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Introduction
Synchronous reluctance motor (SynRM) is known since the first half of 20th century
[Kos23]. Thanks to technological advances in the design of SynRM rotors, which
greatly enhanced machine performance, more and more attention is started to be
paid to SynRM. The most notable advantages of this technology are:

• SynRM can achieve around 10% to 15% larger rated torque for a given frame
size in comparison to an AC induction machine (ACIM) [BP08].

• Very low production cost because the assembly of laminated rotor topology is
quite simple and requires no costly permanent magnets [MDD+22].

• There are no Joule losses in the rotor of SynRM. Resulting lower operation
temperature has many benefits, like, for example, longer life of ball-bearings
and reduced thermal requirements for lubricants [RFC10].

• There is no risk of permanent magnet demagnetization due to heat like in the
case of permanent magnet synchronous machine (PMSM).

• Constant power region during field weakening can be theoretically extended
to infinite speed because there is no permanent magnet flux to suppress.

It can be expected, that the low maintenance, production, and operation cost of
SynRM will make it popular in cost-sensitive inverter-based applications like pumps,
fans, or HVACs [BP08]. To fully exploit this potential, great attention is currently
being paid to the development of power-optimal sensorless control algorithms for
SynRM, which would minimize necessary operation input power and remove a need
for expensive rotor position and speed sensor. The main complications of its power-
efficient sensorless control are the major non-linearities of SynRM, specifically the
magnetic saturation phenomenon and the core losses.
Power-optimal control is also the topic of this thesis, or more precisely, a proposal

of sensorless state and parameter observer necessary to build such application. In
its core, this thesis presents three key algorithms:

• An observer based on the extended Kalman filter combining independent mea-
surements and models to achieve redundancy in rotor position information.

• Novel low-cost current derivative measurement method.

• Pulse-width modulation technique with improved power efficiency.

As will be shown by both simulations and experiments, these algorithms offer sev-
eral attractive features, like full-speed operation range, improved efficiency, and the
machine rotor and position information redundancy, which can be used to estimate
additional machine states and parameters (this thesis shows an example with stator
resistance estimation).
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1. SynRM Model and Properties
The goal of this chapter is to introduce the SynRM non-linear system model and
properties to show challenges related to its optimal control and to serve as a foun-
dation for later chapters of this thesis.

1.1. Mathematical Model

The stator of SynRM is identical to a standard AC induction machine. The rotor,
however, contains no windings or permanent magnets. It is constructed so the
highest possible difference in magnetic reluctance is achieved between the rotor axes
(and thus stator inductance as well). The rotor and stator always have the same
number of pole pairs. When such a rotor is exposed to a rotating magnetic field,
a torque is produced, because the most magnetically conductive rotor axis tries to
align itself with the vector of the stator magnetic field. Such alignment achieves a
minimal magnetic flux density in the air gap and with it a minimal energy state of
the magnetic field.
Figure 1.1 depicts the typical construction topologies of the four-pole SynRM

rotor. The most widespread rotor topology today is the transversally-laminated
rotor as shown in Figure 1.1c. These rotors offer a relatively good balance between
production cost and the maximal achievable torque [Kol10,ODM15].

Figure 1.1: Rotor construction (a) with pronounced poles, (b) axially-laminated (c)
transversally-laminated [Kol10]

Clarke’s transformation will be used as the first step to obtain a sufficiently simple
SynRM mathematical mode. The stator phase voltage vector ~uabc = [ua, ub, uc]

T can
be transformed as

~uαβ =

[
uα

uβ

]

=
2

3

[
1 −1

2
−1

2

0
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3
2

−
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3
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]

~uabc = Tabc
αβ ~uabc, (1.1)

where ~uαβ is the stator voltage vector in αβ coordinate system and Tabc
αβ is Clarke’s

transformation matrix. The 2
3
coefficient in equation (1.1) was added to normalize

amplitudes of quantities in αβ coordinate system with phase quantities [CČerný10].
Further model simplification can be achieved via Park’s transformation, which

converts quantities from the two-phase stationary αβ to the two-phase rotating dq

5



coordinate system. The d axis is usually referred to as the direct axis and the q axis
as the quadrature axis. The SynRM stator voltage vector can be written as

~udq =

[
ud

uq

]

= Tαβ
dq (θe)

[
uα

uβ

]

=

[
cosθe sinθe

−sinθe cosθe

]

~uαβ, (1.2)

where ~udq is the stator voltage vector in dq coordinate system, θe is the rotation
angle, and Tαβ

dq (θe) is the Park’s transformation matrix.
The electrical angle θe is chosen with regard to the simplicity of the resulting

mathematical model. In this work, similarly to majority of literature, alignment of
d-axis with the maximal inductance axis will be used [CČerný10, ITDO06].
The stator voltage in stationary reference frame can be described by equation

~uαβ = Rs
~iαβ + d~Ψαβ/dt, (1.3)

where Rs is stator winding resistance, ~iαβ = [iα, iβ]T is stator current vector and
~Ψαβ = [Ψα, Ψβ]T is stator magnetic flux vector in αβ reference frame. Equation
(1.3) can be expressed in rotating reference frame as

~udq = Rs
~idq + ωe

[
0 −1
1 0

]
~Ψdq +

d
dt

~Ψdq = Rs
~idq + ωeZ~Ψdq +

d
dt

~Ψdq, (1.4)

where ωe = dθe/dt is synchronous electrical speed, Z is π/2 rotation angle matrix,
~idq = [id, iq]

T is stator current vector, and ~Ψdq = [Ψd, Ψq]
T is magnetic flux vector.

One of the SynRM disadvantages, which complicate its control, is non-linearity
of the magnetic circuit, which saturates even with nominal currents. An ideal direct
axis flux is depicted in Figure 1.2a and the real saturating flux in Figure 1.2b.

Figure 1.2: Stator magnetic flux a) with and b) without saturation [ITDO06]

The stator magnetic flux considering the saturation effect can be described as

~Ψdq =

[
Ld (id) 0

0 Lq (iq)

]
~idq = L~idq, (1.5)

where L is the static inductance matrix, Ld (id) is the static inductance in the
direct axis, and Lq (iq) in the quadrature axis. Static inductances are given by the
ratio between the magnetic flux and the current amplitudes. To accurately describe
dynamic events, the dynamic inductances L

′

d(id) and L
′

q(iq), which can be interpreted
as tangent to flux characteristics in the operation point, can be introduced into the
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Figure 1.3: The SynRM model with core losses in a) direct and b) quadratic axis

model [ITDO06, XXLN91]. Note that from now on, both the static and dynamic
inductances will be stated without their explicit current dependency.
The SynRM machine core-losses PFe were neglected up until this moment. These

are formed by magnetization as hysteresis losses and represent the second most
significant losses after the Joule losses. The PFe are usually modelled using the
resistance Rc. The resulting SynRM model is shown in Figure 1.3. It can be noticed
that the measured current ~idq is now divided into loss current ~idqc = [idc, iqc]

T and
flux-producing current ~idq0 = [id0, iq0]

T. Only the steady-state was considered to
obtain a simple model, which can be afforded if the SynRM is used in low-dynamic
applications. The inclusion of core loss resistance Rc into the model benefits the
accuracy of found solution. The voltage equations (1.4) can be rewritten as

~udq = Rs
~idq0 + L

′ d
dt

~idq0 + ωe

(

1 +
Rs

Rc

)

LZ~idq0, (1.6)

where L
′
is the dynamic inductance matrix [IKK+09,KS96,XXLN91].

Electrical torque applied to the machine shaft can be calculated as

Te =
3

2
Pp(~Ψdq ×~idq0) =

3

4
Pp(Ld − Lq)Im0 sin 2θI0, (1.7)

where Pp is the number of pole pairs. It can be seen that the difference between d
and q axis inductances is critical for achieving high torque.
To make the mathematical model complete, the mechanical equation

dωm

dt
=

1

J

[
Te − Tl − B1ωm − sign(ωm)B2ω

2
m

]
(1.8)

is introduced, where ωm = ωe/Pp is mechanical rotor speed, J is the moment of
inertia, Tl is the loading torque, B1 is internal machine viscous friction coefficient
and B2 is a ventilator mechanical loss coefficient. The rotor electrical position is

θe =

∫
ωedt. (1.9)

In summary, the final mathematical model of SynRM, including magnetic saturation
and core losses, is formed by equations (1.6), (1.8), and (1.9) [CČerný10].
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1.2. Parameters of Real SynRM Machine

This section will be discussing the offline-measured parameters of real SynRM with
the goal to highlight the extent of parameter non-linearities of real machine. The
investigated machine is 550 W SynRM with transversally-laminated rotor (as shown
in Figure 1.1c) from the KSB manufacturer. It was also used as reference machine in
this thesis. Its basic parameters are listed in Table 1.1 and in Figure 1.4. The stator
resistance Rs was measured using the RLC meter and the mechanical parameters J
and B were acquired from step dynamic response.

Table 1.1: Reference SynRM parameters
Quantity Value Unit

Pnom 550 W
Nnom 1500 rpm
Unom 350 Vrms
Inom 1.6 Arms
Pp 2 -
Rs 9.68 Ω
J 1.64 ∙ 10−3 kg ∙m2

B 1.96 ∙ 10−3 Nm ∙ s/rad Figure 1.4: Reference SynRM label

The stator inductances were acquired using locked-rotor offline measurement, a
simple stator flux model (1.3), and multi-linear regression method (MLR) [BCP16].
The acquired static inductances are in Figure 1.5 and Figure 1.6. The Ld is sev-
eral times higher than Lq and also saturates at much higher currents. This was
expected because the d rotor axis is in majority formed by iron, while the q axis
is air-dominant. The q axis path, therefore, saturated with a small current (see
Figure 1.6, where the Lq drops to 25 % when |iq| > 0.5 A). Some published SynRM
control algorithms consider Lq to be constant for simplicity [HKS99,KSG+14]. The
measurement shows that this simplification is true only with sufficient stator current
amplitude. Figure 1.5 shows that the Ld drops by one-third at nominal stator cur-
rent Inom. This effect cannot be neglected for efficiency-optimal sensorless SynRM
control. In comparison, the cross-saturation effect is relatively negligible.
The core-loss modelling resistance Rc characteristics in Figure 1.7 was acquired

from core power loss estimation, which was determined as a difference between the
measured machine input electrical power, output mechanical power, estimated Joule
losses, and internal mechanical stator losses. Note that the missing map area for
high speed and flux products could not be measured due to stator voltage limitation.
The SynRM model equation (1.6) is impacted by the ratio between Rc and Rs. It
can be noticed that Rc can differ significantly based on the actual operating point,
however, in general, the Rc is several hundred times higher than stator resistance
Rs for all measured operation points. It can, therefore, be assumed, that accurate
modelling of the non-linearity caused by saturation is going to have a higher impact
on SynRM model accuracy than core losses.
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Figure 1.5: Direct axis static inductance Ld dependency on stator current ~idq

Figure 1.6: Quadrature axis static inductance Lq dependency on stator current ~idq

Figure 1.7: Resistance Rc dependency on stator flux |~Ψdq| and the speed Nm
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2. SynRM Sensorless Control
This thesis focuses on field-oriented control algorithms, which are very similar to the
FOC of the interior permanent magnet synchronous motors [XXLN91]. As shown
in Chapter 1, the harmonic voltages, currents, and fluxes within the rotor-aligned
dq-axis frame are turned into DC quantities, which allows the FOC to control the
machine stator flux and rotor torque by controlling dq-axis stator currents ~idq to

~ireqdq =

[
ireqd

ireqq

]

= Ireqm

[
cos θreqI

sin θreqI

]

, (2.1)

where Ireqm is the amplitude and θreqI is the angle of stator current reference. As will
be discussed later, the θreqI angle directly affects the efficiency of SynRM operation.
High-level block diagram of the most common form of the FOC algorithm is

shown in Figure 2.1. The stator current control loops are often based on direct
and quadrature axis current PI-type controllers. The stator current references ~ireqdq

are then set by the outer control loop or loops, which reflect the type of targeted
application (e.g. whether the goal is the speed, position, or torque control).

Figure 2.1: Generic block diagram of SynRM sensorless vector control

Such a PID-based cascaded control structure allows to build a high-performing
drive system. That being said, alternatives are being proposed to bring further
improvements. For example, the topic of model-based predictive control has been
gaining attention in recent years, mainly because it allows straightforward and easy
to understand tuning and constraint handling [Myn15,MVV16,VM17]. These meth-
ods are adopted slowly by industry mainly due to increased computational demands.
The stator voltages ~uαβ are translated to phase duty-cycle control signals ~Dabc

and then applied to the machine using the Voltage Source Inverter (VSI) power
stage. A generic block diagram of three-phase VSI is shown in Figure 2.2. Number
of methods for obtaining the inverter control signals AT, AB, BT, BB, CT, and
CB exist [KC17]. A very common is the standard Space Vector Modulation (SVM),
which principle is depicted in Figure 2.3. The two-state VSI can generate six active
voltage vectors v1, v2, v3, v4, v5, and v6 and two zero voltage vectors v0 and v7.
Their selection and calculation of their durations Tv0 up to Tv7 during the PWM
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period TPWM depends on the voltage vector ~uαβ and corresponding SVM sector. An
example of the centre-aligned PWM (CAPWM) scheme is shown in Figure 2.4.

Figure 2.2: Block diagram of generic three-phase Voltage Source Inverter

Figure 2.3: Standard space vector modulation voltage generation [MVB21]

The rotor speed ωe and especially the rotor position θe are critical for FOC.
Both could be measured using a sensor. The drive realization without such sensor,
however, leads to lower cost and improvement in reliability. This, together with
the increasing capabilities of computation technology, lead to the development of
sensorless algorithms, which can estimate these quantities. The SynRM sensorless
estimation algorithms can be classified based on the utilized physical principle:

• The first class of algorithms utilizes the extended back-electromotive force
(EEMF). These algorithms are using the machine model and require knowledge
of actual machine parameters. The amplitude of EEMF voltage increases with
the rotor speed and, therefore, these algorithms are suited for medium- to
high-speed regions [TH14, ITDO06,VPF96].
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Figure 2.4: Example of the centre-aligned PWM waveform

• The second class covers the rotor saliency-based algorithms. Some such al-
gorithms rely on high-frequency signal injection (HFI) into the fundamental
control voltage or current. Demodulation of machine current then provides
the rotor position information. The injected signal frequency upper limit is
the inverter carrier PWM frequency and the bottom limit is given by the con-
trol algorithm frequency bandwidth (i.e. hundreds of Hertz to units of kHz).
Other saliency-based algorithms (e.g. the well-known INFORM method) rely
on excitation of stator currents by the fundamental phase PWM waveforms,
but due to worse signal-to-noise ratio, it is often necessary to employ special
current derivative measurement sensors. General advantage of all saliency-
based algorithms are their ability to operate at low-speed and usually no need
for exact knowledge of machine parameters [JSH+02,HNS17,NSS20].

• To exploit the advantages of both sensorless algorithm classes, hybrid algo-
rithms were developed. The saliency-based principle is then usually used at
a standstill and low speed and with the increasing speed, the estimation is
transitioned to EEMF-based algorithm [KSG+14,TH14].

The performance and stability of the sensorless algorithms may be affected due to
SynRM non-linearity, parameter spread from manufacturing, machine heating, and
wear and tear. This brings the topic of online parameter estimation and adaptivity.
A well-known approach is, for example, combination of the EEMF observer with
loop-up table (LUT) of offline-measured parameters or with the Recursive Least-
Square (RLS) online estimation algorithm [ITDO06,Tuo14,YAA09].
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3. Efficiency Optimization
The input electrical power Pin is distributed within SynRM into Joule power loss PCu

in the stator winding, core power loss PFe, internal mechanical power loss Pω, and
the mechanical output power applied to the shaft. When compared with a similar
IE4 induction machine, the overall Joule losses are comparable in size but are all
focused in the stator. The PFe and Pω losses are usually similar in size as well. To
give an idea of a typical SynRM nominal loss distribution, it was reported that for a
four-pole 2.2 kW SynRM with 90 % nominal efficiency, the Joule losses contributed
by 7.8 %, core losses by 1.7 %, and mechanical power losses by 0.5 % [JZL+19].
A SynRM electrical power loss minimization problem is performed via optimiza-

tion of the current angle θreqI (see Figure 2.1). There is always one power loss global
minimum. This can be seen in Figure 3.1, which was simulated for SynRM described
in Section 1.2. The two well-known criteria of SynRM power optimality:

• The first criterion is the Max Torque Per Ampere (MTPA), which lies in the
minimization of the stator current for a given torque, thus, minimizing Joule
losses PCu. The MTPA law can be expressed from torque equation (1.7) as

dTe/dθI = 0.75PpI
2
m(Ld − Lq) cos 2θI = 0 Nm/rad, (3.1)

where the optimal operating point θI corresponds to minimal current Im.
Equation (3.1) would suggest solution θI = π/4, however, the saturation effect
makes the trajectory non-linear. Because the torque is proportional to Ld−Lq

difference, it is beneficial to saturate the q-axis but avoid d-axis saturation,
always leading to current angle θI > π/4 (see Figure 3.2).

• The second criterion is the Maximum Efficiency (ME) operation, which min-
imizes both Joule losses PCu and core losses PFe. Inclusion of core losses
generally increases the optimal current angle (see Figure 3.2) because the core
losses PFe are decreasing with stator flux vector amplitude |~Ψdq|.

Beside the machine power losses, the inverter operation can be optimized as
well. Power losses in inverter semiconductors can be generally described as a sum
of conductive power losses Pcon and switching power losses Psw. For IGBT-based
VSI (shown in Figure 2.2), the overall losses increase with phase current amplitude
[Sem12,Sem14,RK20]. This moves the ME trajectory towards the MTPA curve, as
shown in Figure 3.2.
Power optimization algorithms in the literature can be classified into two groups:

• The first class are the Loss-Model Controllers (LMC), which are based on
knowledge of the machine parameters and power loss model. Typical prop-
erties of LMC algorithm are quick convergence at the cost of sensitivity to
machine parameter and model accuracy. Probably the most well-known LMC
algorithm is the constant θI = π/4 angle setup (i.e. MTPA rule for ideal
SynRM). When including the saturation effect, LMC algorithms become more
complex, often leading numerical solutions. An exception would be the often-
used look-up table (LUT) with offline-measured optimal trajectory of current
angle [QH13,YAA09,FZYJ20].

13



• The second class are the Search Controllers (SC), which involve an active
search of the optimal operating point based on the measured input power.
While the SC algorithms do not require previous knowledge of machine pa-
rameters, their convergence time is usually slower and their operation requires
a signal injection or operating point sweep, causing torque ripple and re-
lated small efficiency drops. Depending on the character of the injected sig-
nal, SC algorithms can be further classified into algorithms with a discrete
search step, continuous search, low-frequency injection, or high-frequency in-
jection [DTCB22,QH13,BPPS10]. A variant of the MTPA search controller
algorithm was also published as part of the research for this thesis. The DC
current injection in the stator reference frame was employed, which allowed
for algorithm simplification [Myn16].
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Figure 3.1: Simulated Joule losses PCu (black) and core losses PFe (grey) dependency
on current angle θI and load Tl
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4. Current State of SynRM
Power-optimal Control

The SC algorithms shown in Section 3 are working very well in applications where
the impact of change of current angle on the optimized quantity (i.e. stator current
for MTPA or input power for ME criterion) can be evaluated. This means systems
where load changes very slowly, often reaches prolonged states of steady-state, or
follows defined cycles (e.g. pumps or fans). Taking into account relatively low
computational demands and a natural adaptivity, the search-type algorithms were
found to be quite mature and likely to be preferred in any suitable application.
Therefore, these algorithms were not investigated further in this thesis.
The LMC algorithms can be used in a wider range of applications as they con-

verge quickly and without need of detecting feedback to injected signal. An accurate
solution can be obtained, however, such high performance has two conditions:

• Accurate machine parameters are provided to the LMC algorithm. The main
causes of the current angle error θerrI = θoptI − θ̂I are usually an inaccurate
model of stator inductances, temperature drift, or manufacturing deviances.

• The machine control algorithm is operated with an accurate rotor position
estimate θ̂e. The position estimation error θerre directly offsets the solution θ̂I

found by the LMC algorithm. This increases performance requirements for
position estimation algorithms (see Section 2), which are often also sensitive
to accuracy of machine model and parameters.

The above topics were chosen as the main focus of this thesis. Simulations
were done for the reference SynRM machine to evaluate sensitivity and necessary
performance of typical LMC and position estimation algorithms (see Section 4.1 and
Section 4.2). Finally, the exact goals of the thesis are summarized in Section 4.3.

4.1. Analysis of LMC Sensitivity to Machine Pa-
rameter and Position Errors

The sensitivity of machine power losses to position error θerrI = θerre was investigated
by simulating difference of Joule and iron power-losses Δ(PCu + PFe) to true ME
trajectory in reaction to the position error. The results are in Figure 4.1. As
expected, the power losses increase with position error, but the important outcome
is that rate is non-linear and almost exponential. For purpose of this thesis, it will
be further assumed that maximal steady-state |θerre | up to 7.5 degrees is acceptable
(corresponds roughly to one percent efficiency loss).
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Figure 4.1: Simulated increase in SynRM power losses Δ(PCu + PFe) versus the
position estimate error θerre at nominal speed

The second analysis investigated the sensitivity of the optimal LMC algorithm to
error in stator inductance characteristics. The LMC performance was simulated with
deformed characteristics L̂d = kdfd(id/kd, iq/kq) and L̂q = kqfq(id/kd, iq/kq) where
kd and kq are dimensionless coefficients. Note that cases where condition L̂q >

L̂d occurred were not considered as valid. The results of simulation for reference
SynRM running at nominal rotor speed Nm = 1500 rpm and a nominal rotor load
Tl = 3.5 Nm are in Figure 4.2. When comparing the error θerrI to reference point
kd = kq = 1, it can be seen that even for parameter errors around ±30 %, the
previously discussed limit of 7.5 degrees is not violated. Hence deviations up to
±30 % are going to be seen as acceptable in this thesis. Similar results were obtained
when simulating sensitivity to stator resistance estimate R̂s error.
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Figure 4.2: Simulated sensitivity of current angle θerrI of optimal LMC algorithm to
inaccuracy of inductance L̂d and L̂q parameters

16



4.2. Evaluation of Position Estimator Sensitivity
to Machine Parameter Error

The well-known combination of EEMF rotor position and RLS machine parameter
estimation algorithms from Section 2 was investigated to gain a general idea of their
machine parameter sensitivity. The EEMF observer, is mainly dependent on the
R̂s, L̂q, and L̂

′

d machine parameters, where the L̂
′

d does not affect the steady-state
performance. The simulated parameter sensitivity of the position estimate is in
Figure 4.3. The sensitivity to δRs is lower than to δLq because the stator winding
voltage drop is usually much smaller than the EMF voltage. In general, the overall
sensitivity is similar to the ideal LMC algorithm simulated in Section 4.1.
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Figure 4.3: Sensitivity of the position estimate error θ̂erre of EEMF observer to error
of inductance L̂q and resistance R̂s

The online RLS algorithm was run on a real SynRM machine at the speed Nm =
750 rpm, θI = π/4, and various loads to gain more realistic data. The experimental
results are shown in Figure 4.4. The L̂q and especially the R̂s estimates reach errors
in tens of percent, which is a similar performance as in the original EEMF and RLS
publication [ITDO06]. This indicates that a high parameter estimation accuracy,
which would safely ensure a small position estimation error θ̂erre (i.e. the ±30 %
limit), is not a trivial matter and requires special consideration.
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4.3. Goals of the Thesis

Based on the discussion in previous sections, it was determined that a rotor position
and motor parameter estimator, which would support the operation of the LMC
power-optimization algorithm should be pursued within this thesis. The desired
algorithm placed within the FOC block diagram is shown in Figure 4.5. As a
summary, the following traits should be achieved:

1. The steady-state position estimate error θerre should be below 7.5 degrees, but
as small as possible in general. This should be achieved in all load and speed
regions. It can be expected, that a robust adaptation to the change of the
inductances in both axes will be necessary.

2. The machine parameter estimates should be provided to other algorithms
within the FOC structure. This regards especially the stator inductances
because their acquisition is not a trivial matter. Accuracy within the ±30 %
range is acceptable, provided that position error θerre is not affected.

3. The convergence to the optimal θoptI operating point should not require signal
injection, which would limit the applicability of the algorithm. This is neces-
sary because the injection is the main limitation of SC algorithms, which are
otherwise preferable.

4. The algorithm should require no or inexpensive additional hardware.

Figure 4.5: Block diagram of desired sensorless estimation algorithm within FOC
structure
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5. Proposed Sensorless Adaptive
Estimation Method

This chapter presents algorithms, which were developed during research for this
thesis as an answer to goals defined in Chapter 4. The saliency-based algorithms
with a fundamental pulse width modulation (PWM) excitation and stator current
derivative measurement were found to be promising for further research. It was
shown by other authors that it is possible to simultaneously estimate stator induc-
tances, position, and speed [RSW19]. The research of this thesis, therefore, focused
on the further development of this idea. The block diagram of FOC with LMC-
type optimization and newly proposed algorithms (highlighted in grey colour) is in
Figure 5.1. The proposed algorithms are:

• The current derivative measurement method (see MC IDC and reluctance mea-
surement blocks in Figure 5.1). The method is described in Section 5.1.

• The alignment-swap PWM switching scheme. See details in Section 5.2.

• The extended Kalman filter utilizing measurement redundancy. Two variants
of this algorithm are presented and in Section 5.4.

Note that the core of the proposed method was already published, however, this
thesis presents a number of modifications [MVB21].

Figure 5.1: Block diagram of vector control using the proposed algorithm (newly
proposed elements in grey) [MVB21]
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5.1. Method of Obtaining Rotor Position from Cur-
rent Derivative Measurements

The SynRM inductances La, Lb, and Lc in motor phases N ∈ {a, b, c} are af-
fected by the rotor position θe. The VSI, as depicted in Figure 2.2, applies six
non-zero SVM voltage vectors vM = {v1, v2, v3, v4, v5, v6} for the duration T vM =
{Tv1, Tv2, Tv3, Tv4, Tv5, Tv6}. Example of the resulting RL circuits for v1 and v4 are
shown in Figure 5.2.

Figure 5.2: Equivalent circuits for voltage vectors v1 and v4

The normalized reluctance R
′

phN quantity is introduced next as

R
′

pha =
3

2

1

Lpha

=
Ld + Lq − (Ld − Lq) cos (2θe)

2LdLq

, (5.1)

R
′

phb =
3

2

1

Lphb

=
Ld + Lq − (Ld − Lq) cos

[
2(θe − 2π

3
)
]

2LdLq

, (5.2)

R
′

phc =
3

2

1

Lphc

=
Ld + Lq − (Ld − Lq) cos

[
2(θe + 2π

3
)
]

2LdLq

, (5.3)

to obtain a harmonic function of rotor position scaled so

minR
′

phN = R
′

d = 1/Ld and maxR
′

phN = R
′

q = 1/Lq, (5.4)

where R
′

d and R
′

q are normalized reluctances in direct and quadrature axis. This
form is useful for its easy integration to SynRM mathematical model. The R

′

phN

can be also expressed using direct and quadrature axis reluctances as

R
′

pha = R
′

d cos2(θe) + R
′

q sin2(θe), (5.5)

R
′

phb = R
′

d cos2(θe + 2π/3) + R
′

q sin2(θe − 2π/3), (5.6)

R
′

phc = R
′

d cos2(θe − 2π/3) + R
′

q sin2(θe + 2π/3). (5.7)
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Looking back at Figure 5.2, the phase reluctances R
′

phN can be obtained from
the DC-bus current change Δidc caused by the non-zero SVM voltage vector vM

applied by the inverter for the time duration T vM as

R
′

phN
∼=

(
Δidc

Tvm

)
2

3

1

Udc + RphiN(−1)m
, where m ∈ M ∈ 〈1; 6〉 . (5.8)

The measurement of current change Δidc is, however, not a simple task. The
SynRM usually have a large stator inductances when compared to other motor types.
This is a result of a design, which favours large Ld − Lq difference. At the same
time, the standard PWM, as shown in Figure 2.4, generates only short periods T vM

during which the Δidc can be measured.
The most commonly used method of stator current measurement is the current

reconstruction from voltage drops measured on bottom shunt resistors Rsh using
operational amplifiers. This is depicted by the MC IABC block in Figure 5.1. These
circuits are set-up for the measurement of complete stator current scale ±max(~iabc).
Using MC IABC with such configuration for Δidc measurement would very likely lead
to signal with a high noise content. Existing algorithms based on Δidc measurement
then usually employ additional sensor or over-sampling [RSW18,NSS20].
The proposed method is based on the Measurement Circuit of DC-bus current idc

(MC IDC). It amplifies the voltage drop on the common DC-bus shunt resistor Rshc,
as shown in Figure 5.1. Its basic principle of operation is illustrated in Figure 5.3.
Compared to MC IABC, it is configured to have a much higher gain and, as a result,
a smaller measurement scale max(idc) � max(~iabc). This allows to achieve a much
better resolution of the idc measurement. Such a high gain would normally lead to a
quick saturation of the MC IDC output even for a small stator current amplitudes
~iabc. To avoid this, the MC IDC measurement window is being actively offset by
a DAC-generated signal to be located at the predicted location of idc. The correct
offset value is obtained from the~iabc measurements from MC IABC and knowledge of
upcoming voltage vector vM , which determines the idc value as shown in Figure 5.2.

t[s]

~iabc

ia

ib

ic

MC IABC current
scale ±max(~iabc)

MC IDC current
scale max(idc)

Offsets applied
based on previous
known ia

Effective MC IDC measurement
windows during v1 or v4

Figure 5.3: Illustration of operation of MC IDC circuit
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An example of the schematic diagram of the MC IDC is shown in Figure 5.4. Its
output uidc leads to the ADC periphery of MCU and contains amplified information
about Δidc. The uDD is the operational amplifier supply voltage, which ideally limits
the MC IDC output to 0 V < uidc < uDD range. The uoff is a DAC-generated
signal, which, offsets the measured current range to avoid output saturation and fit
the predicted idc location. The circuit functions as a differential amplifier with an
analog gain max(idc) configured as necessary to achieve a good Δidc resolution.

Figure 5.4: Measurement circuit of idc current MC IDC [MVB21]

Once the MC IDC is properly configured, the uidc can be sampled by ADC
to obtain Δidc = max(idc)/uDDΔuidc and the uoff can be generated by DAC. An
example of the resulting R

′

phN measurement versus the rotor position θe obtained
on a real system is shown in Figure 5.5. It can be seen that the obtained signals
can be used to extract rotor position θe as well as machine reluctances R

′

d and R
′

q.
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Figure 5.5: Example of R
′

phN measurement obtained on a reference SynRM machine

5.2. Alignment-Swap PWM Switching Scheme

The current derivative Δidc measurement method presented in the previous sec-
tion can be generally used with any such scheme, which generates non-zero voltage
vectors vM . The Δidc measurement method, however, benefits from longer unin-
terrupted non-zero voltage vector periods T vM , which allow for the acquisition of
higher number or more distant Δidc samples. When looking at the example of com-
monly used centre-aligned PWM in Figure 2.4, the periods T vM are divided into
halves and, what is more important, zero vectors v0 and v7 can take a significant
portion of PWM period TPWM . At duty cycles near to the 50 % minimum or any-
time the switching edges are close to each other, this leads to short or no active

22



vector generation, making the Δidc measurement difficult or impossible. This led to
the proposal of the alignment-swap PWM (ASPWM) switching scheme.
The principle is shown in Figure 5.6. The phase PWM signal edge alignment

is swapped in every third PWM cycle to the opposite edge consequently in each
phase. The non-zero voltage vectors vM are, thus, going to align to either the
beginning or the end of the PWM period once per three PWM cycles. Calculation
of phase duty cycles ~Dabc remains unchanged compared to the standard SVMmethod
described in Section 2 and the final generated fundamental voltage vector ~uαβ will
be unchanged. In case that duty cycle max( ~Dabc) → 100 % and min( ~Dabc) → 0 %,
the voltage vectors near the PWM period edges might become too short for effective
Δidc measurement. In such a case, the Δidc information can be extracted from active
vectors vM formed in the centre of the PWM period.

Figure 5.6: Principle of the proposed alignment-swap PWM scheme [MVB21]

An example of interaction between the ASPWM scheme and the proposed Δidc

measurement method is shown in Figure 5.7. Signal uoff is updated by the DAC
at the beginning of the PWM cycle and when the first switching event occurs, so
the uidc signal does not saturate during the measurement time window T vM created
at the PWM cycle edges. To extract the Δidc even from centre of the PWM cycle,
when one of the duty cycles ~Dabc is too low or too high, a different uoff signal update
sequence could be used.
To reconstruct~iabc vector as well from the phase shunt measurement, at least two

bottom transistors must be conducting so the phase currents are flowing through
the shunt resistors Rsh. The third phase current then can be calculated according
to the first Kirchhoff’s law ia + ib + ic = 0 A. Such a suitable sampling locations (i.e.
when dynamic events are settled) were highlighted in Figure 5.7.
The proposed ASPWM switching method effectively replaces portions of the zero

vectors v0 and v7 by a pair of opposite active vectors v1 versus v4, v3 versus v6,
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Figure 5.7: Principle of the Δidc measurement with ASPWM scheme [MVB21]

or v2 versus v5 in each PWM period. This causes an additional ripple of phase
currents ~iabc. To evaluate its impact the RMS value was simulated [DW12]. The
simulation was run for Udc = 400 V and the machine stator inductance was chosen
LphN = 0.3 H, which corresponds to the worst-case scenario with the reference
SynRM (see Section 1.2). The results for all voltage ~uαβ amplitude |~uαβ|/ max(|~uαβ|)
and angle arg(~uαβ) are shown in Figure 5.8 and Figure 5.9. As expected, the RMS
values of the ripple current component are increased for the ASPWM switching
scheme so the audible noise and Total Harmonic Distortion (THD) will be worse.
It can be seen that the ASPWM generates higher ripples for low |~uαβ| amplitude,
while at the higher amplitudes its becomes comparable to CAPWM. Efficiency at
higher speeds and loads will not be affected by the ASPWM method as much. Based
on the maximal RMS values, the resulting power losses will be under a Watt for
reference machine. This is mainly because of the relatively high inductances of
SynRM machines. The ASPWM method might not be suitable for machines with
smaller inductances because the current ripple power losses would increase. It is
then a question, however, whether the ASPWM would even be necessary because
greater Δidc changes would be more easily measurable.
When it comes to power efficiency, the ASPWM has an advantage over clas-

sic centre-aligned PWM. When comparing examples in Figure 2.4 and Figure 5.6,
it can be seen that ASPWM generates only eight edges on PWM control signals
per period, while the centre-aligned method produces twelve. This will reduce the
semiconductor switching losses by a third, which can offset current ripple power loss.
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Figure 5.8: Simulated RMS value of phase current ripple in mA for CAPWM

Figure 5.9: Simulated RMS value of current ripple component in mA for ASPWM

5.3. Kalman Filter

The original Kalman Filter (KF) algorithm was first proposed by R. E. Kalman in
1960 and it became very popular since then. The KF is a recursive algorithm, which
minimizes the square of the estimate errors between actual system states ~x and the
estimates ~̂x. This is done by the alternation of the prediction and correction step.
The system states are updated based on the known model during the prediction
step. The correction step then consists of updating the state estimates based on the
measurement [WB06]. To find the true optimal solution, the noise has to have a
normal distribution.
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One well-known modification, the Extended Kalman Filter (EKF), is then also
usable for non-linear systems under influence of Gaussian noise. As will be shown in
Section 5.4, this and the ability to near-optimally merge the position and parameter
information from multiple measurements made it suitable for the proposed algo-
rithm. Disadvantages of EKF are, however, relatively high computational demands
and a difficult acquisition and description of stochastic properties of measurements
and estimated states [LK19,BG10].

5.3.1. Extended Kalman Filter Theory

First, we assume the discrete non-linear system state-space description

~xk+1 = f (~xk, ~uk, ~wk) ,
~yk = h (~xk, ~vk) ,

(5.9)

where f and h are non-linear time-variant system and output functions, ~x is the
state vector, ~u is the vector of control variables, ~y is the output vector, and ~w and ~v
are the process and measurement noise vectors. The noise vectors are assumed to be
white noises with normal distribution ~w ∼ N(0,Q) and ~v ∼ N(0,R). Linearization
itself is done by taking the first element of Taylor’s expansion around the last state
estimate ~̂x . The prediction step is than performed as

~̂xk|k−1 = f
(
~̂xk−1|k−1, ~uk

)
,

Pk|k−1 = FkPk−1|k−1F
T
k + Q̃k,

(5.10)

and the correction step as

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k + R̃k

)−1

,

~̂xk|k = ~̂xk|k−1 + Kk

[
~yk − h(~̂xk|k−1,~0)

]
,

Pk|k = (I − KkHk)Pk|k−1,

(5.11)

where P is the state error covariance matrix, Q̃ is state covariance matrix, R̃ is mea-
surement covariance matrix, K is Kalman gain, and F and H are Jacobian matrices
of f and h around the state estimate. It should be noted that the linearization intro-
duced an error into the estimate ~̂x, making the solution sub-optimal [AR15,WB06].

5.4. Proposed EKF-based Estimation Algorithm

Figure 5.1 shows the proposed EKF-based observer, which provides estimations
of rotor electrical position θ̂e, electrical angular speed ω̂e, and stator inductances
L̂d and L̂q. All this information can be extracted from the R

′

phN measurement.
The following Section 5.4.1 will show a basic implementation of the EKF algorithm
(further called EKF-BASIC), which can extract mentioned quantities. The stator
current measurements~iαβ and knowledge of synchronous machine model can also be
used to obtain rotor speed and position information [AR15]. Combining these two
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models brings a redundancy, which can be exploited in many ways. For example,
the previously published version of the proposed EKF-based estimator featured an
estimation of core losses [MVB21]. The following Section 5.4.2 will show another
example of the implementation of an EKF-based algorithm (called EKF-RS) that
provides the stator resistance estimate R̂s.

5.4.1. Proposed Algorithm Variant EKF-BASIC

If we assume, that R
′

d and R
′

q are slow-changing quantities, we can form equations

R
′

pha,k = R
′

d,k cos2(θe,k) + R
′

q,k sin2(θe,k),

R
′

phb,k = R
′

d,k cos2(θe,k + 2π
3

) + R
′

q,k sin2(θe,k − 2π
3

),

R
′

phc,k = R
′

d,k cos2(θe,k − 2π
3

) + R
′

q,k sin2(θe,k + 2π
3

),

(5.12)

R
′

d,k+1 = R
′

d,k, and R
′

q,k+1 = R
′

q,k. (5.13)

Applying the Euler’s discretization method to mechanical models (1.7), (1.8), and
(1.9) and assuming that the ωe does not change greatly between samples leads to

ωe,k+1 = ωe,k, and θe,k+1 = θe,k + Tsωe,k, (5.14)

where Ts is sampling period. Combining equations (5.13) and (5.14) leads to

~̂x =
[
R̂

′

d, R̂
′

q, ω̂e, θ̂e

]T
(5.15)

and the system input vector is ~u = 0.
As was discussed in Section 5.2, not all the dia/dt, dib/dt, and dic/dt measure-

ments are available each PWM period, depending on applied active voltage vectors
vM . The proposed ASPWM scheme allows obtaining current derivative informa-
tion for one of the N phases during each TPWM . Hence, only one of equations
(5.12) corresponding to the measured phase N will be used each step k. Available
measurement (either R

′

pha, R
′

phb, or R
′

phc) is going to form the measurement vector

~y = R
′

phN . (5.16)

The feedback non-linear time-variant system function will then be

f
(
~̂xk−1, ~uk,~0

)
=
[
R̂

′

d,k−1, R̂
′

q,k−1, ω̂e,k−1, θ̂e,k−1 + Tsω̂e,k−1

]T
(5.17)

and the non-linear output function can be assembled from (5.12) as

h
(
~̂xk,~0

)
=
[
R̂

′

d,k cos2(θ̂e,k + θphN ) + R̂
′

q,k sin2(θ̂e,k + θphN )
]
, (5.18)

where θphN is stator phase offset matching the phase of actual R
′

phN measurement
(either 0 rad, 2π

3
rad, or −2π

3
rad for phases R

′

pha, R
′

phb, and R
′

phc).
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The Jacobian matrix of output matrix (5.18) is

Hk =

[
∂h

∂~x

]

~x=~̂xk|k−1,~v=~0

=
[
cos2(θ̂e + θphN ), sin2(θ̂e + θphN ), 0, H16

]
, (5.19)

where

H16 =
∂R

′
phN

∂θe
= 2(R̂

′

q − R̂
′

d) sin(θ̂e + θphN ) cos(θ̂e + θphN ). (5.20)

The Jacobian matrix of discrete-time process matrix (5.17) is

Fk =
[

∂f
∂~x

]
~x=~̂xk−1|k−1,~u=~uk, ~w=~0

=







1 0 0 0
0 1 0 0
0 0 1 0
0 0 Ts 1





 . (5.21)

The covariance matrices Q̃ and R̃ can be adapted online using methods like
the Expectation-Maximization algorithm [Moo96]. Such algorithms are, however,
relatively complex. In practice, the matrices Q̃ and R̃ are often used as offline
design parameters of EKF, which is also an approach used in this thesis.
Because there is only a single signal used as a measurement, the noise covariance

matrix has a form R̃ = σ2
Rph

, where σRph
is standard deviation of phase reluctance

measurements R
′

phN . The value of σRph
is difficult to model and in this work, it is

acquired by offline analysis of recordings of real R
′

phN measurements. All the states
are considered to be uncorrelated, hence, the state noise covariance matrix is

Q̃ = diag
[
σ2
R′

d

σ2
R′

q
σ2

ωe
, σ2

θe

]
. (5.22)

The states R̂
′

d and R̂
′

q can be considered to be slow-changing parameters and their
standard deviations σR′

d
and σR′

q
can be selected close or equal to zero. The speed

estimation deviation can be selected as the maximal electrical speed change with
the moment of inertia J , nominal torque Tnom per sampling period Ts, as σωe =
TsTnom/J . Because position θe is obtained as a pure integration of ωe, its deviation
will be chosen as σθe = 0 rad [BSL+10,AR15].
Finally, the initialization of EKF-BASIC is done through the definition of the

initial state vector ~̂x0 and the initial covariance matrix P0, for example

~̂x0 =
[

1/Ld0, 1/Lq0, 0, 0
]
, (5.23)

where Ld0 and Lq0 are rough expected machine inductances. Similarly, the P0 can
be set as a diagonal matrix, usually with sufficiently high variance values on the
main diagonal, reflecting the low confidence in vector ~̂x0.
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5.4.2. Variant with Stator Resistance Measurement EKF-RS

This section will present the EKF-RS algorithm variant, which takes into account
stator current ~iαβ measurement and knowledge of the machine model to provide
estimate of the stator resistance Rs as well.
First, the stator current model (1.6) with neglected core losses and dynamic

inductance is assumed, as well as mechanical models (5.14). Applying Euler’s dis-
cretization method leads to

id,k = id,k−1 + TsR
′

d,k−1

{
ud,k − Rsid,k−1 + ωe,k−1iq,k−1/R

′

q,k−1

}
,

iq,k = iq,k−1 + TsR
′

q,k−1

{
uq,k − Rsiq,k−1 − ωe,k−1id,k−1/R

′

d,k−1

}
,

ωe,k = ωe,k−1, and θe,k+1 = θe,k−1 + Tsωe,k−1.

(5.24)

The above-defined models would alone be sufficient to design an EKF-based esti-
mator, which could provide position θ̂e and speed ω̂e estimates [AR15, SKUU03].
However, to get the stator resistance R̂s information, the EKF-RS will also utilize
(5.12) and (5.13). This leads to state and system input vectors

~̂x =
[
R̂

′

d, R̂
′

q, îd, îq, ω̂e, θ̂e, R̂s

]T
and ~u =

[
ud, uq

]T
. (5.25)

The available measurements are stator currents ~iαβ and phase reluctances R
′

pha,
R

′

phb, or R
′

phc, which form the measurement vector

~y =
[
R

′

phN , iα, iβ
]T

. (5.26)

The feedback non-linear time-variant system function will then be

f
(
~̂xk−1, ~uk,~0

)
=
















R̂
′

d,k−1

R̂
′

q,k−1

îd,k−1+TsR̂
′

d,k−1

{
ud,k−R̂s,k−1îd,k−1+ω̂e,k−1îq,k−1/R̂

′

q,k−1

}

îq,k−1+TsR̂
′

q,k−1

{
uq,k−R̂s,k−1îq,k−1−ω̂e,k−1îd,k−1/R̂

′

d,k−1

}

ω̂e,k−1

θ̂e,k−1 + Tsω̂e,k−1

R̂s,k−1
















. (5.27)

The non-linear output function can be assembled using Park’s transformation matrix
(1.2) for stator currents and from (5.12) as

h
(
~̂xk,~0

)
=




R̂

′

d,k cos2(θ̂e,k + θphN ) + R̂
′

q,k sin2(θ̂e,k + θphN )

cos(θ̂e,k)id,k − sin(θ̂e,k)iq,k

sin(θ̂e,k)id,k + cos(θ̂e,k)iq,k



 . (5.28)

The Jacobian matrix of output matrix (5.28) is
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Hk =

[
∂h

∂~x

]

~x=~̂xk|k−1,~v=~0

= (5.29)

=




cos2(θ̂e,k + θphN ) sin2(θ̂e,k + θphN ) 0 0 0 H16 0

0 0 cos(θ̂e,k) − sin(θ̂e,k) 0 H26 0

0 0 sin(θ̂e,k) cos(θ̂e,k) 0 H36 0



 , (5.30)

where H16 is defined in (5.20) and

H26 =−sin(θ̂e,k )̂id,k−cos(θ̂e,k )̂iq,k and H36 =cos(θ̂e,k )̂id,k−sin(θ̂e,k )̂iq,k. (5.31)

The Jacobian matrix of process matrix (5.27) is

Fk =
[

∂f
∂~x

]
~x=~̂xk−1|k−1,~u=~uk, ~w=~0

=













1 0 0 0 0 0 0
0 1 0 0 0 0 0

F31 F32 F33 F34 F35 F36 F37

F41 F42 F43 F44 F45 F46 F47

0 0 0 0 1 0 0
0 0 0 0 Ts 1 0
0 0 0 0 0 0 1













, (5.32)

where

F31 = ∂id
∂R′

d

= Ts

{
ud,k − R̂s,k−1îd,k−1 + ω̂e,k−1îq,k−1/R̂

′

q,k−1

}
,

F32 = ∂id
∂R′

q
= −TsR̂

′

d,k−1ω̂e,k−1îq,k−1/R̂
′2
q,k−1,

F33 = ∂id
∂id

= 1 − TsR̂s,k−1R̂
′

d,k−1, F34 = ∂id
∂iq

= Tsω̂e,k−1R̂
′

d,k−1/R̂
′

q,k−1,

F35 = ∂id
∂ωe

= Tsîq,k−1R̂
′

d,k−1/R̂
′

q,k−1, F36 = ∂id
∂θe

= TsR̂
′

d,k−1uq,k,

F37 = ∂id
∂Rs

= −TsR̂
′

d,k−1îd,k−1,

(5.33)

F41 = ∂iq

∂R′
d

= TsR̂
′

q,k−1ω̂e,k−1îd,k−1/R̂
′2
d,k−1,

F42 = ∂iq
∂R′

q
= Ts

{
uq,k − R̂s,k−1îq,k−1 − ω̂e,k−1îd,k−1/R̂

′

q,k−1

}
,

F43 = ∂iq
∂id

= −Tsω̂e,k−1R̂
′

q,k−1/R̂
′

d,k−1, F44 = ∂iq
∂iq

= 1 − TsR̂s,k−1R̂
′

q,k−1,

F45 = ∂iq
∂ωe

= −Tsîd,k−1R̂
′

q,k−1/R̂
′

d,k−1, F46 = ∂iq
∂θe

= −TsR̂
′

q,k−1ud,k,

F47 = ∂iq
∂Rs

= −TsR̂
′

q,k−1îq,k−1.

(5.34)

Note that F36 and F46 were obtained by integrating the Park’s transformation matrix
Tαβ

dq (θe) from (1.2) into process Jacobian matrix F.
Just like in the case of the EKF-BASIC algorithm, the stochastic properties of

the state estimate and measurements will be modelled via manually-set constant co-
variance matrices Q̃ and R̃. Measurements (5.26) are considered to be uncorrelated,
therefore the measurement noise covariance matrix has the form

R̃ = diag
[
σ2
Rph

, 2
3
σ2

i ,
2
3
σ2

i

]
, (5.35)

where σRph
and σi are standard deviations of phase reluctance R

′

phN and~iαβ current
measurements. The value of σRph

is assumed to be selected just like for the EKF-
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BASIC algorithm. Variance σ2
i can be modelled as the ADC discretization error and

the noise introduced by measurement circuit MC IABC, which leads to

σ2
i =

(
max(~iabc)√
12 ∙ 2NADC

)2

+ EIN2

(
max(~iabc)

uDD

+
1

Rsh

)2

, (5.36)

where max(~iabc) is the phase current measurement scale, NADC is the number of
ADC bits, Rsh is the shunt resistance, uDD is the maximal voltage measurable by
ADC, and EIN is the equivalent input noise of the operational amplifier [BSL+10,
AR15,CM18]. The resulting current variance in the two-phase stator αβ reference
frame can be calculated by taking into account Clarke’s transformation as

var{iα} = var

{
2

3
ia −

1

3
ib −

1

3
ic

}

=
4

9
σ2

i +
1

9
σ2

i +
1

9
σ2

i =
2

3
σ2

i , (5.37)

var{iβ} = var

{
1
√

3
ib −

1
√

3
ic

}

=
1

3
σ2

i +
1

3
σ2

i =
2

3
σ2

i . (5.38)

The states will also be considered to be uncorrelated, hence, the state noise
covariance matrix is also diagonal, and has the form

Q̃ = diag
[
σ2
R′

d

, σ2
R′

d

, 2
3
σ2

i ,
2
3
σ2

i , σ2
ωe

, σ2
θe

, σ2
Rs

]
. (5.39)

Setup of σR′
d
, σR′

q
, σωe , and σθe was already discussed in Section 5.4.1. The stator

resistance estimate deviation σRs should be chosen as a small or zero value because
the stator resistance estimate will be a slow-changing quantity. The variance of the
stator currents in the rotating dq reference frame can be estimated by taking into
account the Park’s transformation as

var{id}=var{iα cos(θ̂e) + iβ sin(θ̂e)}' cos2(θ̂e)
2

3
σ2

i + sin2(θ̂e)
2

3
σ2

i =
2

3
σ2

i , (5.40)

var{iq}=var{−iα sin(θ̂e) + iβ cos(θ̂e)}' sin2(θ̂e)
2

3
σ2

i + cos2(θ̂e)
2

3
σ2

i =
2

3
σ2

i . (5.41)

Note that the above expression was simplified by considering zero rotor position
variance σθe and should be treated as a rough setup.
The initialization of EKF-RS will be analogous to the EKF-BASIC variant as

well. The initial state vector ~̂x0 can be set as

~̂x0 =
[

1/Ld0, 1/Lq0, 0, 0, 0, 0, Rs0

]
, (5.42)

where Ld0, Lq0, and Rs0 are rough expected machine parameters. Similarly, the P0

can be set as a diagonal matrix, usually with sufficiently high variance values for

currents ~̂idq, speed ω̂e, and position θ̂e because of low confidence in initial state.
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6. Experimental Analysis
The goal of this chapter is to compare the performance of the SynRM control algo-
rithms proposed in Section 5 on a real system with other, commonly used, state-of-
the-art sensorless algorithms listed in Section 2, as well as the sensor-based control.

6.1. The Measurement Setup

All measurements were done on reference 550 W machine from KSB manufacturer,
which parameters were already presented in Section 1.2. This SynRM machine
was integrated into testbench, which high-level block diagram is in Figure 6.1 and
photography of its setup is in Figure 6.2. The shaft of the SynRM motor was
connected to the 3.5 kW PMSM motor Allan Bradley F-4030-Q-H00AX to act as a
loading generator. A benefit of this machine is the integrated 12-bit encoder, which,
thanks to the co-axial motor-to-load setup, was used to get reference rotor position
θe of both the SynRM motor and the load PMSM generator. Both the motor and
generator inverter shared the same DC-bus rail so the generated power was used to
immediately cover a part of the input power of the SynRM motor.

Figure 6.1: High-level block diagram of the experimental set-up

The FOC algorithm on the SynRM side of this block diagram might differ based
on which exact algorithm was investigated. See Section 6.2 for more details. Both
the motor and the load were driven using NXP HVP-MC3PH high-voltage inverters,
which are able to provide roughly up to one kW of three-phase AC power. The
motor-side inverter was modified to feature the MC IDC circuit, which, as described
in Section 5.1, was used to acquire necessary idc current derivative measurements
to support the proposed algorithms. It was configured to measure DC-bus current
in range idc ∈ 〈−3.05; 3.75〉 A, with gain KRRpRshc = 4.21 V/A. The MC IABC
circuit was set to measure iabc ∈ 〈−8; 8〉 A and the MC UDC measurement scale to
max(Udc) = 433 V. For comparison, if the MC IABC circuit was used to measure
Δidc, it would offer a 20-times lower resolution. The PWM frequency, phase current
sampling frequency, and the current control loop frequency were set identically to
10 kHz. Note that maximal SynRM speed achievable under full load was 900 rpm due
to inverter DC-bus voltage limitation. This should not impact validity of conclusions
drawn from experiments though.

32



Figure 6.2: Photography of the experimental testbench setup

6.2. Implementation of Investigated Estimators

To allow a relative comparison of performance the proposed EKF-based algorithms
EKF-BASIC and EKF-RS, other position and speed sources with various properties
were implemented as well:

• Encoder measurement - A conventionally true position and speed was obtained
using 12-bit encoder sensor. Both the ASPWM and the centre-aligned PWM
switching schemes were implemented to allow investigation of impact of using
ASPWM scheme.

• High-frequency injection algorithm - The saliency-based algorithm with har-
monic voltage vector injection into d-axis was used as a reference for low-speed.

• EEMF observer - The EEMF-based algorithm was used as a reference at
medium and high speeds. The basic EEMF algorithm is not naturally adap-
tive, hence, several different variations were implemented:

– EEMF observer with constant model parameters - A basic algorithm ver-
sion with constant R̂s and L̂q values. Considered in order to evaluate the
impact of using non-adaptive algorithm. This is a valuable reference as
this approach is often chosen in practical applications [HKS99,KSG+14].

– EEMF observer with LUT - The algorithm version with constant R̂s value
and inductances L̂

′

d and L̂q provided by the LUT table. This modification
was included to evaluate what performance can be achieved with accurate
parameters obtained offline. The algorithm might not be considered to
be truly adaptive as the LUT does not reflect the change of inductances
(e.g. due to temperature change).

– EEMF observer with RLS - The algorithm version with R̂s, L̂
′

d, and L̂q

parameters provided online by Recursive Least Square algorithm.
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6.3. Measurement Results

This section presents the results of conducted experiments. Section 6.3.1 will focus
on the general position and speed estimation capability of EKF-BASIC and EKF-
RS. The main analysis, which response to estimation accuracy goals formulated in
Section 4.3, is then available in Section 6.3.2. Finally, Section 6.3.3 will analyze the
impact on power losses by the ASPWM scheme used by EKF-BASIC and EKF-RS
and the impact of signal injections required by HFI and RLS.

6.3.1. Basic Speed and Position Tracking

The basic capability of EKF-BASIC and EKF-RS estimators of position and speed
tracking in the full speed range is shown in Figure 6.3 and Figure 6.4. The position
error θerre spiked up to 25 degrees but dropped during stead-state. Deeper accuracy
analysis is available in Section 6.3.2.
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Figure 6.3: EKF-BASIC a) speed estimate and b) position error in full speed range

It is noticeable, that the overall speed and position tracking ability of EKF-
BASIC and EKF-RS are very similar. This was expected because the additional
machine model in the EKF-RS mainly serves to estimate the stator resistance R̂s.
The speed reversal during the experiment also shows the ability of both algo-

rithms to run at low-speed or even standstill, which is a considerable benefit when
compared to EEMF algorithm.
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Figure 6.4: EKF-RS a) speed estimate and b) position error in full speed range

6.3.2. Steady-State Parameter Estimation Accuracy

The data for steady-state estimation accuracy were measured at points:

• Speed Nm was set from 100 rpm to 900 rpm with 200 rpm step. The EEMF-
based algorithms were tested at|N reqm | ≥ 500 rpm and HFI at lower speed. The
EKF-BASIC and EKF-RS algorithms were verified at full speed range.

• Load Tl was set from 0.5 Nm to 3.5 Nm with 0.5 Nm step.

• Current angle θ̂I was set from 40 degrees to 76 degrees with two-degree steps.

Position Estimation Accuracy

Results for all considered combinations of algorithms are available in histograms in
Figure 6.5. Bin size for all histograms was selected to half of degree. The EEMF
with constant parameter setting shows by far the greatest θerre error, despite being
a popular option in the literature. The RLS implementation achieved low θerre error
values, but with an increased dependency on the current angle θ̂I value (i.e. large
variation). The best performance can be achieved with accurately identified param-
eters provided by LUT tables. Although it should be noted, that any discrepancy
between such offline-obtained parameters and the actual machine parameters led
to significant position error θerre . The L̂d inductance errors δLd

= ±25 % caused
position errors close to ten degrees, which is more than was predicted by simulation
in Figure 4.3. Overall, the results show that EKF-BASIC and EKF-RS algorithms
do not offer better position estimation accuracy, then correctly configured state-of-
the-art algorithms. At the same time, however, the proposed algorithms provided
acceptable and consistent performance in full measured load and speed range, while
not being reliant on precise knowledge of machine parameters.
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Figure 6.5: Histograms of measured θ̂erre for a) EKF-BASIC, b) EKF-RS, h) HFI
only, and HFI with c-e) EEMF+LUT, f) EEMF+RLS, and g) constant EEMF
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Inductance and Resistance Estimation Accuracy

This section compares inductance and resistance estimation accuracy of EKF-BASIC,
EKF-RS, and RLS algorithms. The relative errors of resistance δRs , direct axis in-
ductance δLd

, and quadrature axis inductance δLq estimates were obtained in relation
to offline-measured values stated in Section 1.2. Histograms in Figure 6.6 and Fig-
ure 6.7 show a comparison over all the measured operation points. Histograms used
δLd

= δLq = 5 % or δRs = 20 % bins.
Both proposed algorithms showed errors, which generally met the goals set in

Section 4.3, while the RLS algorithm showed lower performance. Although the
original publication with the implemented RLS algorithm showed similar errors,
the measurement results should not be interpreted as if better performance could
not be reached [ITDO06]. It can, however, be claimed that highly accurate online
parameter adaptation is not a trivial task. The EKF-BASIC and EKF-RS estimate
errors (namely for the R̂s) were likely caused by deformations in R

′

phN measurements,
which highlight a need for good hardware setup and postprocessing of samples.

a) EKF-RS b) RLS

Figure 6.6: Stator resistance R̂s estimates and corresponding histograms of estimate
error δRs for a) EKF-RS and b) RLS algorithms
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a) EKF-BASIC

b) EKF-RS

c) RLS

Figure 6.7: Inductances L̂d and L̂q and corresponding histograms of estimate errors
δLd
and δLq for a) EKF-BASIC, b) EKF-RS, and c) RLS algorithms

6.3.3. Comparison of Optimal Power Trajectories

This section will analyze the same data as in Section 6.3.2 in order to determine
the impact of signal injections used by HFI and RLS algorithms and the ASPWM
switching scheme to optimal MTPA and ME trajectory. The CAPWM switching
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scheme with no injection will be considered as a reference. Note that the optimal
current angle θI was maintained by the encoder sensor.
To evaluate the impact of using ASPWM switching scheme or injections, like the

PRBS signal injection used by RLS algorithm and the harmonic signal injection used
by HFI, Figure 6.8 shows the stator currents Im and the inverter input powers PdcM

corresponding to the optimal MTPA and ME trajectories in comparison to centre-
aligned PWM scheme with no injections (a reference configuration). As expected,
the additional PRBS and harmonic injections caused a measurable increase of both
the stator current amplitude ΔIm and input power ΔPdcM . Results in Figure 6.8d
show an increase of input power ΔPdcM in units of Watts for both the PRBS and
the harmonic injection. The exact increase in a real application would, of course,
be a matter of parameters of the injected signal, but it is safe to assume that any
injection will always lead to additional power losses. As for the alignment-swap
PWM switching scheme, used by the EKF-BASIC and the EKF-RS algorithms, it
was discussed in Section 5.2 that the method leads to elevated current ripple, but
also reduces the switching power losses by factor of one third. Experimental results
in Figure 6.8f show a reduction in input power ΔPdcM by units of Watts, which
generally confirms this prediction and shows the potential value of the method.
This is true especially for drives with high stator inductances, where the increase in
THD and audible noise is not as significant.
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Conclusions
This thesis focused on the development of SynRM state and parameter estimation
algorithm suitable for sensorless power-optimal applications. Chapter 1 of this thesis
showed the SynRM machine mathematical model and its significant inductance non-
linearity caused by magnetic saturation. Chapter 2 and Chapter 3 then presented
the existing SynRM sensorless state and parameter estimation, as well as, power-
optimization algorithms. Evaluation of the SynRM power-optimal sensorless control
state-of-the-art was conducted in Chapter 4. The analysis resulted in goals listed
in Section 4.3, which were pursued by the algorithms proposed in this thesis. In
summary, it was deemed that sensorless position, speed, and inductance estimator
is necessary, capable of operating in full-speed range with a good estimation accuracy
but without costly hardware and need of significant signal injection.
The proposed method featured three novel ideas:

• The current derivative measurement method is described in Section 5.1. The
simple and low-cost measurement circuit MC IDC allows measuring Δidc with
improved accuracy. As shown by the proposed EKF-BASIC algorithm, this
measurement is enough to obtain phase reluctances, rotor position, and speed.

• The alignment-swap PWM switching scheme shown in Section 5.2 allows to
measure the current derivatives even for small duty cycle. Method introduced
increased stator current ripple but also reduced inverter switching losses.

• Additional measurements and machine models were used as redundancy via
the extended Kalman filter. For example, the proposed EKF-RS algorithm
estimated the resistance R̂s and the previously published method provided
core loss estimate [MVB21]. Other similar modifications can be derived.

The use of the ASPWM scheme and the phase reluctance measurement method
based on the MC IDC circuit allowed to meet the requirement of low additional
cost and ability to operate at low-speed and standstill. The position and inductance
estimate accuracy goals were verified and compared in Chapter 6. Carefully tuned
existing methods (e.g. EEMF with inductances from LUT), can generally achieve a
great position estimation performance, however, it quickly deteriorates when LUT
parameters do not match. In contrast, the proposed method is highly adaptive and
can deliver a robust performance with previously unknown or changing inductances.
Overall the presented adaptive sensorless state and parameter estimation method

met the goals defined for this thesis. Its parts or as a whole, it might serve as an
interesting alternative for SynRM-based high power-efficient applications.
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ABSTRACT
Synchronous reluctance motors are becoming a more and more popular alternative
to the AC induction machine for their relatively high power efficiency, low cost, and
high robustness. Full utilization of benefits of sensorless control and high power
efficiency are being complicated by non-linearities of the motor, especially mag-
netic saturation. The beginning of this work is dedicated to an inference of the
mathematical-physical model of SynRM and an overview of existing state-of-the-art
sensorless power-optimal algorithms. The core of this work is then the introduction
of the SynRM state and parameter estimator, which is based on a new approach to
measurement and utilization of phase reluctances. The key elements of the algorithm
are a new methodology for measuring phase reluctances, a PWM switching scheme
that allows to reduce switching losses and to measure phase reluctances from zero
speed, and finally the integration of these measurements with the SynRM mathe-
matical model using extended Kalman filter. The experimental part of the thesis
then discusses the real measurement results obtained with the proposed algorithms
and several selected state-of-the-art algorithms.

ABSTRAKT
Synchronní reluktanční motory se pro svou relativně vysokou účinnost, robust-
nost a nízkou cenu stávají stále populárnější alternativou velmi rozšířených asyn-
chronních motorů. Snaha o využití výhodných vlastností bezsnímačového řízení,
a dosažení co nejvyšší účinnost jejich provozu, je však komplikována jejich výraz-
nou nelinearitou způsobenou saturací magnetického obvodu. Úvod této práce je
věnován popisu matematicko-fyzikálního modelu SynRM a přehledu existujících
moderních algoritmů výkonově-optimálního bezsnímačového řízení. Jádrem práce je
pak představení estimátoru stavů a parameterů SynRM postaveného na novém přís-
tupu k měření a využití fázových reluktancí. Klíčovými prvky algoritmu jsou nová
metodologie měření fázových reluktancí, spínací PWM schéma jež umožňuje snížit
spínací ztráty a měřit fázové reluktance od nulových otáček, a nakonec integrace
těchto měření s matematickým modelem SynRM s pomocí rozšířeného Kalmánova
filtru. Experimentální část práce pak diskutuje výsledky reálných měření s navrženým
algoritmem a vybranými současnými algoritmy.
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