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ABSTRACT  

 

 

Over the last few decades, computer-aided drug design has emerged as a most successful 

technique rendering the drug discovery process more efficient and less costly. In the structure-

based drug design branch, three-dimensional information on the biomolecular targets is used 

by the docking and scoring methodologies to find and optimize new ligands.  

In this dissertation, the following approaches are presented: ligand design, binding mode 

prediction, structure-activity relationship (SAR), molecular docking, receptor-ligand scoring 

and bridging water thermodynamics, followed by their application in protein-ligand complexes 

and host-guest systems.  

Molecular docking, which has become a powerful and influential tool for studying molecular 

recognition, aims to predict the binding mode of small molecules toward their biological target. 

It has been used in several projects: we have predicted the binding modes of a novel and potent 

inhibitor of CDK2 and FLT3 kinases and covalent inhibitors of AChE, BChE. Further, semi-

empirical quantum mechanics-based scoring functions (SQM/COSMO) were used in native 

pose recognition where the poses had been generated with several docking programs. The 

SQM/COSMO scoring was compared with classical scoring function.  We observed that 

SQM/COSMO accurately predicted the native poses in two dozen of difficult and diverse 

protein-ligand systems. Lastly, we discuss the important role of explicit water molecules in 

protein kinases, hydrolases, serine racemase and host-guest systems. We determined their 

thermodynamical parameter ΔG which correlated very well with the experimental binding ΔG 

for protein-ligand complex and host-guest systems. 
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ABSTRAKT  

 

 

Během posledních několika desetiletí se počítačový návrh léků (angl. “computer-aided drug 

design”) ukázal jako užitečný přístup, díky němuž je proces objevování a vylepšování léků 

účinnější a méně nákladný. Návrh léků založených na struktuře terapeutického cíle (angl. 

structure-based drug design”) se zabývá hledáním a optimalizací nových ligandů 

biomolekulárních cílů pomocí metod dokování a skórování.  

V této disertaci jsou prezentovány následující přístupy: návrh ligandů, predikce vazebného 

módu, vztah struktura-aktivita (SAR), molekulární dokování, výpočty afinit mezi receptorem 

a ligandem a termodynamika molekul vod, následované jejich aplikací v komplexech protein-

ligand a supramolekulárních systémů. 

Molekulární dokování, které se stalo účinným nástrojem pro studium molekulárního 

rozpoznávání, má za cíl předpovědět vazebný způsob malých molekul k jejich biologickému 

cíli. Tato metoda byla použita v několika projektech: předpovídali jsme vazebné způsoby 

nových a účinných inhibitorů kináz CDK2 a FLT3 a kovalentních inhibitorů AChE, BChE. 

Dále byly použity skórovací funkce založené na semiempirické kvantové mechanice 

(SQM/COSMO) při rozpoznávání nativního vazebného způsobu, kde byly alternativní 

možnosti vazby vytvořeny několika dokovacími programy. Výsledky výpočtů SQM/COSMO 

byly porovnány s klasickými skórovacími funkcemi. Zjistili jsme, že SQM/COSMO přesně 

předpovídá nativní vazebné způsoby ligandů ve dvou desítkách obtížných a různorodých 

systémů protein-ligand. Nakonec jsme se zabývali významnou rolí explicitních molekul vody 

v proteinkinasách, hydrolasách, serinové racemase a supramolekulárních systémech. Stanovili 

jsme jejich termodynamický parametr ΔG, který velmi dobře koreloval s experimentální 

vazbebnou energií ΔG pro komplexní systémy protein-ligand a supramolekulární systémy 
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INTRODUCTION 

 

The discovery and development of new drugs are very important and exciting processes, 

helping to treat or cure many diseases. The projects of drug development are demanding in 

terms of time and cost – it can be over ten years and beyond billion US dollars. Over the past 

decades, the investments in new drug development have continuously increased. Lots of 

considerable efforts hampered by various ways, resulting in low efficiency and high failure rate 

in the drug discovery and development process. In an effort to overcome this situation, 

computer-aided drug design (CADD) was proven one of most effective methods for facilitating 

and expediting the process and therefore saving time, money and resources possible. 

1.1 Computer Aided Drug Design and History Context 

Thousands of years ago, only herbal remedies were in use,1 later drugs of synthetic/semi-

synthetic origin were discovered.2 In a prior time, compound development was not very 

efficient in terms of potency, safety, and optimization. In the trial and error process, rational 

strategies were developed to improve the potency of compounds.3-6 First time in the 1980s, the 

utilization of computers was expanded for data handling and other more prominent roles in 

drug discovery.7 Over the years, high-throughput screening technologies emerged, which 

expedite and facilitate the drug discovery and development process by enabling a great number 

of compounds to be screened in shorter time. The limitations of HTS techniques failed to 

produce the new hits and success rate changed into extremely low, as well as late-stage failure 

in ADME/T studies. Therefore, all these issues underline the need to develop alternative 

strategies that can help in promoting the success rates and reduce cost and time in whole drug 

discovery and development process. CADD tools are divided into the structure-based and 

ligand-based design methods. The former methods require the three-dimensional structure of 

protein target. Usually, the structure is experimentally determined using either X-ray 

crystallography or Nuclear Magnetic Resonance spectroscopy. Another option is to build a 

homology model with the help of the available experimental structure. All structure-based 

virtual screening tools attempt to predict the shape and electrostatics complementary of small 

molecules with binding sites of the protein. Nowadays, CADD is playing a larger and more 

important role in the field of pharmaceutical research, which facilitates and helps to improve 

the efficiency of the industry. (CADD)8,9  

CADD tools have been applied in almost every stage, greatly changing the strategy and pipeline 

for drug discovery. (Figure 1.1) Traditionally, CADD application was limited to lead discovery 

and optimization, today the application extends in the direction of target identification and 

validation, and even forwards preclinical studies. 
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1.2 CADD Applications in Drug Discovery and Development 

 

 

Figure 1.1: Drug Discovery & Development timeline. 

 

There is a large list of successful application of CADD in development of novel and potent 

candidate in the de novo drug design.10-18(Figure 1.2) CADD is specialized discipline that 

utilizes computational methods to simulate drug-receptor interactions to determine whether a 

given molecule will bind to the target or not, and if it binds, what would be its affinity towards 

the target.  For larger studies, traditional discovery and high throughput screening are more 

time to consume and costly then CADD.19,20 This method has become the most widely used 

technique, which significantly decreases the number of potential medicinal compounds from a 

large library by predicting whether it will be active or inactive. Binding of ligands to receptors 

may occur via hydrophobic, electrostatics, halogen bonding, hydrogen-bonding, and other non-

covalent interactions.21-25 In addition, solvation phenomena play a major role in protein-ligand 

binding. LBDD and SBDD are two major techniques of computer-aided drug design. (Figure 

1.3) 
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Figure 1.2: List of clinically approved drugs discovered by CADD. 

 

 

Figure 1.3: Flowchart of the Computer-aided drug design. 

 

1.3 Docking and Prediction of Binding Modes 

Molecular docking is one of the powerful influential tool and widely used computational 

techniques for structure-based drug design.26-29 Docking is a method which predicts preferred 

orientation of one molecule to second when they bind to form a stable complex. In drug design 
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usually, the first molecule is the protein and second molecule is a small organic compound or 

a potential drug candidate. Knowledge of preferred orientation of ligand gives a relative 

prediction of ligand to protein binding mode, can be used to predict binding affinity, thus helps 

to differentiate high-affinity drug candidates over low-affinity compounds. There are lots of 

software available for docking to predict the binding mode and binding affinity. Here we have 

predicted the binding mode of Kinase (CDK2, FLT3 and AChE/BChE) inhibitors via induced 

fit docking.30,31   

1.4 Scoring Functions: Concept and Application 

The scoring function is a most important component of structure-based drug design for 

evaluating the binding efficacy of the ligands to the corresponding target proteins.32 Ideally, 

the scoring function should be able to predict absolute binding affinity in the complex to ease 

identification of lead hits against any therapeutics target from any library. As molecular 

docking generates thousands of ligand conformations, scoring functions are used to rank and 

recognize these conformations and differentiate the accurate binding mode prediction from 

inaccurate predictions. However, it's still a huge challenge for existing scoring function to 

predict the binding affinities of diverse small molecules with high accuracy.33,34  

In CADD and Computational chemistry, the binding free energies are often approximated by 

the scoring functions.20,35-38 Three classes of scoring functions have been developed. Non-

covalent interaction represents as the first class of scoring functions, have terms which are 

basically the sum of various energetics terms.34,39,40 Second class of scoring functions have 

been developed based on experimental data, which have empirical parameters.41,42 Another 

class comprises knowledge-based scoring functions.37,43,44 These scoring functions are 

constructed based on available existing structures of protein-ligand complexes. 

Almost every scoring functions contain binding free energy, which contains the interaction 

term, reflecting the ligand-protein interaction, solvation/desolvation term, and entropic term, 

which stand for flexibility changes of both protein and ligand. A popular type of scoring 

functions calculates interaction energy based on MM/PBSA or MM/GBSA. MM stands for 

molecular mechanics treatment of energies and deformation, PBSA and GBSA are the 

solvation models.45,46    

During the past two decades, various scoring functions that exhibit different accuracies and 

computational efficiencies have been developed. Here, I briefly review existing scoring 

functions and compare with our scoring functions which have been developed in the group of 

Prof. Hobza for protein-ligand interactions in molecular docking. The energetic part of the 

scoring function is calculated at semi-empirical QM level, specifically PM6-D3H4X47,48 and 

SCC-DFTB3-D3H4X.49,50 Both these scoring functions employ energetics better than MM 

level theory.51-54  

1.5 Waters 

Water is a highly versatile component, which acts as both hydrogen bond donor or acceptor. 

Since last 10-15 years, the importance of waters molecules in drug design and host-guest 

systems has become of considerable interest.55 Traditionally, it has been thought that there are 
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two major roles of water molecules in the systems.  Firstly, to stabilize the system via creating 

the hydrogen bonding network with the inhibitor or small molecules. The second role is the 

ability of water molecules to be displaced upon the binding of ligands. The advantage of this 

displaced or release of water molecules into bulk carries an entropic gain, which may or may 

not is coupled with an enthalpic gain. 

Gibbs free energy change (ΔG) has two thermodynamics contributions: the enthalpy changes 

ΔH and the entropy change ΔS (equation 1.1).  

 

                                                            ΔG = ΔH - TΔS    1.1 

 

The enthalpic part of terms based on ligand binding or guest binding covers the changes in non-

covalent binding patterns. The favorable non-covalent interaction between ligand and protein 

or host and guest are compensated by the unfavorable desolvation of ligand or guest. If 

noncovalent interactions of ligand-protein or host-guest are stronger enough than the 

noncovalent interaction between ligand or guest and solvent molecules, then the binding 

enthalpy is negative and favors binding. 

On the contrary, the entropic part contains two major contributions:1). Loss of the 

conformational freedom of ligand or guest upon binding and 2). The releases of solvent 

molecules bound to the ligand or guest. Conformational entropy is unfavourable55-57 for the 

former contribution. More tightly ligand or guest is bound in the active site, the more entropy 

losses by decreasing the flexibility.58 

1.6 Non-Covalent Interactions 

Non-covalent interactions are one or two orders magnitude weaker than the covalent bonding. 

This interaction differs from covalent bonding in that no electrons are shared between the 

participating atoms. Drugs produce their effect by interacting mostly non-covalently with their 

target protein in the systems. A fundamental understanding of event of ligand binding with the 

target protein requires deep insight, e.g. non-covalent interaction stabilizes the protein-ligand 

complexes as well as thermodynamics and dynamics of systems. There are different non-

covalent interactions exist in several systems, such as induction, polarization, electrostatics 

interaction, charge transfer and dispersion. The non-covalent interactions are also seen to 

contribute vastly in the field of drug design, crystallography, and synthesis of new material.59-

64 

 Induction/Polarization: an attractive force that arises between dipole induced in a molecule 

by an electric field caused by a permanently charged or polar molecule. 

 

 Electrostatics: an attractive or repulsive force that arises between two permanently charged 

molecules, two polar molecules and one permanently charged molecule and a polar 

molecule. 
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 Dispersion: an attractive force arises also two polar sites to correlated electron fluctuation 

in two molecules. 

 

 Charge transfer: a fraction of electronic charge is transferred between the two or more 

molecules which are electron donor or acceptor. 
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SCOPE OF THE THESIS 

 

 

Modern-day drug discovery is heavily dependent on computer-aided drug design. With this 

aspect, the objective of the research presented in this thesis is to provide insight into the 

application of the semi-empirical quantum mechanics-based method in the investigation of 

protein-ligand,65-68 protein-ligand-water complexes,69-71 and host guest systems72,73 at the 

molecular level.  

The first part of the thesis is based on structure-based drug design in the discovery, structural 

activity relationship (SAR), accurate prediction of binding mode of small drug-like molecules, 

novel core of CDK2 inhibitors, (imidazo[1,2-c]pyrimidin-5(6H)-one), FLT3,tyrosine kinase 

(2,6,9-trisubstituted purine derivatives), serine racemase (malonate-based inhibitors) and 

acetylcholinesterase and butyrylcholinesterase pseudo-irreversible (benzothiazole inhibitors) 

by a combination of biochemical approach, docking, and semi-empirical quantum mechanical 

scoring. The performance of currently used SQM based methods has been evaluated as a part 

of the research and the potential significance for drug discovery discussed. 

The second part of the thesis is based on structure-based drug design method development 

followed by the application of SQM based scoring functions on diverse protein-ligand 

complexes with the implicit COSMO solvation model. This effort was encouraged by the 

limitations of classical molecular mechanics/empirical scoring functions in describing the non-

classical P-L interaction in challenging systems. After comprehensive large-scale testing in 

near future, we propose SQM/COSMO as a useful computational tool in structure-based drug 

design which could serve as the reference method for further development of other scoring 

functions. 

Beside the SQM methods, we analyzed and investigated the thermodynamic aspect of the 

important role of water molecules in structure-based drug design and host-guest systems. The 

first role is to stabilize the protein-ligand complex through creating hydrogen bonding network. 

This was studied in mammalian serine racemase and computational analyses reveal the 

profound effects of the thermodynamically-favorable active site water molecules on the 

molecular binding modes. Secondly, standard computational treatment failed to produce a 

correlation with the experimental binding free energies. The explicit treatment of active sites 

waters enhanced the description of CDK2 inhibitors binding affinity via a water hydrogen bond 

network. Lastly, in Aldo/keto reductase family protein target (AKR1B10) displacement of 

long-residence water molecules from hydration site play important role in ligand binding and 

an important source of binding free energy, which helps the shape complementarity and proper 

X-bonding interaction. Beside these protein targets, we have investigated hydration sites in the 

cavity of the host-guest system. (cucurbit[n]uril, n=5,6,7,8). We showed that high-energy 

waters need to be described explicitly to be able to obtain binding free energies which correlate 

with the experiments. 
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The performance of currently used semi-empirical quantum-based methods for non-covalent 

interaction in structure-based drug design and host-guest systems has been evaluated as part of 

the research and the potential significance of the results for drug discovery was shown. 
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STRUCTURE-BASED DRUG DESIGN:           

A DIRECT APPROACH 

 

 

The direct drug design relies on available 3D structures of the biological target (protein) 

obtained through methods such as X-ray crystallography or NMR Spectroscopy.74-76 A 3D 

protein structure should have indispensable to commence the paradigm of SBDD. To be usable 

for SBDD, the crystal structure needs to show the details of protein-ligand binding and have a 

reasonable resolution (< 2.5 Å).77,78 In case, the 3D structure of a protein is not available, it can 

be modeled by means of homology modeling of nearest target related protein which the 3D 

structure available. Molecular Docking/Scoring and Free Energy Perturbation, and 

Pharmacophore Modeling have become most influential tools for SBDD to predict the affinities 

of small-molecule ligands to their protein targets. 

3.1 Non-Covalent Molecular Docking 

Molecular docking has great importance for computer-aided drug design since it should allow 

recognizing the binding pose and binding affinity of small molecules (ligands, L) to the protein 

(receptor(R)).(Eq. 3.1) 

 

                                        R + L ↔ RL     3.1 

 

This method works based on conformational search algorithm, a search algorithm is applied 

using systematic and stochastic search methods.79,80 (See., 3.1.1 & 3.1.2) The sampling, the 

possible poses of the ligand into the binding pocket of the target protein are measured by the 

defined scoring methods.28,81 Docking of small molecules are generally performed by one of 

the three ways:29 (a) rigid docking, in which target and ligand are treated as rigid; (b) flexible 

ligand docking, in which target is held rigid and ligand treated as flexible; (c) flexible docking, 

in which target, and ligand both are considered as flexible. The sampling algorithm searches 

many possible poses of ligands provides many protein-ligand orientations to enable sufficient 

sampling of the binding modes. Search algorithm needs to have good speed and effectiveness. 

The scoring functions must be able to predict accurately thermodynamics of interaction. The 

complexity is increased in the order of rigid, flexible ligand and flexible docking. 

3.3.1 Systematic (Local minimum) Search Method 

In the conformational search methods, structural parameters of the small molecules, such as 

the degree of freedom i.e., rotational, translation and dihedral(torsional) are continuously 

modified during to search, thus explore the all the possible ligand degrees of freedom. This 

method works on incremental search and evaluations cycles, converges to local minimum 
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energy conformation to most likely binding mode.82 This method has a major drawback in 

incremental search and can be overcome by performing a simultaneous search from a different 

point of the energy landscape.83(Figure 3.1A) With this approach, the method further classified 

as exhaustive, incremental search and conformational ensemble. Program Glide84 and eHiTS83 

worked on the exhaustive search algorithm. Whereas, fragmentation approach followed by 

incremental search. i.e., Flex X,85 DOCK,86 and LUDI35 Conformational ensemble methods, 

ligand flexibility87(conformation) pre-generated with docking program and ranked according 

to their binding energy scores. i.e., PhDOCK,87 FLOG,88 MS-DOCK.89 

3.3.2 Stochastic (Global minimum) Search Method 

The stochastic method works on the conformational search by randomly changing of all ligand 

degrees of freedom (translational, rotational and conformational) at each stage, generates a 

wide range of conformation in the energy landscape. (Figure 3.1B) This strategy avoids final 

confirmation at local energy minimum and increases the probability of finding the global 

minimum.90 The main drawback of this method is tremendous computational cost. Monte Carlo 

method, (ICM,91 ProDock92) Evolutionary Algorithms, (GOLD,93 AutoDock94) Tabu Search 

method, (PSI-DOCK95) and Swarm Optimization(SO) (PSO@AutoDock,96 PLANTS97) are 

based on a stochastic algorithm. 

 

 

Figure 3.1: A). Systematic search algorithm changes all search parameter until local (blue 

spheres) or global (red spheres) energy minimum reached; B). Stochastic search explores the 

conformational space by randomly. 

From past two decades, great variety of academic and commercial docking programs are 

available and most of them are dedicated to virtual screening. The most popular docking 

program include DOCK,98 Autodock,99 Autodock Vina,100 FlexX,85 GOLD,101 and Glide,84 

among others. Following table 3.1 has some features of the existing docking programs. 
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Table 3.1 The features of existing docking programs. 

 

Program Feature Website 

   

Commercial Docking Software  

   

Glide84 Exhaustive search-based docking program. 
http://www.schrodinger.co

m 

   

GOLD101 GA-based docking program. 
http://www.ccdc.cam.ac.u

k 

   

MOE Dock102 

MOE Dock supplies a database of conformations 

or generate conformations on the fly, and then 

refines the poses using a force field-based method 

with MM/GBVI.    

http://www.chemcomp.co

m 

   

Surflex 

Dock103 

Docking program based on a “protomol” that can 

be automatically generated and /or user-defined. 
http://www.tripos.com 

   

LigandFit104 

Ligand conformation generated using Monte Carlo 

techniques are initially docked into an active site 

based on the shape and followed by CHARMm 

minimization.    

http://www.accelrys.com 

   

Academic Docking Software 

 

AutoDock99 LGA-based docking program.  http://autodock.scripps.edu 

   

AutoDock 

Vina100 

AutoDock Vina employs an iterated local search 

global optimizer.  
http://vina.scripps.edu 

   

rDock105 
Combination of stochastic and deterministic 

search techniques to generate low energy ligand 

poses. 

http://rdock.sourceforge.net 

   

UCSF DOCK98 Anchor-and-grow based docking program. 
http://dock.compbio.ucsf.ed

u 

   

LeDock106 
Based on Combination of simulated annealing 

and evolutionary optimization of the ligand pose 

and physics/knowledge hybrid scoring scheme.  

http://lephar.com 

 

 

3.2 Covalent Molecular Docking 

In last decade, nearly 30% of marketed drugs has been based on the covalent attachment to 

their target, which traditionally been considered as conceptually distinct from conventional 
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non-covalent drugs.107 Major benefit of the covalent interaction with the target protein has 

prolonged half-life, biological effects, and potential for improved selectivity.108  

Although there has been much controversy over the role of covalent binding in the pathogenesis 

of idiosyncratic drug-related toxicity, the formation of reactive metabolites has been reported 

that, adds higher risk factor in drug discovery.109 Despite this, there have been many successful 

and effective drugs that bind and function through the covalent mechanism. i.e. serine 

penicillin-binding protein which binds to B-lactams and B-lactone antibiotics, cysteine 

protease such as Cathepsin B, K, and S, which are covalently modified through vinyl sulfones, 

epoxides, and ketoamides, and hepatitis C virus protease, which covalently binds the ketoamide 

groups boceprevir and telaprevir.108  

 

 

Figure 3.2: Approved covalent drugs by therapeutic indication (n= 39)  

 

Several docking programs have been modified in focus of covalent docking. i.e. CovDock,109 

DOCKovalent,110AutoDock,111 and GOLD.101 All these programs are designed toward target-

specific covalent inhibitors based on general mechanism shown in Eq. 3.2 

 

  3.2 

 

The entire process typically involves two notional steps: 1). The ligand binds non-covalently 

to the target protein, placing its moderately reactive electrophile close to a specific nucleophile 
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on the protein. Resulting complex, that undergoes specific bond formation from an initial non-

covalent complex. 2). The covalent bond forms between the ligand and the target protein, later 

via the catalytic mechanism of the target protein, conversion of the unreactive ligand into 

highly reactive intermediate, which leads to covalent, irreversible inhibition of target protein. 

The ranking is based on a sampling of conformations with a scoring function to predict the best 

binding mode. 

3.3 Scoring Functions 

The scoring function is a most important component of structure-based drug design for 

evaluating the efficacy of ligands binding to their target proteins.32,112,113 Ideally, scoring 

function should be able to predict absolute binding affinity of the complex to ease identification 

of lead hits against any therapeutics target from any library. As molecular docking generates 

thousands of ligand conformations, scoring functions are used to rank and recognize these 

conformations and differentiate the accurate binding mode prediction from inaccurate 

predictions. Till now it’s a huge challenge for an available scoring function to predict the 

binding affinities of diverse small molecules with high accuracy.37,114,115 

During the past two decades, various scoring functions that exhibit different accuracies and 

computational efficiencies have been developed. Here, I briefly review our scoring functions 

and existing scoring functions which have been developed for protein-ligand interactions in 

molecular docking. Figure 3.3 shows different scoring functions currently in use: 

 

 

 

Figure 3.3: Different categories and evaluation criteria for Scoring function in protein-ligand 

interaction. 
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3.3.1 Physics Based Scoring Function 

A few years ago, semi-empirical quantum mechanics methods were not widely used due to 

their computational cost, and some extended classical scoring function performs well. Because 

of computational cost, preference has been given to molecular mechanics methods, such as a 

combination of MM interaction energy with implicit solvation free energy term(GB, PB) to 

estimate affinities.116 Additionally, wide coverage was available for organic chemical space of 

ligand parametrization via AMBER force field.117,118 However, an explicit description of 

quantum mechanical effects in P-L interaction, such as charge transfer, polarization, covalent 

bond formation and σ-hole bonding were missing. These effects qualitatively well described 

by QM methods.53,119,120 Presently SQM-based methods perform fast, due to powerful 

computing infrastructure and easy way to apply them for P-L complexes in numerous setups:  

efficient parallelization of SQM methods,54,120-123 reliable linear scaling, and use of  

QM/MM,120-127 DFT-D3 on truncated P-L complexes128 or various fragmentations.124,129,130 

Specifically, AM1, RM1, PM6 or DF-TB SQM methods have been used120-127,131 as such or 

with empirical correction for dispersion, hydrogen and halogen bonding.47,132,133  The first 

SQM-based SF was introduced by Merz’s group.51,52 The combination of AM1 SQM method 

with an empirical dispersion(D), and the PB implicit solvent. The method was used for 

describing metalloprotein-ligand binding, but not sufficient to yield quantitative results.   

 

Score = ΔEint + ΔΔGsolv + ΔG`w
conf – TΔS   3.3 

 

The above equation (3.3) represents the general physics-based SFs. The terms correspond to 

the gas-phase interaction energy (ΔEint), the change of solvation free energy upon complex 

formation(ΔΔGsolv), the change of conformational “free” energy (Δ`w 
conf ) and the change of 

entropy upon ligand binding (-TΔS). 

In our laboratory empirical corrections to SQM methods were developed, provide reliable, fast, 

and accurate description of the wide range of noncovalent interaction including dispersion, 

hydrogen and halogen bonding.47,132,133 It is coupled with the COSMO implicit solvent 

model.134 Correction was coupled with the PM6 SQM method135 and resulting PM6-D3H4X 

method, does not require any system specific parameterization. It was used in various 

noncovalent complexes131,136,137 such as aldose reductase,138,139 carbonic anhydrase,140 

metalloprotein,136,141,142 covalent inhibitors143 and 17 diverse P-L complexes.67 

3.3.2 Force-Field or Molecular Mechanics-Based Scoring Functions 

The energy calculation is performed using classical molecular mechanics.39 The scoring 

functions involve various physical features such as van der Waals (vdW) interaction, 

electrostatic interaction, and bond stretching/bending/torsional forces. (Eq. 3.4) 
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E = Estr + Ebend + Etors + Evdw + Eel   3.4 

 

FF-based or MM-based SFs utilize parameters derived from both experimental and ab initio 

quantum calculation.34 These scoring functions estimate the binding free energy of P-L 

complexes by the sum of van der Waals (VDW) interactions and electrostatic interactions. In 

prior time these methods received huge success, but most important problem associated with 

FF-based SFs is their inability to treat solvent molecules in protein-ligand complexes.144 

3.3.3 Empirical Scoring Functions 

Empirical scoring functions work based on the parameters obtained through experimental 

data.41,42,145,146 The number of atoms that are in contact with each other within a ligand and 

receptor count by scoring functions or calculate changes in the solvent accessible surface area 

(ΔSASA) in the complex and the uncomplexed structure of the protein and ligand. These 

interaction terms may include favorable contacts (hydrophobic-hydrophobic), unfavorable 

contacts, favorable contributions to affinity (especially if shielded by solvent), no contribution 

if solvent exposed (number of hydrogen bonds), and unfavorable conformational entropy 

contribution (number of rotatable bonds immobilized in complex formation). Empirical 

functions have been used in several commercially available docking programs. i.e., Flex X, 

Surflex-Dock 

3.3.4 Knowledge-Based Scoring Functions 

Knowledge-based scoring functions work based on the available experimental knowledge 

about the receptor (target) - ligand binding or in the protein data bank (PDB).37,147-149 Their 

energetic contribution to the binding is measured by the occurrence of individual contacts.  A 

specific contact that occurs more frequently than an average or random distribution indicates 

attractive interaction, whereas less frequent occurrence indicates repulsive interaction, e.g., 

DRUGSCORE,150 PMF score.151 

3.3.5 Consensus Scoring Functions 

Consensus scoring function is an approach which improves the probability of finding the 

correct solution via a combination of different scoring functions.39 The best aspect of consensus 

scoring functions is their ability to score predicted binding poses using different scoring 

functions.152,153 

Commonly used consensus scoring strategies include: (1) weighted combinations of scoring 

functions, (2) a voting strategy in which cut-off established for each scoring method is followed 

by decision-based on number of poses a molecule has, (3) a rank by number strategy ranks 

each compound by its average normalized score values, and (4) a rank by rank method sort 

compounds based on average rank determined by individual scoring functions. 
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3.4 Water Molecules in Protein Binding Sites and Host-Guest Systems 

3.4.1 Water: Protein-Ligand Complexes 

Hydration site is the structural feature of protein-ligand complexes and forms the hydrogen-

bonding network in protein-ligand complexes.154,155 Water mediating binding is more common 

in protein-ligand complexes. In 392 protein-ligand complexes,156 its was found that 85% 

complexes have at least one or more water molecules making the interaction between protein 

and ligand. Previously, water molecules were ignored in docking studies and ligands were 

docked into desolvated binding sites. Now, there are many docking protocols where water 

molecules are included implicitly or explicitly.  

In rational drug design, targeted displacement of water molecules into a bulk solvent, due to 

this favorable entropic gain occur, resulting in increase the translational and orientation degree 

of freedom of waters. If this targeted displacement of the water molecule is unsuccessful,157,158 

then the decrease of the binding affinity of ligands can be expected.158,159 Previously, Water 

sites were predicted by classical molecular dynamics and Monte Carlo simulation with help of 

an explicit water model.160 These methods have benefit including entropic calculation but, very 

time consuming to run, and spent more time on buried cavities due to permeate the water 

molecules in cavities. Later, lots of computational methods were discovered, which are fast, 

efficient and less time consuming, these methods are mostly based on grid-based Monte Carlo 

method and the Inhomogeneous fluid solvation theory(IFST), as developed by Lazaridis.161,162 

They use a short molecular simulation to identify water sites and then calculate the 

thermodynamics of water molecules in protein binding sites using IFST.163-165 A key advantage 

of all these methods is the fact that computation is faster with a high degree of accuracy. 

In the present study, we represented the importance of water molecules in binding cavities of 

the kinase, protease family, and hydrolase of protein targets. 

 3.4.2 Water: Host-Guest Systems 

The condensation reaction between glycouril and formaldehyde form the macrocycle, named 

as cucurbituril,166 which consist the 6 glycoluril units and 12 methylene bridges, was first 

reported by the Eberhard and Meyer, often abbreviated as CB[6].  The popularity of 

cucurbituril was increased during the 1980s and 1990s due to the crystal engineering and non-

covalent interaction, which facilitate the non-covalent binding. Later in 2000 and 2002, Kim167 

and Day168,169 modified the earlier reaction conditions and synthesize the variety of glycoluril-

based cucurbituril macrocycles, named as cucurbit[n]uril, n = number of glycoluril. CB[5]-

CB[8] have found a variety of uses given their ability to form binary and ternary host-guest 

complexes and therefore wide impact in scientific research areas.170-172 

Cucurbit[n]urils consist of n glycouril molecules, alignments of the glycouril results in 

hydrophobic cavities with carbonyl-lined portals. The dipolar nature of these carbonyl-fringed 

portal of CB[n]s makes the portal highly attractive for cation binding through ion-dipole 

effects.  While CB[n] portals are highly electronegative, the inner cavities of CB[n]s are 

hydrophobic and show a preference for the encapsulation of hydrophobic compounds. Hence, 
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alkali metals,173 alkaline earth metals,174-176 transition metals,177,178 lanthanides and actinides179 

as well as ammonium and imidazolium ions180 have been shown to bind the CB portals. 

Typically, due to aqueous environments, host-guest affinity drops compare to organic solvents, 

as water competes strongly for hydrogen bonds and solvent charged species. If high-energy 

water is present in cavity, supplies a driving force to form a host-guest complexation, and needs 

to review these high energy water release from the complexations. (Figure 3.4) For entropic 

reasons, all cavities contain the water molecules. Such water molecules reduced the number of 

hydrogen bonds compared to bulk water and are thus called high-energy waters. The binding 

of guest molecules in the CB[n]s cavities releases these high-energy water molecules, which 

lower the energy of the system, provide the entropic and enthalpic gain in favor of complex 

formation. Previously these hydrophobic effects have been studied by molecular dynamics 

simulations. In this thesis, we have reported the crucial role of the specific solvation in 

cucurbit[n]uril, which include the location of waters, occupancy, enthalpy and entropy of water 

in the cavity.    

 

 

Figure 3.4: Schematic representation of the formation of CB[n] host-guest complexes driven 

by the release of high-energy water.  

 

3.5 Non-Covalent Interactions 

The non-covalent interactions are one or two orders of magnitude weaker than the covalent 

interaction. This interaction differs from covalent interaction in that no electron is shared 

between the participating atoms. Drugs produce their effect by interacting either covalently or 

non-covalently with their target protein in the systems. A fundamental understanding of ligand 

binding with the target protein requires deep insight. e.g. non-covalent interaction stabilizes the 

protein-ligand complexes as well as thermodynamics and dynamics of systems. There are 

fundamental non-covalent interactions in several systems, such as induction, polarization, 

electrostatics, charge transfer and dispersion.    

The focus has been on the different classes of hydrogen bonds, halogen bonds, and σ-bond 

interactions. These interactions are briefly described in the following sections. There are, 

however, other types of interactions also important in protein-ligand complexes, like ionic 

bonds, salt bonds, and hydrophobic interactions.  
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3.5.1 Hydrogen bond interactions 

The hydrogen bond X-H…Y is an attractive interaction between a hydrogen atom from a 

molecule or a molecular fragment X-H in which X is more electronegative than H and electron 

donor molecule Y. The strength of the interaction is affected by the angle and distance between 

the donor and acceptor, which often reinforce in positive cooperative manner. This force 

contributes to the interaction energy which includes electrostatics, induction, and dispersion. 

In addition, hydrogen bond exhibits partial covalent character as result of charge transfer 

between the donor and acceptor. The work in the thesis is mainly related to the strong non-

covalent interaction between the protein-ligand and ligand-water molecules which are 

thoroughly investigated with available QM/SQM based methods. e.g. kinases, hydrolase and 

host-guest systems. Examples of different types of hydrogen bond considered into protein-

ligand complexes in this thesis are presented in Figure 3.5. 

 

 

Figure 3.5: Examples of hydrogen bonds considered in Protein-ligands complexes. 

 

3.5.2 Halogen Bonds interaction and σ-bond 

A first halogen bond was proposed by Guthrie181 in 1863 in a complex of ammonia and iodine. 

Later, Remsen182 and Mulliken183 proposed halogen bond with trimethylamine and bromine 

and dihalogens, respectively. During the1960s, Hassel (Nobel prize awarded) determined 

halogen bond by X-ray diffraction and first complex studied was between 1,4-dioxane and 

bromine. The halogen bond represented by (Fig 3.6), 

 

 

Figure 3.6: Representation of halogen bond. 
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where C-X is defined as the halogen-bond donor and can include dihalogen molecules. Y is the 

halogen bond acceptor or Lewis base and can include the lone pairs of electrons on an atom, 

an anion or a region of π-electron density.  These include polar interaction, hydrophobic 

interaction and multipolar interaction.  

The X-bond “donor” is attributed to an anisotropic distribution of the charge density on the 

halogen atom, due to this polarization happen on the halogen (X) along the C-X σ-bond. 

According to the molecular orbital theory, the valence electrons of outer shell pz orbital 

participate in the formation of the covalent σ-bond, thus partially exposing the positive nuclear 

charge opposite the C-X σ-bond. This is referred as σ-hole, which leads to an attractive 

interaction with the linear arrangement. The strength increase as the size of halogen increase, 

means electrons are more polarizable: F << Cl < Br < I, where I am forming more stable 

halogen bonds. On the other hand, F is more electronegative and less polarizable and forms 

halogen bond only in certain conditions.             

 

The attention of halogen bond in drug discovery increase in past few years. Approximately 20-

25% of all drugs contain at least one fluorine atom and approximately 14.5% contain Cl, 1.5% 

Br and 1.2% I. Three out of ten bestselling drugs in 2011 contain F. These include some 

blockbusters, e.g. Prozac(depression), Celebrex(arthritis), Sustiva(anti-HIV), 

Januvia(diabetes) and Lipitor(dyslipidemia).       

In our laboratory, we investigated the selectivity and binding affinity of CDK2 inhibitors, with 

a polyhalogenated derivative of AKR1B10 inhibitors, which explicitly includes the bromine 

atoms. If bromine is substituted by the other alkyl groups or hydrogen, then we have shown 

that binding affinity drastically reduce from potent to less potent in CDK2 inhibitors. Secondly, 

we characterized the nature of halogen bonding in 128 complexes using advance quantum 

mechanical calculations. The first subset of 38 complexes with small intermolecular distance 

and significant van der Waals distance have stabilization energies in the range of 7-32 kcal/mol, 

while the second subset with 90 complexes has stabilization energies smaller than 7 kcal/mol.  
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PROJECTS 

 

 

 

The dissertation is organized as follows, First, we discuss docking, binding mode prediction 

and covalent inhibitor design of kinase and hydrolase targets, respectively. (Attachments 

A+B+C). Next, we briefly describe the performance of SQM methods. Specifically, PM6 and 

DFTB3 based SQM scoring functions on protein-ligand diverse set. (Attachment D). Finally, 

we describe the important role of water on two different projects; one of them is based on 

protein-ligand complexes, like, kinase, hydrolase, and racemase, (Attachment E+F+G) while 

the second one we studied on the host-guest binding. (Attachment H+I)           

 

4.1 Binding Mode Analysis and Design and Discovery of Kinase and 

Hydrolase Inhibitors 

In Structure-Based Drug Design, docking method is considered a promising tool for designing, 

structure-activity relationship (SAR), and prediction of the binding mode of inhibitors and 

application on biological systems. Here, we did prediction of the binding mode of the novel 

and potent inhibitor of CDK2 and FLT3 kinases and, the structure-activity relationship of 

covalent inhibitors of AChE, BChE with its predecessor. For these reasons, we utilized docking 

as primary tool and data available in the literature. 

4.1.1 Computational Method 

Using structure-based approach, we have rationalized the observed structure-activity 

relationship and, binding mode analysis. Induced fit docking31,184 and non-covalent docking 

were carried out in active Kinases structure (CDK2, FLT3) and covalent docking in hydrolase 

target (AChE, BChE) using Glide and understanding of binding mode in term of binding free 

energies was approached via semi-empirical quantum mechanics(SQM) scoring methods. (See 

the Methods in Publication A, B, and C.) 

4.1.2 Result and Conclusion  

Figure 4.1 summarizes a SAR and Binding mode analysis of novel inhibitor (imidazo[1,2-

c]pyrimidin-5(6H)-one ) which were subjected to biochemical assays to determine their activity  

against recombinant CDK2/cyclin E. The 2’,3’-dihalogenated compound have (See methods, 

Publication A) exhibited better activity (IC50 = 1.3µM). Due to the small size of the inhibitors, 

we have observed several types of binding modes.  The most active compound had standard 

type I inhibitor binding mode (bma1, and bm1b), featuring two hinge-region hydrogen bonds 

like their predecessors. In contrast, bm2 had reversed core with two hinge region hydrogen 

bonds, similar to purvalanol. The last binding mode bm3 had only one hinge region H-bond. 

Due to the lack of crystal structures, narrow potency range and, other factors correlation with 

experimental data was not quite possible. We used SQM approach to differentiate binding 
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mode via their calculated binding free energies. In conclusion, the smaller size of substituent 

was consistent with the micromolar potency. SQM rescoring identified the probable favorable 

binding mode which will guide future structure-based design and optimization to get potent 

compounds. 

 

 

Figure 4.1: Binding modes of CDK2 inhibitors in active CDK2/cyclin E conformation. A). 

active Compound 3j(bm1a) B). active compound 3b(bm1b) C). least active compound 

3n(bm2) D). inactive compound 3s(bm3)  

 

Figure 4.2 summarizes the binding mode prediction of potent FLT3 kinase inhibitor for acute 

myeloid leukemia with FLT3 mutations. The most active compound 7d is type-I inhibitor and 

bind to the ATP binding site, forming the hydrogen bond with hinge region and presenting the 

substituent in the hydrophobic region near the gatekeeper residue in active kinase 

conformation. Compound 6j makes many non-hinge interactions resulting in loss of activity. 

In conclusion, docking of 7d to FKT3 suggest type -I inhibitor, binding mode and, explains the 

structural determinant to its potency. (See Detailed, Publication B)  
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Figure 4.2: Docking binding pose of active compound 7d in active FLT3 Kinase conformation. 

 

Last, sixteen novel derivatives of alkyl carbamates series compound were characterized, 

synthesized, as acetylcholinesterase(AChE) and butyrylcholinesterase(BChE) inhibitors. The 

result demonstrated they acted as pseudo-irreversible inhibitors. Compound (3b,3d,3l, and 3n) 

had the best AChE inhibitory activity and were tenfold more potent than standard drug 

rivastigmine. Covalent docking was performed. Binding mode (Figure 4.3) of all series you 

should describe the covalent score correlated with the experimental binding free energy. (R2 = 

0.75). Thus, the weakest compounds in alkyl carbamates series were clearly distinguished from 

the strong binders. In conclusion, pseudo irreversible inhibition mechanism was confirmed by 

biochemical studies and computationally supported by state of the art covalent docking and 

scoring methodology. (See Detailed, Publication C) 
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Figure 4.3: Comparison of covalently docked poses of compound 3b in TaAChE(purple) and 

BChE(Orange). 

 

4.2 Comparing SQM/COSMO with Classical Scoring Functions 

Docking is prime and well-established SBDD computational tool. The affinity of all the ligand 

geometries every generated by docking is approximated by their scores. Scoring power, 

ranking power, docking power, and screening power are most important parameters of any 

docking software. The remaining problem concerns accuracy in calculation of non-covalent 

interaction. Therefore, we developed SQM based Scoring function, which accurately treats 

non-covalent interactions. To aim this, we validate and extend the application of our 

SQM/COSMO SFs for native pose identification on a dataset containing diverse classes of P-

L complexes.   
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 4.2.1 Computational Method 

QM based interaction energy calculations require structures of good quality. Therefore, we 

have applied strict criteria and selected based on them. (See Method, Publication D)  

4.2.2 Result and Conclusion 

We have extended our previous pilot studies, done on four difficult R-L systems by application 

of SQM/COSMO SFs to 17 pharmaceutically relevant and diverse complexes from five protein 

classes. The overall sampling power of all SFs is shown as enrichment plot (Figure 4.4A), 

where SQM based SFs, DFTB3-D3H4X level perform the best, followed by PM6-D3H4X, 

here as the worst performance was seen with GlideXP, AutoDock4, and AutoDock Vina. For 

detailed evaluation, we used strict False positive criterion. The SQM/COSMO SFs performed 

better than the classic SFs, the number of HFPs being up to 1 order of magnitude smaller 

compared to classic SFs. (See Results, Publication D, Figure 1B).  Finally, in conclusion, the 

ability to recognize the native pose in cognate docking, SQM/COSMO SFs performed better 

than Classic SFs. Time requirement for SQM/COSMO SFs was higher than the classical SFs, 

but due to available supercomputer power can be evaluated in reasonable time.  

 

 

A). 
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B). 

 

Figure 4.4: A). Enrichment plot for six scoring functions B). Number of HFP for Six scoring 

functions. 

 

4.3 Active Site Explicit Water: Protein-Ligand Complexes  

Prediction of structure and binding affinity are an essential tasks of structure-based drug design. 

The affinity of drugs for their target is described by thermodynamic properties. For this reason, 

calculation of thermodynamic properties has been the long quest of computational chemistry. 

As consequence, solvation patterns around drugs and their binding sites have become an 

important objective in molecular modeling. Hydrophobic surfaces have been estimated to cover 

~75% of surfaces of drug sites, which indicates that hydrophobic effect may be an important 

energy contribution to ligand binding affinity. 

4.3.1 Computational Method 

WaterMap185-187 is commercialized by Schrodinger Inc.188 and based on the inhomogeneous 

solvation theory(IST).161,162 The protein-ligand complexes (kinases, reductase, and hydrolase) 

based on X-ray structure was used for our computational protocol. (See detailed method 

Publication, E, F, and G)  WaterMap tool analyses the results of a short (10ns) MD simulation 

in which the protein and ligand are typically held rigid and water molecules are able to enter 

and leave the binding pocket. A clustering algorithm is then applied to assign a population of 

sites from MD simulations. Free energy of each water site is calculated by IST, which estimates 

local average enthalpy and entropy contribution of individual waters binding to the site.  

4.3.2 Result and Conclusion 

Figure 4.5 describes the location of six water sites in CDK2 active site, which correspond to 

the location of crystallographic water molecules. These water molecules are present throughout 

the simulation time and forming the hydrogen bond chain, which interacts with inhibitor. 

Thermodynamically, the binding of all six water molecules in their protein sites is unfavorable 
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with respect to their ΔG in bulk solution (Table 4.1). This is mainly due to the entropic cost of 

trapping them in protein. These thermodynamic parameters of water were crucial for QM 

Scoring. In conclusion, active-site explicit waters and their thermodynamics helped to achieve 

good correlation with the experimental binding affinities and provided the information that the 

explicit solvent effect is much needed in the scoring procedure to obtain meaningful results. 

(See detailed Result, Publication E) 

 

 

 

Figure 4.5: Structural water molecules in a crystallographic complex of CDK2/1l.   

 

Table 4.1: Thermodynamic characteristics of water molecules in CDK2/1l calculated by 

WaterMap.( ΔG; free energy, ΔH; enthalpy, and -TΔS; entropy, all in kcal/mol)  

 

Water ΔG ΔH -TΔS 

W77 1.2 -3.2 4.4 

W206 4.4 0.5 3.9 

W194 2.4 -1.6 4.0 

W147 2.4 -2.0 4.5 

W224 0.8 -4.4 5.1 

W130 6.2 2.1 4.1 
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Further, displacement of long residence water molecule is usually energetically unfavorable in 

hydrophobic subpocket of AKR1B10 binding sites, due to their imperfect fitting and can lead 

the large enthalpic gain when displacing such water molecules. In the holoenzyme structure, 

WaterMap found buried water molecules, (Figure 4.6) which was very unfavorable in this 

position. Therefore, the bulkier substituent contains three ligands well fit in hydrophobic 

subpocket and makes strong interaction with native conformations. In conclusion, WaterMap 

was useful to identify the buried water molecules in AKR1B10 subpocket and their energy 

contribution to binding affinity. (See detailed Result, Publication F) 

 

 

Figure 4.6: A). WaterMap Analysis of AKR1B10 apoenzyme. B). X-ray water positions and 

their energies overlaid with three inhibitors.  

 

Finally, analysis of hydration site in Serine Racemase is described in Figure 4.7 The active site 

of hSR is highly polar, open to bulk solvent and filled with several structural water molecules. 

The X-ray structure contains a problematic pair of water molecules, which would have a 

repulsive contact due to their close distance. To overcome this problem, we have used 

WaterMap. In conclusion, positions/occupancies of structural water molecules are sometimes 

doubtful and thus they must be assessed by calculations of the hydration sites and their 

thermodynamics. (See detailed Result, Publication G)  
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Figure 4.7: The hSR/malonate X-ray structure (PDB code: 3L6B) and active site waters. 

Brown; unfavorable energy, green; favorable energy, red; X-ray water positions and yellow 

ribbon hSR. 

 

4.4 Explicit Water: Host-Guest Complexes 

The supramolecular chemistry of host-guest complexes represents a logical step from 

noncovalently bound small molecules in vacuo, self-assembled triple helicate rigid cages in 

nonpolar solvent toward the protein-ligand complexes in water.189 From last few decades, the 

chemistry of cucurbit[n]uril (CB[n], n = 5,6,7,8,10) has a promising application in material 

chemistry, molecular recognition, chemosensing and drug discovery.190-194  The ability of 

CB[n] hosts to bind guest molecules within their cavities results from various effects 

nonspecific. Solvation plays a crucial role, called as nonspecific, because of damping the 

electrostatic effects between host and guest. The host is polar molecule and guest is charged 

molecule, therefore there has been significant electrostatic energy which is damped when 

passing from vacuum into water environment. For this reason, we have estimated the role of 

water molecules in Cucurbit[n]uril• host.(n=5,6,7,8)  (See, Publication H, and I) 

4.4.1 Computational Method 

A four-isolated cucurbit[n]uril (n=5,6,7,8) and a training set of 11 complexes based on X-ray 

crystal structure was used for our computational protocol (Figure 4.8). We determined 

explicitly the high-energy water molecules inside the cavity of the host or without a host. We 

performed MD Water simulation (10ps long) of a CB[n] molecules dipped in 12 Å/side 

periodic cubic box filled with explicit water molecules. (see detailed method, Publication H).  
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Figure 4.8: Illustration of host and guest molecules considered in our study: 

adamantane/diamantine, naphthalane, bipiperidine and ferrocene derivates.  

4.4.2 Result and Discussion 

In this section, the water thermodynamics of host and guest molecules will be discussed. 

Solvation energy of CB[n] hosts assessment by a WaterMap method for cucurbit[n]uril host-

guest complexes will follow. Next, finding of high energy water molecules within CB[n] host 

molecules will be described. 

4.4.2.1 Solvation Phenomena for CB[n] Host-Water-Guest Complexes. 

The CB[n] host is polar and the studied guest molecules are charged. The significant part of 

the interaction energy originates from the electrostatic energy between them. However, it is 

strongly damped when passing from vacuo into water environment. It’s clear that the 

environment can severely change the nature of binding and thus the accurate description of 

solvent effect represent a crucial point.  Nau and co-workers,195,196 pointed that the release of 

high energy water from the cavity of CB[n] macrocycles is a major determinant for guest 

binding in aqueous solution. Table 4.2 describes the solvation effect in detail. The free energy 

depends upon increasing diameter size of CB[n] hosts composed of a different number of 

glycouril units. (n= 5,6,7,8) It has been calculated as the energy difference between molecules 

in vacuo and in implicit solvent. The second column represents the theoretical difference of 

potential energy (-ΔEpot) of water molecules in a spherical cavity within the aqueous bulk and 

inside the host cavity, reported by Nau and co-worker(ref). The third column shows the 

WaterMap specific solvation free energies (ΔGpot 
WM) whereas the last column contains their 

enthalpy and entropy components.  These results show that the most favorable solvation was 

found for CB[7] and CB[8]. (i.e. the smallest ΔG) It is noted that this finding is not in accord 

with results of Nau. However, if we take into account large error bars for all four hosts reported 

by Nau and co-worker, then it is apparent that reported potential energies for CB[7] and CB[8] 

are statically compatible. Therefore, our WaterMap generated results basically agree with their 

finding. 
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 -ΔEpot
a ΔGpot

WM ΔH/-TΔSpot
WM 

CB[5] 41.6±28.8 12 7.6/4.4 

CB[6] 51.1±29 21.4 12.3/9.1 

CB[7] 102.4±31.3 5.3 -4.9/10.2 

CB[8] 66.2±10.7 4.9 -10.5/14.9 

 

Table 4.2: Calculated energies related to solvation of CB[n] hosts, all unit are kcal/mol. [a] 

data are taken from ref197 

4.4.2.2 Finding of the high-energy of Cucrbit[n]uril (n=5,6,7,8) Host Molecules.  

Table 4.3 describes the number of high energy water molecules residing within the host cavity 

in the absence of an encapsulated guest by WaterMap. The same number of water molecules 

as previously reported by MD simulation has been found in CB[n]uril and Packing Coefficient 

(PC) analysis. 

 MD[a] PC 

analysis[a] 

WaterMap 

    

Water Sites 

Avg. 

Occupancy(%) 

Nwater 

molecules
[b] 

CB[5] 2[2.0] 2[b] 2 94 ~2 

CB[6] 4[3.3] 4[b] 6 56 ~4 

CB[7] 7[7.9] 8[b] 12 41 ~8 

CB[8] 10[13.1] 16[b] 19 41 ~16 

 

Table 4.3: Number of water molecules residing within a CB[n] hosts cavity as studied by 

molecular dynamics, packing coefficient, and WaterMap. [a] data are taken from the ref,195,196 

[b] Number of actual water molecules by analysis of water sites, the positions, and the 

occupancies. 

In conclusion, we discussed the accuracy of previously reported solvation properties of CB[n] 

molecules by Nau & Co-workers and have been well produced by explicit(WaterMap). The 

presence of high energy water molecules was not required for modeling of the CB[n] host-

guest complexes. 
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Summary and Outlook 

 

 

The structure-based drug design is a complex and iterative process relying on pre-existing 

knowledge and driven by experimental data. Explanation of how and why these molecules 

interact with their target is essential, which not only give insights into the fundamental 

processes but also for drug discovery and other related fields. To obtain the comprehensive 

understating of non-covalent interaction between a ligand and a protein, many aspects need to 

be investigated and data from different sources are needed. The studies presented in this 

dissertation have used for computer-aided drug design a multidisciplinary approach: a 

framework for Binding mode analysis, Structure-activity relationship(SAR), a receptor-ligand 

scoring function and a docking, and Water thermodynamics.  

In the thesis, first (cf. A, B, C publications) the binding mode prediction of protein targets, 

namely tyrosine-kinase CDK2, Fms-like tyrosine kinase 3(FLT3), and hydrolase (AChE, 

BChE) is made and exemplified by the prediction of inhibitors in binding sites by using a 

combination of molecular modelling and biochemistry. The discovered inhibitors have been 

used to probe the non-covalent interaction in kinases, hydrolase and have provided detailed 

insight into the binding of drug-like ligands in their respective targets. The discovered 

inhibitors may, however, also be used as starting point in the designing of new drugs for the 

treatment of anticancer and nerve-agent poisoning.  

Next, (cf. D publications) we presented the SQM based scoring functions, a deterministic 

scoring algorithm, employing a complete non-covalent interaction and iterative pose prediction 

via different available docking programs. In order to validate the scoring functions, there are 

several caveats when trying to validate new scoring terms. The compositions of the dataset 

used to validate and evaluate the scoring function are one of such issues. This dataset of protein-

ligand complexes, structures employed for the validation needs to be large and diverse enough 

and may not just contain data from certain classes of enzymes. Datasets like the Astex diverse 

set, PDB core set, DUD library are commonly used in in-silico procedures. We observed that 

in “PDB coreset” includes experimental three-dimensional information. In the future enhance 

validation of SQM based SFs even more. The optimization and time requirement for the 

SQM/COSMO SFs and selective integration of binding affinity. This option allows to calculate 

accurate scoring terms and reduce the false positive rates. Thus, whether the molecules actually 

fit into the target structure or not would be more reliably predicted. There are some promising 

approaches for our scoring function. One way would be a more detailed and accurate 

calculation of solvation/desolvation effects, although great care has been taken to ensure 

comprehensive performance on diverse datasets. This scoring function could be useful too in 

structure-based design. 

In this dissertation, (cf. E, F, G, H and I publications) we next presented the hydration sites 

of protein targets and host-guest systems. Water molecules are ubiquitously found as the 

interfaces between protein and ligand, and it is often stated that the interfacial water must be 

considered as an integral part of binding sites. The work presented here that identify how the 

specific interactions and buried water molecules in binding sites affect the ligand binding, 
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which was perhaps the most challenging as it is important and may provide unexplored 

opportunities in drug discovery. To the date, these effects are not understood well enough to 

be generally applied in the design of new ligands. The enthalpy-entropy compensation 

observed for protein-ligand complexes and host-guest complexes constitutes an important 

discovery and can provide opportunities also in future studies. Indeed, we observe that the 

meaningful correlation between experimental and theoretical is achieved only with unified 

treatment of both the protein-ligand complexes, host-guest complexes and the interfacial 

bridging water. Our work thus demonstrates the impact of hydration dynamics on the protein-

ligand complexes and host-guest systems.  

To conclude, CADD is indeed a very useful tool for pharmaceutical companies and academic 

research group to search for potential drug candidates with reduced cost and time. Although, 

the contribution of this research has been presented in the context of structure-based drug 

design. However, there is still room for further improvement in CADD, such as more accurate 

scoring functions, the solvent effect in docking and of course in terms of increasing 

computational efficiency.  
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