
Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Engineering

Master's Thesis

Football Score Prediction Using Deep Learning Methods

Arjun Chettiyattil Pankaj

© 2022 CZU Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

DIPLOMA THESIS ASSIGNMENT
ARJUN CHETTIYATTIL PANKAJ

Systems Engineering and Informa cs
Informa cs

Thesis tle

Football Score predic on using Deep learning methods

Objec ves of thesis
The aim of the work is to develop a methodology for solving a regression problem related to professional
football. Scope of this work is to predict the score of the football matches by implemen ng deep learning
algorithms using the historical data of football matches in the major European football leagues. Predic on
of score with the maximum accuracy is the ul mate objec ve of this work.

Methodology

The student describes the current state of research in the field of deep learning. It gives an overview of the
areas inwhich deep learningmethods have been successfully used and describes some typical applica ons.
It also describes the open-source so ware designed for their implementa on, especially the frameworks
TensorFlow and Keras.

The task is to predict the score of football matches which could a closer accuracy as a predic on from an
expert in the football field using the available dataset. The data set used is taken from the data repository
www.kaggle.com.

Student will use CNN algorithm to find the solu on of this problem with the help of Python language and
Deep learning frameworks are used for calcula ons. The result of implementa on will be verified using
stand methodologies in use and the conclusion of the findings is drawn.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha - Suchdol

The proposed extent of the thesis
60 pages

Keywords
Python, Deep learning, Neural network

Recommended informa on sources
GÉRON, A. Hands-on machine learning with Scikit-Learn and TensorFlow : concepts, tools, and techniques

to build intelligent systems. Beijing ; Boston ; Farnham ; Sevastopol ; Tokyo: O’Reilly, 2019. ISBN
978-1-492-03264-9.

CHOLLET, F. – ALLAIRE, J J. Deep learning with R. Shelter Island, NY: Manning Publica ons Co., 2018. ISBN
9781617295546.

Expected date of thesis defence
2021/22 WS – FEM

The Diploma Thesis Supervisor
doc. Ing. Arnošt Veselý, CSc.

Supervising department
Department of Informa on Engineering

Electronic approval: 1. 11. 2021

Ing. Mar n Pelikán, Ph.D.
Head of department

Electronic approval: 23. 11. 2021

Ing. Mar n Pelikán, Ph.D.
Dean

Prague on 22. 03. 2022

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha - Suchdol

Declaration

I declare that I have worked on my master's thesis titled "Football Score Prediction Using

Deep Learning Methods" by myself and I have used only the sources mentioned at the end of

the thesis. As the author of the master's thesis, I declare that the thesis does not break any

copyrights.

In Prague on 30/03/2022

Acknowledgement

I would like to thank doc. Ing. Arnošt Veselý, Ing. Martin Čejka, Mgr. Nikola

Bučková, friends and my family for their advice and support during my work on this thesis.

Football Score prediction using Deep learning

methods

Abstract

The major aim of the work is to use convolutional neural network to predict the outcome

of the football match result of Spanish first division football league using the historical dataset

available from the season 2013-14 till 2017-18. The Possible outcomes are classified into win,

draw or lose. The work has been done using Convolutional Neural Network algorithm with the

help of several opensource libraries to implement deep learning framework. The programming

language used to perform the tasks is Python programming language. The ultimate goal of the

work is to predict the result with an accuracy as close as a prediction from a football domain

expert. The result of the work is verified and conclusion drawn.

Keywords: Deep learning, Classification, CNN, RNN, Keras, Convolution layer, football result

prediction, sport results, artificial intelligence

Fotbalové výsledky a hluboké učení

Abstrakt

Hlavním cílem práce je predikovat výsledky fotbalových utkání první divize španělské

fotbalové ligy za využití konvoluční neuronové sítě a sady dat předešlých zápasů v sezónách od

2013-14 do 2017-18. Predikované výstupy jsou klasifikovány do kategorií výhra, remíza,

prohra. Konvoluční síť byla sestavena za využití několika knihoven s rozhraním pro hluboké

učení, které disponují otevřeným zdrojovým kódem. Programovacím jazykem byl Python.

Cílem v kontextu je pak predikovat výsledky s přesností blížící se přesnosti predikcí fotbalových

expertů. Výsledky práce jsou ověřeny, práce je zakončena představením závěru a diskuzí.

Klíčová slova: predikce fotbalových výsledků, sportovní predikce, umělá inteligence,

konvoluční neuronová síť, hluboké učení, rekurentní neuronové sítě

1

Table of Contents

1. Introduction .. 3

2. Objectives and Methodology ... 4

2.1. Objective .. 4

2.2. Methodology .. 4

3. Literature Review .. 5

3.1. Terminology .. 5

3.1.1. Machine Learning .. 5

3.1.2. Deep Learning .. 6

3.2. Current State Overview ... 13

3.2.1. Football Match Prediction using Deep Learning 13

3.2.2. A Deep Learning Framework for Football Match Prediction 14

3.2.3. Using CNN to Predict Goal-Scoring Opportunities in Soccer 15

3.2.4. Football Match Result Prediction Using Neural Networks 16

3.2.5. Neural Networks Football Result Prediction ... 16

3.2.6. Football Match Results Prediction Using Artificial Neural Networks 17

3.2.7. Predicting Sports Matches with Neural Models....................................... 18

4. NN Implementation ... 19

4.1. Introduction ... 19

4.2. Dataset ... 19

4.2.1. Attributes .. 20

4.3. Data Preprocessing .. 23

2

4.3.1. Code ... 24

4.4. Model Building .. 32

4.4.1. Model with Convolution layer ... 32

4.5. Model Improvement .. 38

4.5.1. Chi Square Feature Selection ... 38

4.5.2. Selecting From Model Technique .. 42

5. Conclusion ... 46

6. Future Scope .. 48

7. References .. 49

8. List of Figures and Tables ... 52

8.1. List of Figures .. 52

8.2. List of Tables ... 53

8.3. Appendix ... 53

3

1. Introduction

Football being one of the world’s most popular sports has a lot of craze in everyone’s

mind. In sports prediction, a large number of features can be collected including the historical

performance of the team, results of the matches, and data on players to help different

stakeholders understand the odds of winning or losing the forthcoming matches. Predicting

which team is likely to win is important because of the financial assets involved in the betting

process; thus bookmakers, fans, and potential bidders are all interested in approximating the

odds of a game in advance.

This research aims to summarize the research done so far in solving the presented task

as well as provide a thorough conclusion for the provided proposals.

Deep Neural Networks (DNNs) are usually used for pattern recognition and to solve

non-linear relationships such as Stock Exchange and Prediction and Image Compression.

Recurrent Neural Networks (RNNs) are usually used to solve sequence-based tasks; tasks

involving text, speech or video streams. Convolutional Neural Networks (CNN) are used to

solve image-based tasks. In this thesis, we are going to present and compare various approaches

to how Neural Networks are used to solve the task of predicting the results of football matches.

4

2. Objectives and Methodology

2.1. Objective

The aim of the work is to develop a methodology to solve one of the classification

problems in professional football, i.e. predicting the outcome of a professional football match.

The scope of the work is to predict the final result of football matches in the Spanish first

division professional football league using the available historical data. The possible outcome

of the matches can be win, draw, or lose. Predicting this outcome with maximum possible

accuracy is the ultimate objective of the work.

2.2. Methodology

The methodology of this work involves reviewing the current state of research in the

field of deep learning. It also involves reviewing literary works and journals relevant to the topic

in order to understand the general approach of the similar work in the same domain. This also

involves giving an overview about the areas in which deep learning methods have been

successfully implemented in the past and provides abstract idea about its typical applications.

Open source software such as Keras, TensorFlow, NumPy, etc are explained briefly since they

have been designed to implement deep learning framework.

The task is to predict the outcome of the football match with an accuracy close to that of

an expert in the domain, using the available historical dataset. The dataset is created by choosing

relevant attribute from the football statistics of Spanish la Liga. The data contains information

from the seasons 2013-14 and 2017-18. The dataset is created by collecting data mainly from

www.whoscored.com & www.transfermarkt.com.

The tasks are performed using CNN algorithm to find the solution of the problem using

Python programming language and other deep learning frameworks for calculations. The result

of the implementation will be verified using standard methodologies like accuracy value and

based on them the conclusion of the findings is drawn.

http://www.whoscored.com/
http://www.transfermarkt.com/

5

3. Literature Review

3.1. Terminology

One of the advantages of Neural Networks is their versatility, meaning that multiple

networks can be used to solve various tasks. In this section, we are going to present a quick

overview of Machine Learning, Deep Learning, as well as Convolutional and Recurrent

Neural Networks, how they work, the differences between them, and their applications.

3.1.1. Machine Learning

Definition: An application of artificial intelligence that includes algorithms that

parse data, learn from that data, and then apply what they’ve learned to make informed

decisions (Grieve, 2020).

Machine learning is a subfield of artificial intelligence which has increased in

popularity over the last few years, in both research and industries. In contrast to the

traditional rule-based artificial intelligence where an algorithm is more or less a list of

predefined static rules, machine learning tries to use data to learn to make predictions or

decisions.

An example of a Machine Learning algorithm is Spotify’s music recommendation.

Spotify sees the user’s current taste in music and the type of songs they listen to the most

and uses that information to recommend new songs for the user. Same as how Amazon

recommends new products for its users. This technique is called a Recommendation System

and it is one of the most popular Machine Learning algorithms (SystemDesign, 2021).

6

Figure 1. A simple chart showing how recommendation systems work

Supervised learning is a machine learning method in which models are trained using

labeled data. In supervised learning, models need to find the mapping function to map the

input with the output. Examples: Classification and Regression.

Unsupervised learning is another machine learning method in which patterns are

inferred from the unlabeled input data. The goal of unsupervised learning is to find the

structure and patterns from the input data. Examples: Segmentation and Clustering.

3.1.2. Deep Learning

Definition: A subfield of machine learning that structures algorithms in layers to

create an “artificial neural network” that can learn and make intelligent decisions on its own

(Grieve, 2020).

Deep Learning models analyze the data and their structure like a human would – they

extract useful features from the data and use these features to learn certain patterns in the

data.

Some types of Deep Learning algorithms are: Artificial Neural Networks (ANN),

Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN). We will

discuss each of them in simple detail in the next subsections.

Artificial Neural Networks

Artificial Neural Networks are inspired by the biological network of neurons in the

human brain. The human brain is composed of nerve cells called neurons that are connected

by axons. ANNs are composed of multiple nodes, which imitate the biological neurons of a

human brain. The neurons are connected by links which imitate the biological axons, and

they interact with each other. Each node takes input data, performs a simple operation, and

passes the result to other nodes. Like a biological brain, an ANN is self-learning and can

therefore excel in areas where the solution is difficult to express through a traditional

programming approach (Aravindpai, 2020).

7

Figure 2. Artificial Neural Networks

A neural network with at least one hidden layer with a finite number of neurons in

that layer can approximate any continuous function. This is known as the universal

approximation theorem, and is the reason why one could believe that neural networks can

be used for general artificial intelligence. It seems likely that being able to approximate

functions is a very good property to possess when trying to learn how to behave.

Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) are prevalent in image and video processing

projects. The building blocks of CNN are filters or “kernels”. Kernels are used to extract the

relevant features from the input using the convolution operation.

How CNN Works?

CNN learns the filters implicitly, which is one of the main features of the Deep

Learning models. These filters help in extracting the right and relevant features from the

input data. CNN captures the spatial features from an image. Features help us in accurately

identifying the objects present in images or videos, locating the said objects and their

relations with other objects.

For example, we – as humans – can identify human faces by looking at specific

features like eyes, nose, mouth and so on. We can also see how these specific features are

arranged in an image. That’s exactly what CNN is capable of capturing (Aravindpai, 2020).

8

Figure 3. Simple architecture of CNN

Convolutional Neural Networks Layers

Convolutional Layer:

The convolutional layer is the central piece of the CNN where it derives its name

from. The layer performs a convolution operation between the image and kernels/filters in

order to extract meaningful features from the image. Kernels are two-dimensional sets of

weights that are smaller than the input image, usually 3x3, 5x5 or 9x9 (Chollet, 2018).

Figure 4. Convolution operation between the input image and a 3x3 kernel

The output of this convolution operation is called a “feature map”. Feature maps

contain relevant features from the image that were extracted from the convolution layers.

9

Figure 5. Visual representation of the feature map for a cat classification task

Pooling Layer:

The primary aim of the Pooling layer is to reduce the sizes of the convolved feature

maps in order to reduce computational costs. There are several types of pooling: Max

Pooling and Average Pooling. Max Pooling is by far the most used type. Pooling layers are

quite simple, for example, Max Pooling works by calculating the largest element taken from

a window of the feature maps (Chollet, 2018).

Pooling layers usually act as a bridge between Convolution layers and Fully

Connected layers.

Dense (Fully-Connected) Layer:

Dense or Fully-Connected layers consist of the weights and biases along with the

neurons. As the name suggests, the neurons in this layer are fully-connected to the ones in

the layer before them.

It is worth noting that the final Dense layer always has the same output shape as the

number of classes the data contains. For example, if we want to classify cats and dogs, we

have two classes – cats and dogs – therefore, the final Dense layer should have an output

shape of 2.

Dropout Layer:

Usually when using Fully-Connected layers, it can lead to overfitting. Overfitting

happens when the model learns a feature too well or memorizes the feature. This leads to the

model achieving very high accuracy on the training set but low accuracy on the testing set.

i.e. the model does not generalize well to new data. To combat over-fitting, the concept of

dropout is introduced. Drop-out means dropping random neurons in order to force all

10

neurons to learn new features in every iteration. Usually, a good dropout percentage is

around 25-50%.

Flatten Layer:

Flatten layers simply convert 2D output to 1D, so it flattens the output of the previous

layer. It is usually followed by one or more Dense layers as the flatten layer facilitate a one-

dimensional input to the dense layer.

Activation Layer:

Finally, Activation Functions or Activation Layers learn and approximate continuous

and complex relations between variables of the network. They basically decide which

information should be fed forward through the network and subsequently fire the following

neurons and which information should be discarded.

There are several types of activation functions: ReLU, Softmax, tanH, and Sigmoid.

Each of these have their own specific usage. Generally, between layers we use ReLU

activation and for classification tasks Sigmoid or Softmax activations are used.

Figure 6. Graphs of Sigmoid and ReLU activation functions

11

Figure 7. Simple CNN architecture used for digits classification

Applications of CNN

There are a myriad of Convolutional Neural Networks applications that we use in

our everyday life, like Face Recognition - used in security systems as well as Facebook face

tagging, Optical Character Recognition - used in extracting text and information from

documents, Image Search, Object Detection, Object Recognition, and many others.

Figure 8. Object classification - an example of CNN

Recurrent Neural Networks (RNN)

Recurrent Neural Networks save the output of processing nodes and feed the result

back into the model. Each node in the RNN model acts as a memory cell, continuing the

computation and implementation of operations. If the network’s prediction is incorrect, then

the system self-learns and continues working towards the correct prediction during

backpropagation.

Figure 9. Recurrent Neural Networks architecture

One limitation of a normal neural network is that the input and output is of fixed

length. If you input images they all need to have the same size. RNN introduces loops

between events or steps allowing information to be used in a later stage, just like a memory.

12

One can see a loop as a copy of the network with the same parameters that just sends the

state to the next step. This enables the model to be used on sequences of input and output

which can take previous information into account. It has been shown that this works very

well for a number of situations like natural language processing, video classification, image

classification, etc (Aravindpai, 2020).

Some examples of the applications of Recurrent Neural Networks include: Sentiment

Classification - classifying whether a sentence carries a positive or negative connotation;

Image Captioning - describing the objects and events happening in a given image; Language

Translation - automatically learn how to translate from one language to another, including

knowing how the vocabulary, semantics and grammar of each language work.

Figure 10. Image captioning – an application of RNN

Long Short-Term Memory

Figure 11. LSTM architecture

RNNs remember the information through time. It is useful in time series prediction

only because of the feature to remember previous inputs as well. This is called Long Short

Term Memory.

Long Short-Term Memory (LSTM) unit is a recurrent network unit that is designed

to remember values for either a long or a short duration of time. For example, if the LSTM

unit detects an important feature from an early input sequence, it carries this information

over a long distance. This is significant for many applications, such as speech processing,

13

music composition and time series prediction (Text Classification Algorithms: A Survey,

2019).

The below figure is a quick summary of the differences between ANN, CNN and

RNN (Gupta, 2020).

Table 1. Comparison of ANN vs CNN vs RNN

3.2. Current State Overview

In this section, we will present some of the previous work done to predict football

matches with RNNs, LSTMs, CNNs or other approaches.

3.2.1. Football Match Prediction using Deep Learning

The first approach (Football Match Prediction Using Deep Learning, 2017) discusses

using Recurrent Neural Networks to predict the football match results. The dataset used for

this project includes the information for each player in the teams. The dataset includes

matches for leagues and tournaments for the 54 countries in the Union of European Football

Associations (UEFA), USA, Brazil, Japan and others. It contains features like Line-ups,

Position, Goals scored, Substitutions, and Penalty.

The recorded data is embedded before being fed to the model. Afterwards, the

embeddings are converted to one-hot encoded vectors which makes the data inputs more

expressive and re-scalable.

14

Figure 12. Architecture of the embedding model used in the thesis

The highest model achieved an accuracy of 98%. The authors have noted an

exponential increase in accuracy as the match goes on (Football Match Prediction Using

Deep Learning. Daniel Pettersson, Robert Nyquist).

Using the proposed LSTM architecture the final test classification accuracy of the

outcome was 98.63% for the many-to-one. The more information the networks are fed about

a match, i.e. the longer an ongoing match is played, the better the network performance on

predicting the outcome.

3.2.2. A Deep Learning Framework for Football Match Prediction

In this research (A deep learning framework for football match prediction, 2020), the

authors propose another Recurrent Neural Network-based approach to tackle the problem of

predicting the outcome of a football match, more specifically, the scores of each team.

The aim of this study is to focus on the players initially. In this way it takes into

account if a player does not play for a team in a specific match, which will have an impact

and it will be recorded. A match is played at a specific time, and events occur at a relative

time in a game. The order of matches and events matter since they have an impact on the

future.

Table 2. Sample of the dataset

15

After 10 epochs of training, the training loss dropped to around 0.594, and around

0.596 for validation. On testing the model with real life data, the model achieved a testing

accuracy of 63.3%.

3.2.3. Using CNN to Predict Goal-Scoring Opportunities in Soccer

This research (Using Deep Convolutional Neural Networks to Predict Goal-Scoring

Opportunities in Soccer, 2017) focuses on the starting club squad and ball positions to predict

the goal-scoring opportunities in a match. Convolutional Neural Networks are used to

process and predict the outcome of this data. The desired outcome in this approach is to

predict when an attack is said to be a ‘goal-scoring opportunity’ or not. In other words, this

approach focuses more on whether an attack will lead to a goal or not.

Below are samples of the data fed to the network. In these images, players of team A

are represented by the blue data points and the keeper is represented by cyan; players of team

B are represented by red data points and their keeper is represented by yellow; the ball is

represented by a green square and the player who has possession of the ball has green borders

around them in order to emphasize their presence.

Figure 13. Goal scoring opportunity

Figure 14. Loss of ball possession

The authors use two types of CNN: Google LeNet (ImageNet Classification with

Deep Convolutional Neural Networks, 2012) and a custom 3-layered CNN. The LeNet

16

model has been trained from scratch and achieved an accuracy of 67%, which is 10% higher

than that of the kNN model which achieved an accuracy of 57%. The custom CNN model

achieved an accuracy of 63%.

3.2.4. Football Match Result Prediction Using Neural Networks

One approach uses (Football Match Result Prediction Using Neural Networks and

Deep Learning, 2020) a Long-Short Term Memory (LSTM) of 512 units to tackle the task

of predicting the football match outcome. The data used is from the English Premier League

2010-2018 seasons. The dataset contains data like home and away teams, match results, and

winning streaks. This approach achieved a test accuracy of 80%. The input vector is not

described, and the model output is whether the home team had won, drawn, or lost the match.

Table 3. Summary of the accuracies achieved (Football Match Result Prediction Using Neural

Networks and Deep Learning, 2020) experimenting with different number of units

3.2.5. Neural Networks Football Result Prediction

Another research (Shum, 2020) uses data gathered from both the English Premier

League (EPL) and the Spanish La Liga gathered from 8 seasons (2007 to 2016). The data

contains the teams’ position, points, number of goals, winning streaks, losing streaks and

results history. Multiple models are tested in this approach for research purposes. The input

to the model consists of some of the selected features by the authors, such as the ones in

Table 4.

17

Table 4. Sample of the input data

Most notably, an odds-based model achieves an average accuracy of 22% for the

EPL and 20% for La Liga. Random Forest is then tested, and it achieves an accuracy of 54%

across both leagues; a 3-layer ANN achieves an accuracy of 62% for EPL and 54% for la

liga. The predicted output is also the match outcome relative to the home team.

3.2.6. Football Match Results Prediction Using Artificial Neural

Networks

This research (Football Match Results Prediction Using Artificial Neural Networks;

The Case of Iran Pro League, 2014) uses an ANN to predict the results in the Iranian League.

The dataset was gathered by the authors containing match results and table positions of

Iranian teams from 12 seasons – 2001 to 2012.

Table 5. Sample of the encoded data used in this approach

The authors not only predicted the winner of the match, but also the results of the

match (the number of goals that each team would score).

18

Table 6. Summary of the predicted vs actual match results

3.2.7. Predicting Sports Matches with Neural Models

Finally, an interesting approach is taken in the next research (Pereverzeva, 2021). In

this approach, the author uses a dataset gathered from various leagues including but not

limited to the Italian, Spanish, German, and English leagues. The data contains information

including the league in which the match was played, the participating teams, home and away

teams, the scores for each team, and the result of the match - whether it’s a win for the home

team, a loss, or a draw. The model used in this approach is a Convolutional Graph Neural

Network (A Graph Regularized Neural Network for Node Classification, 2020).

This approach achieves an average accuracy of 46% for the football match data.

Table 7. Summary of the results achieved by the CGNN on various sports

19

4. NN Implementation

4.1. Introduction

Based on the previous researches, it is apparent that the usage of previous match results,

data about the clubs, and their positions in the league is vital to achieving a good accuracy.

Therefore, the proposed approach consists of using a Convolutional Neural Network and using

data from previous matches.

4.2. Dataset

The data used in this approach contains football match statistics and some team statistics

of Spanish football league - Spanish la Liga. It is acquired from scaping the data from several

websites including whoscored.com (WhoScored.com), Transfermarket.com (Transfermarkt),

etc. assuming that the data provided in the websites is accurate without error.

In detail, the data set contains match statistics like the date of the match, team names,

head-to-head match results , previous match results, goals scored by home-team and goals

scored by away team etc. Also, it contains some team statistics like the average age of the squad,

average height of the squad , transfer market value of the team etc. The acquired data is from

the season 2013-14 till the season 2017-18.

Since there are 20 teams participating in the league in one season, each season will have

380 matches in total considering that each team will pay against each other two times in a season.

However, other international cup matches and international club competitions haven’t been

considered for this study since the collection of the data would be more complicated. There

could be some effect for some teams due to these extra games on the Season but they are

neglected since it will be minor compared to the whole dataset.

20

Table 8. Sample of the dataset used

4.2.1. Attributes

As in the above example, the raw dataset consists of 22 columns which means 22

attributes.

Date : This attribute is the representation of date of occurrence of the match. The raw

dataset contains two types of format for this attribute- MM/DD/YYYY and DD/MM/YYY. Date

can be a relevant attribute as it can be correlated with gradual development of strengthening of

the team by key players playing together for longer time.

Home Team : The name of the Host team is given by this attribute. The team which

owns the ground in which the match is being played. This is a text datatype attribute.

Away Team : This attribute represents the name of the visiting team. This attribute has

text datatype as the above one.

H2H win: This attribute represents the number of times the home team won the match

when they played against the specific away team, considering the recent 6 head-to-head

matches. This attribute can be correlated to the influence of historic match result in the upcoming

match, which is mostly considered as psychological effect. This value can be an integer between

0 and 6 since the results of recent 6 matches are considered. This methodology is often applied

in professional football match analysis by experts and betting websites. The values can be null

when new teams enter the Spanish la Liga from the second division every season based on their

performance in the second division. Hence there can be a scenario where some teams have no

history of matches played together. This should be cleaned during the preprocessing phase.

21

H2H draw : The same as the H2H win attribute, this represents the number of times the

home team ended up in draw when they played against the specific away team considering the

recent 6 head-to-head matches.

H2H lose : This represents the number of times the home team lost when they played

against the specific away team considering the recent 6 head-to-head matches.

Home win : This attribute gives an idea of the number of times the home team won in

the recent 6 matches. This is irrespective of the away team and it can be an integer value between

0 and 6. This attribute incorporates the concept of team form to the dataset. It is highly probable

that the team with higher number of winning streaks is in a good form. This will be a key

attribute since the form of a team has importance in the football analysis and predictions.

Home draw: Similar to Home win attribute this one conveys the number of time the

home team ended up in draw, in the recent 6 matches.

Home lose : The number of loses taken by the home team in the last 6 matches is

represented by this attribute in the form of an integer value between 0 and 6.

Away win: This attribute is similar to Home win attribute which is explained earlier but

represents the visiting team instead of home team.

Away draw: Similar to Home draw attribute and it gives information about the away

team.

Away lose: Similar to Home lose attribute and gives information about the away team.

Home rest: This attribute tells the number of rest days the home team got in between

the previous match and the current match. This can be an integer value. Rest days are usually

very important as congested match schedule can cause fatigue and drop in performance. It is

observed that the team which got better number of rest days shows a competitive advantage over

the team without proper rest during important matches.

Away rest: This attribute is similar to Home rest but gives the information about the

away team.

Home avg height : The physical aspects of the squad can be a key factor in many games

when it comes to the style of the game they are playing or the opponent. Hence this attribute

gives the average height of the squad of the home team selected for the game.

22

Away avg height: This attribute is similar to the Home avg height but represents the

away team.

Home avg age: The average age of the squad, similar to average height, can influence

the game and this attribute tells the average age of the home team squad. The team with the

younger squad usually outperforms in a physically demanding game and the squad with more

experience shows some advantage when it comes to games under high stress.

Away avg age : This attribute gives data similar to Home avg height but for the away

team.

Home squad value: The talent and consistent performance of professional football

players usually reflects on their transfer market value as highly skilled players mostly have high

value in the transfer market. Collectively the transfer market value of the squad for a specific

season can be a reflection of the talent they have. This attribute tells the transfer market value

of the whole squad for a specific season in the denomination of million euros.

Away squad value: This attribute contains similar information like Home squad value

but for away team instead of the home team.

Home result: This is the attribute present in the raw dataset which contributes to the

result of the match in terms of the number of goals scored by the home team. By comparing this

attribute with Away result attribute, it is possible to formulate which team will win the match

or what is the final outcome of the match. This can be an integer value from 0.

Away result: Similar to the Home result attribute this one is available in the raw dataset

and depicts the number of goals scored by the away team.

Result: This is an attribute derived from the Home result and Away result attributes

using logical operation using python dataset and NumPy library. As an outcome this attribute

can have 3 values and it conveys the results of the game as below.

Value = 1 : Home team won the match

Value = 0 :Home team lost the match

Value = 2 : The match is draw.

This attribute is considered as the Target attribute throughout the project.

23

4.3. Data Preprocessing

Data preprocessing includes the steps to transform the raw data with irregularities like

noise, unwanted characters, missing values, etc. to a data which can be easily parsed by the

machine.

Data preprocessing is important because the raw data with bad quality would lead to bad

quality results as the algorithms would fail to identify the patterns effectively (Baheti, 2022).

The following python libraries have been used to perform the preprocessing of data.

Pandas

Pandas is a python library mainly used for working with tabular dataset. This library is

popularly used to analyze, clean, explore and manipulate data (w3schools, 1999).

DataFrame

It supports various file formats like CSV, excel , SQL , JSON etc. which makes this

library very versatile.

NumPy

NumPy is considered to be one of the fundamental packages for performing scientific

computations in Python. It helps with the fast operations on arrays by facilitating multi-

dimensional array objects, various derived objects such as matrices, masked arrays etc.

Scikit-Learn

Scikit-Learn is a free machine learning library for Python which features different

algorithms such as random forest, KNN etc. Here, it is used mainly for data preprocessing and

splitting the data into test and train sets.

Regular expression (re)

Regular expression (re) module is a tiny and highly specific programming language

embedded inside Python. They are usually used to match strings of text such as characters,

patterns etc. Here, it is used for encoding the date attribute into Year, Month and Day.

24

4.3.1. Code

Google Colab notebook has been chosen for the coding purpose as it is easy to set up

and has inbuilt Python libraries. Google Colab notebooks are the Jupyter notebook IDE

(Integrated Development Environment) that runs in cloud and is integrated with Google Drive.

This lets the user to use Google’s dedicated GPU (Graphic Processing Unit) and

TPU(Tensor Processing Unit).

Initially we need to import all the necessary Python libraries such as Pandas, NumPy,

Sklearn, RE, etc.

import pandas as pd

import numpy as np

from sklearn import preprocessing

from sklearn.model_selection import train_test_split

import re

from keras.utils import np_utils

pd.set_option(‘display.max_columns’, None) # setting the parameter to s

how all columns

Then using following code, the raw dataset file named Dataset_1 is uploaded to Colab

from the local machine. This is to start working with the data using the cloud notebook.

from google.colab import files

uploaded = files.upload()

Pandas library is used to read the file and display the dataset with first 5 rows. After that,

inspection on the dataset is carried out by displaying dataset info. This will give us an idea about

the different datatypes present in the dataset.

Reading Excel file

data = pd.read_excel('Dataset_1.xlsx')

data.head(5)

Getting general information about data

data.info()

25

By observing the data using the above commands, it is clear that the data contains

categorical data (Home team name and Away team name) which need to be converted into

appropriate format in order to feed to the neural network. The date column needs to be encoded

in such a way that it will be split into year, month, and day columns and extract only Year and

Month data.

Apart from the above, there are unwanted characters present in Home squad value and

Away squad value columns which need to be removed.

Figure 15. Dataset with null values

Also, H2H win, H2H draw, and H2H lose columns contain null values. We need to

remove them from the dataset by eliminating the corresponding row since the number of null

values are less. Below code is used to perform the elimination of null values.

Dropping the rows having null values

data.dropna(inplace=True)

26

As mentioned earlier in the attributes, the raw dataset contains two columns Home result

and Away result which collectively give information about the final result of the match by

comparing the values of above mentioned columns.

We formulate a single target variable called “Result” using the below formula.

IF Home result > Away result THEN Result =1 (means home team WON the game)

IF Home result < Away result THEN Result =0 (means home team LOST the game)

IF Home result = Away result THEN Result =2 (game is DRAW)

Below code is used to generate new target attribute and remove the Home result and

Away result attributes from the dataset.

Building up the Result Column

data['Result'] = np.where(

 data['Home result'] > data['Away result'], 1, np.where(

 data['Home result'] < data['Away result'], 0, 2))

Drop unnecessary columns

data.drop(['Home result', 'Away result'], axis=1, inplace=True)

As explained previously, the Date column needs to be encoded to feed to the neural

network. Extracting year and month while omitting the day data from the date column is the

logic of the encoding done using Regular Expression and Pandas library.

Firstly, eliminate the extra space in the Date column. Convert it into Pandas datetime

format. Then extract Day, Month and Year from it as new columns. Moved these newly created

columns to the front side of the dataset and eliminate the Date and Day column from the dataset.

Below code performs above explained activity.

data['Date'] = data['Date'].replace({' ': ''}, regex=True)

data['Date'] = pd.to_datetime(data['Date']) # Convert date to pandas

 datetime

data['year'] = data['Date'].dt.year # Extract year from date

data['month'] = data['Date'].dt.month # Extract month form dat

e

data['day'] = data['Date'].dt.day # Extract day from date

Shifting the year, month and day column from last to front

27

col = data.pop("day")

data.insert(0, col.name, col)

col = data.pop("month")

data.insert(0, col.name, col)

col = data.pop("year")

data.insert(0, col.name, col)

data.drop('Date', axis=1, inplace=True) # Drops Date columns

The extracted Year and Month data need to be One-hot encoded for better

comprehension of the feature by the algorithm. The below code performs this task and omits the

Day column from the dataset as we assume it could be less relevant compared to Year and

Month.

data = pd.get_dummies(data, columns = ['year', 'month'])

data.drop('day', axis=1, inplace=True)

Attributes Home team name and Away team name are of datatype object. They need to

be one-hot encoded as the above. The unique values in Home team names and Away team names

are same. Below line of code checks that condition.

Checking if Away Team names and Home team names are same

np.array_equal(sorted(data['AwayTeam'].unique()), sorted(data['HomeTeam'

].unique()))

The following code is used to transform the respective attribute to one-hot encoded

format.

data = pd.get_dummies(data, columns = ['HomeTeam', 'AwayTeam'])

As raw dataset contains special symbols, ‘€’ and ‘m’ in the Home squad value and Away

squad value columns, it needs to eliminated from the dataset. This is performed by creating

another function called remove_unwanted_chars() and applying this function to the Test and

Train dataset.

28

def remove_unwanted_chars(df):

 df[['Home squad value', 'Away squad value']] = df[['Home squad value

', 'Away squad value']].replace({'€': '',

 'm': ''}, regex=True)

return df

train_data = remove_unwanted_chars(train_data)

test_data = remove_unwanted_chars(test_data)

Also, the ‘Object’ datatype present in the dataset needs to be converted to float datatype.

This is achieved by creating a function called object_to_numeric(). This function also solves the

extra ‘.’ present in some columns. This function is applied to the Test and Train data separately.

def object_to_numeric(df):

 for col in list(df.select_dtypes(['object']).columns):

 df[col] = df[col].replace(r'\.{2}', '.', regex=True)

 # Converting to numeric values

 df[col] = pd.to_numeric(df[col])

 return df

train_data = object_to_numeric(train_data)

test_data = object_to_numeric(test_data)

It is better to shuffle the data before feeding to the neural network in order to avoid any

kind of bias in the dataset. This is achieved by below code.

#shuffle the whole data

data = data.sample(frac = 1)

Next, split the dataset into Train data and Test data. A Train dataset is used to train the

model while the Test dataset is used to validate the model built.

In this project, 80% of the dataset will be Train data and 20% of the dataset will be Test

data.

The dataset is split using the below code.

29

frac is the percentage of data to be taken in the train

frac = 0.8

converting the frac into number of rows to be taken in the train data

threshold = int(len(data)*frac)

train_data = data[0: threshold]

test_data = data[threshold:].reset_index(drop=True)

After performing the above mentioned transformations, the columns are standardized.

Standardization is performed when the features of the input data have a large range of

values. This can cause trouble to many machine learning models.

We are using StandardScaler from Sklearn library to perform standardization. Basically,

it standardizes by removing the mean of the column and scaling to unit variance.

columns to standardize

cols_to_standardize = ['H2H win', 'H2H draw', 'H2H lose', 'Home win',

 'Home draw', 'Home lose', 'Away win', 'Away draw'

,

 'Away lose', 'Home rest ', 'Away rest', 'Home avg

 height',

 'Away avg height', 'Home avg age', 'Away avg age'

,

 'Home squad value', 'Away squad value']

Creating Standard Scaler object

standard_scaler = preprocessing.StandardScaler()

Fitting and transforming the standard scaer objects with columns

train_data[cols_to_standardize] = standard_scaler.fit_transform(train_da

ta[cols_to_standardize])

test_data[cols_to_standardize] = standard_scaler.transform(test_data[col

s_to_standardize])

Output of the above transformation are as below for train dataset and test dataset

respectively.

30

Figure 16. Output Train dataset Part 1

Figure 17. Output Train dataset Part 2

Figure 18. Output Train dataset Part 3

Figure 19. Output Train dataset Part 4

Figure 20. Output Train dataset Part 5

31

Figure 21. Output Train dataset Part 6

Figure 22. Output Train dataset Part 7

Figure 23. Output Test dataset Part 1

Test data output follows the same structure as the train data output showed above.

The below code is used to separate target variable from both train dataset and test dataset

and store them in different name. Followed by removing the target variable from both test and

train data, store them in different name.

trainy = train_data['Result']

testy = test_data['Result']

train_data.drop('Result', axis=1, inplace=True)

test_data.drop('Result', axis=1, inplace=True)

trainX = train_data

testX = test_data

Here, we use all the columns of the train data as features except the last column which

is stored in ‘trainy’ as target variable of the train set. Similarly Test data is also split and target

variables are stored in ‘testy’.

32

One-Hot is the process by which the Categorical value is transformed to a form with

which the algorithm can work better. Sklearn’s LabelEncoder does a similar job but it comes

with a disadvantage. In LabelEncoding, it is assumed that the higher the categorical value the

better the category will be. This would lead to errors.

So, to overcome this problem we use one-hot encoding in which we binarize the category

and include it as a feature to train (Vasudev, 2017).

This is performed using Keras Library and ‘np_utils’ function is used for one-hot

encoding the categorical variable. Below code converts the target columns in Train data and

Test data into 3 different columns which are binarized and each column represents a different

class.

Trainy = np_utils.to_categorical(trainy, 3)

testy = np_utils.to_categorical(testy, 3)

4.4. Model Building

4.4.1. Model with Convolution layer

Importing library

We use Keras deep learning framework for building CNN1D model. Sequential model,

Dense layer, Activation layer, Dropout layer, Flatten layer, Conv1D layer, MaxPooling1D layer

are imported from Keras library, matplotlib.pyplot as plt using the below code.

from keras.models import Sequential

from keras.layers import Dense, Activation, Dropout, Flatten, Conv1D, Ma

xPooling1D

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

Firstly Creating variables of Train dataset and Test dataset for this model using below code.

33

Considering all the features of train data (without using any feature

selection algorithm)

trainX3 = train_data

testX3 = test_data

Following code is used to define variables and assign them values.

Converting input data into format which convolutional layer takes.

n_timesteps, n_features, n_outputs = trainX3.shape[0], trainX3.shape[1],

 trainy.shape[0]

input_shape = (trainX3.shape[1], 1)

where,

‘n_ timesteps’ represents the number of rows in the training data,

‘n_features’ represents number of columns or features in the training data,

‘n_outputs’ represents number of outputs in the training data, and

‘input_shape’ contains the shape of input data. This format has been used because the CNN

layer of neural network takes input in three-dimensional format.

Building model

Creating a sequential model with convolutional and maxpooling layers w

hich automatically selects best features from the input data.

model3 = Sequential()

model3.add(Conv1D(filters=64, kernel_size=5, activation='relu', input_sh

ape=input_shape))

model3.add(MaxPooling1D(pool_size=3,strides=1, padding='valid'))

model3.add(Dropout(0.5))

model3.add(Flatten())

model3.add(Dense(32, activation='relu'))

model3.add(Dense(3, activation='softmax'))

model3.compile(loss='categorical_crossentropy', optimizer='adam', metric

s=['accuracy'])

Modeling of the neural network is performed using above lines of codes. In the first line,

the Sequential model from the Keras library is defined. Sequential model allows to create the

model layer by layer.

34

‘Conv1D ‘ is a one dimensional convolution layer where one dimensional data is being

fed. This layer creates a convolution kernel that is convolved with the layer input over a single

spatial (or temporal) dimension to produce a tensor of outputs (Keras). In order to compute

convolution, many parameters need to be specified. The first Convolution layer takes four

parameters.

• ‘filters’ - represents the number of output filters in the convolution. Filter detects

spatial features from input data and CNN has tendency to learn multiple features in

parallel from 32 to 512. In this case, we took 64 as initial value.

• ‘kernal_size’ – Kernels are filters that are used to detect features from images. In this

case, we have used 5 as kernel size.

• ‘activation’ – Every layer need to be passed through an activation function or Transfer

function. It is used to determine the output of neural network like ‘Yes’ or ‘No’. It maps

the resulting values are in between 0 to 1 or -1 to 1 etc. based on the type of the

function used (Sharma, 2017). Here we use ‘ReLU’ activation function. It is one of the

most used activation function nowadays in deep learning. The output of ReLU

activation function is same as input if and only if the input is positive or zero and

otherwise the output will be zero (Sharma, 2017).

• input_shape –defines the shape of the input data provided to CNN layer while training.

Max pooling layer is to automatically pick the most important features from the dataset.

Dropout layer randomly sets some input units to 0 with a frequency we input in order to

avoid overfitting. In this case, we have used 0.5 ratios of coefficients to be dropped to zero.

Flatten layer is used to make a multidimensional input to one dimensional, commonly

used to convert output of the previous layer into one dimensional form in order to feed to the

next layer.

Dense layer is the regular deeply connected neural network layer. We are using two

Dense layers in this experiment. The first Dense layer has 32 neurons and we came to this by

doing trials with 8 ,16, 32 and 64 number of neurons. The first Dense layer with 32 neurons

produced the best results. The second Dense layer with 3 neurons produces output in the form

of three columns representing each class. Here, 3 represents the number of neurons, meaning

the output shape is 3. Also, ‘softmax’ activation function is used in this layer.

Loss function is used to evaluate how good the algorithm model is. Higher value of loss

function represents inaccurate prediction and smaller value of loss function represents more

35

accurate prediction. The loss function is calculated by calculating the squared difference

between the expected value and predicted value. ‘categorical_crossentropy’ is used as loss

function for multiclass classification problems where two or more output categories are

available.

An optimizer is a function that modifies the attributes of neural networks such as weight

and learning rate to reduce the loss and increase accuracy. We have used ‘adam’ optimizer here

which is a stochastic gradient descent method that is based on adaptive distribution of first-

order and second-order moments.

The metric to evaluate the model performance will be ‘accuracy’. Higher accuracy

means better prediction by the model.

Fitting model

The model needs to be fitted with the training data using the ‘fit’ function. We fit the

model with the training features and their expected target variable represented by ‘trainX3’ and

‘trainy’, respectively. Number of epochs and batch size are the other parameters we define while

fitting the model. Training the neural network once with all the training data is called an epoch.

Here, the number of epochs equals to 100. The batch size is a hyperparameter that defines the

number of samples to be processed before updating the internal model parameters. It can be

greater than or equal to one and less than the number of samples. We have used 16 as the batch

size. Also, we are splitting the train data into train set and validation set using the

‘Validation_split’ function. As the validation split equals to 0.2 , the initial train dataset will be

split into 20 % validation set and 80% train set.

history_mode3 = model3.fit(trainX3, trainy, epochs=100, batch_size=16, v

erbose=1, validation_split=0.2, shuffle=True)

Plotting Epoch vs Loss

Plotting the loss value versus epoch for the train set and validation set will give us an

idea of the model performance in terms of overfitting and optimum number of epoch.

36

Plotting the graph of epoch vs loss

training_loss3 = history_mode3.history['loss']

validation_loss3 = history_mode3.history['val_loss']

Create count of the number of epochs

epoch_count3 = range(1, len(training_loss3) + 1)

Visualize loss history

plt.plot(epoch_count3, training_loss3, 'r--')

plt.plot(epoch_count3, validation_loss3, 'b-')

plt.legend(['Training Loss', 'Validation Loss'])

plt.xlabel('Epoch')

plt.ylabel('Loss')

plt.show();

The result of the above code is given below.

Figure 24. Plot for convolution mode with 32 neurons

From the above result, we find the best epoch using the below code. The accuracy and

loss value at this epoch will be considered as the accuracy and loss value of train set and

validation set respectively given by this model.

df_history3 = pd.DataFrame(history_mode3.history)

df_history3['loss difference'] = np.where(df_history3['val_loss']>=df_hi

story3['loss'], df_history3['val_loss'] - df_history3['loss'], -1)

df_history_factored_3 = df_history3[df_history3['loss difference'] >= 0]

37

epoch3 = np.array(df_history_factored_3.sort_values(by='loss difference'

).head(1).index.tolist())+1

train_accuracy3 = df_history3.loc[epoch3]['accuracy'].values

train_loss3 = df_history3.loc[epoch3]['loss'].values

val_accuracy3 = df_history3.loc[epoch3]['val_accuracy'].values

val_loss3 = df_history3.loc[epoch3]['val_loss'].values

print('At epoch: ', epoch3, ' Training accuracy: ', train_accuracy3, ' T

raining loss: ', train_loss3, ' Validation accuracy: ', val_accuracy3, '

 Validation loss: ', val_loss3)

The output of the above code shows the optimum epoch for this model is 1.

Training set gives an accuracy of 54.81 % with loss value of 0.923. Similarly, the

validation set gives an accuracy of 54.51 % with loss value of 0.992.

Following this, the model is fit on the data with the optimum epoch value we obtained

in the above part and accuracy and loss value of the test set are calculated.

history_mode3_new = model3_new.fit(trainX3, trainy, epochs=1, batch_size

=16, verbose=1, validation_split=0.2)

loss, accuracy = model3_new.evaluate(testX3, testy, batch_size=32, verbo

se=0)

print('Loss is:, ', loss, ' and accuracy is: ', accuracy)

Result

Performance of the model is evaluated by calculating loss and accuracy values.

Figure 25. Result of convolution model

 Best epoch Accuracy (%) Loss

Train set 1 54.81 0.923

38

Validation set 1 54.51 0.992

Test set 1 52.13 0.991

Table 9. Accuracy and Loss values

The model has 52.13 % accuracy and 0.991 loss value on unseen test dataset with all the

features considered.

4.5. Model Improvement

There are several methods to improve the model performance and we adopt the feature

selection. Feature selection means the selection of variables that are more relevant to the

prediction and elimination of less relevant variables from the dataset. They can lead to better

accuracy by reducing complexity as we use few relevant features.

4.5.1. Chi Square Feature Selection

Below code is used to implement Chi Square feature selection which is suitable for

selecting the best features from the input data base on its performance with the target variable.

The data

‘chi square selector’ should be non-negative there for we used MinMax scaler to

transform the input data.

‘SelectKBest’ selects ‘K’ number of features from the input data based on the chi square

test and we have assigned the value of ‘K’ to 10.

#using chi square

from sklearn.feature_selection import SelectKBest

from sklearn.feature_selection import chi2

from sklearn.preprocessing import MinMaxScaler

X_norm = MinMaxScaler().fit_transform(train_data)

chi_selector =SelectKBest(chi2, k=10)

chi_selector.fit(X_norm, trainy)

chi_support = chi_selector.get_support()

39

chi_feature = train_data.loc[:,chi_support].columns.tolist()

print(str(len(chi_feature)), 'selected features')

The output of the chi square feature selection is printed using below code.

#output of selected 10 features by chi square

for i in range(0, len(chi_feature)):

 print(chi_feature[i])

Based on the performance chi square function the following are the top 10 relevant

features.

• H2H win

• H2H lose

• Home squad value

• Away squad value

• HomeTeam_Athletico de Madrid

• HomeTeam_FC Barcelona

• HomeTeam_Real Madrid

• AwayTeam_Athletico de Madrid

• AwayTeam_FC Barcelona

• AwayTeam_Real Madrid

However, it is clear that some of the selected features are not logical as some team names

are used to predict the match result of some other two teams. This shows no logical relevancy.

To continue with the procedure, the new train and test sets are defined based on the chi

square feature selection result.

Taking only top 10 features selected by Chi2.

trainX = train_data[chi_feature]

testX = test_data[chi_feature]

Model Building

Since the feature selection is already performed using chi2 method, we are adopting

simple architecture with two dense layers only. The first Dense layer contains 16 neurons (the

number of neurons for the first Dense layer is calculated by trial-and-error and it is found that

40

the Dense layer with 16 neurons delivers the best results) and the second Dense layer contains

3 neurons.

We split the initial train data into Validation set (20%) and Train set (80%) in order to

find the best epoch.

Generating a Dense model architecture for training -Chi square

model1 = Sequential()

model1.add(Dense(16, input_shape=(trainX.shape[1],), activation='relu'))

model1.add(Dense(32, activation='relu'))

model1.add(Dense(3, activation='softmax'))

model1.compile(loss='categorical_crossentropy', optimizer='adam', metric

s=['accuracy'])

Fitting model

The above model with Dense layer architecture is then fitted with the dataset obtained

after chi squared feature selection.

history_mode1 = model1.fit(trainX, trainy, epochs=100, batch_size=32, ve

rbose=1, validation_split=0.2, shuffle=True)

Plotting Epoch vs Loss

The graph is plotted between loss value and epoch for validation set and train set using

the below code.

Plotting the graph for epoch vs loss

training_loss = history_mode1.history['loss']

test_loss = history_mode1.history['val_loss']

Create count of the number of epochs

epoch_count = range(1, len(training_loss) + 1)

Visualize loss history

plt.plot(epoch_count, training_loss, 'r--')

plt.plot(epoch_count, test_loss, 'b-')

plt.legend(['Training Loss', 'Validation Loss'])

41

plt.xlabel('Epoch')

plt.ylabel('Loss')

plt.show();

Figure 26. Loss vs epoch for dense layer model-Chi square

The following code calculates the best epoch and it is found that the model overfits when

epoch is more than 3. Hence, the best epoch is 3.

The model gives an accuracy of 54.4 % and a loss value of 0.966 on train dataset.

Similarly, it gives accuracy and loss values of 49.49 % and 0.985 respectively on the

validation set.

In the next step, this Dense layer model is fitted with the dataset after chi square feature

selection with optimum epoch value in order to find the accuracy and loss value on the test set.

Generating a Dense model architecture for training

model1_new = Sequential()

model1_new.add(Dense(16, input_shape=(trainX.shape[1],), activation='rel

u'))

model1_new.add(Dense(3, activation='softmax'))

model1_new.compile(loss='categorical_crossentropy', optimizer='adam', me

trics=['accuracy'])

history_mode1_new = model1_new.fit(trainX, trainy, epochs=3, batch_size=

32, verbose=1, validation_split=0.2, shuffle=True)

42

Result

The result of the model is evaluated using accuracy and loss values.

 Best epoch Accuracy(%) Loss

Train set 3 54.40 0.966

Validation set 3 49.49 0.985

Test set 3 53.47 0.999

Table 10. Accuracy and Loss values

The model produced an accuracy of 53.47 % on the unseen test dataset.

4.5.2. Selecting From Model Technique

Here, we are use random forest classifier to estimate the best features as it is tree based

algorithm and suitable for finding conditions.

Then, the train data has been fed to the classifier. The ‘SelectFromModel()’ function

selects the top 12 features from the classifier.

#model improvement using selectfrommodel technique

from sklearn.feature_selection import SelectFromModel

from sklearn.ensemble import RandomForestClassifier

embeded_rf_selector = SelectFromModel(RandomForestClassifier(n_estimator

s=100), max_features=12)

embeded_rf_selector.fit(train_data, trainy)

embeded_rf_support = embeded_rf_selector.get_support()

embeded_rf_feature = train_data.loc[:,embeded_rf_support].columns.tolist

()

print(str(len(embeded_rf_feature)), 'selected features')

embeded_rf_feature

The model selected following features as the most relevant regarding the prediction of

result.

• H2H win

43

• H2H lose

• Home lose

• Away win

• Home rest

• Away rest

• Home avg height

• Away avg height

• Home avg age

• Away avg age

• Home squad value

• Away squad value

Based on the findings new test and train dataset are defined using the below code.

Taking only those features which are selected by "SelectFromModel" Met

hod

trainX2 = train_data[embeded_rf_feature]

testX2 = test_data[embeded_rf_feature]

Model Building

In this case, the architecture used is the same as that of the chi square feature selection

method. The dataset is derived from the ‘Select from model’ methodology. The first Dense layer

is with 16 neurons (calculated by running trials with 64 , 32 ,16, and 8 neurons) and the second

Dense layer possesses 3 neurons.

Creating a Dense model architecture

model2 = Sequential()

model2.add(Dense(16, input_shape=(trainX2.shape[1],), activation='relu')

)

model2.add(Dense(3, activation='softmax'))

model2.compile(loss='categorical_crossentropy', optimizer='adam', metric

s=['accuracy'])

44

Fitting model

The above model is fitted with the dataset derived from ‘select from model’ technique,

using below code.

history_mode2 = model2.fit(trainX2, trainy, epochs=100, batch_size=32, v

erbose=1, validation_split=0.2, shuffle=True)

Plotting Epoch vs Loss

As in the case of the previous models, a graph is plotted between the Loss value and

Epoch.

Figure 27. Loss vs epoch for dense layer model-Chi square

The same set of code which was used in earlier, is now reused to calculate the best epoch

value.

It is clear that an epoch value of 10 works best for this model as the model overfit after

10 number of epochs.

The accuracy and loss value of this model on the train set are 54.81 % and 0.954

respectively. Similarly, the accuracy and loss value on the validation set at epoch 10 are 52.17

% and 0.958 respectively.

45

After finalizing on an epoch value of 10, we are fit this Dense layer architecture on the

dataset derived from the ‘select from model’. This is to calculate the accuracy and loss value on

the test set.

#Creating a Dense model architecture

model2_new = Sequential()

model2_new.add(Dense(16, input_shape=(trainX2.shape[1],), activation='re

lu'))

model2_new.add(Dense(64, activation='relu'))

model2_new.add(Dense(3, activation='softmax'))

model2_new.compile(loss='categorical_crossentropy', optimizer='adam', me

trics=['accuracy'])

history_mode2_new = model2_new.fit(trainX2, trainy, epochs=10, batch_siz

e=32, verbose=1, validation_split=0.2, shuffle=True)

loss, accuracy = model2_new.evaluate(testX2, testy, batch_size=32, verbo

se=0)

print('Loss is:, ', loss, ' and accuracy is: ', accuracy)

Result

The result of the performance of the model is printed using below code.

loss, accuracy = model2_new.evaluate(testX2, testy, batch_size=32, verbo

se=0)

print('Loss is:, ', loss, ' and accuracy is: ', accuracy)

 Best epoch Accuracy(%) Loss

Train set 10 54.81 0.954

Validation set 10 52.17 0.958

Test set 10 53.20 1.005

Table 11. Accuracy and Loss values

 The model gave 53.20 % accuracy and loss value of 1.005 on the unseen test dataset.

46

5. Conclusion

Above performed approach to predict the football match results from the dataset using

CNN algorithm delivered comparatively low accuracy, which is approximately 53% for all the

three models. Initially, the model architecture with convolutional layer delivered an accuracy of

52.13 %. Then, we performed model improvement using feature selection using two different

techniques, the chi square feature selection and ‘selectFrommodel’ method, respectively. The

accuracy of the algorithm was close to the previous model with convolutional layer, which was

53.47% after performing chi square feature selection. However, some features selected by the

algorithm were not logical. Then, we performed feature selection using ‘selectfrommodel’

method and the features selected by algorithm were logically convincing from a football analysis

point of view. However, the accuracy remained almost same as the previous models. The

accuracy value provided by this model was 53.2 %.

Even though an accuracy of 53% is technically low, we also have to consider that it is

higher than the probability of a random guess which gives 33.33% probability to be correct. The

major reason for low accuracy value in general could be the dataset itself as the dataset is

comparatively less complex. Hence, it assumes that the simple architecture would be enough to

solve the problem. This could also be the reason why the models overfit after several epochs.

This can be understood from the comparatively similar results by model with convolutional

layer architecture and models with simple Dense layer architecture.

Also, considering that domain specialists deliver an accuracy of around 72% (A deep

learning framework for football match prediction, 2020), the performance by the CNN on the

dataset with limited input is not a bad prediction.

The performance of the model could be strongly improved by enriching the dataset. As

football is a game which can be influenced by so many factors, it is nearly impossible to generate

a perfect dataset. The dataset we have used contains very limited features in the football game

aspects. However, increasing the complexity of the dataset by adding more complex features

could lead to better fitting of the model. Similarly, the length of the dataset can be improved by

47

adding more samples. This could also be a significant step towards model performance

improvement.

48

6. Future Scope

There are many areas that can be improved in order to achieve a better performance from

the model.

• Fine tuning of model parameters can be performed in order to achieve accuracy.

• Improving dataset by adding more complex features

• Improving dataset by adding more samples to the dataset

Better feature selection techniques can be implemented by research and it could lead to

better results.

49

7. References

A deep learning framework for football match prediction. Rahman, Md. Ashiqur.

2020. 08 January 2020, SN Applied Sciences.

A Graph Regularized Neural Network for Node Classification. S. Dabhi, M. Parmar.

2020. 2020, Vol. arXiv:2006.09022.

Aravindpai. 2020. ANN vs CNN vs RNN | Types of Neural Networks. Analytics

Vidhya. [Online] 17 February 2020. https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-

rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/.

Baheti, Pragati. 2022. A Simple Guide to Data Preprocessing in Machine Learning.

v7labs. [Online] 31 January 2022.

Chollet, François. 2018. Deep Learning with Python. s.l. : Manning Publications Co.,

2018.

Football Match Prediction Using Deep Learning. Daniel Pettersson, Robert Nyquist.

2017. s.l. : Department of Electrical Engineering, Chalmers University of Technology, 2017.

Football Match Result Prediction Using Neural Networks and Deep Learning. Ekansh

Tiwari, Prasanjit Sardar, Sarika Jain. 2020. s.l. : IEEE 8th International Conference on

Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO),

2020, pp. 229-231.

Football Match Results Prediction Using Artificial Neural Networks; The Case of Iran

Pro League. S. Mohammad Arabzad, M. E. T. Araghi, S. Sadi-Nezhad, Nooshin Ghofrani.

2014. 3, 2014, Journal of Applied Research on Industrial Engineering, Vol. 1.

Grieve, Patrick. 2020. Deep learning vs. machine learning: What’s the difference?

Zendesk Blog. [Online] 23 January 2020. https://www.zendesk.com/blog/machine-learning-

and-deep-learning/.

Gupta, Abhishek. 2020. Difference between ANN, CNN and RNN. GeeksforGeeks.

[Online] 17 July 2020. https://www.geeksforgeeks.org/difference-between-ann-cnn-and-rnn/.

ImageNet Classification with Deep Convolutional Neural Networks. Alex Krizhevsky,

Ilya Sutskever, Geoffrey E. Hinton. 2012. s.l. : Curran Associates Inc., 2012, NIPS'12:

50

Proceedings of the 25th International Conference on Neural Information Processing Systems,

Vol. 1, pp. 1097–1105.

Keras. Conv1D layer. Keras. [Online]

https://keras.io/api/layers/convolution_layers/convolution1d/.

NumPy User Guide. community, NumPy. 2020. 2020, Vol. 1.18.4.

Pereverzeva, Aleksandra. 2021. Predicting sports matches with neural models.

Department of Computer Science, Czech Technical University in Prague. Prague : s.n., 2021.

Sharma, Sagar. 2017. Activation Functions in Neural Networks. Towards Data

Science. [Online] 6 September 2017. https://towardsdatascience.com/activation-functions-

neural-networks-1cbd9f8d91d6.

Shum, Roland. 2020. Neural Networks Football Result Prediction. Medium. [Online]

15 June 2020. https://medium.com/@rolandshum.shc/neural-networks-football-result-

prediction-d8b0f933118b.

SystemDesign. 2021. System Design Interview: Recommendation System Design.

Medium.com. [Online] 9 September 2021. https://medium.com/double-pointer/system-design-

interview-recommendation-system-design-as-used-by-youtube-netflix-etc-c457aaec3ab.

Text Classification Algorithms: A Survey. Kamran Kowsari, Kiana Jafari Meimandi,

Mojtaba Heidarysafa, Sanjana Mendu, Laura Barnes, Donald Brown. 2019.

Charlottesville : Department of Systems and Information Engineering, University of Virginia,

2019.

Transfermarkt. LaLiga 13/14. Transfermarkt. [Online]

https://www.transfermarkt.com/laliga/startseite/wettbewerb/ES1/plus/?saison_id=2013.

Using Deep Convolutional Neural Networks to Predict Goal-Scoring Opportunities in

Soccer. Martijn Wagenaar, Emmanuel Okafor, Wouter Frencken, Marco A. Wiering.

2017. s.l. : International Conference on Pattern Recognition Applications and Methods

(ICPRAM), 2017.

Vasudev, Rakshith. 2017. What is One Hot Encoding? Why and When Do You Have

to Use it? HackerNoon. [Online] 3 August 2017. https://hackernoon.com/what-is-one-hot-

encoding-why-and-when-do-you-have-to-use-it-e3c6186d008f.

51

w3schools. 1999. Pandas Introduction. w3schools. [Online] 1999.

https://www.w3schools.com/python/pandas/pandas_intro.asp.

WhoScored.com. Primera Division Summary. WhoScored.com. [Online]

https://www.whoscored.com/Regions/206/Tournaments/4/Seasons/3922/Spain-LaLiga.

52

8. List of Figures and Tables

8.1. List of Figures

1. Figure 1. A simple chart showing how recommendation systems work 6

2. Figure 2. Artificial Neural Networks .. 7

3. Figure 3. Simple architecture of CNN .. 8

4. Figure 4. Convolution operation between the input image and a 3x3 kernel 8

5. Figure 5. Visual representation of the feature map for a cat classification task 9

6. Figure 6. Graphs of Sigmoid and ReLU activation functions .. 10

7. Figure 7. Simple CNN architecture used for digits classification 11

8. Figure 8. Object classification - an example of CNN ... 11

9. Figure 9. Recurrent Neural Networks architecture ... 11

10. Figure 10. Image captioning – an application of RNN .. 12

11. Figure 11. LSTM architecture .. 12

12. Figure 12. Architecture of the embedding model used in the thesis 14

13. Figure 13. Goal scoring opportunity ... 15

14. Figure 14. Loss of ball possession .. 15

15. Figure 15. Dataset with null values .. 25

16. Figure 16. Output Train dataset Part 1 .. 30

17. Figure 17. Output Train dataset Part 2 ... 30

18. Figure 18. Output Train dataset Part 3 .. 30

19. Figure 19. Output Train dataset Part 4 .. 30

20. Figure 20. Output Train dataset Part 5 .. 30

21. Figure 21. Output Train dataset Part 6 .. 31

22. Figure 22. Output Train dataset Part 7 .. 31

23. Figure 23. Output Test dataset Part 1 ... 31

24. Figure 24. Plot for convolution mode with 32 neurons .. 36

25. Figure 25. Result of convolution model ... 37

26. Figure 26. Loss vs epoch for dense layer model-Chi square .. 41

53

27. Figure 27. Loss vs epoch for dense layer model-Chi square .. 44

8.2. List of Tables

1. Table 1. Comparison of ANN vs CNN vs RNN .. 13

2. Table 2. Sample of the dataset ... 14

3. Table 3. Summary of the accuracies achieved (Football Match Result Prediction Using

Neural Networks and Deep Learning, 2020) experimenting with different number of units

 ... 16

4. Table 4. Sample of the input data .. 17

5. Table 5. Sample of the encoded data used in this approach .. 17

6. Table 6. Summary of the predicted vs actual match results .. 18

7. Table 7. Summary of the results achieved by the CGNN on various sports 18

8. Table 8. Sample of the dataset used ... 20

9. Table 9. Accuracy and Loss values ... 38

10. Table 10. Accuracy and Loss values ... 42

11. Table 11. Accuracy and Loss values ... 45

8.3. Appendix

1. Dataset_1.xlsx

2. Football result prediction using cnn.py

