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Football Score prediction using Deep learning 

methods 

 

Abstract 

 

The major aim of the work is to use convolutional neural network to predict the outcome 

of the football match result of Spanish first division football league using the historical dataset 

available from the season 2013-14 till 2017-18. The Possible outcomes are classified into win, 

draw or lose. The work has been done using Convolutional Neural Network algorithm with the 

help of several opensource libraries to implement deep learning framework. The programming 

language used to perform the tasks is Python programming language. The ultimate goal of the 

work is to predict the result with an accuracy as close as a prediction from a football domain 

expert. The result of the work is verified and conclusion drawn.   

 

Keywords: Deep learning, Classification, CNN, RNN, Keras, Convolution layer, football result 

prediction, sport results, artificial intelligence 

 

 

 

 

 

 

 

 

 

 

 

 

 



    

 

Fotbalové výsledky a hluboké učení  

 
 

Abstrakt 

 

Hlavním cílem práce je predikovat výsledky fotbalových utkání první divize španělské 

fotbalové ligy za využití konvoluční neuronové sítě a sady dat předešlých zápasů v sezónách od 

2013-14 do 2017-18. Predikované výstupy jsou klasifikovány do kategorií výhra, remíza, 

prohra.  Konvoluční síť byla sestavena za využití několika knihoven s rozhraním pro hluboké 

učení, které disponují otevřeným zdrojovým kódem. Programovacím jazykem byl Python. 

Cílem v kontextu je pak predikovat výsledky s přesností blížící se přesnosti predikcí fotbalových 

expertů. Výsledky práce jsou ověřeny, práce je zakončena představením závěru a diskuzí.             

Klíčová slova: predikce fotbalových výsledků, sportovní predikce, umělá inteligence, 

konvoluční neuronová síť, hluboké učení, rekurentní neuronové sítě  
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1. Introduction 

Football being one of the world’s most popular sports has a lot of craze in everyone’s 

mind. In sports prediction, a large number of features can be collected including the historical 

performance of the team, results of the matches, and data on players to help different 

stakeholders understand the odds of winning or losing the forthcoming matches. Predicting 

which team is likely to win is important because of the financial assets involved in the betting 

process; thus bookmakers, fans, and potential bidders are all interested in approximating the 

odds of a game in advance. 

This research aims to summarize the research done so far in solving the presented task 

as well as provide a thorough conclusion for the provided proposals. 

Deep Neural Networks (DNNs) are usually used for pattern recognition and to solve 

non-linear relationships such as Stock Exchange and Prediction and Image Compression. 

Recurrent Neural Networks (RNNs) are usually used to solve sequence-based tasks; tasks 

involving text, speech or video streams. Convolutional Neural Networks (CNN) are used to 

solve image-based tasks. In this thesis, we are going to present and compare various approaches 

to how Neural Networks are used to solve the task of predicting the results of football matches.  
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2.  Objectives and Methodology  

2.1. Objective 

The aim of the work is to develop a methodology to solve one of the classification 

problems in professional football, i.e. predicting the outcome of a professional football match. 

The scope of the work is to predict the final result of football matches in the Spanish first 

division professional football league using the available historical data. The possible outcome 

of the matches can be win, draw, or lose. Predicting this outcome with maximum possible 

accuracy is the ultimate objective of the work. 

2.2. Methodology  

The methodology of this work involves reviewing the current state of research in the 

field of deep learning. It also involves reviewing literary works and journals relevant to the topic 

in order to understand the general approach of the similar work in the same domain. This also 

involves giving an overview about the areas in which deep learning methods have been 

successfully implemented in the past and provides abstract idea about its typical applications. 

Open source software such as Keras, TensorFlow, NumPy, etc are explained briefly since they 

have been designed to implement deep learning framework.  

The task is to predict the outcome of the football match with an accuracy close to that of 

an expert in the domain, using the available historical dataset. The dataset is created by choosing 

relevant attribute from the football statistics of Spanish la Liga. The data contains information 

from the seasons 2013-14 and 2017-18. The dataset is created by collecting data mainly from 

www.whoscored.com & www.transfermarkt.com. 

The tasks are performed using CNN algorithm  to find the solution of the problem using 

Python programming language and other deep learning frameworks for calculations. The result 

of the implementation will be verified using standard methodologies like accuracy value and 

based on them the conclusion of the findings is drawn.  

   

  

http://www.whoscored.com/
http://www.transfermarkt.com/
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3.  Literature Review 

3.1. Terminology 

One of the advantages of Neural Networks is their versatility, meaning that multiple 

networks can be used to solve various tasks. In this section, we are going to present a quick 

overview of Machine Learning, Deep Learning, as well as Convolutional and Recurrent 

Neural Networks, how they work, the differences between them, and their applications. 

 

3.1.1. Machine Learning 

Definition: An application of artificial intelligence that includes algorithms that 

parse data, learn from that data, and then apply what they’ve learned to make informed 

decisions (Grieve, 2020). 

Machine learning is a subfield of artificial intelligence which has increased in 

popularity over the last few years, in both research and industries. In contrast to the 

traditional rule-based artificial intelligence where an algorithm is more or less a list of 

predefined static rules, machine learning tries to use data to learn to make predictions or 

decisions.  

An example of a Machine Learning algorithm is Spotify’s music recommendation. 

Spotify sees the user’s current taste in music and the type of songs they listen to the most 

and uses that information to recommend new songs for the user. Same as how Amazon 

recommends new products for its users. This technique is called a Recommendation System 

and it is one of the most popular Machine Learning algorithms (SystemDesign, 2021). 
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Figure 1. A simple chart showing how recommendation systems work 

Supervised learning is a machine learning method in which models are trained using 

labeled data. In supervised learning, models need to find the mapping function to map the 

input with the output. Examples: Classification and Regression. 

Unsupervised learning is another machine learning method in which patterns are 

inferred from the unlabeled input data. The goal of unsupervised learning is to find the 

structure and patterns from the input data. Examples: Segmentation and Clustering. 

 

3.1.2. Deep Learning 

Definition: A subfield of machine learning that structures algorithms in layers to 

create an “artificial neural network” that can learn and make intelligent decisions on its own 

(Grieve, 2020). 

Deep Learning models analyze the data and their structure like a human would – they 

extract useful features from the data and use these features to learn certain patterns in the 

data.  

Some types of Deep Learning algorithms are: Artificial Neural Networks (ANN), 

Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN). We will 

discuss each of them in simple detail in the next subsections. 

Artificial Neural Networks 

Artificial Neural Networks are inspired by the biological network of neurons in the 

human brain. The human brain is composed of nerve cells called neurons that are connected  

by axons. ANNs are composed of multiple nodes, which imitate the biological neurons of a 

human brain. The neurons are connected by links which imitate the biological axons, and 

they interact with each other. Each node takes input data, performs a simple operation, and 

passes the result to other nodes. Like a biological brain, an ANN is self-learning and can 

therefore excel in areas where the solution is difficult to express through a traditional 

programming approach (Aravindpai, 2020). 
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Figure 2. Artificial Neural Networks 

A neural network with at least one hidden layer with a finite number of neurons in 

that layer can approximate any continuous function. This is known as the universal 

approximation theorem, and is the reason why one could believe that neural networks can 

be used for general artificial intelligence. It seems likely that being able to approximate 

functions is a very good property to possess when trying to learn how to behave. 

Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNN) are prevalent in image and video processing 

projects. The building blocks of CNN are filters or “kernels”. Kernels are used to extract the 

relevant features from the input using the convolution operation.  

How CNN Works? 

CNN learns the filters implicitly, which is one of the main features of the Deep 

Learning models. These filters help in extracting the right and relevant features from the 

input data. CNN captures the spatial features from an image. Features help us in accurately 

identifying the objects present in images or videos, locating the said objects and their 

relations with other objects.  

For example, we – as humans – can identify human faces by looking at specific 

features like eyes, nose, mouth and so on. We can also see how these specific features are 

arranged in an image. That’s exactly what CNN is capable of capturing (Aravindpai, 2020). 
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Figure 3. Simple architecture of CNN 

Convolutional Neural Networks Layers 

Convolutional Layer: 

The convolutional layer is the central piece of the CNN where it derives its name 

from. The layer performs a convolution operation between the image and kernels/filters in 

order to extract meaningful features from the image. Kernels are two-dimensional sets of 

weights that are smaller than the input image, usually 3x3, 5x5 or 9x9 (Chollet, 2018). 

 

Figure 4. Convolution operation between the input image and a 3x3 kernel 

The output of this convolution operation is called a “feature map”. Feature maps 

contain relevant features from the image that were extracted from the convolution layers.  
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Figure 5. Visual representation of the feature map for a cat classification task 

Pooling Layer: 

The primary aim of the Pooling layer is to reduce the sizes of the convolved feature 

maps in order to reduce computational costs. There are several types of pooling: Max 

Pooling and Average Pooling. Max Pooling is by far the most used type. Pooling layers are 

quite simple, for example, Max Pooling works by calculating the largest element taken from 

a window of the feature maps (Chollet, 2018). 

Pooling layers usually act as a bridge between Convolution layers and Fully 

Connected layers.  

Dense (Fully-Connected) Layer: 

Dense or Fully-Connected layers consist of the weights and biases along with the 

neurons. As the name suggests, the neurons in this layer are fully-connected to the ones in 

the layer before them. 

It is worth noting that the final Dense layer always has the same output shape as the 

number of classes the data contains. For example, if we want to classify cats and dogs, we 

have two classes  – cats and dogs – therefore, the final Dense layer should have an output 

shape of 2. 

Dropout Layer: 

Usually when using Fully-Connected layers, it can lead to overfitting. Overfitting 

happens when the model learns a feature too well or memorizes the feature. This leads to the 

model achieving very high accuracy on the training set but low accuracy on the testing set. 

i.e. the model does not generalize well to new data. To combat over-fitting, the concept of 

dropout is introduced. Drop-out means dropping random neurons in order to force all 
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neurons to learn new features in every iteration. Usually, a good dropout percentage is 

around 25-50%. 

Flatten Layer: 

Flatten layers simply convert 2D output to 1D, so it flattens the output of the previous 

layer. It is usually followed by one or more Dense layers as the flatten layer facilitate a one-

dimensional input to the dense layer. 

Activation Layer: 

Finally, Activation Functions or Activation Layers learn and approximate continuous 

and complex relations between variables of the network. They basically decide which 

information should be fed forward through the network and subsequently fire the following 

neurons and which information should be discarded. 

There are several types of activation functions: ReLU, Softmax, tanH, and Sigmoid. 

Each of these have their own specific usage. Generally, between layers we use ReLU 

activation and for classification tasks Sigmoid or Softmax activations are used. 

 

Figure 6. Graphs of Sigmoid and ReLU activation functions 
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Figure 7. Simple CNN architecture used for digits classification 

Applications of CNN 

There are a myriad of Convolutional Neural Networks applications that we use in 

our everyday life, like Face Recognition - used in security systems as well as Facebook face 

tagging, Optical Character Recognition - used in extracting text and information from 

documents, Image Search, Object Detection, Object Recognition, and many others. 

 

Figure 8. Object classification - an example of CNN 

Recurrent Neural Networks (RNN) 

Recurrent Neural Networks save the output of processing nodes and feed the result 

back into the model. Each node in the RNN model acts as a memory cell, continuing the 

computation and implementation of operations. If the network’s prediction is incorrect, then 

the system self-learns and continues working towards the correct prediction during 

backpropagation. 

 

Figure 9. Recurrent Neural Networks architecture 

One limitation of a normal neural network is that the input and output is of fixed 

length. If you input images they all need to have the same size. RNN introduces loops 

between events or steps allowing information to be used in a later stage, just like a memory. 
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One can see a loop as a copy of the network with the same parameters that just sends the 

state to the next step. This enables the model to be used on sequences of input and output 

which can take previous information into account. It has been shown that this works very 

well for a number of situations like natural language processing, video classification, image 

classification, etc (Aravindpai, 2020). 

Some examples of the applications of Recurrent Neural Networks include: Sentiment 

Classification - classifying whether a sentence carries a positive or negative connotation; 

Image Captioning - describing the objects and events happening in a given image; Language 

Translation - automatically learn how to translate from one language to another, including 

knowing how the vocabulary, semantics and grammar of each language work. 

 

Figure 10. Image captioning – an application of RNN 

Long Short-Term Memory 

 

Figure 11. LSTM architecture 

RNNs remember the information through time. It is useful in time series prediction 

only because of the feature to remember previous inputs as well. This is called Long Short 

Term Memory.  

Long Short-Term Memory (LSTM) unit is a recurrent network unit that is designed 

to remember values for either a long or a short duration of time. For example, if the LSTM 

unit detects an important feature from an early input sequence, it carries this information 

over a long distance. This is significant for many applications, such as speech processing, 
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music composition and time series prediction (Text Classification Algorithms: A Survey, 

2019). 

The below figure is a quick summary of the differences between ANN, CNN and 

RNN (Gupta, 2020). 

 
Table 1. Comparison of ANN vs CNN vs RNN 

 

3.2. Current State Overview 

In this section, we will present some of the previous work done to predict football 

matches with RNNs, LSTMs, CNNs or other approaches. 

 

3.2.1. Football Match Prediction using Deep Learning 

The first approach (Football Match Prediction Using Deep Learning, 2017) discusses 

using Recurrent Neural Networks to predict the football match results. The dataset used for 

this project includes the information for each player in the teams. The dataset includes 

matches for leagues and tournaments for the 54 countries in the Union of European Football 

Associations (UEFA), USA, Brazil, Japan and others. It contains features like Line-ups, 

Position, Goals scored, Substitutions, and Penalty. 

The recorded data is embedded before being fed to the model. Afterwards, the 

embeddings are converted to one-hot encoded vectors which makes the data inputs more 

expressive and re-scalable. 
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Figure 12. Architecture of the embedding model used in the thesis 

The highest model achieved an accuracy of 98%. The authors have noted an 

exponential increase in accuracy as the match goes on (Football Match Prediction Using 

Deep Learning. Daniel Pettersson, Robert Nyquist). 

Using the proposed LSTM architecture the final test classification accuracy of the 

outcome was 98.63% for the many-to-one. The more information the networks are fed about 

a match, i.e. the longer an ongoing match is played, the better the network performance on 

predicting the outcome.  

 

3.2.2. A Deep Learning Framework for Football Match Prediction 

In this research (A deep learning framework for football match prediction, 2020), the 

authors propose another Recurrent Neural Network-based approach to tackle the problem of 

predicting the outcome of a football match, more specifically, the scores of each team. 

The aim of this study is to focus on the players initially. In this way it takes into 

account if a player does not play for a team in a specific match, which will have an impact 

and it will be recorded. A match is played at a specific time, and events occur at a relative 

time in a game. The order of matches and events matter since they have an impact on the 

future. 

 

 
Table 2. Sample of the dataset 
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After 10 epochs of training, the training loss dropped to around 0.594, and around 

0.596 for validation. On testing the model with real life data, the model achieved a testing 

accuracy of 63.3%.  

 

3.2.3. Using CNN to Predict Goal-Scoring Opportunities in Soccer 

This research (Using Deep Convolutional Neural Networks to Predict Goal-Scoring 

Opportunities in Soccer, 2017) focuses on the starting club squad and ball positions to predict 

the goal-scoring opportunities in a match. Convolutional Neural Networks are used to 

process and predict the outcome of this data. The desired outcome in this approach is to 

predict when an attack is said to be a ‘goal-scoring opportunity’ or not. In other words, this 

approach focuses more on whether an attack will lead to a goal or not. 

Below are samples of the data fed to the network. In these images, players of team A 

are represented by the blue data points and the keeper is represented by cyan; players of team 

B are represented by red data points and their keeper is represented by yellow; the ball is 

represented by a green square and the player who has possession of the ball has green borders 

around them in order to emphasize their presence. 

 
Figure 13. Goal scoring opportunity 

 

 
Figure 14. Loss of ball possession 

The authors use two types of CNN: Google LeNet (ImageNet Classification with 

Deep Convolutional Neural Networks, 2012) and a custom 3-layered CNN.  The LeNet 
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model has been trained from scratch and achieved an accuracy of 67%, which is 10% higher 

than that of the kNN model which achieved an accuracy of 57%. The custom CNN model 

achieved an accuracy of  63%. 

 

3.2.4. Football Match Result Prediction Using Neural Networks 

One approach uses (Football Match Result Prediction Using Neural Networks and 

Deep Learning, 2020) a Long-Short Term Memory (LSTM) of 512 units to tackle the task 

of predicting the football match outcome. The data used is from the English Premier League 

2010-2018 seasons. The dataset contains data like home and away teams, match results, and 

winning streaks. This approach achieved a test accuracy of 80%. The input vector is not 

described, and the model output is whether the home team had won, drawn, or lost the match. 

 
Table 3. Summary of the accuracies achieved (Football Match Result Prediction Using Neural 

Networks and Deep Learning, 2020) experimenting with different number of units 

 

3.2.5. Neural Networks Football Result Prediction 

Another research (Shum, 2020) uses data gathered from both the English Premier 

League (EPL) and the Spanish La Liga gathered from 8 seasons (2007 to 2016). The data 

contains the teams’ position, points, number of goals, winning streaks, losing streaks and 

results history. Multiple models are tested in this approach for research purposes. The input 

to the model consists of some of the selected features by the authors, such as the ones in 

Table 4. 
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Table 4. Sample of the input data 

Most notably, an odds-based model achieves an average accuracy of 22% for the 

EPL and 20% for La Liga. Random Forest is then tested, and it achieves an accuracy of 54% 

across both leagues; a 3-layer ANN achieves an accuracy of 62% for EPL and 54% for la 

liga. The predicted output is also the match outcome relative to the home team. 

 

3.2.6. Football Match Results Prediction Using Artificial Neural 

Networks 

This research (Football Match Results Prediction Using Artificial Neural Networks; 

The Case of Iran Pro League, 2014) uses an ANN to predict the results in the Iranian League. 

The dataset was gathered by the authors containing match results and table positions of 

Iranian teams from 12 seasons – 2001 to 2012.  

 

 
Table 5. Sample of the encoded data used in this approach 

The authors not only predicted the winner of the match, but also the results of the 

match (the number of goals that each team would score). 



    

 

18 

  

 
Table 6. Summary of the predicted vs actual match results 

 

3.2.7. Predicting Sports Matches with Neural Models 

Finally, an interesting approach is taken in the next research (Pereverzeva, 2021). In 

this approach, the author uses a dataset gathered from various leagues including but not 

limited to the Italian, Spanish, German, and English leagues. The data contains information 

including the league in which the match was played, the participating teams, home and away 

teams, the scores for each team, and the result of the match - whether it’s a win for the home 

team, a loss, or a draw. The model used in this approach is a Convolutional Graph Neural 

Network (A Graph Regularized Neural Network for Node Classification, 2020).  

This approach achieves an average accuracy of 46% for the football match data.  

 
Table 7. Summary of the results achieved by the CGNN on various sports 
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4.  NN Implementation  

4.1. Introduction 

Based on the previous researches, it is apparent that the usage of previous match results, 

data about the clubs, and their positions in the league is vital to achieving a good accuracy. 

Therefore, the proposed approach consists of using a Convolutional Neural Network and using 

data from previous matches. 

 

4.2. Dataset 

The data used in this approach contains football match statistics and some team statistics 

of Spanish football league - Spanish la Liga. It is acquired from scaping the data from several 

websites including whoscored.com (WhoScored.com), Transfermarket.com (Transfermarkt), 

etc.  assuming that the data provided in the websites is accurate without error. 

In detail, the data set contains match statistics like the date of the match, team names, 

head-to-head match results , previous match results, goals scored by home-team and goals 

scored by away team  etc. Also, it contains some team statistics like the average age of the squad, 

average height of the squad , transfer market value of the team etc. The acquired data is from 

the season 2013-14 till the season 2017-18. 

Since there are 20 teams participating in the league in one season, each season will have 

380 matches in total considering that each team will pay against each other two times in a season. 

However,  other international cup matches and international club competitions haven’t been 

considered for this study since the collection of the data would be more complicated. There 

could be some effect for some teams due to these extra games on the Season but they are 

neglected since it will be minor compared to the whole dataset. 
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Table 8. Sample of the dataset used 

4.2.1. Attributes 

As in the above example, the raw dataset consists of 22 columns which means 22 

attributes.  

Date : This attribute is the representation of date of occurrence of the match. The raw 

dataset contains two types of format for this attribute- MM/DD/YYYY and DD/MM/YYY. Date 

can be a relevant attribute as it can be correlated with gradual development of strengthening of 

the team by key players playing together for longer time.  

Home Team : The name of the Host team is given by this attribute. The team which 

owns the ground in which the match is being played. This is a text datatype attribute. 

Away Team : This attribute represents the name of the visiting team. This attribute has 

text datatype as the above one.  

H2H win: This attribute represents the number of times the home team won the match 

when they played against the specific away team, considering the recent 6 head-to-head 

matches. This attribute can be correlated to the influence of historic match result in the upcoming 

match, which is mostly considered as psychological effect. This value can be an integer between 

0 and 6 since the results of recent 6 matches are considered. This methodology is often applied 

in professional football match analysis by experts and betting websites. The values can be null 

when new teams enter the Spanish la Liga from the second division every season based on their 

performance in the second division. Hence there can be a scenario where some teams have no 

history of matches played together. This should be cleaned during the preprocessing phase.    
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H2H draw : The same as the H2H win attribute, this represents the number of times the 

home team ended up in draw when they played against the specific away team considering the 

recent 6 head-to-head matches. 

H2H lose : This represents the number of times the home team lost when they played 

against the specific away team considering the recent 6 head-to-head matches. 

Home win : This attribute gives an idea of the number of times the home team won in 

the recent 6 matches. This is irrespective of the away team and it can be an integer value between 

0 and 6. This attribute incorporates the concept of team form to the dataset. It is highly probable 

that the team with higher number of winning streaks is in a good form. This will be a key 

attribute since the form of a team has importance in the football analysis and predictions. 

Home draw: Similar to Home win attribute this one conveys the number of time the 

home team ended up in draw, in the recent 6 matches.  

Home lose : The number of loses taken by the home team in the last 6 matches is 

represented by this attribute in the form of an integer value between 0 and 6. 

Away win: This attribute is similar to Home win attribute which is explained earlier but 

represents the visiting team instead of home team.  

Away draw: Similar to Home draw attribute and it gives information about the away 

team. 

Away lose: Similar to Home lose attribute and gives information about the away team. 

Home rest: This attribute tells the number of rest days the home team got in between 

the previous match and the current match. This can be an integer value. Rest days are usually 

very important as congested match schedule can cause fatigue and drop in performance. It is 

observed that the team which got better number of rest days shows a competitive advantage over 

the team without proper rest during important matches. 

Away rest: This attribute is similar to Home rest but gives the information about the 

away team. 

Home avg height : The physical aspects of the squad can be a key factor in many games 

when it comes to the style of the game they are playing or the opponent. Hence this attribute 

gives the average height of the squad of the home team selected for the game. 
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Away avg height: This attribute is similar to the Home avg height but represents the 

away team. 

Home avg age: The average age of the squad, similar to average height, can influence 

the game and this attribute tells the average age of the home team squad. The team with the 

younger squad usually outperforms in a physically demanding game and the squad with more 

experience shows some advantage when it comes to games under high stress. 

Away avg age : This attribute gives data similar to Home avg height but for the away 

team. 

Home squad value: The talent and consistent performance of professional football 

players usually reflects on their transfer market value as highly skilled players mostly have high 

value in the transfer market. Collectively the transfer market value of the squad for a specific 

season can be a reflection of the talent they have. This attribute tells the transfer market value 

of the whole squad for a specific season in the denomination of million euros. 

Away squad value: This attribute contains similar information like Home squad value 

but for away team instead of the home team. 

Home result: This is the attribute present in the raw dataset which contributes to the 

result of the match in terms of the number of goals scored by the home team. By comparing this 

attribute with Away result attribute, it is possible to formulate which team will win the match 

or what is the final outcome of the match. This can be an integer value from 0. 

Away result: Similar to the Home result attribute this one is available in the raw dataset 

and depicts the number of goals scored by the away team. 

Result: This is an attribute derived from the Home result and Away result attributes 

using logical operation using python dataset and NumPy library. As an outcome this attribute 

can have 3 values and it conveys the results of the game as below. 

Value = 1 : Home team won the match 

Value = 0 :Home team lost the match 

Value = 2 : The match is draw. 

This attribute is considered as the Target attribute throughout the project. 
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4.3. Data Preprocessing 

Data preprocessing includes the steps to transform the raw data with irregularities like 

noise, unwanted characters, missing values, etc. to a data which can be easily parsed by the 

machine. 

Data preprocessing is important because the raw data with bad quality would lead to bad 

quality results as the algorithms would fail to identify the patterns effectively (Baheti, 2022). 

The following python libraries have been used to perform the preprocessing of data. 

Pandas 

Pandas is a python library mainly used for working with tabular dataset. This library is 

popularly used to analyze, clean, explore and manipulate data (w3schools, 1999). 

DataFrame 

It supports various file formats like CSV, excel , SQL , JSON etc. which makes this 

library very versatile. 

NumPy 

NumPy is considered to be one of the fundamental packages for performing scientific 

computations in Python. It helps with the fast operations on arrays by facilitating multi-

dimensional array objects, various derived objects such as matrices, masked arrays etc. 

Scikit-Learn 

Scikit-Learn is a free machine learning library for Python which features different 

algorithms such as random forest, KNN etc. Here, it is used mainly for data preprocessing and 

splitting the data into test and train sets. 

Regular expression (re) 

Regular expression (re) module is a tiny and highly specific programming language 

embedded inside Python. They are usually used to match strings of text such as characters, 

patterns etc. Here, it is used for encoding the date attribute into Year, Month and Day.  
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4.3.1. Code 

Google Colab notebook has been chosen for the coding purpose as it is easy to set up 

and has inbuilt Python libraries. Google Colab notebooks are the Jupyter notebook IDE 

(Integrated Development Environment) that runs in cloud and is integrated with Google Drive.  

This lets the user to use Google’s dedicated GPU (Graphic Processing Unit) and 

TPU(Tensor Processing Unit). 

Initially we need to import all the necessary Python libraries such as Pandas, NumPy, 

Sklearn, RE,  etc. 

 

import pandas as pd 

import numpy as np 

from sklearn import preprocessing 

from sklearn.model_selection import train_test_split 

import re 

from keras.utils import np_utils 

 

pd.set_option(‘display.max_columns’, None)  # setting the parameter to s

how all columns 

 

Then using following code, the raw dataset file named Dataset_1 is uploaded to Colab 

from the local machine. This is to start working with the data using the cloud notebook. 

 

from google.colab import files 

uploaded = files.upload() 

 

Pandas library is used to read the file and display the dataset with first 5 rows. After that, 

inspection on the dataset is carried out by displaying dataset info. This will give us an idea about 

the different datatypes present in the dataset.  

 

# Reading Excel file 

data = pd.read_excel('Dataset_1.xlsx') 

data.head(5) 

# Getting general information about data 

data.info() 
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By observing the data using the above commands, it is clear that the data contains 

categorical data (Home team name and Away team name) which need to be converted into 

appropriate format in order to feed to the neural network. The date column needs to be encoded 

in such a way that it will be split into year, month, and day columns and extract only Year and 

Month data.  

Apart from the above, there are unwanted characters present in Home squad value and 

Away squad value columns which need to be removed.  

 

Figure 15. Dataset with null values 

Also, H2H win, H2H draw, and H2H lose columns contain null values. We need to 

remove them from the dataset by eliminating the corresponding row since the number of null 

values are less. Below code is used to perform the elimination of null values. 

 

# Dropping the rows having null values 

data.dropna(inplace=True) 
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As mentioned earlier in the attributes, the raw dataset contains two columns Home result 

and Away result which collectively give information about the final result of the match by 

comparing the values of above mentioned columns.  

We formulate a single target variable called “Result” using the below formula. 

IF Home result > Away result THEN Result =1 (means home team WON the game) 

IF  Home result < Away result THEN Result =0 (means home team LOST the game) 

IF Home result = Away result THEN Result =2 (game is DRAW) 

Below code is used to generate new target attribute and remove the Home result and 

Away result attributes from the dataset. 

 

# Building up the Result Column 

data['Result'] = np.where( 

    data['Home result'] > data['Away result'], 1, np.where( 

    data['Home result'] < data['Away result'], 0, 2))  

 

# Drop unnecessary columns 

data.drop(['Home result', 'Away result'], axis=1, inplace=True)  

 

 

As explained previously, the Date column needs to be encoded to feed to the neural 

network. Extracting year and month while omitting the day data from the date column is the 

logic of the encoding done using Regular Expression and Pandas library.  

Firstly, eliminate the extra space in the Date column. Convert it into Pandas datetime 

format. Then extract Day, Month and Year from it as new columns. Moved these newly created 

columns to the front side of the dataset and eliminate the Date and Day column from the dataset. 

Below code performs above explained activity. 

 

data['Date'] = data['Date'].replace({' ': ''}, regex=True) 

data['Date'] = pd.to_datetime(data['Date'])     # Convert date to pandas

 datetime 

data['year'] = data['Date'].dt.year             # Extract year from date 

data['month'] = data['Date'].dt.month           # Extract month form dat

e 

data['day'] = data['Date'].dt.day               # Extract day from date 

 

# Shifting the year, month and day column from last to front 
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col = data.pop("day") 

data.insert(0, col.name, col) 

col = data.pop("month") 

data.insert(0, col.name, col) 

col = data.pop("year") 

data.insert(0, col.name, col) 

 

data.drop('Date', axis=1, inplace=True)       # Drops Date columns 

 

The extracted Year and Month data need to be One-hot encoded for better 

comprehension of the feature by the algorithm. The below code performs this task and omits the 

Day column from the dataset as we assume it could be less relevant compared to Year and 

Month. 

 

data = pd.get_dummies(data, columns = ['year', 'month']) 

 

data.drop('day', axis=1, inplace=True) 

 

Attributes Home team name and Away team name are of datatype object. They need to 

be one-hot encoded as the above. The unique values in Home team names and Away team names 

are same. Below line of code checks that condition. 

 

# Checking if Away Team names and Home team names are same 

np.array_equal(sorted(data['AwayTeam'].unique()), sorted(data['HomeTeam'

].unique())) 

 

The following code is used to transform the respective attribute to one-hot encoded 

format. 

 

data = pd.get_dummies(data, columns = ['HomeTeam', 'AwayTeam']) 

 

As raw dataset contains special symbols,  ‘€’ and ‘m’ in the Home squad value and Away 

squad value columns, it needs to eliminated from the dataset. This is performed by creating 

another function called remove_unwanted_chars() and applying this function to the Test and 

Train dataset.  
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def remove_unwanted_chars(df):   

    df[['Home squad value', 'Away squad value']] = df[['Home squad value

', 'Away squad value']].replace({'€': '', 

                                                                        

                               'm': ''}, regex=True) 

return df 

train_data = remove_unwanted_chars(train_data) 

test_data = remove_unwanted_chars(test_data) 

 

Also, the ‘Object’ datatype  present in the dataset needs to be converted to float datatype. 

This is achieved by creating a function called object_to_numeric(). This function also solves the 

extra ‘.’ present in some columns. This function is applied to the Test and Train data separately. 

 

def object_to_numeric(df): 

    for col in list(df.select_dtypes(['object']).columns): 

         

        df[col] = df[col].replace(r'\.{2}', '.', regex=True) 

         

        # Converting to numeric values 

        df[col] = pd.to_numeric(df[col]) 

    return df 

train_data = object_to_numeric(train_data) 

test_data = object_to_numeric(test_data) 

 

It is better to shuffle the data before feeding to the neural network in order to avoid any 

kind of bias in the dataset. This is achieved by below code. 

 

#shuffle the whole data 

data = data.sample(frac = 1) 

 

Next, split the dataset into Train data and Test data. A Train dataset is used to train the 

model while the Test dataset is used to validate the model built. 

In this project, 80% of the dataset will be Train data and 20% of the dataset will be Test 

data.  

The dataset is split using the below code. 
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# frac is the percentage of data to be taken in the train 

frac = 0.8 

 

# converting the frac into number of rows to be taken in the train data 

threshold = int(len(data)*frac) 

 

train_data = data[0: threshold] 

test_data = data[threshold:].reset_index(drop=True) 

 

After performing the above mentioned transformations, the columns are standardized.  

Standardization is performed when the features of the input data have a large range of 

values. This can cause trouble to many machine learning models. 

We are using StandardScaler from Sklearn library to perform standardization. Basically, 

it standardizes by removing the mean of the column and scaling to unit variance. 

  

# columns to standardize 

cols_to_standardize = ['H2H win', 'H2H draw', 'H2H lose', 'Home win',  

                       'Home draw', 'Home lose', 'Away win', 'Away draw'

,  

                       'Away lose', 'Home rest ', 'Away rest', 'Home avg

 height', 

                       'Away avg height', 'Home avg age', 'Away avg age'

,  

                       'Home squad value', 'Away squad value'] 

 

# Creating Standard Scaler object 

standard_scaler = preprocessing.StandardScaler() 

 

# Fitting and transforming the standard scaer objects with columns 

train_data[cols_to_standardize] = standard_scaler.fit_transform(train_da

ta[cols_to_standardize]) 

test_data[cols_to_standardize] = standard_scaler.transform(test_data[col

s_to_standardize]) 

 

Output of the above transformation are as below for train dataset and test dataset 

respectively. 
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Figure 16. Output Train dataset Part 1 

 

Figure 17. Output Train dataset Part 2 

 
Figure 18. Output Train dataset Part 3 

 

Figure 19. Output Train dataset Part 4 

 

Figure 20. Output Train dataset Part 5 
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Figure 21. Output Train dataset Part 6 

 

 
Figure 22. Output Train dataset Part 7 

 

 
Figure 23. Output Test dataset Part 1 

Test data output follows the same structure as the train data output showed above. 

The below code is used to separate target variable from both train dataset and test dataset 

and store them in different name. Followed by removing the target variable from both test and 

train data, store them in different name. 

trainy = train_data['Result'] 

testy = test_data['Result'] 

train_data.drop('Result', axis=1, inplace=True) 

test_data.drop('Result', axis=1, inplace=True) 

 

trainX = train_data 

testX = test_data 

 

Here, we use all the columns of the train data as features except the last column which 

is stored in ‘trainy’ as target variable of the train set. Similarly Test data is also split and target 

variables are stored in ‘testy’. 
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One-Hot is the process by which the Categorical value is transformed to a form with 

which the algorithm can work better. Sklearn’s LabelEncoder does a similar job but it comes 

with a disadvantage. In LabelEncoding, it is assumed that the higher the categorical value the 

better the category will be. This would lead to errors. 

So, to overcome this problem we use one-hot encoding in which we binarize the category 

and include it as a feature to train (Vasudev, 2017). 

This is performed using Keras Library and ‘np_utils’ function is used for one-hot 

encoding the categorical variable. Below code converts the target columns in Train data and 

Test data into 3 different columns which are binarized and each column represents a different 

class. 

 

Trainy = np_utils.to_categorical(trainy, 3) 

testy = np_utils.to_categorical(testy, 3) 

 

4.4. Model Building  

4.4.1. Model with Convolution layer 

Importing library 

We use Keras deep learning framework for building CNN1D model. Sequential model, 

Dense layer, Activation layer, Dropout layer, Flatten layer, Conv1D layer, MaxPooling1D layer 

are imported from Keras library, matplotlib.pyplot as plt using the below code.  

 

 

from keras.models import Sequential 

from keras.layers import Dense, Activation, Dropout, Flatten, Conv1D, Ma

xPooling1D 

from sklearn.model_selection import train_test_split 

import matplotlib.pyplot as plt 

 

Firstly Creating variables of Train dataset and Test dataset for this model using below code. 
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# Considering all the features of train data (without using any feature 

selection algorithm) 

trainX3 = train_data 

testX3 = test_data 

 

Following code is used to define variables and assign them values. 

# Converting input data into format which convolutional layer takes. 

n_timesteps, n_features, n_outputs = trainX3.shape[0], trainX3.shape[1],

 trainy.shape[0] 

input_shape = (trainX3.shape[1], 1) 

 

where, 

‘n_ timesteps’ represents the number of rows in the training data, 

‘n_features’ represents number of columns or features in the training  data, 

‘n_outputs’ represents number of outputs in the training data, and 

‘input_shape’ contains the shape of input data. This format has been used because the CNN 

layer of neural network takes input in three-dimensional format. 

 

Building model 

# Creating a sequential model with convolutional and maxpooling layers w

hich automatically selects best features from the input data. 

 

model3 = Sequential() 

model3.add(Conv1D(filters=64, kernel_size=5, activation='relu', input_sh

ape=input_shape)) 

model3.add(MaxPooling1D(pool_size=3,strides=1, padding='valid')) 

model3.add(Dropout(0.5)) 

model3.add(Flatten()) 

model3.add(Dense(32, activation='relu')) 

model3.add(Dense(3, activation='softmax')) 

model3.compile(loss='categorical_crossentropy', optimizer='adam', metric

s=['accuracy']) 

 

Modeling of the neural network is performed using above lines of codes. In the first line, 

the Sequential model from the Keras library is defined. Sequential model allows to create the 

model layer by layer. 
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‘Conv1D ‘ is a one dimensional convolution layer where one dimensional data is being 

fed. This layer creates a convolution kernel that is convolved with the layer input over a single 

spatial (or temporal) dimension to produce a tensor of outputs (Keras). In order to compute 

convolution, many parameters need to be specified. The first Convolution layer takes four 

parameters. 

• ‘filters’ - represents the number of output filters in the convolution. Filter detects 

spatial features from input data and CNN has tendency to learn multiple features in 

parallel from 32 to 512. In this case, we took 64 as initial value. 

• ‘kernal_size’ – Kernels are filters that are used to detect features from images. In this 

case, we have used 5 as kernel size. 

• ‘activation’ – Every layer need to be passed through an activation function or Transfer 

function. It is used to determine the output of neural network like ‘Yes’ or ‘No’. It maps 

the resulting values are in between 0 to 1 or -1 to 1 etc. based on the type of the 

function used (Sharma, 2017). Here we use ‘ReLU’ activation function. It is one of the 

most used activation function nowadays in deep learning. The output of ReLU 

activation function is same as input if and only if the input is positive or zero and 

otherwise the output will be zero (Sharma, 2017). 

• input_shape –defines the shape of the input data provided to CNN layer while training. 

Max pooling layer is to automatically pick the most important features from the dataset. 

Dropout layer randomly sets some input units to 0 with a frequency we input in order to 

avoid overfitting. In this case, we have used 0.5 ratios of coefficients to be dropped to zero. 

Flatten layer is used to make a multidimensional input to one dimensional, commonly 

used to convert output of the previous layer into one dimensional form in order to feed to the 

next layer. 

Dense layer is the regular deeply connected neural network layer. We are using two 

Dense layers in this experiment. The first Dense layer has 32 neurons and we came to this by 

doing trials with 8 ,16, 32 and 64 number of neurons. The first Dense layer with 32 neurons 

produced the best results. The second Dense layer with 3 neurons produces output in the form 

of three columns representing each class. Here, 3 represents the number of neurons, meaning 

the output shape is 3. Also, ‘softmax’ activation function is used in this layer.  

Loss function is used to evaluate how good the algorithm model is. Higher value of loss 

function represents inaccurate prediction and smaller value of loss function represents more 
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accurate prediction. The loss function is calculated by calculating the squared difference 

between the expected value and predicted value. ‘categorical_crossentropy’ is used as loss 

function for multiclass classification problems where two or more output categories are 

available. 

An optimizer is a function that modifies the attributes of neural networks such as weight 

and learning rate to reduce the loss and increase accuracy. We have used ‘adam’ optimizer here 

which is a stochastic gradient descent method that is based on adaptive distribution of first- 

order and second-order  moments.  

The metric to evaluate the model performance will be ‘accuracy’. Higher accuracy 

means better prediction by the model. 

Fitting model 

The model needs to be fitted with the training data using the ‘fit’ function. We fit the 

model with the training features and their expected target variable represented by ‘trainX3’ and 

‘trainy’, respectively. Number of epochs and batch size are the other parameters we define while 

fitting the model. Training the neural network once with all the training data is called an epoch. 

Here, the number of epochs equals to 100. The batch size is a hyperparameter that defines the 

number of samples to be processed before updating the internal model parameters. It can be 

greater than or equal to one and less than the number of samples. We have used 16 as the batch 

size. Also, we are splitting the train data into train set and validation set using the 

‘Validation_split’ function.  As the validation split equals to 0.2 , the initial train dataset will be 

split into 20 % validation set and 80% train set. 

 

history_mode3 = model3.fit(trainX3, trainy, epochs=100, batch_size=16, v

erbose=1, validation_split=0.2, shuffle=True) 

Plotting Epoch vs Loss 

Plotting the loss value versus epoch for the train set and validation set will give us an 

idea of the model performance in terms of overfitting and optimum number of epoch. 
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# Plotting the graph of epoch vs loss  

training_loss3 = history_mode3.history['loss'] 

validation_loss3 = history_mode3.history['val_loss'] 

 

# Create count of the number of epochs 

epoch_count3 = range(1, len(training_loss3) + 1) 

 

# Visualize loss history 

plt.plot(epoch_count3, training_loss3, 'r--') 

plt.plot(epoch_count3, validation_loss3, 'b-') 

plt.legend(['Training Loss', 'Validation Loss']) 

plt.xlabel('Epoch') 

plt.ylabel('Loss') 

plt.show(); 

 

The result of the above code is given below. 

 
Figure 24. Plot for convolution mode with 32 neurons 

From the above result, we find the best epoch using the below code. The accuracy and 

loss value at this epoch will be considered as the accuracy and loss value of train set and 

validation set respectively given by this model.  

 

df_history3 = pd.DataFrame(history_mode3.history) 

df_history3['loss difference'] = np.where(df_history3['val_loss']>=df_hi

story3['loss'], df_history3['val_loss'] - df_history3['loss'], -1) 

df_history_factored_3 = df_history3[df_history3['loss difference'] >= 0] 
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epoch3 = np.array(df_history_factored_3.sort_values(by='loss difference'

).head(1).index.tolist())+1 

 

train_accuracy3 = df_history3.loc[epoch3]['accuracy'].values 

train_loss3 = df_history3.loc[epoch3]['loss'].values 

val_accuracy3 = df_history3.loc[epoch3]['val_accuracy'].values 

val_loss3 = df_history3.loc[epoch3]['val_loss'].values 

 

print('At epoch: ', epoch3, ' Training accuracy: ', train_accuracy3, ' T

raining loss: ', train_loss3, ' Validation accuracy: ', val_accuracy3, '

 Validation loss: ', val_loss3) 

 

The output of the above code shows the optimum epoch for this model is 1.  

Training set gives an accuracy of 54.81 % with loss value of 0.923. Similarly, the 

validation set gives an accuracy of 54.51 % with loss value of 0.992.  

 

Following this, the model is fit on the data with the optimum epoch value we obtained 

in the above part and accuracy and loss value of the test set are calculated. 

 

history_mode3_new = model3_new.fit(trainX3, trainy, epochs=1, batch_size

=16, verbose=1, validation_split=0.2) 

loss, accuracy = model3_new.evaluate(testX3, testy, batch_size=32, verbo

se=0) 

print('Loss is:, ', loss, ' and accuracy is: ', accuracy) 

 

Result 

Performance of the model is evaluated by calculating loss and accuracy values. 

 

 
Figure 25. Result of convolution model 

 

 
 Best epoch Accuracy (%) Loss 

Train set 1 54.81 0.923 
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Validation set 1 54.51 0.992 

Test set 1 52.13 0.991 

Table 9. Accuracy and Loss values 

The model has 52.13 % accuracy and 0.991 loss value on unseen test dataset with all the 

features considered. 

 

4.5. Model Improvement 

There are several methods to improve the model performance and we adopt the feature 

selection. Feature selection means the selection of variables that are more relevant to the 

prediction and elimination of less relevant variables from the dataset. They can lead to better 

accuracy by reducing complexity as we use few relevant features. 

 

4.5.1. Chi Square Feature Selection 

Below code is used to implement Chi Square feature selection which is suitable for 

selecting the best features from the input data base on its performance with the target variable. 

The data  

‘chi square selector’ should be non-negative there for we used MinMax scaler to 

transform the input data. 

‘SelectKBest’ selects ‘K’ number of features from the input data based on the chi square 

test and we have assigned the value of ‘K’ to 10.  

 

#using chi square 

from sklearn.feature_selection import SelectKBest 

from sklearn.feature_selection import chi2 

from sklearn.preprocessing import MinMaxScaler 

 

X_norm = MinMaxScaler().fit_transform(train_data) 

chi_selector =SelectKBest(chi2, k=10) 

chi_selector.fit(X_norm, trainy) 

chi_support = chi_selector.get_support() 
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chi_feature = train_data.loc[:,chi_support].columns.tolist() 

print(str(len(chi_feature)), 'selected features')  

 

The output of the chi square feature selection is printed using below code. 

 

#output of selected 10 features by chi square 

for i in range(0, len(chi_feature)): 

 

     print(chi_feature[i]) 

 

Based on the performance chi square function the following are the top 10 relevant 

features. 

• H2H win 

• H2H lose 

• Home squad value 

• Away squad value 

• HomeTeam_Athletico de Madrid 

• HomeTeam_FC Barcelona 

• HomeTeam_Real Madrid 

• AwayTeam_Athletico de Madrid 

• AwayTeam_FC Barcelona 

• AwayTeam_Real Madrid 

However, it is clear that some of the selected features are not logical as some team names 

are used to predict the match result of some other two teams. This shows no logical relevancy.  

To continue with the procedure, the new train and test sets are defined based on the chi 

square feature selection result. 

 

# Taking only top 10 features selected by Chi2.  

trainX = train_data[chi_feature] 

testX = test_data[chi_feature] 

Model Building  

Since the feature selection is already performed using chi2 method, we are adopting 

simple architecture with two dense layers only. The first Dense layer contains 16 neurons (the 

number of neurons for the first Dense layer is calculated by trial-and-error and it is found that 
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the Dense layer with 16 neurons delivers the best results) and the second Dense layer contains 

3 neurons. 

We split the initial train data into Validation set (20%) and Train set (80%) in order to 

find the best epoch.  

 

# Generating a Dense model architecture for training -Chi square 

model1 = Sequential() 

model1.add(Dense(16, input_shape=(trainX.shape[1],), activation='relu')) 

# model1.add(Dense(32, activation='relu')) 

model1.add(Dense(3, activation='softmax')) 

model1.compile(loss='categorical_crossentropy', optimizer='adam', metric

s=['accuracy']) 

 

Fitting model 

The above model with Dense layer architecture is then fitted with the dataset obtained 

after chi squared feature selection. 

 

history_mode1 = model1.fit(trainX, trainy, epochs=100, batch_size=32, ve

rbose=1, validation_split=0.2, shuffle=True) 

 

Plotting Epoch vs Loss 

The graph is plotted between loss value and epoch for validation set and train set using 

the below code. 

 

# Plotting the graph for epoch vs loss 

training_loss = history_mode1.history['loss'] 

test_loss = history_mode1.history['val_loss'] 

 

# Create count of the number of epochs 

epoch_count = range(1, len(training_loss) + 1) 

 

# Visualize loss history 

plt.plot(epoch_count, training_loss, 'r--') 

plt.plot(epoch_count, test_loss, 'b-') 

plt.legend(['Training Loss', 'Validation Loss']) 
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plt.xlabel('Epoch') 

plt.ylabel('Loss') 

plt.show(); 

 

 
Figure 26. Loss vs epoch for dense layer model-Chi square 

The following code calculates the best epoch and it is found that the model overfits when 

epoch is more than 3. Hence, the best epoch is 3.  

The model gives an accuracy of 54.4 %  and a loss value of 0.966 on train dataset.  

Similarly, it gives accuracy and loss values of 49.49 % and 0.985 respectively on the 

validation set. 

In the next step, this Dense layer model is fitted with the dataset after chi square feature 

selection with optimum epoch value in order to find the accuracy and loss value on the test set. 

 

# Generating a Dense model architecture for training 

model1_new = Sequential() 

model1_new.add(Dense(16, input_shape=(trainX.shape[1],), activation='rel

u')) 

model1_new.add(Dense(3, activation='softmax')) 

model1_new.compile(loss='categorical_crossentropy', optimizer='adam', me

trics=['accuracy']) 

history_mode1_new = model1_new.fit(trainX, trainy, epochs=3, batch_size=

32, verbose=1, validation_split=0.2, shuffle=True) 
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Result 

The result of the model is evaluated using accuracy and loss values. 

 Best epoch Accuracy(%) Loss 

Train set 3 54.40 0.966 

Validation set 3 49.49 0.985 

Test set 3 53.47 0.999 

Table 10. Accuracy and Loss values 

The model produced an accuracy of 53.47 % on the unseen test dataset. 

 

4.5.2. Selecting From Model Technique 

Here, we are use random forest classifier to estimate the best features as it is tree based 

algorithm and suitable for finding conditions.  

Then, the train data has been fed to the classifier. The ‘SelectFromModel()’ function 

selects the top 12 features from the classifier. 

 

#model improvement using selectfrommodel technique  

from sklearn.feature_selection import SelectFromModel 

from sklearn.ensemble import RandomForestClassifier 

 

embeded_rf_selector = SelectFromModel(RandomForestClassifier(n_estimator

s=100), max_features=12) 

embeded_rf_selector.fit(train_data, trainy) 

 

embeded_rf_support = embeded_rf_selector.get_support() 

embeded_rf_feature = train_data.loc[:,embeded_rf_support].columns.tolist

() 

print(str(len(embeded_rf_feature)), 'selected features') 

 

embeded_rf_feature 

 

The model selected following features as the most relevant regarding the prediction of 

result. 

• H2H win 
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• H2H lose 

• Home lose 

• Away win 

• Home rest 

• Away rest 

• Home avg height 

• Away avg height 

• Home avg age 

• Away avg age 

• Home squad value 

• Away squad value 

Based on the findings new test and train dataset are defined using the below code. 

 

# Taking only those features which are selected by "SelectFromModel" Met

hod 

trainX2 = train_data[embeded_rf_feature]  

testX2 = test_data[embeded_rf_feature] 

 

Model Building  

In this case, the architecture used is the same as that of the chi square feature selection 

method. The dataset is derived from the ‘Select from model’ methodology. The first Dense layer 

is with 16 neurons (calculated by running trials with 64 , 32 ,16, and 8 neurons) and the second 

Dense layer possesses 3 neurons.  

 

# Creating a Dense model architecture 

model2 = Sequential() 

model2.add(Dense(16, input_shape=(trainX2.shape[1],), activation='relu')

) 

model2.add(Dense(3, activation='softmax')) 

model2.compile(loss='categorical_crossentropy', optimizer='adam', metric

s=['accuracy']) 
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Fitting model 

The above model is fitted with the dataset derived from ‘select from model’ technique, 

using below code. 

 

history_mode2 = model2.fit(trainX2, trainy, epochs=100, batch_size=32, v

erbose=1, validation_split=0.2, shuffle=True) 

 

Plotting Epoch vs Loss 

As in the case of the previous models, a graph is plotted between the Loss value and 

Epoch. 

 
Figure 27. Loss vs epoch for dense layer model-Chi square 

The same set of code which was used in earlier, is now reused to calculate the best epoch 

value. 

It is clear that an epoch value of 10 works best for this model as the model overfit after 

10 number of epochs. 

The accuracy and loss value of this model on the train set are 54.81 % and 0.954 

respectively. Similarly, the accuracy and loss value on the validation set at epoch 10 are 52.17 

% and 0.958 respectively. 
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After finalizing on an epoch value of 10, we are fit this Dense layer architecture on the 

dataset derived from the ‘select from model’. This is to calculate the accuracy and loss value on 

the test set. 

 

#Creating a Dense model architecture 

model2_new = Sequential() 

model2_new.add(Dense(16, input_shape=(trainX2.shape[1],), activation='re

lu')) 

# model2_new.add(Dense(64, activation='relu')) 

model2_new.add(Dense(3, activation='softmax')) 

model2_new.compile(loss='categorical_crossentropy', optimizer='adam', me

trics=['accuracy']) 

history_mode2_new = model2_new.fit(trainX2, trainy, epochs=10, batch_siz

e=32, verbose=1, validation_split=0.2, shuffle=True) 

 

loss, accuracy = model2_new.evaluate(testX2, testy, batch_size=32, verbo

se=0) 

print('Loss is:, ', loss, ' and accuracy is: ', accuracy) 

 

Result 

The result of the performance of the model is printed using below code. 

 

loss, accuracy = model2_new.evaluate(testX2, testy, batch_size=32, verbo

se=0) 

print('Loss is:, ', loss, ' and accuracy is: ', accuracy) 

 

 Best epoch Accuracy(%) Loss 

Train set 10 54.81 0.954 

Validation set 10 52.17 0.958 

Test set 10 53.20 1.005 

Table 11. Accuracy and Loss values 

 The model gave 53.20 % accuracy and loss value of 1.005 on the unseen test dataset. 
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5. Conclusion 

Above performed approach to predict the football match results from the dataset using 

CNN algorithm delivered comparatively low accuracy, which is approximately 53% for all the 

three models. Initially, the model architecture with convolutional layer delivered an accuracy of 

52.13 %. Then, we performed model improvement using feature selection using two different 

techniques, the chi square feature selection and ‘selectFrommodel’ method, respectively. The 

accuracy of the algorithm was close to the previous model with convolutional layer, which was  

53.47% after performing chi square feature selection. However, some features selected by the 

algorithm were not logical. Then, we performed feature selection using ‘selectfrommodel’ 

method and the features selected by algorithm were logically convincing from a football analysis 

point of view. However, the accuracy remained almost same as the previous models. The 

accuracy value provided by this model was 53.2 %. 

Even though an accuracy of 53% is technically low, we also have to consider that it is 

higher than the probability of a random guess which gives 33.33% probability to be correct. The 

major reason for low accuracy value in general could be the dataset itself as the dataset is 

comparatively less complex. Hence, it assumes that the simple architecture would be enough to 

solve the problem. This could also be the reason why the models overfit after several epochs. 

This can be understood from the comparatively similar results by model with convolutional 

layer architecture and models with simple Dense layer architecture.  

 

Also, considering that domain specialists deliver an accuracy of around 72% (A deep 

learning framework for football match prediction, 2020), the performance by the CNN on the 

dataset with limited input is not a bad prediction.  

The performance of the model could be strongly improved by enriching  the dataset. As 

football is a game which can be influenced by so many factors, it is nearly impossible to generate 

a perfect dataset. The dataset we have used contains very limited features in the football game 

aspects. However, increasing the complexity of the dataset by adding more complex features 

could lead to better fitting of the model. Similarly, the length of the dataset can be improved by 
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adding more samples. This could also be a significant step towards model performance 

improvement.  
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6. Future Scope 

There are many areas that can be improved in order to achieve a better performance from 

the model.  

• Fine tuning of model parameters can be performed in order to achieve accuracy. 

• Improving dataset by  adding more complex features 

• Improving dataset by adding more samples to the dataset 

Better feature selection techniques can be implemented by research and it could lead to 

better results. 
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