000 9000 9000 90
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_7 AtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17;AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_2 AtGH3.17_3 AtGH3.17_3 AtGH3.17_4	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA GGAGCGCACCACTTCTTCAAGGACGACGACGGCAACTACAAGACCCGCGCCGAAGGCTACGTCCA	8880 6873 5720 5584 1917 1698 175 8940 8940 8940 6933 5780 5644 1977 1758 235 9000 9000 9000 9000 9000 9000 9000 90
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_3 AtGH3.17_3 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCCATGCCCGAAGGCTACGTCCA GGAGCGCACCATGAAGCAGCACGACGACTTCTTCAAGTCCGCCCATGCCCGAAGGCTACGTCCA	8880 6873 5720 5584 1917 1698 175 8940 8940 6933 5780 5644 1977 1758 235 9000 9000 9000 9000 9000 5840 9000 9000 9000 9000 9000 9000 9000 9
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_5 AtGH3.17_5 AtGH3.17_5 AtGH3.17_5 AtGH3.17_5 AtGH3.17_5 AtGH3.17_6	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CCCCGACCACATGAAGCAGCACGACCTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACGCTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA GGAGCGCACCACTTCTTCTCAAGGACGACGACGCAACTACAAGACCCGCGCGAAGGCTACGTCCA GGAGCGCACCATCTTCTTCAAGGACGACGACGACACTACAAGACCCGCGCGAGGTGAAGTT GGAGCGCACCATCTTCTTCAAGGACGACGACGACACTACAAGACCCGCGCGAGGTGAAGTT	8880 6873 5720 5584 1917 1698 175 8940 8940 8940 6933 5780 5644 1977 1758 235 9880 99800 99800 6993 5840 5784 2037 1818 295
pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_7 AtGH3.17_8 Consensus pNAtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_1 AtGH3.17_1 AtGH3.17_1 AtGH3.17_2 AtGH3.17_2 AtGH3.17_3 AtGH3.17_2 AtGH3.17_3 AtGH3.17_2 AtGH3.17_3 AtGH3.17_3 AtGH3.17_3 AtGH3.17_5 AtGH3.17_5 AtGH3.17_5 AtGH3.17_5 AtGH3.17_6 AtGH3.17_6 AtGH3.17_6 AtGH3.17_7	CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA GGAGCGCACCACTTCTTCAAGGACGACGACGCAACTACAAGACCCGCGCGAGGTGAAGTT GGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTT GGAGCGCACCATCTTCTTCAAGGACGACGACGGCAACTACAAGACCCGCGCGCG	8880 6873 5720 5584 1917 1698 175 8940 8940 6933 5780 5644 1977 1758 235 9000 9000 9000 9000 9000 9000 9000 90

Attachment 20. Sequence alignment of pNAtGH3.17:AtGH3.17cdr-GFP with a fragment of GFP coding region resulting from the sequencing and confirming the correctness of assembly (part 1).

Consensus pNAtGH3.17:AtGH3.17cdr-GFP AtGH3.17_1 AtGH3.17_2 AtGH3.17_3 AtGH3.17_4 AtGH3.17_5 AtGH3.17_6 AtGH3.17_7 AtGH3.17_8	CGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGG CGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGG 	9060 9060 7053 5900 5764 2097 1878 355
Consensus	CAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGC	9120
pNAtGH3.17:AtGH3.17cdr-GFP	CAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGC	9120
4+6H3 17 1		7113
A+GH3 17 2		5968
A+6H3 17 3		5824
A+6H3 17 4		2157
A+6H3 17 5		1938
A+6H3 17 6	CAACATCCT6666CACAA6CT66A6TACAACTACAACA6CCACAAC6TCTATATCAT66C	415
AtGH3 17 7		410
AcGH3 17 8		
Acaro: 17_0		
Consensus	CGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGG	9180
pNAtuns.1/:Atuns.1/cdr-urP	COACAAOCAOAAOAACOOCATCAAOOTOAACTTCAAOATCCOCCACAACATCOAOOACOO	9166
At0H3.1/_1		/1/3
At0H3.1/_2		6020
AtgH3.17_3		5884
AtGH3.17_4		221/
AtGH3.17_5		1998
AtGH3.17_6	CGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGG	475
AtGH3.17_7		
AtGH3.17_8		
Consensus	CAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCCATCGGCGACGGCCCCGTGCT	9248
pNAtGH3.17:AtGH3.17cdr-GFP	CAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCT	9240
AtGH3.17_1		7233
AtGH3.17_2		6888
AtGH3.17_3		5944
AtGH3.17_4		2277
AtGH3.17_5		2058
AtGH3.17_6	CAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCCATCGGCGACGGCCCCGTGCT	535
AtGH3.17_7	GGCGACGGCCCCGTGCT	17
AtGH3.17_8		
Consensus pNAtGH3.17:AtGH3.17cdr-GFP	GETGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAA GCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCCAACGAGAA	9300 9300
AtGH3.17_1		7293
AtGH3.17_2		6140
AtGH3.17 3		6004
AtGH3.17 4		2337
AtGH3.17 5		2118
AtGH3.17 6	GCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCCAACGAGAA	595
AtGH3.17 7	GCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCCAACGAGAA	77
AtGH3.17_8		

Attachment 21. . Sequence alignment of pNAtGH3.17:AtGH3.17cdr-GFP with a fragment of GFP coding region resulting from the sequencing and confirming the correctness of assembly (part 2).