
T
BRND UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

GROUP SIGNATURE BASED ON SECURE MULTI-PARTY
COMPUTATION
SKUPINOVÝ PODPIS ZALOŽENÝ NA BEZPEČNÉM VÝPOČTU VÍCE STRAN

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. Kristián Klasovitý
AUTOR PRÁCE

SUPERVISOR M.Sc. Sara Ricci, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023

T B R N O F A C U L T Y OF E L E C T R I C A L

U N I V E R S I T Y E N G I N E E R I N G

OF T E C H N O L O G Y A N D C O M M U N I C A T I O N

Master's Thesis
Master's study program Information Secur i ty

Department of Telecommunications

Student: Be. Kristián Klasovitý

Year of
2

study:

ID: 196068

Academic year: 2022/23

TITLE O F THESIS :

Group signature based on Secure Multi-party Computation

INSTRUCTION:

The work is focused on the implementation of a group signature based on secure multi-party computation and

Weak-Boneh Boyen signature. The thesis aims to implement and analyze (through experimental results) a new

group signature generated by the merging of the two-party computation scheme proposed in [1] and the Weak-

Boneh Boyen signature [2]. The signature implementation is expected to be run on different devices.

R E C O M M E N D E D L I T E R A T U R E :

[1] M. Belenkiy, J . Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and H. Shacham, "Randomizable

Proofs and Delegatare Anonymous Credentials", Advances in Cryptology - C R Y P T O 2009, vol.5677, Berlin,

Heidelberg: Springer Berlin Heidelberg, 2009, pp. 108-125.

[2] Boneh D, Boyen X , Shacham H. Short group signatures. In Annual international cryptology conference 2004

Aug 15 (pp. 41-55). Springer, Berlin, Heidelberg.

Date of project

specification:
6.2.2023

Deadline for

submission:
19.5.2023

Supervisor: M.Sc. Sara Ricci, Ph.D.

doc . Ing. J a n Hajný, Ph .D.

Chair of study program board

WARNING:

The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10/616 00 / Brno

ABSTRACT
Th is thesis aims at implement ing a group signature scheme that uses two-party compu­
tat ion to joint ly compute a signing value used in the signature. In this way, the user's
secret key is hidden from the manager and it cannot be used to impersonate the user.
The signature also supports revocation and opening algorithms. Moreover, a blind is­
suance attr ibute-based credential is also presented, where the credential issued by the
issuer remains private to the user. Both schemes were run on different devices and the
performances were benchmarked. A t last, the group signature was used to implement an
appl icat ion al lowing one to sign a document on behalf of a group. The implementat ion
is run on mult iple devices that use N F C to communicate.

KEYWORDS
Andro id , El l ipt ic curves, Group signature, Homomorph ic encrypt ion, N F C , Non-
interactive zero-knowledge proof of knowledge, Secure two-party computat ion, Schnorr
protocol

ABSTRAKT
Práce se věnuje implementaci skupinového podpisu, který využívá společný výpočet dvou
stran k vypočí tání tajné hodnoty využité k podpisu. Díky tomu zůstává soukromý klíč
člena skupiny skrytý před manažerem skupiny, a nemůže být manažerem zneužit. P o d ­
pisové schéma podporuje revokaci a otevírání podpisů manažerem. Také byl představen
způsob slepého vydávání atr ibutového pověření, kde je pověření skryto před vydavatelem.
Obě schémata byla spuštěna na více zařízeních a byl změřen čas jej ich vykonání. Schéma
pro skupinové podpisy bylo využi to pro vytvoření aplikace, pomocí které je možné pode­
pisovat dokumenty jménem skupiny. Implementace je spuštěna na více zařízeních, která
komunikuj í pomocí N F C .

KLÍČOVÁ SLOVA
Andro id , eliptické křivky, skupinový podpis, homomorfní šifrování, N F C , neinterakt ivní
důkaz s nulovou znalostní, bezpečný společný výpočet dvou stran, Schnorrův protokol

Typeset by the thesis package, version 4.07; ht tp: / / la tex.feec.vutbr .cz

http://latex.feec.vutbr.cz

ROZŠÍŘENÝ ABSTRAKT
Tato práce se zaměřuje na implementaci skupinového podpisu s použ i t ím bezpečného

v ý p o č t u dvou stran. Skupinový podpis je podpis, kdy členové urči té skupiny, kterou

spravuje manažer , mohou vytváře t podpisy j m é n e m celé skupiny. Ověřovatel při

ověření takových podp isů nezjistí žádné informace o podepisujícím, ale může pouze

zjistit, j a k á skupina podpis vytvoři la a zda je platný. J e d n í m z problémů těchto

podpisů je vydávání ta jných hodnot použi tých v podpisu jednot l ivých členů skupiny.

Jelikož je t a j ná hodnota vypoč í t ána ze soukromého klíče m a n a ž e r a skupiny a člena

skupiny, dochází tak k prozrazení jak soukromého klíče, tak t é t o vypoč í t ané hod­

noty manažerovi . Toto je možné vyřešit p ř idán ím společného v ý p o č t u obou stran

za použi t í homomorfního šifrování. Díky tomu zůs tane soukromý klíč manaže ra

skryt před uživate lem a zároveň soukromý klíč uživatele i výs ledná t a j ná hodnota

používaná v podpisu zůs tane skryta před manaže rem.

Schéma implementované v t é t o práci využívá skupinový podpis založený na

weak Boneh-Boyen podpisu a na společném v ý p o č t u m a n a ž e r a a člena skupina za

využi t í ne in te rak t ivn ího důkazu s nulovou znalos tní (angl. Non-Interactive Zero-

Knowledge Proof of Knowledge, zkráceně N I Z K P K) . Pomocí zmíněného schématu

je vy tvořen sys tém pro podepisování dokumen tů . Tento výpočet více stran je po t é

použi t i pro implementaci slepého vydávání a t r i b u t ů ve schématu klíčově ověřitel­

ných anonymních pověření (angl. Keyed-Verification Anonymous Credentials, zkrá­

ceně KVAČ).

V prvn í části se práce věnuje předs tavení kryptografických primit iv, k teré jsou

v protokolu použity, jako jsou kryptografie eliptických křivek a operace bi l ineárního

párování na křivkách, podpis Weak Boneh-Boyen, Schnorrův protokol, teorie skupi­

nových podp isů a anonymních a t r ibu tových pověření. Dále je zde p o p s á n a technolo­

gie N F C (Near-Field Communication) i programovací jazyky a knihovny zvažované

pro implementaci.

V d r u h é část i jsou p o d r o b n ě popsány implementované kryptografické protokoly.

P r v n í m je již zmíněný N I Z K P K protokol, k te rý byl doplněn o výpočet důkazů

znalosti, k te ré dosud nebyly nikde implementovány. J e d n á se tedy o p rvn í kompletn í

implementaci tohoto N I Z K P K protokolu. Tyto důkazy jsou v protokolu použi ty k

dokázání znalosti jednot l ivých hodnot, se k te rými strany, ve v ý p o č t u pomocí homo­

morfního šifrování, počítaj í . Dále je zde popsáno schéma samotného podpisu. Je

t aké ukázáno , jak lze dokázat , že je schéma komple tn í a tedy, že pro p la tný pod­

pis bude verifikace úspěšná . Dále se práce zabývá t ím, jak lze ve zmíněném sché­

matu implementovat i revokaci a o tevírání podpisů . Revokací uživatele je míněno

ods t raněn í uživatele ze skupiny tak, aby jeho podpis již nebyl platný. Toho se dá

docílit zveřejněním blacklistu takto vyloučených uživatelů. Tento seznam zveřejňuje

právě manaže r skupiny, k te rý m á také schopnost otevří t podpis. O tev řen ím podpisu

se zde rozumí odhalení identity podepisujícího. Nakonec jsou v t é to část i popsány

změny provedené v KVAČ protokolu pro implementaci slepého vydávání pověření,

kdy je pověření skryto b ě h e m vydávacího protokolu před vydavatelem.

V ý s t u p e m prakt ické část i je aplikace, k t e rá umožňuje podepisování d o k u m e n t ů

pomocí skupinového podpisu. Tato implementace obsahuje aplikaci pro P C , k te rá

je rozdělena na t ř i menší aplikace. P r v n í je manaže r ská aplikace, k t e rá umožňuje

spravování skupiny, včetně př idávání členů za pomoci N I Z K P K protokolu. Druhou

aplikací je aplikace člena skupiny, k t e r á umožňuje vybrán í P D F souborů k podpisu

a uložení podpisu do jejich metadat. Poslední je aplikace ověřovatele, k t e r á slouží

k ověření podp i sů vytvořených pomocí t é t o aplikace. Vedle P C aplikace byla t aké

vy tvořena aplikace mobilní telefony s operačn ím sys témem Android . J e d n á se o

aplikaci člena skupiny, kterou uživatel používá pro generování jednot l ivých podp isů

a pro výpočet N I Z K P K protokolu b ě h e m př idávání uživatele do skupiny.

Př i reálné simulaci sys tému je tedy manaže r zastoupen P C aplikací, k t e r á pro

př idání uživatele do skupiny komunikuje skrze N F C s aplikací v mobi ln ím telefonu,

ta simuluje uživatele. Tato dvě zařízení spolu spočítaj í N I Z K P K protokol a uživatel

obdrž í svou tajnou hodnotu, kterou po t é může použí t pro podepisování souborů. P ř i

podpisu si uživatel otevře P C aplikaci pro podpis, k t e rá po té mobi ln ímu telefonu

skrze N F C posílá hash souboru k podepsání . Podpis je po té spoč í tán v telefonu a

odeslán zpět do P C , kde je uložen.

Pro implementaci byl zvolen jazyk Java, a to z důvodu jeho přenosi telnost i a

využi t í v Androidu, pro k te rý byla mobilní aplikace zamýšlena. A b y byl protokol co

nejrychlejší, byly na začá tku provedeny rychlostní testy několika knihoven. Jednalo

se o knihovny Javy a jazyka C. I když byla zvolena Java jako hlavní jazyk, na t ivn í

rozhraní Javy (angl. Java Native Interface, zkráceně JNI) , umožňuje používání

funkcí jazyka C v Javě. Srovnávané knihovny pro bi l ineární párování na eliptických

kř ivkách byly M C L (jazyk C) a A M C L (Java). Ze srovnání vyšla mnohonásobně

lépe knihovna M C L , a proto byla využ i ta ve finální implementaci. Pro modu lá rn í

aritmetiku byly porovnávány knihovny G M P (jazyk C) a Biglnteger (Java). V

tomto př ípadě na mobi ln ím zařízení a na v i r tuá ln ím P C s operačn ím sys témem

Ubuntu Linux byla rychlejší knihovna G M P , avšak na P C s operačn ím sys témem

Windows byla rychlejší knihovna Biglnteger. N a obou zařízeních byla p ř idána

možnost manuá lně p řep ína t mezi možnos tmi použi t í t ěch to knihoven ve výpočtech,

a to předevš ím pro podporu j iných Unixových operačních sys témů, kde může být

G M P rychlejší. V zák ladn ím nas tavení byla ale na mobi ln ím telefonu použ i t a kni­

hovna G M P a na P C Biglnteger.

Dále práce popisuje postup při implementaci systému. P r v n í součást í je kryp­

tografické j ád ro aplikace. By lo implementováno tak, aby nebylo závislé na j iných

částech aplikace a p ř ípadně se dalo p řesunou t a použí t v dalších implementacích.

Toto j á d r o obsahuje jednot l ivé kroky protokolů. V t é t o část i je také naznačeno , jak

lze vybrané knihovny jazyka C použí t i v programu Javy.

Další část í b ě h e m tvorby sys tému byla implementace komunikačního rozhraní

mezi P C a mobi ln ím telefonem. K tomu bylo zvoleno N F C . V práci je podrobněj i

popsán způsob, jak lze toto rozhran í používat . Skládá se z část í implementace

te rminá lu , k te rý používá čtečku karet, a implementace emulace čipových karet (angl.

Host Card Emulation, zkráceně H C E) na mobi ln ím telefonu s operačn ím sys témem

Android .

Následně jsou popsány kroky pro vytvoření výsledných aplikací, k teré budou

uživatelé používat . Postup sestává z řešení uk ládán í souborů v obou zařízeních, z

tvorby grafického uživatelského rozhran í a způsobu jeho propojení se zbývajícími

čás tmi aplikace.

Celý sys tém pro skupinové podpisy byl p o t é o tes tován a byly provedeny rychlost­

ní testy všech důleži tých část í protokolu a systému. Hlavním cílem bylo zjistit, jak

se liší rychlost protokolu na různých zařízeních a zda je protokol spoči ta te lný na

těch to zařízeních v r o z u m n é m čase. P r v n í testovanou částí byl N I Z K P K protokol

použi tý pro společný výpočet m a n a ž e r a a uživatele, připojujícího se do skupiny. Zde

bylo zjištěno, že nejrychlejší konfigurací byl poč í tač s operačn ím sys témem Ubuntu

Linux používající knihovnu G M P v kombinaci s mobi ln ím telefonem. P r ů m ě r n ý

čas protokolu dosahoval v tomto př ípadě 9 sekund. Jelikož byl protokol rozdělen

na dvě komunikační fáze a část byla p o č í t á n a bez ak t ivn ího spojení, telefon musel

být nejprve na čtečce držen v p r ů m ě r u 1,2 sekundy a po t é 2 sekundy. Druhou

stále použi te lnou kombinace byl poč í tač s operačn ím sys témem Windows využíva­

jící knihovnu Biglnteger spolu s telefonem. Naopak zařízení jako Raspberry P i 4

B či chytré hodinky se ukáza la jako n e v h o d n á v tomto protokolu, a to z důvodu

nedos ta tečné rychlosti. P ř i použi t í Raspberry P i bylo n u t n é udrže t akt ivní N F C

spojení i 10 sekund. I když nebyl N I Z K P K protokol příliš rychlý, protokol se musí

provést pouze jednou pro každého uživatele, t akže se nejedná o velkou překážku.

Rychlost podepisování pomocí mobi lního zařízení byla také měřena . Samotný

podpis byl zde velmi rychlý, v p r ů m ě r u trval 7 ms na telefonu a 44 ms na chytrých

hodinkách. Nejvíce času při podepisování zabrala komunikace přes N F C . Celkově

podepisování , k teré se skládalo ze zaslání hashe od P C do telefonu, spoč í tán í pod­

pisu a jeho následné odeslání z telefonu do P C , trvalo p r ů m ě r n ě 125 ms. Algoritmus

používaný pro verifikaci podpisu byl také velmi rychlý, s ám o sobě trval na ne-

jrychlejším tes tovaném zařízení přibližně 8 ms. Čas ověření podpisu také závisel na

p o č t u revokovaných uživatelů, kdy na s te jném sys tému vzrostl o 3,7 ms pro každého

revokovaného uživatele. Celkově ověření, i s nač t en ím souboru a jeho hashováním

trvalo na nejrychlejším z tes tovaných zařízení p růměrně 150 ms.

Poslední část prakt ické implementace byla věnována použi t í N I Z K P K protokolu

pro slepé vydávání a t r i b u t ů pro KVAČ schéma. Do existující implementace KVAČ

protokolu byla p ř i dána existující implementace N I Z K P K protokolu. Ta ovšem neob­

sahovala všechny po t ř ebné část i protokolu, a musela být doplněna. Stejně tak

musela být pozměněna původn í implementace KVAČ protokolu, aby bylo možné

v n ě m použí t slepé vydávání . Rychlost t é t o implementace byla měřena na více za­

řízeních, ale bez komunikačního rozhraní . Takto modifikovaný algoritmus byl po t é

porovnán s p ů v o d n í m protokolem. Hlavním cílem srovnání bylo zjistit, jak slepé

vydávání pověření ovlivní rychlost prokazovacího (Show) a ověřovacího (Verify) al­

goritmu. Tyto algoritmy byly pouze mí rně zpomaleny o max imá lně 10 %. Největší

nevýhodou byl ale poma lý N I Z K P K protokol použi tý při vydávání pověření , avšak

podobně jako u skupinového podpisu je n u t n é jej spočí ta t pouze jednou pro každého

uživatele.

K L A S O V I T Ý , Kr ist ián. Group signature based on Secure Multi-party Computation.

Brno: Brno University of Technology, Faculty of Electr ical Engineering and Commun i ­

cat ion, Department of Telecommunicat ions, 2023, 98 p. Master 's Thesis. Advised by

M .Sc . Sara Ricc i , P h . D .

Author's Declaration

Author: Be. Krist iän Klasovi ty

Author's ID: 196068

Paper type: Master 's Thesis

Academic year: 2022 /23

Topic: Group signature based on Secure Mu l t i ­

party Computa t ion

I declare that I have writ ten this paper independently, under the guidance of the advisor

and using exclusively the technical references and other sources of information cited in

the paper and listed in the comprehensive bibl iography at the end of the paper.

A s the author, I furthermore declare that, with respect to the creation of this paper,

I have not infringed any copyright or violated anyone's personal and /o r ownership rights.

In this context, I am fully aware of the consequences of breaking Regulat ion § 11 of the

Copyright Ac t No. 121 /2000 Co l l . of the Czech Republ ic, as amended, and of any breach

of rights related to intellectual property or introduced within amendments to relevant

Ac ts such as the Intellectual Property Ac t or the Cr iminal Code, Ac t No . 40 /2009 Col l .

of the Czech Republ ic, Sect ion 2, Head VI , Part 4.

Brno

author 's signature*

*The author signs only in the printed version.

A C K N O W L E D G E M E N T

I would like to thank the advisor of my thesis, M .Sc . Sara Ricc i , P h . D . for her valuable

comments, patience and suggestions for improvements.

Contents

I n t r o d u c t i o n 16

1 C r y p t o g r a p h i c p r i m i t i v e s , p r o t o c o l s , i m p l e m e n t a t i o n b a c k g r o u n d 17

1.1 Basics of asymmetric cryptography 17

1.2 El l ip t ic curve cryptography 17

1.2.1 Operations on elliptic curve 18

1.2.2 Bilinear pairings on elliptic curves 20

1.3 Weak Boneh-Boyen signature 21

1.4 Schnorr's protocol 22

1.5 Homomorphic encryption 23

1.5.1 Paillier cryptosystem 24

1.6 Group Signatures 25

1.7 Attribute-based credentials 26

1.7.1 Keyed-Verification Anonymous Credentials 26

1.8 Implementation background 28

1.8.1 Java 28

1.8.2 C language 29

1.8.3 Andro id 30

1.8.4 Near-field communication 31

2 G r o u p s i g n a t u r e w i t h t w o - p a r t y c o m p u t a t i o n a n d b l i n d i ssuance

for a t t r i b u t e - b a s e d c reden t i a l s 33

2.1 N I Z K P K protcol 33

2.1.1 Setup phase 34

2.1.2 Two-party signature 34

2.2 Group signature 37

2.2.1 Revocation and opening of the signature 38

2.3 Using the N I Z K P K in K V A C 39

2.3.1 Modifying the issue algorithm 39

2.3.2 Modifying the Show and ShowVerify algorithms 40

3 P r a c t i c a l i m p l e m e n t a t i o n 42

3.1 Choice of a platform and libraries 42

3.1.1 Comparison of Java and C libraries on an Android device . . . 43

3.1.2 Comparasion of Java and C libraries on a desktop P C 46

3.2 Implementing the cryptographic core 49

3.2.1 Integrating the libraries into a project 49

3.2.2 Implementation of N I Z K P K 52

3.2.3 Implementation of the group signature algorithms 54

3.3 Implementing communication between the devices 56

3.3.1 Terminal on P C 56

3.3.2 Implementation of H C E on Android 58

3.4 File managing on the devices 61

3.4.1 Files in the P C application 61

3.4.2 Storing application data on an Andro id device 64

3.5 Bui ld ing the applications with G U I 65

3.5.1 G U I and final application on P C 65

3.5.2 G U I on Android 68

3.6 Benchmarks of the implemented group signature protocol and the

applications 69

3.6.1 Benchamrks of the N I Z K P K protocol 70

3.6.2 Benchmarks of the group signature 75

3.7 Implementing the N I Z K P K into K V A C 77

3.7.1 Comparing the modified K V A C wi th the original version . . . 78

C o n c l u s i o n 80

B i b l i o g r a p h y 82

S y m b o l s a n d a b b r e v i a t i o n s 88

A S t r u c t u r e o f the a r c h i v e w i t h the source files 90

B M a n u a l for t he a p p l i c a t i o n s 91

B . l P C application 91

B . l . l Installing the P C application on Windows 91

B.1.2 Installing the P C application on Linux 91

B.2 Installation of the mobile application 93

B.3 Using the P C application wi th the Andro id application 94

List of Figures
1.1 Point addition on an elliptic curve 19

1.2 Scheme of Schnorr's interactive protocol 22

1.3 Structure of an A P D U command and A P D U response 32

3.1 State diagram of the N I Z K P K functions calls 53

3.2 Structure of the choose A I D command 56

3.3 Checking the password for the file 63

3.4 The main window of the application 66

3.5 The manager's application 67

3.6 The signer's application 67

3.7 The verifier's application 68

3.8 G U I of the Andro id phone application 69

3.9 N I Z K P K protocol with N F C communication 71

3.10 Times of manager's pre-computation on different devices 72

3.11 Times of the N F C transfers and manager's computation during the

active protocol on different devices 72

3.12 Times of the mobile device's computations during the N I Z K P K pro­

tocol for a phone and a smartwatch 73

3.13 Total time of the interactive part of the protocol for different combi­

nations of devices 74

3.14 Time consumption during the signing algorithm in the application. . 75

3.15 Time needed to check the revocation depending on the number of

revoked users in the group 76

3.16 Time it takes to compute the Show algorithm on mobile devices. . . . 79

3.17 Time it takes to compute the Verify algorithm 79

B . l The N F C settings on a X iaomi phone 94

B.2 The main window of the application 95

B.3 The register and login windows of the P C application 95

B.4 The manager application 96

B.5 The mobile application during the protocol 97

B.6 The client's signing application 98

B.7 Result of the verification process 98

List of Tables
3.1 Comparison of M C L and A M C L computation times (in \x s) on an

Andro id device 44

3.2 Comparison of Biglnteger and G M P computation times for addition

and multiplication on an Andro id device (times in /xs) 45

3.3 Comparison of Biglnteger and G M P computation times for modular

exponentiation and prime generation on an Andro id device (times in

/is) 45

3.4 Comparison of M C L and A M C L computation times (in \x s) on a

Windows P C 46

3.5 Comparison of Biglnteger and G M P computation times for modular

exponentiation and prime generation on a Windows P C (times in ms). 47

3.6 Comparison of M C L and A M C L computation times (in \i s) on Linux

V M 48

3.7 Comparison of Biglnteger and G M P computation times for modular

exponentiation and prime generation on Linux V M (times in ms). . . 48

Listings
3.1 Android .mk file in jn iLibs 50

3.2 Passing the Android .mk to Gradle 51

3.3 ModPow function in C for Java 51

3.4 Compile command for library using G M P in Java for Linux 52

3.5 The function to initialize connection with a mobile device 57

3.6 Modification to the AndroidManifest .xml 58

3.7 Content of apduservice.xml file 59

3.8 Creation of a receiver in the MyHostApduService class 60

3.9 Saving the group signature to the metadata 63

B . l The setup.sh script to install the program wi th all the dependencies . 92

Introduction
In today's world, anonymity in cryptography is more and more desirable. There are

several cryptographic tools that provide different kinds of anonymity while keeping

the security features of the scheme. One of these tools is group signatures [1].

These signatures allow users from some group administered by a manager to create

anonymous signatures, that cannot be easily traced back to them. The verifier can

check the validity of the signature and the user's affiliation with the group, but wi l l

not know who generated the signature. These signatures can be used for signing

documents on behalf of a group or for creating a room access system. In the latter,

users cannot be tracked in their access [2].

The problem is that in several signatures, the group manager issues the secret

values used in the signature to the users. Therefore having knowledge of the user's

secret key allows a malicious manager to sign on behalf of a user. This problem can

be fixed by adding a multi-party computation, that wi l l keep the user's secret value

secret and be not shared wi th the manager.

The aim of this diploma thesis is the implementation of a group signature scheme

that uses a two-party computation algorithm based on a N on-Interactive Zero-

Knowledge Proof of Knowledge (N I Z K P K) [3], that uses the Paillier cryptosystem

[4] to compute a secret, only known by the user. The secret wi l l then be used to

sign a message wi th a group signature based on the Weak Boneh-Boyen signature

[5]. It wi l l also be shown how the two-party computation can be used to implement

blind issuance into an attribute-based credential system such as Keyed-Verification

Anonymous Credentials (K V A C) [6]. W i t h bl ind issuance, the issued credential is

hidden from the issuer.

The practical applicability of the group signature is shown through an application

allowing document signing. A library with the crypto core of the system has been

developed in a way that it is easily managed and exported. Furthermore, both group

signature and attribute base credential schemes have been benchmarked on multiple

devices to show how much time it takes to run it in a real environment, for the group

signature this also includes communication overhead.

16

1 Cryptographic primitives, protocols, im­
plementation background

This chapter describes the basics of the cryptographic primitives, systems, and pro­

tocols, that are needed in this implementation of both the group signature based on

secure multi-party computation and Weak Boneh-Boyen signature and the K V A C

blind issuance implementation. This chapter also introduces the implementation

background i.e., the programming languages, Andro id Operating System (OS), and

libraries considered for the implementation.

1.1 Basics of asymmetric cryptography

Asymmetric cryptography [7] is the main building block of most of today's systems

that use cryptography. The main reason we use cryptography in the first place is,

that we want to make some data unreadable for a th i rd side during transmission

(confidentiality), so we have two main operations in cryptography - encryption and

decryption.

Whi le in symmetric cryptography, there is one key for encryption and decryption,

in asymmetric, there are two keys. One is called the private key and is used for

decryption and signing and the other is the public key, used for encrypting and

verifying a signature. There is always some kind of relationship between these two

keys, the private key should never be published or sent, however, the public key can

be freely shared wi th everyone. Having these two keys instead of one shared secret

key as in symmetric cryptography solves the issue of sharing a secret key [8].

Asymmetric cryptosystems are based on N P problems. These problems are easy

to solve wi th the knowledge of some secret values but almost impossible to solve

without them. The most widely used problems are the Discrete Logarithm Problem

(D L P) and integer factorization problems. The factoring problem can be simply

described as that, it is easy to mult iply two prime numbers, but it is hard to find

these two numbers if you only have the product. The discrete logarithm problem

relies on that, it is easy to compute the power of a number in a multiplicative group,

but it is hard to find a logarithm of a number in a multiplicative group. This of

course depends on the group and the size of the number.

1.2 Elliptic curve cryptography

El l ip t ic curve cryptography [9] is part of asymmetric cryptography and it is used

to create public key cryptosystems. This part of cryptography relies on the Elliptic

17

Curve Discrete Logarithm Problem (E C D L P) , meaning it is nearly impossible to

calculate the discrete logarithm of a random element on an elliptic curve if we only

know the generating point of the curve. The complexity of this problem is given by

the size of the curve.

Cryptography considers elliptic curves with points in field F p , where p is prime.

Whi le systems based on modular arithmetic usually work in multiplicative groups,

elliptic curve cryptography works in additive groups. In practice, an elliptic curve

can be seen as a set of points that satisfies a specific equation and a point at infinity.

The most used equation is the short Weierstrass form, which is displayed below in

Equation 1.1.

One of the biggest advantages of elliptic curves compared to modular arithmetic is,

that much smaller keys can be used to achieve the same level of security. Also, the

operations on elliptic curves are usually much faster. Fortunately, every algorithm

that relies on D L P in a multiplicative group can be transformed to work on elliptic

curves.

In practice, a curve is chosen to be used in an instance of a protocol, and this

curve is defined by a set of public parameters, that should be known to a l l the

participating parties [10]. Parameters defining an elliptic curve E(Fp) are: a number

p specifying the finite field F p , elements a, b specifying Equation 1.1, a point G stating

a generator of the cyclic subgroup, a prime n being the order of G, and a cofactor

h, where h = \E(Fp)\/n, wi th | P (F P) | being the number of points of the curve.

Changing the form of the curve, i.e. its equation, has an impact on the performance

and on the security features [11].

1.2.1 Operations on elliptic curve

There are two main operations that can be done on elliptic curves, the addition of

two points and mult iplying a point by a scalar. Bo th these operations are used in

cryptographic implementations [12].

Point addition

There are multiple possible cases that can occur during the addition of points P and

Q on an elliptic curve. Either P and Q are different points, they can also be the

same point (P = Q), or Q can be the opposite of P.

Addi t ion of different points P + Q = R can be seen in Figure 1.1 on the left

side. Geometrically such addition is done by drawing a line through the points

P, Q, finding the thi rd point of intersection wi th the curve (-R), and then finding

y2 = x 3 + ax + b (mod p)

18

the point R by reflecting —R in the x-axis. In the case of addition where P = Q

(also called doubling), a tangent to the curve at point P is drawn, and the point R

is found in the same way i.e. as a reflection of the point of intersection. Doubling

can be seen in Figure 1.1 on the right side. In the case of adding a point to its

opposite, the line between the points wi l l intersect the curve at infinity.

-4 1 - 2 0 2 4

Fig . 1.1: Point addition on an elliptic curve.

In practical implementations, addition is done by calculating a gradient between

the points. The calculation of P(x\,yi) + Q(x2,y2) = R{xz,yz) can be seen in

Equation 1.2 below.

19

s = (yi -V2)/(xi -x2)

x 3 = s2 • X\ - x2

y3 = s • (x i - x2) - yi

(1.2)

Multiplying a point with a scalar

Mult ip ly ing a point by scalar on an elliptic curve is denned as multiple additions of

the point with itself. For example, if we would like to compute 4 P we could compute

it as 4 P = P + P + P + P . This approach would be very inefficient for big numbers.

This computation can be sped up wi th the fast exponentiation algorithm. For

instance, the multiplication of 8P could be done as 2P = P + P , 4 P = 2 P + 2 P 8P =

4 P + 4 P , this way only 3 additions are needed instead of 7.

In cryptography, multiplication is used to create cryptographic primitives uti l iz­

ing the E C D L P . Because the multiplication is done modulo p, it is almost impossible

to find k, such that k-G — P, knowing only G and P (considering big enough k and

p). This property can be used to create a pair of private and public keys, where P

is the public key and k is the private key.

1.2.2 Bilinear pairings on elliptic curves

El l ip t ic curve bilinear pairing [13] is a bilinear map G i x G 2 G (, that allows us

to map a pair of points (one in G i , one in G2) to a target group Gt- Usually G i is a

subgroup of E(FP), G2 is a subgroup of E(Fpk), and Gt is a multiplicative subgroup

of ¥* k , wi th k being the embedding degree of the curve. Basically, points in G 2 are

just different representations of the points in G i .

There are two properties that the pairing must satisfy, called bilinearity and

non-degeneracy. The equations that ensure bilinearity are shown in Equation 1.3

(note that e stands for the paring function). The non-degeneracy, means that if

e(U, V) = 1 for all V, then U = 00, and if e(U, V) = 1 for all U then V e nE(Fp)

[14].

e(U1 + U2,V) = e(U1,V)-e(U2,V)

e(aU, bV) = e(U, V)ab = e(abU, V) = e(bU, aV)

Not a l l curves are suitable for billinear pairings, the curves suitable for it are

called pairing-friendly curves. Two widely used types of these curves are Barreto-

Naehrig (BN) and Barreto-Lynn-Scott (BLS) curves. B N curves have embedding

degree 12 and B L S curves either 12 or 24. There are also different kinds of pairings,

20

the main three are Wei l , Tate, and Ate pairings. Each is a different way to compute

the pairing, but Ate is the most commonly used one, as it has the best performance.

There are many uses for pairings in cryptography [15], for example, identity-based

encryption, signatures, attributed-based encryption, and zero-knowledge proofs.

1.3 Weak Boneh-Boyen signature

One of the schemes uti l izing elliptic curve pairings is the weakly secure short sig­

nature scheme (or weak Boneh-Boyen signature) presented in [16]. This scheme is

unforgeable under a weak chosen message attack.

Let G\ and G2 be a bilinear group pair, where both groups have the same number

of elements p, e a pairing that maps all the pairs to Gt, and m the message (where

m is an element of Z p) . The scheme has three steps: key generation, signing, and

verification.

The key generation is shown in Algor i thm 1, the signature algorithm is then

described with Algor i thm 2 and the verification is shown in Algor i thm 3. How the

bilinear property can be used to prove that the equality e(a, v + m • g2) = z wi l l hold

for a legit signature can be seen in Equation 1.4.

A l g o r i t h m 1 K e y generation
1: Consider g1 G G i and g2 G G2

2: Generate private key x G# Z p

3: Compute public key v = x • g2 G G2

4: Compute z = e(gi,g2) E Gt

5: Store x, post public values par(g1, g2, z)

A l g o r i t h m 2 Sign (x, m, par)

1: Compute signature of m G Z p as a = g\ • l/(x + m) G <Gi

2: l/(x + m) is computed as a multiplicative inverse of (x + m) mod p.

3: Specify that 1/0=0, so that if x + m = 0 mod p, we have a — 1 G <Gi.

A l g o r i t h m 3 Verify (a,par)

1: Check the equality e(a, v + m • g2) = z

2: If the equality holds or if a = 1 and v + m • g2 — 1 the signature is valid.

21

e(a,v + m • g2)

e(gi 1—, x- g2 + m- g2)
x + m

1 • x + m
. x + ms

e{9i,92 : ,
x + m

g2 • (x + m)) ; i .4)

1.4 Schnorr's protocol

Shnorr's protocol is one of the so-called Sigma protocols [7]. Sigma protocols are

based on zero-knowledge protocols. W i t h these protocols, one (usually called a

prover) can prove the knowledge of a secret value without revealing it to the verifier.

This secret value is usually a private key. The output of such a protocol is just that

the prover's statement is true or false, nothing else is revealed.

During Schnorr's protocol, the prover tries to prove the knowledge of the discrete

logarithm x of an element h = gx G E [Z 9], where E is an elliptic curve of the system.

In practice, h is the public key, and x is the private one. The protocol can be either

interactive or non-interactive. In the interactive version, three messages must be

exchanged between the prover and the verifier (shown in Figure 1.2). In the non-

interactive proof, only one message is sent from the prover to the verifier [17].

Prover

X , h = g x

Verifier

r G i ? Zq

c = g r

z = r + e -x

e £ R Zq

~* g z = c - h €

Fig . 1.2: Scheme of Schnorr's interactive protocol.

A s mentioned, Schnorr's protocol can be modified to create a non-interactive

zero-knowledge proof, where only one message is needed. For this, The Fiat-Shamir

22

heuristic technique is used. This technique allows us to convert an interactive proto­

col into a non-interactive one. That is done by the value of a hash function instead

of the challenge generated by the verifier. Since there is no challenge this scheme

could be susceptible to replay attacks, therefore a random value is usually generated

by the prover and used in the hash function, these random values then might be

stored on the verifier's side, so that the values can't be used again. Algor i thm 4

shows how such a proof is computed, Algor i thm 5 then shows the verification.

A l g o r i t h m 4 Non-interactive proof A l g o r i t h m 5 Non-interactive proof

computation (g, x, h — gx) verification (g, h = gx,n = (u, e, z))

1: Generate r eR % 1: e = H(g,h,u)

2: u = gr 2: gz = u • he

3: e = H(g, h, u)

4: z = r + e • x

5: r e t u r n n = (u, e, z)

This non-interactive proof can be then also used as a signature scheme. The only

modification is the addition of the message to the hashed values: e = H(g, h, u, m).

The message logically must be then sent to the verifier alongside the other values

(IT = (u, e, z, mj).

1.5 Homomorphic encryption

Homomorphic encryption [18] allows for specific types of computations to be done

on encrypted data as if the data were not encrypted. These operations, usually

being addition and multiplication wi l l not reveal the data itself, but the result after

decrypting wi l l be the same as if the operation was done on plain text. This type

of encryption can be used in cloud computing, for example when a third party is

analyzing or doing computations wi th some private data of its users, and the users

want the data to still be private [19].

There are three types of homomorphic encryption:

• P a r t i a l l y h o m o m o r p h i c e n c r y p t i o n : A n operation (either addition or mul­

tiplication) can be done on the ciphertext infinite times, while the other one

cannot be done.

• S o m e w h a t h o m o m o r p h i c e n c r y p t i o n : Bo th operations of addition and

multiplication can be done on the ciphertext, but only a l imited number of

times. Limi ted to evaluating low-degree polynomials over encrypted data.

• F u l l y h o m o m o r p h i c e n c r y p t i o n : Bo th operations of addition and mult i­

plication can be done an infinite number of times on the ciphertext.

23

In practice, partially homomorphic schemes are easy to design (compared to the

other ones) but can be used only in some applications. These schemes can be used

in some multi-party computations. Somewhat homomorphic schemes are harder to

create, also it is usually slower. The most complicated to create but probably the

most desirable are fully homomorphic schemes. There are some proposed schemes

that are fully homomorphic (e.g., Craig Gentry's scheme based on lattices [20]),

while these schemes theoretically work, they are too slow for use in the real world.

1.5.1 Paillier cryptosystem

Paillier cryptosystem [4] is an additive partially homomorphic cryptosystem, mean­

ing it can be used to add ciphertexts an unlimited number of times, but not to

multiply ciphertexts. However, it can be used to mult iply a ciphertext with a plain­

text.

It was invented by Pascal Paillier in 1999 and it is based on public key cryp­

tography. It uses the Decisional Composite Residuosity Assumption (D C R A) . The

definition of this problem is that: given a composite n and an integer z, it is hard

to decide whether there exists y such that: z = yn modn2. The fact described in

equation 1.5 is used in the cryptosystem [21].

(± + n) x - l A 2 n K>
= xmodn (1.5)

n
For the purposes of the description of the cryptosystem usually, a function L(x) is

defined as L(x) = note that since n divides x — 1 this is an arithmetic division.

The Paillier cryptosystem consists of three phases: key generation, encryption,

and decryption. The set-up of the Paiilier cryptosystem is depicted in Algor i thm

6. When the parameters are generated a message can be encrypted as described in

Algor i thm 7. The ciphertext can then be decrypted as shown in Algor i thm 8.

A l g o r i t h m 6 Paillier set-up
1: Generate random primes p, q, check that gcd{p • q, {p — 1) • (q — 1)) = 1 (gcd

stands for greatest common divider)

2: n = p • q

3: A = lcm((p — 1) • (q — 1)) {Icm stands for least common multiple)

4: Generate g ER Z n 2

5: Check that n divides the order of g by checking the existence of the mult i­

plicative inverse \i = (L(gx modn2))-1 modn

6: Share public key (n, g)

7: Store private key (A, /x)

24

A l g o r i t h m 7 Encrypt ion (m, public key(n, g))
1: Consider a message m £ Z „
2: Generate r Z n

3: Compute the ciphertext as: c = g m • r™ mod n 2

A l g o r i t h m 8 Decryption (c, n , private key(A,//))
1: Consider a ciphertext c e Z n 2

2: Compute the message as: m = L(cx mod n2) • \i mod n

Homomorphic properties of Paillier cryptosystem

The first homomorphic property of the Paillier cryptosystem is the homomorphic

addition of plaintexts. From Equation 1.6 it is evident that the product of two

ciphertexts wi l l decrypt to the sum of the messages. Equation 1.7 then shows how

a ciphertext can be multiplied wi th a plaintext message to get the sum of the two

messages when decrypted.

Dec(Enc(mi,ri) • Enc(m2,r2) mod n2) = mi + m 2 mod n (1.6)

Dec(Enc(mi, r\) • gm2 mod n2) = mi + m2 mod n (1.7)

The second homomorphic property of the Paillier cryptosystem is the homomorphic

multiplication of plaintexts. Meaning that by raising a ciphertext to a plaintext

message, we get the product of the two messages after decrypting, this is shown in

Equation 1.8. However, there is no known way to compute the encrypted product

of two encrypted messages.

Dec(Enc(mi,ri)m2 mod n2) — mi • 777.2 mod n (1.8)

1.6 Group Signatures

Group signatures [1] are signatures that provide anonymity for signers. Usually,

there is a group of signers and a manager or some kind of authority. The singers

have their own secret used for signing, this secret is computed with some secret value

of the authority. Then if a signer sings a message a verifier can verify if the message

was signed by someone from the group, but he wi l l not be able to tell by who. In

some of the systems, the authority can trace who signed the message by using a

special trapdoor. Some systems also support revocation, so if the authority wants

to remove the ability to sign the messages from a signer it can be done without

affecting the other signers [5].

There are four requirements each group signature scheme should fulfill [22]:

25

1. F u l l T r a c e a b i l i t y : A n y malicious group of cheating signers and a cheating

authority cannot be able to make a valid signature that wi l l look like a signa­

ture created by a legit group member who did not actually produce it.

2. F u l l A n o n y m i t y : A n y verifier without access to the group authority, who

is provided with message m and two signatures from group members i and j,

cannot tell who signed the message wi th better certainty than just guessing.

3. F o r w a r d S e c u r i t y : Members of a group that left the group can no longer

sign messages on behalf of the group.

4. U n l i n k a b i l i t y : A n y verifier without access to the group authority, who is

provided wi th messages m\ and m 2 , and two signatures S\ and s2, where the

signatures are valid, cannot tell if the signatures were generated by the same

signer or by two different signers wi th better certainty than just guessing.

1.7 Attribute-based credentials

Attribute-based credentials are a cryptographic mechanism that provides a way to

authenticate using some issued attributes. The main advantage of such a scheme is

the selective disclosure of attributes, meaning it is possible to only publish some of

the attributes during a verification while keeping the other attributes hidden. These

attributes can be for example personal information such as age, name, nationality,

or something like a vaccine validity.

In these schemes, there are usually three to four main entities. Set of issuers,

that has the power to issue credentials for the users, users that want to be able to

selectively prove the ownership of their attributes, a set of verifiers that can verify

the ownership proofs of the users, and in most revocation authority that can

revoke users' credentials [23].

1.7.1 Keyed-Verification Anonymous Credentials

K V A C scheme introduced in [6] is one of the implementations of attribute-based

credentials. It focuses on speed and is aimed at smart cards. The scheme uses the

fact that in systems such as public traffic the issuer and verifier are the same entity

and therefore can share the private key used to issue the credentials. This key needs

to be also used in the verification to make the computation on the client side as

fast as possible and avoid using bilinear pairings. The scheme is faster than similar

state-of-the-art implementations as shown in [6].

The scheme uses an algebraic M A C introduced by the authors. However, K V A C

does not support bl ind issuance in the original design, meaning the issuer knows how

26

the credential he issues looks, and the issue algorithm must be done over a secure

channel.

The scheme consists of 5 main algorithms: The Setup function outputs the sys­

tem parameters par and is parameterized by security parameter 1K. The CredKeygen
function generates the issuer private key sk and issuers parameters ipar. Issue takes

as input the issuer's private key and attributes (mi,...mn) and outputs credential

cred as shown in Algor i thm 9.

A l g o r i t h m 9 Issue (sk = (xo, ...i„), (m i , m „))
1: The issuer receives attributes (mi , ...mn).

2: The issuer computes:
i

o xo+-m1x1 + ...+m„x„
d : a — 9i
A- n — rrXl n = nX2 rr = rrXn

•±. uxi u , uX2 u , uXn u
5: The issuer sends creal = (a, a x i , ...,aXn) to the user.

The Obtain function of the scheme lets the user check the validity of the creden­

t ial and the attribute value. The Show algorithm allows the user to prove ownership

of his attributes wi th selective disclosure. The ShowVerif y algorithm, is used by

the verifier to check the validity of the proof provided by the user. The Show and

ShowVerif y algorithms are shown in Algori thms 10 and 11 respectively, the param­

eter D in the algorithms stands for the set of disclosed attributes.

A l g o r i t h m 10 Show ({mj)? = 1 , a, {aXi}?=1, D))
1: The verifier generates and sends nonce Z g to the user.

2: The user computes:

3: r, PriPmitD

4: a = ar

6: c = %(D, {mi)ieD, t, ft, par, ipar, nonce)
7: sr = pr + cr

8: \smi = Pnii ~ CWli)i£D
9: The user sends proof = (ft,t,sr, (s m i) ^ D , (miji&D, D) to the verifier.

A l g o r i t h m 11 ShowVerify ((xj)"=0, proof)
1: The verifier checks that:

2: ft ± 1 G

3: c = %(D, {rrii)i(zD, t, ft, par, ipar, nonce)
4: t = qSr • a~c'X0+^i^Xi-Sm^-T,ieD(xi-mi-^

27

1.8 Implementation background

This section describes the technical background of the implementation. That being

the languages and libraries and technologies used as well as the Andro id OS.

1.8.1 Java

Java [30] is an object-oriented programming language first released in 1995 by Sun

Microsystems. In 2009 Oracle Corporation bought the company and thus is now

the main developer of Java. The newest version of Java is Java S E 19 released on

September 20, 2022.

The language is designed to have fewer implementation dependencies than other

languages. Java is widely used in computer applications, mobile development, data

centers, etc. It is considered to be fast and secure, so it is a good match even for

cryptographic applications. Since Java is so widely used, there are a lot of well-tested

libraries for it.

Since the Java code is run wi th Java Virtual Machine (J V M) , which converts

Java bytecode into machine language, the code is platform-independent. Java also

has automatic memory management provided by the so-called garbage collector. It

also supports multi-thread programming, needed in more performance-heavy appli­

cations. Java Development Kit (J D K) is a software development environment used

for creating Java applications, any programmer wanting to write in Java language

needs to have the J D K installed. The J D K converts the written code into Java

bytecode. Java Runtime Environment (JRE) is software that allows a device to run

Java applications. It contains libraries, loader class, and the J V M . The J R E must

be installed on a machine that wants to run Java applications. Note that the J R E

does not contain any development tools [31].

Biglnteger library

Biglnteger [32] is an immutable arbitrary-precision integer library. The library al­

lows the developer to use numbers much bigger than normal integers and provides

methods for computations wi th these big numbers. These methods are the opera­

tions for modular arithmetic, prime generation, prime testing, comparison methods,

and bit manipulation. The object of Biglnteger is static, therefore during the oper­

ations, the result must always be assigned to a variable. Internally the class uses an

array of integers for processing. For using this library in Java no extra library jar

file is needed. Only a simple import j a v a . m a t h . B i g l n t e g e r ; call is needed in the

class that wi l l use its methods.

28

AMCL library

Apache Milagro Crypto Library (A M C L) [33] is a crypto library that provides func­

tions for symmetric and asymmetric encryption, hashing, and elliptic curve cryp­

tography including bilinear pairings. It also includes its own B I G type for storing

big integers. The library can be used wi th multiple programming languages (Java,

C, C + + , Python, JavaScript, etc.), but the Java version wi l l be considered in this

work. Unlike the Biglnteger library, this library must be added to a project wi th a

jar file and added as a dependency, or the source code of the library must be added

[34].

The library is not susceptible to the side-channel attack and is completely self-

contained, meaning it does not need other dependencies to run, other than a random

number generator. The library is available under the Apache-2.0 license. The A M C L

supports multiple elliptic curves, these curves include B N curves, B L S curves, N I S T

curves, and many others.

1.8.2 C language

The C language [35] is a procedural programming language first introduced in 1972

by K e n Thompson and Dennis Ritchie. Initially, it was used for wri t ing operating

systems, it was used in the development of the Un ix operating system. The main

advantages of C are speed and low-level memory access, meaning the developer must

take care of the memory management in contrast to Java's garbage collector, it uses

a C compiler to compile the code into machine code that can be run on a processor.

Since this language is actively used for almost 50 years there are a lot of well-

tested libraries and source codes of all kinds. Since the code supports low-level

memory access with pointers it can be much better optimized compared to other

high-level languages. Unlike Java, a C application is not platform-independent and

must be compiled separately for each processor architecture.

GMP library

The GNU Multiple Precision (G M P) [36] arithmetic library is a library for arbitrary

precision arithmetic. It works with signed integers, rational numbers, and floating­

point numbers. The library aims at uses in cryptography, research, and internet

security. The library was first released in 1991, it is primarily written in C and

uses the G N U L G P L v3 and G N U G P L v2 licenses, meaning it cannot be used in

proprietary software. The main emphasis of the library is on speed.

29

MCL library

M C L [37] is a library providing fast functions needed in paring-based cryptography.

The library was created and is updated by Shigeo Mitsunari . The library supports

4 B N curves and one B L S curve. The library uses the BSD-3 License. The core of

the library is written in C but the author provides instructions for compiling the

library and using it wi th Java, JavaScript, or Python. For Java, the author even

provides classes wi th bindings to the C functions.

1.8.3 Android

Andro id OS [38] is a Linux-based operating system. Andro id is primarily used in

mobile phones, tablets, smart T V s , and cars, its modified version Wear OS is used

in smartwatches. Andro id is open-source and uses the Apache v2 license, the main

developer of Andro id is Google. The system is written in C and C + + and its User

Interface (UI) is written in Java. Andro id was first released on September 23, 2008,

its latest version Andro id 13 was released on August 15, 2022.

For the development of Andro id applications, Andro id Studio Integrated Devel­

opment Environment (IDE) is usually used. The applications are primarily written

in Java or Ko t l in . K o t l i n [39] is a programming language developed by programmers

in I D E Jet Brains specifically for Android . K o t l i n functions very similarly to Java

internally, but externally it should be easier to use as it does not require type assign­

ments, and the developers do not have to worry about catching exceptions. Whi le

K o t l i n is very popular, many developers wi l l use Java, since there are more code

samples, the code is easily ported to other platforms, and learning a new language

does not make sense to them.

Android NDK

Andro id Native Development Kit (N D K) [40] is a tool that allows for C or C + +

code to be run on Andro id devices. The N D K is used in applications where fast

calculations provided by C language are needed. This tool can be used in Andro id

Studio since version 2.2. for compiling C code into a native library wi th the help of

Gradle.

One way of running C code on Andro id is by creating a native C + + project in

Andro id Studio and writ ing functions to an automatically created native-lib.cpp file

and then calling the functions through Java Native Interface (JNI). This is a very

complicated approach as the developer must take care of all type conversions and

library dependencies. Some libraries take care of this for the developer by providing

Java classes that call functions in the compiled C library. This way the developer

30

only adds the compiled library and the Java classes to the project and can use all

the functions of the library in Java wi th the advantage of the speed of C language.

1.8.4 Near-field communication

Near-Field Communication (N F C) [24] is a wireless communication technology that

allows two devices to communicate wi th each other at a very short range. The

standards of the technology are specified by N F C Forum [25]. One of the devices

is the master active device called the terminal, while the other is called a tag. The

tag is usually a passive device that can be powered from the terminal, this can be

for example a card. A passive tag communicates by modulating the electromagnetic

field broadcasted by the terminal. The tag can also be an active device for example

a mobile phone, in that case, it communicates actively by alternating the broadcasts

wi th the terminal. The maximum transfer speed of N F C is about 424 kbi t /s , which

is rather slow, but the slow speed is balanced by a very fast and easy set-up.

There are three main modes the devices use when communicating through N F C

[26]. The first mode is reader/writer mode, in this mode, the device is usually

a terminal or a phone that powers an N F C tag and then reads the information

transmitted from this tag. The second mode is peer-to-peer, in this mode, two

devices communicate actively wi th each other using N F C and can transfer data

of small size. The final mode is card emulation, this mode allows devices such as

smartphones or smartwatches that support this technology to act like an N F C tag.

But since these smart devices have much bigger computational power than a simple

card, this technology can be used to construct more complex systems using N F C .

Host card emulation

Host Card Emulation (H C E) [27] is a technology that allows supported mobile devices

to act as an N F C tag using a software solution. O n Andro id devices use of H C E is

allowed for Andro id OS version 4.4 and higher. The card can either be emulated on

the C P U or with the use of a secure element. However, the secure element cannot

be accessed by regular applications on a non-rooted phone and is only available to

Google and its partners' applications [28].

The protocol a device using H C E uses to communicate with a terminal is called

Application Protocol Data Unit (A P D U) protocol. The protocol and the structure

of the A P D U messages are specified in I S O / I E C 7816-4. The terminal (usually a

card reader) sends A P D U commands to the phone and the phone can then respond

wi th predefined responses. A s a phone is much more powerful than a simple smart

card, these defined responses can also contain complex computations. When using

this protocol on an Andro id device, the application using it must have specified a

31

unique Application Identifier (AID) . This A I D is used by the terminal to construct

a S e l e c t AID command to initiate communication wi th the desired application.

The structure of an A P D U command is shown in Figure 1.3. The command is

divided into multiple fields. The first C L A field specifies the class of instruction and

is represented by one byte. The second field (INS) is used to determine the code of

an instruction, this field can be specified for each application, the same as the next

two bytes (P I , P2) specifying the parameters of the instruction. These four fields

are mandatory in each A P D U command. The L c field contains information on how

many bytes the D A T A field holds. For messages shorter than 255 bytes this field is

represented by one byte, but in implementations that support data size of up to 65

535 bytes, the field is represented by three bytes, where the first is 0x00. Next is the

D A T A field that carries the data from an application. The last Le field specifies the

size of the data that is expected from the responding device in its data field. The Le

field can either be one byte long, two bytes if the extended three-byte Lc field was

used, or three bytes if no data were sent by the command but more than 255 bytes

are expected back. The Lc , D A T A , and Le fields are optional. The A P D U response

contains an optional D A T A field for the application data and two bytes SW1 and

SW2. These bytes contain the information about the processing of the command,

for success bytes 0x90 0x00 are used [29].

APDU command

CLA INS P1 P2 Lc DATA Le

APDU response

DATA SW1 SW2

Fig . 1.3: Structure of an A P D U command and A P D U response.

32

2 Group signature with two-party computa­
tion and blind issuance for attribute-based
credentials

This chapter describes individual parts of the group signature scheme that was

implemented as well as the modified K V A C scheme that supports bl ind issuance.

The group signature scheme can be used for creating signatures, without the need

to share private keys between the entities. This scheme consists of two main parts.

The first one is the N I Z K P K protocol to compute a secret value that can be then

used in a signature, the second one is the group signature scheme itself. The same

N I Z K P K protocol can also be used to implement bl ind issuance into the K V A C

scheme.

In the group signature scheme, there are three main entities: manager, senders,

and verifiers. The manager is a trusted party, and he can create a secret value

wi th a sender, that the sender can then use to sign messages. This secret value is

created from the manager's and the sender's private keys. Thanks to the scheme

the manager does not know the signer's secret key and vice versa. The computed

value is only known to the signer. A verifier can then check the signature wi th only

the knowledge of the public key of the group manager. The verifier wi l l not be able

to tell which sender in the group signed the message, but he wi l l be able to verify

if the signature is legit for the group. The manager of the group can also open the

signatures and determine which sender created the signature if the need occurs. It

is also possible to revoke users from the group by publishing a black-list of revoked

users.

In the following algorithms, the notation a -f*- Z„ means that a is sampled

uniformly at random from Z n . Proof of Knowledge (P K) protocols are described by

using the notation introduced by Camenisch and Stadler (CS) [41]. The protocol

for proving the knowledge of discrete logarithm of c wi th respect to g is denoted as

P K { o ; : c = ga}. The function e(-) stands for a pairing function, and % for a secure

hash function. The notation \a\ means the bit length of a.

2.1 NIZKPK protcol

The group signature protocol needs a two-party algorithm to compute the value

a = g1/iski+skm) ^ w i t h o u t revealing the secret values ski (user's private key) and skm

(manager's private key). This can be done by using a N I Z K P K introduced in [3].

This algorithm uses Paillier encryption to jointly compute the value of a while also

33

generating proofs of knowledge of the values used in the two-party computation by

both sides. The N I Z K P K algorithm can be divided into two main parts, the setup

phase, and the two-party signature.

2.1.1 Setup phase

During the setup phase, the manager generates the parameters needed in the com­

putations, alongside a secret value <f>(n) = (p— 1) • (q — 1), that is used for decryption

on the manager's side. The setup phase can be seen in Algor i thm 12. The first mul­

tiplicative group generated in Steps 2-4 is mainly for computations of the Paillier

cryptosystem, and the second group of order n is for the P K . Note that for safety

reasons the second group modulo n should not be directly generated by the manager.

The generated public parameters should be shared wi th the sender.

A l g o r i t h m 12 Setup phase
1: Consider qEc order of used elliptic curve.

2: Generate an R S A modulus n of size at least | 2 3 k • qEc\i K being a security

parameter and n = p • q, where p and q are big prime numbers, \p\ = \q\,

<t>(n) = (p-l)-(q-l) .
3: Consider h = n + 1 G Z n 2 .

4: Generate g of order 0(n) in Z n 2 .

5: Obtain another RSA-modulus n = pg • qg, where pg, qg are big prime numbers

and \pg\ = \qg\.
6: Consider 1) Z„ and g i3- (I)).

7: Return public parameters (h, n , g, 1), n, g, qEc), and store secret 0(n).

A n important parameter of the setup phase is the size of n. A s seen in Algor i thm

12 on Line 2, this can be computed from the parameters n and qEc- If we consider

parameter K as 1350 (as specified in similar implementation in [42]), and qEc is the

order of the elliptic curve, that wi l l be used (254), we get a bit length of at least

4557 bits. Therefore the generated prime numbers p and q should be half of this bit

length. The setup phase is done by the manager and the value of 0(n) should not

be shared but should be stored for later decryption.

2.1.2 Two-party signature

The second part of the N I Z K P K protocol is the two-party signature, where the

parameters generated in the setup phase are used alongside wi th manager's and

user's private key to compute the value of a = gl/(ski+sk™) _ During this computation,

each party also generates a P K to prove the knowledge of the values used in the

34

computation. The two-party algorithm is shown in Algor i thm 13. Note that while

computations in Steps 2-14 are done in a multiplicative group, computations in

Steps 15 and 17 are done in an additive group, i.e., in an elliptic curve. After this

algorithm, the sender owns the value Si = a = g1/(ski+skm) ^ that he can use in signing.

A l g o r i t h m 13 Two-party signature
1: M a n a g e r c o m p u t e s :

2: r < * - Z 0 (n) , r ' ^ Z 0 (n)

3: ei = h n / 2 + s f c m g r mod n 2

4: c = jjsfc™lf mod a

5: PKm\skm, T, r'j

6: S e n d e r c o m p u t e s :

7: Check validity of PKm.

8: ski,ri ZqEC,r2 ^ {0...\2«qEC\},r ^ {0...|2Kn|}

9: e 2 = (e i / h n / 2) r i h n / 2 + s f c i r i + r 2 , ? B C g r " mod n 2

10: c' = %skiY mod n,

11: PKi{ski,r1,r2,f}

12: M a n a g e r c o m p u t e s :

13: Check validity of PKi.

14: x = (Dec(e2) — n/2) mod qEd where Dec(e2) = {{e2^ — l) / n mod n2) •

0 (n) _ 1 mod n

15: Oi = gl/x

16: S e n d e r c o m p u t e s :

17: Si = a?

PK in the two-party signature

This N I Z K P K protocol should contain the computation of P K for the manager and

for the sender as shown in Steps 5 and 11 of Algor i thm 13. In these parts, the two

parties need to show that they know the private key used in the computation and

that they picked random numbers of the right size. The P K s were not implemented

or described in detail in [3], therefore it was needed to construct them. In the

manager P K it is required to prove the knowledge of three values at once (skm, r, r').

while the sender is proving the knowledge of four values (ski, ri) r2,r). In Algor i thm

14 it is shown how the manager's PKm was constructed and in Algor i thm 15 how the

sender's PKi is created. Bo th of these proofs of knowledge are based on Schnorr's

non-interactive proof of knowledge.

35

A l g o r i t h m 14 Manager's PKm(skm,r,r')
1: M a n a g e r c o m p u t e s :

2: p i # z „ 2 n Z„, p 2 z „ 2 , p 3 # z„

3: c i = / i p i • g P 2 mod n 2

4: c 2 = 8 P l • I)P3 mod Jl

5: e = H(ci,C2)

6: z i = e • s/cm + pi

7: z 2 = e • r + p 2

8: z3 = e • r' + p3

9: Send F K m = (z i , z 2 , z 3 , e) to the sender.

10: S e n d e r c o m p u t e s :

11: c[= hZl • gZ2 • (j^)-e mod n2

12: c'2 = g z i • If3 • C" e mod II

13: e = ft(ci,c£)

A l g o r i t h m 15 Sender's PKi(ski,ri,r2,r)
1: S e n d e r c o m p u t e s :

2: Consider a = ei/hn/2, f3 = ffqEC, sA;- = sk{ • rx, u——r-rx

3: p s Z „ Pi,p',pu,P **- 2», P2 Z n 2

4: c i = « p l • / / • ,9 P 2 • #p mod n 2

5: c 2 = S P s • If mod n

6: c 3 = c / p i • (l / s) p ' -f) p u mod n

7: c 4 = mod

8: e = H(ci,c2,c3,c4)

9: z s = e • ski + Ps

10: z\ = e • r i + p i

11: z 2 = e • r 2 + p 2

12: z„ = e • u + p„

13: z = e • r + p

14: z' = e • sk'i + p'

15: Send PKi = (z s , z i , z 2 , z„, z, z ' , e) to the manager.

16: M a n a g e r c o m p u t e s

17: ci = a 2 1 • hz' • f3Z2 • (e2/hn/2) - e mod n2

18: c'2 = g Z s • If • (c')" e mod it

19: c'3 = (!Z1 • (l / s) 2 ' • If" mod n

20: C4 = #fs • pA;4"e mod qEc

21: e = ^ (^ ,4 ,4 ,4)

3G

2.2 Group signature

The signature used in this scheme is a combination of the weak Boneh-Boyen sig­

nature and Schnorr's proof of knowledge protocol. It is based on the short group

signature introduced in [5] and was first proposed in [43]. The standard version

of the weak Boneh-Boyen signature uses the public key of the signer to check the

validity of the signature, and this is not desired in a group signing scheme. The

pairing property of the signature is used in the scheme to check if the signature is

valid wi th respect to the manager's public key, and the Schnorr protocol is utilized

to prove the knowledge of a signed message anonymously. The scheme is also used

in [44], where the authors also provide all the proofs needed. The algorithm of the

signature is displayed in Algor i thm 16, and its verification is in Algor i thm 17.

A l g o r i t h m 16 Sign (ski, Si, m) A l g o r i t h m 17 Verify (par, pkm)
1 Generate T ERZQ 1: i = (Si • g'f • S[s^ • gSr

2 f V
9=9

2: e' = H(g',S'i,Si,i,m)
3 % = % 3: e(Si •g',g2) = e(S[,pkm)
4 Si = 4: e = e'
5 Generate pr,pski &R^Q

6 t = (S'^i • g»r

7 e = H(g',S'i,Si,t,m)

8 —— p<p 6 ' T

9 $ski — Pski + e ' ski
10: par = (g1, S[, Si, m, e, Sr, Sski)

A l l the operations are done in an additive group of a pairing-friendly elliptic

curve. The hash function % should be chosen in a way that e G Z 9 . In the Verify

algorithm, pkm is a public key of the manager, where pkm = g2

km •

T h e o r e m 1. The verification in Algorithm 17 is correct.

Proof. In order to prove the correctness of the verify algorithm, we need to show

the equality t — t in the first step.

t = (SI • gj • S'siki • 9Sr

t = (s';ski • grr • sT> • gSr

t = S'~eski • ger • S/Siski • g°r

t = s';eski • g

e r • s,pi3ki~eski • gSr

t = ger • S'-Ski • gSr

t = ger • S'iski • gpr~er

i = sTl • 9Pr = t.

37

Since t = i the equation %{g', 5[, 5i,t,m) = %{g', 5[, 5i,i,m) also holds for valid

signature. A s the scheme uses cryptography based on bilinear pairings, the bilinear

properties can be used to prove that the pairings wi l l also be equal for a valid

signature.

e(<*i • 9,92) = e(5[,pkm)

e(6.ski-r.gr,g2) = e(<$r,fl5fc")
— sk^-r

e(gskm+ski . gr^g2) = e(5r

l,g°k-)
r-(sfcm + sfĉ — skj)

= e(5l,gs

2

k™)

e(5f--r,g2) = e(6l,gs

2

k™)

e(St,g2)sh--r = e(Shg2)skm

2.2.1 Revocation and opening of the signature

While in a group signature scheme, the identity of the signer should be hidden, it is

desirable for the manager to be able to open the signature and learn the identity of

the signer, and to be able to revoke users from the group. In this group signature

scheme that is possible.

The open function

For the opening, the manager of the group must keep a private list of inverted

public keys pki = pk~x of the senders in the group, ideally with the addition of their

identifiers. The manager then needs to acquire values 5[and Si of a signature and

check the equality of the pairings e{5'i,pki) = e(5i,g2) for each of the pki he has

saved. If the pairings are equal the user whose is the pkt is the signer.

T h e o r e m 2. The open function is correct.

Proof. In order to prove the correctness of the open function it must be shown that

for ski used in the signature, such that pki = g2

ki the equation e(5'i,pki) = e(Si,g2)

holds.

e(S'i,pki) = e(5i,g2)

ei&vPK1) = e($h92)

e(5't,g2

sk^=e(5-sk%92)

e(5>,g2)-sk>=e(5t,g2)-sk<

38

Revocation

For revocation of the users (removing a user from the group), the creation of a

blacklist can be used. The manager of the group wi l l publish a blacklist wi th the

values of pki = pk~x of revoked users to the verifiers. The verifier must then check

the same pairing e(5'i,pki) = e(<5j,g2) for each entry in the blacklist during the

verification. If for any of the entries in the blacklist, this pairing is equal, the

signature is by a revoked user and therefore not valid.

The use of a blacklist requires extra computations of pairings during the verifi­

cation of the signature. This can be computationally demanding for a big amount

of users. Bu t in a group signing scheme, the groups wi l l usually not be bigger than

100 users and only a few of them wi l l be revoked. If the blacklist is too long, the

manager can regenerate the group, by creating a new manager (group) key pair and

adding the current users to the new group.

Another important factor to consider for the deployment of this scheme is, that

the public keys pki used by the users should be generated specifically for this group

signature scheme. If for example a public key from a public certificate would be

used, the verifier could obtain the public keys of the members of the group and

find out who from the group created the signature. Practically this should not be

a problem as the scheme uses different keys (pki = g^) than standard algorithms

such as Rivest-Shamir-Adleman (RSA) and Digital Signature Algorithm (DSA) .

2.3 Using the NIZKPK in KVAC

The N I Z K P K protocol shown in Section 2.1 can also be used to introduce blind

issuance into an attribute-based credential scheme like K V A C . Such a modification

to the K V A C protocol makes the credential issued by the issuer private to the user,

therefore hidden from the issuer. This way, the issuer wi l l be not able to impersonate

any user. In this modification to the K V A C protocol, the user is in possession of

a private key that is not shared wi th the issuer. The protocol also protects the

credential from an attack during the issue phase, as the real credential can only be

extracted by the user.

2.3.1 Modifying the issue algorithm

In the standard Issue algorithm shown in Section 1.7 in Algor i thm 9, the user sends

his attributes to the issuer, and the issuer signs them with his private key, creating

the credential. If we apply the bl ind issuance wi th the N I Z K P K protocol, the final

credential wi l l be signed jointly by the issuer and the user as well. The modified

39

version of the K V A C issue algorithm is depicted in Algor i thm 18, wi th the changes

highlighted in red.

A l g o r i t h m 18 Issue (sk = (xo, ...xn), (mi, ...mn), ski)

The issuer receives attributes (mi, ...mn).

The issuer computes: d = xo + m\X\ + ... + mnxn.

Run N I Z K P K 2-party computation to compute: k — (d + ski)ri

The issuer computes:
* i/fc

o- =9i

The issuer sends a*, cr* ,<r*n to the user.

The user computes a = a*ri, ...,crn = cr* r l.

In Step 3 of Algor i thm 18, the N I Z K P K algorithm shown in Section 2.1 is exe­

cuted. The change is that the manager (or the issuer in this case) uses the value of

d = xo + miXi +... + mnxn instead of the private key skm used in the group signature

scheme. Since the credential sent by the issuer is now randomized by ri, put in the

computation by the user, no one, but the user is able to extract the final credential

from the values a*, cr* , a * . So not only does the bl ind issuance enhance the

privacy of the user by hiding his credential from the issuer, but it also makes it

harder for an attacker to obtain the credential by intercepting the communication

during the Issue algorithm.

2.3.2 Modifying the Show and ShowVerify algorithms

For the user to be able to prove the ownership of his credential in this modified

scheme, changes to the other main algorithms of the K V A C scheme were needed.

In the Show algorithm, the user must now also prove the knowledge of ski used in

the issue algorithm. The modified version of the Show algorithm is displayed in

Algor i thm 19, and the altered ShowVerify algorithm is then shown in Algor i thm

20.

40

A l g o r i t h m 19 Show ({mj)™=1, a, (o~Xi)f=l, D),ski)
1: The verifier generates nonce Z g and sends it to the user.

2: The user computes:

3: r, pr, Pm^oi Pu <~
4: a = ar

6: c = "H(-D, (mi)itED, t, a, par, ipar, nonce)

7: s r = pr + c • r

9: (s m < = Pmi - cmi)i^D

10: The user sends proof = (a,t,sr, {smi)i^D, su, (mi)itED, D) to the verifier.

A l g o r i t h m 20 ShowVerify ((x j)™ = 0 , proof)
1: The verifier checks that:

2: <7 ^ 1 G

3: c = "H(-D, {m,i)i(zD, t, a, par, ipar, nonce)
4: t = qSr • a - - c - z o+Ei£ D (^ - s ™i)-EieD(Z i - m i - c)+ 5 "

T h e o r e m 3. The verification in Algorithm 20 is correct.

Proof. In order to prove the correctness of the modified K V A C verification algorithm
we need to show the equality t = gSr • a~c'X0+^^D(Xi-Sm^-T,ieD(xi-mi-c)+s^,

gSr . ^-C-XO + J2i^D(xi-srni)-J2ieD('Xi'mi'C^ + S u

— gPr+c-r _ ^-c-x0+J2iiD(xi-smi)-J2i€D(xi-mi-c)+P^-c-ski

— gPr+c'r • ar'(~c'Xo+^i£D(Xi'(pmi~c'mi^~Y,ieD(Xi'mi'c',+Pu~c'ski)

— gPr+c-r _ g-r-i^i^oiPmi-Xil+puj _ a.-c-(x0,+ J2ieD(xi-mi+ski))-r

= gPr+c-r • ar'^itD{pmi-x^+Pu • g~c-r

= gPr • / ' (^ D ^ i ^ J + ^ l

= H <jpmi-r • gpr • ar'pu = t

41

3 Practical implementation
This chapter deals with the implementation of the group signature scheme wi th the

N I Z K P K protocol as described in Chapter 2. Speed tests of some libraries were con­

ducted, to help choose a library for parts where the speed of computation is essential,

i.e., mainly for the N I Z K P K computations and for the signing and verification algo­

ri thm. The chapter also includes a part that deals wi th the implementation of bl ind

issuance into the K V A C scheme.

The implemented group signature scheme was then used to bui ld a small system

for the demonstration of the protocol. This system contains a P C application wi th

the ability to simulate the role of the group manager and a verifier and a user's

Andro id application. The user uses a mobile device such as an Andro id mobile

phone to take part in the 2-party computation and to generate signatures wi th

the key saved in the mobile device. The implemented group signature scheme was

used to create a system for digitally signing documents. The devices communicate

through N F C .

The P C implementation is split into three smaller applications. The first is for

a group manager and allows for the creation of a group and managing the members

of the group. The second is the verifier's application which allows a verifier to check

the validity of signatures. The thi rd P C application is for the user, it allows h im to

choose a P D F file that he wants to sign, then he uses the key saved in his mobile

application to generate a signature for the file. The hash of the file is sent from the

P C application through N F C to the phone. The phone then sends a response wi th

the generated signature. The signature is then saved to the metadata of the P D F

file by the P C application.

3.1 Choice of a platform and libraries

First , it was necessary to choose the devices to use and consequently the language

for the implementation. A s the implementation is aimed at Andro id smartphones as

the signer's main device and a P C as an issuer's or verifier's device, it was important

to choose the right platform for the implementation.

Since we wanted to make our P C application portable to other devices without

problems, Java on Windows was a good choice, as it is possible to create a simple

jar file and distribute it wi th the compiled external libraries (be it Java library in

.jar format or native C library in .dll format). This can be harder to do for C as it

usually requires the libraries to be built for the system it runs on. Java also provides

good tools to create Graphical User Interface (GUI) and is used in Andro id , and

42

with the help of JNI , C can be used in the background to make some computations

faster.

This way we only need a Windows P C wi th J D K installed. The Java program

can also be ported to a Linux system, however, the external J N I libraries for C

should be built separately. This ensures compatibility of the libraries on different

architectures, as they are compiled into machine code. The program includes a

script that should be able to install all the dependencies and build the libraries on

a fresh Linux system like Ubuntu.

The Andro id mobile phone is used to communicate through N F C with a terminal

during the 2-party computation and for sending the signature to the computer. The

choice of using Java on both devices also allows us to port the code between the

devices, as some parts of the code are the same for the entities in the scheme. A s most

of the Andro id applications are developed in Java and Kot l in , the implementation is

mainly in Java wi th the help of some J N I libraries that allow the calling of functions

implemented in the native C language from Java. K o t l i n is not the best suit for this

application, as Java implementation is then easier to transfer to a computer [39].

3.1.1 Comparison of Java and C libraries on an Android device

There are two main ways how to use a C code in an Andro id application. The

first one is implementing functions in C and using the N D K and J N I to pass from

Java to C functions. But wi th this option, we must consider data type conversions

and problems wi th using various C libraries that can be tricky to import. Then

there is a second way. Having a C library prepared and compiled by the authors for

Java or Andro id , where the bindings are already created. In this way, we have the

functions of the library running in C wi th the help of JNI , but we just simply call

Java functions and do not have to worry about any data conversions as those were

implemented by the authors.

The main focus of this comparison was to find out if a C library called through

J N I is faster than a similar Java library. Since this scheme uses homomorphic

encryption in multi-party computation and bilinear pairings for signatures, we need

a library for modular arithmetic wi th big numbers and a library for bilinear pairings.

A l l tests were conducted on Xiaomi Redmi Note 8 Pro wi th 6 G B R A M , MediaTek

Helio G90T 8 core 2,05GHz C P U , and A r m Mal i -G76 3 E E M C 4 800MHz G P U . A l l

tests were performed 10 times and the resulting time is their average.

Libraries providing bilinear pairings

There are not that many implementations of bilinear pairings for Java. One wi th

big enough, i.e., wi th the right security level, pairing-friendly curves is the A M C L

43

library. This library provides a big variety of curves of different sizes, which is

its main advantage. For C, the M C L library was chosen. The biggest advantage

of M C L over other C libraries is, that it has a prepared J N I implementation that

makes calling its functions easier from Java on an Andro id device. The biggest

disadvantage of the M C L library is, that it only supports two curves, but since one

is the BN-254 curve, which is suitable for the implementation, this library suits our

implementation perfectly.

The main focus of comparing these two libraries is finding out which is faster

on an Andro id device. Functions tested and timed were: adding two points in G l ,

scalar multiplication in G l and G2, scalar multiplication by q-1 in G l , and pairing.

Results are depicted in Table 3.1, where times are in /xs.

C - M C L Java - A M C L

Adding two points in G l 5,4 26,8

Scalar Mult ipl icat ion in G l 231 6 700

Scalar Mult ipl icat ion in G2 504 22 836

Mult ip l ica t ion by q-1 in G l 172 9 779

Pair ing 1 423 27 966

Tab. 3.1: Comparison of M C L and A M C L computation times (in /x s) on an Andro id

device.

Table 3.1 shows that the M C L library is much faster than A M C L . In particular

Scalar multiplication in G l takes almost 30 times more time wi th the A M C L library,

and in G2 it's even more. W i t h this finding, the decision was easy and the M C L

library was chosen for the implementation of the signature.

Libraries for modular arithmetic

For modular arithmetic, is needed a library that can operate wi th big numbers in

a multiplicative group. In Java, the most widely used library for big numbers is

Biglnteger [32], it is perfectly suitable as it is well-tested, and contains all needed

functions. For C language a G M P library [36] was chosen, since it can operate wi th

big numbers, is targeted for cryptography, and has a general emphasis on speed.

It was also used in the implementation of Secure Two-Party Computat ion by M .

Seckar [45].

Using the G M P library with Andro id is harder than the previously mentioned

M C L library because while it can be compiled into a binary library, that can be

used in Android , the creators don't provide Java bindings that would make calling

the functions easier. Therefore, one must first implement functions in a cpp file,

44

that provide type conversions from Java to C and back through JNI . These needed

conversions also add computational time, so the C functions must be faster by a lot

to make it worth it.

The speed tests were conducted for addition, multiplication, modular exponen­

tiation, and prime generation. Whi le testing the speed of the libraries, it was found

that function mpz_powm used by the G M P library can be susceptible to side-channel

attacks. Authors themselves say, that in cryptographic applications mpz_powm_sec
should be used instead [46]. Therefore, both of these functions were tested. Whi le

the gmp_powm function can be susceptible to side-channel attacks, this attack is not

easily feasible against a mobile device such as a mobile phone. For the prime gener­

ation function probablePrime was used from the Biglnteger library and from G M P

it was mpz_nextprime. A s G M P does not have a function for generating a random

prime, and it only finds the next probable prime, we pass to it a random number of

desired bit size. The results of the speed tests are depicted in Tables 3.2 and 3.3.

Biglnt A d d G m p A d d Biglnt M u l G m p M u l

1024 bits 29,7 148,2 27,5 125,1

2048 bits 35,1 425,7 30,5 387,3

4096 bits 38,9 1 428 37,5 1 450

8192 bits 61,5 5 298 85,3 5 320

Tab. 3.2: Comparison of Biglnteger and G M P computation times for addition and

multiplication on an Andro id device (times in /is).

B i n t p o w M G M P p o w M G M P powMsec B i n t prime G M P prime

1024 bits 1 910 2 036 2 147 659 378 160 343

2048 bits 14 047 13 262 18 767 5 833 261 2 675 519

4096 bits 109 990 74 750 145 872 — —

8192 bits 857 750 413 501 1 135 589 — —

Tab. 3.3: Comparison of Biglnteger and G M P computation times for modular ex­

ponentiation and prime generation on an Andro id device (times in /is).

Looking at the addition and multiplication operations results in Table 3.2, it

seems like the G M P library is much slower for these operations. The reason is that

the time is calculated with type conversions from Java to C and back since in a real

program this time wi l l influence the final time of a protocol because without these

conversions it cannot be used on Andro id phones. The times of the operations of

addition and multiplication wi th G M P without the conversions are comparable wi th

Biglnteger computation times.

45

If we focus on the most important and time-consuming operations, wi th mod­

ular exponentiation we can see in Table 3.3, that the normal mpz_powm function

from G M P is faster, and the difference is more significant with bigger bit size. How­

ever, the secure version of G M P modular exponentiation is slower than Biglnteger

implementation, and here it's not only because of the type conversion, but the op­

eration itself is slower too. A s said before, we do not consider the attack against the

mpz_powm function relevant on a mobile device, so it could be used to save some time

in more demanding computations. Interesting are the times of generating primes.

Here the C G M P library is significantly faster. This operation is used in the setup

of the key agreement algorithm, but the setup wi l l not be run on the mobile device.

3.1.2 Comparasion of Java and C libraries on a desktop PC

The issuer and verifier part of the scheme are implemented on a desktop P C . Whi le

for this k ind of device, the performance is not as crucial as for the mobile device, it is

stil l good to use faster implementations. The libraries tested are the same as for the

mobile device. The device used in these benchmarks was H P Pavil ion 15-bc5xxx,

Intel i5-9300H (4cores, 2,4-4,1GHz), 16GB R A M , and Windows 10 Home 20H2.

Libraries providing bilinear pairings on Windows PC

Tested libraries providing bilinear were the same as for the Andro id mobile phone

(A M C L and M C L) . The most important operation on the P C part of the application

is the pairing, as it is needed in the verification, for checking the revocation, and for

opening the signatures by the manager. The curve used in the tests was the BN-254

curve and the functions benchmarked were: addition of two random points in G l ,

mult iplying a point by a random scalar, and pairing. The results are shown in Table

3.4.

C - M C L Java - A M C L

Adding two points in G l 5,1 9,9

Scalar Mult ipl icat ion in G l 417 2 472

Scalar Mult ipl icat ion in G2 873 4 640

Pair ing 2 621 8 358

Tab. 3.4: Comparison of M C L and A M C L computation times (in u s) on a Windows

P C .

Whi le the M C L library is faster also on a desktop P C , it is interesting to see

that the M C L library is actually slower than on an Andro id mobile device. This is

probably due to the fact, that the library is not optimized for Windows. But it stil l

46

gives us the advantage of superior speed (compared to A M C L) . Also on Windows,

the compiled portable library can be used without the need to bui ld and install the

library on each new device. The M C L library is therefore also used in the desktop

application.

Modular arithmetic libraries on Windows PC

The libraries considered for the modular arithmetic were the same as on the phone -

G M P and Biglnteger. The main tested functions were modular exponentiation and

generating prime numbers, as those are the most demanding functions. Table 3.5

shows the difference between G M P and Java's B i g Integer for prime generation and

modular exponentiation on a Windows P C .

Biglnt prime G M P Prime Biglnt p o w M G M P p o w M

1024 bits 52 201 1,8 2,1
2048 bits 529 1 331 8,1 15,7

4096 bits - - 40 93

8192 bits - - 269 574

Tab. 3.5: Comparison of Biglnteger and G M P computation times for modular ex­

ponentiation and prime generation on a Windows P C (times in ms).

Whi le testing the G M P library on a Windows P C , it was found that the library

is mainly aimed at Unix-type systems [36]. Whi le it is possible to bui ld G M P

for Windows, it is not optimized and is much slower than it could be on a similar

machine wi th a distribution of Linux OS. Table 3.5 shows that Biglnteger has better

results in all the tested functions on Windows. This makes the G M P library not

suitable for the server implementation for Windows in Java. Note that the G M P

is even called only from C without the Java in between and it is stil l slower. The

faster version of mpz_powm was also used wi th G M P .

Libraries providing bilinear pairings on Linux VM

Because the M C L library was slower on the Windows P C than on the mobile phone,

tests on a Linux-based system were also performed, to see if the optimized version for

Linux would get better results. The tests were conducted on a Virtual Machine (V M)

running on the same P C with OS: Ubuntu 64-bit Linux (VMWare , R A M : 8 G B ,

C P U : 4 cores). Table 3.6 shows the results of the benchmarks.

The comparison of the M C L and A M C L libraries turned out the same as on the

other devices, where M C L has a big advantage in performance compared to A M C L .

47

C - M C L Java - A M C L

Adding two points in G l 4.6 10.3

Scalar Mult ipl icat ion in G l 118 3 678

Scalar Mult ipl icat ion in G2 170 6 232

Pair ing 707 9 946

Tab. 3.6: Comparison of M C L and A M C L computation times (in \x s) on Linux V M .

The M C L library is also much faster on Linux than on Windows. It is probably

because it is better optimized than the portable Windows version.

Modular arithmetic libraries on Linux VM

A s the application wi l l also be run on Linux, and G M P did not perform as expected

on Windows, speed tests on a Linux-based system were also performed to compare

G M P wi th Biglnteger. This was mainly to determine if G M P support should be

included in the P C application. The results of the benchmarks are in Table 3.7.

B i n t prime G M P Prime B i n t p o w M G M P p o w M G M P powMsec

1024 bits 35 37 2.9 0.9 1.2

2048 bits 497 315 7.8 4.2 5.9

4096 bits - - 39 27 37.9

8192 bits - - 292 171 273

Tab. 3.7: Comparison of Biglnteger and G M P computation times for modular ex­

ponentiation and prime generation on Linux V M (times in ms).

A s seen in the table, G M P does perform better in a Linux environment compared

to Windows. Since on Linux G M P was faster for modular exponentiation, the

more secure function mpz_powm_sec was also tested. We can see that the modular

exponentiation with 4096 and 8192-bit numbers is much faster wi th the mpz_powm
function than Biglnteger. However, the mpz_powm_sec function is almost the same

speed as Biglnteger. Therefore in the P C application, the faster version of the G M P

function is used as an alternative, so the protocol performs better on Linux. If there

is a possibility of a side-channel attack on the device, then the switch to Biglnteger

wi l l solve that concern.

Since the results of the modular arithmetics were different for Windows and for

Linux, the application has the option to switch between Biglnteger and Linux. The

recommendation is to use Biglnteger on Windows and on Linux G M P , and if there

is a concern about a side-channel attack it is better to use Biglnteger on Linux also.

48

3.2 Implementing the cryptographic core

This section deals with the creation of the cryptographic core of the application. This

core is shared for both the desktop and the mobile applications, although each uses

only some of its functions. This core uses the Biglnteger library for computations

during the N I Z K P K protocol (with the possibility to use G M P for some operations),

and the M C L library in the group signature.

The classes of this core are located in the cryptocore package. The package

should be self-contained, and usable in other projects wi th the need to import the

M C L library, it is a good idea to turn off the G M P usage in other projects as it has

to be implemented separately.

3.2.1 Integrating the libraries into a project

In this section, it is shown how the libraries can be integrated into the project on a

Windows P C and on an Andro id device. It is also shown how the application can

be run on Linux. This section should also help anyone that would like to create

a similar implementation. Note that for Andro id N D K needs to be installed for

Andro id Studio and J N I for Java on desktop.

Importing the MCL library to Java

The M C L library can be downloaded from [37]. For P C , first, the C library must

be built, the steps on how to do it on Linux or on Windows wi th the help of Visual

Studio are shown in the readme. md file of the library, and on the G i tHub page. Af­

ter compiling the C library, folder f f i / j a v a provides files that can be used to build

a library wi th bindings for Java. The directory also provides instructions on how

to bui ld it. O n Linux make sure you have compiled mcljava.so in the / u s r / l i b
directory. Another option is also using the M C L wrap [47] that includes scripts to

build the library for Java with just one script, even though this might not be an

optimal bui ld on Windows, it creates a portable library and is easy to use. Since

building the library on Windows can be troublesome, anyone that would like to

use the library from this implementation can just download the compiled library file

mcljava-x64. d l l distributed wi th the application for group signatures. After the l i ­

brary is built it must be added to the project libraries and the Java classes from pack­

age com.herumi .mcl must be added to the project. After that, the program that

wi l l be using it must call System.loadLibrary("mcljava-x64") to load the library

and initialize M C L wi th the curve it wants to use: Mcl.SystemInit(Mcl.BN254).
The load call wi l l be different for L inux as the library might have a different name.

49

For Android , the library can be downloaded from [48], the page also provides

steps on how to bui ld the library using the N D K . The application created also

provides these built libraries that can be used in an Andro id project. The built

l ibrary must be then imported into a resource directory (for example j n i L i b s) into

separate directories for different architectures. Then in the main function similar the

library must be loaded by calling System. l o a d L i b r a r y ("mclJava") ; and initialized

it in the same way as above with a curve. Also, the Java classes must be added to

the project the same as before.

Using GMP on Android

G M P can be used on Andro id by importing an already build G M P library for each

architecture from [49]. This G M P library can then be passed to the same j n i L i b s
folder in the Andro id project. Then it is needed to create an Android.mk file in

the j n i L i b s folder to be able to create functions that can be then called from Java,

the contents of the file are shown in List ing 3.1. It specifies the file t e s t . cpp that

can then be used to implement functions with the use of G M P and the name of the

module that wi l l be used to load the library in Java with the System. l o a d L i b r a r y ()
command. Finally, it is needed to pass to Gradle the location of the Android.mk
file for the N D K build. This is done by adding the code shown in Lis t ing 3.2 to the

b u i l d . g r a d d l e file of the application.

Lis t ing 3.1: Android .mk file in jn iLibs

JNI_PATH := $ (c a l l m y - d i r)
i n c l u d e $ (J N I _ P A T H) / g m p / A n d r o i d . m k

LOCAL_PATH := $ (J N I _ P A T H)
i n c l u d e $(CLEAR_VARS)

L0CAL_M0DULE := g m p - t e s t s
LOCAL_SRC_FILES := t e s t . cpp

LOCAL_LDLIBS += - H o g
LOCAL_SHARED_LIBRARIES := gmp
i n c l u d e $(BUILD_SHARED_LIBRARY)

Unlike the M C L library wi th G M P , it is needed to handle the passage of variables

from Java to C, so it is more difficult to use in an Andro id project. That is why

it is only used for the most demanding operation of modular exponentiation in this

application. Lis t ing 3.3 shows how such a function can be implemented in C so

50

it can be called through J N I from Java. The function must then be specified in

the Java class that uses it as: p u b l i c s t a t i c n a t i v e S t r i n g modPowC(String
a, S t r i n g b, S t r i n g mod) ; . Line 1 of Lis t ing 3.3 shows the specific naming the

function must have in order to be callable from the Java class. Lines 7-12 show how

the strings from Java are passed to the mpz_t type of G M P . Line 16 is the operation

itself, and lines 19-20 show how the result is passed back to Java.

Lis t ing 3.2: Passing the Android .mk to Gradle

e x t e r n a l N a t i v e B u i l d {
n d k B u i l d {

p a t h , s r c / m a i n / j n i L i b s / A n d r o i d . m k ,

}

}

List ing 3.3: ModPow function in C for Java

e x t e r n "C" j s t r i n g
J a v a _ c z _ v u t _ f e e c _ x k l a s o O O _ g r o u p s i g n a t u r e _ c r y p t o c o r e
N I Z K P K F u n c t i o n s _ m o d P o w C (J N I E n v *env , j c l a s s t h i z ,
j s t r i n g j s t _ a , j s t r i n g j s t _ b , j s t r i n g mod) {
mpz_t bn_a , bn_b , bn_mul , bn_mod;
const char * c c _ a , * c c _ b , *cc_mod;
j s t r i n g j s t _ m u l ;
char * c _ m u l ;
m p z _ i n i t s (b n _ a , b n _ b, bn_mul,bn_mod, N U L L) ;
c c _ a = e n v - > G e t S t r i n g U T F C h a r s (j s t _ a , N U L L) ;
m p z _ s e t _ s t r (b n _ a , c c _ a , 1 0) ;

c c _ b = e n v - > G e t S t r i n g U T F C h a r s (j s t _ b , N U L L) ;
m p z _ s e t _ s t r (b n _ b , c c _ b , 1 0) ;

cc_mod = e n v - > G e t S t r i n g U T F C h a r s (m o d , N U L L) ;
m p z _ s e t _ s t r (b n _ m o d , cc_mod , 1 0) ;

cc_a=NULL;
cc_b=NULL;
cc_mod=NULL;
mpz_powm(bn_mul , bn_a , bn_b,bn_mod) ;
c_mul = m p z _ g e t _ s t r (N U L L , 1 0 , b n _ m u l) ;
m p z _ c l e a r s (b n _ m u l , bn_a , bn_b,bn_mod, N U L L) ;
j s t _ m u l = e n v - > N e w S t r i n g U T F (c _ m u l) ;
r e t u r n j s t _ m u l ;

51

Using GMP in Java on PC

It is possible to create a library that uses G M P and can be called from Java in

the desktop environment too. This is usually called wrapping a library. Such a

library was created mainly to support Linux systems since G M P is faster on Linux.

It can be found in the thesis files in the GroupSig_app folder in the file called

gmp_f or J a v a _ l i n u x . cpp. The library implements operations of modular exponen­

tiation and finding the next prime after a given number. In order to use G M P with

Java, J N I must be installed on the system as well as the G M P library. This wrapper

library must be compiled on the targeted system as shown in List ing 3.4 and then

saved to a location such as / u s r / l i b . The library can also be compiled for Windows

and used, however, it is slower than the Biglnteger library, so it is not recommended.

List ing 3.4: Compile command for library using G M P in Java for Linux

i g++ - f P I C - I / u s r / l i b / j v m / d e f a u l t - j a v a / i n c l u d e / - I / u s r /
l i b / j v m / d e f a u l t - j a v a / i n c l u d e / l i n u x / - s h a r e d -o
l i b g m p _ f o r J a v a . s o g m p _ f o r J a v a _ l i n u x . c p p -lgmp - l g m p x x

3.2.2 Implementation of NIZKPK

The two-party computation is based on the Paillier cryptosystem, so the first step

was creating a working Paillier in Java, which was then modified to suit the N I Z K P K

protocol. Since modifications to the computations are needed, it was not possible

to just use a finished library of Paillier and call its functions. The main classes in

the package that deals wi th the N I Z K P K implementation are: P a i l l i e r K e y P a i r ,
P a i l l i e r P u b l i c K e y , P a i l l i e r P r i v a t e K e y and NIZKPKFunctions. There are also

other classes that mostly serve for the serialization of the variables used in the

computations. The State diagram in Figure 3.1, shows the calls of the N I Z K P K

functions in a running protocol. It is shown when is each function called, and what

function it passes data to.

The setup of the N I Z K P K protocol is done in the class called P a i l l i e r K e y P a i r
and is only run in the P C manager's application. The constructor of this class

basically runs the setup of the N I Z K P K protocol, it takes an integer value of desired

bit size of n as a parameter (4561 in this implementation), and an instance of class

GothGroup that holds the parameters of the gothic group (as these should not be

generated by the manager). F i rs t ly prime numbers p and q are generated with the

help of the SecureRandom class for random seed. After this n is computed as p • q,

n2 is also computed. Next secret value A is computed as the least common multiple

of p-1 and q-1. After this, it is needed to find a generator g in the set Z * 2 , and make

sure the modular multiplicative inverse p exists. This can be done by generating a

52

random number from Z * , raising it to n in modulo n2 (getting a possible generator),

and checking if gx modn2 — 1, if this equation holds, we have found a generator.

After this public values n, g, n2, n, 1), g, needed for computations on both sides are

saved to a P a i l l i e r P u b l i c K e y object, while secret value A alongside with values

H,n,n2 are saved to a P a i l l i e r P r i v a t e K e y object. Java's S e r i a l i z a b l e interface

can then be used to serialize the P a i l l i e r P u b l i c K e y object and send it through a

communication channel, but it is important that this class is the same and located

in the same package in the other application.

Manager

sk„

new PaillierKeyPar()

Pass

PaillierPublicKey

computeEl andZKManager()

Pass
Serve rTwo Pa ityObject

checkPKUsero

Pass
UserZKObjecl

User

pk|

checklssuerZK()

True
Pass
ServerTwoPartyObject

computeE2AndUserZK()

True Pass
UserZKObject

com puteSigningKey Rand.()

Pass
SignKeyRand

Unsuccessful
End

False

computeKey From Manager))

PaillierPrivateKey

Successful
End

Fig . 3.1: State diagram of the N I Z K P K functions calls.

The class NIZKPKFunctions contains all the functions needed during the run of

the N I Z K P K protocol. The methods are all defined as static. It consists of functions

for both the manager and the user. There are many functions in this class used for

the computations, so only the main ones that are then called from the outside are

described.

53

The first function called after the setup is computeElandZKManager. It has three

arguments, an instance of P a i l l i e r K e y P a i r , the manager's private key ski, and the

ID of the group. The function then computes values of e\, c, and the PKm wi th the

use of other functions of this class. The values needed by the user to check the PKm

and compute e2 alongside the public parameters in the P a i l l i e r K e y P a i r are saved

to an instance of a ServerTwoPartyObject that can be then serialized and sent to

the user. This function can be pre-computed, as no input from the user is needed.

The second function that is called during the running protocol is the check-
IssuerZK by the user. It takes the parameters outputted by the previous function

and checks the validity of the PKm. It returns true for valid proof and false if the

verification of the proof fails.

The next function called is computeE2AndUserZK on the user's side. This func­

tion's parameters are the public parameters saved in P a i l l i e r P u b l i c K e y , n of the

curve used in the group signature later, the user's private and public keys, e\, the

user's ID, and a random number r\ that is used in this computation and later to

obtain the key used for signing. The reason this r\ is not generated in this function

is that the user should store it, so it can be used in a later function. The function

computes e2,i, and the PKi, it returns an instance of UserZKObject class wi th the

values needed for the other manager's computations in it.

The manager can then use the checkPKUser function to check the validity of

the user's PKi, and if the proof is valid function computeSigningKeyRandomized
can be called. This function computes the value of x = (skm + ski) • T\ and then

returns <7j. The user then only needs to run computeKeyFromManager function wi th

parameters <7j and the r\ to obtain the value of Si used in the signature.

The use of G M P as an alternative is done by calling a specific function to perform

the operation of modular exponentiation, as it is the most demanding operation

during the protocol on the user's side. This function is called myModPow and if the use

of G M P is disabled by a static boolean variable it wi l l just call the standard modPow
function from the Biglnteger library. But if G M P use is enabled it converts the

Biglnteger values to Strings and passes it to a native C function modPowC. Similarly,

on the manager's side, G M P can be used for generating the primes.

3.2.3 Implementation of the group signature algorithms

The functions used for signing and verification of the group signature are located

in the class called GroupSignatureFunctions in the same package. It consists of

functions for the user and for the verifier. A l l the functions are defined as static, so

they can be called without creating an instance of the class. These functions mostly

compute wi th points on the elliptic curve, so parameters passed to the functions

54

are usually either of type G l or G2 for points and of F r for scalar numbers, so the

M C L library is needed for these methods. It is also important to initialize the library

wi th Mcl. S y s t e m l n i t (Mcl. BN254) ; in the main function of the program that wants

to use this package. The curve used in the implementation is the BN254 curve,

however, it should be possible to change this curve with other curves supported by

M C L . However, the M C L library does not provide functions to get the generators

G l and G2 or the order of the curve, so these getters were implemented separately.

The values used to construct generator points G l and G2 were taken from the

implementation of the A M C L library. So in case of changing the curve, the getters

for G l G2, and N in the class must be changed as well.

In the whole application for hashing the messages and for hashing during the

protocols the program uses SHA-256. When the hash is used wi th the elliptic curve,

operation modulo n of the curve is then applied to the hash, this is done wi th B ig -

Integers as the type F r cannot store bigger values than the order of the curve. That

is also the reason why the generation of random numbers in done with Biglntegers

and only then passed to the F r type.

The function for signing wi th the group signature is called computeGroup-
Signature. A s arguments it takes the hash of a message to sign, n of the curve, the

computed signing value Siy the User's private key, and the group's ID. The function

runs the algorithm described in Section 2.2 and saves the values needed for the ver­

ification to a SignatureProof object, this object is then returned by the function.

The values must be saved to this object as byte [] because the types from the M C L

library are not Serializable by Java's S e r i a l i z a b l e interface. Fortunately, these

types can be easily converted to byte [] by calling the s e r i a l i z e () function.

The function used for validating the signature by the verifier is called check-
Proof, as parameters it takes the SignatureProof generated by the user, the hash

of the message, and the public key of the group. The function first checks the

equality of the pairings (as shown in Algor i thm 17 in Section 2.2), if the pairings are

not equal the function wi l l return false, if they are equal it continues by computing

the t and the hash e'. The computed hash is then compared wi th the hash from the

client, if they are equal the signature is legit and the function wi l l return true.

The basic verifying function does not include the revocation check, this has

to be done after this verification by another function. The reason for that is

that other implementations might choose different formats for saving revocation

lists. The class provides function checkSignatureWithPK that checks the pairing

e(5'i,pki) = e(<5j,<72) for given pkt and values of S'^Si used in the signature. For the

final implementation, this function is called for all the values of pki in the revocation

list, if the function returns 0 for any of the entries in the revocation list, the user

is revoked and the signature is not valid. This function is also used for opening the

55

signature. The manager can cycle through his map of user's IDs and values of pki:

if the function returns 0 for some of the users, he knows that is the user that signed

the message.

3.3 Implementing communication between the de­

vices

The communication channel that was used for this demonstration was N F C . The

main devices used were a P C and an Andro id mobile phone. The P C uses a card

reader to communicate wi th the phone, and the phone uses H C E to act as a card.

The protocol used in the communication is A P D U , as it is the main protocol for

N F C that can be implemented on an Andro id device.

3.3.1 Terminal on PC

The Java P C application is able to communicate through N F C with a mobile device

(a phone) using an external N F C card reader. The reader used during the creation of

the implementation was the A C R 1 2 5 1 U U S B N F C reader. The A P D U commands

are sent from the Terminal class created in the main package of the application

groupsignature. There is also a second class I n s t r u c t i o n that is used to build

the commands sent to the phone.

For communication Java's smart c a r d i o l ibrary is used. It is a default Java

library, so no external files are needed for this library. The first function called by

the terminal each time when there is a need to establish a connection wi th the phone

is called I n i t i a l i z e C o n n e c t i o n . The command Choose AID sent by this function

must have a specific format. The format of this command is shown in Figure 3.2.

The A I D is a 7-byte identifier of the mobile application, for this application the

A I D was chosen at random as F0203344886655. The Lis t ing 3.5 shows how the

initialization of the connection works in Java.

CLA INS P1 P2 Lc DATA Le
0x00 0xA4 0x04 0x00 0x07 AID 0x00

Fig . 3.2: Structure of the choose A I D command.

The initialization function first checks if a terminal is connected, it then waits for

a card to be present near the reader (line 8). It then connects wi th the card using

a supported protocol and transmits the choose A I D command. If the command

was successfully received by the device the response from the device wi l l be 0x90

56

0x00, usually the other possible response is 0x6A 0x82 which means the A I D was not

found, usually, this is because the application is either not installed or does not have

the permission to use N F C . The return codes of the function give some feedback on

what went wrong to the rest of the program. Unless this function returns 0 other

parts of the program using N F C wi l l not be executed.

Lis t ing 3.5: The function to initialize connection wi th a mobile device

p u b l i c i n t I n i t i a l i z e C o n n e c t i o n () {
t r y {

T e r m i n a l F a c t o r y f a c t o r y = T e r m i n a l F a c t o r y .
g e t D e f a u l t () ;

L i s t < C a r d T e r m i n a l > t e r m i n a l s = n u l l ;
t e r m i n a l s = f a c t o r y . t e r m i n a l s () . l i s t () ;
C a r d T e r m i n a l t e r m i n a l = t e r m i n a l s . g e t (0) ;

while (! t e r m i n a l . i s C a r d P r e s e n t ()) ;
// C o n n e c t w i t h t h e c a r d , u s i n g t h e s u p p o r t e d

p r o t o c o l
c a r d = t e r m i n a l . c o n n e c t (" * ") ;
c h a n n e l = c a r d . g e t B a s i c C h a n n e l () ;
/ / t r a n s m i t t h e g e t A I D command
ResponseAPDU r e s p o n s e l = c h a n n e l . t r a n s m i t (n e w

CommandAPDU (I n s t r u c t i o n s . g e t A I D Q)) ;
byte [] b y t e R e s p o n s e 1 = n u l l ;
b y t e R e s p o n s e l = r e s p o n s e l . g e t B y t e s () ;
S y s t e m . o u t . p r i n t l n (" C a r d r e s p o n s e f o r c h o o s e AID

command: " + I n s t r u c t i o n s . b y t e s T o H e x (b y t e R e s p o n s e l)) ;
i f (I n s t r u c t i o n s . i s E q u a l (b y t e R e s p o n s e l ,

I n s t r u c t i o n s . g e t a O k a y O))
r e t u r n 0 ; / / s u c c e s s f u l

e l s e
r e t u r n - 2 ; // r e t u r n code - 2 , t h e c h o o s e AID

was n o t s u c c e s s f u l , c h e c k a p p l i c a t i o n p e r m i s s i o n
} c a t c h (C a r d E x c e p t i o n e) {

e . p r i n t S t a c k T r a c e () ;
}

r e t u r n - 1 ; / / s o m e t h i n g went w r o n g , c h e c k t h e t e r m i n a l
c o n n e c t i o n

57

The Terminal class then includes the functions for sending the data during the

N I Z K P K protocol. The communication during the protocol was split into two parts,

as the protocol is long and the computation on the mobile device can take multiple

seconds and it would be impractical to hold the device near a reader for that long.

The first part includes sending the public Paillier parameters the e\ and PKm to the

user's mobile device. After this step, the connection is closed unti l the mobile device

verifies the PKm, and computes e 2 and PKi. After this computation, the connection

is established again and these values are sent to the terminal. The terminal then

checks the PKi and computes <7j that is then sent to the user and the connection

is closed. The connection is not closed during the terminal's computation, since

having more than two stages during the protocol would not be very convenient for

the user.

The class also includes a function sendFileToSign used during the signing of

the document. The function's parameters are the hash of the file to be signed and

a boolean flag specifying if the signature should be checked before saving it or not.

The I n s t r u c t i o n s class contains functions for building the instructions as they

change depending on the parameters generated by the application. So for most

of the instructions, there is a specified header of the instruction and a function

that takes the data as a parameter and builds the final instruction wi th the use of

ByteArrayOutputStream. The class also includes functions for the comparison of

byte arrays to help identify the A P D U responses and functions for the conversion of

byte arrays to Strings and vice versa, the bytesToHex function is taken from [50],

the function for converting a hexadecimal string to a byte array is from [51].

3.3.2 Implementation of HCE on Android

H C E can be implemented on Andro id by creating a class that extends the HostApdu-
S e r v i c e class [52]. For the proper function of this class, there are also a few extra

steps that must be done. The first one is modifying the AndroidManif est .xml file

to acquire permission to use N F C and to register the class that extends HostApdu-
S e r v i c e as a service. Next the apduservice.xml file must be created that specifies

the A I D of the application. Contents of the files are depicted in Listings 3.6 and

3.7.

Lis t ing 3.6: Modification to the AndroidManifest .xml

1 < m a n i f e s t
2 . . .

< u s e s - p e r m i s s i o n a n d r o i d : n a m e = " a n d r o i d . p e r m i s s i o n . N F C " / >
4 < a p p l i c a t i o n

58

< s e r v i c e a n d r o i d : n a m e = " . M y H o s t A p d u S e r v i c e " a n d r o i d :
e x p o r t e d = " t r u e "

a n d r o i d : p e r m i s s i o n = " a n d r o i d . p e r m i s s i o n .
BIND_NFC_SERVICE">

< i n t e n t - f i l t e r >
<action a n d r o i d : n a m e = " a n d r o i d . n f c . c a r d e m u l a t i o n

a c t i o n . H O S T _ A P D U _ S E R V I C E " / >
< c a t e g o r y a n d r o i d : n a m e = " a n d r o i d . i n t e n t . c a t e g o r y

DEFAULT"/>
< / i n t e n t - f i l t e r >
<meta-data a n d r o i d : n a m e = " a n d r o i d . n f c . c a r d e m u l a t i o n .

h o s t _ a p d u _ s e r v i c e "
a n d r o i d : r e s o u r c e = " O x m l / a p d u s e r v i c e " / >

< / s e r v i c e >

< / a p p l i c a t i o n >
</manif e s t >

List ing 3.7: Content of apduservice.xml file

< h o s t - a p d u - s e r v i c e x m I n s : a n d r o i d = " h t t p : / / s c h e m a s . a n d r o i d
c o m / a p k / r e s / a n d r o i d "

a n d r o i d : d e s c r i p t i o n = " @ s t r i n g / s e r v i c e d e s c "
a n d r o i d : r e q u i r e D e v i c e U n l o c k = " f a l s e " >
< a i d - g r o u p android:description="©string/

a i d d e s c r i p t i o n "
a n d r o i d : c a t e g o r y = " o t h e r " >
< a i d - f i l t e r a n d r o i d : n a m e = " F 0 2 0 3 3 4 4 8 8 6 6 5 5 " />

< / a i d - g r o u p >
< / h o s t - a p d u - s e r v i c e >

The class extending the service in this application is called MyHostApduService.
It overrides the two main methods of the parent class this class extends. The first

method is called onStartCommand, this method initializes the instance of the class.

This application for example registers the LocalBroadcastManager. The second

function is the processCommandApdu method. This method specifies the answers to

the incoming instructions based on the instruction's C L A and INS bytes.

59

http://schemas.android

Passing the data inside the application

A s complex computations are needed in order to construct the A P D U answers during

the N I Z K P K or the signature algorithm the data from this class must be passed to

the main class of the application. This is because this class might not have access

to all the objects it needs in the computations and because we want to be able to

refresh the G U I of the application during the communication. This can be done by

using the LocalBroadcastManager [53] class.

This class can be used to safely send data through the application without leaking

the data to other applications. This is done by creating local broadcasts that include

Intents with data and registering receivers in the classes that the data are intended

for. The function in this class for sending the data to the main class is called

SendBytesToMainAcc. Its parameters are a String path that specifies what data are

being transmitted and data represented by a byte array. The receiver is created as an

inner class that extends the BroadcastReceiver. The receiver then has specified

steps depending on the path variable received with the data. The receiver that

listens for data from the MyHostApduService in the main class of the application

then modifies the G U I and creates new threads that run the computations. The

results of these computations are then passed back to the MyHostApduService and

sent to the terminal. The receiver must then be registered in the class. The code

that shows how to register such a receiver and how the Receiver class is used to

react to messages is shown in Lis t ing 3.8.

Lis t ing 3.8: Creation of a receiver in the MyHostApduService class

I n t e n t F i l t e r m e s s a g e F i l t e r = new I n t e n t F i l t e r (I n t e n t .
ACTION_SEND);

M y H o s t A p d u S e r v i c e . R e c e i v e r m e s s a g e R e c e i v e r = new
My H o s t A p d u S e r v i c e . Re c e i v e r O ;

H a n d l e r T h r e a d h a n d l e r T h r e a d = new H a n d l e r T h r e a d (" h t ") ;
h a n d l e r T h r e a d . s t a r t () ;
L o o p e r l o o p e r = h a n d l e r T h r e a d . g e t L o o p e r () ;
L o c a l B r o a d c a s t M a n a g e r . g e t I n s t a n c e (t h i s) . r e g i s t e r R e c e i v e r (

m e s s a g e R e c e i v e r , m e s s a g e F i l t e r , l o o p e r) ;
/ / d e f i n i t i o n of t h e R e c e i v e r c l a s s w i t h r e a c t i o n s t o

d i f f e r e n t m e ssages
p u b l i c c l a s s R e c e i v e r e x t e n d s B r o a d c a s t R e c e i v e r {

S R e q u i r e s A p i (a p i = B u i l d . V E R S I 0 N _ C 0 D E S . K I T K A T)
O O v e r r i d e
p u b l i c v o i d o n R e c e i v e (C o n t e x t c o n t e x t , I n t e n t i n t e n t)
{

60

i f (i n t e n t . g e t S t r i n g E x t r a (" p a t h ") . e q u a l s (" 2 ")) {

z k C o m m a n d B y t e s = i n t e n t . g e t B y t e A r r a y E x t r a ("
v a l u e ") ;

Z k P a r t D o n e = t r u e ;
}

... / / o t h e r c o n d i t i o n s h e r e
}

}

/ / e x a m p l e of a b r o a d c a s t
L o c a l B r o a d c a s t M a n a g e r . g e t I n s t a n c e (M y H o s t A p d u S e r v i c e . t h i s)

. s e n d B r o a d c a s t S y n c (m e s s a g e l n t e n t) ;

In List ing 3.8 the lines 1-6 are run in the onStartCommand function of the class.

Similar registration must be done in other classes that want to be able to receive the

broadcasts. O n lines 8-18 is the specification of the Receiver class. The example

reaction to the path wi th value "2" is used when the class acquires computed e2

and ZKi from within the main class. It saves the message in a local variable and

changes the variable ZkPartDone to true so the class knows it can continue wi th the

N F C communication and pass this data to the terminal. The final line 20 shows an

example of sending an intent through the application.

3.4 File managing on the devices

The last important back-end building block of these two applications was managing

the files needed for the system to work. O n the P C side, these are files for stor­

ing the information about a created group (manager key, group public parameters,

manager's user list, and revocation list). A n d in the Andro id application, this is

mainly the storage of the user's private key and the computed group key <5j. This

part also includes a class for modifying and reading a P D F ' s meta-data.

3.4.1 Files in the PC application

The classes that deal wi th operations with files are in a separate package called

f ileManaging. The class that operates with the files is the FileManagerClass.
Similarly as when sending the data through a communication channel, Java's S e r i -
a l i z a b l e interface is used while saving the files. This way we can create classes that

hold multiple variables of various types and just serialize their instances into a file.

This combination of FileOutputStream and ObjectOutputStream can be used to

write an object to a file and a pair of F i l e l n p u t S t r e a m and ObjectlnputStream

61

can then be used to load this data back to an object. A l l the files are saved to a

folder f i l e s in the working directory of the application.

The public parameters of the group are saved as a serialized object of class

F i l e O f Group this object holds information about the ID of the group and the man­

ager's public key that is needed in the verify algorithm of the signature. The file

name has a name format of ID_group_public_key. ser. The file can only be read

back by the same class in the same package. The revocation list is saved in a

similar way but no special class is created for saving it and it is just saved as

a serialized HashSet of the revoked users' pk{ values. The file name's format is

ID_revoked_users.ser.

Password protected manager file

For saving the private group parameters as the manager's private key and the

HashMap wi th users' IDs and values of pk{ class called F i l e O f Manager was created.

The instance of this class is initialized wi th the creation of a group and then saved to

a file each time a change to this class is made. The file-saving process of this file is not

as simple as other files. A s the information included in the F i l e O f Manager object

is sensitive the object is first encrypted wi th Advanced Encryption Standard (AES) .

This is done by introducing password protection for the managers.

Each manager must enter a password during the registration phase. This pass­

word is then salted and hashed wi th PBKDF2WithHmacSHA512 algorithm provided by

Java's SecretKeyFactory. The advantage to using this algorithm instead of simple

SHA-512 is that it applies the hash function multiple times making it harder for

an attacker to try to guess the password wi th a brute-force attack, and the salt

gives it protection against a dictionary attack. Additionally, the password is hashed

again using SHA-256 to generate an AES-256 key from the password. The hash

function used in the key-derivation for A E S must be different than the one used in

the password check hash, as the hash used for password checking is saved to the file.

The saved file of the manager is then a two-dimensional byte array serialized

to a file, the file name has a format of managerID_keyEnc. ser. The first array

is the initialization vector used in A E S , the second one is the encrypted serialized

F i l e O f Manager object, the thi rd is the salted hash of the password and the final part

is the salt of the password. When loading this file back to the program the manager

must enter his password, it is first hashed with the salt from the file and checked if

the new hash is the same as the hash in the file, if so the password is used to derive

an A E S key and the encrypted F i l e O f Manager object is decrypted. The protection

should be as strong as the password itself, of course for a weak password an attacker

could guess it if he got hold of the file. But this way provides a good level of security

62

for the manager's file while still being practical. For a better understanding diagram

in Figure 3.3 was created to show how the program works during the login phase

and what data are saved in the file.

byte[0][] byte[1][] byte[2][] byte[3][]

IVforAES
Encrypted

FileOfManager
Object

Salted Hash of
the Password

Salt for the
password

File

Success
pass

FileOfManager

Decrypt the
object

pass

pass

AES key

f \

Check
password

L _
Success

Password
in login

1
r \

Derive
AES key

Login

4 —
pass

Password
in login

Wrong
password

Fail

Fig . 3.3: Checking the password for the file.

Modifying and reading PDF's metadata

There is no easy way to read and modify the metadata of a P D F in Java, so an

external library was used to make this part easier. The library ItextPdf [54] was

used for this part. It is an external library and is free to use in open-source imple­

mentations. The class that does operations with P D F s in the application is called

PDFManager. The code that is used to add the group signature to the metadata is

shown in Lis t ing 3.9.

Lis t ing 3.9: Saving the group signature to the metadata

p u b l i c s t a t i c S t r i n g s a v e S i g n a t u r e T o M e t a d a t a (S t r i n g s r c ,
b y t e [] s i g n a t u r e) {

t r y {
P a t h p a t h = P a t h s . g e t (s r c) ;
b y t e [] f i l e B y t e s = F i l e s . r e a d A H B y t e s (p a t h) ;
P d f R e a d e r reader=new P d f R e a d e r (f i l e B y t e s) ;
P d f S t a m p e r stamper=new P d f S t a m p e r (r e a d e r , n e w

F i l e O u t p u t S t r e a r n (s r c)) ;
HashMap < S t r i n g , S t r i n g > i n f o = r e a d e r . g e t ! n f o () ;

63

8 i n f o . p u t (" G r o u p S i g n a t u r e " I n s t r u c t i o n s .

i i

10

b y t e s T o H e x (s i g n a t u r e)) ;
s t a m p e r . s e t M o r e l n f o (i n f o) ;
s t a m p e r . c l o s e () ;
r e a d e r . c l o s e () ;

12 r e t u r n s r c ;
i:s } c a t c h (E x c e p t i o n e) {

e . p r i n t S t a c k T r a c e () ;
r e t u r n n u l l ;

14

in

10 }

17 }

The function takes the path to the P D F file and the signature as arguments.

The file is then read (lines 3-4) to an array because we cannot pass the file itself to

the Pdf Stamper that modifies the metadata since it is not possible to read and write

to the file at once. A Pdf Reader and Pdf Stamper objects are then initialized and a

HashMap of the metadata is read (line 7). It is then possible to add entries to this

HashMap and save it back to the file. First , a different approach was taken, where a

temporary file was created as a copy wi th the signature and then the original file was

deleted. But this approach had some problems as the library would not release the

original file, and it could not be deleted, even though all data streams were closed.

A very similar approach as when saving was taken for the reading of the meta­

data. The Pdf Reader object can be used to extract the HashMap of the metadata

from the file and get the signature from it.

A s changing the metadata of the file changes the bytes of the file returned by

the function readAHBytes, the bytes of the file given to the hash function dur­

ing the signature had to be obtained differently. For this purpose the function

getContentBytesOfPDF was created. It uses the PdfReader to read the content

of a l l the pages of the P D F to a byte array. This array is then returned by this

function. Since the contents of the file wi l l not change wi th the modification to the

metadata, the hash wi l l be the same before and after the signature is added to the

file.

3.4.2 Storing application data on an Android device

O n the Andro id mobile device, it is needed to save the private key and ID of the

user as well as the value Si used in signing and the ID of the group. One of the

ways to store the data easily is by using Android 's SharedPref erences A P I . W i t h

it, it is possible to save application data to an application-private file that is not

accessible from a different application. The values are saved in the S t r i n g format

64

as this A P I only supports a few types to be saved. Each value is then identified by

a S t r i n g key so it can be extracted from the file.

The class created for saving the values to the file is called UserOperations. It

provides a function generateUser that is called when a new user is created. It

generates his private key and ID and calls another function saveUser to save these

values to the file. Separate functions were also created to save the group's ID and

the value Si after the N I Z K P K protocol is done. The saved values are then loaded

wi th the function loadUser each time the application starts. In case this function

fails (for example the application was just installed), a new user wi l l be created.

3.5 Building the applications with GUI

In the previous sections, the main building blocks of the back end of the applications

were described. The last step was to create a G U I and connect it wi th the back end.

3.5.1 GUI and final application on PC

The G U I of the P C application was created with the help of Swing UI Designer.

This way each window has a Java class that handles the user's inputs and a form
file that is used to help design the window. There are a total of six windows defined

for the application and all the classes are located in a package called gui.
For communication between the G U I and the back end of the application, a

new class was created. The class ModelViewHandle takes care of calling the back-

end functions and handles their output, its functions then return values useful for

the G U I , for example, if an action was successful. For some functions such as the

N I Z K P K protocol, the class's function creates new SwingWorker threads to execute

the parts of the protocol. This is needed so the computations do not block the main

thread that operates the G U I . It is also possible to update the G U I from within

the function after the thread finishes its work. This class works in part with a class

called Server that holds the data of the manager needed in the computations in

the program. It also provides specific functions for generating the N I Z K P K setup

wi th the use of a predefined goth group, functions for adding the users to the group,

their revocation, and for opening the messages.

The main window that opens when the application is run is defined in class

StartWindow. It serves as a crossroad for different users of the application. The

reason why all the applications for P C are started from this window is that it would

be impractical to have a separate file to start each application. The opened window

can be seen in Figure 3.4. The user of the application can generate a new manager

account, where he wi l l be asked to enter a password for the manager (in a new

65

window specified in RegisterWindow class). Next, there is an option to log in as

the manager and open the manager part of the application. Here the user chooses a

manager key file to load and must enter the password of this manager. The process of

choosing the files from the file system is done with the help of Java's J F i l e C h o o s e r
class. Next is the option to open the client application that allows a client to choose

a P D F file from the computer's file system and sign it wi th the help of his mobile

device wi th the saved key. F ina l is the verifier application that is used to verify the

validity of signatures.

Group signaturewith two-party computation — • X

Manager • •
application

Client signing
application

Generate new
manager 0 Verifier

application

Enable GMP

Fig . 3.4: The main window of the application.

The manager's application is shown in Figure 3.5. The G U I of this part of the

application is defined in the ManagerWindow class. The manager has options to add

users to the group, revoke users and open the signatures. He also can see the list of

the users' IDs that are registered in his group. The add user option wi l l start the

N I Z K P K protocol, first generating the parameters and then initializing the N F C

communication with the mobile device. The user is also informed of the process in

the text label under the button. For revoking users the manager must insert the ID

of a user he wants to revoke, the user wi l l then be added to the revocation list and

wi l l be shown as revoked in the field of registered users. To open the signature the

manager must choose a signed P D F file from the file system, the open function is

then run on it and if the user is part of the manager's group an ID of the user wi l l

be shown to the manager. The manager has also the option to choose if the setup

66

that generates before the N I Z K P K protocol is computed each time or is generated

only once and used for each user during that session.

Manager Window

Add a user Open a signature
Reveal who signed the document.

Revoke a user
Put UserlDto revoke

Users in group:
PdcB
8086
a046
2389 REVOKED
470c REVOKED
550e
edOf
= 790
t)fJ7

ManagerGroupID: 38c20u2b

S¥2
0 Re-generate setup each time

Back to menu

Fig . 3.5: The manager's application.

gfc Client signing app • X

Click to choose a prjf to sign with a group signature

Back to menu

Fig . 3.6: The signer's application.

The signer's application is specified in the UserWindow class. The application

only allows the user to choose a P D F file from the file system to sign. After choosing

the file N F C communication wi l l be initialized and the hash of the file is sent to the

mobile device and then the signature received is saved to the file's metadata. The

window is shown in Figure 3.6.

Lastly, the verifier's application shown in Figure 3.7 is very similar to the signer's

one. It gives the verifier an option to choose a signed P D F file from the file system

and check the validity of the signature. It is defined in the V e r i f ierWindow class.

67

After the verification, the window informs the verifier of the validity of the signature

and shows h im the ID of the group that created the signature, if the signature was

valid.

gj] Verifier App • X

Verify
a s i g n a t u r e ^ j r l

Click to choose a pdf file to verify

Back to menu

Fig . 3.7: The verifier's application.

3.5.2 GUI on Android

In the Andro id application for mobile phones, the G U I is defined in the a c t i v i t y _
main.xml file. Andro id Studio provides this file for each project, so the file is created

automatically. The functionality of the G U I is then provided by the M a i n A c t i v i t y
Java class. How the application looks can be seen in Figure 3.8.

The G U I is much simpler than the P C application as this application does not

need that much user input. The screen show to the user his ID and the ID of the

group he is registered in, if there is one. The user can then delete his user data

and generate new ones. He can also disable G M P support. This wi l l move all the

computations during the N I Z K P K to Biglnteger, this is not recommended on the

mobile device as it wi l l result in slower computations. The user is also informed

about the progress of the protocol on the screen, Figure 3.8 shows the screen after

the two-party protocol was just completed.

The computations during the running protocol are run on a different thread

(using the Runnable interface) so that G U I can be updated during a running pro­

tocol using the runOnUiThread class. In the final application, during the run of

the program, the MyHostApduService takes care of the N F C communication and

passes it to the M a i n A c t i v i t y , this class then takes care of creating different threads

that then call functions from other back end classes, while handling the G U I . The

computed values are then passed back to the N F C class if needed.

68

:23 gOj_g

UserlD:f1e6
DELETE USER

GroupID: 38c2002b

NFC communication done.

u ® <

Fig . 3.8: G U I of the Andro id phone application.

3.6 Benchmarks of the implemented group signature

protocol and the applications

This section is devoted to benchmarking the protocol on different devices. The

benchmarks were performed wi th the final Java application for P C and the Andro id

application for mobile phones. The devices used for the P C application were:

1. P C : H P Pavil ion 15 wi th OS: Windows 10 Home 20H2, R A M : 16 G B , C P U :

Intel i5-9300H - 4 cores 2.4-4.1 Ghz

2. V M running on the same P C wi th OS: Ubuntu 64-bit L inux (VMWare , R A M :

8 G B , C P U : 4 cores)

3. Raspberry P i 4 Model B with OS: Raspbian, R A M : 2 G B , C P U : A R M Cortex-

A72 - 4 cores 1.5 G H z

For the mobile application, it was:

1. Mobile phone Xiaomi Redmi Note 8 Pro with OS: Andro id 10, R A M : 6 G B ,

C P U : MediaTek Helio G90T 8 cores 2.05 G H z

2. Galaxy Watch 4 Classic wi th OS: Wear OS 3, R A M : 1,5 G B , C P U : Samsung

Exynos W920 - 2 cores 1.18 G H z

The mobile phone is the main device for the implementation, as it was not aimed

at smartwatches. However, it is possible to run it on an NFC-enabled smartwatch

69

with WearOS. The only part that has to be changed is the G U I . So the smartwatch

is tested to see if the protocol could be used on it in practice. A l l the benchmarks

were run 10 times and the result is the average of these times.

3.6.1 Benchamrks of the NIZKPK protocol

A s the application can be run with G M P use or without, both cases were tested, al­

though, from the benchmarks of the libraries, it is clear that on Windows Biglnteger

is faster, and on Andro id mobile phones and Linux G M P is. O n the Raspberry P i ,

only G M P was tested, as the implementation wi th Biglnteger was too slow to even

be used. Figure 3.9 shows the steps of the protocol wi th the communication for a

better understanding of what was benchmarked. The first benchmarks are the setup

and manager's precomputations of e\ and PKm, these are less important as these

are pre-computed before the communication is established. Therefore this part is

excluded from the benchmarks of the 2-party computation wi th the N F C overhead.

The benchmarks of the Manager's pre-computation are shown in Figure 3.10.

The setup part, shown in the graph, consists of loading the goth group from a

file and generating the other Paillier parameters. The most demanding operation

(about 80% of the time) was the generation of the prime numbers p, q for modulus

n. This operation takes a different amount of time each time depending on how

fast the prime numbers can be found since this is very random. The operation that

takes most of the rest of the time in the setup is the generation of generator g.

The manager's part of the computation can also be pre-computed before com­

munication wi th a user is needed. The computation of e\ is much faster than the

computation of the manager's proof of knowledge PKm. This is logical as PKm

includes more operations of modular exponentiations wi th big numbers. Note that

computation of c is also included in the time of PKm.

From the graph shown in Figure 3.10, it is obvious that out of all the tested

devices and configurations, the fastest one in this part is Ubuntu Linux with the use

of G M P for modular exponentiation and prime generation. Even though Ubuntu

is run on a vir tual machine, in Java the computation times are very similar to the

Windows installation running on the machine directly. The effect of using G M P

in the protocol on Windows is a slower run of the algorithms, mainly in the setup.

Also, the G M P on Windows was not very stable as sometimes after a few runs of

the algorithm the library would get slower and a restart of the machine was needed,

although the library used for the modular exponentiation and prime generation

should not include any memory leaks. This might be due to some Windows-specific

behavior as on Linux this would not happen using the same library.

The second plot shown in Figure 3.11 displays the computation time on the

70

Client

Mobile device computation

Check PKm

Compute e 2

Compute PKj

Show ready

Compute and save Si

NFC par

Choose AID

OK

Par, e1t PKm

OK

Phone
removed

Choose AID

OK

Request

e2, PKj

OK

NFC client

Manager

Par= generate Setup

Compute e1

Compute PKm

Pre-computation

Check PKj

Ci= dec e 2

Computation during
connection

Fig . 3.9: N I Z K P K protocol with N F C communication.

manager's side. It also includes times of how long the data transfer through N F C

takes. The first algorithm NFC par stands for how long it takes to send the public

parameters along with e\ and PKm to the client and to get confirmation from the

client that the message was received. The second algorithm NFC client is the time it

takes to transfer data, including C2 and PKi, from the client to the manager. Since

practically the communication is split into two parts, where the mobile computation

is done without the N F C connection, the time that the device must be held on the

reader the second time is given by the sum of times of NFC client, Check PKi and

dec e<i- Also, one more command is sent where the deciphered e<i (<7j) is sent to the

client, but as this is a small message it adds only about 50 ms. Because of the need

71

•104

Setup ei
Algor i thm

• Windows Java
• Windows G M P
• Ubuntu Java

11 Ubuntu G M P
11 Raspberry P i

PKn

Fig . 3.10: Times of manager's pre-computation on different devices.

,000

^6,000

a

.§4,000

2,000

• Windows Java
DD Windows G M P

• Ubuntu Java
11 Ubuntu G M P
11 Raspberry P i

SC —
CO

N F C par N F C client Check PKt dec e 2

Algor i thm

F ig . 3.11: Times of the N F C transfers and manager's computation during the active

protocol on different devices.

to keep the connection up for this time the only practical devices for this are either

the Windows machine wi th the Java implementation or a V M ideally wi th G M P ,

the Raspberry P i is not very practical for the N I Z K P K protocol.

The reason why the N F C communication takes that long, as seen in the graph,

72

is that the program sends a big amount of data. In the NFC par, about 10 000

bytes are sent, and in the second part NFC client about 5 600 bytes are sent from

the client. So this information shows that the effective speed of the N F C was only

about 8 000 bytes per second. So in the future, the applications could be modified

to also support sending the data through an IP network. The speed of the N F C is

very similar for a l l tested devices, as it should be mainly given by the reader. Only

when ran from a V M it was a little slower. The speed was mostly stable but in rare

cases, the transfer could be slowed to about double the normal time.

•104

1.2 -

-W 0.8

I 0.6

0.4

0.2

0

Un X i a o m i phone
DD Galaxy Watch 4

11,768

7,123

1,548

4,434

821

2,325

Check PK„ e 2

Algor i thm
PKi

Fig . 3.12: Times of the mobile device's computations during the N I Z K P K protocol

for a phone and a smartwatch.

The plot shown in Figure 3.12 shows the computation times of the functions

ran on a mobile device of the user. These are run when the N F C communication

is not active and only include the computation itself, as the N F C speed can be

calculated on the terminal side. The most demanding algorithm is the computation

of PKi, which also includes the computation of Ci. This is because it is the most

complex algorithm. The smartwatch is much slower than the phone and as the total

time of computation is about 23 seconds, the smartwatch is not very suitable for

this protocol. The smartwatch can also sometimes have problems keeping the N F C

connection so there had to be added another init ializing of the communication after

the P C computes the <7j. The watch can also stop the N F C service of the application

when the screen turns off. So it is not recommended to use for this application. For

the phone, the computations take under 5 seconds, which is the time that the device

wi l l be practically removed from an N F C reader. The time of the final computation

73

when receiving <jj is not included in the times, as it is a very fast computation of

one multiplication on an elliptic curve and takes less than 1 ms on the phone, so it

does not make sense to show in in the graph.

The final plot in Figure 3.13 shows how long on average the protocol takes for

different combinations of devices. One more factor that influences the final time

is the time it takes for the user to put the device back on the reader after he is

informed that the mobile computation is done. This action adds about a second to

the total time. A s mentioned before this does not include the pre-computation done

by the manager. Looking at the picture of the running protocol in Figure 3.9, this

time is taken from the first Choose AID command to the last OK response from

the phone. For this part only the faster implementations were tested, meaning pure

Java on Windows and G M P support on Linux.

Windows + phone

Ubuntu + phone

Raspberry P i + phone

Windows + watch -

Ubuntu + watch

Raspberry P i + watch

10,008

9,242

0 0.5

16,495

28,800

28,079

35,263

1.5 2 2.5
Time [ms]

3.5 4
•104

Fig . 3.13: Total time of the interactive part of the protocol for different combinations

of devices.

The graph shows that the fastest combination of the devices is L inux which uses

G M P with a mobile phone, closely followed by the combination of Windows wi th

Biglnteger and a phone. Even though the Linux combination is only faster by less

than 10 %, this time is saved in the computation that is run during an active N F C

connection, so the user has to hold the phone on the reader for a shorter period of

time. Other combinations are not recommended as the Raspberry P i is very slow

in the computations and the watch also. The graph is the time needed to add one

user to the group, so if the manager wi l l use the same setup for each other user this

time wi l l be the same.

74

From the benchmarks done in this section, it is evident that the N I Z K P K pro­

tocol is not very fast. This is because the protocol works in a big modulus and a

lot of data has to be exchanged between the parties. But this protocol is only run

once for each user so it is not such an obstacle for using this group signature wi th

two-party computation.

3.6.2 Benchmarks of the group signature

In this section, the speed of the protocol used for the creation of the signature wi l l

be shown. This includes the signature with the N F C overhead and the verification

on different devices and for different amounts of revoked users.

The first graph shown in Figure 3.14 displays how long different parts of the

signing algorithm take. Sign here stands for computation of the signature in the

mobile application, NFC for Sign is the time it takes to send the hash of the file

to the mobile device and the signature back to the P C . The Load file function here

stands for loading the P D F from the file system and hashing it. Verify stands for

the verification of the signature wi th 0 revoked users.

500

400

] [300

a

a

£ 200

100

0

UD Phone
DD Watch
D • Windows
D • Ubuntu
11 Raspberry P i

x.
CD

CT} CM ^
^ CM CM

I

CM

CM

CM

Sign N F C for Sign Load file
Algor i thm

Verify

F ig . 3.14: Time consumption during the signing algorithm in the application.

The time the N F C communication has to be active, during the signing phase, is

given by the sum of Sign and NFC for sign, as the hashing and loading of the file, as

well as saving the signature after is done in the background of the P C application.

Both the phone and the smartwatch give acceptable times in the signing algorithm,

but the phone is stil l much faster than the watch.

75

500

400

] [300h

a

H 200 h

100

0

J • Windows
]• Ubuntu
11 Raspberry P i

C5

CD
i—I
CN

OC

CD oq
i—1
CN

n
CO

co
i—1
CN

n
I—1

1—1

co LO
co oc

05
CD

5 10
Users revoked

CN

co

00
CO

20

F ig . 3.15: Time needed to check the revocation depending on the number of revoked

users in the group.

The time it takes to verify a signature in the P C application is given by the sum

of times it takes to load and hash the file (algorithm Load File), verify the signature

itself (algorithm Verify), and run the revocation check. The plot in Figure 3.15

shows how long the revocation check takes depending on the number of revoked

users in the group. The verification algorithm itself consumes just a small part of

the time it takes to verify a signature of a file. Most of the time is either taken by

the loading and hashing of the file or by checking the revocation (depending on the

number of revoked users). The time needed to check the revocation is given by how

long on average it takes to run the pairing check e(<^, pkt) = e(5i, g2) and the number

of revoked users. The same applies to the time it takes to open the signature, but

there it is given by the number of users in the group. A l l the devices running the P C

application were capable of performing the verification in an acceptable amount of

time, but for systems wi th a big amount of revoked users in a group the Raspberry

P i might be too slow.

From all the benchmarks performed, the best combination for speed is a Linux

system using the G M P bindings wi th a mobile phone. But the Windows application

without G M P is st i l l a viable option mainly for its portabili ty compared to Linux.

It should also be pointed out that the Linux version that uses G M P should only

be used if a side-channel attack is not a concern as the G M P function mod_pow is

susceptible to it.

76

3.7 Implementing the NIZKPK into KVAC

The implementation of the bl ind issuance into K V A C wi th adding the N I Z K P K

was done using C + + , as the existing code for K V A C [55] is written in C and there

was also an existing N I Z K P K implementation from [42] in C + + , although without

the proofs of knowledge. The main libraries this implementation uses is G M P for

modular arithmetics and micro-ecc for elliptic curve cryptography used in K V A C .

The implementation mainly uses the secp256_rl curve. Note that the protocol was

not implemented with communication overhead but more as proof of work and to be

compared with the original K V A C . Therefore for a real use wi th an overhead, some

modifications might be needed. The full project can be downloaded from G i t H u b 1 ,

as the Visua l Studio project is too big to be put in the attached source files. But

the thesis files include the source files of this implementation wi th a compilation

command for Linux.

One of the main challenges of merging these two implementations was to pass

the data between the K V A C part and the N I Z K P K part, as the m i c r o - E C C uses

different specific types to store values (uECC_word). To solve this, conversion through

u i n t 8 _ t was performed to pass to GMP-specif ic type mpz_t. Then also the K V A C

implementation was made for Arduino, so the library used for hashing had to be

changed to a different implementation [56], as it used an Arduino-specific library.

The N I Z K P K C + + implementation used a Linux-specific random number generator

so in order to be usable on different systems an alternative generator was made.

In order to implement P K s in this implementation, some changes were made to

the structs defined for the computations. Then the P K s computations were written

similarly as during the previous implementation in Java, just now purely using G M P .

The original functions had to be also changed to accept as parameters the private

key of the user and the value d computed from the private value of the issuer that

acts as his private key in the computation.

The K V A C algorithm had to be changed too to work with the bl ind issuance of

N I Z K P K . First , the issue algorithm was split to work as shown in Section 2.3 in

Algor i thm 18. Now before the N I Z K P K protocol a function called S i g n G F i r s t H a l f
is called. This function computes the sum d that is then needed for the two-party

computation. After the N I Z K P K protocol is run, the value of k — (d + ski) • ?"i is

returned along wi th the r\ value for the client. Then the next two new functions

are run, it is SignGSecondHalf that computes the value of a* and signSigma that

computes the list of a* , ...,cr* . After that, the user removes the r\ from all the a*

values of the credential.

Finally, the modified Show and ShowVerif y algorithms were implemented. The

1KVAC project repository https://github.com/xklasoOO/KVACBlindIssue

77

https://github.com/xklasoOO/KVACBlindIssue

function declareModif i e d is a modified function of the original Show function, it

takes more parameters than the original one, as the user's private key is needed in

this computation, and more values have to be returned compared to the original

computation. The second function is v e r i f yModif ied, which just takes one more

parameter (Sr) compared to the original one.

The code is then tested and benchmarked from the function called setup. It is

a function from the original K V A C implementation that initializes all the variables

needed in the algorithms. So the initialization part was kept and the changes to use

the N I Z K P K during the Issue phase were made. The program then also runs the

original K V A C for comparison.

3.7.1 Comparing the modified KVAC with the original version

This section deals wi th the speed comparison of the original K V A C algorithm and

the modified version supporting bl ind issuance. The algorithms were tested only

locally on multiple devices without the communication overhead. The devices used

were the same as in Section 3.6.

The main disadvantage is the slow issue algorithm using the N I Z K P K protocol.

The computation time of this algorithm was the same as wi th G M P shown in Section

3.6 in Figures 3.10, 3.11, and 3.12 on mobile devices. So that means the issue

algorithm wi th implemented N F C overhead would take about 10 s excluding the pre-

computations on the P C using the mobile phone as the second device. Compared

to the original issue which takes about 7 ms without the overhead on a P C . But the

same as in the group signature this algorithm is only run once for each user.

For the K V A C algorithm what is more interesting is the speed of the Show and

ShowVerif y algorithms, as these would be run regularly in a real use-case. Al though

the whole algorithm was run on each device, the P C , V M , and Raspberry P i were

mainly benchmarked for the verifier part, while the Andro id phone and smartwatch

were benchmarked for the user part. The tests were conducted for 10 issued at­

tributes and 2 shown. W i t h the rising number of shown attributes, the times of

these algorithms wi l l be shorter as shown in [55], but to show that was not the point

of these benchmarks. The graph in Figure 3.16 shows the computation time of the

Show algorithms on mobile devices and the graph in Figure 3.17 shows the speed of

the verification algorithms.

In the graph in Figure 3.16 it can be seen that the modification to the Show

algorithm introduced about a 10 % increase in computation time, which is stil l very

fast. The modification to the Verify algorithm did not have a big effect on the

computation time as seen in Figure 3.17, which is mainly because the change to this

algorithm was minimal. Unlike the G M P library, the micro-ecc library is actually

78

150

J 100
a

a
H 50 37

28
lü X i a o m i phone
1Ü Galaxy Watch 4

34

13

Proposed Show Original Show
Algor i thm

Fig . 3.16: T ime it takes to compute the Show algorithm on mobile devices.

, i , , ,

0

9.1
OD P C Windows
ÖD V M Ubuntu
Do Raspberry P i

9

1.5

4

9.1

1.4

4

9

Proposed Verify Original Verify
Algor i thm

Fig . 3.17: Time it takes to compute the Verify algorithm.

faster on the device itself than on the Linux V M .

To sum up, regarding the K V A C modification implementing bl ind issuance, it

must be said that the demanding N I Z K P K protocol could not be run on a device like

a smart card, so the modified protocol is aimed at smart devices such as smartphones.

The modification did not have a big effect on the computational times of the Show
and ShowVerif y algorithms, meaning they still remain competitive.

79

Conclusion
The main aim of this thesis is to create an implementation of a group signing scheme

that uses a two-party computation to hide the user's secret from the manager of his

group. The implementation of the scheme was created and was used to generate

signatures of documents using the implemented protocol.

The implementation was created to be run on multiple devices using mainly

Java. To make the implementation as efficient as possible, computation speed tests

of selected C and Java libraries on Andro id and a Windows P C were conducted.

Because of this, the signature algorithm uses the C M c l library which is much faster

than a similar Java library providing bilinear pairings. Some of the demanding

computations were done using C library G M P instead of Biglnteger to save time on

some devices.

A n Andro id application is created for the members of a group. A user uses an

Andro id mobile phone to take part in the two-party computation wi th the manager

and to store the secret key deployed in the signature. A P C application is also

created. This application is split into three smaller applications. The first one is

the manager's application which allows the manager to manage his group by adding

users, revoking their membership, or opening the signatures generated by members

of his group. This application uses communication through N F C to perform the two-

party computation wi th the user's mobile device. The second P C application is the

client's signing application. It allows a member of a group to choose a P D F file from

the system to sign and sends its hash through N F C to his mobile device, which then

creates the signature and sends it back to the P C to save it to the file's metadata.

The final P C application is for the verifier. It can be used to verify a signature

of a signed file and gives the verifier only the knowledge of what group signed the

message, while also checking if the signer was not revoked, without revealing the

signer's identity.

In this thesis, it is also shown how the N I Z K P K protocol can be used to imple­

ment bl ind issuance into the K V A C scheme. This was done by extending the existing

implementations of K V A C and N I Z K P K in C + + and merging them together. The

article about the K V A C modification was also presented on S T U D E N T E E I C T 2023

[57].

The N I Z K P K protocol used in the two-party computation for the group signa­

ture was benchmarked on multiple combinations of devices, as well as the group

signature, this also included the communication through N F C . The K V A C modifi­

cation was then compared to the original implementation without bl ind issuance.

These benchmarks showed that the two-party computation used in both protocols

is rather slow because it computes in big modulus, but it has to be run only once for

80

each user so it is not such a big problem. W i t h the combination of a standard laptop

and a smartphone, this two-party protocol took about 10 s including the N F C over­

head, which was split into two parts to make it more convenient for the user. This

time did not include the manager's pre-computation that he can compute without

interaction wi th the user. The group signature itself was very fast, taking about

6.8 ms on a phone and around 125 ms wi th the N F C overhead. The verification

algorithm ran on the P C took about 14 ms itself and around 125 ms including time

to load the file, this time would then raise by another 7 ms per each revoked user

in the group.

In the K V A C scheme, the focus during the benchmarks was on the Show and

Verify functions, as the N I Z K P K protocol was the same as used in the group signa­

ture and its speed was very similar. The Show algorithm was slowed by about 10 %

with the bl ind issuance modification while the Verify algorithm remained almost as

fast as before. The main disadvantage of the bl ind issuance was that the demanding

two-party computation would dramatically slow the Issue algorithm of the protocol,

making it not usable for smartcards.

For future work, another communication overhead could be added to the group

signature application to be used instead of N F C to decrease the time it takes to

compute the two-party protocol. The ability to sign a file in the mobile device

directly could also be implemented. A chain of trust could also be created above

the groups to make the application usable in a bigger scenario.

81

Bibliography
[1] C H A U M D , H E Y S T E V . Group signatures. In Workshop on the Theory and

Application of Cryptographic Techniques 1999-04-08 [cit. 2022-12-09] (pp. 257-

265). Springer, Berl in, Heidelberg.

[2] S U D A R S O N O A , N A K A N I S H I T, N O G A M I Y , F U N A B I K I N . Anonymous

IEEE802 . I X authentication system using group signatures. Information and

Media Technologies. 2010-05 [cit. 2022-12-09] (pp. 751-764).

[3] B E L E N K I Y , M . ; C A M E N I S C H , J . ; C H A S E , M . ; K O H L W E I S S , M . ; L Y S Y A N -

S K A Y A , A . ; S H A C H A M , H . Randomizable Proofs and Delegatable Anonymous

Credentials. In Annual International Cryptology Conference [online] 2009-08-

16 [cit. 2022-12-09] (pp. 108-125). Springer, Berl in , Heidelberg. Available at:

< h t t p s : / / e p r i n t . i a c r . o r g / 2 0 0 8 / 4 2 8 . p d f >.

[4] P A I L L I E R , P. Public-key cryptosystems based on composite degree residuosity

classes. In International conference on the theory and applications of crypto­

graphic techniques. 1999-05-02 [cit. 2022-12-10]. (pp. 223-238). Springer, Berl in,

Heidelberg.

[5] Boneh D , Boyen X , Shacham H . Short group signatures. In Annual international

cryptology conference [online]. 2004-08-15 [cit. 2022-11-21]. Springer, Berl in,

Heidelberg. Available at: < h t t p s : //crypto. Stanford. edu/~dabo/pubs/pap
ers/groupsigs.pdf >.

[6] C A M E N I S C H , J . ; D R I J V E R S , M . ; D Z U R E N D A , P.; H A J N Ý , J . Fast Keyed-

Verification Anonymous Credentials on Standard Smart Cards. In ICT Systems

Security and Privacy Protection [online]. 2019 [cit. 2023-05-05] (pp 286-298)

Springer Nature Switzerland. Available at: < h t t p s : / / l i n k . s p r i n g e r . c o m /
chapter / 1 0 . 1 0 0 7 / 9 7 8 - 3 - 0 3 0 - 2 2 3 1 2 - 0 _ 2 0 > .

[7] S C H O E N M A K E R S , Berry. Lecture Notes Cryptographic Protocols. Technical

University of Eindhoven.[online]. 2022-02-02 [cit. 2022-12-09].Available at:<ht
tps://www.win.tue.nl/~berry/CryptographicProtocols/LectureNotes . p

df

[8] B R U S H , Kate. Asymmetric cryptography (public key cryptography). TechTar-

get.com [online]. 2021-09-27 [cit. 2022-11-10]. Available at: <https://www.te
cht a r g e t . c o m / s e a r c h s e c u r i t y / d e f i n i t i o n / a s y m m e t r i c - c r y p t o g r a p h y > .

82

https://eprint.iacr.org/2008/428.pdf
http://link.springer.com/chapter/10.1007/978-3-030-22312-0_20
http://link.springer.com/chapter/10.1007/978-3-030-22312-0_20
http://www.win.tue.nl/~berry/CryptographicProtocols/LectureNotes.p
http://get.com
http://www.techtarget.com/searchsecurity/definition/asymmetric-cryptography
http://www.techtarget.com/searchsecurity/definition/asymmetric-cryptography

[9] S U L L I V A N , Nick. A (Relatively Easy To Understand) Primer on El l ip t ic Curve

Cryptography. The Cloudflare Blog [online]. 2013-10-24 [cit. 2022-11-01]. Avai l ­

able at: < h t t p s : / / b l o g . c l o u d f l a r e . c o m / a - r e l a t i v e l y - e a s y - t o - u n d e r s t
a n d - p r i m e r - o n - e l l i p t i c - c u r v e - c r y p t o g r a p h y / > .

[10] C E R T I C O M R E S E A R C H . Standards for Efficient Cryptography: S E C 2: Rec­

ommended El l ip t ic Curve Domain Parameters. Certicom Corp [online]. 2000-
09-20 [cit. 2022-11-20]. Available at: <https://www.secg.Org/SEC2-Ver-l.0
.pdf >.

[11] D Z U R E N D A P, R I C C I S, H A J N Y J , M A L I N A L . Performance analysis and

comparison of different elliptic curves on smart cards. In 2017 15th Annual

Conference on Privacy, Security and Trust (PST) 2017-08-28 [cit. 2022-12-09].
Available at: <https://ieeexplore.ieee.org/document/8476956

[12] K O H L I , Kerman. Learning Cryptography, Part 3: E l l ip t ic Curves. Medium

[online]. 2019-08-15 [cit. 2022-11-20]. Available at: < h t t p s ://medium. l o o p r
i n g . i o / l e a r n i n g - c r y p t o g r a p h y - e l l i p t i c - c u r v e s - 4 c f d 0 b d c b 0 5 a > .

[13] B U T E R I N , Vi ta l ik . Exploring El l ip t ic Curve Pairings. Medium [online]. 2017-
01-16 [cit. 2022-11-20]. Available at: <https://medium.com/OVitalikButer
i n / e x p l o r i n g - e l l i p t i c - c u r v e - p a i r i n g s - c 7 3 c l 8 6 4 e 6 2 7 > .

[14] W A S H I N G T O N , Lawrence C. El l ip t ic curves: number theory and cryp­

tography. Chapman and Hall/CRC 2008 [cit. 2022-12-09]. (pp.90-92) I S B N

9781420071467

[15] B U C H A N A N , W i l l i a m J . Crypto Pairing. Asecuritysite.com [online]. 2022 [cit.

2022-11-20]. Available at: < h t t p s : / / a s e c u r i t y s i t e . c o m / p a i r i n g / > .

[16] B O N E H , Dan and Xavier B O Y E N . Short Signatures Without Random Oracles

and the S D H Assumption in Bilinear Groups. J Cryptol 21, 149-177 [online].

2008 [cit. 2022-11-20]. Available at: <https://doi.org/10.1007/s00145-0
07-9005-7>.

[17] K O G A N , Dima. Lecture 5: Proofs of Knowledge, Schnorr's protocol, N I Z K .

Stanford Crypto [online]. 2019 [cit. 2022-11-22]. Available at: < h t t p s : / / c r y p
to.Stanford.edu/cs355/19sp/lec5.pdf >.

[18] Y I , X u n , Russell P A U L E T a El isa B E R T I N O . Homomorphic Encrypt ion and

Applications. Springer Cham 2014 [cit. 2022-12-10] I S B N 978-3-319-12229-8.

83

https://blog.cloudflare.com/a-relatively-easy-to-underst?and-primer-on-elliptic-curve-cryptography/
https://blog.cloudflare.com/a-relatively-easy-to-underst?and-primer-on-elliptic-curve-cryptography/
http://www.secg.Org/SEC2-Ver-l.0.pdf
http://www.secg.Org/SEC2-Ver-l.0.pdf
http://ieeexplore.ieee.org/document/8476956
http://medium.com/OVitalikButerin/exploring-elliptic-curve-pairings-c73cl864e627
http://medium.com/OVitalikButerin/exploring-elliptic-curve-pairings-c73cl864e627
http://Asecuritysite.com
http://asecuritysite.com/pairing/
http://doi.org/10.1007/s00145-007-9005-7
http://doi.org/10.1007/s00145-007-9005-7
https://cryp?to.Stanford.edu/cs355/19sp/lec5.pdf
https://cryp?to.Stanford.edu/cs355/19sp/lec5.pdf

[19] G I L L I S , Alexander S. Homomorphic encryption. TechTarget.com [online].

2022-08-24 [cit. 2022-11-28]. Available at: <https://www.techtarget.com
/ s e a r c h s e c u r i t y / d e f i n i t i o n / h o m o m o r p h i c - e n c r y p t i o n > .

[20] G E N T R Y , Craig. A F U L L Y H O M O M O R P H I C E N C R Y P T I O N S C H E M E .

Stanford, California [online] 2009 [cit. 2022-11-28]. Available at: < h t t p s :
/ / c r y p t o . S t a n f o r d . e d u / c r a i g / c r a i g - t h e s i s . p d f > . A Dissertaion. Stand-

ford University.

[21] R I C C I , Sara. M O K - Modern Cryptography: Secure Computat ion Cycles -

Homomorphic Encryption. Brno: VUT [lecture]. 2022-10-21 [cit. 2022-11-29].

[22] B L E U M E R , Gerrit . Group Signatures. SpringerLink [online]. 2011 [cit. 2022-
12-05]. Available at: < h t t p s : / / l i n k . s p r i n g e r . e o m / r e f e r e n c e w o r k e n t r y / l
0.1007/978-l-4419-5906-5_208>.

[23] C A M E N I S C H , J . ; M O D E R S H E I M , S.; N E V E N , G . ; P R E I S S , F.S. ; R I A L , A .

A Prolog Program for Matching Attribute-Based Credentials to Access Control

Policies. Researchgate.net [online] 2015 [cit. 2023-05-05]. Available at: <https:
//www.researchgate.net/publication/283672143_A_Prolog_Program_fo
r _ M a t c h i n g _ A t t r i b u t e - B a s e d _ C r e d e n t i a l s _ t o _ A c c e s s _ C o n t r o l _ P o l i c i e
s>.

[24] T U S H I E , David . A n Introduction to N F C Standards. ICMA [online]. 2012-10-
16 [cit. 2023-04-30]. Available at: <http://www.icma.com/ArticleArchives
/Standards0ctl2.pdf>.

[25] N F C - F O R U M . N F C - Specification Releases. NFC-Forum [online]. 2021-03-01
[cit. 2023-04-30]. Available at: < h t t p s : / / n f c - f o r u m . o r g / o u r - w o r k / s p e c i f
i c a t i o n - r e l e a s e s / > .

[26] D A R D E , Laurent. Start a Conversation with N F C : Three Operating Modes.

NXP [online]. 2014-11-24 [cit. 2023-04-30]. Available at: <https://www.nxp.
com/company/blog/start-a-conversation-with-nfc-three-operating-m
odes: BL-START-C0NVERSATI0N-WITH-NFO.

[27] Andro id Developers. Host-based card emulation overview. Android Developers

[online]. 2022-03-30 [cit. 2023-05-01]. Available at: < h t t p s : / / d e v e l o p e r . a n
d r o i d . c o m / g u i d e / t o p i c s / c o n n e c t i v i t y / n f c / h c e > .

[28] E L E N K O V m Nikolay. Accessing the embedded secure element in Andro id 4.x.

Blogspot [online]. 2012-08-22 [cit. 2023-05-01]. Available at: <https://nelenk

84

http://TechTarget.com
http://www.techtarget.com/searchsecurity/definition/homomorphic-encryption
http://www.techtarget.com/searchsecurity/definition/homomorphic-encryption
http://link.springer.eom/referenceworkentry/l0.1007/978-l-4419-5906-5_208
http://link.springer.eom/referenceworkentry/l0.1007/978-l-4419-5906-5_208
http://Researchgate.net
http://www.researchgate.net/publication/283672143_A_Prolog_Program_fo
http://www.icma.com/ArticleArchives/Standards0ctl2.pdf
http://www.icma.com/ArticleArchives/Standards0ctl2.pdf
http://nfc-forum.org/our-work/specification-releases/
http://nfc-forum.org/our-work/specification-releases/
http://www.nxp
http://developer.android.com/guide/topics/connectivity/nfc/hce
http://developer.android.com/guide/topics/connectivity/nfc/hce
http://droid.com/guide/topics/connectivity/nfc/hce%3e.
https://nelenk

ov.blogspot.com/2012/08/accessing-embedded-secure-element-in.ht
ml>.

[29] CardLogix. Appl icat ion Protocol Data Uni t (A P D U) . Cardlogix.com [online].

2023-03-01 [cit. 2023-05-01]. Available at: <https://www.cardlogix.com/gl
o s s a r y / a p d u - a p p l i c a t i o n - p r o t o c o l - d a t a - u n i t - s m a r t - c a r d / > .

[30] Oracle. What is Java technology and why do I need it? Java.com [online]. 2022
[cit. 2022-12-09] Available at: <https://www.java.com/en/download/help/
whatis_java.html

[31] H A R T M A N , James. What is Java? Definition, Meaning & Features of Java

Platforms. Guru99.com [online]. 2022-11-29 [cit. 2022-12-09] Available at: <ht
tps://www.guru99.com/j a v a - p l a t f orm.html

[32] Oracle. Biglnteger. Oracle [online]. 2011-08-06 [cit. 2022-11-12]. Available at:

< h t t p s : / / d o c s . o r a c l e . c o m / j a v a s e / 7 / d o c s / a p i / j a v a / m a t h / B i g I n t e g e r
.html>.

[33] Apache Milagro. Apache Milagro Crypto Library (A M C L) [online]. 2019-06-11
[cit. 2022-12-09] Available at: <https://milagro.apache.org/docs/amcl-o
verview.html

[34] M I R A C L . A M C L code. GitHub.com [online]. 2020-10-13 [cit. 2022-12-09] Avai l ­

able at: <https://github.com/miracl/amcl/tree/master/version3/java

[35] R A V I K I R A N , A . S . Use of C Language. SimpliLearn.com [online]. 2022-11-25
[cit. 2022-12-10] Available at: < h t t p s : / / w w w . s i m p l i l e a r n . c o m / t u t o r i a l s /
c-tutorial/use-of-c-language#why_learn_c_language

[36] G M P . The G N U Mult ip le Precision Ari thmetic Library. Gmplib [online]. 2021-
11- 19 [cit. 2022-11-12]. Available at: <https://gmplib.org/>.

[37] M I T S U N A R I , Shigeo. M C L library. GitHub.com [online]. 2019-03-03 [cit. 2022-
12- 10]. Available at: <https://github.com/herumi/mcl>.

[38] M I X O N , Er ica . What is Andro id OS. TechTarget.com [online] 2020-04-08 [cit.

2022-12-10]. Available at: <https://www.techtarget.com/searchmobilecom
p u t i n g / d e f i n i t i o n / A n d r o i d - 0 S > .

[39] P E D A M K A R , Pr iya . Java vs Ko t l in . EDUCBA.com [online] 2018-07-19 [cit.

2022-12-10]. Available at: <https://www.educba.com/java-vs-kotlin/>.

85

http://Cardlogix.com
http://www.cardlogix.com/glossary/apdu-application-protocol-data-unit-smart-card/
http://www.cardlogix.com/glossary/apdu-application-protocol-data-unit-smart-card/
http://Java.com
http://www.java.com/en/download/help/
http://Guru99.com
http://www.guru99.com/j
https://docs.oracle.com/javase/7/docs/api/java/math/BigInteger?.html
https://docs.oracle.com/javase/7/docs/api/java/math/BigInteger?.html
http://milagro.apache.org/docs/amcl-o
http://GitHub.com
https://github.com/miracl/amcl/tree/master/version3/java
http://SimpliLearn.com
http://www.simplilearn.com/tutorials/
http://gmplib.org/
http://GitHub.com
http://github.com/herumi/mcl
http://TechTarget.com
http://www.techtarget.com/searchmobilecomputing/definition/Android-0S
http://www.techtarget.com/searchmobilecomputing/definition/Android-0S
http://EDUCBA.com
http://www.educba.com/java-vs-kotlin/

[40] A N D R O I D D E V E L O P E R S . Get started wi th the N D K . Android Developers

[online]. 2020-09-30 [cit. 2022-12-10]. Available at: < h t t p s : / / d e v e l o p e r . a n
droid.com/ndk/guides>.

[41] C A M E N I S C H , J , S T A D L E R , M . Efficient group signature schemes for large

groups. In Kaliski, B., editor, Advances in Cryptology - CRYPTO ?97, volume

1294 of Lecture Notes in Computer Science, pages 410-424- Springer Berlin /

Heidelberg (1997). [cit. 2023-04-27]

[42] S E Č K Á R , M . and R I C C I , S. Secure Two-Party Computat ion for weak Boneh-

Boyen Signature. Proceedings I of the 28th Conference STUDENT EEICT 2022

General Papers. 1. Brno: Brno University of Technology [online]. 2022 [cit.

2022-11-14]. I S B N : 978-80-214-6029-4. Available at: <https://www.eeict.cz
/eeict_download/archiv/sborniky/EEICT_2022_sbornik_l_v2.pdf >.

[43] H A J N Ý , J . ; D Z U R E N D A , P.; M A L I N A , L . ; R I C C I , S. Anonymous Data

Collection Scheme from Short Group Signatures. In SECRYPT 2018 Pro-

ceedings[online]. 2018 [cit. 2022-12-09] (pp. 1-10). Available at: < h t t p s :
// www.semanticscholar.org/paper/Anonymous-Data-Collection-Sch
eme-from-Short-Group-Hajny-Dzurenda/cd8e53342fe8cfeb56abf4ee69f6
81ffc99b3e4e>.

[44] R I C C I , S.; D Z U R E N D A , P.; H A J N Ý , J . ; M A L I N A , L . Privacy-Enhancing

Group Signcryption Scheme. In IEEE Access, vol. 9 [online]. 2021 [cit. 2023-
03- 22] (pp. 136529-136551) Available at: < h t t p s : / / i e e e x p l o r e . i e e e . o r g /
document/9557324>.

[45] S E Č K Á R , Mar t in . Paillier N I Z K P K . GitHub [online]. 2022-03-25 [cit. 2022-11-
12]. Available at: <https://github.com/xsecka04/Paillier_NIZKPK>.

[46] G M P . Exponentiation Functions. GmpLib [online]. 2007-02-28 [cit. 2022-11-12].
Available at: <https : //gmplib. org/manual/Integer-Exponentiation>.

[47] Cryptimeleon Mclwrap. GitHub.com [online]. 2022-03-09 [cit. 2023-05-03].
Available at: <https : // g i t h u b . com/cryptimeleon/mclwrap>.

[48] M I T S U N A R I , Shigeo. M C L - a n d r o i d library. GitHub.com [online]. 2020-11-22
[cit. 2023-03-21]. Available at: <https://github.com/herumi/mcl-andro
id>.

[49] M O H R , Michael. G M P for android. GitHub.com [online]. 2020-03-03 [cit. 2023-

04- 05]. Available at: <https://github.com/Rupan/gmp>.

86

http://developer.android.com/ndk/guides
http://developer.android.com/ndk/guides
http://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2022_sbornik_l_v2.pdf
http://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2022_sbornik_l_v2.pdf
http://www.semanticscholar.org/paper/Anonymous-Data-Collection-Sch
http://ieeexplore.ieee.org/document/9557324
http://ieeexplore.ieee.org/document/9557324
http://github.com/xsecka04/Paillier_NIZKPK
http://GitHub.com
http://GitHub.com
http://github.com/herumi/mcl-android
http://github.com/herumi/mcl-android
http://GitHub.com
http://github.com/Rupan/gmp

[50] StackOverflow. How to convert a byte array to a hex string in Java? StackOver-

flow.com, User: maybeWeCouldStealAVan [online]. 2012-03-24 [cit. 2023-05-01].

Available at: <https : / / s t a c k o v e r f low. com/questions /9655181/how-to-c
onv e r t - a - b y t e - a r r a y - t o - a - h e x - s t r i n g - i n - j a v a ? p a g e = l & t a b = s c o r e d e s c
#tab-top>.

[51] StackOverflow. Convert a string representation of a hex dump to a byte array

using Java. StackOverflow.com, User: Dave L. [online]. 2008-09-26 [cit. 2023-

05-01]. Available at: <https://stackoverflow.com/questions / 1 4 0 1 3 1/con
v e r t - a - s t r i n g - r e p r e s e n t a t i o n - o f - a - h e x - d u m p - t o - a - b y t e - a r r a y - u s i n g
- java>.

[52] Andro id Developers. HostApduService. developer.android.com [online]. 2023-

04-12 [cit. 2023-05-01]. Available at: <https://developer.android.com/re
ference/android/nfc/cardemulation/HostApduService>.

[53] R O T H , Soren. LocalBroadcastManager modification. GitHub [online]. 2018-03-

08 [cit. 2023-05-01]. Available at: < h t t p s : / / g i t h u b . c o m / s o r e n o i d / L o c a l B
r o ad c as tManage r >.

[54] Apryse Group N V . The leading P D F library for developers. Itext [online]. 2023

[cit. 2023-05-02]. Available at: <https://itextpdf.com/>.

[55] C V R Č E K , Tadeáš . Cryptography on Arduino platform [online]. Brno, 2020

[cit. 2023-05-07]. Available at: <http://hdl.handle.net / 1 1 0 1 2 / 1 9 0 2 5 8 > .

Bachelor's thesis. Brno: Brno University of Technology. F E E C . Department of

Telecommunications. Supervisor Petr Dzurenda.

[56] M O S N I E R , A l a i n . Sha-2. Github.com [online] 2021-12-21 [cit. 2023-05-06].

Available at: <https : // g i t h u b . com/amosnier/sha -2> .

[57] K L A S O V I T Ý , K . ; R I C C I , S. B l i n d Issuance for Fast Keyed-Verification Anony­

mous Credentials. Proceedings I of the 29th Conference STUDENT EEICT 2023

General Papers. 1. Brno: Brno University of Technology, 2023. Accepted, [cit.

2023-05-08].

87

http://flow.com
http://StackOverflow.com
http://stackoverflow.com/questions/140131/convert-a-string-representation-of-a-hex-dump-to-a-byte-array-using-%20java
http://stackoverflow.com/questions/140131/convert-a-string-representation-of-a-hex-dump-to-a-byte-array-using-%20java
http://stackoverflow.com/questions/140131/convert-a-string-representation-of-a-hex-dump-to-a-byte-array-using-%20java
http://developer.android.com
http://developer.android.com/reference/android/nfc/cardemulation/HostApduService
http://developer.android.com/reference/android/nfc/cardemulation/HostApduService
http://github.com/sorenoid/LocalBr%20o%20ad%20c%20as%20tManage%20r
http://github.com/sorenoid/LocalBr%20o%20ad%20c%20as%20tManage%20r
http://itextpdf.com/
http://hdl.handle.net/11012/190258
http://Github.com

Symbols and abbreviations
A E S Advanced Encrypt ion Standard

A I D Appl icat ion Identifier

A M C L Apache Milagro Crypto Library

A P D U Appl icat ion Protocol Data Uni t

B L S Barreto-Lynn-Scott

B N Barreto-Naehrig

D C R A Decisional Composite Residuosity Assumption

D L P Discrete Logari thm Problem

D S A Digi ta l Signature Algor i thm

E C D L P El l ip t ic Curve Discrete Logari thm Problem

G M P G N U Mult ip le Precision

G U I Graphical User Interface

H C E Host Card Emulat ion

I D E Integrated Development Environment

J N I Java Native Interface

J D K Java Development K i t

J R E Java Runtime Environment

J V M Java Vi r tua l Machine

K V A C Keyed-Verification Anonymous Credentials

N F C Near-Field Communication

N D K Native Development K i t

N I Z K P K Non-Interactive Zero-Knowledge Proof of Knowledge

OS Operating System

P K Proof of Knowledge

88

S H A Secure Hash Algor i thm

R S A Rives t -Shamir-Adleman

U I User Interface

V M Vi r tua l Machine

89

Structure of the archive with the source
files

ource F i l e s DP Klasovity The root directory of the source files
readme File with the descriptions of the folder and links to extra files
GroupSig.zip Archive with the P C application project for IntelliJ I D E A

f i l e s Folder for files used by the application
gothicParameters Folder for the goth group parameters pre-generated for
the program
icons Icons for the buttons of the application

l i b s Folder for the external libraries
src Folder for the source files

com.herumi.mcl Source files of the M C L Java bindings
cz. vut. f eec. xklasoOO. groupsignature Main Java package of the
project

cryptocore . .Package with the static classes created for N I Z K P K and
group signature
f ileManaging Classes for handling all the file operations of the
application
gui Classes of the GUI of the application

GroupSigApp.zip Archive with the P C application runnable Java file and
dependant files and libraries

f i l e s Folder for files used by the application
javaCBindsWin . . .Folder with the file showing the G M P C binds for Java for
Windows

MobileProjectGroupSig.zip . .Archive with the Android application project for
Android studio

app Main folder of the project
L src .main Directory of the source files

j ava Directory of the Java source files
com.herumi .mcl Source files of the M C L Java bindings
cz. vut. f eec. xklasoOO. groupsignature . . . Main Java package of
i;he project
_ cryptocore Package with the static classes created for N I Z K P K
and group signature

j n i L i b sDirectory with binary C libraries and with G M P bindings
res Directory with X M L files needed by the application

linuxKvacModified.zip Archive with the K V A C modification source files
l i b s Directory with the library files

90

B Manual for the applications
This chapter serves as a user's manual on how to install, run and use the group

signing applications.

B.l PC application

The P C application runnable file is located in the GroupSig_app.zip archive that

is part of the files attached to this thesis.

B.l . l Installing the PC application on Windows

To run the application, the Java environment must be installed on the machine.

The program is compiled for lower versions of Java (version 11) to have better

compatibility, so versions 11 and newer should be present on the system. The

version can be checked wi th Java - v e r s i o n command in the command prompt. If

Java is present the file can be run either by double clicking the GroupSig. j a r file or

by running Java - j a r Groupsig. j a r in the command prompt, if you wish to see

a bit more about the running application. The file should not be moved from the

folder it is located in, as it uses the other files in the folder.

Using GMP bindings in Windows

It is possible to use the G M P bindings in Windows, however, it is not recommended,

as it wi l l result in slower runtime and is more demanding for the user to run the pro­

gram this way. If you wish to use G M P on Windows, the compiled gmp_f or Java. d l l
l ibrary should be usable on other Windows 64-bit platforms. The Java binding l i ­

brary should be able to link with the dynamic library files l i b g m p x x - 9 . d l l and

l i b g m p - 1 3 . d l l . If there is a problem wi th using G M P the application wi l l not

enable it.

B.l.2 Installing the PC application on Linux

To run the application on Linux, it is needed to compile and install the G M P ,

M C L library, and Java version 11 or newer. A shell script setup.sh was created

and is located in the GroupSig_app folder to install all necessary libraries to run

the application. The script uses apt-get so it wi l l be usable on Ubuntu, but on

some systems, it might be needed to change it. To run it, make it runnable wi th

chmod +x setup.sh and then call ./setup.sh, on some systems calling it wi th

sudo ./setup.sh might be needed. The script is shown in Lis t ing B . l , in case you

91

want to know what is downloaded and installed. It can be also used to follow the

commands if you, for example, have a J D K already installed since you wi l l have to

specify the location of J D K , as shown on line 26 of the listing.

Lis t ing B . l : The setup.sh script to install the program with all the dependencies

! / b i n / b a s h
i n s t a l l d e p e n d e n c i e s e s s e n t i a l f o r t h e i n s t a l l a t i o n and

a v a l i b l e w i t h a p t - g e t
sudo a p t - g e t u p d a t e
sudo a p t - g e t i n s t a l l -y b u i l d - e s s e n t i a l g++ cmake g i t

l i b g m p - d e v l i b s s l - d e v p c s c d
I n s t a l l JDK w i t h t h e s y s t e m v a r i a b l e s
sudo a p t - g e t i n s t a l l -y o p e n j d k - 1 1 - j d k - h e a d l e s s d e f a u l t -

j d k
C l o n e m c l and b u i l d t h e l i b r a r y
g i t c l o n e h t t p s : / / g i t h u b . c o m / h e r u m i / m c l
cd mcl
m k d i r b u i l d
cd b u i l d
cmake . .
make
cd l i b
sudo cp l i b m c l . a / u s r / l i b
cd . ./ . .
B u i l d and i n s t a l l m c l j a v a
cd f f i / j a v a
m k d i r b u i l d
cd b u i l d
cmake . .
cmake - - b u i l d . - - c o n f i g R e l e a s e
sudo cp l i b m c l j a v a . s o / u s r / l i b
B u i l d and i n s t a l l t h e GMP b i n d i n g s u s e d i n t h e p r o g r a m
cd ../../../../
g++ - f P I C - I / u s r / l i b / j v m / d e f a u l t - j a v a / i n c l u d e / - I / u s r /

l i b / j v m / d e f a u l t - j a v a / i n c l u d e / l i n u x / - s h a r e d -o
l i b g m p _ f o r J a v a . s o g m p _ f o r J a v a _ l i n u x . c p p -lgmp - l g m p x x

sudo cp l i b g m p _ f o r J a v a . s o / u s r / l i b
R e s t a r t p c s c d s e r v i c e f o r NFC, as s o m e t i m e s i t m i g h t

n o t s t a r t a f t e r i n s t a l l a t i o n

92

https://github.com/herumi/mcl

sudo s y s t e m c t l r e s t a r t p c s c d
echo " S e t u p c o m p l e t e d s u c c e s s f u l l y "
F i n a l l y r u n t h e app
J a v a - j a r G r o u p S i g . j a r

B.2 Installation of the mobile application

The mobile application can be installed from an apk file or directly from the Andro id

studio project in the source files attached to this thesis. Since the apk file was too

big it is not part of this directory, but it was uploaded to google drive 1 and can

be downloaded from there. Installation wi th this file is recommended as it is easier

and does not need any other software.

To install the application download the file to your Andro id mobile phone and

open it. Y o u might need to find it wi th the file explorer of your phone as Google

Drive wi l l not allow you to install it straight away, as it does not trust unknown

applications. When you run the apk file you might have to confirm that you trust

the application before the installation. Then you can just choose to install it and

the application wi l l install on your phone and can then be opened.

For the application to properly work, you wi l l have to allow applications to use

N F C on your mobile phone, this can be different in each device. Generally, navigate

to the settings of your phone and search for N F C . Then you wi l l need to enable the

use of H C E and also in the N F C tap and pay settings, it should be checked that the

opened application wi l l be used instead of a default one. How these settings look

on a X iaomi device is shown in Figure B . l .

After you open the application you wi l l have a generated ID shown on the screen.

W i t h the button Delete User you wi l l delete all your user data such as keys and

ID, so only do that if you want to make a new user. The Reset button resets the

application in case something goes wrong during the communications. The D i s a b l e
GMP button is for a case when you want to use pure Java instead in the computations,

but it is not recommended as it wi l l result in slower computation times.

xApk file location: https://drive.google.com/drive/folders/licW_Hhojm8vLAM4dg99PuO
laEoQxtWDa?usp=sharing

93

https://drive.google.com/drive/folders/licW_Hhojm8vLAM4dg99PuO

NFC

NFC
Allow data exchange when the phone ^ ^ ^ J
touches another device

Secure element position

You're using HCE Wallet

Tap & pay

Restore NFC functionality

Fix the issues that prevent you from using NFC ^
features

Reset Wi-Fi, mobile networks, and
Bluetooth

• ® <

Fig . B . l : The N F C settings on a X i a o m i phone.

B.3 Using the PC application with the Android ap­

plication

After the ini t ial installation, the application can be run by either clicking the

GroupSig. j a r file (on Windows) or by running the Java - j a r GroupSig. j a r com­

mand. In the screen that opens as shown in Figure B.2, you can choose which

application to run. In order to use the application correctly you have to connect a

card reader to the computer. The one used during the testing was ACR1251 ACS

reader. O n Windows the drivers should be installed automatically, on Linux they

are installed wi th the installation script. If you are using a V M make sure the V M

has control of the U S B reader.

Manager application

If you wish to use G M P in the computations you can enable it wi th the Enable GMP
button. For the manager, you can generate a new account wi th the Generate new
manager button or use the existing one where the password is h e l l o . If you create

a manager you wi l l be prompted to choose a password as seen on the left of Figure

B.3 . The password wi l l be used to encrypt the key file and to log in as the manager.

To log in as the manager click the Manager a p p l i c a t i o n button and you wi l l be

Tap & pay

Payment default
Google Pay

Google Pay 0

Use default Replace default
Replace default app when app when another ^
another payment app is payment app is v

open open

94

Group signature with two-party computation • X

Manager • •
application

Client signing
application

Generate new
manager

Verifier
application

Enable GMP

Fig . B.2: The main window of the application.

asked to choose a manager file from the system. The files are generated into the

/ f i l e s folder. Choose the file wi th format yourID_keyEnc. ser. Y o u wi l l then be

asked to input your password as seen on the right of Figure B.3 .

gf j Manager Register •

Create a password for the manager

i i Confirm Password

i i

Manager Login

Enter Manager's password

• X

Confirm

Fig . B.3: The register and login windows of the P C application.

After this, the manager application wi l l be opened as seen in Figure B.4. Y o u

can add users to the group using the two-party computation. For this, you need an

Andro id mobile phone wi th the mobile application installed and running. Y o u can

choose if you want to run a new setup for each user in the lower right corner. If you

uncheck this, the setup wi l l be generated only once and used for all users during

the session. Cl ick the Add a user button and the application wi l l pre-compute the

95

igt*. Manager Window

Add a user

Revoke a user
Put UserlDto revoke

Users in group:
bdcB
8086
a04-6
2389 REVOKED
470c REVOKED
550e
edOf
= 790
bfJ7
Manager Group ID: 38c2rj02b

Open a signature
Reveal who signed the document.

11¥1
0 Re-generate setup each time

Back to menu

Fig . B.4: The manager application.

setup. The application informs you of the next steps with text under the button.

When the setup is generated you wi l l be prompted to put the phone on the N F C

reader. When the application says Manager ZK sent, waiting for mobile and the

loading symbol on the mobile screen changes to blue, as seen on the left of Figure

B.5 , you can remove the phone from the reader. Then the phone wi l l inform you

when the mobile computation is done by removing the blue loading symbol and

printing text that the computation is done as shown in the middle of Figure B.5 .

Then you can put the phone back on the reader. Wait unti l the loading symbol

that appears disappears again and a blue checkmark symbol appears, as seen on the

left of Figure B.5 . Then you wi l l be informed that the user was added successfully,

and can remove the phone. It is possible there sometimes wi l l be an error in the

communication, you wi l l be informed of this in the P C application, in that case, run

the protocol again by clicking the Add a user button and resetting the mobile wi th

the RESET button.

In the lower-left corner, you can see the users in the group. Y o u can remove

the users from the group by typing their ID in the text field above and pressing

the Revoke a user button. This user wi l l be added to the revocation list and his

signature wi l l no longer be valid. Y o u can also open signatures to find out who from

your group signed a chosen file. To do this click the Open a s i g n a t u r e button and

choose a signed P D F file. The program wi l l then show you the ID of the signer

under this button.

96

User lD:9f95

GroupID:

User lD:9f95

GroupID: 38c2002b

REMOVE from NFC, Mobi le computat ion in
progress.. .

Mobi le computat ion done, you can put the
phone on NFC reader.

NFC communicat ion done.

RESET I I RESET I I RESET

Fig . B.5: The mobile application during the protocol.

Client's signing application

From the main window shown in Figure B.2 , you can also choose to run the client's

signing application. This application wi l l allow you to create a signature of a file

and save it to its metadata. Y o u must use a mobile phone that was added to a

group already wi th the manager application. Y o u also need an N F C reader for the

communication between the P C and the phone.

When you choose this application, a new window wi l l open as shown in Figure

B.6 in the top left. Here click the middle button and choose a P D F file from the

file explorer that opens. Make sure you don't have the P D F opened in a different

window as that would result in the signature not being saved, as the program could

not override an opened file. After you choose the file, you wi l l be asked to put your

phone on the N F C reader. Make sure you have the app running on the phone and

that you are a member of a group. Then the signature wi l l be created on the phone,

sent to the P C , and saved to the P D F . Y o u wi l l be informed of a successful process

on the screen as seen in the bottom part of Figure B.6.

The verifier application

The last part of the application is the verifier application. After clicking its button

in the main menu new window wi l l open. Here you have the option to verify the

signatures of signed P D F files (signed wi th this application of course). When you

97

Client signing app

Click to choose a pdf to sign with a group signature

Back to menu

Client signing app

Put phone on NFC reader to sign the document.

Back to menu

^ Client signing app

Signature created.

Back to menu

Fig . B.6: The client's signing application.

click the button you can choose a signed file to check the signature of. Then the

application wi l l inform you wherever the signature is valid or not as shown in Figure

B.7, it wi l l also tell you what group signed the file.

Verifier App - • X

Verify
a signature

The signature is legit from group 38c2002b

Back to menu

3̂ 3 Verifier App - • X

Verify
a signature

The signature is not legit.

Revoked User

Back to menu

Fig . B.7: Result of the verification process.

98

