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Abstract 
Humans are host to an enormous variety of microbes, bacterial, archaeal, fungal, and vi­
ral. Some of these can cause serious diseases, but others, particularly gut microbiome, are 
essential to human life. Unfortunately, the gut microbiome is not well documented, since 
it contains thousands of different kinds of bacteria most of which cannot be cultivated in 
laboratories, and we do not know all of its functions. The recent solution to this problem 
seems to be high-throughput sequencing in combination with bioinformatics tools for func­
tional profile prediction. In this thesis, bioinformatics tools for functional profile prediction 
will be introduced, along with their advantages and disadvantages. The goal of this thesis 
is to create a new tool for functional profile prediction, which can either employ a consensus 
of the existing tools or can be a brand new tool inspired by these. 

Abstrakt 
Ľudské telo je prostredím pre život neuveriteľného množstva mikróbov. Niektoré z nich 
môžu spôsobovať rôzne choroby, ale ďalšie, napríklad črevný mikrobióm, sú pre život a 
zdravie človeka nepostrádateľné. Nanešťastie, črevný mikrobióm nie je detailne preštu­
dovaný, pretože obsahuje tisíce rôznych druhov baktérií, z ktorých väčšina sa nedá kultivovať 
v laboratórnych podmienkach. Riešením tohto problému sú nové rýchle metódy sekveno-
vania v kombináciou s bioinformatickými nástrojmi na výpočet funkčného profilu baktérií 
vo vzorke. V tejto práci si predstavíme existujúce nástroje predpovedajúce funkčný profil, 
a následne navrhneme nový nástroj, ktorý môže implementovat konsenzus nad výsledkami 
existujúcich nástrojov, alebo sa môže jednať o úplne nový nástroj. 
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Rozšírený abstrakt 
Ľudské telo je domovom veľkého množstva rôznych mikróbov, baktérií a vírusov. Niektoré 
z nich sú škodlivé a môžu spôsobiť rôzne ochorenia, ale veľa dalších je pre život človeka 
nevyhnutných. Konkrétne črevný mikrobióm je veľmi dôležitý pre správne fungovanie trávi­
aceho systému. V posledných rokoch bolo dokázané, že zmeny stavu črevného mikrobiómu 
spôsobujú rôzne zdravotné komplikácie od porúch trávenia až po psychické problémy, ako 
napríklad depresia. Napriek tomu zostáva črevný mikrobióm človeka stále neprebádaný, čo 
je spôsobené hlavne veľkým množstvom prítomných druhov baktérií a nemožnosťou niektoré 
z nich pestovať v laboratóriách. Moderné metódy mikrobiológie tieto prekážky odstraňujú 
prostredníctvom efektívnych metód sekvenovania a metagenomiky. [21, 28] 

Keďže väčšina baktérií prítomná v črevnom mikrobióme ešte nebola preštudovaná a 
zdokumentovaná, hlavná otázka pri ich analýze nie je aké druhy baktérií sa vo vzorke 
nachádzajú, ale aké majú funkcie (napr. trávenie cukrov, tukov, rezistencia k antibiotikám). 
Hľadanie odpovede na túto otázku sa nazýva predikcia funkčného profilu a je hlavným za­
meraním tejto práce. Predikcia funkčného profilu je založená na zistení, že druhy baktérií s 
podobnou R N A sekvenciu majú podobné funkcie, zatiaľ čo druhy baktérií, ktorých sekvencie 
sa veľmi odlišujú, majú odlišné funkčné profily. [28] 

V tejto práci popíšem existujúce nástroje pre zisťovanie funkčného profilu podľa sekven-
cií, konkrétne P i C R U S T , Tax4Fun a Paprica. Budem sa zaoberať metódami, ktoré využí­
vajú pre predikciu, ktoré R N A databázy používajú, a ich výhody a nevýhody. Cieľom 
práce je vytvoriť nový nástroj na predikciu funkčného profilu, ktorý môže implementovat 
konsenzus nad spomínanými nástrojmi, alebo sa môže jednať o úplne nový nástroj, ktorý 
bude existujúcimi prístupmi iba inšpirovaný. M al by implementovat viacero metód pre 
predikciu funkčného profilu, vrátane nových metód, ktoré nie sú použité v žiadnom exis­
tujúcom nástroji. Tieto metódy budú porovnané medzi sebou a potom s najpoužívanejším 
existujúcim nástrojom — s P iCRUSTom. 

V texte práce najprv definujem základné pojmy z bioinformatiky v rozsahu potrebnom 
pre pochopenie dalších častí práce. Popisujem dva typy analýzy vzorky — analýzu bakter­
iálnej kompozície, ktorá odpovedá na otázku, ktoré druhy baktérií sú prítomné vo vzorke, 
a predikciu funkčného profilu, ktorá sa zaoberá tým, aké majú tieto baktérie funkcie a v 
akom množstve sú dané funkcie zastúpené. Dôraz je kladený na predikciu funkčného profilu, 
ktorú popisujem podrobnejšie a vysvetľujem aj metódy, ktoré sa pre ňu dajú použiť. Tieto 
metódy sa dajú podľa princípu na ktorom sú založené rozdeliť do troch skupín — metódy 
založené na vzdialenosti, na fylogenetickom strome a na lineárnej regresii. Popísané existu­
júce nástroje používajú metódy založené na fylogenetických stromoch, zvyšné dve skupiny 
sú mojou autorskou prácou. 

V samostatnej kapitole sa venujem existujúcim nástrojom, popisujem ich a porovnávam 
ich výhody a nevýhody. Vysvetľujem, prečo som sa rozhodla namiesto konsenzusu imple­
mentovat úplne nový nástroj a v ďalšej kapitole popisujem jeho návrh a implementáciu. 

Posledná kapitola je venovaná experimentom s implementovanými metódami. Najprv 
popisujem testovací framework a spôsob vyhodnotenia. Navrhujem novú metódu na vy­
hodnocovanie presnosti predikcie funkčného profilu, ktorá sa namiesto všetkých bakteriál­
nych funkcií sústreďuje len na tie najviac špecifické. Potom robím experimenty pre každú 
spomínanú skupinu metód. Skúšam rôzne úpravy prístupov a parametrov s cieľom zlepše­
nia celkovej korelácie očakávaného a odhadovaného funkčného profilu. Následne porovná­
vam najlepšie výsledky pre každú skupinu metód navzájom. Z metód založených na vz­
dialenosti dávala najlepšie výsledky predikcia založená na prahu relatívnej podobnosti, z 
metód založených na fylogenetických stromoch bol najlepší strom vytvorený cez neighbour-



joining, a lineárna regresia najlepšie funguje cez predikciu podlá nezarovnanej R N A sekven-
cie. Spomedzi skupín metód vykazujú najlepšie výsledky fylogenetické stromy. Na záver 
porovnávam svoj výsledok s výsledkom získaným z vlastnej implementácie Picrustu. V 
tomto porovnaní je môj nástroj mierne lepší ako pre všetky bakteriálne funkcie, tak aj pre 
špecifické. 

V závere zhrniem dosiahnuté výsledky a diskutujem možnosti ďalšieho rozšírenia práce. 
Jedným z možných smerov je predstavenie upravenej metódy vyhodnocovania nástrojov 
bioinformatickej komunite. Takisto vytvorený nástroj, vzhľadom na to, že vykazuje lep­
šie výsledky ako Picrust, má potenciál na publikovanie, čo bude možné po dôkladnejšom 
otestovaní. 
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Chapter 1 

Introduction 

Humans are hosts to an enormous variety of microbes, bacterial, archaeal, fungal, and viral. 
Some of these are invaders that can cause serious diseases, but there is a lot of microbes 
that are essential to human life. Particularly gut microbiome is crucial for the regular 
function of the digestion tract. In the last years, it was proven that irregularities in the 
gut microbiome are linked to many conditions ranging from digestion tract diseases like 
inflammatory bowel disease to psychic conditions like depression. Unfortunately, because 
of a big variety of present bacterial species and the impossibility to cultivate most of them 
in laboratories, science knows only little about the gut microbiome. Modern approaches in 
microbiology, specifically high-throughput sequencing and metagenomics, seem to be able 
to solve these problems and allow us to study microbiome thoroughly and understand how 
it is connected to human health. [21, 28] 

Since most of the bacteria present in the gut microbiome has not been studied yet, 
the main question is not which species of bacteria a specific sample contains, but instead 
what can the bacteria in this sample do (i.e. lipid digestion or resistance to antibiotics). 
This task is called functional profile prediction and it wil l be the main focus of this thesis. 
Functional profile prediction is based on the observation, that bacteria species with similar 
R N A sequence tend to have similar functions, whereas between species with small R N A 
similarity the functional profile differs. [28] 

In this thesis, existing bioinformatics tools for functional profile prediction will be de­
scribed, namely P i C R U S T , Paprica, and Tax4Fun. We will discuss methods they use for 
prediction, which R N A database they use, and their advantages and disadvantages. The 
goal of this thesis is to create a new tool for functional profile prediction, which can either 
be a consensus tool built on P i C R U S T , Paprica, and Tax4Fun, or a brand new tool inspired 
by these. It should implement various methods for functional profile prediction, including 
new algorithms that are not used in any of the mentioned tools, and compare the accuracy 
of the new methods with existing tools. 

In Chapter 2 I explain fundamental bioinformatics concepts to an extent to make the 
thesis understandable for informaticians with no knowledge of biology. Next, I describe 
the process of bacterial composition analysis. In Chapter 3, I discuss functional profile 
prediction. In Chapter 4 I describe existing bioinformatic tools for this purpose. In Chapter 
5, I will introduce the new tool. In Chapter 6, I discuss the results of the experimental 
evaluation of the created tool. Summarization and possible future improvements will be 
given in Chapter 7. 
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Chapter 2 

Bacterial composition analysis 

This chapter contains a theoretical background for this thesis. First, we will define the 
fundamental concepts of bioinformatics. Then, we will discuss 16S r R N A , K E G G Orthologs 
and the details of bacterial composition analysis of a given sample. 

2.1 Genetics 

Genetics is a part of science that studies the way characteristics are transformed from one 
generation to the next. The main focus of genetics are molecules called D N A , where all the 
genetic information of an organism is stored. [2] 

DNA stands for deoxyribonucleic acid. It has a form of a strand consisting of nucleotides, 
which are built from a ribose sugar, a phosphate group, and a nitrogen base. There are 
four nitrogen bases that can be part of a D N A strand - adenine, thymine, cytosine, and 
guanine. The three-dimensional structure of D N A , which can be seen in Figure 2.1, is a 
spiral called double helix. It consists of two strands which are bound by hydrogen bonds 
between the nitrogen bases. The rules of base pairing say that adenine always pairs with 
thymine and cytosine with guanine. [20] 

The genetic information is coded by the order of nitrogen bases in the strands. A specific 
segment of the D N A strand that holds the information needed for a certain function is called 
a gene. The function may be coded directly, or the coded information may be a template 
for a protein performing the function. Intuitively, we can imagine D N A sequence as a 
prescription, which holds the information to creating molecules that body cells need to 
survive and function properly. [20] 

Another way of coding information in living organisms is RNA, which stands for ri­
bonucleic acid. R N A has two main differences from D N A - it contains ribose sugar instead 
of deoxyribose sugar and uracil instead of thymine. The three-dimensional structure of 
R N A is not as conserved as in D N A . R N A does not form a double helix, instead, there are 
multiple local patterns that can be formed, such as bulges or hairpins. [25] 

There are many different R N A types (mitochondrial R N A , ribosomal R N A , transfer 
R N A , ...) that have different roles in the body cells. For instance, some of them play 
an important role in protein synthesis, others can inhibit gene expression or expression of 
transposons. [25] 
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Figure 2.1: The structure of D N A and R N A . This image was taken from the article DNA 
Definition, Structure & Discovery by Rachael Rettner [1] 



2.2 Metagenomics 

Metagenomics is a study of genetic material recovered directly from samples. It does not 
require isolating the D N A of individual species, neither cultivating in laboratories. [26, 32] 

There are two main types of analysis. The first one is taxonomic, where the main 
question is: Which bacteria are present in the given sample? The second one, the main 
focus of this thesis, is functional: What can the bacteria in this sample do? [28] 

The basic workflow of the taxonomic analysis based on 16S r R N A can be found in Figure 
2.2. As input, we have all sequences from a given sample. We perform O T U picking, which 
clusters them in groups called OTUs. OTUs are then assigned taxonomy according to a 
reference database and a corresponding estimated abundance. The individual steps will be 
described in more detail further in this chapter. [28] 

Functional analysis will be discussed in Chapter 3. 

sequences 

OTU picking 

OTUs 
Taxonomy 

assignment 

bacteria 
with 

abundance 
>-

Figure 2.2: Diagram showing steps of bacterial composition analysis process 

To minimize the length of the D N A sequence that must be processed in taxonomic or 
functional analysis, only a part of genetic information, called marker gene, is used. Marker 
gene needs to have the following attributes: 

• It is present in every organism we want to study 

• It is unique for every species 

• It is similar for closely related species and different for non-related species 

For bacteria, a commonly used marker gene is 16S rRNA. It contains conserved regions, 
that are consistent among all species and can help identify the position of 16S r R N A in the 
data, and variable regions, that are different and allow us to compare the variable regions 
to identify species or predict functions. [21, 28] 

2.2.1 O T U p i c k i n g 

The result of sequencing the sample is a lot of sequences of the marker gene, which need 
to be clustered into distinct groups, since some of which can belong to the same species. 
The sequencing methods are not perfect so the data can contain some sequencing errors, 
meaning the sequences of the same species are not exactly identical. In reality, sequences 
with 95%-99% similarity are assigned in one cluster. [28] 

These distinct groups are called OTU - operational taxonomic units. When we lack 
named species corresponding to a particular variant of the marker gene, OTUs are often 
used instead of species, even though they are not species per se. Commonly used algorithm 
for O T U picking is uclust, which can be found in a tool for microbe analysis called Qiime 
[12, 17]. Qiime offers three different strategies: 

G 



• de-novo: sequences are clustered against each other, without any external reference 

• closed-reference: sequences are clustered against a reference database, the ones 
without a corresponding reference record are discarded 

• open-reference: first sequences are clustered against a reference database, then the 
ones without a corresponding reference are clustered de-novo 

After O T U picking, Qiime is also able to assign taxonomy — names of known species 
- to the obtained OTUs. This is achieved by comparing O T U sequences to a reference 

database of 16s r R N A . Quiime is currently using Greengenes database and offers multiple 
methods for taxonomy assignment other than uclust, including B L A S T , R D P classifier or 
mothur, that differ in the approach to determining the most probable taxonomy to the 
OTUs. [13] 

2.3 Databases 

There are multiple databases of 16S r R N A data. In this thesis, we will refer to Greengenes 
[4, 18] and Silva [15]. 

Greengenes is a database containing solely 16S r R N A sequences. The most recent 
version is from May 2013, and it is no longer updated. It contains experimental datasets 
created with the PhyloChip 16S r R N A microarray. [4, 18] 

Silva databases have a wider data range, it contains also 20/23S R N A . The most recent 
version is from A p r i l 2018, and the next release is planned at June/ July 2019. It is developed 
and maintained by the Microbial Genomics and Bioinformatics Research Group in Bremen, 
Germany. The data is available in the form of raw sequences, alignments across the whole 
data, precomputed phylogenetic trees and other formats. Silva databases are a part of the 
A R B project, which provides a graphically oriented software for sequence database handling 
and data analysis. [15] 
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Chapter 3 

Functional profile prediction 

Functional analysis is a process of finding the answer to the question „What can the bacteria 
in this sample do?". We want to find the different metabolic functions of organisms in the 
sample, as well as to estimate their abundance - what portion of organisms have this 
function. [22, 28]. 

The basic principle is comparing OTUs to a reference database that contains the func­
tional profile of previously studied organisms and finding the best match (usually sequencing 
errors are taken into account, so we are looking for 95%-99% match). For the OTUs that 
are not paired with a known organism, we can search for the most similar organisms and 
deduce the functional profile from them. [28] 

Functional profiles have the form of K O identifiers with abundance in the correspond­
ing sequences. K O identifiers refer to molecular functions and can be found in the Kegg 
Orthology database [6]. 

3.1 Func t iona l predic t ion workf low 

The workflow of functional profile prediction can be seen in Figure 3.1. The input is a 
table, where every row contains an O T U identifier and abundances of the given O T U in 
the sample, and D N A sequences representing the O T U S . The usual workflow consists of 
looking up the representative sequences of the O T U clusters in the reference functional 
profile database, combining the found results and then dealing with the OTUs for which no 
functional profile was found. The strategy of dealing with OTUs without known functional 
profile differs from tool to tool and will be further discussed in section 4 and Chapter 5. 

Reference KO 
profile table 

Sample OTU 
table 

Figure 3.1: Diagram showing steps of functional profile prediction 

Functional 
profile 
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3.2 Func t iona l analysis methods 

There are many different aigorithms for functional analysis. In this thesis, we will focus 
on two distinctive groups — phylogenetic tree based methods, which are used in existing 
bioinformatic tools, and distance based methods, which are my original work. We will 
describe each group to an extent needed to understand the rest of this thesis. 

3.2.1 D i s t a n c e b a s e d a l g o r i t h m s 

This group of algorithms is based on analyzing the representative sequences of given OTUs 
and comparing them to reference sequences with known functional profiles. The resulting 
functional profile is then inferred by the most similar reference OTUs. 

To speed up the search, the similarity is usually precomputed and stored in a distance 
matrix. The rows and columns of the distance matrix represent the OTUs and the numbers 
in the matrix represent the distance of OTUs in the corresponding row and column. The 
smaller the distance, the most similar the OTUs are. To find the most similar OTUs to a 
given one, it is only needed to find the smallest values in the corresponding row or column. 

To compute the similarity between OTUs, different methods can be used. Some of 
them simply count the number of equal characters in their alignment. Others punish the 
differences according to their evolutionary probability. Because of the different chemical 
nature of the nucleotides in R N A , certain changes in the sequences are more probable than 
the others. There are various matrices that express the probability of interchange between 
the nucleotides. 

3.2.2 P h y l o g e n e t i c t r e e b a s e d a l g o r i t h m s 

This group is based on constructing a phylogenetic tree which is a graph that represents 
evolutionary relations between organisms. Each node of such a tree represents a species. 
Some of them, specifically the leaves, are living species, while the others are only estimated. 
The common parent of two nodes is their most probable evolutionary ancestor. [31] 

A n example of a phylogenetic tree can be seen in Figure 3.2. This is a tree where the 
lengths of individual lines between nodes represent the estimated time of evolution. If the 
line is short, the nodes it connects are very similar, since the time for evolution is short 
which implies fewer changes in the genome compared to the long lines. [31] 

From the phylogenetic tree, we can estimate the evolutionary distance between different 
species. Using this distance, it is possible to infer a correct combination of known func­
tional profiles for all species for which the functional profile was not found in the reference 
database. 

The inference of unknown functional profiles can be done by finding the nearest nodes 
with known profiles. We can search for a certain number of known profiles, or limit the 
search by sequence similarity to the investigated. After we have a set of nodes with known 
profiles, we compute a consensus profile based on the distance to the investigated node -
closer nodes have a bigger weight than the more distant ones. 
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Figure 3.2: Phylogenetic tree example 

There are two groups of methods for phylogenetic tree construction. Distance-matrix 
methods first precompute the distance matrix between all sequences and then cluster them 
to compute the tree so that the distance between clustered nodes is the smallest possible. 
Examples are Neighbor-joining and U P G M A . The second group of methods is character 
based. It looks directly at the sequences and tries to explain the changes between sequences 
representing different species. This group includes Parsimony methods and Maximal like­
lihood method. [29] 

A simple way to construct phylogenetic trees is to use M E G A [23] - Molecular Evo­
lutionary Genetics Analysis - - which is a software that offers various sequence analysis. 
The trees were computed from multiple sequence alignment of sequences from Greengenes 
that have a known functional profile. To compare their accuracy of different types of phy­
logenetic trees, I have constructed all types available in this tool: 

• N e i g h b o u r j o i n i n g - - this method uses bottom-up clustering based on distance 
matrix between all sequences. In each step, the nodes that are closest to each other 
and at the same time farthest from the rest of the sequences are clustered into a 
higher-level cluster. [24] 

• U P G M A (unweighted pair group m e t h o d w i t h a r i thmet i c mean) - - this 
method also uses the distance matrix. In each step, it clusters the nodes that are 
closest to each other. [24] 

• M a x i m a l l ike l ihood — this method uses a mathematical model based to build the 
tree. From all the possibilities, it chooses the tree that most probably explains the 
observed changes between sequences. [24] 

• M i n i m a l evo lut ion - - in this method, the tree is built with the fewest possible 
changes required to explain the differences in the observed data. The evaluation of 
the changes is based on giving a score to each branch in the tree. [24] 

• M a x i m a l pars imony — this method considers the shortest possible tree that ex­
plains the given data the best one. [24] 

3.3 L inear Regression 

One of the new approaches I implemented in this thesis uses linear regression to estimate 
the unknown profiles. The basic idea is to use the known profiles to create a model, and 
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then use the model to predict unknown profiles. Therefore, I include some basic theory of 
linear regression. 

The aim of linear regression is to build a statistical model which will reflect the rela­
tionship that may exist between explanatory variables and a scalar response (also called 
the dependent variable). For multiple explanatory variables, the resulting model is called 
a multiple linear regression model. The relationships are modeled using linear predictor 
functions whose unknown parameters are estimated from the data. [27] 

The statistical model gained by linear regression can be described by an equation which 
can be seen below. The variable y is the dependent variable, Xi are the explanatory variables 
and Pi are the coefficient we want to compute by fitting the model to the data. [27] 

y = Pixi + P1X2 + ... + Pnxn + e (3.1) 

To find the (5 coefficients, the least square method is often used, which means that the 
overall solution minimizes the sum of the squares of the errors made in the results of every 
single equation. [27] 
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Chapter 4 

Exist ing tools 

In this section, we will discuss existing tools for predicting the abundances of bacterial 
functional molecules. From the many tools available I have chosen P i C R U S T , Tax4Fun, 
and Paprica, as they are well-known and widely used. Other tools are also available, but 
they do not have such a reputation and acceptance in the scientific community. 

We will discuss how each tool computes K O profile, what method is used for dealing 
with OTUs with unknown K O profiles, used reference database, and advantages and dis­
advantages. P i C R U S T is described in most detail since the tool created in this thesis is 
inspired by it. 

In the last part of this Chapter, we will summarize and compare the existing tools and 
advocate the need for a new tool. 

4.1 P i C R U S T 

Picrust is short for phylogenetic investigation of communities by reconstruction of unob­
served states. It is a bioinformatics software package implemented in Python and R, freely 
available under the G P L [19, 11]. 

The work-flow of Picrust can be seen in Figure 4.1. It can be divided into two parts, 
Gene content inference, and Metagenome inference. Picrust uses the Greengenes database, 
specifically versions 13.5 and 18may2012. Using Greengenes is the biggest disadvantage of 
this tool - Greengenes is an old database, that is no longer updated, which makes results 
acquired using Picrust also out-of-date. Despite this fact, Picrust is still widely used in 
many bioinformatics projects. 

4.1.1 G e n e c o n t e n t in fe rence 

In this step, Picrust takes the whole reference tree from Greengenes and precomputes the 
K O profiles. The result is a K O profile for every bacteria in Greengenes. This step is 
independent of the sample, so it only needs to be calculated once. The creators of Picrust 
precalculated the data for Greengenes versions 13.5 and 18may2012 and then published the 
resulting data, which can be downloaded on Picrust website. 

To predict the unknown functional profiles, gene content table from I M G is used, which 
is a table containing functional profiles for known genomes. The reference O T U tree is 
compared with the gene content table and sequences with the unknown functional profile 
are identified. Then an ancestral state reconstruction algorithm is used to create a phy­
logenetic tree featuring all OTUs from the reference tree. For OTUs with an unknown 
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Figure 4.1: Diagram showing the workflow of two main use-cases in a tool for functional 
profile prediction, Picrust. This picture is originally from the paper Predictive functional 
•profiling of microbial communities using 16S rRNA marker gene sequences by Morgan G. 
I. Langille [19] 

functional profile, an estimated profile is computed, using the position of the given O T U in 
the phylogenetic tree and the closest OTUs with a known functional profile. 

Although Picrust website features instructions for running Gene content inference with 
data from any user-desired database, in reality, executing all the steps of the instructions 
is difficult and time-consuming. The creators of Picrust indirectly acknowledged it by 
releasing Picrust 2 [10], that is different from Picrust mainly in allowing different reference 
databases. 

4.1.2 M e t a g e n o m e in ference 

This steps takes an user-provided table of OTUs, and using the gene content table from the 
previous step, predicts metagenomic content of the given sample. The prediction is done by 
summing up the functional profiles (obtained in the previous step) corresponding to OTUs 
in the input table while taking into account their abundance. 

The provided OTUs must be closed-reference picked against the desired version of 
Greengenes since on this level Picrust cannot deal with OTUs with unknown functional 
profiles. In a case the input table was not close-reference picked, Picrust offers a script that 
will fix the input table by removing all OTUs that are not featured in the precomputed 
table. 
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Figure 4.2: Diagram showing the workflow of Picrust2. This picture is originally from the 
wiki of Picrust2 [10] 

4.1.3 S u m m a r y 

Advantages of Picrust are transparency and good documentation. Disadvantages are the 
usage of the Greengenes database, the difficulties of using a different reference database 
and the requirement that input data must be closed-reference picked against Greengenes. 

4.2 P i c r u s t 2 

Picrust2 is a newer version of Picrust. As of now, it is still in Beta version. It offers the 
same basic functions as Picrust, but it is much easier to use with user-provided reference 
data. [10] 

The documentation of Picrust2 is much more detailed and thorough as in Picrust. The 
data flow can be seen in Figure 4.2. Steps 1 and 2 correspond with Picrust gene content 
inference and Steps 3 to 5 with metagenome inference. The steps can be run individually or 
as a whole pipeline. When possible, Picrust2 allows users to provide own reference data or 
choose the computation method and set its parameters simply by command line arguments. 

On the other hand, Picrust2 is more resource-consuming than Picrust. To run the first 
step of Picrust2 pipeline, alignment and tree creation, at least 16GB of R A M is needed, 
and even that may not be enough, dependent on the input data. 
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4.3 T a x 4 F u n 

Tax4Fun is an open-source package for R using Silva database. It can predict functional 
capabilities of a metagenome, as well as a metabolic profile [30, 16]. 

Tax4Fun uses a different strategy for OTUs with unknown profiles than Picrust. Where 
Picrust builds the ancestral tree based on the nearest neighbor method, Tax4Fun adds 
sequence similarity check. Since nearest neighbor in a tree always exists, Picrust links all 
OTUs, even if their distances in the tree are large. Tax4Fun links the nearest neighbors, 
only if the sequences have certain minimum sequence similarity, and then applies a linear 
transformation. Because of this, Tax4Fun should be more efficient for metagenomes with a 
large proportion of not well-characterized bacteria. 

The results of the comparison between Picrust and Tax4Fun, published in the paper 
Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data [30], indicate 
that Tax4Fun is more accurate. Unfortunately, since the two tools use different reference 
databases, this could be caused by the better quality of Silva database data compared 
to Greengenes data. To truly prove that method used within Tax4Fun is more efficient, 
comparison on the same database would be needed. As reasoned in 4.1.1, this is currently 
not possible. 

A n advantage of Tax4Fun over Picrust is the implementation in R. While Picrust needs 
to be installed and run on Linux-based system, Tax4Fun is an R package so it can be used 
on any operating system with R installed. R also has a simple and easy-to-use user interface, 
RStudio, and is more popular among non-informatics than Python. The reference data of 
Tax4Fun are from Silva database, which is more up-to-date than Greengenes in P i C R U S T . 

4.4 P a p r i c a 

Paprica is another Python library. To create a functional profile, Paprica uses phylogenetic 
placement instead of an OTU-based approach [7, 8]. 

In the OTU-based approach, the reads from a sample with a certain similarity are clus­
tered into one O T U . The gained OTUs are then compared to OTUs of known metagenomes 
and the functional profile is inferred. The disadvantage of this method is the clustering into 
OTUs since similar 16S r R N A sequences do not always imply the same functional profile. 
For example, many different genomes with different functional profiles have been sequenced 
for Escherichia coli. Although we have knowledge about different E-coli genomes and the 
corresponding functional profiles, the 16S r R N A gene of all variants is very similar so the 
OTU-based approach will treat different E-coli variants as one. 

In Paprica, there is a precomputed phylogenetic reference tree of 16S r R N A genes from 
each completed genome. Internal nodes contain a consensus genome which takes into ac­
count all the child nodes. 

The input of Paprica is not a set of OTUs as in the previous tools, but raw non-clustered 
sequences. To find a corresponding functional profile, Paprica tries to find the most similar 
sequences in the reference tree. 

The advantage of this approach is that the resolution changes based on the sequence 
coverage of the reference tree. For the well-studied organisms, we are able to distinguish 
variants that are very similar, while also having good results for unknown organisms. The 
disadvantage is the input format incompatible with other popular prediction tools. 
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4.5 S u m m a r y 

The goal of this thesis was to either create a consensus tool from existing bioinformatic tools 
or to create a new one that will be inspired by them. Based on the research of P i C R U S T , 
Tax4Fun, and Paprica, I came to the conclusion that creating a consensus tool that will 
use them would be more difficult than creating a new tool. P i C R U S T is incompatible with 
the other two because of a different reference database and the inability to deal with OTUs 
that are not closed-reference picked against Greengenes. Paprica is incompatible because 
of a different required input format. The usual input for functional profile prediction is a 
list of OTUs with their abundances, but Paprica requires the reads before O T U clustering. 
If we wanted to use Paprica in the consensus tools, we would either have to find a way 
to automatically download sequences corresponding to the OTUs in the input file, or the 
input format would have to be the reads and we would have to implement O T U picking on 
them to be able to use P i C R U S T and Tax4Fun. 

Since two of the three studied tools have a feature that makes them incompatible with 
the others, I concluded that it will be easier and more efficient to create a new tool and 
focus on implementing and comparing different prediction methods than to try to make 
P i C R U S T , Tax4Fun, and Paprica compatible. 

To not disregard the research of these tools, I will use the acquired information in 
the new tool created in this thesis. The P i C R U S T dataflow is easy to understand and 
makes sense so the dataflow of the new tool will be inspired by it. Different ancestral state 
reconstruction algorithms implemented in P i C R U S T will also serve as an inspiration in our 
own ancestral state reconstruction. Tax4Fun is easy to use and has the most transparent 
output format, which is a table of K O with the estimated abundance in the sample. The 
same output format will be used in the new tool. Paprica introduces a wholly different 
point of view to functional profile prediction. It would be interesting to implement some 
method inspired by Paprica and then compare the results with other, O T U based methods. 
Even a comparison with other phylogenetic tree based methods might be valuable. 
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Chapter 5 

Design of the created tool 

The goal of this thesis is to create a tool for functional profile prediction. It could have 
implemented a consensus of existing tools described in 4, but after a detailed study of these 
tools, we determined that creating a consensus tool is not possible. The detailed reasoning 
for this can be found in 4.5. 

Therefore, we decided to build a new tool. It should be usable with any user-provided 
reference database and implement different methods for dealing with OTUs with unknown 
functional profiles. The goal is to design and implement various of these methods, based 
either on sequence similarity or on a phylogenetic tree, evaluate them on the various quantity 
of OTUs with unknown profiles in the sample, and determine which method is the best, 
alternatively, which method is the best for certain species of bacteria. The source code of 
the tool is available in GitHub repository [3] and on the storage medium attached to this 
thesis. 

5.1 Implementat ion 

The tool consists of multiple modules, which can be seen in Figure 5.1. Arrows indicate 
the data flow in the tool. 

The green modules are data sources: 

• K O profiles: a table of known species with corresponding K O profiles. The data 
used in the implementation and evaluation is from Greengenes, but a switch with a 
different data table is possible. 

• O T U s imi lar i ty : this is a source of similarity between OTUs with known and with 
unknown functional profiles. It can either be a similarity matrix or a phylogenetic 
tree, or anything else, that somehow represents the similarity between OTUs. We 
aim to experiment with a similarity matrix based on different scoring matrices and 
different methods for phylogenetic tree construction. 

The yellow modules will be the same for every method for dealing with unknown OTUs: 

• Input parser: this module extracts O T U identifiers and abundances in the given 
sample from the input file. 

• K n o w n profile resolver: this module takes the O T U identifiers obtained from input 
parser and tries to find them in the K O profiles table. For the found OTUs it creates 
a K O profile respecting the given abundances and sends it to Output generator. The 
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OTUs which are not found in the K O profiles table is forwarded to Unknown profile 
resolver. 

• O u t p u t generator: this module takes the two K O profiles, combines them into one, 
and generates the output file. 

The pink module will deal with OTUs with unknown K O profiles: 

• U n k n o w n profile resolver: this module gets the O T U identifiers, that were not 
found in the K O profiles table. By using one of the methods described in 6 it finds 
the most similar OTUs with known functional profiles. Finally, it creates a K O profile 
respecting the similarity and the abundance in the given sample and sends it to the 
Output generator. 

18 



Input sample 

Input parser 

Known profile 
resolver 

OTU with 
unknown 
KO profiles 

Unknown 
profile resolver 

partial KO 
profile 

partial KO 
profile 

i i 

Output generator 

Output - KO profile 

Figure 5.1: New tool design. White rectangles show the input and output of the tool, green 
color denotes the data sources, yellow rectangles are the processes which are the same in 
every unknown functional profile resolving algorithm and the pink rectangle is the unknown 
profile resolver, which implements various methods for functional profile prediction. Where 
needed, input and output data of a process are described next to the corresponding arrows. 
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Chapter 6 

Evaluation of unknown reference 
profiles prediction methods 

In this section, we will describe the method for profile prediction that is implemented in 
the created tool. We will discuss what settings have been tried and what were the reasons 
behind them and the expected results. 

Testing data - - known functional profiles - - have been retrieved from the I M G 
database [5]. I M G stands for Integrated Microbial Genomes and it contains already se­
quenced and annotated microbial data. 

6.1 E v a l u a t i o n framework 

For the purpose of testing the accuracy of the implemented methods, I have also imple­
mented an evaluation framework. We can see the logic of evaluation in Figure 6.1. I use 
reference K O profiles table as an input, from which I generate the samples which will be 
tested. Then I compute the expected results using the reference profiles table. This result 
is saved. After that, the tool is run on the same samples. The results from the tool are 
correlated with the expected results. 

reference 
KO 

profiles 
table Generating 

samples 

Running the tool 

Comparing 
expected and 

computed results 

correlation 
• 

Generating 
expected results 

Figure 6.1: Workflow of the framework used to test the created tool 
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6.2 E v a l u a t i o n strategy 

For each method, the accuracy was tested on 10 artificial samples. To simulate missing 
functional profiles, a part of reference K O profile table was randomly deleted. The ratio 
of the deleted table was incrementally increased, from 0% to 90%, to see how much the 
accuracy drops with more profiles missing. Since the deletion from the reference table was 
randomized, this step was performed 10 times. 

To summarize, for each ratio of missing functional profiles, we performed 100 tests. 
The correlation between the expected and the computed result is computed as the Pear­

son Product-Moment Correlation, which shows the linear association between two vectors. 
The formula for estimation of the Pearson coefficient can be seen below, where r is the coef­
ficient, x, and y are the vectors and n is the size of the vector. The values of the coefficients 
can range from -1 to 1, where 0 means no association between the vectors, values bigger 
than 0 show positive association and values smaller than 0 show negative association. The 
proximity to -1 and 1 show the strength of the association. Generally, values bigger than 
0.5 are considered a strong association. [9] 

= E"=i (g j -x)(vx -y) 

^YJl=i{xi-x)'2{yi-y)'2 

6.3 Distance based methods 
This group of methods was created for this thesis and as of now none of them is used in 
bioinformatic tools described in 4. The methods are based on finding OTUs with the most 
similar sequences that have a known functional profile. Then we take the corresponding 
profiles and compute the unknown profile as their average. 

The simplest way to get the similarity between sequences is to count the number of 
the same characters in their aligned sequences. However, this method is not biologically 
accurate, since the probability of exchange of different nucleotide pairs is not the same. 
Therefore, I have experimented with using scoring matrices, that penalize the differences 
between sequences more accurately. 

A comparison between arithmetic and average weighted by similarity score has also 
been part of the experiments. The weighted average should be more precise since the more 
similar OTUs will have a bigger influence on the resulting K O profile. On the other hand, 
the difference between the similarity score of the most similar OTUs is not big — sequences 
usually differ only in a couple of bases — so the difference in the weight might be minimal 
and the results could strongly copy the non-weighted average. 

Another thing to experiment with is the number of required similar sequences. Fewer 
sequences ensure, that the reference OTUs are more related to the original one, but more 
sequences can bring variety and include some functional traits that are not present in the 
smaller selection. 

E v a l u a t i o n 

The initial evaluation was performed on iV = 10 and N = 4. As we can see in Figure 6.2, 
if more than 50% of the OTUs have known functional profiles, the correlation of correct 
and predicted profile is more than 0.9. After the ratio of the known profile drops under 
40%, the accuracy falls and the variance of the correlations rises. The rise in the variance 

21 



1.000 

0.998 

0.996 

0.994 

0.992 

0.990 

Figure 6.2: Results of the experiments with unknown functional profile estimation. The 
orange data show correlations of an average of 10 most similar O T U profiles, while the 
green data shows the same result for 4 similar OTUs. The y-axis shows the correlation 
between expected and computed results. The x-axis shows the ratio of sequences that had 
a known functional profile. 
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suggests that with such a small ratio of known profiles, the result is highly dependent on 
which profiles stay in the reference table. 

As for the comparison between an average of 4 and 10 similar OTUs, 4 similar OTUs 
prove to be more accurate. The difference is not big with a higher ratio of known OTUs, 
but under 40%, 4 similar OTUs have a 0.002 better correlation. This indicates that it might 
be to search for fewer closely related OTUs when estimating an unknown functional profile. 

To confirm this hypothesis, I have performed more tests with different numbers of similar 
OTUs from which the missing profiles are inferred. Results of these experiments can be 
seen in Figure 6.3. The chart shows only experiments where 30 to 10 percent of the OTUs 
had known profiles because when over 30% of the profiles are known, all the variants have 
high accuracy and the differences between them are not so significant. 

As we can see, the hypothesis that fewer similar sequences mean more accurate results 
were confirmed. The best option seems to be taking only one closest profile (for 10% of the 
reference table having known profiles) or counting the average of two most similar sequences 
(for more than 10% of profiles known). The biological reasoning behind this is that the 
more sequences we take, the more different they are from the original one. However, this 
reasoning is not very accurate, as the similarity of sequences is dependent on the reference 
data. For some species of bacteria, we have more studied variants with known profiles, while 
for others the number is smaller. The solution might be limiting not the exact number of 
similar sequences, but limiting the similarity by a certain threshold, or computing weighted 
average of the profiles. These variants I also experimented with and they will be described 
later. 

6.4 R a n d o m m e t h o d 

Overall, the acquired result from the first implemented the distance-based method described 
in 6.3 was better than was expected. When only 10% of OTUs in a sample have known 
functional profiles, the correlations are still higher than 0.99. This may be caused by 
c o m m o n metabol ic functions: each bacteria must have basic functions for translation, 
transcription, and processing of common metabolites. This is the part of the functional 
profile that is the same for every species of bacteria, independent on the sample. A number 
of K O specific for a certain species of bacteria is much smaller so it might not have that 
much of an effect on the correlation. 

To test whether the average method is really that successful or if the accurate results 
are caused by the wrong evaluation method, I have implemented a random method. For 
every unknown functional profile, it takes 4 random OTUs with known functional profile and 
computes their average. The number 4 was chosen based on experiments in 6.3. More OTUs 
were proven to cause a drop in accuracy, while less could also lead to worse accuracy, as 
averaging more profiles can help smooth specific features of the randomly chosen sequences. 
The results of this experiment can be seen in Figure 6.4. As we can see, the median of the 
random method for only 10% of known functional profiles has a correlation of more than 
0.94 with the expected results. 

For more accountable results, I have tried to eliminate the effect of common metabolic 
functions. In this experiment, while counting the correlation of the K O profiles, K O s that 
are present in a certain number of OTUs, for instance in more than 95%, are ignored. This 
way the correlation will be counted only on the most specific K O s for all species, which 
could provide more accurate results than comparing all bacterial functions, including the 
ones common for every species. 
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Figure 6.3: Results of the experiments with number of similar sequences that are taken 
into account. The y-axis shows correlation between expected and computed results. The 
x-axis shows the number of sequences that were used to compute the functional profile. 
The figures represent experiments when the ratio of 30%, 20% and 10% of the K O profiles 
was known, respectively. 
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Figure 6.4: Comparison of average and random based methods for functional prediction. 
The upper chart shows evaluation on all bacterial functions, the graph below on the rarest 
1% of bacterial functions. Orange data represent the average method and green data the 
random method. The x-axis represents the ratio of known profiles in the sample, the y-axis 
represents the correlation between expected and computed result. 
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We can see the results in Figure 6.4. Both charts show results from the same experiment, 
but in the second chart, only K O s which are present in less than 1% of the items in the 
reference table was included in the evaluation. We can see that the correlation between the 
expected and computed results significantly dropped in both average and random method. 
This confirms the hypothesis that the classic evaluation with all the functions is strongly 
influenced by common metabolic functions and does not reflect the accuracy of more specific 
bacterial functions. 

The advantage of evaluation on more specific K O s is that the difference between random 
and average method is much more significant — with only 10% of the functional profiles 
known, the difference is more than 0.2. This is important because evaluation in which even 
the random method achieves the correlation values of 0.99 can be misleading and result in 
unfair comparisons between different methods. 

To eliminate the effect of common metabolic functions on the results, all the following 
methods for functional profile prediction will feature both the results for all K O s and for 
the most specific KOs . M y experiments with different thresholds of specificity indicated 
that the difference between methods is most visible when only KOs present in less than 1% 
of the reference data (which is still more than 1 100 KOs) are correlated. Therefore, I will 
further use 1% as the default K O threshold. 

The effect on common metabolic functions on the evaluations is not always a problem. 
In various research areas, for instance, gut bacteria, we usually want to know if it all the 
basic functions are present in high enough abundance, so the focus of our interest is actually 
the common metabolic functions. As the gut microbiome contains thousands of species, 
the more specific functions might not be well documented so this information would not be 
that significant. 

I will be using the thresholds because the focus of this thesis is to compare different 
methods and the results acquired with thresholds make comparing easier and more intuitive 
by making the differences in correlations bigger. 

6.5 Var iants of distance-based methods 

This section contains experiments with different variants of distance-based methods. 

6.5.1 D i s t a n c e m a t r i x 

The first modification I have tried was to use a transition/transversion scoring matrix for 
nucleotides for computing the distance between O T U pairs. I expected the results to be 
better than normal average described before. Surprisingly, the results were worse. This 
was not expected, as counting the distance between OTUs based on matrix should be more 
biologically accurate than just counting the number of corresponding symbols in sequences. 
The result can have multiple reasons: 

• w r o n g scoring m a t r i x — there are various types of scoring matrices. I have used 
the transition/transversion scoring matrix, which does not yield good results, but 
other matrices might be more successful. 

• w r o n g score for gaps — there are multiple ways to deal with gaps in the sequence 
alignment. They can have no effect on the score, they can be punished and it is 
possible to have a different score for smaller and larger gaps. I used the uniform 
punishing of each gap, which might have been the wrong approach. 
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Figure 6.5: Results of two methods using scoring matrices for functional profile prediction, 
evaluated for the rarest functions. The orange data represent simple transition/transversion 
matrix, the green data matrix using the Tamura-Nei model. The x-axis represents the ratio 
of known profiles in the sample, the y-axis represents the correlation between expected and 
computed result. 

• global a l ignment - - the distance is computed from the multiple sequence align­
ment. It could be better to get raw sequences for each pair of OTUs, align them and 
count the score from there, but this would be more time-consuming. 

After the first, non-successful experiment, I have decided to try one more scoring matrix. 
I have computed it using the M E G A software [23] and used transition/transversion matrix 
in combination with the Tamura-Nei model. This time, the results were significantly better, 
as can be seen in Figure 6.5. The accuracy is also higher in comparison with the method 
using only the number of corresponding nucleotides as the distance metric. Therefore, 
we can conclude that the first evaluated scoring matrix was simply not suitable for this 
prediction, but the idea to respect the biologic basis of the nucleotides is correct. 

6.5.2 W e i g h t e d average 

This modification is based on not computing a simple average of similar sequences, but a 
weighted one, based on how similar the sequences are. Although the best number of similar 
OUTs to estimate from proved to be 2, I have included 4 most similar OTUs in the weighted 
average, since less would be too little to see the effect of the weighted average, since the 
distance of two most similar sequences is usually much alike, as they differ only in a couple 
of bases. According to Figure 6.3, using more than 4 sequences leads to worse accuracy. 
As we can see in Figure 6.6, the accuracy of the weighted average method is slightly better 
than with the normal average method, but overall the curve defined by the medians is very 
similar. 
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Figure 6.6: Results of weighted average method for functional profile prediction, evaluated 
for the rarest functions. The x-axis represents the ratio of known profiles in the sample, 
the y-axis represents the correlation between expected and computed result. 

6.5.3 L i m i t b y r a t i o 

In this method, the goal is not to find iV sequences similar to he one with unknown profile, 
but to find all sequences with similarity bigger than a given threshold. The idea behind 
this is that if we have O T U whose closest 4 OTUs bear the similarity of 90%, 89%, 89%, 
and 88%, and for another O T U the closest with the similarity of 88%, 40%, 35%, and 30%, 
in the first case it makes sense to include all 4 sequences in the estimation. However, in the 
second case, the first sequence is very similar, but the others are quite different so it can 
be expected that including all of them will decrease the accuracy. How often the second 
situation arises is dependent on the quality of the reference data. If for every sequence found 
in the sample we have similar enough counterparts in the reference database, the results 
will be accurate using the normal average method. But if we do not have ideal reference 
data, which is the case in real life as a lot of the bacterial species are not documented, the 
limit by threshold makes more sense than limiting the number of similar items. 

In this method, the relative similarity of two OTUs is computed as the number of 
identical symbols in their representative aligned sequences divided by the length of these 
sequences. As the source of the alignment, I used the global alignment of all Greengenes 
OTUs, which means that all relative similarity scores have the same divisor — the length 
of global alignment, which is 7682 symbols. If we require 99% identity, then 77 symbols in 
the global alignment can be different. To test what identity yields the best results, I have 
experimented with the similarity threshold of 99% and 97%. 

We can see the results in Figure 6.7. The threshold of 99% seems to produce more 
accurate results, which confirms the hypothesis that it is better to look for less more similar 
OTUs than for more OTUs that are not that similar. 
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Figure 6.7: Comparison of two methods for functional profile prediction based on the 
similarity threshold. The green box-plot shows the threshold of 99% and the orange box-
plot of 97%. The evaluation was performed on the rarest bacterial functions. The x-axis 
represents the ratio of known profiles in the sample, the y-axis represents the correlation 
between expected and computed result. 

6.6 Aggregated results of distance based methods 

We can see the aggregated results of all distance-based methods in Figure 6.8. Table 6.1 
shows us the A U C metric — Area Under The Curve. Bigger A U C means a more accurate 
prediction method. As we can see, the random method is significantly worse than all the 
others, which was expected. 

Next methods have minimal differences in accuracy. Normal average methods are 
slightly worse than threshold methods, which can be expected as they are more naive. 
I chose to include stats for 2 and 4 sequences in the aggregated results, as 4 is a number of 
sequences that are also used in the weighted average and random method, and 2 sequences 
produced the best results according to Figure 6.3, where I experimented with the number 
of sequences from 1 to 10. 

M e t h o d A U C 
random 59.37 

average - 4 77.26 
average - 2 77.33 

weighted average 77.75 
threshold - 97 78.44 
threshold - 99 78.91 

matrix 80.33 

Table 6.1: A U C — Area Under Curve metric, computed from curves in Figure 6.8 
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Figure 6.8: A chart comparing the accuracy of distance-based methods for functional profile 
prediction. The x-axis represents the ratio of known profiles in the sample, the y-axis 
represents the correlation between expected and computed result. Values rendered in the 
graph represent the median of all correlations earned in the evaluation. 

The weighted average is slightly better than the normal average, as the sequences which 
are more different from the target O T U have less influence on the result as the more similar 
ones. 

The threshold method proves to be quite accurate. The method respects the number of 
similar OTUs with the functional profile in the reference data. If there is a lot of similar 
OTUs, we include all of them in the result estimation. If there is less, we often end with 
only one or two profiles to use in prediction. Other OTUs which would influence the result 
estimation in normal or weighted average are not included and do not skew the estimated 
profile. As for ideal parameters, the best setting seems to be the threshold 99%, although 
the threshold 97% is almost as successful. The final setting of the threshold should be 
determined with the focus on the nature of the particular experiment. 

The most accurate method is the one using the scoring matrix as a distance metric 
between sequences. This is not a surprise, as it is the only one that respects the biologic 
and chemical nature of the nucleotides and the probability of their exchange. 
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Figure 6.9: A visualization of search of the closest node with the known functional profile 
in a phylogenetic tree. The red circle represents the node with the unknown profile. The 
colored regions represent the area of the tree that is searched in each iteration. The red 
region is searched first, the orange region second, and the yellow region third. After that 
the searched area increases following the same pattern. 

6.7 Phylogenet ic tree based methods 

A different approach to O T U similarity computation is a phylogenetic tree. The main idea 
is to compare the differences between OTUs, determine which OTUs might have a common 
evolutionary ancestor, and then create a phylogenetic tree using this information. The 
K O profile is based on the closest ancestors with known K O profiles, with respect to the 
distance between the tree nodes. 

A l l the well-known existing bioinformatic tools — Picrust, Tax4Fun, and Paprica -
estimate the functional profile using phylogenetic tree based methods, therefore this ap­
proach is not new and it has already been evaluated and documented. To avoid reinventing 
the wheel, the extent of my experiments with phylogenetic tree-based methods is not as 
large as with distance-based methods. I am mainly focusing on comparing different types 
of phylogenetic trees and the inference of functional profile from given trees is simple and 
straight-forward. 

To create different types of trees, I have used already mentioned tool called M E G A [23]. 
The inference of functional profile from the phylogenetic tree I implemented is incremental. 
Since I compute the trees from all Greengenes sequences, OTUs with unknown functional 
profiles are a part of the tree as well as those with known profiles. The idea of searching in 
the tree can be seen in Figure 6.9. For each node with unknown profile, I first search the 
area in the closest proximity — the siblings. If enough similar sequences are found, the 
search ends. If not, the children of siblings and also siblings of the parent of the target node 
are searched. The area which is searched is increased in each iteration until the sufficient 
amount of nodes with known profiles is found. 
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The results of the comparison of trees can be found in Figure 6.10 and Table 6.2. We 
can see that the results form two distinctive groups - - trees constructed using Minimal 
Evolution and Maximal Parsimony method are significantly worse than the other trees 
according to the Area Under Curve metric. The chart in Figure 6.10 also confirms this 
statement. 

To better compare the other three types of trees ( U P G M A , Neighbor-joining, and Max­
imal likelihood), we have to look at Figure 6.11, because while the previous two results use 
only the median of all correlations, box-plot shows us all computed results. The biggest 
differences can be seen in the variance of correlations. U P G M A and Maximal likelihood 
tend to have a bigger variance than Neighbor-joining and overall tend to produce more 
outliers. Wi th regard to these facts, Neighbor-joining seems to be the tree constructing 
method that produces the most accurate results, even though the Maximal likelihood has 
slightly better A U C value. 

Table 6.2: A U C — Area Under Curve metric, computed from curves in Figure 6.10 
Tree type A U C 

Maximal parsimony 76.82 
Minimal evolution 77.25 

U P G M A 80.39 
Neighbour joining 80.54 

Maximal likelihood 80.72 
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Figure 6.10: A chart comparing the accuracy of various types of phylogenetic trees used 
in functional profile prediction. The x-axis represents the ratio of known profiles in the 
sample, the y-axis represents the correlation between expected and computed result. Values 
rendered in the graph represent the median of all correlations earned in the evaluation. 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

Figure 6.11: Comparison of three most successful types of trees used in my experiments 
with phylogenetic tree based method for functional profile prediction. The orange data 
represent the maximum likelihood tree, the green data the neighbor-joining tree, and the 
blue data the U P G M A tree. The x-axis represents the ratio of known profiles in the sample, 
the y-axis represents the correlation between expected and computed result. 
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6.8 L inear regression based m e t h o d 

This is a new method for functional profile prediction. Distance-based methods and phy-
logenetic tree-based methods are both based on biologic principles, but by implementing 
linear regression I try to bring in a more computer-science based approach. 

To create linear regression models, I used Python library scikit-learn [14]. It is fast, 
easy to use and offers methods for model creation as well as for saving the trained model 
into a file and then loading and using it in prediction. 

To predict functional profiles by linear regression, we have to decide what will be con­
sidered a model, and what the corresponding explanatory and dependent variables will be. 
To predict the whole functional profile with one model seems too ambitious. We have over 
6800 K O s and predicting all of them using only one model would require a big training set 
and even then it might not work very well. The Greengenes database contains roughly 2500 
species that have known K O profiles, which might not be enough for such a complex model. 
Therefore, I have decided to create one regression model for each K O . This approach can 
also be convenient if we needed to predict only certain KOs. 

Next, we have to determine what explanatory and dependent variables will be. I have 
decided to infer the profile directly from the sequence of nucleotides from the global and 
local alignment. 

P r e d i c t i o n f r o m D N A sequence 

The second hypothesis is that the information about the functional profile can be found in 
the 16S r R N A sequence. To test this hypothesis, I have experimented with a model that 
uses R N A sequence as the explanatory variable and K O value as a dependent variable. 

Unfortunately, scikit only works with float values when training the model. Therefore, 
I had to transform the sequence into an array of float values by doing the frequency analysis 
of triplets — for each of 64 possible combinations of three nucleotides in a row, I counted 
how many times they are in the corresponding D N A sequence. The 64 values were then 
passed as to scikit as explanatory variables. 

The results can be seen in Figure 6.12. The most interesting thing to notice is that 
there is no exponential decrease in accuracy. Through 90% to 20% of the reference table 
being used for training the model, the results are consistent, and the drop comes only in 
the switch from 20% to 10%. This means that the number of OTUs needed to fully train 
the model is roughly 20% of the reference table, which is about 500 sequences. Then the 
accuracy of the model does not rise even when we increase the volume of the training data. 

G l o b a l a l ignment vs . not a l igned sequences 
As this approach is directly connected to the O T U sequences, not just a distance matrix, 

it is important to note that the previous results were obtained using raw sequence data. 
When using the global alignment, the models' accuracy was much worse, as we can see in 
Figure 6.13. The average correlation was 0.2, which is considered a weak correlation. The 
results also had really high variance — for some testing data the correlation was as high 
as 0.9, but for other data the correlation was negative. Therefore we can conclude, that 
the regression from raw not-aligned sequences is better than the one using globally aligned 
data. 
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Figure 6.12: Linear regression based method. Regression from D N A sequences. The upper 
chart shows evaluation on all bacterial functions, the graph below on the rarest 1% of 
bacterial functions. The x-axis represents the ratio of known profiles in the sample, the 
y-axis represents the correlation between expected and computed result. 
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Figure 6.13: Linear regression-based method. Regression from D N A sequences experiments 
with global alignment. The upper chart shows evaluation on all bacterial functions, the 
graph below on the rarest 1% of bacterial functions. The x-axis represents the ratio of 
known profiles in the sample, the y-axis represents the correlation between expected and 
computed result. 
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6.9 Aggregated results 

In this section, I wil l compare the distance based, phylogenetic tree based and linear regres­
sion based methods by analyzing and contrasting the best results from each group. From 
the distance based group, the best results were achieved using the method based on the 
scoring matrix. From phylogenetic trees, the most accurate was the inference from the tree 
acquired by Neighbor-joining algorithm. In linear regression, the best-trained model was 
the one that predicted the data based on the non-aligned nucleotide sequence. 

The aggregated results can be seen in Table 6.3 and Figure 6.14. We can see that the 
phylogenetic tree method is strictly better than the distance based one, both in the A U G 
metric and visually in the chart. However, the comparison between the neighbor-joining 
method and the linear regression is more tricky. By the A U C metric, the neighbor-joining 
method is better, but if we have only 20% or 10% of the reference table known, the regression 
method shows much stronger correlation. 

As the neighbor-joining method is better by the A U C metric and also in most of the ratio 
of known reference data, it could be concluded that it is the best from my implemented 
methods. On the other hand, the experiments with linear regression also offer valuable 
knowledge. It seems that the accuracy is quite stable, as in the results do not fluctuate 
between different experiments. The only significant drop can be observed when we move 
from 20% to 10% data having a known functional profile. 

M e t h o d A U C 
Matrix 80.33 

Neighbour joining 80.54 
Regression 72.20 

Table 6.3: A U C — Area Under Curve metric, computed from curves in Figure 6.14 
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Figure 6.14: A chart comparing the accuracy of the best variant from all three groups 
of methods for functional profile prediction. The x-axis represents the ratio of known 
profiles in the sample, the y-axis represents the correlation between expected and computed 
result. Values rendered in the graph represent the median of all correlations earned in the 
evaluation. 
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6.10 C o m p a r i s o n w i t h exis t ing tools 

Since I have tested and evaluated my tool on Greengenes data, I have decided to compare 
the accuracy of my tool with Picrust. Unfortunately, I was not able to run the original 
Picrust genome prediction, which would allow me to evaluate the accuracy for different 
ratios of reference table missing, due to various complications with execution. 

Therefore, I have done my own implementation of most of the Picrust pipeline. I have 
created a tree from all my testing sequences using a maximum likelihood method in M E G A , 
which is the first step of Picrust pipeline. To perform hidden state prediction in the tree, 
I have used the original Picrust 2 script, that allows user-supplied trait tables. The predic­
tion of bacterial function abundance was also my own implementation, which followed the 
same procedure as Picrust. 

As we can see in Figure 6.15, results from Picrust have the same characteristics as my 
own methods, besides linear regression. The drop in the accuracy is more significant when 
less than 50% of the reference table is known. When we evaluate Picrust on all bacterial 
functions, the accuracy of computed and expected results is really high, but when we focus 
on the most specific bacterial functions, the accuracy drops. 

The comparison between the best results from my tool and Picrust can be found in 
Figure 6.16 and Tables 6.4 and 6.5. As we can see, for all bacterial functions the results are 
very similar. Although the neighbor-joining method is better by the A U C metric, the results 
are minimal. The evaluation of the most specific bacterial functions is more conclusive. By 
the chart and also by the A U C metric, the neighbor-joining method is more accurate. 

M e t h o d A U C 
Neighbour joining 89.93 

Picrust 89.86 

Table 6.4: A U C — Area Under Curve metric, computed from curves in Figure 6.16 for all 
bacterial functions 

M e t h o d A U C 
Neighbour joining 80.54 

Picrust 77.74 

Table 6.5: A U C — Area Under Curve metric, computed from curves in Figure 6.16 for the 
rarest bacterial functions 
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Figure 6.15: Evaluation of my implementation of Picrust. The upper chart shows evaluation 
on all bacterial functions, the graph below on the rarest 1% of bacterial functions. The x-
axis represents the ratio of known profiles in the sample, the y-axis represents the correlation 
between expected and computed result. 
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Figure 6.16: Comparison of my implementation of Picrust with my the results from my 
tool. The upper chart shows evaluation on all bacterial functions, the graph below on the 
rarest 1% of bacterial functions. The x-axis represents the ratio of known profiles in the 
sample, the y-axis represents the correlation between expected and computed result. 

41 



Chapter 7 

Conclusion 

The goal of this term project was to design a tool for predicting functional profiles from a 
given sample. 

First, the necessary theoretical background was given. After that, I studied the most 
used existing bioinformatics tools for functional profile prediction - Picrust, Tax4Fun, and 
Paprica — to determine if a consensus tool can be built over them, but I decided to rather 
create a new tool that is inspired by them. I described the design and implementation of 
the tool. 

The rest of the paper was focused on evaluating and comparing multiple methods for 
functional profile prediction. I have implemented and experimented with three types of 
methods - - distance based, a phylogenetic tree based and linear regression. After the 
initial experiments, I have proposed a new method for evaluating functional precision tools' 
accuracy, that is focused on only the most specific bacterial function in place of all functions. 
I have experimented with variants to each type of method and came to the conclusion that 
the phylogenetic tree based algorithm combined with the neighbor-joining method for tree 
construction yields the best results. 

The last part of the thesis is a comparison of my tool with Picrust. First I have evaluated 
Picrust both on all and the specific bacterial functions. Then I compared it to the best 
results earned from my tool. I came to the conclusion that the mentioned phylogenetic 
tree based method combined with the neighbor-joining tree construction algorithm is more 
accurate than Picrust. Unfortunately, the results are not completely convincing, as I did 
not use the original implementation of Picrust, but used my own implementation. Once the 
tool is more thoroughly tested, it could be published and presented to the bioinformatics 
community. 

The future work based on this thesis may also include evaluating commonly used tools 
for functional profile prediction with my newly proposed evaluation method. The compar­
ison on the results would be a valuable material eligible for publication. 
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Appendix A 

Storage M e d i u m 

The storage medium contains an electronic version of this text report and the data of the 
created bioinformatic tool: 

• source codes of the tool 

• bash script for easy testing 

• user guide 

• G P L v.3 — gnu general public license 

• example data: 

— K O profile tables with various ratio of known profiles 

— precomputed phylogenetic trees 

— trained models for prediction using linear regression 

— testing samples and corresponding expected results 
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