BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENI TECHNICKE V BRNE

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION

FAKULTA ELEKTROTECHNIKY
A KOMUNIKACNICH TECHNOLOGII

DEPARTMENT OF TELECOMMUNICATIONS

USTAV TELEKOMUNIKACI

GROUP SIGNATURE BASED ON SECURE MULTI-PARTY
COMPUTATION

SKUPINOVY PODPIS ZALOZENY NA BEZPECNEM VYPOCTU VICE STRAN

MASTER'S THESIS

DIPLOMOVA PRACE

AUTHOR Bc. Kristian Klasovity
AUTOR PRACE

SUPERVISOR M.Sc. Sara Ricci, Ph.D.

VEDOUCI PRACE

BRNO 2023



BRNO FACULTY OF ELECTRICAL
I UNIVERSITY ENGINEERING

OF TECHNOLOGY AND COMMUNICATION

Master's Thesis

Master's study program Information Security

Department of Telecommunications
Student:  Bc. Kristian Klasovity ID: 196068
Year of

Academic year: 2022/23
study:

TITLE OF THESIS:

Group signature based on Secure Multi-party Computation

INSTRUCTION:

The work is focused on the implementation of a group signature based on secure multi-party computation and
Weak-Boneh Boyen signature. The thesis aims to implement and analyze (through experimental results) a new
group signature generated by the merging of the two-party computation scheme proposed in [1] and the Weak-
Boneh Boyen signature [2]. The signature implementation is expected to be run on different devices.

RECOMMENDED LITERATURE:

[1]1 M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and H. Shacham, "“Randomizable
Proofs and Delegatable Anonymous Credentials”, Advances in Cryptology - CRYPTO 2009, vol.5677, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 108-125.

[2] Boneh D, Boyen X, Shacham H. Short group signatures. In Annual international cryptology conference 2004
Aug 15 (pp. 41-55). Springer, Berlin, Heidelberg.

Date of project Deadline for

6.2.2023 19.5.2023
specification: submission:

Supervisor: M.Sc. Sara Ricci, Ph.D.

doc. Ing. Jan Hajny, Ph.D.
Chair of study program board

WARNING:

The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technicka 3058/10 /616 00 / Brno



ABSTRACT

This thesis aims at implementing a group signature scheme that uses two-party compu-
tation to jointly compute a signing value used in the signature. In this way, the user's
secret key is hidden from the manager and it cannot be used to impersonate the user.
The signature also supports revocation and opening algorithms. Moreover, a blind is-
suance attribute-based credential is also presented, where the credential issued by the
issuer remains private to the user. Both schemes were run on different devices and the
performances were benchmarked. At last, the group signature was used to implement an
application allowing one to sign a document on behalf of a group. The implementation
is run on multiple devices that use NFC to communicate.

KEYWORDS

Android, Elliptic curves, Group signature, Homomorphic encryption, NFC, Non-
interactive zero-knowledge proof of knowledge, Secure two-party computation, Schnorr
protocol

ABSTRAKT

Prace se vénuje implementaci skupinového podpisu, ktery vyuziva spole¢ny vypocet dvou
stran k vypoditani tajné hodnoty vyuzité k podpisu. Diky tomu zlistdva soukromy kli¢
Clena skupiny skryty pred manazerem skupiny, a nem{ze byt manazerem zneuzit. Pod-
pisové schéma podporuje revokaci a otevirani podpisi manazerem. Také byl predstaven
zplsob slepého vydavani atributového povéreni, kde je povéreni skryto pred vydavatelem.
Obé schémata byla spusténa na vice zafizenich a byl zmé¥en ¢as jejich vykonani. Schéma
pro skupinové podpisy bylo vyuzito pro vytvoreni aplikace, pomoci které je mozné pode-
pisovat dokumenty jménem skupiny. Implementace je spusténa na vice zarizenich, ktera
komunikuji pomoci NFC.

KLICOVA SLOVA

Android, eliptické krivky, skupinovy podpis, homomorfni Sifrovani, NFC, neinteraktivni
dikaz s nulovou znalostni, bezpecny spolecny vypocet dvou stran, Schnorriv protokol
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ROZSIRENY ABSTRAKT

Tato prace se zaméruje na implementaci skupinového podpisu s pouzitim bezpecného
vypoctu dvou stran. Skupinovy podpis je podpis, kdy ¢lenové urcité skupiny, kterou
spravuje manazer, mohou vytvaret podpisy jménem celé skupiny. Ovérovatel pri
ovéreni takovych podpisii nezjisti zadné informace o podepisujicim, ale miize pouze
zjistit, jaka skupina podpis vytvorila a zda je platny. Jednim z problémii téchto
podpisii je vydavani tajnych hodnot pouzitych v podpisu jednotlivych ¢lenti skupiny.
Jelikoz je tajnd hodnota vypocitana ze soukromého klice manazera skupiny a c¢lena
skupiny, dochézi tak k prozrazeni jak soukromého klice, tak této vypocitané hod-
noty manazerovi. Toto je mozné vyresit pridanim spolecného vypoctu obou stran
za pouziti homomorfniho Sifrovani. Diky tomu ztstane soukromy kli¢ manazera
skryt pred uzivatelem a zaroven soukromy kli¢ uzivatele i vysledna tajna hodnota
pouzivana v podpisu zustane skryta pred manazerem.

Schéma implementované v této praci vyuziva skupinovy podpis zalozeny na
weak Boneh-Boyen podpisu a na spolecném vypoctu manazera a ¢lena skupina za
vyuziti neinteraktivniho dikazu s nulovou znalostni (angl. Non-Interactive Zero-
Knowledge Proof of Knowledge, zkracené NIZKPK). Pomoci zminéného schématu
je vytvoren systém pro podepisovani dokumentti. Tento vypocet vice stran je poté
pouzit i pro implementaci slepého vydavani atributti ve schématu klicové ovéritel-
nych anonymnich povéreni (angl. Keyed- Verification Anonymous Credentials, zkréa-
cené KVAC).

V prvni ¢asti se prace vénuje predstaveni kryptografickych primitiv, které jsou
v protokolu pouzity, jako jsou kryptografie eliptickych kiivek a operace bilinedrniho
parovani na kiivkach, podpis Weak Boneh-Boyen, Schnorrtiv protokol, teorie skupi-
novych podpisti a anonymnich atributovych povéreni. Déle je zde popsana technolo-
gie NFC (Near-Field Communication) i programovaci jazyky a knihovny zvazované
pro implementaci.

V druhé casti jsou podrobné popsany implementované kryptografické protokoly.
Prvnim je jiz zminény NIZKPK protokol, ktery byl doplnén o vypocet diikazi
znalosti, které dosud nebyly nikde implementovany. Jedna se tedy o prvni kompletni
implementaci tohoto NIZKPK protokolu. Tyto dikazy jsou v protokolu pouzity k
dokézani znalosti jednotlivych hodnot, se kterymi strany, ve vypoc¢tu pomoci homo-
morfniho sifrovani, pocitaji. Dale je zde popsano schéma samotného podpisu. Je
také ukazano, jak lze dokazat, Ze je schéma kompletni a tedy, ze pro platny pod-
pis bude verifikace tispésna. Dale se prace zabyva tim, jak lze ve zminéném sché-
matu implementovat i revokaci a otevirani podpisii. Revokaci uzivatele je minéno
odstranéni uzivatele ze skupiny tak, aby jeho podpis jiz nebyl platny. Toho se d&a
docilit zverejnénim blacklistu takto vyloucenych uzivatelii. Tento seznam zverejnuje

pravé manazer skupiny, ktery ma také schopnost otevrit podpis. Otevienim podpisu



se zde rozumi odhaleni identity podepisujictho. Nakonec jsou v této ¢asti popsany
zmény provedené v KVAC protokolu pro implementaci slepého vydavani povéreni,
kdy je povéreni skryto béhem vydavaciho protokolu pred vydavatelem.

Vystupem praktické casti je aplikace, ktera umoznuje podepisovani dokumentu
pomoci skupinového podpisu. Tato implementace obsahuje aplikaci pro PC, ktera
je rozdélena na tii mensi aplikace. Prvni je manazerska aplikace, kterd umoznuje
spravovani skupiny, véetné pridavani ¢lent za pomoci NIZKPK protokolu. Druhou
aplikaci je aplikace ¢lena skupiny, ktera umoznuje vybrani PDF soubori k podpisu
a ulozeni podpisu do jejich metadat. Posledni je aplikace ovérovatele, ktera slouzi
k ovéreni podpist vytvorenych pomoci této aplikace. Vedle PC aplikace byla také
vytvorena aplikace mobilni telefony s opera¢nim systémem Android. Jedna se o
aplikaci ¢lena skupiny, kterou uzivatel pouziva pro generovani jednotlivych podpisa
a pro vypocet NIZKPK protokolu béhem pridavani uzivatele do skupiny.

Pri realné simulaci systému je tedy manazer zastoupen PC aplikaci, ktera pro
pridani uzivatele do skupiny komunikuje skrze NFC s aplikaci v mobilnim telefonu,
ta simuluje uzivatele. Tato dvé zafizeni spolu spocitaji NIZKPK protokol a uzivatel
obdrzi svou tajnou hodnotu, kterou poté muze pouzit pro podepisovani souboru. Pri
podpisu si uzivatel otevie PC aplikaci pro podpis, ktera poté mobilnimu telefonu
skrze NFC posila hash souboru k podepsani. Podpis je poté spocitan v telefonu a
odeslan zpét do PC, kde je ulozen.

Pro implementaci byl zvolen jazyk Java, a to z divodu jeho prenositelnosti a
vyuziti v Androidu, pro ktery byla mobilni aplikace zamyslena. Aby byl protokol co
nejrychlejsi, byly na zacatku provedeny rychlostni testy nékolika knihoven. Jednalo
se o knihovny Javy a jazyka C. I kdyz byla zvolena Java jako hlavni jazyk, nativni
rozhrani Javy (angl. Java Native Interface, zkracené JNI), umoznuje pouzivani
funkei jazyka C v Javé. Srovnavané knihovny pro bilinearni parovani na eliptickych
kiivkach byly MCL (jazyk C) a AMCL (Java). Ze srovnani vysla mnohondsobné
lépe knihovna MCL, a proto byla vyuzita ve findlni implementaci. Pro modularni
aritmetiku byly porovnavany knihovny GMP (jazyk C) a Biglnteger (Java). V
tomto pripadé na mobilnim zafizeni a na virtudlnim PC s opera¢nim systémem
Ubuntu Linux byla rychlejsi knihovna GMP, avsak na PC s opera¢nim systémem
Windows byla rychlejsi knihovna Biglnteger. Na obou zafizenich byla ptridana
moznost manudalné prepinat mezi moznostmi pouziti téchto knihoven ve vypoctech,
a to predevsim pro podporu jinych Unixovych operacnich systémt, kde mutze byt
GMP rychlejsi. V zakladnim nastaveni byla ale na mobilnim telefonu pouzita kni-
hovna GMP a na PC Biglnteger.

Daéle prace popisuje postup pri implementaci systému. Prvni soucésti je kryp-
tografické jadro aplikace. Bylo implementovano tak, aby nebylo zavislé na jinych

castech aplikace a pripadné se dalo presunout a pouzit v dalSich implementacich.



Toto jadro obsahuje jednotlivé kroky protokolt. V této ¢asti je také naznaceno, jak
lze vybrané knihovny jazyka C pouzit i v programu Javy.

Dalsi casti béhem tvorby systému byla implementace komunikac¢niho rozhrani
mezi PC a mobilnim telefonem. K tomu bylo zvoleno NFC. V préci je podrobnéji
popsan zpusob, jak lze toto rozhrani pouzivat. Sklada se z ¢asti implementace
terminalu, ktery pouziva ¢tecku karet, a implementace emulace ¢ipovych karet (angl.
Host Card Emulation, zkrdacené HCE) na mobilnim telefonu s opera¢nim systémem
Android.

Néasledné jsou popsany kroky pro vytvoreni vyslednych aplikaci, které budou
uzivatelé pouzivat. Postup sestava z reseni ukladani soubort v obou zafizenich, z
tvorby grafického uzivatelského rozhrani a zptisobu jeho propojeni se zbyvajicimi
castmi aplikace.

Cely systém pro skupinové podpisy byl poté otestovan a byly provedeny rychlost-
ni testy vsSech duilezitych ¢asti protokolu a systému. Hlavnim cilem bylo zjistit, jak
se lisi rychlost protokolu na rtiznych zarizenich a zda je protokol spocitatelny na
téchto zafizenich v rozumném case. Prvni testovanou ¢asti byl NIZKPK protokol
pouzity pro spolec¢ny vypocet manazera a uzivatele, pripojujiciho se do skupiny. Zde
bylo zjisténo, Ze nejrychlejsi konfiguraci byl pocitac¢ s operaénim systémem Ubuntu
Linux pouzivajici knihovhu GMP v kombinaci s mobilnim telefonem. Prameérny
cas protokolu dosahoval v tomto pripadé 9 sekund. Jelikoz byl protokol rozdélen
na dvé komunikacni faze a c¢ast byla pocitdna bez aktivniho spojeni, telefon musel
byt nejprve na c¢tecce drzen v pruméru 1,2 sekundy a poté 2 sekundy. Druhou
stale pouzitelnou kombinace byl pocita¢ s operacnim systémem Windows vyuziva-
jici knihovnu Biglnteger spolu s telefonem. Naopak zarizeni jako Raspberry Pi 4
B ¢i chytré hodinky se ukazala jako nevhodnd v tomto protokolu, a to z divodu
nedostatecné rychlosti. Pri pouziti Raspberry Pi bylo nutné udrzet aktivni NFC
spojeni i 10 sekund. I kdyz nebyl NIZKPK protokol prilis rychly, protokol se musi
provést pouze jednou pro kazdého uzivatele, takze se nejedna o velkou prekazku.

Rychlost podepisovani pomoci mobilniho zafizeni byla také mérena. Samotny
podpis byl zde velmi rychly, v priméru trval 7 ms na telefonu a 44 ms na chytrych
hodinkach. Nejvice ¢asu pri podepisovani zabrala komunikace ptes NFC. Celkové
podepisovani, které se skladalo ze zaslani hashe od PC do telefonu, spocitani pod-
pisu a jeho nasledné odeslani z telefonu do PC, trvalo priumérné 125 ms. Algoritmus
pouzivany pro verifikaci podpisu byl také velmi rychly, sdm o sobé trval na ne-
jrychlejsim testovaném zafizeni pfiblizné 8 ms. Cas ovéfeni podpisu také zavisel na
poctu revokovanych uzivatelil, kdy na stejném systému vzrostl o 3,7 ms pro kazdého
revokovaného uzivatele. Celkové ovéreni, i s na¢tenim souboru a jeho hashovanim
trvalo na nejrychlejsim z testovanych zarizeni prumeérné 150 ms.

Posledni ¢ast praktické implementace byla vénovana pouziti NIZKPK protokolu



pro slepé vydavani atributt pro KVAC schéma. Do existujici implementace KVAC
protokolu byla pridana existujici implementace NIZKPK protokolu. Ta ovsem neob-
sahovala vsechny potrebné casti protokolu, a musela byt doplnéna. Stejné tak
musela byt pozménéna puvodni implementace KVAC protokolu, aby bylo mozné
v ném pouzit slepé vydavani. Rychlost této implementace byla méfena na vice za-
fizenich, ale bez komunika¢niho rozhrani. Takto modifikovany algoritmus byl poté
porovnan s puvodnim protokolem. Hlavnim cilem srovnani bylo zjistit, jak slepé
vydavani povéreni ovlivni rychlost prokazovaciho (Show) a ovérovactho (Verify) al-
goritmu. Tyto algoritmy byly pouze mirné zpomaleny o maximalné 10 %. Nejvétsi
nevyhodou byl ale pomaly NIZKPK protokol pouzity pii vydavani povéreni, avSak
podobné jako u skupinového podpisu je nutné jej spocitat pouze jednou pro kazdého

uzivatele.
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Introduction

In today’s world, anonymity in cryptography is more and more desirable. There are
several cryptographic tools that provide different kinds of anonymity while keeping
the security features of the scheme. One of these tools is group signatures [1].
These signatures allow users from some group administered by a manager to create
anonymous signatures, that cannot be easily traced back to them. The verifier can
check the validity of the signature and the user’s affiliation with the group, but will
not know who generated the signature. These signatures can be used for signing
documents on behalf of a group or for creating a room access system. In the latter,
users cannot be tracked in their access [2].

The problem is that in several signatures, the group manager issues the secret
values used in the signature to the users. Therefore having knowledge of the user’s
secret key allows a malicious manager to sign on behalf of a user. This problem can
be fixed by adding a multi-party computation, that will keep the user’s secret value
secret and be not shared with the manager.

The aim of this diploma thesis is the implementation of a group signature scheme
that uses a two-party computation algorithm based on a Non-Interactive Zero-
Knowledge Proof of Knowledge (NIZKPK) [3], that uses the Paillier cryptosystem
[4] to compute a secret, only known by the user. The secret will then be used to
sign a message with a group signature based on the Weak Boneh-Boyen signature
[5]. It will also be shown how the two-party computation can be used to implement
blind issuance into an attribute-based credential system such as Keyed- Verification
Anonymous Credentials (KVAC) [6]. With blind issuance, the issued credential is
hidden from the issuer.

The practical applicability of the group signature is shown through an application
allowing document signing. A library with the crypto core of the system has been
developed in a way that it is easily managed and exported. Furthermore, both group
signature and attribute base credential schemes have been benchmarked on multiple
devices to show how much time it takes to run it in a real environment, for the group

signature this also includes communication overhead.
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1 Cryptographic primitives, protocols, im-
plementation background

This chapter describes the basics of the cryptographic primitives, systems, and pro-
tocols, that are needed in this implementation of both the group signature based on
secure multi-party computation and Weak Boneh-Boyen signature and the KVAC
blind issuance implementation. This chapter also introduces the implementation
background i.e., the programming languages, Android Operating System (OS), and

libraries considered for the implementation.

1.1 Basics of asymmetric cryptography

Asymmetric cryptography [7] is the main building block of most of today’s systems
that use cryptography. The main reason we use cryptography in the first place is,
that we want to make some data unreadable for a third side during transmission
(confidentiality), so we have two main operations in cryptography - encryption and
decryption.

While in symmetric cryptography, there is one key for encryption and decryption,
in asymmetric, there are two keys. One is called the private key and is used for
decryption and signing and the other is the public key, used for encrypting and
verifying a signature. There is always some kind of relationship between these two
keys, the private key should never be published or sent, however, the public key can
be freely shared with everyone. Having these two keys instead of one shared secret
key as in symmetric cryptography solves the issue of sharing a secret key [8].

Asymmetric cryptosystems are based on NP problems. These problems are easy
to solve with the knowledge of some secret values but almost impossible to solve
without them. The most widely used problems are the Discrete Logarithm Problem
(DLP) and integer factorization problems. The factoring problem can be simply
described as that, it is easy to multiply two prime numbers, but it is hard to find
these two numbers if you only have the product. The discrete logarithm problem
relies on that, it is easy to compute the power of a number in a multiplicative group,
but it is hard to find a logarithm of a number in a multiplicative group. This of

course depends on the group and the size of the number.

1.2 Elliptic curve cryptography

Elliptic curve cryptography [9] is part of asymmetric cryptography and it is used
to create public key cryptosystems. This part of cryptography relies on the Elliptic
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Curve Discrete Logarithm Problem (ECDLP), meaning it is nearly impossible to
calculate the discrete logarithm of a random element on an elliptic curve if we only
know the generating point of the curve. The complexity of this problem is given by
the size of the curve.

Cryptography considers elliptic curves with points in field IF,,, where p is prime.
While systems based on modular arithmetic usually work in multiplicative groups,
elliptic curve cryptography works in additive groups. In practice, an elliptic curve
can be seen as a set of points that satisfies a specific equation and a point at infinity.
The most used equation is the short Weierstrass form, which is displayed below in
Equation 1.1.

y* =2 +ax + b (mod p) (1.1)

One of the biggest advantages of elliptic curves compared to modular arithmetic is,
that much smaller keys can be used to achieve the same level of security. Also, the
operations on elliptic curves are usually much faster. Fortunately, every algorithm
that relies on DLP in a multiplicative group can be transformed to work on elliptic
curves.

In practice, a curve is chosen to be used in an instance of a protocol, and this
curve is defined by a set of public parameters, that should be known to all the
participating parties [10]. Parameters defining an elliptic curve E(F,) are: a number
p specifying the finite field IF,, elements a, b specifying Equation 1.1, a point G stating
a generator of the cyclic subgroup, a prime n being the order of G, and a cofactor
h, where h = |E(F,)|/n, with |E(F,)| being the number of points of the curve.
Changing the form of the curve, i.e. its equation, has an impact on the performance

and on the security features [11].

1.2.1 Operations on elliptic curve

There are two main operations that can be done on elliptic curves, the addition of
two points and multiplying a point by a scalar. Both these operations are used in

cryptographic implementations [12].

Point addition

There are multiple possible cases that can occur during the addition of points P and
() on an elliptic curve. Either P and @ are different points, they can also be the
same point (P = @), or ) can be the opposite of P.

Addition of different points P + ) = R can be seen in Figure 1.1 on the left
side. Geometrically such addition is done by drawing a line through the points
P, Q, finding the third point of intersection with the curve (—R), and then finding
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the point R by reflecting —R in the x-axis. In the case of addition where P = @)
(also called doubling), a tangent to the curve at point P is drawn, and the point R
is found in the same way i.e. as a reflection of the point of intersection. Doubling
can be seen in Figure 1.1 on the right side. In the case of adding a point to its

opposite, the line between the points will intersect the curve at infinity.
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Fig. 1.1: Point addition on an elliptic curve.

In practical implementations, addition is done by calculating a gradient between
the points. The calculation of P(xy,y1) + Q(x2,y2) = R(x3,y3) can be seen in
Equation 1.2 below.
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T3 =8I — Iy (1.2)

Multiplying a point with a scalar

Multiplying a point by scalar on an elliptic curve is defined as multiple additions of
the point with itself. For example, if we would like to compute 4P we could compute
it as4P = P+ P+ P+ P. This approach would be very inefficient for big numbers.
This computation can be sped up with the fast exponentiation algorithm. For
instance, the multiplication of 8 P could be done as 2P = P+ P, 4P = 2P+2P 8P =
4P 4+ 4P, this way only 3 additions are needed instead of 7.

In cryptography, multiplication is used to create cryptographic primitives utiliz-
ing the ECDLP. Because the multiplication is done modulo p, it is almost impossible
to find &, such that k-G = P, knowing only G and P (considering big enough & and
p). This property can be used to create a pair of private and public keys, where P
is the public key and k is the private key.

1.2.2 Bilinear pairings on elliptic curves

Elliptic curve bilinear pairing [13] is a bilinear map Gy x Gy — Gy, that allows us
to map a pair of points (one in Gy, one in Gy) to a target group G;. Usually G, is a
subgroup of E(F,), G, is a subgroup of E(F,+), and G, is a multiplicative subgroup
of Foxs with k being the embedding degree of the curve. Basically, points in Gy are
just different representations of the points in Gy.

There are two properties that the pairing must satisfy, called bilinearity and
non-degeneracy. The equations that ensure bilinearity are shown in Equation 1.3
(note that e stands for the paring function). The non-degeneracy, means that if
e(U,V)=1for all V, then U = oo, and if e(U,V) =1 for all U then V € nE(F,)
[14].

G(Ul + U2, V) = G(Ul, V) . G(Ug, V)

(1.3)
e(al,bV) = e(U,V)® = e(abU, V) = e(bU, aV)

Not all curves are suitable for billinear pairings, the curves suitable for it are
called pairing-friendly curves. Two widely used types of these curves are Barreto-
Naehrig (BN) and Barreto-Lynn-Scott (BLS) curves. BN curves have embedding
degree 12 and BLS curves either 12 or 24. There are also different kinds of pairings,
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the main three are Weil, Tate, and Ate pairings. Each is a different way to compute
the pairing, but Ate is the most commonly used one, as it has the best performance.
There are many uses for pairings in cryptography [15], for example, identity-based

encryption, signatures, attributed-based encryption, and zero-knowledge proofs.

1.3 Weak Boneh-Boyen signature

One of the schemes utilizing elliptic curve pairings is the weakly secure short sig-
nature scheme (or weak Boneh-Boyen signature) presented in [16]. This scheme is
unforgeable under a weak chosen message attack.

Let Gy and Gy be a bilinear group pair, where both groups have the same number
of elements p, e a pairing that maps all the pairs to G;, and m the message (where
m is an element of Z,). The scheme has three steps: key generation, signing, and
verification.

The key generation is shown in Algorithm 1, the signature algorithm is then
described with Algorithm 2 and the verification is shown in Algorithm 3. How the
bilinear property can be used to prove that the equality e(o,v+m-gy) = z will hold

for a legit signature can be seen in Equation 1.4.

Algorithm 1 Key generation
1: Consider g; € Gy and gy € Gy

Generate private key = €r Z,

Compute public key v =z - g2 € Gy
Compute z = e(g1,92) € Gy

Store x, post public values par(g;, g, 2)

Algorithm 2 Sign (x, m, par)

1: Compute signature of m € Z, as 0 = g1 - 1/(x + m) € Gy
2: 1/(x 4+ m) is computed as a multiplicative inverse of (z + m) mod p.
3: Specify that 1/0=0, so that if  +m = 0 mod p, we have 0 =1 € G;.

Algorithm 3 Verify (o,par)

1: Check the equality e(o,v +m - go) = 2
2: If the equality holds or if c = 1 and v + m - g = 1 the signature is valid.
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e(o,v+m-go)
1
r+m

1
. 1.4
g2 (- m)) (1.4)
r+m

e(g1, 92 - m)

e(g91,92) = 2

e(gr - T go+ M- go)

e(gr -

1.4 Schnorr’s protocol

Shnorr’s protocol is one of the so-called Sigma protocols [7]. Sigma protocols are
based on zero-knowledge protocols. With these protocols, one (usually called a
prover) can prove the knowledge of a secret value without revealing it to the verifier.
This secret value is usually a private key. The output of such a protocol is just that
the prover’s statement is true or false, nothing else is revealed.

During Schnorr’s protocol, the prover tries to prove the knowledge of the discrete
logarithm z of an element h = g* € E[Z,], where E is an elliptic curve of the system.
In practice, h is the public key, and x is the private one. The protocol can be either
interactive or non-interactive. In the interactive version, three messages must be
exchanged between the prover and the verifier (shown in Figure 1.2). In the non-

interactive proof, only one message is sent from the prover to the verifier [17].

Prover Verifier
X, h=g* h
r €p Zq
CcC= gr ;)
e e €p Zq
«—
Z=r+e-x 2 ]
_— .
g =c-h®

Fig. 1.2: Scheme of Schnorr’s interactive protocol.

As mentioned, Schnorr’s protocol can be modified to create a non-interactive

zero-knowledge proof, where only one message is needed. For this, The Fiat-Shamir
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heuristic technique is used. This technique allows us to convert an interactive proto-
col into a non-interactive one. That is done by the value of a hash function instead
of the challenge generated by the verifier. Since there is no challenge this scheme
could be susceptible to replay attacks, therefore a random value is usually generated
by the prover and used in the hash function, these random values then might be
stored on the verifier’s side, so that the values can’t be used again. Algorithm 4

shows how such a proof is computed, Algorithm 5 then shows the verification.

Algorithm 4 Non-interactive proof Algorithm 5 Non-interactive proof

computation (g, z,h = g*) verification (g, h = ¢, ™ = (u, e, 2))
1: Generate r €g Z,4 1 eL H(g, h,u)
Zu=g 2 g* =u-h
3:e=H(g,h,u)
4: z=r+e-x
5: return 7 = (u, e, 2)

This non-interactive proof can be then also used as a signature scheme. The only
modification is the addition of the message to the hashed values: e = H(g, h,u, m).
The message logically must be then sent to the verifier alongside the other values

(m = (u, e, z,m)).

1.5 Homomorphic encryption

Homomorphic encryption [18] allows for specific types of computations to be done
on encrypted data as if the data were not encrypted. These operations, usually
being addition and multiplication will not reveal the data itself, but the result after
decrypting will be the same as if the operation was done on plain text. This type
of encryption can be used in cloud computing, for example when a third party is
analyzing or doing computations with some private data of its users, and the users
want the data to still be private [19].

There are three types of homomorphic encryption:

o Partially homomorphic encryption: An operation (either addition or mul-
tiplication) can be done on the ciphertext infinite times, while the other one
cannot be done.

 Somewhat homomorphic encryption: Both operations of addition and
multiplication can be done on the ciphertext, but only a limited number of
times. Limited to evaluating low-degree polynomials over encrypted data.

e Fully homomorphic encryption: Both operations of addition and multi-

plication can be done an infinite number of times on the ciphertext.
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In practice, partially homomorphic schemes are easy to design (compared to the
other ones) but can be used only in some applications. These schemes can be used
in some multi-party computations. Somewhat homomorphic schemes are harder to
create, also it is usually slower. The most complicated to create but probably the
most desirable are fully homomorphic schemes. There are some proposed schemes
that are fully homomorphic (e.g., Craig Gentry’s scheme based on lattices [20]),

while these schemes theoretically work, they are too slow for use in the real world.

1.5.1 Paillier cryptosystem

Paillier cryptosystem [4] is an additive partially homomorphic cryptosystem, mean-
ing it can be used to add ciphertexts an unlimited number of times, but not to
multiply ciphertexts. However, it can be used to multiply a ciphertext with a plain-
text.

It was invented by Pascal Paillier in 1999 and it is based on public key cryp-
tography. It uses the Decisional Composite Residuosity Assumption (DCRA). The
definition of this problem is that: given a composite n and an integer z, it is hard
to decide whether there exists y such that: z = y” mod n?. The fact described in

equation 1.5 is used in the cryptosystem [21].

d+n)—1 = 2 mod n* (1.5)

n

For the purposes of the description of the cryptosystem usually, a function L(z) is

defined as L(x) = %1, note that since n divides x — 1 this is an arithmetic division.
The Paillier cryptosystem consists of three phases: key generation, encryption,

and decryption. The set-up of the Paiilier cryptosystem is depicted in Algorithm

6. When the parameters are generated a message can be encrypted as described in

Algorithm 7. The ciphertext can then be decrypted as shown in Algorithm 8.

Algorithm 6 Paillier set-up
1: Generate random primes p, q, check that ged(p-q,(p—1)-(¢—1)) =1 (ged

stands for greatest common divider)

2:n=p-q

3 A=lem((p—1)-(q¢—1)) (lem stands for least common multiple)

4: Generate g € Zy>

5: Check that n divides the order of g by checking the existence of the multi-
plicative inverse u = (L(g* mod n?))~ modn

6: Share public key (n, g)

7. Store private key (A, )
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Algorithm 7 Encryption (m, public key(n, g))
1: Consider a message m € Z,

2: Generate r €g Z,,

3: Compute the ciphertext as: ¢ = g™ - ™ mod n?

Algorithm 8 Decryption (¢, n, private key(\, i))
1: Consider a ciphertext ¢ € Z,,2

2: Compute the message as: m = L(c* mod n?) - p modn

Homomorphic properties of Paillier cryptosystem

The first homomorphic property of the Paillier cryptosystem is the homomorphic
addition of plaintexts. From Equation 1.6 it is evident that the product of two
ciphertexts will decrypt to the sum of the messages. Equation 1.7 then shows how
a ciphertext can be multiplied with a plaintext message to get the sum of the two

messages when decrypted.
Dec(Enc(mq,ry) - Enc(mg,r5) mod n?) = my + my mod n (1.6)

Dec(Enc(my, 1) - g™ mod n?) = my + my mod n (1.7)

The second homomorphic property of the Paillier cryptosystem is the homomorphic
multiplication of plaintexts. Meaning that by raising a ciphertext to a plaintext
message, we get the product of the two messages after decrypting, this is shown in
Equation 1.8. However, there is no known way to compute the encrypted product

of two encrypted messages.

Dec(Enc(my,r1)™ mod n*) = my - mg mod n (1.8)

1.6 Group Signatures

Group signatures [1] are signatures that provide anonymity for signers. Usually,
there is a group of signers and a manager or some kind of authority. The singers
have their own secret used for signing, this secret is computed with some secret value
of the authority. Then if a signer sings a message a verifier can verify if the message
was signed by someone from the group, but he will not be able to tell by who. In
some of the systems, the authority can trace who signed the message by using a
special trapdoor. Some systems also support revocation, so if the authority wants
to remove the ability to sign the messages from a signer it can be done without
affecting the other signers [5].

There are four requirements each group signature scheme should fulfill [22]:
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1. Full Traceability: Any malicious group of cheating signers and a cheating
authority cannot be able to make a valid signature that will look like a signa-
ture created by a legit group member who did not actually produce it.

2. Full Anonymity: Any verifier without access to the group authority, who
is provided with message m and two signatures from group members ¢ and 7,
cannot tell who signed the message with better certainty than just guessing.

3. Forward Security: Members of a group that left the group can no longer
sign messages on behalf of the group.

4. Unlinkability: Any verifier without access to the group authority, who is
provided with messages m; and ms, and two signatures s; and s, where the
signatures are valid, cannot tell if the signatures were generated by the same

signer or by two different signers with better certainty than just guessing.

1.7 Attribute-based credentials

Attribute-based credentials are a cryptographic mechanism that provides a way to
authenticate using some issued attributes. The main advantage of such a scheme is
the selective disclosure of attributes, meaning it is possible to only publish some of
the attributes during a verification while keeping the other attributes hidden. These
attributes can be for example personal information such as age, name, nationality,
or something like a vaccine validity.

In these schemes, there are usually three to four main entities. Set of issuers,
that has the power to issue credentials for the users, users that want to be able to
selectively prove the ownership of their attributes, a set of verifiers that can verify
the ownership proofs of the users, and in most cases a revocation authority that can

revoke users’ credentials [23].

1.7.1 Keyed-Verification Anonymous Credentials

KVAC scheme introduced in [6] is one of the implementations of attribute-based
credentials. It focuses on speed and is aimed at smart cards. The scheme uses the
fact that in systems such as public traffic the issuer and verifier are the same entity
and therefore can share the private key used to issue the credentials. This key needs
to be also used in the verification to make the computation on the client side as
fast as possible and avoid using bilinear pairings. The scheme is faster than similar
state-of-the-art implementations as shown in [6].

The scheme uses an algebraic MAC introduced by the authors. However, KVAC

does not support blind issuance in the original design, meaning the issuer knows how
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the credential he issues looks, and the issue algorithm must be done over a secure
channel.

The scheme consists of 5 main algorithms: The Setup function outputs the sys-
tem parameters par and is parameterized by security parameter 1*. The CredKeygen
function generates the issuer private key sk and issuers parameters ipar. Issue takes
as input the issuer’s private key and attributes (my,...m,) and outputs credential

cred as shown in Algorithm 9.

Algorithm 9 Issue (sk = (xg,...x,), (M1, ...,my))

1: The issuer receives attributes (myq,...my,).

2: The issuer computes:

] U:ﬁﬁmﬁﬁﬁﬁ

4 Opy =0, Oy, =072, ..., Oy, =0

5: The issuer sends cred = (0,04, ...,0,,) to the user.

The Obtain function of the scheme lets the user check the validity of the creden-
tial and the attribute value. The Show algorithm allows the user to prove ownership
of his attributes with selective disclosure. The ShowVerify algorithm, is used by
the verifier to check the validity of the proof provided by the user. The Show and
ShowVerify algorithms are shown in Algorithms 10 and 11 respectively, the param-

eter D in the algorithms stands for the set of disclosed attributes.

Algorithm 10 Show ({(m;)}' ,0,{04,)", D))

1: The verifier generates and sends nonce <+ Z, to the user.
2: The user computes:
3 T Prs Prggp < g

4: o=0"

5 t=ILigpoyr™ - g™
6: ¢=H(D,(m;)iep,t,,par,ipar,nonce)

7 S, = pptcr

8 (Sm; = Pm; — CMi)igD

9: The user sends proof = (6,t, 8y, (Sm;)i¢D, (Mi)iep, D) to the verifier.

Algorithm 11 ShowVerify ((z;)}', proof)
: The verifier checks that:

o 7é 1g

¢ =H(D,(m;)iep,t,d, par,ipar, nonce)
t 2 g - 5_C'm0+zz‘¢D(ri'smi)_zz‘ep(mi'mi'c)

= W o
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1.8 Implementation background

This section describes the technical background of the implementation. That being

the languages and libraries and technologies used as well as the Android OS.

1.8.1 Java

Java [30] is an object-oriented programming language first released in 1995 by Sun
Microsystems. In 2009 Oracle Corporation bought the company and thus is now
the main developer of Java. The newest version of Java is Java SE 19 released on
September 20, 2022.

The language is designed to have fewer implementation dependencies than other
languages. Java is widely used in computer applications, mobile development, data
centers, etc. It is considered to be fast and secure, so it is a good match even for
cryptographic applications. Since Java is so widely used, there are a lot of well-tested
libraries for it.

Since the Java code is run with Java Virtual Machine (JVM), which converts
Java bytecode into machine language, the code is platform-independent. Java also
has automatic memory management provided by the so-called garbage collector. It
also supports multi-thread programming, needed in more performance-heavy appli-
cations. Java Development Kit (JDK) is a software development environment used
for creating Java applications, any programmer wanting to write in Java language
needs to have the JDK installed. The JDK converts the written code into Java
bytecode. Java Runtime Environment (JRE) is software that allows a device to run
Java applications. It contains libraries, loader class, and the JVM. The JRE must
be installed on a machine that wants to run Java applications. Note that the JRE

does not contain any development tools [31].

Biglnteger library

Biglnteger [32] is an immutable arbitrary-precision integer library. The library al-
lows the developer to use numbers much bigger than normal integers and provides
methods for computations with these big numbers. These methods are the opera-
tions for modular arithmetic, prime generation, prime testing, comparison methods,
and bit manipulation. The object of Biglnteger is static, therefore during the oper-
ations, the result must always be assigned to a variable. Internally the class uses an
array of integers for processing. For using this library in Java no extra library jar
file is needed. Only a simple import java.math.BigInteger; call is needed in the

class that will use its methods.
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AMCL library

Apache Milagro Crypto Library (AMCL) [33] is a crypto library that provides func-
tions for symmetric and asymmetric encryption, hashing, and elliptic curve cryp-
tography including bilinear pairings. It also includes its own BIG type for storing
big integers. The library can be used with multiple programming languages (Java,
C, C++, Python, JavaScript, etc.), but the Java version will be considered in this
work. Unlike the Biglnteger library, this library must be added to a project with a
jar file and added as a dependency, or the source code of the library must be added
[34].

The library is not susceptible to the side-channel attack and is completely self-
contained, meaning it does not need other dependencies to run, other than a random
number generator. The library is available under the Apache-2.0 license. The AMCL
supports multiple elliptic curves, these curves include BN curves, BLS curves, NIST

curves, and many others.

1.8.2 C language

The C language [35] is a procedural programming language first introduced in 1972
by Ken Thompson and Dennis Ritchie. Initially, it was used for writing operating
systems, it was used in the development of the Unix operating system. The main
advantages of C are speed and low-level memory access, meaning the developer must
take care of the memory management in contrast to Java’s garbage collector. it uses
a C compiler to compile the code into machine code that can be run on a processor.

Since this language is actively used for almost 50 years there are a lot of well-
tested libraries and source codes of all kinds. Since the code supports low-level
memory access with pointers it can be much better optimized compared to other
high-level languages. Unlike Java, a C application is not platform-independent and

must be compiled separately for each processor architecture.

GMP library

The GNU Multiple Precision (GMP) [36] arithmetic library is a library for arbitrary
precision arithmetic. It works with signed integers, rational numbers, and floating-
point numbers. The library aims at uses in cryptography, research, and internet
security. The library was first released in 1991, it is primarily written in C and
uses the GNU LGPL v3 and GNU GPL v2 licenses, meaning it cannot be used in

proprietary software. The main emphasis of the library is on speed.
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MCL library

MCL [37] is a library providing fast functions needed in paring-based cryptography.
The library was created and is updated by Shigeo Mitsunari. The library supports
4 BN curves and one BLS curve. The library uses the BSD-3 License. The core of
the library is written in C but the author provides instructions for compiling the
library and using it with Java, JavaScript, or Python. For Java, the author even

provides classes with bindings to the C functions.

1.8.3 Android

Android OS [38] is a Linux-based operating system. Android is primarily used in
mobile phones, tablets, smart TVs, and cars, its modified version Wear OS is used
in smartwatches. Android is open-source and uses the Apache v2 license, the main
developer of Android is Google. The system is written in C and C++ and its User
Interface (Ul) is written in Java. Android was first released on September 23, 2008,
its latest version Android 13 was released on August 15, 2022.

For the development of Android applications, Android Studio Integrated Devel-
opment Environment (IDE) is usually used. The applications are primarily written
in Java or Kotlin. Kotlin [39] is a programming language developed by programmers
in IDE Jet Brains specifically for Android. Kotlin functions very similarly to Java
internally, but externally it should be easier to use as it does not require type assign-
ments, and the developers do not have to worry about catching exceptions. While
Kotlin is very popular, many developers will use Java, since there are more code
samples, the code is easily ported to other platforms, and learning a new language

does not make sense to them.

Android NDK

Android Native Development Kit (NDK) [40] is a tool that allows for C or C++
code to be run on Android devices. The NDK is used in applications where fast
calculations provided by C language are needed. This tool can be used in Android
Studio since version 2.2. for compiling C code into a native library with the help of
Gradle.

One way of running C code on Android is by creating a native C++ project in
Android Studio and writing functions to an automatically created native-lib.cpp file
and then calling the functions through Java Native Interface (JNI). This is a very
complicated approach as the developer must take care of all type conversions and
library dependencies. Some libraries take care of this for the developer by providing

Java classes that call functions in the compiled C library. This way the developer
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only adds the compiled library and the Java classes to the project and can use all

the functions of the library in Java with the advantage of the speed of C language.

1.8.4 Near-field communication

Near-Field Communication (NFC) [24] is a wireless communication technology that
allows two devices to communicate with each other at a very short range. The
standards of the technology are specified by NFC Forum [25]. One of the devices
is the master active device called the terminal, while the other is called a tag. The
tag is usually a passive device that can be powered from the terminal, this can be
for example a card. A passive tag communicates by modulating the electromagnetic
field broadcasted by the terminal. The tag can also be an active device for example
a mobile phone, in that case, it communicates actively by alternating the broadcasts
with the terminal. The maximum transfer speed of NFC is about 424 kbit/s, which
is rather slow, but the slow speed is balanced by a very fast and easy set-up.
There are three main modes the devices use when communicating through NFC
[26]. The first mode is reader/writer mode, in this mode, the device is usually
a terminal or a phone that powers an NFC tag and then reads the information
transmitted from this tag. The second mode is peer-to-peer, in this mode, two
devices communicate actively with each other using NFC and can transfer data
of small size. The final mode is card emulation, this mode allows devices such as
smartphones or smartwatches that support this technology to act like an NFC tag.
But since these smart devices have much bigger computational power than a simple

card, this technology can be used to construct more complex systems using NFC.

Host card emulation

Host Card Emulation (HCE)[27] is a technology that allows supported mobile devices
to act as an NFC tag using a software solution. On Android devices use of HCE is
allowed for Android OS version 4.4 and higher. The card can either be emulated on
the CPU or with the use of a secure element. However, the secure element cannot
be accessed by regular applications on a non-rooted phone and is only available to
Google and its partners’ applications [28].

The protocol a device using HCE uses to communicate with a terminal is called
Application Protocol Data Unit (APDU) protocol. The protocol and the structure
of the APDU messages are specified in ISO/IEC 7816-4. The terminal (usually a
card reader) sends APDU commands to the phone and the phone can then respond
with predefined responses. As a phone is much more powerful than a simple smart
card, these defined responses can also contain complex computations. When using

this protocol on an Android device, the application using it must have specified a
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unique Application Identifier (AID). This AID is used by the terminal to construct
a Select AID command to initiate communication with the desired application.
The structure of an APDU command is shown in Figure 1.3. The command is
divided into multiple fields. The first CLA field specifies the class of instruction and
is represented by one byte. The second field (INS) is used to determine the code of
an instruction, this field can be specified for each application, the same as the next
two bytes (P1, P2) specifying the parameters of the instruction. These four fields
are mandatory in each APDU command. The Lc field contains information on how
many bytes the DATA field holds. For messages shorter than 255 bytes this field is
represented by one byte, but in implementations that support data size of up to 65
535 bytes, the field is represented by three bytes, where the first is 0x00. Next is the
DATA field that carries the data from an application. The last Le field specifies the
size of the data that is expected from the responding device in its data field. The Le
field can either be one byte long, two bytes if the extended three-byte Lc field was
used, or three bytes if no data were sent by the command but more than 255 bytes
are expected back. The Lc, DATA, and Le fields are optional. The APDU response
contains an optional DATA field for the application data and two bytes SW1 and
SW2. These bytes contain the information about the processing of the command,

for success bytes 0x90 0x00 are used [29].

APDU command

CLA INS P1 P2 Lc DATA Le

APDU response

DATA | SW1 | SW2

Fig. 1.3: Structure of an APDU command and APDU response.
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2 Group signature with two-party computa-
tion and blind issuance for attribute-based
credentials

This chapter describes individual parts of the group signature scheme that was
implemented as well as the modified KVAC scheme that supports blind issuance.
The group signature scheme can be used for creating signatures, without the need
to share private keys between the entities. This scheme consists of two main parts.
The first one is the NIZKPK protocol to compute a secret value that can be then
used in a signature, the second one is the group signature scheme itself. The same
NIZKPK protocol can also be used to implement blind issuance into the KVAC
scheme.

In the group signature scheme, there are three main entities: manager, senders,
and verifiers. The manager is a trusted party, and he can create a secret value
with a sender, that the sender can then use to sign messages. This secret value is
created from the manager’s and the sender’s private keys. Thanks to the scheme
the manager does not know the signer’s secret key and vice versa. The computed
value is only known to the signer. A verifier can then check the signature with only
the knowledge of the public key of the group manager. The verifier will not be able
to tell which sender in the group signed the message, but he will be able to verify
if the signature is legit for the group. The manager of the group can also open the
signatures and determine which sender created the signature if the need occurs. It
is also possible to revoke users from the group by publishing a black-list of revoked
users.

In the following algorithms, the notation a <> Z, means that a is sampled
uniformly at random from Z,,. Proof of Knowledge (PK) protocols are described by
using the notation introduced by Camenisch and Stadler (CS) [41]. The protocol
for proving the knowledge of discrete logarithm of ¢ with respect to g is denoted as
PK{a : ¢ = g*}. The function e(-) stands for a pairing function, and H for a secure
hash function. The notation |a| means the bit length of a.

2.1 NIZKPK protcol

The group signature protocol needs a two-party algorithm to compute the value
o = g'/(skitskn) wwithout revealing the secret values sk; (user’s private key) and sk,,
(manager’s private key). This can be done by using a NIZKPK introduced in [3].

This algorithm uses Paillier encryption to jointly compute the value of o while also
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generating proofs of knowledge of the values used in the two-party computation by
both sides. The NIZKPK algorithm can be divided into two main parts, the setup

phase, and the two-party signature.

2.1.1 Setup phase

During the setup phase, the manager generates the parameters needed in the com-
putations, alongside a secret value ¢(n) = (p—1)-(¢—1), that is used for decryption
on the manager’s side. The setup phase can be seen in Algorithm 12. The first mul-
tiplicative group generated in Steps 2-4 is mainly for computations of the Paillier
cryptosystem, and the second group of order n is for the PK. Note that for safety
reasons the second group modulo 1 should not be directly generated by the manager.

The generated public parameters should be shared with the sender.

Algorithm 12 Setup phase
1: Consider qpc order of used elliptic curve.

2: Generate an RSA modulus n of size at least |23 - ¢%.|, x being a security
parameter and n = p - ¢, where p and ¢ are big prime numbers, |p| = |q|,
¢n)=(p-1)-(¢-1).

3: Consider h=n+1€ Z,2.

4: Generate g of order ¢(n) in Z,:.

5: Obtain another RSA-modulus n = p, - q,, where p,, g, are big prime numbers
and [py| = |gy]-

6: Consider § <> Zy and g <= (h).

7: Return public parameters (h,n, g, b, 1,8, ¢zc), and store secret ¢(n).

An important parameter of the setup phase is the size of n. As seen in Algorithm
12 on Line 2, this can be computed from the parameters x and qgc. If we consider
parameter x as 1350 (as specified in similar implementation in [42]), and gg¢ is the
order of the elliptic curve, that will be used (254), we get a bit length of at least
4557 bits. Therefore the generated prime numbers p and ¢ should be half of this bit
length. The setup phase is done by the manager and the value of ¢(n) should not
be shared but should be stored for later decryption.

2.1.2 Two-party signature

The second part of the NIZKPK protocol is the two-party signature, where the
parameters generated in the setup phase are used alongside with manager’s and
user’s private key to compute the value of o = ¢'/(*ki+skm)  During this computation,

each party also generates a PK to prove the knowledge of the values used in the
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computation. The two-party algorithm is shown in Algorithm 13. Note that while
computations in Steps 2-14 are done in a multiplicative group, computations in
Steps 15 and 17 are done in an additive group, i.e., in an elliptic curve. After this

algorithm, the sender owns the value §; = 0 = ¢/ (*ki+skm) that he can use in signing.

Algorithm 13 Two-party signature
1: Manager computes:
r <& Z¢(n), r Z¢(n)
e = hn/2+skmgr mod n2

2
3
4 (= gs'“’”br/ mod n

5 PK, {skm,r,r'}

6: Sender computes:

7 Check validity of PK,,.

8 Ski,r1 <* Ly, 2 <= {0...12%qpc |}, 7 <& {0...|2%n| }

0: ey = (e /R R/ ZHskiaEC o7 10 12

10: ¢ =g mod n,

11:  PK{ski,r1,7r2,7}

12: Manager computes:

13:  Check validity of PK;.

14:  z = (Decley) — n/2) mod qpe, where Decley) = ((e2™ — 1)/n mod n?) -
é(n)~t mod n

15: o, =g'/*

16: Sender computes:

7. 0 =0,

PK in the two-party signature

This NIZKPK protocol should contain the computation of PK for the manager and
for the sender as shown in Steps 5 and 11 of Algorithm 13. In these parts, the two
parties need to show that they know the private key used in the computation and
that they picked random numbers of the right size. The PKs were not implemented
or described in detail in [3], therefore it was needed to construct them. In the
manager PK it is required to prove the knowledge of three values at once (sk,, r, "),
while the sender is proving the knowledge of four values (sk;, 71, 72,7). In Algorithm
14 it is shown how the manager’s PK,, was constructed and in Algorithm 15 how the
sender’s PK; is created. Both of these proofs of knowledge are based on Schnorr’s

non-interactive proof of knowledge.
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Algorithm 14 Manager’s PK,,(skp,,,17")

Manager computes:

p1 & Lz N Ly, p2 < L2, p3 < Ly
¢ = h*t - g” mod n?

co =g -h” modn

e =H(c1,c2)

z1 =€ Sky+ p1

Zg=¢€-T+ p2

zz=-e-1r' + p3

Send PK,, = (z1, 22, 23, €) to the sender.
Sender computes:

D =h g (785)7¢ mod n?
sy =g -h* "¢ modn

L e =H(,ch)

—_ =
—= O

— =
w N

Algorithm 15 Sender’s PK;(sk;,r1,72,T)

1: Sender computes:

2: Consider a = e, /h"/?, B =y ski = sk;-ry, u= —TF -1,
3: ps <= Ly, 1,0y pus P < Ly P2 & L2

4 ¢p =a” - h? - BP2 . g7 mod n?

5 ¢y =g -§ modn

6: ¢35 = - (1/g)” -p** mod n

7. ¢y = g5 mod gpc

8: e =H(cy, Ca,03,C4)

9: zg = e sk; + ps

10: z1=e-r1+m

11: 29 =€ 19+ po

12: =€ U+ py

13 Z=e-T+7p

14: 2/ =e-skl+p

15: Send PK; = (2,21, 22, 2u, 2, 2, €) to the manager.
16: Manager computes

17: ¢, = a* - h¥ - B% - (ey/h™/?) — e mod n?
18: ¢y =g*-h*- ()" modn

19: ¢ =¢* - (1/g)* -b™ mod n

20: ) = g5° - pk; © mod gec

21: e = H(cy, &y, s, c))
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2.2 Group signature

The signature used in this scheme is a combination of the weak Boneh-Boyen sig-
nature and Schnorr’s proof of knowledge protocol. It is based on the short group
signature introduced in [5] and was first proposed in [43]. The standard version
of the weak Boneh-Boyen signature uses the public key of the signer to check the
validity of the signature, and this is not desired in a group signing scheme. The
pairing property of the signature is used in the scheme to check if the signature is
valid with respect to the manager’s public key, and the Schnorr protocol is utilized
to prove the knowledge of a signed message anonymously. The scheme is also used
in [44], where the authors also provide all the proofs needed. The algorithm of the
signature is displayed in Algorithm 16, and its verification is in Algorithm 17.

Algorithm 16 Sign (sk;, §;, m) Algorithm 17 Verify (par, pk,,)
1: Generater €g Z, 1 f= (5 ¢)°- 5/5‘51@» e
209'=¢" 2: ¢ = H(yg ,5;,5 t,m)

30 =0 3: (5 g'92) = e(0}, phim)
4: &; = (&) sk 4 e L ¢

5: Generate pr, psi, €r Zq

6: t = (0])Peki - gPr

7: e =H(g' 6!, 6, t, m)

8 S.=p.—e-r

9: Ser, = Psk; T € 5k

10: par—(g,é{,é m, e, Sy, Ssk,)

All the operations are done in an additive group of a pairing-friendly elliptic
curve. The hash function H should be chosen in a way that e € Z,. In the Verify

skm

algorithm, pk,, is a public key of the manager, where pk,, = g5
Theorem 1. The verification in Algorithm 17 is correct.

Proof. In order to prove the correctness of the verify algorithm, we need to show

the equality ¢t = t in the first step.

(67-9) - 8" g™
(6/ Sk fr)e . 5lsski . gsr

.E - i

_E — (S —esk; er 6/:ski X gsr

tA _ 5 —esk; 6/Psk —esk; gsr
_E — g 5lpsk i gsT

_E — g 5lpsk gpr—efr
t=d7" g =t
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Since t = t the equation H(¢',d!,8;,t,m) = H(q', 0, 0;,f,m) also holds for valid
signature. As the scheme uses cryptography based on bilinear pairings, the bilinear
properties can be used to prove that the pairings will also be equal for a valid

signature.

e(d; - g’ 92) = e(;
(0,7 g% ga) = e( )

—sk;-r
e(gskm+3ki . gr,gg) = e(éz’ggkm)
e(g kiR g9) ( )

e(55" 7, go) = e(

"= e

e(8;, go)

2.2.1 Revocation and opening of the signature

While in a group signature scheme, the identity of the signer should be hidden, it is
desirable for the manager to be able to open the signature and learn the identity of
the signer, and to be able to revoke users from the group. In this group signature

scheme that is possible.

The open function

For the opening, the manager of the group must keep a private list of inverted
public keys pk; = pk; ' of the senders in the group, ideally with the addition of their
identifiers. The manager then needs to acquire values ¢} and §; of a signature and
check the equality of the pairings e(d}, pk;) - e(d;, go) for each of the pk; he has

saved. If the pairings are equal the user whose is the pk; is the signer.
Theorem 2. The open function is correct.

Proof. In order to prove the correctness of the open function it must be shown that

for sk; used in the signature, such that pk; = g% the equation e(d’, pk;) = e(3;, g2)
holds.

e(d7, pk;) = e(d;

e(o, pki') = e(d;

(5/ —skl) —e(d

(5/ ) ski __ N
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Revocation

For revocation of the users (removing a user from the group), the creation of a
blacklist can be used. The manager of the group will publish a blacklist with the
values of pk; = pk; ! of revoked users to the verifiers. The verifier must then check
the same pairing e(d!, pk;) - e(8;, g2) for each entry in the blacklist during the
verification. If for any of the entries in the blacklist, this pairing is equal, the
signature is by a revoked user and therefore not valid.

The use of a blacklist requires extra computations of pairings during the verifi-
cation of the signature. This can be computationally demanding for a big amount
of users. But in a group signing scheme, the groups will usually not be bigger than
100 users and only a few of them will be revoked. If the blacklist is too long, the
manager can regenerate the group, by creating a new manager (group) key pair and
adding the current users to the new group.

Another important factor to consider for the deployment of this scheme is, that
the public keys pk; used by the users should be generated specifically for this group
signature scheme. If for example a public key from a public certificate would be
used, the verifier could obtain the public keys of the members of the group and
find out who from the group created the signature. Practically this should not be
a problem as the scheme uses different keys (pk; = ggk) than standard algorithms
such as Rivest-Shamir—Adleman (RSA) and Digital Signature Algorithm (DSA).

2.3 Using the NIZKPK in KVAC

The NIZKPK protocol shown in Section 2.1 can also be used to introduce blind
issuance into an attribute-based credential scheme like KVAC. Such a modification
to the KVAC protocol makes the credential issued by the issuer private to the user,
therefore hidden from the issuer. This way, the issuer will be not able to impersonate
any user. In this modification to the KVAC protocol, the user is in possession of
a private key that is not shared with the issuer. The protocol also protects the
credential from an attack during the issue phase, as the real credential can only be

extracted by the user.

2.3.1 Modifying the issue algorithm

In the standard Issue algorithm shown in Section 1.7 in Algorithm 9, the user sends
his attributes to the issuer, and the issuer signs them with his private key, creating
the credential. If we apply the blind issuance with the NIZKPK protocol, the final

credential will be signed jointly by the issuer and the user as well. The modified
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version of the KVAC issue algorithm is depicted in Algorithm 18, with the changes
highlighted in red.

Algorithm 18 Issue (sk = (wo,...xy), (M1, ...my), sk;)

1: The issuer receives attributes (myq,...my,).

2: The issuer computes: d = xg + myxy + ... + My Ty,

3: Run NIZKPK 2-party computation to compute: k = (d + sk;)ry
4: The issuer computes:

5 o0 = gi/k’

6: o0, =00, =0 0, =0

7: The issuer sends o*, 0}, ,...,0; to the user.

8: The user computes o = o, ... 0, = "L,

In Step 3 of Algorithm 18, the NIZKPK algorithm shown in Section 2.1 is exe-
cuted. The change is that the manager (or the issuer in this case) uses the value of
d = xog+myixy+...+m,x, instead of the private key sk,, used in the group signature
scheme. Since the credential sent by the issuer is now randomized by r1, put in the

computation by the user, no one, but the user is able to extract the final credential

from the values o*, 0} ,...,0; . So not only does the blind issuance enhance the
privacy of the user by hiding his credential from the issuer, but it also makes it
harder for an attacker to obtain the credential by intercepting the communication

during the Issue algorithm.

2.3.2 Moadifying the Show and ShowVerify algorithms

For the user to be able to prove the ownership of his credential in this modified
scheme, changes to the other main algorithms of the KVAC scheme were needed.
In the Show algorithm, the user must now also prove the knowledge of sk; used in
the issue algorithm. The modified version of the Show algorithm is displayed in
Algorithm 19, and the altered ShowVerify algorithm is then shown in Algorithm
20.

40



Algorithm 19 Show ({(m;)",0,(0s,)", D), sk;)

7

1: The verifier generates nonce <- Z, and sends it to the user.
2: The user computes:

3. Ty Pry Prigps Pu < g

4: 0=o0"

5 t=ignpotr™ - g0
6: ¢=H(D,{(m;)iep,t,d, par,ipar, nonce)

7 S =prtc-r

8: Sy = py—C-sk;

9: (Sm; = Pm; — CMi)igD

10: The user sends proof = (6,t, sy, (Sm,)i¢D; Sus (Mi)icp, D) to the verifier.

Algorithm 20 ShowVerify ({x;)I,proof)
1: The verifier checks that:
2: O 7é 1g
3: ¢ =H(D,{(m;)iep,t, 5, par, ipar, nonce)
4t z g - a-—C'IO‘f'Zi&D(mi'smi)_ZiED(Ii'mi'C)"’Su

Theorem 3. The verification in Algorithm 20 is correct.

Proof. In order to prove the correctness of the modified KVAC verification algorithm
we need to show the equality t = ¢° - GCT0HY g p(@ismi) = i p(@imic)+Su.
g - 5_0'9”0"'2@13(mi'smz‘)—Ziep(fi'mi'CHSu
- gpr+c~r . 6_0'””0+Ziep(mi'smi)_Ziep(fi'mi'c)‘mu—c's’%
— gﬁr+c~7‘ . O’T.(_C"’EO—FZigD("Ei'(pmi_C'mi))_zz‘ep(‘ri'mi'c)—’—pu_C'Ski)
= grrter . gm(igpPmiaiton) | gme(wot Y pleemitsk)r
= gPrter. o 2aigp(PmiTi)Hpu LgeT

— ng . O-T'(ZQQD(Pmi'CEi)-FPu)

= [[ o’ g 0" =t
i¢D
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3 Practical implementation

This chapter deals with the implementation of the group signature scheme with the
NIZKPK protocol as described in Chapter 2. Speed tests of some libraries were con-
ducted, to help choose a library for parts where the speed of computation is essential,
i.e., mainly for the NIZKPK computations and for the signing and verification algo-
rithm. The chapter also includes a part that deals with the implementation of blind
issuance into the KVAC scheme.

The implemented group signature scheme was then used to build a small system
for the demonstration of the protocol. This system contains a PC application with
the ability to simulate the role of the group manager and a verifier and a user’s
Android application. The user uses a mobile device such as an Android mobile
phone to take part in the 2-party computation and to generate signatures with
the key saved in the mobile device. The implemented group signature scheme was
used to create a system for digitally signing documents. The devices communicate
through NFC.

The PC implementation is split into three smaller applications. The first is for
a group manager and allows for the creation of a group and managing the members
of the group. The second is the verifier’s application which allows a verifier to check
the validity of signatures. The third PC application is for the user, it allows him to
choose a PDF file that he wants to sign, then he uses the key saved in his mobile
application to generate a signature for the file. The hash of the file is sent from the
PC application through NFC to the phone. The phone then sends a response with
the generated signature. The signature is then saved to the metadata of the PDF
file by the PC application.

3.1 Choice of a platform and libraries

First, it was necessary to choose the devices to use and consequently the language
for the implementation. As the implementation is aimed at Android smartphones as
the signer’s main device and a PC as an issuer’s or verifier’s device, it was important
to choose the right platform for the implementation.

Since we wanted to make our PC application portable to other devices without
problems, Java on Windows was a good choice, as it is possible to create a simple
jar file and distribute it with the compiled external libraries (be it Java library in
Jjar format or native C library in .dll format). This can be harder to do for C as it
usually requires the libraries to be built for the system it runs on. Java also provides
good tools to create Graphical User Interface (GUI) and is used in Android, and
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with the help of JNI, C can be used in the background to make some computations
faster.

This way we only need a Windows PC with JDK installed. The Java program
can also be ported to a Linux system, however, the external JNI libraries for C
should be built separately. This ensures compatibility of the libraries on different
architectures, as they are compiled into machine code. The program includes a
script that should be able to install all the dependencies and build the libraries on
a fresh Linux system like Ubuntu.

The Android mobile phone is used to communicate through NFC with a terminal
during the 2-party computation and for sending the signature to the computer. The
choice of using Java on both devices also allows us to port the code between the
devices, as some parts of the code are the same for the entities in the scheme. As most
of the Android applications are developed in Java and Kotlin, the implementation is
mainly in Java with the help of some JNI libraries that allow the calling of functions
implemented in the native C language from Java. Kotlin is not the best suit for this

application, as Java implementation is then easier to transfer to a computer [39)].

3.1.1 Comparison of Java and C libraries on an Android device

There are two main ways how to use a C code in an Android application. The
first one is implementing functions in C and using the NDK and JNI to pass from
Java to C functions. But with this option, we must consider data type conversions
and problems with using various C libraries that can be tricky to import. Then
there is a second way. Having a C library prepared and compiled by the authors for
Java or Android, where the bindings are already created. In this way, we have the
functions of the library running in C with the help of JNI, but we just simply call
Java functions and do not have to worry about any data conversions as those were
implemented by the authors.

The main focus of this comparison was to find out if a C library called through
JNI is faster than a similar Java library. Since this scheme uses homomorphic
encryption in multi-party computation and bilinear pairings for signatures, we need
a library for modular arithmetic with big numbers and a library for bilinear pairings.
All tests were conducted on Xiaomi Redmi Note 8 Pro with 6 GB RAM, MediaTek
Helio G90T 8 core 2,056GHz CPU, and Arm Mali-G76 3EEMC4 800MHz GPU. All

tests were performed 10 times and the resulting time is their average.

Libraries providing bilinear pairings

There are not that many implementations of bilinear pairings for Java. One with

big enough, i.e., with the right security level, pairing-friendly curves is the AMCL
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library. This library provides a big variety of curves of different sizes, which is
its main advantage. For C, the MCL library was chosen. The biggest advantage
of MCL over other C libraries is, that it has a prepared JNI implementation that
makes calling its functions easier from Java on an Android device. The biggest
disadvantage of the MCL library is, that it only supports two curves, but since one
is the BN-254 curve, which is suitable for the implementation, this library suits our
implementation perfectly.

The main focus of comparing these two libraries is finding out which is faster
on an Android device. Functions tested and timed were: adding two points in G1,
scalar multiplication in G1 and G2, scalar multiplication by g-1 in G1, and pairing.

Results are depicted in Table 3.1, where times are in ys.

C - MCL | Java - AMCL
Adding two points in G1 5,4 26,8
Scalar Multiplication in G1 | 231 6 700
Scalar Multiplication in G2 | 504 22 836
Multiplication by g-1 in G1 | 172 9779
Pairing 1423 27 966

Tab. 3.1: Comparison of MCL and AMCL computation times (in x s) on an Android
device.

Table 3.1 shows that the MCL library is much faster than AMCL. In particular
Scalar multiplication in G1 takes almost 30 times more time with the AMCL library,
and in G2 it’s even more. With this finding, the decision was easy and the MCL
library was chosen for the implementation of the signature.

Libraries for modular arithmetic

For modular arithmetic, is needed a library that can operate with big numbers in
a multiplicative group. In Java, the most widely used library for big numbers is
Biglnteger [32], it is perfectly suitable as it is well-tested, and contains all needed
functions. For C language a GMP library [36] was chosen, since it can operate with
big numbers, is targeted for cryptography, and has a general emphasis on speed.
It was also used in the implementation of Secure Two-Party Computation by M.
Seckar [45].

Using the GMP library with Android is harder than the previously mentioned
MCL library because while it can be compiled into a binary library, that can be
used in Android, the creators don’t provide Java bindings that would make calling

the functions easier. Therefore, one must first implement functions in a cpp file,
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that provide type conversions from Java to C and back through JNI. These needed
conversions also add computational time, so the C functions must be faster by a lot
to make it worth it.

The speed tests were conducted for addition, multiplication, modular exponen-
tiation, and prime generation. While testing the speed of the libraries, it was found
that function mpz_powm used by the GMP library can be susceptible to side-channel
attacks. Authors themselves say, that in cryptographic applications mpz_powm_sec
should be used instead [46]. Therefore, both of these functions were tested. While
the gmp_powm function can be susceptible to side-channel attacks, this attack is not
easily feasible against a mobile device such as a mobile phone. For the prime gener-
ation function probablePrime was used from the Biglnteger library and from GMP
it was mpz_nextprime. As GMP does not have a function for generating a random
prime, and it only finds the next probable prime, we pass to it a random number of
desired bit size. The results of the speed tests are depicted in Tables 3.2 and 3.3.

Biglnt Add | Gmp Add | Biglnt Mul | Gmp Mul
1024 bits | 29,7 148,2 27,5 125,1
2048 bits | 35,1 4257 30,5 387,3
4096 bits | 38,9 1 428 37,5 1 450
8192 bits | 61,5 5 298 85,3 5 320

Tab. 3.2: Comparison of Biglnteger and GMP computation times for addition and

multiplication on an Android device (times in us).

BInt powM | GMP powM | GMP powMsec | BInt prime | GMP prime
1024 bits | 1 910 2 036 2147 659 378 160 343
2048 bits | 14 047 13 262 18 767 5833261 |2675519
4096 bits | 109 990 74 750 145 872 — —
8192 bits | 857 750 413 501 1 135 589 — —

Tab. 3.3: Comparison of Biglnteger and GMP computation times for modular ex-

ponentiation and prime generation on an Android device (times in us).

Looking at the addition and multiplication operations results in Table 3.2, it
seems like the GMP library is much slower for these operations. The reason is that
the time is calculated with type conversions from Java to C and back since in a real
program this time will influence the final time of a protocol because without these
conversions it cannot be used on Android phones. The times of the operations of
addition and multiplication with GMP without the conversions are comparable with

Biglnteger computation times.
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If we focus on the most important and time-consuming operations, with mod-
ular exponentiation we can see in Table 3.3, that the normal mpz_powm function
from GMP is faster, and the difference is more significant with bigger bit size. How-
ever, the secure version of GMP modular exponentiation is slower than Biglnteger
implementation, and here it’s not only because of the type conversion, but the op-
eration itself is slower too. As said before, we do not consider the attack against the
mpz_pown function relevant on a mobile device, so it could be used to save some time
in more demanding computations. Interesting are the times of generating primes.
Here the C GMP library is significantly faster. This operation is used in the setup

of the key agreement algorithm, but the setup will not be run on the mobile device.

3.1.2 Comparasion of Java and C libraries on a desktop PC

The issuer and verifier part of the scheme are implemented on a desktop PC. While
for this kind of device, the performance is not as crucial as for the mobile device, it is
still good to use faster implementations. The libraries tested are the same as for the
mobile device. The device used in these benchmarks was HP Pavilion 15-bcHxxx,
Intel i5-9300H (4cores, 2,4-4,1GHz), 16GB RAM, and Windows 10 Home 20H2.

Libraries providing bilinear pairings on Windows PC

Tested libraries providing bilinear were the same as for the Android mobile phone
(AMCL and MCL). The most important operation on the PC part of the application
is the pairing, as it is needed in the verification, for checking the revocation, and for
opening the signatures by the manager. The curve used in the tests was the BN-254
curve and the functions benchmarked were: addition of two random points in G1,
multiplying a point by a random scalar, and pairing. The results are shown in Table
3.4.

C - MCL | Java - AMCL
Adding two points in G1 5,1 9.9
Scalar Multiplication in G1 | 417 2472
Scalar Multiplication in G2 | 873 4 640
Pairing 2 621 8 358

Tab. 3.4: Comparison of MCL and AMCL computation times (in x s) on a Windows
PC.

While the MCL library is faster also on a desktop PC, it is interesting to see
that the MCL library is actually slower than on an Android mobile device. This is
probably due to the fact, that the library is not optimized for Windows. But it still

46



gives us the advantage of superior speed (compared to AMCL). Also on Windows,
the compiled portable library can be used without the need to build and install the
library on each new device. The MCL library is therefore also used in the desktop

application.

Modular arithmetic libraries on Windows PC

The libraries considered for the modular arithmetic were the same as on the phone -
GMP and Biglnteger. The main tested functions were modular exponentiation and
generating prime numbers, as those are the most demanding functions. Table 3.5
shows the difference between GMP and Java’s Big Integer for prime generation and

modular exponentiation on a Windows PC.

Biglnt prime | GMP Prime | Biglnt powM | GMP powM
1024 bits | 52 201 1,8 2,1
2048 bits | 529 1331 8,1 15,7
4096 bits | - - 40 93
8192 bits | - - 269 D74

Tab. 3.5: Comparison of Biglnteger and GMP computation times for modular ex-

ponentiation and prime generation on a Windows PC (times in ms).

While testing the GMP library on a Windows PC, it was found that the library
is mainly aimed at Unix-type systems [36]. While it is possible to build GMP
for Windows, it is not optimized and is much slower than it could be on a similar
machine with a distribution of Linux OS. Table 3.5 shows that BigInteger has better
results in all the tested functions on Windows. This makes the GMP library not
suitable for the server implementation for Windows in Java. Note that the GMP
is even called only from C without the Java in between and it is still slower. The

faster version of mpz_powm was also used with GMP.

Libraries providing bilinear pairings on Linux VM

Because the MCL library was slower on the Windows PC than on the mobile phone,
tests on a Linux-based system were also performed, to see if the optimized version for
Linux would get better results. The tests were conducted on a Virtual Machine (VM)
running on the same PC with OS: Ubuntu 64-bit Linux (VMWare, RAM: 8 GB,
CPU: 4 cores). Table 3.6 shows the results of the benchmarks.

The comparison of the MCL and AMCL libraries turned out the same as on the

other devices, where MCL has a big advantage in performance compared to AMCL.
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C - MCL | Java - AMCL
Adding two points in G1 4.6 10.3
Scalar Multiplication in G1 | 118 3678
Scalar Multiplication in G2 | 170 6 232
Pairing 707 9 946

Tab. 3.6: Comparison of MCL and AMCL computation times (in x s) on Linux VM.

The MCL library is also much faster on Linux than on Windows. It is probably

because it is better optimized than the portable Windows version.

Modular arithmetic libraries on Linux VM

As the application will also be run on Linux, and GMP did not perform as expected
on Windows, speed tests on a Linux-based system were also performed to compare
GMP with Biglnteger. This was mainly to determine if GMP support should be
included in the PC application. The results of the benchmarks are in Table 3.7.

BInt prime | GMP Prime | BInt powM | GMP powM | GMP powMsec
1024 bits | 35 37 2.9 0.9 1.2
2048 bits | 497 315 7.8 4.2 5.9
4096 bits | - - 39 27 37.9
8192 bits | - - 292 171 273

Tab. 3.7: Comparison of Biglnteger and GMP computation times for modular ex-

ponentiation and prime generation on Linux VM (times in ms).

As seen in the table, GMP does perform better in a Linux environment compared
to Windows. Since on Linux GMP was faster for modular exponentiation, the
more secure function mpz_powm_sec was also tested. We can see that the modular
exponentiation with 4096 and 8192-bit numbers is much faster with the mpz_powm
function than Biglnteger. However, the mpz_powm_sec function is almost the same
speed as BigInteger. Therefore in the PC application, the faster version of the GMP
function is used as an alternative, so the protocol performs better on Linux. If there
is a possibility of a side-channel attack on the device, then the switch to Biglnteger
will solve that concern.

Since the results of the modular arithmetics were different for Windows and for
Linux, the application has the option to switch between Biglnteger and Linux. The
recommendation is to use Biglnteger on Windows and on Linux GMP, and if there

is a concern about a side-channel attack it is better to use Biglnteger on Linux also.
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3.2 Implementing the cryptographic core

This section deals with the creation of the cryptographic core of the application. This
core is shared for both the desktop and the mobile applications, although each uses
only some of its functions. This core uses the Biglnteger library for computations
during the NIZKPK protocol (with the possibility to use GMP for some operations),
and the MCL library in the group signature.

The classes of this core are located in the cryptocore package. The package
should be self-contained, and usable in other projects with the need to import the
MCL library, it is a good idea to turn off the GMP usage in other projects as it has

to be implemented separately.

3.2.1 Integrating the libraries into a project

In this section, it is shown how the libraries can be integrated into the project on a
Windows PC and on an Android device. It is also shown how the application can
be run on Linux. This section should also help anyone that would like to create
a similar implementation. Note that for Android NDK needs to be installed for
Android Studio and JNI for Java on desktop.

Importing the MCL library to Java

The MCL library can be downloaded from [37]. For PC, first, the C library must
be built, the steps on how to do it on Linux or on Windows with the help of Visual
Studio are shown in the readme.md file of the library, and on the GitHub page. Af-
ter compiling the C library, folder ££i/java provides files that can be used to build
a library with bindings for Java. The directory also provides instructions on how
to build it. On Linux make sure you have compiled mcljava.so in the /usr/1ib
directory. Another option is also using the MCL wrap [47] that includes scripts to
build the library for Java with just one script, even though this might not be an
optimal build on Windows, it creates a portable library and is easy to use. Since
building the library on Windows can be troublesome, anyone that would like to
use the library from this implementation can just download the compiled library file
mcl java-x64.d11 distributed with the application for group signatures. After the li-
brary is built it must be added to the project libraries and the Java classes from pack-
age com.herumi.mcl must be added to the project. After that, the program that
will be using it must call System.loadLibrary("mcljava-x64") to load the library
and initialize MCL with the curve it wants to use: Mcl.SystemInit (Mcl.BN254).

The load call will be different for Linux as the library might have a different name.
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For Android, the library can be downloaded from [48], the page also provides
steps on how to build the library using the NDK. The application created also
provides these built libraries that can be used in an Android project. The built
library must be then imported into a resource directory (for example jniLlibs) into
separate directories for different architectures. Then in the main function similar the
library must be loaded by calling System.loadLibrary("mcljava") ; and initialized
it in the same way as above with a curve. Also, the Java classes must be added to

the project the same as before.

Using GMP on Android

GMP can be used on Android by importing an already build GMP library for each
architecture from [49]. This GMP library can then be passed to the same jniLibs
folder in the Android project. Then it is needed to create an Android.mk file in
the jniLibs folder to be able to create functions that can be then called from Java,
the contents of the file are shown in Listing 3.1. It specifies the file test.cpp that
can then be used to implement functions with the use of GMP and the name of the
module that will be used to load the library in Java with the System.loadLibrary ()
command. Finally, it is needed to pass to Gradle the location of the Android.mk
file for the NDK build. This is done by adding the code shown in Listing 3.2 to the
build.graddle file of the application.

Listing 3.1: Android.mk file in jniLibs

JNI_PATH := $(call my-dir)
include $(JNI_PATH)/gmp/Android.mk

LOCAL_PATH := $(JNI_PATH)
include $(CLEAR_VARS)

LOCAL_MODULE := gmp-tests
LOCAL_SRC_FILES := test.cpp

LOCAL _LDLIBS += -1llog
LOCAL_SHARED_LIBRARIES := gmp

|include $(BUILD_ SHARED_ LIBRARY)

Unlike the MCL library with GMP, it is needed to handle the passage of variables
from Java to C, so it is more difficult to use in an Android project. That is why
it is only used for the most demanding operation of modular exponentiation in this

application. Listing 3.3 shows how such a function can be implemented in C so
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it can be called through JNI from Java. The function must then be specified in
the Java class that uses it as: public static native String modPowC(String
a, String b, String mod);. Line 1 of Listing 3.3 shows the specific naming the
function must have in order to be callable from the Java class. Lines 7-12 show how
the strings from Java are passed to the mpz_t type of GMP. Line 16 is the operation
itself, and lines 19-20 show how the result is passed back to Java.

Listing 3.2: Passing the Android.mk to Gradle

externalNativeBuild {
ndkBuild {
path ’src/main/jnilibs/Android.mk’

Listing 3.3: ModPow function in C for Java

extern "C" jstring
Java_cz_vut_feec_xklaso0O_groupsignature_cryptocore_
NIZKPKFunctions _modPowC (JNIEnv *env, jclass thiz,
jstring jst_a, jstring jst_b,jstring mod) {
mpz_t bn_a, bn_b, bn_mul, bn_mod;
const char *cc_a, *cc_b, *cc_mod;
jstring jst_mul;
char *c_mul;
mpz_inits(bn_a, bn_b, bn_mul,bn mod, NULL);
cc_a = env->GetStringUTFChars(jst_a, NULL);
mpz_set_str(bn_a, cc_a, 10);
cc_b = env->GetStringUTFChars(jst_b,NULL);
mpz_set_str(bn_b, cc_b, 10);
cc_mod = env->GetStringUTFChars (mod,NULL) ;
mpz_set_str(bn_mod, cc_mod, 10);
cc_a=NULL;
cc_b=NULL;
cc_mod=NULL;
mpz_powm (bn_mul, bn_a, bn_b,bn _mod);
c_mul = mpz_get_str (NULL, 10, bn_mul);
mpz_clears(bn_mul, bn_a, bn_b,bn_mod, NULL);
jst_mul = env->NewStringUTF( c_mul);

return jst_mul;
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Using GMP in Java on PC

It is possible to create a library that uses GMP and can be called from Java in
the desktop environment too. This is usually called wrapping a library. Such a
library was created mainly to support Linux systems since GMP is faster on Linux.
It can be found in the thesis files in the GroupSig_app folder in the file called
gmp_forJava_linux.cpp. The library implements operations of modular exponen-
tiation and finding the next prime after a given number. In order to use GMP with
Java, JNI must be installed on the system as well as the GMP library. This wrapper
library must be compiled on the targeted system as shown in Listing 3.4 and then
saved to a location such as /usr/1ib. The library can also be compiled for Windows

and used, however, it is slower than the Biglnteger library, so it is not recommended.

Listing 3.4: Compile command for library using GMP in Java for Linux

g++ -fPIC -I /usr/lib/jvm/default-java/include/ -I /usr/
lib/jvm/default-java/include/linux/ -shared -o
libgmp_forJava.so gmp_forJava_linux.cpp -lgmp -lgmpxx

3.2.2 Implementation of NIZKPK

The two-party computation is based on the Paillier cryptosystem, so the first step
was creating a working Paillier in Java, which was then modified to suit the NIZKPK
protocol. Since modifications to the computations are needed, it was not possible
to just use a finished library of Paillier and call its functions. The main classes in
the package that deals with the NIZKPK implementation are: PaillierKeyPair,
PaillierPublicKey, PaillierPrivateKey and NIZKPKFunctions. There are also
other classes that mostly serve for the serialization of the variables used in the
computations. The State diagram in Figure 3.1, shows the calls of the NIZKPK
functions in a running protocol. It is shown when is each function called, and what
function it passes data to.

The setup of the NIZKPK protocol is done in the class called PaillierKeyPair
and is only run in the PC manager’s application. The constructor of this class
basically runs the setup of the NIZKPK protocol, it takes an integer value of desired
bit size of n as a parameter (4561 in this implementation), and an instance of class
GothGroup that holds the parameters of the gothic group (as these should not be
generated by the manager). Firstly prime numbers p and ¢ are generated with the
help of the SecureRandom class for random seed. After this n is computed as p - ¢,

n? is also computed. Next secret value \ is computed as the least common multiple

*

"2, and make

of p-1 and ¢-1. After this, it is needed to find a generator g in the set Z

sure the modular multiplicative inverse u exists. This can be done by generating a
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random number from Z, raising it to n in modulo n? (getting a possible generator),
and checking if ¢* mod n?> = 1, if this equation holds, we have found a generator.
After this public values n,g,n? n,b, g, needed for computations on both sides are
saved to a PaillierPublicKey object, while secret value A alongside with values
i, n,n? are saved to a PaillierPrivateKey object. Java’'s Serializable interface
can then be used to serialize the PaillierPublicKey object and send it through a
communication channel, but it is important that this class is the same and located

in the same package in the other application.
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Fig. 3.1: State diagram of the NIZKPK functions calls.

The class NIZKPKFunctions contains all the functions needed during the run of
the NIZKPK protocol. The methods are all defined as static. It consists of functions
for both the manager and the user. There are many functions in this class used for

the computations, so only the main ones that are then called from the outside are
described.
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The first function called after the setup is computeElandZKManager. It has three
arguments, an instance of PaillierKeyPair, the manager’s private key sk;, and the
ID of the group. The function then computes values of eq, ¢, and the PK,, with the
use of other functions of this class. The values needed by the user to check the PK,,
and compute e, alongside the public parameters in the PaillierKeyPair are saved
to an instance of a ServerTwoPartyObject that can be then serialized and sent to
the user. This function can be pre-computed, as no input from the user is needed.

The second function that is called during the running protocol is the check-
IssuerZK by the user. It takes the parameters outputted by the previous function
and checks the validity of the PK,,. It returns true for valid proof and false if the
verification of the proof fails.

The next function called is computeE2AndUserZK on the user’s side. This func-
tion’s parameters are the public parameters saved in PaillierPublicKey, n of the
curve used in the group signature later, the user’s private and public keys, e, the
user’s ID, and a random number 7; that is used in this computation and later to
obtain the key used for signing. The reason this ry is not generated in this function
is that the user should store it, so it can be used in a later function. The function
computes eq, ¢, and the PKj;, it returns an instance of UserZKObject class with the
values needed for the other manager’s computations in it.

The manager can then use the checkPKUser function to check the validity of
the user’s PK;, and if the proof is valid function computeSigningKeyRandomized
can be called. This function computes the value of © = (sk,, + sk;) - 1 and then
returns o;. The user then only needs to run computeKeyFromManager function with
parameters o; and the r; to obtain the value of §; used in the signature.

The use of GMP as an alternative is done by calling a specific function to perform
the operation of modular exponentiation, as it is the most demanding operation
during the protocol on the user’s side. This function is called myModPow and if the use
of GMP is disabled by a static boolean variable it will just call the standard modPow
function from the Biglnteger library. But if GMP use is enabled it converts the
BigInteger values to Strings and passes it to a native C function modPowC. Similarly,

on the manager’s side, GMP can be used for generating the primes.

3.2.3 Implementation of the group signature algorithms

The functions used for signing and verification of the group signature are located
in the class called GroupSignatureFunctions in the same package. It consists of
functions for the user and for the verifier. All the functions are defined as static, so
they can be called without creating an instance of the class. These functions mostly

compute with points on the elliptic curve, so parameters passed to the functions
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are usually either of type G1 or G2 for points and of Fr for scalar numbers, so the
MCL library is needed for these methods. It is also important to initialize the library
with Mc1.SystemInit(Mcl.BN254) ; in the main function of the program that wants
to use this package. The curve used in the implementation is the BN254 curve,
however, it should be possible to change this curve with other curves supported by
MCL. However, the MCL library does not provide functions to get the generators
G1 and G2 or the order of the curve, so these getters were implemented separately.
The values used to construct generator points G1 and G2 were taken from the
implementation of the AMCL library. So in case of changing the curve, the getters
for G1 G2, and N in the class must be changed as well.

In the whole application for hashing the messages and for hashing during the
protocols the program uses SHA-256. When the hash is used with the elliptic curve,
operation modulo n of the curve is then applied to the hash, this is done with Big-
Integers as the type Fr cannot store bigger values than the order of the curve. That
is also the reason why the generation of random numbers in done with Biglntegers
and only then passed to the Fr type.

The function for signing with the group signature is called computeGroup-
Signature. As arguments it takes the hash of a message to sign, n of the curve, the
computed signing value ¢;, the User’s private key, and the group’s ID. The function
runs the algorithm described in Section 2.2 and saves the values needed for the ver-
ification to a SignatureProof object, this object is then returned by the function.
The values must be saved to this object as byte[] because the types from the MCL
library are not Serializable by Java’s Serializable interface. Fortunately, these
types can be easily converted to byte[] by calling the serialize() function.

The function used for validating the signature by the verifier is called check-
Proof, as parameters it takes the SignatureProof generated by the user, the hash
of the message, and the public key of the group. The function first checks the
equality of the pairings (as shown in Algorithm 17 in Section 2.2), if the pairings are
not equal the function will return false, if they are equal it continues by computing
the 7 and the hash €¢/. The computed hash is then compared with the hash from the
client, if they are equal the signature is legit and the function will return true.

The basic verifying function does not include the revocation check, this has
to be done after this verification by another function. The reason for that is
that other implementations might choose different formats for saving revocation
lists. The class provides function checkSignatureWithPK that checks the pairing
e(8), pk;) = e(d;, go) for given pk; and values of d,; used in the signature. For the
final implementation, this function is called for all the values of pk; in the revocation
list, if the function returns 0 for any of the entries in the revocation list, the user

is revoked and the signature is not valid. This function is also used for opening the
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signature. The manager can cycle through his map of user’s IDs and values of pk;,
if the function returns 0 for some of the users, he knows that is the user that signed

the message.

3.3 Implementing communication between the de-

vices

The communication channel that was used for this demonstration was NFC. The
main devices used were a PC and an Android mobile phone. The PC uses a card
reader to communicate with the phone, and the phone uses HCE to act as a card.
The protocol used in the communication is APDU, as it is the main protocol for

NFC that can be implemented on an Android device.

3.3.1 Terminal on PC

The Java PC application is able to communicate through NFC with a mobile device
(a phone) using an external NFC card reader. The reader used during the creation of
the implementation was the ACR1251U USB NFC reader. The APDU commands
are sent from the Terminal class created in the main package of the application
groupsignature. There is also a second class Instruction that is used to build
the commands sent to the phone.

For communication Java’s smartcardio library is used. It is a default Java
library, so no external files are needed for this library. The first function called by
the terminal each time when there is a need to establish a connection with the phone
is called InitializeConnection. The command Choose AID sent by this function
must have a specific format. The format of this command is shown in Figure 3.2.
The AID is a 7-byte identifier of the mobile application, for this application the
AID was chosen at random as F0203344886655. The Listing 3.5 shows how the

initialization of the connection works in Java.

CLA INS P1 P2 Lc DATA Le
0x00 0xA4 0x04 0x00 0x07 AID 0x00

Fig. 3.2: Structure of the choose AID command.

The initialization function first checks if a terminal is connected, it then waits for
a card to be present near the reader (line 8). It then connects with the card using
a supported protocol and transmits the choose AID command. If the command

was successfully received by the device the response from the device will be 0x90
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0x00, usually the other possible response is 0x6A 0x82 which means the AID was not
found, usually, this is because the application is either not installed or does not have
the permission to use NFC. The return codes of the function give some feedback on

what went wrong to the rest of the program. Unless this function returns 0 other

=

parts of the program using NFC will not be executed.

Listing 3.5: The function to initialize connection with a mobile device

public int InitializeConnection (){
try {
TerminalFactory factory = TerminalFactory.
getDefault ();
List<CardTerminal > terminals = null;
terminals = factory.terminals().list();

CardTerminal terminal = terminals.get (0);

while (!terminal.isCardPresent());
// Connect with the card, using the supported
protocol
card = terminal.connect("x");
channel = card.getBasicChannel () ;
//transmit the getAID command
ResponseAPDU responsel = channel.transmit (new
CommandAPDU (Instructions.getAID()));
byte[] byteResponsel = null;
byteResponsel = responsel.getBytes();
System.out.println("Card response for choose AID
command: " + Instructions.bytesToHex(byteResponsel));
if (Instructions.isEqual (byteResponsel,
Instructions.getalOkay ()))
return 0; //successful
else
return -2; // return code -2, the choose AID
was not successful, check application permission
} catch (CardException e) {
e.printStackTrace () ;
}
return -1; //something went wrong, check the terminal

connection
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The Terminal class then includes the functions for sending the data during the
NIZKPK protocol. The communication during the protocol was split into two parts,
as the protocol is long and the computation on the mobile device can take multiple
seconds and it would be impractical to hold the device near a reader for that long.
The first part includes sending the public Paillier parameters the e; and PK,, to the
user’s mobile device. After this step, the connection is closed until the mobile device
verifies the PK,,, and computes e; and PK;. After this computation, the connection
is established again and these values are sent to the terminal. The terminal then
checks the PK; and computes o; that is then sent to the user and the connection
is closed. The connection is not closed during the terminal’s computation, since
having more than two stages during the protocol would not be very convenient for
the user.

The class also includes a function sendFileToSign used during the signing of
the document. The function’s parameters are the hash of the file to be signed and
a boolean flag specifying if the signature should be checked before saving it or not.

The Instructions class contains functions for building the instructions as they
change depending on the parameters generated by the application. So for most
of the instructions, there is a specified header of the instruction and a function
that takes the data as a parameter and builds the final instruction with the use of
ByteArrayOutputStream. The class also includes functions for the comparison of
byte arrays to help identify the APDU responses and functions for the conversion of
byte arrays to Strings and vice versa, the bytesToHex function is taken from [50],

the function for converting a hexadecimal string to a byte array is from [51].

3.3.2 Implementation of HCE on Android

HCE can be implemented on Android by creating a class that extends the HostApdu-
Service class [52]. For the proper function of this class, there are also a few extra
steps that must be done. The first one is modifying the AndroidManifest.xml file
to acquire permission to use NFC and to register the class that extends HostApdu-
Service as a service. Next the apduservice.xml file must be created that specifies
the AID of the application. Contents of the files are depicted in Listings 3.6 and
3.7.

Listing 3.6: Modification to the AndroidManifest.xml

<manifest

<uses-permission android:name="android.permission.NFC"/>

<application
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<service android:name=".MyHostApduService" android:
exported="true"
android:permission="android.permission.
BIND_NFC_SERVICE">
<intent-filter>
<action android:name="android.nfc.cardemulation.
action.HOST_APDU_SERVICE"/>
<category android:name="android.intent.category.
DEFAULT"/>
</intent-filter>
<meta-data android:name="android.nfc.cardemulation.
host_apdu_service"
android:resource="0xml/apduservice"/>

</service>

| </application>
| </manifest>

Listing 3.7: Content of apduservice.xml file

<host-apdu-service xmlns:android="http://schemas.android.
com/apk/res/android"
android:description="@string/servicedesc"
android:requireDeviceUnlock="false">
<aid-group android:description="Q@string/
aiddescription"
android:category="other">
<aid-filter android:name="F0203344886655" />
</aid-group>

</host-apdu-service>

The class extending the service in this application is called MyHostApduService.
It overrides the two main methods of the parent class this class extends. The first
method is called onStartCommand, this method initializes the instance of the class.
This application for example registers the LocalBroadcastManager. The second
function is the processCommandApdu method. This method specifies the answers to

the incoming instructions based on the instruction’s CLA and INS bytes.
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Passing the data inside the application

As complex computations are needed in order to construct the APDU answers during
the NIZKPK or the signature algorithm the data from this class must be passed to
the main class of the application. This is because this class might not have access
to all the objects it needs in the computations and because we want to be able to
refresh the GUI of the application during the communication. This can be done by
using the LocalBroadcastManager [53] class.

This class can be used to safely send data through the application without leaking
the data to other applications. This is done by creating local broadcasts that include
Intents with data and registering receivers in the classes that the data are intended
for. The function in this class for sending the data to the main class is called
SendBytesToMainAcc. Its parameters are a String path that specifies what data are
being transmitted and data represented by a byte array. The receiver is created as an
inner class that extends the BroadcastReceiver. The receiver then has specified
steps depending on the path variable received with the data. The receiver that
listens for data from the MyHostApduService in the main class of the application
then modifies the GUI and creates new threads that run the computations. The
results of these computations are then passed back to the MyHostApduService and
sent to the terminal. The receiver must then be registered in the class. The code
that shows how to register such a receiver and how the Receiver class is used to

react to messages is shown in Listing 3.8.

Listing 3.8: Creation of a receiver in the MyHostApduService class

IntentFilter messageFilter = new IntentFilter (Intent.
ACTION_SEND) ;
MyHostApduService.Receiver messageReceiver = new

MyHostApduService.Receiver () ;

s)HandlerThread handlerThread = new HandlerThread ("ht");

handlerThread.start () ;
Looper looper = handlerThread.getLooper ();
LocalBroadcastManager.getInstance (this).registerReceiver (
messageReceiver , messageFilter ,looper);
//definition of the Receiver class with reactions to
different messages
public class Receiver extends BroadcastReceiver {
O@RequiresApi(api = Build.VERSION_CODES.KITKAT)
@0verride

public void onReceive(Context context, Intent intent)

{
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if (intent.getStringExtra("path") .equals("2")){
zkCommandBytes=intent.getByteArrayExtra ("
value") ;

ZkPartDone=true;
//other conditions here

18
o| //example of a broadcast
LocalBroadcastManager.getInstance (MyHostApduService.this)

.sendBroadcastSync (messagelntent);

In Listing 3.8 the lines 1-6 are run in the onStartCommand function of the class.
Similar registration must be done in other classes that want to be able to receive the
broadcasts. On lines 8-18 is the specification of the Receiver class. The example
reaction to the path with value "2" is used when the class acquires computed e
and ZK; from within the main class. It saves the message in a local variable and
changes the variable ZkPartDone to true so the class knows it can continue with the
NFC communication and pass this data to the terminal. The final line 20 shows an

example of sending an intent through the application.

3.4 File managing on the devices

The last important back-end building block of these two applications was managing
the files needed for the system to work. On the PC side, these are files for stor-
ing the information about a created group (manager key, group public parameters,
manager’s user list, and revocation list). And in the Android application, this is
mainly the storage of the user’s private key and the computed group key ;. This

part also includes a class for modifying and reading a PDF’s meta-data.

3.4.1 Files in the PC application

The classes that deal with operations with files are in a separate package called
fileManaging. The class that operates with the files is the FileManagerClass.
Similarly as when sending the data through a communication channel, Java’s Seri-
alizable interface is used while saving the files. This way we can create classes that
hold multiple variables of various types and just serialize their instances into a file.
This combination of FileQutputStream and ObjectOutputStream can be used to

write an object to a file and a pair of FileInputStream and ObjectInputStream

61




can then be used to load this data back to an object. All the files are saved to a
folder files in the working directory of the application.

The public parameters of the group are saved as a serialized object of class
File0fGroup this object holds information about the ID of the group and the man-
ager’s public key that is needed in the verify algorithm of the signature. The file
name has a name format of ID_group_public_key.ser. The file can only be read
back by the same class in the same package. The revocation list is saved in a
similar way but no special class is created for saving it and it is just saved as
a serialized HashSet of the revoked users’ pk; values. The file name’s format is

ID revoked _users.ser.

Password protected manager file

For saving the private group parameters as the manager’s private key and the
HashMap with users’ IDs and values of pk, class called FileOfManager was created.
The instance of this class is initialized with the creation of a group and then saved to
a file each time a change to this class is made. The file-saving process of this file is not
as simple as other files. As the information included in the FileOfManager object
is sensitive the object is first encrypted with Advanced Encryption Standard (AES).
This is done by introducing password protection for the managers.

Each manager must enter a password during the registration phase. This pass-
word is then salted and hashed with PBKDF2WithHmacSHA512 algorithm provided by
Java’s SecretKeyFactory. The advantage to using this algorithm instead of simple
SHA-512 is that it applies the hash function multiple times making it harder for
an attacker to try to guess the password with a brute-force attack, and the salt
gives it protection against a dictionary attack. Additionally, the password is hashed
again using SHA-256 to generate an AES-256 key from the password. The hash
function used in the key-derivation for AES must be different than the one used in
the password check hash, as the hash used for password checking is saved to the file.

The saved file of the manager is then a two-dimensional byte array serialized
to a file, the file name has a format of managerID_keyEnc.ser. The first array
is the initialization vector used in AES, the second one is the encrypted serialized
FileOfManager object, the third is the salted hash of the password and the final part
is the salt of the password. When loading this file back to the program the manager
must enter his password, it is first hashed with the salt from the file and checked if
the new hash is the same as the hash in the file, if so the password is used to derive
an AES key and the encrypted FileOfManager object is decrypted. The protection
should be as strong as the password itself, of course for a weak password an attacker

could guess it if he got hold of the file. But this way provides a good level of security
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for the manager’s file while still being practical. For a better understanding diagram
in Figure 3.3 was created to show how the program works during the login phase

and what data are saved in the file.

byte[0][ ] byte[1][] byte[2][] byte[3][]
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FileOfManager AES key Fail

Fig. 3.3: Checking the password for the file.

Modifying and reading PDF’s metadata

There is no easy way to read and modify the metadata of a PDF in Java, so an
external library was used to make this part easier. The library ItextPdf [54] was
used for this part. It is an external library and is free to use in open-source imple-
mentations. The class that does operations with PDFs in the application is called
PDFManager. The code that is used to add the group signature to the metadata is

shown in Listing 3.9.

Listing 3.9: Saving the group signature to the metadata

public static String saveSignatureToMetadata(String src,
byte[] signature){
try {

Path path= Paths.get(src);
byte[] fileBytes= Files.readAllBytes(path);
PdfReader reader=new PdfReader (fileBytes);
PdfStamper stamper=new PdfStamper (reader ,new

FileOutputStream(src));
HashMap<String,String> info=reader.getInfo () ;
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info.put ("GroupSignature", Instructions.
bytesToHex (signature)) ;
stamper .setMoreInfo (info);
stamper.close () ;
reader.close () ;
return src;
} catch (Exception e) {
e.printStackTrace () ;

return null;

The function takes the path to the PDF file and the signature as arguments.
The file is then read (lines 3-4) to an array because we cannot pass the file itself to
the PdfStamper that modifies the metadata since it is not possible to read and write
to the file at once. A PdfReader and PdfStamper objects are then initialized and a
HashMap of the metadata is read (line 7). It is then possible to add entries to this
HashMap and save it back to the file. First, a different approach was taken, where a
temporary file was created as a copy with the signature and then the original file was
deleted. But this approach had some problems as the library would not release the
original file, and it could not be deleted, even though all data streams were closed.

A very similar approach as when saving was taken for the reading of the meta-
data. The PdfReader object can be used to extract the HashMap of the metadata
from the file and get the signature from it.

As changing the metadata of the file changes the bytes of the file returned by
the function readAl1Bytes, the bytes of the file given to the hash function dur-
ing the signature had to be obtained differently. For this purpose the function
getContentBytesO0fPDF was created. It uses the PdfReader to read the content
of all the pages of the PDF to a byte array. This array is then returned by this
function. Since the contents of the file will not change with the modification to the
metadata, the hash will be the same before and after the signature is added to the
file.

3.4.2 Storing application data on an Android device

On the Android mobile device, it is needed to save the private key and ID of the
user as well as the value 9; used in signing and the ID of the group. One of the
ways to store the data easily is by using Android’s SharedPreferences API. With
it, it is possible to save application data to an application-private file that is not

accessible from a different application. The values are saved in the String format
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as this API only supports a few types to be saved. Each value is then identified by
a String key so it can be extracted from the file.

The class created for saving the values to the file is called UserOperations. It
provides a function generateUser that is called when a new user is created. It
generates his private key and 1D and calls another function saveUser to save these
values to the file. Separate functions were also created to save the group’s ID and
the value ¢; after the NIZKPK protocol is done. The saved values are then loaded
with the function loadUser each time the application starts. In case this function

fails (for example the application was just installed), a new user will be created.

3.5 Building the applications with GUI

In the previous sections, the main building blocks of the back end of the applications

were described. The last step was to create a GUI and connect it with the back end.

3.5.1 GUI and final application on PC

The GUI of the PC application was created with the help of Swing UI Designer.
This way each window has a Java class that handles the user’s inputs and a form
file that is used to help design the window. There are a total of six windows defined
for the application and all the classes are located in a package called gui.

For communication between the GUI and the back end of the application, a
new class was created. The class ModelViewHandle takes care of calling the back-
end functions and handles their output, its functions then return values useful for
the GUI, for example, if an action was successful. For some functions such as the
NIZKPK protocol, the class’s function creates new SwingWorker threads to execute
the parts of the protocol. This is needed so the computations do not block the main
thread that operates the GUI. It is also possible to update the GUI from within
the function after the thread finishes its work. This class works in part with a class
called Server that holds the data of the manager needed in the computations in
the program. It also provides specific functions for generating the NIZKPK setup
with the use of a predefined goth group, functions for adding the users to the group,
their revocation, and for opening the messages.

The main window that opens when the application is run is defined in class
StartWindow. It serves as a crossroad for different users of the application. The
reason why all the applications for PC are started from this window is that it would
be impractical to have a separate file to start each application. The opened window
can be seen in Figure 3.4. The user of the application can generate a new manager

account, where he will be asked to enter a password for the manager (in a new

65



window specified in RegisterWindow class). Next, there is an option to log in as
the manager and open the manager part of the application. Here the user chooses a
manager key file to load and must enter the password of this manager. The process of
choosing the files from the file system is done with the help of Java’s JFileChooser
class. Next is the option to open the client application that allows a client to choose
a PDF file from the computer’s file system and sign it with the help of his mobile
device with the saved key. Final is the verifier application that is used to verify the

validity of signatures.

i Group signature with two-party computation — O >

Manager
application

Client signing
application

®
3 d

@
@
ese

3

Generate new Verifier
manager application
Enable GMP |

Fig. 3.4: The main window of the application.

The manager’s application is shown in Figure 3.5. The GUI of this part of the
application is defined in the ManagerWindow class. The manager has options to add
users to the group, revoke users and open the signatures. He also can see the list of
the users’ IDs that are registered in his group. The add user option will start the
NIZKPK protocol, first generating the parameters and then initializing the NFC
communication with the mobile device. The user is also informed of the process in
the text label under the button. For revoking users the manager must insert the ID
of a user he wants to revoke, the user will then be added to the revocation list and
will be shown as revoked in the field of registered users. To open the signature the
manager must choose a signed PDF file from the file system, the open function is
then run on it and if the user is part of the manager’s group an ID of the user will

be shown to the manager. The manager has also the option to choose if the setup

66



that generates before the NIZKPK protocol is computed each time or is generated
only once and used for each user during that session.
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Add a user | | Open a signature |
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Fig. 3.5: The manager’s application.
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Fig. 3.6: The signer’s application.

The signer’s application is specified in the UserWindow class. The application
only allows the user to choose a PDF file from the file system to sign. After choosing
the file NFC communication will be initialized and the hash of the file is sent to the
mobile device and then the signature received is saved to the file’s metadata. The
window is shown in Figure 3.6.

Lastly, the verifier’s application shown in Figure 3.7 is very similar to the signer’s
one. It gives the verifier an option to choose a signed PDF file from the file system

and check the validity of the signature. It is defined in the VerifierWindow class.
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After the verification, the window informs the verifier of the validity of the signature
and shows him the ID of the group that created the signature, if the signature was

valid.

ghy Verifier App - O >

Verify

a signature

Click to choose a pdf file to verify

| Back to menu

Fig. 3.7: The verifier’s application.

3.5.2 GUI on Android

In the Android application for mobile phones, the GUI is defined in the activity_
main.xml file. Android Studio provides this file for each project, so the file is created
automatically. The functionality of the GUI is then provided by the MainActivity
java class. How the application looks can be seen in Figure 3.8.

The GUI is much simpler than the PC application as this application does not
need that much user input. The screen show to the user his ID and the ID of the
group he is registered in, if there is one. The user can then delete his user data
and generate new ones. He can also disable GMP support. This will move all the
computations during the NIZKPK to Biglnteger, this is not recommended on the
mobile device as it will result in slower computations. The user is also informed
about the progress of the protocol on the screen, Figure 3.8 shows the screen after
the two-party protocol was just completed.

The computations during the running protocol are run on a different thread
(using the Runnable interface) so that GUI can be updated during a running pro-
tocol using the runOnUiThread class. In the final application, during the run of
the program, the MyHostApduService takes care of the NFC communication and
passes it to the MainActivity, this class then takes care of creating different threads
that then call functions from other back end classes, while handling the GUI. The

computed values are then passed back to the NFC class if needed.

68



1“3 GO O -

= ]
UserlD: f1e6
DELETE USER
GrouplD: 38¢2002b

NFC communication done.

RESET

0
H1

Fig. 3.8: GUI of the Android phone application.

3.6 Benchmarks of the implemented group signature

protocol and the applications

This section is devoted to benchmarking the protocol on different devices. The
benchmarks were performed with the final Java application for PC and the Android
application for mobile phones. The devices used for the PC application were:
1. PC: HP Pavilion 15 with OS: Windows 10 Home 20H2, RAM: 16 GB, CPU:
Intel i5-9300H - 4 cores 2.4-4.1 Ghz
2. VM running on the same PC with OS: Ubuntu 64-bit Linux (VM Ware, RAM:
8 GB, CPU: 4 cores)
3. Raspberry Pi 4 Model B with OS: Raspbian, RAM: 2 GB, CPU: ARM Cortex-
AT72 - 4 cores 1.5 GHz
For the mobile application, it was:
1. Mobile phone Xiaomi Redmi Note 8 Pro with OS: Android 10, RAM: 6 GB,
CPU: MediaTek Helio G90T 8 cores 2.05 GHz
2. Galaxy Watch 4 Classic with OS: Wear OS 3, RAM: 1,5 GB, CPU: Samsung
Exynos W920 - 2 cores 1.18 GHz
The mobile phone is the main device for the implementation, as it was not aimed

at smartwatches. However, it is possible to run it on an NFC-enabled smartwatch
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with WearOS. The only part that has to be changed is the GUI. So the smartwatch
is tested to see if the protocol could be used on it in practice. All the benchmarks

were run 10 times and the result is the average of these times.

3.6.1 Benchamrks of the NIZKPK protocol

As the application can be run with GMP use or without, both cases were tested, al-
though, from the benchmarks of the libraries, it is clear that on Windows BigInteger
is faster, and on Android mobile phones and Linux GMP is. On the Raspberry Pi,
only GMP was tested, as the implementation with BigInteger was too slow to even
be used. Figure 3.9 shows the steps of the protocol with the communication for a
better understanding of what was benchmarked. The first benchmarks are the setup
and manager’s precomputations of e; and PK,,, these are less important as these
are pre-computed before the communication is established. Therefore this part is
excluded from the benchmarks of the 2-party computation with the NFC overhead.
The benchmarks of the Manager’s pre-computation are shown in Figure 3.10.

The setup part, shown in the graph, consists of loading the goth group from a
file and generating the other Paillier parameters. The most demanding operation
(about 80% of the time) was the generation of the prime numbers p, ¢ for modulus
n. This operation takes a different amount of time each time depending on how
fast the prime numbers can be found since this is very random. The operation that
takes most of the rest of the time in the setup is the generation of generator g.

The manager’s part of the computation can also be pre-computed before com-
munication with a user is needed. The computation of e; is much faster than the
computation of the manager’s proof of knowledge PK,,. This is logical as PK,,
includes more operations of modular exponentiations with big numbers. Note that
computation of ¢ is also included in the time of PK,,.

From the graph shown in Figure 3.10, it is obvious that out of all the tested
devices and configurations, the fastest one in this part is Ubuntu Linux with the use
of GMP for modular exponentiation and prime generation. Even though Ubuntu
is run on a virtual machine, in Java the computation times are very similar to the
Windows installation running on the machine directly. The effect of using GMP
in the protocol on Windows is a slower run of the algorithms, mainly in the setup.
Also, the GMP on Windows was not very stable as sometimes after a few runs of
the algorithm the library would get slower and a restart of the machine was needed,
although the library used for the modular exponentiation and prime generation
should not include any memory leaks. This might be due to some Windows-specific
behavior as on Linux this would not happen using the same library.

The second plot shown in Figure 3.11 displays the computation time on the

70



°
Client

Mobile device computation

Check PK,,

Compute e,

Compute PK;

Show ready

Compute and save 5,-

—

Manager

NFC par Par = generate Setup
Compute e,
Choose AID
Compute PK,,
OK
> Pre-computation
Par, e4, PK,
<€
OK
>
Phone
removed
Choose AID
OK
>
Request
e,, PK;
2 T Check PK;
’ o 0; =dece,
OK Computation during
> connection
NFC client

Fig. 3.9: NIZKPK protocol with NFC communication.

manager’s side. It also includes times of how long the data transfer through NFC
takes. The first algorithm NFC par stands for how long it takes to send the public
parameters along with e; and PK,, to the client and to get confirmation from the
client that the message was received. The second algorithm NFEC client is the time it
takes to transfer data, including e; and PK;, from the client to the manager. Since
practically the communication is split into two parts, where the mobile computation
is done without the NFC connection, the time that the device must be held on the
reader the second time is given by the sum of times of NFC client, Check PK; and
dec ey. Also, one more command is sent where the deciphered es (0;) is sent to the

client, but as this is a small message it adds only about 50 ms. Because of the need
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Fig. 3.11: Times of the NFC transfers and manager’s computation during the active

protocol on different devices.

to keep the connection up for this time the only practical devices for this are either
the Windows machine with the Java implementation or a VM ideally with GMP,
the Raspberry Pi is not very practical for the NIZKPK protocol.

The reason why the NFC communication takes that long, as seen in the graph,
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is that the program sends a big amount of data. In the NFC par, about 10 000
bytes are sent, and in the second part NFC client about 5 600 bytes are sent from
the client. So this information shows that the effective speed of the NFC was only
about 8 000 bytes per second. So in the future, the applications could be modified
to also support sending the data through an IP network. The speed of the NFC is
very similar for all tested devices, as it should be mainly given by the reader. Only
when ran from a VM it was a little slower. The speed was mostly stable but in rare

cases, the transfer could be slowed to about double the normal time.
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Fig. 3.12: Times of the mobile device’s computations during the NIZKPK protocol

for a phone and a smartwatch.

The plot shown in Figure 3.12 shows the computation times of the functions
ran on a mobile device of the user. These are run when the NFC communication
is not active and only include the computation itself, as the NFC speed can be
calculated on the terminal side. The most demanding algorithm is the computation
of PK;, which also includes the computation of ¢;. This is because it is the most
complex algorithm. The smartwatch is much slower than the phone and as the total
time of computation is about 23 seconds, the smartwatch is not very suitable for
this protocol. The smartwatch can also sometimes have problems keeping the NFC
connection so there had to be added another initializing of the communication after
the PC computes the o;. The watch can also stop the NFC service of the application
when the screen turns off. So it is not recommended to use for this application. For
the phone, the computations take under 5 seconds, which is the time that the device

will be practically removed from an NFC reader. The time of the final computation
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when receiving o; is not included in the times, as it is a very fast computation of
one multiplication on an elliptic curve and takes less than 1 ms on the phone, so it
does not make sense to show in in the graph.

The final plot in Figure 3.13 shows how long on average the protocol takes for
different combinations of devices. One more factor that influences the final time
is the time it takes for the user to put the device back on the reader after he is
informed that the mobile computation is done. This action adds about a second to
the total time. As mentioned before this does not include the pre-computation done
by the manager. Looking at the picture of the running protocol in Figure 3.9, this
time is taken from the first Choose AID command to the last OK response from
the phone. For this part only the faster implementations were tested, meaning pure

Java on Windows and GMP support on Linux.
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Fig. 3.13: Total time of the interactive part of the protocol for different combinations

of devices.

The graph shows that the fastest combination of the devices is Linux which uses
GMP with a mobile phone, closely followed by the combination of Windows with
Biglnteger and a phone. Even though the Linux combination is only faster by less
than 10 %, this time is saved in the computation that is run during an active NFC
connection, so the user has to hold the phone on the reader for a shorter period of
time. Other combinations are not recommended as the Raspberry Pi is very slow
in the computations and the watch also. The graph is the time needed to add one
user to the group, so if the manager will use the same setup for each other user this

time will be the same.
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From the benchmarks done in this section, it is evident that the NIZKPK pro-
tocol is not very fast. This is because the protocol works in a big modulus and a
lot of data has to be exchanged between the parties. But this protocol is only run
once for each user so it is not such an obstacle for using this group signature with

two-party computation.

3.6.2 Benchmarks of the group signature

In this section, the speed of the protocol used for the creation of the signature will
be shown. This includes the signature with the NFC overhead and the verification
on different devices and for different amounts of revoked users.

The first graph shown in Figure 3.14 displays how long different parts of the
signing algorithm take. Sign here stands for computation of the signature in the
mobile application, NFC for Sign is the time it takes to send the hash of the file
to the mobile device and the signature back to the PC. The Load file function here
stands for loading the PDF from the file system and hashing it. Verify stands for

the verification of the signature with 0 revoked users.
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Fig. 3.14: Time consumption during the signing algorithm in the application.

The time the NFC communication has to be active, during the signing phase, is
given by the sum of Sign and NEFC for sign, as the hashing and loading of the file, as
well as saving the signature after is done in the background of the PC application.
Both the phone and the smartwatch give acceptable times in the signing algorithm,
but the phone is still much faster than the watch.
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Fig. 3.15: Time needed to check the revocation depending on the number of revoked

users in the group.

The time it takes to verify a signature in the PC application is given by the sum
of times it takes to load and hash the file (algorithm Load File), verify the signature
itself (algorithm Verify), and run the revocation check. The plot in Figure 3.15
shows how long the revocation check takes depending on the number of revoked
users in the group. The verification algorithm itself consumes just a small part of
the time it takes to verify a signature of a file. Most of the time is either taken by
the loading and hashing of the file or by checking the revocation (depending on the
number of revoked users). The time needed to check the revocation is given by how
long on average it takes to run the pairing check e(d’, pk;) = e(d;, g») and the number
of revoked users. The same applies to the time it takes to open the signature, but
there it is given by the number of users in the group. All the devices running the PC
application were capable of performing the verification in an acceptable amount of
time, but for systems with a big amount of revoked users in a group the Raspberry
Pi might be too slow.

From all the benchmarks performed, the best combination for speed is a Linux
system using the GMP bindings with a mobile phone. But the Windows application
without GMP is still a viable option mainly for its portability compared to Linux.
It should also be pointed out that the Linux version that uses GMP should only
be used if a side-channel attack is not a concern as the GMP function mod_pow is

susceptible to it.
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3.7 Implementing the NIZKPK into KVAC

The implementation of the blind issuance into KVAC with adding the NIZKPK
was done using C++, as the existing code for KVAC [55] is written in C and there
was also an existing NIZKPK implementation from [42] in C++, although without
the proofs of knowledge. The main libraries this implementation uses is GMP for
modular arithmetics and micro-ecc for elliptic curve cryptography used in KVAC.
The implementation mainly uses the secp256_r1 curve. Note that the protocol was
not implemented with communication overhead but more as proof of work and to be
compared with the original KVAC. Therefore for a real use with an overhead, some
modifications might be needed. The full project can be downloaded from GitHub!,
as the Visual Studio project is too big to be put in the attached source files. But
the thesis files include the source files of this implementation with a compilation
command for Linux.

One of the main challenges of merging these two implementations was to pass
the data between the KVAC part and the NIZKPK part, as the micro-ECC uses
different specific types to store values (uECC_word). To solve this, conversion through
uint8_t was performed to pass to GMP-specific type mpz_t. Then also the KVAC
implementation was made for Arduino, so the library used for hashing had to be
changed to a different implementation [56], as it used an Arduino-specific library.
The NIZKPK C++ implementation used a Linux-specific random number generator
so in order to be usable on different systems an alternative generator was made.

In order to implement PKs in this implementation, some changes were made to
the structs defined for the computations. Then the PKs computations were written
similarly as during the previous implementation in Java, just now purely using GMP.
The original functions had to be also changed to accept as parameters the private
key of the user and the value d computed from the private value of the issuer that
acts as his private key in the computation.

The KVAC algorithm had to be changed too to work with the blind issuance of
NIZKPK. First, the issue algorithm was split to work as shown in Section 2.3 in
Algorithm 18. Now before the NIZKPK protocol a function called SignGFirstHalf
is called. This function computes the sum d that is then needed for the two-party
computation. After the NIZKPK protocol is run, the value of k = (d + sk;) - rq is
returned along with the r; value for the client. Then the next two new functions
are run, it is SignGSecondHalf that computes the value of o* and signSigma that
computes the list of o} ,...,0; . After that, the user removes the r; from all the o
values of the credential.

Finally, the modified Show and ShowVerify algorithms were implemented. The

'KVAC project repository https://github.com/xklaso00/KVACBlindIssue
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function declareModified is a modified function of the original Show function, it
takes more parameters than the original one, as the user’s private key is needed in
this computation, and more values have to be returned compared to the original
computation. The second function is verifyModified, which just takes one more
parameter (S,.) compared to the original one.

The code is then tested and benchmarked from the function called setup. It is
a function from the original KVAC implementation that initializes all the variables
needed in the algorithms. So the initialization part was kept and the changes to use
the NIZKPK during the Issue phase were made. The program then also runs the

original KVAC for comparison.

3.7.1 Comparing the modified KVAC with the original version

This section deals with the speed comparison of the original KVAC algorithm and
the modified version supporting blind issuance. The algorithms were tested only
locally on multiple devices without the communication overhead. The devices used
were the same as in Section 3.6.

The main disadvantage is the slow issue algorithm using the NIZKPK protocol.
The computation time of this algorithm was the same as with GMP shown in Section
3.6 in Figures 3.10, 3.11, and 3.12 on mobile devices. So that means the issue
algorithm with implemented NFC overhead would take about 10 s excluding the pre-
computations on the PC using the mobile phone as the second device. Compared
to the original issue which takes about 7 ms without the overhead on a PC. But the
same as in the group signature this algorithm is only run once for each user.

For the KVAC algorithm what is more interesting is the speed of the Show and
ShowVerify algorithms, as these would be run regularly in a real use-case. Although
the whole algorithm was run on each device, the PC, VM, and Raspberry Pi were
mainly benchmarked for the verifier part, while the Android phone and smartwatch
were benchmarked for the user part. The tests were conducted for 10 issued at-
tributes and 2 shown. With the rising number of shown attributes, the times of
these algorithms will be shorter as shown in [55], but to show that was not the point
of these benchmarks. The graph in Figure 3.16 shows the computation time of the
Show algorithms on mobile devices and the graph in Figure 3.17 shows the speed of
the verification algorithms.

In the graph in Figure 3.16 it can be seen that the modification to the Show
algorithm introduced about a 10 % increase in computation time, which is still very
fast. The modification to the Verify algorithm did not have a big effect on the
computation time as seen in Figure 3.17, which is mainly because the change to this

algorithm was minimal. Unlike the GMP library, the micro-ecc library is actually
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Fig. 3.16: Time it takes to compute the Show algorithm on mobile devices.
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Fig. 3.17: Time it takes to compute the Verify algorithm.

faster on the device itself than on the Linux VM.

To sum up, regarding the KVAC modification implementing blind issuance, it
must be said that the demanding NIZKPK protocol could not be run on a device like
a smart card, so the modified protocol is aimed at smart devices such as smartphones.
The modification did not have a big effect on the computational times of the Show

and ShowVerify algorithms, meaning they still remain competitive.
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Conclusion

The main aim of this thesis is to create an implementation of a group signing scheme
that uses a two-party computation to hide the user’s secret from the manager of his
group. The implementation of the scheme was created and was used to generate
signatures of documents using the implemented protocol.

The implementation was created to be run on multiple devices using mainly
Java. To make the implementation as efficient as possible, computation speed tests
of selected C and Java libraries on Android and a Windows PC were conducted.
Because of this, the signature algorithm uses the C Mcl library which is much faster
than a similar Java library providing bilinear pairings. Some of the demanding
computations were done using C library GMP instead of Biglnteger to save time on
some devices.

An Android application is created for the members of a group. A user uses an
Android mobile phone to take part in the two-party computation with the manager
and to store the secret key deployed in the signature. A PC application is also
created. This application is split into three smaller applications. The first one is
the manager’s application which allows the manager to manage his group by adding
users, revoking their membership, or opening the signatures generated by members
of his group. This application uses communication through NFC to perform the two-
party computation with the user’s mobile device. The second PC application is the
client’s signing application. It allows a member of a group to choose a PDF file from
the system to sign and sends its hash through NFC to his mobile device, which then
creates the signature and sends it back to the PC to save it to the file’s metadata.
The final PC application is for the verifier. It can be used to verify a signature
of a signed file and gives the verifier only the knowledge of what group signed the
message, while also checking if the signer was not revoked, without revealing the
signer’s identity.

In this thesis, it is also shown how the NIZKPK protocol can be used to imple-
ment blind issuance into the KVAC scheme. This was done by extending the existing
implementations of KVAC and NIZKPK in C++ and merging them together. The
article about the KVAC modification was also presented on STUDENT EEICT 2023
[57].

The NIZKPK protocol used in the two-party computation for the group signa-
ture was benchmarked on multiple combinations of devices, as well as the group
signature, this also included the communication through NFC. The KVAC modifi-
cation was then compared to the original implementation without blind issuance.
These benchmarks showed that the two-party computation used in both protocols

is rather slow because it computes in big modulus, but it has to be run only once for
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each user so it is not such a big problem. With the combination of a standard laptop
and a smartphone, this two-party protocol took about 10 s including the NFC over-
head, which was split into two parts to make it more convenient for the user. This
time did not include the manager’s pre-computation that he can compute without
interaction with the user. The group signature itself was very fast, taking about
6.8 ms on a phone and around 125 ms with the NFC overhead. The verification
algorithm ran on the PC took about 14 ms itself and around 125 ms including time
to load the file, this time would then raise by another 7 ms per each revoked user
in the group.

In the KVAC scheme, the focus during the benchmarks was on the Show and
Verify functions, as the NIZKPK protocol was the same as used in the group signa-
ture and its speed was very similar. The Show algorithm was slowed by about 10 %
with the blind issuance modification while the Verify algorithm remained almost as
fast as before. The main disadvantage of the blind issuance was that the demanding
two-party computation would dramatically slow the Issue algorithm of the protocol,
making it not usable for smartcards.

For future work, another communication overhead could be added to the group
signature application to be used instead of NFC to decrease the time it takes to
compute the two-party protocol. The ability to sign a file in the mobile device
directly could also be implemented. A chain of trust could also be created above

the groups to make the application usable in a bigger scenario.
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Symbols and abbreviations

AES

AID

AMCL

APDU

BLS

BN

DCRA

DLP

DSA

ECDLP

GMP

GUI

HCE

IDE

JNI

JDK

JRE

JVM

KVAC

NFC

NDK

NIZKPK

oS

PK

Advanced Encryption Standard
Application Identifier

Apache Milagro Crypto Library
Application Protocol Data Unit
Barreto-Lynn-Scott

Barreto-Naehrig

Decisional Composite Residuosity Assumption
Discrete Logarithm Problem

Digital Signature Algorithm

Elliptic Curve Discrete Logarithm Problem
GNU Multiple Precision

Graphical User Interface

Host Card Emulation

Integrated Development Environment

Java Native Interface

Java Development Kit

Java Runtime Environment

Java Virtual Machine

Keyed-Verification Anonymous Credentials
Near-Field Communication

Native Development Kit

Non-Interactive Zero-Knowledge Proof of Knowledge
Operating System

Proof of Knowledge
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SHA Secure Hash Algorithm

RSA Rivest—Shamir—Adleman
Ul User Interface
VM Virtual Machine
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A Structure of the archive with the source

files
Source Files DP Klasovit§........oovuvunnnnn The root directory of the source files
| readme............ File with the descriptions of the folder and links to extra files
| GroupSig.zip ....... Archive with the PC application project for IntelliJ IDEA
L files ciiii e e Folder for files used by the application

gothicParameters Folder for the goth group parameters pre-generated for
the program

1COMS tivitiiie ittt Icons for the buttons of the application

N I 1 = PP Folder for the external libraries

S o PP Folder for the source files

tcom.herumi mel e Source files of the MCL Java bindings

cz.vut.feec.xklaso00.groupsignature ...... Main Java package of the
project

| _cryptocore ..Package with the static classes created for NIZKPK and
group signature

| fileManaging ....... Classes for handling all the file operations of the
application

- e P Classes of the GUI of the application

| GroupSigApp.zip ....... Archive with the PC application runnable java file and
lependant files and libraries

L filesS .t e e e Folder for files used by the application

| javaCBindsWin ...Folder with the file showing the GMP C binds for Java for

Windows

| MobileProjectGroupSig.zip ..Archive with the Android application project for
Android studio

¥ o) AR Main folder of the project
STC.MAIN ittt et e Directory of the source files
-1 - Directory of the Java source files
com.herumi.mcl ........... Source files of the MCL Java bindings
cz.vut.feec.xklaso00.groupsignature ...Main Java package of

]ia project

cryptocore Package with the static classes created for NIZKPK
and group signature

| jnilibs ....Directory with binary C libraries and with GMP bindings

| res ....iiiiin.... Directory with XML files needed by the application
| linuxKvacModified.zip ...... Archive with the KVAC modification source files
L 24b8 e, Directory with the library files
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B Manual for the applications

This chapter serves as a user’s manual on how to install, run and use the group

signing applications.

B.1 PC application

The PC application runnable file is located in the GroupSig app.zip archive that
is part of the files attached to this thesis.

B.1.1 Installing the PC application on Windows

To run the application, the Java environment must be installed on the machine.
The program is compiled for lower versions of Java (version 11) to have better
compatibility, so versions 11 and newer should be present on the system. The
version can be checked with java -version command in the command prompt. If
Java is present the file can be run either by double clicking the GroupSig. jar file or
by running java -jar Groupsig.jar in the command prompt, if you wish to see
a bit more about the running application. The file should not be moved from the

folder it is located in, as it uses the other files in the folder.

Using GMP bindings in Windows

It is possible to use the GMP bindings in Windows, however, it is not recommended,
as it will result in slower runtime and is more demanding for the user to run the pro-
gram this way. If you wish to use GMP on Windows, the compiled gmp_forJava.dll
library should be usable on other Windows 64-bit platforms. The Java binding li-
brary should be able to link with the dynamic library files 1ibgmpxx-9.d11 and
libgmp-13.d11. If there is a problem with using GMP the application will not

enable it.

B.1.2 Installing the PC application on Linux

To run the application on Linux, it is needed to compile and install the GMP,
MCL library, and Java version 11 or newer. A shell script setup.sh was created
and is located in the GroupSig app folder to install all necessary libraries to run
the application. The script uses apt-get so it will be usable on Ubuntu, but on
some systems, it might be needed to change it. To run it, make it runnable with
chmod +x setup.sh and then call ./setup.sh, on some systems calling it with

sudo ./setup.sh might be needed. The script is shown in Listing B.1, in case you
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want to know what is downloaded and installed. It can be also used to follow the

commands if you, for example, have a JDK already installed since you will have to

specify the location of JDK, as shown on line 26 of the listing.

Listing B.1: The setup.sh script to install the program with all the dependencies

#!/bin/bash
#install dependencies essential for the installation and

avalible with apt-get

sisudo apt-get update

sudo apt-get install -y build-essential g++ cmake git
libgmp-dev libssl-dev pcscd

# Install JDK with the system variables

sudo apt-get install -y openjdk-11-jdk-headless default-
jdk

# Clone mcl and build the library

git clone https://github.com/herumi/mcl

cd mcl

mkdir build

cd build

| cmake

simake

cd 1lib

sisudo cp libmcl.a /usr/lib
jed ../..

7|# Build and install mcljava

cd ffi/java
mkdir build
cd build
cmake

cmake --build . --config Release

;ssudo cp libmcljava.so /usr/1lib

# Build and install the GMP bindings used in the program

sled o/ o))

g++ -fPIC -I /usr/lib/jvm/default-java/include/ -I /usr/
lib/jvm/default-java/include/linux/ -shared -o
libgmp_forJava.so gmp_forJava_linux.cpp -lgmp -lgmpxx

sudo cp libgmp_forJava.so /usr/lib

# Restart pcscd service for NFC, as sometimes it might

not start after installation
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sudo systemctl restart pcscd
echo "Setup completed successfully"
#Finally run the app

2| java —jar GroupSig.jar

B.2 Installation of the mobile application

The mobile application can be installed from an apk file or directly from the Android
studio project in the source files attached to this thesis. Since the apk file was too

I and can

big it is not part of this directory, but it was uploaded to google drive
be downloaded from there. Installation with this file is recommended as it is easier
and does not need any other software.

To install the application download the file to your Android mobile phone and
open it. You might need to find it with the file explorer of your phone as Google
Drive will not allow you to install it straight away, as it does not trust unknown
applications. When you run the apk file you might have to confirm that you trust
the application before the installation. Then you can just choose to install it and
the application will install on your phone and can then be opened.

For the application to properly work, you will have to allow applications to use
NFC on your mobile phone, this can be different in each device. Generally, navigate
to the settings of your phone and search for NFC. Then you will need to enable the
use of HCE and also in the NFC tap and pay settings, it should be checked that the
opened application will be used instead of a default one. How these settings look
on a Xiaomi device is shown in Figure B.1.

After you open the application you will have a generated ID shown on the screen.
With the button Delete User you will delete all your user data such as keys and
ID, so only do that if you want to make a new user. The Reset button resets the
application in case something goes wrong during the communications. The Disable
GMP button is for a case when you want to use pure Java instead in the computations,

but it is not recommended as it will result in slower computation times.

LApk file location: https://drive.google.com/drive/folders/1icW_Hhojm8vLAMAdg99Pul
laEoQxtWDa?usp=sharing
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Tap & pay another payment app is
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Reset Wi-Fi, mobile networks, and
Bluetooth
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Fig. B.1: The NFC settings on a Xiaomi phone.

B.3 Using the PC application with the Android ap-
plication

After the initial installation, the application can be run by either clicking the
GroupSig. jar file (on Windows) or by running the java -jar GroupSig.jar com-
mand. In the screen that opens as shown in Figure B.2, you can choose which
application to run. In order to use the application correctly you have to connect a
card reader to the computer. The one used during the testing was ACR1251 ACS
reader. On Windows the drivers should be installed automatically, on Linux they
are installed with the installation script. If you are using a VM make sure the VM
has control of the USB reader.

Manager application

If you wish to use GMP in the computations you can enable it with the Enable GMP
button. For the manager, you can generate a new account with the Generate new
manager button or use the existing one where the password is hello. If you create
a manager you will be prompted to choose a password as seen on the left of Figure
B.3. The password will be used to encrypt the key file and to log in as the manager.

To log in as the manager click the Manager application button and you will be

94



i Group signature with two-party computation — O bt
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Fig. B.2: The main window of the application.

asked to choose a manager file from the system. The files are generated into the
/files folder. Choose the file with format yourID_keyEnc.ser. You will then be

asked to input your password as seen on the right of Figure B.3.

Ebs Manager Register - O st

g Manager Login - O *

Create a password for the manager

| ..... | Confirm Password Enter Manager's password
| S | = @ [ |

_____ o

Fig. B.3: The register and login windows of the PC application.

After this, the manager application will be opened as seen in Figure B.4. You
can add users to the group using the two-party computation. For this, you need an
Android mobile phone with the mobile application installed and running. You can
choose if you want to run a new setup for each user in the lower right corner. If you
uncheck this, the setup will be generated only once and used for all users during
the session. Click the Add a user button and the application will pre-compute the
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Fig. B.4: The manager application.

setup. The application informs you of the next steps with text under the button.
When the setup is generated you will be prompted to put the phone on the NFC
reader. When the application says Manager ZK sent, waiting for mobile and the
loading symbol on the mobile screen changes to blue, as seen on the left of Figure
B.5, you can remove the phone from the reader. Then the phone will inform you
when the mobile computation is done by removing the blue loading symbol and
printing text that the computation is done as shown in the middle of Figure B.5.
Then you can put the phone back on the reader. Wait until the loading symbol
that appears disappears again and a blue checkmark symbol appears, as seen on the
left of Figure B.5. Then you will be informed that the user was added successfully,
and can remove the phone. It is possible there sometimes will be an error in the
communication, you will be informed of this in the PC application, in that case, run
the protocol again by clicking the Add a user button and resetting the mobile with
the RESET button.

In the lower-left corner, you can see the users in the group. You can remove
the users from the group by typing their ID in the text field above and pressing
the Revoke a user button. This user will be added to the revocation list and his
signature will no longer be valid. You can also open signatures to find out who from
your group signed a chosen file. To do this click the Open a signature button and
choose a signed PDF file. The program will then show you the ID of the signer
under this button.
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Fig. B.5: The mobile application during the protocol.

Client’s signing application

From the main window shown in Figure B.2, you can also choose to run the client’s
signing application. This application will allow you to create a signature of a file
and save it to its metadata. You must use a mobile phone that was added to a
group already with the manager application. You also need an NFC reader for the
communication between the PC and the phone.

When you choose this application, a new window will open as shown in Figure
B.6 in the top left. Here click the middle button and choose a PDF file from the
file explorer that opens. Make sure you don’t have the PDF opened in a different
window as that would result in the signature not being saved, as the program could
not override an opened file. After you choose the file, you will be asked to put your
phone on the NFC reader. Make sure you have the app running on the phone and
that you are a member of a group. Then the signature will be created on the phone,
sent to the PC, and saved to the PDF. You will be informed of a successful process

on the screen as seen in the bottom part of Figure B.6.

The verifier application

The last part of the application is the verifier application. After clicking its button
in the main menu new window will open. Here you have the option to verify the

signatures of signed PDF files (signed with this application of course). When you

97



Sign a PDF

S—

Click to choose a pdf to sign with a group signature

g8 Client signing app - [m| X

| Back to menu

g¥s Client signing app - m} x

Sign a PDF

S—

Put phone on NFC reader to sign the document.

| Back to menu

i Client signing app

Sign a PDF

w

Signature created.

| Back to menu

Fig. B.6: The client’s signing application.

click the button you can choose a signed file to check the signature of. Then the

application will inform you wherever the signature is valid or not as shown in Figure

B.7, it will also tell you what group signed the file.

Verify

a signature

The signature is legit from group 38c2002b

by Verifier App — O *

| Back to menu

[P Verifier App — O *

Verify

a signature

The signature is not legit.

Revoked User

| Back to menu

Fig. B.7: Result of the verification process.
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