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ABSTRACT

Modern communication systems often require digital predistorters (DPDs), advanced
signal-processing units, to satisfy stringent demands on transmitter linearity and ef-
ficiency. Nevertheless, DPD significantly increases the hardware and computational
complexity of transmitters, which leads to increased power consumption and expenses.
Therefore, we propose methods to achieve lower hardware and computational complexity
of DPD adaptation. The principle of real-valued feedback samples allows for saving one
of two originally-needed feedback analogue-to-digital converters (ADCs), which implies
reduced transmitter complexity and power consumption. Furthermore, the hardware and
computational complexity can be reduced if the feedback samples for the DPD adapta-
tion are undersampled and carefully selected. The proposed techniques select samples
based on histograms and can reduce the required number of feedback samples to a
few tens. The provided analyses show approximately 400-times reduced computational
complexity achieved by the sample selection and 40-times reduced power consumption
of the undersampling feedback ADCs. The real-valued feedback, its undersampling,
and sample selection constitute fundamental principles of the proposed DPD adapta-
tion with a level-crossing ADC, which is realised by a simple comparator. Replacing
the conventional ADCs with a comparator significantly reduces the design complexity
and power consumption. All the proposed and described techniques are accompanied by
simulations, usually confirmed by measurements on real hardware, and compared with
state-of-the-art methods. The final discussion analyses the limitations, usability and ad-
vantages of the proposed techniques. It shows that reducing complexity might not be
universally applicable and all the design constraints and specifications must be carefully
assessed.
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level-crossing analogue-to-digital converter.



ABSTRAKT

Moderní komunikační systémy často vyžadují digitální předzkreslovače (DPD), jednotky
pokročilého zpracování signálu, ke splnění požadavků na linearitu a účinnost vysílačů.
Nicméně DPD výrazně zvyšují hardwarovou a výpočetní složitost vysílačů, což vede
ke zvýšení spotřeby a nákladů. Z toho důvodu představujeme metody k dosažení nižší
hardwarové a výpočetní složitosti adaptace DPD. Metoda zpětnovazebních vzorků s re-
álnou hodnotou vyžaduje pouze jeden ze dvou původně potřebných zpětnovazebních
analogově-digitálních převodníků (ADC), což vede ke snížení složitosti vysílače a spo-
třeby energie. Hardwarovou a výpočetní složitost lze více snížit, pokud je zpětnovazební
signál pro adaptaci DPD podvzorkován a jsou vybrány pouze vhodné vzorky. Navrhované
techniky vybírají vzorky dle histogramu a mohou snížit potřebný počet vzorků zpětné
vazby na několik desítek. Provedené analýzy ukazují přibližně 400násobné snížení vý-
početní náročnosti dosažené výběrem vzorků a 40násobné snížení spotřeby energie díky
podvzorkování zpětné vazby DPD. Metody zpětné vazby s reálnými hodnotami, její pod-
vzorkování a výběr vzorků tvoří základ navrhované adaptace DPD využívající ADC s
detekcí jedné úrovně, který je realizován jednoduchým komparátorem. Nahrazení běž-
ných zpětnovazebních ADC jednoduchým komparátorem výrazně snižuje složitost návrhu
a spotřebu energie. Všechny navržené a popsané techniky jsou doprovozeny simulacemi,
obvykle i měřením na reálném hardwaru a porovnány s dostupnými metodami. Závěrečný
rozbor řeší použitelnost a omezení jednotlivých metod. Ukazuje se, že snížení složitosti
nemusí být univerzálně dosažitelné a je třeba pečlivě posoudit všechna specifika daného
návrhu.

KLÍČOVÁ SLOVA

Digitální předzkreslovač, linearizace výkonových zesilovačů, adaptace předzkreslovače s
nízkou složitostí, podvzorkování zpětné vazby, výběr vzorků pomocí histogramu, analo-
gově digitální převodník s detekcí jedné úrovně s komparátorem.
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Introduction
Modern communication systems must provide ever-increasing data throughput. This
demand is usually satisfied by increased communication bandwidth and by devel-
oping more spectrum-efficient modulation schemes. The modern spectrum-efficient
modulations put stringent demands on transmitters and receivers, especially on
their hardware imperfections. In the currently developed fifth generation (5G) and
sixth generation (6G) systems, one of the main concerns is the linearity of radio
frequency (RF) power amplifiers (PAs) in transmitters [1], because the nonlinear
distortion leads to a degraded constellation diagram resulting in higher bit error
rate and to the spectrum regrowth, undesired transmission and potential interfer-
ence in regions close to the communication channel. The linear PAs, however, suffer
from low power efficiency. They are usually physically larger and require power-
ful cooling systems, which naturally implies their higher manufacturing expenses.
Therefore, designers tend to prioritise their power efficiency at the expense of their
linearity and overall transmitter linearity is achieved by linearisation techniques.

One of the linearisation techniques is digital predistortion. The digital predis-
torter (DPD) modifies a signal going to the nonlinear PA by artificial nonlinearity
with complementary characteristics to cancel the PA nonlinearity. The digital pre-
distortion is currently the most promising linearisation technique with the highest
achievable linearisation performance [2]. However, the DPDs, especially their adap-
tation, are very computationally demanding and often require complex feedback
circuits to track changing PA characteristics.

The higher computational and hardware complexity represents one of the cur-
rent research challenges. Even though a lot of research has been conducted in this
direction, e.g. [3–5], there is still plenty of space for improvements. In this the-
sis, therefore, we have oriented to low-complexity methods for DPDs. The goal of
this thesis is to extend state-of-the-art knowledge of low-complexity methods for
PA linearisation to make DPDs generally more applicable, less expensive and more
efficient. We introduce three key methods to lower the computational and hardware
complexity of the DPD adaptation:

• real-valued feedback,
• feedback sample selection,
• feedback with a level-crossing analogue-to-digital converter (LC-ADC).
For the conventional PA adaptation, the PA output is usually down converted

by an in-phase and quadrature (IQ) mixer and both in-phase and quadrature signals
are sampled by two analogue-to-digital converters (ADCs). The real-valued feed-
back method enables avoiding one of the two ADCs which reduces the hardware
complexity, saves power and lowers transmitter costs.
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Usually the feedback ADCs are required to continually sample the PA output at
a sampling frequency which covers three to five times of the communication channel
bandwidth [6, 7]. The feedback sample selection naturally allows for feedback un-
dersampling, which significantly decreases the power consumption of the feedback
ADCs. Additionally, if the feedback samples are carefully selected, only a few sam-
ples are required for successful DPD adaptation. Consequently, calculations with
lower dimension matrices lead to a significant reduction of computational complex-
ity. Our simulations and analyses show that the computational complexity can be
reduced up to 400 times compared with the conventional approach.

The LC-ADC in feedback replaces two conventional feedback ADCs by a simple
comparator. The principle of this method is based on combining principles of the
real-valued feedback samples and feedback sample selection. The PA output is
not continuously sampled and cannot be fully recovered in the digital processing,
but rather the comparator detects when the PA output is crossing a set reference
voltage. Knowledge of time instants of the comparator output edges and the set
reference voltage is sufficient for the DPD adaptation. Our measurements indicate
performance of DPD adaptation with the proposed feedback comparable to DPD
adaptation with the conventional feedback with two ADCs. The advantages of the
LC-ADC are lower power consumption, costs and footprint than of the equivalent
feedback solution with conventional ADCs.

This thesis is structured as follows. Chapter 1 introduces theoretical and his-
torical basics of PA linearisation. Mathematical models of PAs and DPDs, signal
modulations, and performance metrics, which are used throughout this thesis, are
defined here as well. Chapter 2 reviews the recent advances of PA linearisation,
especially of the DPDs. We identified several research directions and focused par-
ticularly at low-complexity predistortion methods. In Chapter 3, DPD adaptation
with real-valued feedback samples by different DPD architectures is described. The
linearisation performance of the DPD adapted by the real-valued feedback samples
and the conventional approach are simulated and compared. Feedback sample selec-
tion methods are analysed in Chapter 4. We present a general principle of sample
selection methods for DPD adaptation in different architectures and later we pro-
pose various sample selection methods. We analyse their computational complexity
reduction and simulated linearisation performance. Additionally, we confirmed the
simulation results by measurements. Chapter 5 describes principles of DPD adap-
tation with the LC-ADC in the feedback, and measurements of its performance on
three different hardware setups. Finally, Chapter 6 summarises the proposed low-
complexity approaches and discusses their limitations, usability, and advantages.
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1 Theoretical Introduction

1.1 Power Amplifier Basics
Amplifiers are electronic components that increase signal strength in terms of volt-
age, current, or power. The ideal amplifier output 𝑦(𝑡) is fully proportional to its
input 𝑥(𝑡) and, without limitations, follows the equation [8, 9]

𝑦(𝑡) = 𝐺 𝑥(𝑡), (1.1)

where 𝐺 is a constant amplifier gain. The schematic symbol of an ideal amplifier is
depicted in Fig. 1.1.

The described linear model is sufficient when the output signal of the amplifier
is relatively small and the amplifier works within very limited operating conditions.
However, in reality, these conditions are usually met only for low-power amplifiers
working with no or negligible load. In contrast, high-power amplifiers (simply PAs)
usually suffer from nonlinearity and memory effects.

x(t) y(t)

PA

G

Fig. 1.1: Schematic symbol of an ideal amplifier with gain 𝐺.
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Fig. 1.2: The compression point of 1 dB in output-input power characteristics.
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1.1.1 Compression Point of 1 dB

As the input signal level increases and the amplifier output approaches the supply
voltage, the amplifier output cannot follow the linear relation (1.1) anymore and
saturates. As a result, the output signal level is lower than the ideal output level, as
shown in Fig 1.2. The point, where the actual output level is 1 dB lower than the
ideal output level, is called the 1-dB-compression point. It is described by its output
power level 𝑃1dB,o and, correspondingly, by its input power level 𝑃1dB,i. The 1-dB-
compression point is the simplest indicator of the nonlinearity of an amplifier. [8,9]

1.1.2 AM/AM and AM/PM Characteristics

A more advanced method of describing the RF amplifier is by its amplitude/ampli-
tude (AM/AM) and amplitude/phase (AM/PM) characteristics. Let us assume that
the amplifier input signal is given as

𝑥c(𝑡) = 𝑥(𝑡)𝑒j2𝜋𝑓c𝑡, (1.2)

where 𝑥(𝑡) is a complex envelope and 𝑓c is the carrier frequency . The power amplifier
output can be described as

𝑦(𝑡) = 𝐹AM(|𝑥(𝑡)|) · 𝑒j arg{𝑥(𝑡)}+j𝐹PM(|𝑥(𝑡)|)𝑒j2𝜋𝑓c𝑡, (1.3)

where 𝐹AM(|𝑥(𝑡)|) represents the AM/AM characteristics and 𝐹PM(|𝑥(𝑡)|) represents
the AM/PM characteristics. The operators | · | and arg{·} signify the magnitude
and the angle of the given complex parameters, respectively. [8]

In other words, the AM/AM characteristic defines the envelope magnitude of
the amplifier output with respect to the envelope magnitude of the amplifier input.
This can be seen as an amplitude distortion. The AM/PM characteristic defines
the added angle to the complex envelope phase with respect to the input complex
envelope magnitude. This can therefore be seen as a phase distortion. The examples
of AM/AM and AM/PM characteristics are plotted in Fig. 1.3.

1.1.3 Intermodulation Distortion

Intermodulation occurs when two (or generally multiple) signals or tones of different
frequencies are input into a nonlinear component. Let us assume that the input
signal 𝑥(𝑡) consists of two tones with frequencies 𝑓1, 𝑓2 and amplitudes 𝐴. It can be
described as [9]

𝑥(𝑡) = 𝐴 cos(2𝜋𝑓1𝑡) + 𝐴 cos(2𝜋𝑓2𝑡) = 2𝐴 cos(2𝜋𝑓d𝑡) cos(2𝜋𝑓p𝑡), (1.4)

where 𝑓d = 𝑓2−𝑓1
2 and 𝑓p = 𝑓1+𝑓2

2 .
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(a) AM/AM characteristic. (b) AM/PM characteristic.

Fig. 1.3: An example of PA characteristics.

Assuming the amplifier has no memory effects, the output 𝑦(𝑡) is given by the
actual input 𝑥(𝑡) at time 𝑡 and does not depend on its history. When considering the
amplitude distortion only, the nonlinearity can be modelled by general polynomial
series and the amplifier output can be written as

𝑦(𝑡) = 𝑎1𝑥(𝑡) + 𝑎2𝑥
2(𝑡) + ... + 𝑎𝑘𝑥𝑘(𝑡) + ... + 𝑎𝐾𝑥𝐾(𝑡), (1.5)

where 𝑘 is the nonlinearity order and 𝐾 is the maximum nonlinearity order. By
incorporating (1.4) into (1.5), we get

𝑦(𝑡) =
𝐾∑︁

𝑘=1
2𝐴 𝑎𝑘 cos𝑘(2𝜋𝑓d𝑡) cos𝑘(2𝜋𝑓p𝑡), (1.6)

which can be further expanded based on the binomial theorem, the exponential
definition of the cosine, and the substitution 𝑢 = 2𝜋𝑓d𝑡, 𝑣 = 2𝜋𝑓p𝑡 as [9]

𝑥𝑛(𝑡) = 2𝑛𝐴𝑛

(︃
𝑒j𝑢 + 𝑒−j𝑢 + 𝑒j𝑣 + 𝑒−j𝑣

2

)︃𝑛

=
⃒⃒⃒⃒
⃒⃒ 𝑐 = 𝑒j𝑢

𝑑 = 𝑒j𝑣

⃒⃒⃒⃒
⃒⃒ =

= 𝐴𝑛
(︁
𝑐 + 𝑐−1 + 𝑑 + 𝑑−1

)︁𝑛
= 𝐴𝑛

𝑛∑︁
𝑘=0

(︃
𝑛

𝑘

)︃
(𝑐 + 𝑐−1)𝑛−𝑘(𝑑 + 𝑑−1)𝑘 =

= 𝐴𝑛
𝑛∑︁

𝑘=0

(︃
𝑛

𝑘

)︃[︃
𝑛−𝑘∑︁
𝑖=0

(︃
𝑛 − 𝑘

𝑖

)︃
𝑐𝑛−𝑘−𝑖 𝑐−𝑖

]︃ [︃
𝑘∑︁

ℎ=0

(︃
𝑘

ℎ

)︃
𝑑𝑘−ℎ 𝑑−ℎ

]︃
=

= 𝐴𝑛
𝑛∑︁

𝑘=0

𝑛−𝑘∑︁
𝑖=0

𝑘∑︁
ℎ=0

(︃
𝑛

𝑘

)︃(︃
𝑘

ℎ

)︃(︃
𝑛 − 𝑘

𝑖

)︃
𝑐𝑛−𝑘−2𝑖 𝑑𝑘−2ℎ =

= 𝐴𝑛
𝑛∑︁

𝑘=0

𝑛−𝑘∑︁
𝑖=0

𝑘∑︁
ℎ=0

(︃
𝑛

𝑘

)︃(︃
𝑘

ℎ

)︃(︃
𝑛 − 𝑘

𝑖

)︃
𝑒j𝑢(𝑛−𝑘−2𝑖)+j𝑣(𝑘−2ℎ).

(1.7)
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When looking only at complex harmonic components, by back substituting for 𝑢,
𝑣, 𝑓d, and 𝑓p we get an intermodulation product at frequency 𝑓im[𝑛, 𝑘, 𝑖, ℎ] given by
eq. (1.7) as

𝑓im[𝑛, 𝑘, 𝑖, ℎ] = (𝑛 − 𝑘 − 2𝑖)𝑓d + (𝑘 − 2ℎ)𝑓p =

= (𝑛 − 𝑘 − 2𝑖)(𝑓2 − 𝑓1) + (𝑘 − 2ℎ)(𝑓1 + 𝑓2)
2 =

=
(︂

𝑛

2 − 𝑖 − ℎ
)︂

𝑓2 −
(︂

𝑛

2 − 𝑘 − 𝑖 − ℎ
)︂

𝑓1.

(1.8)

As the frequency of the intermodulation product is a combination of frequencies
𝑓1 and 𝑓2, we define the frequency 𝑓im[𝑚] of the 𝑚-th order intermodulation product
as

𝑓im[𝑚] = 𝑝 𝑓1 + 𝑞 𝑓2, (1.9)

where 𝑝, 𝑞 is any combination of positive or negative integers which comply with the
relation 𝑚 = |𝑝| + |𝑞|. Even-order intermodulation distortion (IMD) products are
far away from the original signals. They are often ignored, as they are filtered out
by analogue filters anyway. However, odd-order IMD products are problematic as
they are too close to the original signals and cannot be filtered by analogue filters.
Dominant IMD products closest to the original signals are of the 3rd and 5th orders
(Fig. 1.4). [8, 9]

Two-tone input signal

f1 f2 f1 f22f19f2 2f29f13f192f2 3f292f1

5th 5th

3rd 3rd

Intermodulation products
for 5th-order polynomial series

Fig. 1.4: IMD of two-tone input (left) generates intermodulation products in the
vicinity of the original tones (right).

The intermodulation effect has been analysed by the two-tone test. This test was
extensively employed in history to test the linearity, when most of the communica-
tion signals were amplitude or frequency modulated and narrow-band. Nowadays,
the two-tone test importance has been lowered as the character of communication
signals has changed significantly, and the test might not provide sufficient informa-
tion about the impact of the distortion caused by a tested amplifier on a signal with
a modern modulation scheme.
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1.1.4 Intercept Point

The intercept point of the 𝑚-th order (IP𝑚) can be defined in two ways. Firstly,
it can be defined based on the harmonics of a single tone input signal that appear
due to nonlinear distortion at the 𝑚-th multiple of the original signal frequency.
The other definition is based on 𝑚-th order intermodulation products of two closely
spaced input tones. The second variant is mostly used in practice, as it does not
require the wide bandwidth of the tested amplifier. Please note that these two
definitions differ by approximately 9.5 dB (20 log10 3). [8, 9]

The intercept point is graphically obtained (Fig. 1.5) from the AM/AM plot with
logarithmic scales. The linear parts of the output power of the wanted amplified
original signal and the intermodulation distortion (or harmonics) of 𝑚-th order are
extrapolated. In logarithmic scales, the function 𝑥𝑚 is translated into a straight
line with slope of 𝑚 which means that the slope of the wanted (linearly amplified)
component is 1 and e.g. the 3rd order IMD has slope of 3. The intercept point of
𝑚-th order is given by the intersection of extrapolated lines. In other words, the
intercept point is a point for which the power of the 𝑚-th order intermodulation
product is equal to the linearly amplified component power at the output.

O
ut

pu
t 

po
w

er
 (

dB
m

)

Ide
al

O
ut

pu
t 

po
w

er
 (

dB
m

)

Input power (dBm)

IP2
IP3

nd
 

2
or

de
r p

ro
du

ct
s

rd
 

3
or

de
r p

ro
du

ct
s

Fig. 1.5: A graphical representation of the intercept point in AM/AM plots.

Similar to the compression point of 1 dB, the concept of the intercept point is
an inappropriate way to characterise amplifiers in present communication systems
where the signals are different from narrow band, almost single tone, signals.
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1.1.5 Power Amplifier Efficiency

Power amplifier efficiency is an essential parameter of power amplifiers. It denotes
how much of the spent power is delivered to the PA output. The lower the efficiency
is, the higher the power consumption the PA has, considering a constant output
power. This is the primary concern in battery-supplied devices. Another aspect is
power dissipation, since the PA with lower efficiency requires better cooling.

To objectively evaluate PA efficiency, power-added efficiency (PAE) has been
introduced. It is defined as [8]

𝜂PAE = 𝑃𝑦 − 𝑃𝑥

𝑃DC
, (1.10)

where 𝑃𝑦 and 𝑃𝑥 are output and input signal powers, respectively, and 𝑃DC is the
PA power consumption.

Fig. 1.6 depicts a typical contradiction between PA efficiency and linearity. If
the PA operating point is set far from saturation, the PA exhibits good linearity,
but the efficiency is low. Vice versa, if the operating point is set close to saturation,
the efficiency is high, but the linearity is inferior. A common approach is to set the
PA back-off (operating point) such that the maximum level of the amplified signal
is still in the region with decent linearity.
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Fig. 1.6: The trade-off between PA efficiency and linearity in AM/AM characteris-
tics.
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1.2 Basic Principles of Power Amplifier Linearisation
The early ideas of amplifier linearisation are quite old already. The first references
are even older than the discovery of the transistor effect in 1956. Bendel in [10]
showed the linearisation of an amplifier by negative feedback, quite interestingly
already in the baseband. Leypold [11] demonstrated negative feedback for the phase
distortion correction a few years later. Their techniques were, of course, purely
analogue and designed for the electron tubes.

The basic concepts of linearisation are simple. The transmitted signal or the
PA parameters are modified to obtain a desired output signal. The PA parameters
are modified mainly in the analogue domain, and this type of linearisation is often
referred to as nonlinearity compensation. For example, the amplifier gain can be
increased for higher magnitudes of the input signal. On the other hand, the mod-
ification of the transmitted signal before entering the PA is called predistortion.
Predistortion can be achieved in both the analogue or digital domain.

Ideally, the predistorter is set to cancel out the distortion of the transmitter
nonlinearity. Its characteristics can be seen as a nonlinearity inverse, if the inversion
exists. This ideal case is depicted in Fig. 1.7.
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Fig. 1.7: Nonlinearity and ideally-inverted predistortion characteristics in AM/AM
and AM/PM plots.

The motivation behind the predistortion is an increased operating range of am-
plifiers. The predistortion allows for a reduction in PA back-off and, as the operation
moves closer to saturation, an increase in PA efficiency without compromising sys-
tem linearity. This effect is shown in Fig. 1.8. Consequently, the PA dimensions
and power rating can be decreased, heat sinks can be miniaturised, and smaller
power supplies are required, which naturally results in resource savings and price
reduction.
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Fig. 1.8: Increased PA operating range by employing predistortion.

Predistortion can be introduced at any point in the system preceding the PA.
Based on the point where the predistortion is applied, we distinguish between base-
band, intermediate frequency, and RF predistorters. Later, throughout this thesis,
we focus exclusively on the baseband DPDs.

The first references to the baseband DPDs were published by Nagata [12] and
Cavers [13]. Both employed adaptive predistorters with feedback. The adaptive
predistorter can follow changes in nonlinear PA characteristics over time. These
changes occur mainly due to temperature changes and component ageing. The
concept of the DPD with feedback is shown in Fig. 1.9.

Feedback path

Direct path

PA

LO

Quad.

Modul.

Quad.

Demod.
ADC

DPD

Training

DPD DAC
I

Q

Fig. 1.9: A block diagram of a simplified real system with a digital baseband pre-
distorter.
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The PA output signal is taken as feedback by an RF coupler. It is usually
down-converted by an IQ demodulator and sampled by an ADC; hence, it can be
digitally processed. The digital processing identifies the PA or DPD parameters;
a few strategies to identify the PA or DPD parameters are presented later in Sec-
tion 1.4. Subsequently, the transmitted signal is predistorted by the DPD with
already identified parameters, converted into the analogue domain by the digital-to-
analogue converter (DAC), up-converted by an IQ modulator, and amplified.

Please note that the DPD can be employed in a system with a transmitter
of any architecture (direct conversion, heterodyne, superheterodyne, etc.). The
depicted architecture is just an example, and the main principle remains the same
over different architectures.

1.3 Employed Models
In this section, we introduce readers to the mathematical models of PAs and DPDs
employed in this thesis. All the presented models describe the baseband behaviour
of the modelled component.

1.3.1 Memory Polynomial Model

The memory polynomial (MP) model is a basic mathematical model for modelling
PAs and DPDs. It was firstly introduced by Kim and Konstantinou in [14] as the
evolution of a simple polynomial baseband model without memory. The model is
simple and, generally, it achieves limited linearisation performance, compared to
other more complex models.

The discrete baseband output 𝑦 of the MP model is given as [14]

𝑦[𝑛] =
𝐾∑︁

𝑘=1

𝑄∑︁
𝑞=0

𝑏𝑘,𝑞𝑥[𝑛 − 𝑞]|𝑥[𝑛 − 𝑞]|𝑘−1, (1.11)

where 𝑥 is the MP model input, 𝑏𝑘,𝑞 is the coefficient of the MP model, and 𝐾 and
𝑄 represent the maximum nonlinearity order and memory length, respectively. The
product 𝑥[𝑛 − 𝑞] |𝑥[𝑛 − 𝑞]|𝑘−1 is often called a basis waveform or a basis function.
Example basis functions for the MP model are shown in Fig. 1.10. We denote the
basis function as

𝜑
(𝑥)
𝑘,𝑞 [𝑛] = 𝑥[𝑛 − 𝑞] |𝑥[𝑛 − 𝑞]|𝑘−1. (1.12)

31



The input samples 𝑥, model coefficients 𝑏𝑘,𝑞, and the basis waveforms 𝜑
(𝑥)
𝑘,𝑞 [𝑛] can be

arranged into vectors and matrices

𝜑
(𝑥)
𝑘,𝑞 =

[︁
𝜑

(𝑥)
𝑘,𝑞 [0] 𝜑

(𝑥)
𝑘,𝑞 [1] . . . 𝜑

(𝑥)
𝑘,𝑞 [𝑁 − 1]

]︁𝑇
,

𝑥 =
[︁
𝑥[0] 𝑥[1] . . . 𝑥[𝑁 − 1]

]︁𝑇
,

𝑦 =
[︁
𝑦[0] 𝑦[1] . . . 𝑦[𝑁 − 1]

]︁𝑇
,

𝑏 =
[︁
𝑏1,0 𝑏1,1 . . . 𝑏1,𝑄 𝑏2,0 . . . 𝑏𝐾,𝑄

]︁𝑇
,

𝑈𝑥 =
[︁
𝜑

(𝑥)
1,0 𝜑

(𝑥)
1,1 . . . 𝜑

(𝑥)
1,𝑄 𝜑

(𝑥)
2,0 . . . 𝜑

(𝑥)
𝐾,𝑄

]︁𝑇
,

(1.13)

where 𝑏 is a column vector with 𝑃 = 𝐾(𝑄 + 1) rows, and the size of the matrix 𝑈𝑥

is 𝑁 × 𝐾(𝑄 + 1). Equation (1.11) can be rewritten into the matrix form

𝑦 = 𝑈𝑥𝑏. (1.14)

Fig. 1.10: MP model basis without memory effects (𝑞 = 0) for the real-valued model
input (𝑥i(𝑡) = 0).
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1.3.2 Simplified 2nd-Order Dynamic Deviation Reduction-Based
Volterra Model

The simplified 2nd-order dynamic deviation reduction-based Volterra (DDR2) model
is a popular model employed for modelling PAs and DPDs. Guan and Zhu presented
it for the first time in [15]. The DDR2 model is based on the Volterra series [16,17]
which is a nonlinear model similar to the Taylor series [18], but it adds the ability to
capture memory effects. The full Volterra series is, however, impractically complex
for modelling PAs and DPDs. Therefore, the DDR2 model includes only certain
selected terms from the full Volterra series.

The DDR2 model has been defined as [15]

𝑦[𝑛] =
𝐾−1

2∑︁
𝑘=0

𝑄∑︁
𝑞=0

𝑏0,𝑘,𝑞 |𝑥[𝑛]|2𝑘 𝑥[𝑛 − 𝑞]+

+
𝐾−1

2∑︁
𝑘=1

𝑄∑︁
𝑞=1

𝑏1,𝑘,𝑞 |𝑥[𝑛]|2(𝑘−1) 𝑥2[𝑛] 𝑥*[𝑛 − 𝑞]+

+
𝐾−1

2∑︁
𝑘=1

𝑄∑︁
𝑞=1

𝑏2,𝑘,𝑞 |𝑥[𝑛]|2(𝑘−1) 𝑥[𝑛] |𝑥[𝑛 − 𝑞]|2+

+
𝐾−1

2∑︁
𝑘=1

𝑄∑︁
𝑞=1

𝑏3,𝑘,𝑞 |𝑥[𝑛]|2(𝑘−1) 𝑥*[𝑛] 𝑥2[𝑛 − 𝑞],

(1.15)

where 𝑏0,𝑘,𝑞, 𝑏1,𝑘,𝑞, 𝑏2,𝑘,𝑞, 𝑏3,𝑘,𝑞 are the model coefficients. We can denote the basis
function as

𝜑
(𝑥)
𝑖,𝑘,𝑞[𝑛] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
|𝑥[𝑛]|2𝑘 𝑥[𝑛 − 𝑞] if 𝑖 = 0,

|𝑥[𝑛]|2(𝑘−1) 𝑥2[𝑛] 𝑥*[𝑛 − 𝑞] if 𝑖 = 1,

|𝑥[𝑛]|2(𝑘−1) 𝑥[𝑛] |𝑥[𝑛 − 𝑞]|2 if 𝑖 = 2,

|𝑥[𝑛]|2(𝑘−1) 𝑥*[𝑛] 𝑥2[𝑛 − 𝑞] if 𝑖 = 3.

(1.16)

The model coefficients 𝑏𝑖,𝑘,𝑞 and the basis waveforms 𝜑𝑘,𝑞[𝑛] can be arranged into
vectors and a matrix similarly as in (1.13)

𝜑
(𝑥)
𝑖,𝑘,𝑞 =

[︁
𝜑

(𝑥)
𝑖,𝑘,𝑞[0] 𝜑

(𝑥)
𝑖,𝑘,𝑞[1] . . . 𝜑

(𝑥)
𝑖,𝑘,𝑞[𝑁 − 1]

]︁𝑇
,

𝑏 =
[︁
𝑏0,1,0 𝑏0,1,1 . . . 𝑏0,1,𝑄 𝑏0,2,0 . . . 𝑏3,𝐾,𝑄

]︁𝑇
,

𝑈𝑥 =
[︁
𝜑

(𝑥)
0,1,0 𝜑

(𝑥)
0,1,1 . . . 𝜑

(𝑥)
0,1,𝑄 𝜑

(𝑥)
0,2,0 . . . 𝜑

(𝑥)
3,𝐾,𝑄

]︁𝑇
,

(1.17)

where 𝑏 is a column vector with 𝑃 = 𝐾(2𝑄 + 1
2) − 𝑄 + 1

2 rows, and the size of the
matrix 𝑈𝑥 is 𝑁 × 𝐾(2𝑄 + 1

2) − 𝑄 + 1
2 . The matrix form of the model equation is

the same as (1.14).
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1.3.3 Generalised Memory Polynomial Model

The generalised memory polynomial (GMP) model is another popular model em-
ployed for modelling PAs and DPDs. It was presented by Morgan et al. in [19].
The GMP model is also derived from the Volterra series [16,17]. In contrast to the
DDR2 model, the GMP model selects different terms from the Volterra series and is
defined more universally. The selected terms do not follow a predefined order, but
they can be selected sparsely. The GMP model is one of the most complex models
employed in this thesis. Naturally, it requires the highest number of coefficients and,
due to our observation, it can achieve the best linearisation performance compared
with the other presented models.

The model can be defined as [19]

𝑦[𝑛] =
∑︁

𝑘∈𝐾𝑎

∑︁
𝑙∈𝐿𝑎

𝑏0,𝑘,𝑙 𝑥[𝑛 − 𝑙] |𝑥[𝑛 − 𝑙]|𝑘+

+
∑︁

𝑘∈𝐾𝑏

∑︁
𝑙∈𝐿𝑏

∑︁
𝑚∈𝑀𝑏

𝑏1,𝑘,𝑙,𝑚 𝑥[𝑛 − 𝑙] |𝑥[𝑛 − 𝑙 − 𝑚]|𝑘+

+
∑︁

𝑘∈𝐾𝑐

∑︁
𝑙∈𝐿𝑐

∑︁
𝑚∈𝑀𝑐

𝑏2,𝑘,𝑙,𝑚 𝑥[𝑛 − 𝑙] |𝑥[𝑛 − 𝑙 + 𝑚]|𝑘,

(1.18)

where 𝑏0,𝑘,𝑙, 𝑏1,𝑘,𝑙,𝑚, and 𝑏2,𝑘,𝑙,𝑚 are the PA model coefficients; 𝐾𝑎 and 𝐿𝑎 are the
index arrays for aligned signal and envelope (memory polynomial); 𝐾𝑏, 𝐿𝑏, and 𝑀𝑏

are the index arrays for signal and lagging envelope; and 𝐾𝑐, 𝐿𝑐, and 𝑀𝑐 are index
arrays for signal and leading envelope. We can denote its basis function as

𝜑
(𝑥)
𝑖,𝑘,𝑙,𝑚[𝑛] =

⎧⎪⎪⎨⎪⎪⎩
𝑥[𝑛 − 𝑙] |𝑥[𝑛 − 𝑙]|𝑘 if 𝑖 = 0,

𝑥[𝑛 − 𝑙] |𝑥[𝑛 − 𝑙 − 𝑚]|𝑘 if 𝑖 = 1,

𝑥[𝑛 − 𝑙] |𝑥[𝑛 − 𝑙 + 𝑚]|𝑘 if 𝑖 = 2.

(1.19)

The model coefficients 𝑏0,𝑘,𝑙 and 𝑏𝑖,𝑘,𝑙,𝑚, and the basis functions 𝜑𝑘,𝑞[𝑛] can be
arranged into vectors and a matrix similarly as in (1.17)

𝜑
(𝑥)
𝑖,𝑘,𝑙,𝑚 =

[︁
𝜑

(𝑥)
𝑖,𝑘,𝑙,𝑚[0] 𝜑

(𝑥)
𝑖,𝑘,𝑙,𝑚[1] . . . 𝜑

(𝑥)
𝑖,𝑘,𝑙,𝑚[𝑁 − 1]

]︁𝑇
,

𝑏 =
[︂
𝑏0,𝑘0,𝑙0 𝑏0,𝑘0,𝑙1 . . . 𝑏0,𝑘0,𝑙

𝐿𝑎

𝑏0,𝑘1,𝑙0 . . . 𝑏3,𝑘
𝐾𝑐

,𝑙
𝐿𝑐

,𝑚
𝑀𝑐

]︂𝑇

,

𝑈𝑥 =
[︂
𝜑

(𝑥)
0,𝑘0,𝑙0,0 𝜑

(𝑥)
0,𝑘0,𝑙1 . . . 𝜑

(𝑥)
0,𝑘0,𝑙

𝐿𝑎
,0 𝜑

(𝑥)
0,𝑘1,𝑙0,0 . . . 𝜑

(𝑥)
3,𝑘

𝐾𝑐
,𝑙

𝐿𝑐
,𝑚

𝑀𝑐

]︂𝑇

,

(1.20)
where (.) is the cardinality (number of elements) of a given set, 𝑏 is a column vector
with 𝑃 = 𝐾𝑎 · 𝐿𝑎 + 𝐾𝑏 · 𝐿𝑏 · 𝑀𝑏 + 𝐾𝑐 · 𝐿𝑐 · 𝑀𝑐 rows, and the size of the matrix 𝑈𝑥 is
𝑁 × 𝑃 . The matrix form of the model equation is the same as (1.14).
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1.4 DPD Adaptation Strategies
In this section, we present basic DPD adaptation strategies, also called architectures,
specifically those architectures required for understanding the proposed methods or
employed for comparison. This section does not represent a comprehensive elabora-
tion of all known DPD adaptation strategies.

1.4.1 Direct Learning Architecture

The direct learning architecture (DLA) [20] is a DPD adaptation strategy which
determines the DPD coefficients directly from the PA baseband output 𝑦(𝑡) and the
DPD input 𝑧(𝑡). Its typical topology is shown in Fig. 1.11.

Let us assume that 𝒫(·) is a nonlinear transfer function of the PA and 𝐹𝑝𝑟𝑒(·)
is a nonlinear function of the predistorter. The predistorter function should ideally
cancel out the PA nonlinearity, resulting in the overall system being linear. This
condition can be mathematically written as [9]

𝒫(𝐹pre(𝑧)) = 𝐺0𝑧, (1.21)

where 𝐺0 is intended gain. If the inversion of 𝒫(·) exists, the predistortion function
is given as

𝐹pre(𝑧) = 𝒫−1(𝐺0𝑧). (1.22)

The 𝒫(·) is nonlinear, therefore, solving equation (1.22) is a nonlinear problem. To
obtain its solution, we can employ optimisation techniques and minimise a criterion
function 𝐽(𝜖) with the error signal 𝜖(𝑡) defined as [9]

𝜖(𝑡) = 𝑦(𝑡)
𝐺0

− 𝑧(𝑡) = 𝒫(𝐹pre(𝑧))
𝐺0

− 𝑧(𝑡). (1.23)

Fpre

Predistorter

1
G0

Minimisation
of criterion J(ε)

+

x(t) y(t)
PA

P(·)z(t)

ε(t)

–

Fig. 1.11: The principle of DPD adaptation by the direct learning architecture.
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A typical approach to obtaining the solution is based on solving the nonlinear
function numerically using Newton’s method. Let us assume that the predistortion
function is prescribed by the nonlinear model stated in Sec. 1.3 with a matrix form
in equation (1.14). Throughout this thesis, the iterative damped Newton’s method
is employed to solve the DPD coefficients. The coefficients are updated as [21]

𝑏̂ = 𝑏′ − 𝜇𝑒, (1.24)

where vector 𝑏̂ is a new solution of the DPD coefficients, vector 𝑏′ is the current
vector of the DPD coefficients, and 𝜇 is the iteration step size. Vector 𝑒 is the
coefficient error vector. It has the same dimensions as the coefficient vector 𝑏′ and
is given as the least squares (LS) solution of

Δ ≈ 𝑈𝑧𝑒, (1.25)

where Δ = 𝑧 − 𝑦. The solution of 𝑒 with a pseudoinverse of matrix 𝑈𝑧 can be
written as

𝑒 = (𝑈𝐻
𝑧 𝑈𝑧)−1𝑈𝐻

𝑧 Δ. (1.26)

The final equation of the coefficient update is given by incorporating equation (1.26)
into (1.24) as

𝑏̂ = 𝑏′ − 𝜇(𝑈𝐻
𝑧 𝑈𝑧)−1𝑈𝐻

𝑧 (𝑧 − 𝑦). (1.27)

1.4.2 Indirect Learning Architecture

The indirect learning architecture (ILA), contrary to the DLA, solves the DPD
model in a noniterative way. The problem of solving the predistorter coefficients is
reformulated and the ILA solves the postdistorter coefficients instead of the predis-
torter coefficients. The employed topology is depicted in Fig. 1.12. We minimise a
criterion function 𝐽(𝑒) with the error signal 𝑒(𝑡) which is a difference between the
postdistorted PA output and the PA input [9, 22]

𝜖(𝑡) = 𝐹post

(︂
𝑦

𝐺0

)︂
− 𝑥(𝑡), (1.28)

where 𝐹post(·) is a nonlinear function of the postdistorter. If the employed model
is linear in its unknown parameters, the solution of its coefficients is a linear prob-
lem. All models employed in this thesis, and most DPD models, comply with this
condition. Note that both signals 𝑦(𝑡) and 𝑥(𝑡) must be known.

By substituting signal 𝑥 with the inverse function 𝒫−1(𝑦) in equation (1.28) and
assuming the error signal 𝜖 to be zero, which corresponds to the ideally adapted
postdistorter function 𝐹post(.), we get

𝐹post

(︂
𝑦

𝐺0

)︂
= 𝒫−1(𝑦) = 𝒫−1(𝐺0𝑧). (1.29)
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Postdistorter

1
G0

Minimisation
of criterion J(ε)

x(t) y(t)
PA

P(·)

ε(t)+

Fpost

–

Fig. 1.12: The principle of DPD adaptation by the indirect learning architecture.

If we compare the right-hand side of this equation with equation (1.22), we can
see that both equations are equivalent. Consequently, we can state that the solved
postdistorter model can be employed as the predistorter and we can set

𝐹pre(·) = 𝐹post(·). (1.30)

The fully derived evolution of the predistorter function from the postdistorter func-
tion can be found in [23].

The solution of the postdistorter can be written in the form of a matrix equation.
Assuming that the postdistorter model is described in the matrix form (1.14), the
solution of a typical overdetermined system of equations is given by linear algebra
as [24]

𝑏′ = (𝑈𝐻
𝑦 𝑈𝑦)−1𝑈𝐻

𝑦 𝑥, (1.31)

where (𝑈𝐻
𝑦 𝑈𝑦)−1𝑈𝐻

𝑦 is a pseudoinverse of matrix 𝑈𝑦. Please note that for the post-
distorter model, signal 𝑦(𝑡) is the input and goes into matrix 𝑈𝑦, while signal 𝑥(𝑡)
is the desired postdistorter output.

1.4.3 Indirect Learning Architecture with Forward Model Esti-
mation

It has been known [20, 25, 26] that the predistorter solution provided by the ILA
is biassed and that the ILA could be suboptimal. This phenomenon is related to
the present noise in the measured PA output 𝑦(𝑡) which samples form the system
matrix 𝑈𝑦. This problem does not exist for the DLA, because matrix 𝑈𝑧 is created
by noise-free samples of signal 𝑧(𝑡).
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Morgan [25] and Landin [26] solved the problem with the biassed solution by
identifying the PA forward model followed by an internal calculation of the noise-
free output of the forward PA model and its usage for the regular ILA calculation.
Hereinafter, we will refer to this method as the forward model indirect learning ar-
chitecture (FM-ILA). Its block diagram is depicted in Fig. 1.13. The main drawback
of FM-ILA is the increased computational complexity as the forward PA model and
its output is calculated in addition to the calculation of the regular ILA.
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Fig. 1.13: The block diagram of the DPD adapted by the FM-ILA.

The FM-ILA procedure can be described mathematically as solving the forward
PA model coefficients as

𝑏 = (𝑈𝐻
𝑥 𝑈𝑥)−1𝑈𝐻

𝑥 𝑦. (1.32)

The forward PA model output 𝑦̃ is calculated as

𝑦̃ = 𝑈𝑥 𝑏, (1.33)

and the postdistorter coefficients 𝑏′ are solved using the forward PA model output 𝑦̃

and the PA input 𝑥 as
𝑏′ = (𝑈𝐻

𝑦 𝑈𝑦)−1𝑈𝐻
𝑦 𝑥. (1.34)

The calculated postdistorter coefficients are used as the predistorter coefficients in
the next iterations.
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1.5 Employed Modulations
In this section, we introduce the basics of modulation schemes employed for test
signals, hereinafter in this thesis. This brief overview serves only as a reference for
the performed simulations and experiments. A comprehensive elaboration would be
out of the scope of this thesis.

1.5.1 Orthogonal Frequency Division Multiplexing

orthogonal frequency-division multiplexing (OFDM) is a multicarrier modulation
scheme that dates back to 1966 and respective works [27–29]. Recently, multicarrier
modulations have become very popular due to their favourable properties and the
possibility of realistic and effective fast Fourier transform (FFT) and inverse fast
Fourier transform (IFFT) implementations. The multicarrier modulations divide a
given frequency channel into several subchannels, known as subcarriers. These sub-
carriers spread over a narrow band only, which allows for the effective equalisation
of a radio channel, as one-tap equalisers can be employed to equalise subcarrier by
subcarrier.
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Fig. 1.14: A simplified block diagram of an OFDM modulator. Data bits are mapped
into data symbols from a predefined alphabet in the first block and the CP is added
in the fourth block.

A simple block diagram of an OFDM modulator is shown in Fig. 1.14. The
OFDM-modulated signal 𝑦(𝑡) can be mathematically described as [30]

𝑦(𝑡) =
∞∑︁

𝑚=−∞

∑︁
𝑘∈𝒦

𝑔𝑘,𝑚(𝑡) 𝑑𝑘,𝑚, (1.35)

where 𝑑𝑘,𝑚 is a transmitted complex symbol at the 𝑚-th time position and 𝑘-th sub-
carrier, and 𝒦 is a set of the active subcarriers. Signal 𝑔𝑘,𝑚(𝑡) describes a modulation
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pulse shape which is defined as [30]

𝑔𝑘,𝑚(𝑡) = 𝜌(𝑡 − 𝑚Δ𝑇 )𝑒j2𝜋𝑘𝐹 (𝑡−𝑚Δ𝑇 ), (1.36)

where 𝐹 is a frequency spacing between subcarriers, Δ𝑇 is a time spacing between
transmitted symbols and function 𝜌(𝑡) describes the modulation prototype filter.
The OFDM modulation has the prototype filter defined as [30]

𝜌(𝑡) =

⎧⎪⎨⎪⎩1 if 𝑡 ∈ [0, Δ𝑇 ]
0 otherwise,

(1.37)

which is a rectangular pulse with the width of Δ𝑇 = 1/𝐹 . The final equation for
the OFDM modulation can be obtained by incorporating (1.36) into (1.35) as

𝑦(𝑡) =
∞∑︁

𝑚=−∞

∑︁
𝑘∈𝒦

𝑑𝑘,𝑚𝜌(𝑡 − 𝑚Δ𝑇 )𝑒j2𝜋𝑘𝐹 (𝑡−𝑚Δ𝑇 ). (1.38)

1.5.2 Filtered Orthogonal Frequency Division Multiplexing

The filtered orthogonal frequency-division multiplexing (F-OFDM) modulation is an
evolution of the OFDM. The original OFDM suffers from high out-of-band emissions
caused by the rectangular-pulse filtering. The problem of out-of-band emissions
has been addressed and solved by the F-OFDM in exchange for dropping strict
orthogonality of subcarriers.

The mathematical description of an F-OFDM modulated signal can be defined
similarly to the OFDM and equation (1.35), employing the prototype filter. The
F-OFDM prototype filter for this thesis has been designed as proposed in [31], [32].
The filter coefficients 𝑓𝐵[𝑛] are given as

𝑓𝐵[𝑛] = 𝑝𝐵[𝑛] 𝑤[𝑛]∑︀
𝑛

𝑝𝐵[𝑛] 𝑤[𝑛] , (1.39)

where 𝑝𝐵[𝑛] is the sinc function and 𝑤[𝑛] is the window function. The sinc function
is defined as

𝑝𝐵[𝑛] = sinc
(︂

(𝑊 + 2 Δ𝑊 ) 𝑛

𝑍

)︂
, (1.40)

where 𝑍 is the FFT size, 𝑊 is the number of assigned data subcarriers, and Δ𝑊

is the tone-offset, where 2Δ𝑊 is the difference between the desired pass band and
the designed sinc filter pass band [32]. The window function is defined as

𝑤[𝑛] =
(︂

0.5
(︂

1 + cos
(︂ 2𝜋𝑛

𝐿 − 1

)︂)︂)︂0.6
, (1.41)

where −
⌊︁

𝐿
2

⌋︁
≤ 𝑛 ≤

⌊︁
𝐿
2

⌋︁
and 𝐿 is the number of filter taps.
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Discrete Fourier Transform Precoding

discrete Fourier transform (DFT) precoding is a well-known technique that reduces
the peak-to-average power ratio (PAPR) of the OFDM modulated signals before
their transmission. The precoding principal and properties have been described
in [33–35]. The basic principle is quite simple: a DFT precoding block is added
before the F-OFDM (alternatively OFDM) modulator, which results in a similar
PAPR to single carrier modulations, while the beneficent properties of the OFDM
modulation scheme are preserved. A simplified block diagram of the modulator with
DFT precoding can be seen in Fig. 1.15.
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Fig. 1.15: A simplified block diagram of an F-OFDM modulator with an optional
DFT precoding.

1.5.3 Filter Bank Multicarrier

The filter bank multicarrier (FBMC) modulation is based on transmission through
a bank of filters. This approach was first presented in [27, 28]. The idea is to
divide a given band into several subbands, similar to the OFDM subcarriers, by
bandpass filters. The filter design is a crucial task and it needs to fulfil contradictory
requirements, such as symbol density, out-of-band emissions, and orthogonality, have
to be balanced [36–38].

We have employed the prototype filter and principles defined by the PHYDYAS
project [39]. The impulse response of the filter is defined as [39–42]

𝜌(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
1 + 2

𝒪−1∑︀
𝑖=1

𝐻𝑖 cos
(︁

2𝜋𝑡
𝒪𝑇0

)︁
if − 𝒪𝑇

2 < 𝑡 ≤ 𝒪𝑇
2 ,

0 otherwise,
(1.42)

where 𝒪 is the overlapping factor, 𝑇0 represents a time-scaling parameter and
depends on the desired subcarrier spacing (or time spacing), and the numerical
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coefficients 𝐻𝑖 are defined by the PHYDYAS project [39, 41] and are stated in
Tab. 1.1. Our modulator and demodulator are based on the publicly available
Matlab code [43].

Tab. 1.1: Numerical coefficients for the PHYDYAS filter.

𝒪 𝐻0 𝐻1 𝐻2 𝐻3

2 1
√

2/2 – –
3 1 0.911438 0.411438 –
4 1 0.971960

√
2/2 0.235147

1.6 System Performance Metrics
To analyse the DPD performance, we observe these metrics: the adjacent chan-
nel power ratio (ACPR), error vector magnitude (EVM), and the normalised mean
square error (NMSE).

1.6.1 Adjacent Channel Power Ratio

The ACPR qualifies the unwanted spectrum regrowth caused mainly by the non-
linearity of the transmitter. This metric shows how much the transmitter would
interfere in other communications ongoing in channels close to the transmitter’s
channel. It is defined as the power in the adjacent channel over the power in the
main channel [44, 45] (see Fig. 1.16)

ACPR = 10 log10

∫︀ 𝑓adj2
𝑓adj1

𝑃𝑦(𝑓) 𝑑𝑓∫︀ 𝑓m2
𝑓m1 𝑃𝑦(𝑓) 𝑑𝑓

, (1.43)

where 𝑃𝑦(𝑓) is the signal power spectral density, 𝑓adj1, 𝑓adj2 are bound frequen-
cies of the adjacent channel and 𝑓m1, 𝑓m2 are bound frequencies of the main chan-
nel. The difference 𝑓m2 − 𝑓m2 denotes the main channel bandwidth 𝐵. Adjacent
channel frequencies are set in the same way as the adjacent channel bandwidth
𝑓adj2 − 𝑓adj1 = 𝐵. The ACPR is evaluated for the lower (left hand side) and higher
(right hand side) adjacent channels separately. The adjacent channel can also be
defined with an offset, e.g., 𝑓adj1 = 𝑓m2 + 0.1𝐵 for the lower adjacent channel and
𝑓adj2 = 𝑓m1 − 0.1𝐵 for the higher adjacent channel.

Throughout this thesis, when we present the ACPR results, the ACPR is aver-
aged for the lower and higher adjacent channels as

ACPR(dB) = 10 log10
1
2

(︂
10

ACPRL
10 + 10

ACPRH
10

)︂
, (1.44)
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Fig. 1.16: The ACPR bounds depicted in the spectrum.

where ACPRL and ACPRH are the ACPRs for the lower and higher adjacent chan-
nels, respectively. Similarly to (1.44), throughout this thesis, the average ACPR
value is calculated as

ACPRavg(dB) = 10 log10
1
𝑁

𝑁−1∑︁
𝑛=0

10
ACPR[𝑛]

10 , (1.45)

where 𝑁 is the number of averaged values.

1.6.2 Error Vector Magnitude

The EVM evaluates the in-band signal distortion [46, 47]. In contrast to the other
presented metrics, the EVM requires the signal to be demodulated and it qual-
ifies errors in the demodulated symbols. The EVM is defined as the root mean
square (RMS) of the error vectors which connect the reference symbols with the
demodulated symbols (see Fig. 1.17) over the normalisation reference expressed in
percentages [46,47]

EVM(%) =

√︃
1

𝑁𝑆

𝑁𝑆−1∑︀
𝑛=0

(𝐼err[𝑛]2 + 𝑄err[𝑛]2)

𝐴ref
· 100%, (1.46)

where 𝑛 is the symbol index, 𝑁𝑆 is the number of demodulated symbols, 𝐼err[𝑛] =
𝐼ref [𝑛] − 𝐼demod[𝑛] is the in-phase component of the error vector, 𝑄err[𝑛] = 𝑄ref [𝑛] −
𝑄demod[𝑛] is the quadrature component of the error vector, and 𝐴ref is the EVM
normalisation reference.
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Fig. 1.17: A graphical representation of the received-symbol error vector for calcu-
lating the EVM.

There are two possible values for the EVM normalisation reference: the con-
stellation maximum or the reference RMS. EVM normalisation reference as the
constellation maximum can be formally written as

𝐴ref = max
𝑛

√︁
𝐼ref [𝑛]2 + 𝑄ref [𝑛]2, (1.47)

or as the reference RMS, it can be written as

𝐴ref = 1
𝑁𝑆

𝑁𝑆−1∑︁
𝑛=0

√︁
𝐼ref [𝑛]2 + 𝑄ref [𝑛]2. (1.48)

Throughout this thesis, we strictly show the EVM metric normalised to the
reference RMS. Considering its definition, an EVM average is calculated as a root-
mean-square value

EVMavg(%) =

⎯⎸⎸⎷ 1
𝑁

𝑁−1∑︁
𝑛=0

|EVM[𝑛]|2, (1.49)

where 𝑁 is the number of averaged values.
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1.6.3 Normalised Mean Square Error

The NMSE is used to qualify the difference between ideal and actual signals in at
certain point in a system, usually at the output of the transmitter. The NMSE is
defined as the mean power of the error signal divided by the mean power of the
reference signal 𝑥 and it is expressed in dB as [48,49]

NMSE(dB) = 10 log10

∑︀
𝑛

|𝑦[𝑛] − 𝑥[𝑛]|2∑︀
𝑛

|𝑥[𝑛]|2 , (1.50)

where 𝑦 is the actual signal and 𝑥 is the reference signal. Similarly to the ACPR
average in (1.45), the NMSE is averaged as

NMSEavg(dB) = 10 log10
1
𝑁

𝑁−1∑︁
𝑛=0

10
NMSE[𝑛]

10 , (1.51)

where 𝑁 is the number of averaged values.
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2 State-of-the-Art
In this chapter, we present a summary of the research in the field of predistorters,
and especially of digital predistorters, in recent years. We do not intend to provide
a comprehensive overview of all papers from the whole history of predistortion. A
very brief outline of the history can be found in Sec. 1.2 and more can be found in
the referenced review papers in Sec. 2.1.

In recent publications in the field of predistortion, we have identified the following
research directions:

• adaptation methods,
• analogue and hybrid predistorters,
• analysis,
• antenna arrays and multiple-input and multiple-output (MIMO) systems,
• Doherty power amplifiers,
• hardware implementation,
• low-complexity methods,
• machine learning,
• mathematical models.

Furthermore, the papers about low-complexity predistortion can be divided based
on their focus:

• computational complexity,
• model pruning and sizing,
• one-bit feedback samples,
• real-valued feedback samples,
• subband and multiband predistortion,
• and undersampling methods.
In the rest of this chapter, we briefly introduce a few papers for each research

direction that received the most interest. More extensively, we described the papers
aiming at low-complexity methods for digital predistortion, especially the papers on
which this thesis is based.

2.1 Review Papers
Katz et al. [50] presented an overview of PA linearisation techniques such as feed-
forward linearisation, predistortion, mitigating memory effects, DPDs, look-up ta-
bles (LUTs), and approaches to DPD adaptation. At the end, the authors outlined
the challenges in the linearisation field.

An extensive overview was presented by Fager et al. in [1]. They focused
especially on antenna phased arrays and MIMO systems in 5G communications.
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Namely, they covered the following areas: PA behavioural modelling, PA-antenna
interactions, power efficiency and linearisation in MIMO transmitters and hybrid or
phased-array transmitters, and DPD adaptation with few observation receivers.

Gilabert et al. [51] clearly explained several solutions for the identification of
DPD parameters. They covered adaptation strategies such as least mean squares,
recursive LS, QR decomposition-based recursive LS, simultaneous perturbation sto-
chastic approximation, principal component analysis (PCA), partial LS, and others.

Borel et al. [2] compared and evaluated the most popular linearisation techniques,
including feedforward, feedback, and predistortion. They provided a comprehensive
comparison of state-of-the-art methods and their performance. The authors clearly
stated the advantages and disadvantages of the various linearisation methods and
predicted potential future directions, bottlenecks, and obstacles. Finally, they con-
sidered a hybrid of analogue and digital predistorters as a promising linearisation
architecture.

Singh and Malik [52] presented another review on PA linearity and efficiency.
The paper covered feedback, feedforward, and predistortion as linearisation tech-
niques and outphasing, Doherty, and envelope-tracking PAs as efficiency enhance-
ment techniques. The authors described the differences between these techniques
and provided a comparison.

Desgreys et al. [53] briefly reviewed predistortion techniques for wideband PAs.
Wood in [54] presented challenges posed by wider bandwidth and lower power con-
sumption and offered some potential solutions. Ahmad et al. [55] reviewed machine-
learning-based approaches in communications and partially covered applications of
machine learning in DPDs. Liu et al. [56] presented a comprehensive review of lin-
earisation techniques targeting Doherty PAs and massive MIMO systems. Gupta et
al. [57] presented a review generally oriented towards nonlinear system identification.

2.2 General Research Directions in Predistortion

2.2.1 Adaptation Methods

Researchers still aim at improving the adaptation methods of the predistorter co-
efficients. Chani-Cahuana et al. [58] proposed an adaptation method based on the
iterative learning control (ILC), a well-established control theory technique. The
proposed method iteratively finds an unknown PA input signal for a desired PA
output signal. By knowing the required PA input for the desired PA output, the
predistorter coefficients can be easily found. The authors reported improved resis-
tance to noise in the feedback compared with conventional predistorters. Similarly,
Schoukens et al. [59] presented a modified technique based on the ILC.
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Lopez-Bueno et al. and Pham et al. [60, 61] described an estimation and adap-
tation method based on the adaptive PCA. Their method leads to an orthogonal
transformed matrix which reduces the number of coefficients. Due to its orthogonal-
ity, new coefficients can be estimated independently. The proposed adaptive PCA
method can find the minimum number of necessary coefficients to meet a specific
linearity level.

Belabad et al. [62] proposed a genetic algorithm optimisation method to identify
coefficients of the Wiener model of the PA. According to this model, they proposed
the Hammerstein-model based DPD.

Rodrigues et al. [63] presented an adaptation of the DPD based on different scalar
measurements taken from the feedback. They specifically proposed measurement of
the ACPR and spectral mask margin. The DPD model coefficient estimation was
reduced to a generic numerical optimisation problem. Additionally, they proposed
an orthogonalisation algorithm, resulting in a faster convergence time and lower
output power variations across the iterations.

Le Duc et al. [64] showed an adaptive DPD with a cascade of the adaptive ILA
and static DLA with a linearly interpolated LUT. The static DLA compensated for
the time-invariant part of the nonlinear distortion while the adaptive ILA compen-
sated for the variable nonlinear distortion which was caused by temperature changes
and PA ageing.

Le et al. [65] proposed a DPD technique based on adaptive ILA with recursive
prediction error minimisation. They designed the forgetting factor to be variant in
time; a lower forgetting factor at the beginning ensures fast convergence, while a
higher forgetting factor at the end ensures higher immunity against noise and more
consistent results in the steady state.

2.2.2 Analogue and Hybrid Predistorters

The main motivations and arguments for analogue predistorters are the computa-
tion complexity of DPDs and, consequently, their higher power consumption. The
possibilities of DPDs are, however, far beyond the limits of their analogue counter-
parts. Some researchers have tried combining the advantages of both analogue and
digital predistorters and came up with the concept of hybrid and digitally assisted
analogue predistorters.

Cai et al. [66] presented a two-transistor-based RF analogue predistorter (APD).
Their predistorter was based on the similar nonlinearity of the two transistors. How-
ever, the predistorter missed adaptability and had to be adjusted for the main PA.
The authors extended their work in [67] by adding a realisation of the predistorter
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and its measurements to the originally simulated-only results. They reported sim-
ilar or better predistortion performance with the simpler predistorter compared to
competitive works.

Braithwaite [68] proposed a hybrid analogue and digital predistorter for dual-
band RF transmitters. Each subband was compensated separately in the digital and
analogue predistorters. The DPD was intended for compensating close intermodu-
lation products, whereas the APD should compensate for intermodulation products
at multiples of the carrier frequency.

The combination of the analogue and digital predistorter was also employed by
Tomé et al. in [69]. They employed the APD to cancel long-term memory effects in
GaN high-electron-mobility transistor (HEMT) PAs caused by the electron trapping
phenomena. They reported improvement in the intermodulation product level by
6.8 dB for the combination of the APD and the DPD compared to the DPD alone.

In [70], the authors proposed a tunable reflective predistorter based on a parallel
Schottky diode power-dependent impedance matching network. They reported an
improvement of 6.3 dB in the power of the third-order intermodulation products
achieved by their predistorter compared to the conventional APDs.

Finally, we mention the paper [71] written by Gumber and Rawat where they
proposed a new control scheme for controlling the gain and phase of the predistorted
signal. In addition, they compared their method with many state-of-the-art analogue
and hybrid predistorters.

2.2.3 Analysis

Cheaito et al. [72,73] derived an analytical expression for the EVM of the nonlinear
PA output. They modelled PA nonlinearity with the clipping effect and PA memory
with the MP model. Additionally, they analysed the predistortion complexity with
respect to EVM constraints.

Liu et al. [74,75] studied the influence of reduced ADC dynamic range on DPDs.
They also included analyses of the effect of gain and delay mismatch on predistortion
performance in [75,76].

The impact of the normalisation gain of DPDs on the linearisation performance
was studied by Wang et al. [77] and Jardin and Baudoin [78] . They showed that
adjusting the normalisation gain can improve the PAE, EVM, or the ACPR.

Xiao [79] studied the long-term stability of closed-loop adaptation algorithms.
She proposed a modified closed-loop adaptation algorithm achieving the long-term
stability which the conventional closed-loop algorithms suffer from.

Chani-Cahuana [49] derived a closed-form expression for the minimum NMSE
that could be obtained in systems with predistorters. She based her study on an ideal
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scenario where all the distortions introduced by the PA are perfectly compensated for
and the linearisation is limited only by the noise added to the measured PA output.
Naturally, this limits the DPD adaptation and the linearisation performance.

Finally, Wang et al. [77,80] investigated the effects of crest factor reduction and
digital predistortion complexity on the linearity and power efficiency of PAs. The
authors proposed an algorithm to trace an approximate Pareto front of the two
criteria, the ACPR and the number of DPD coefficients. Their algorithm helps to
analyse the influence of the PA operating point on its efficiency and the required
number of DPD coefficients for given ACPR or NMSE requirements.

2.2.4 Antenna Arrays and MIMO Systems

Researchers were interested in predistorters for antenna arrays and MIMO systems,
because these systems usually contain many PAs to be linearised. There are many
approaches to linearising a bunch of PAs. Liu et al. [81] proposed a linearisation
method based on the feedback from a single PA to linearise beamforming MIMO sys-
tems. Tervo et al. [82] introduced single over-the-air feedback for nonlinear phased
arrays. The authors extended their work in [83] by adding the calibration of the
feedback path and considering multiple DPD adaptation strategies. A single-input
single-output DPD was also presented by Ng et al. [84,85]. Their architecture aimed
at millimetre-wave beamforming arrays.

Abdelhafiz et al. [86] proposed an augmented crossover MP model for lineari-
sation in MIMO systems in the presence of linear and nonlinear crosstalk. The
proposed model was an improvement of the crossover MP model [87]. Abdelaziz
et al. reduced the complexity of DPDs by reduced-bandwidth filtered basis func-
tions and estimated the model coefficients based on decorrelation-based closed-loop
processing in [88]. The authors extended their work in [89] where they presented a
DPD technique utilising the decorrelation-based learning rule in conjunction with a
single combined output signal of the individual PAs for hybrid MIMO transmitters.

Wang et al. [90] focused on the linearisation of MIMO transmitters using a
real-time single-channel over-the-air data acquisition loop. The proposed technique
identified the nonlinear behaviour of all PAs, as well as their combined signals in
the far field. They reported excellent linearisation performance with low-complexity
hardware.

Zanen et al. [91] analysed the power consumption of different DPD architectures
for MIMO systems and antenna arrays and noticed that the power consumption of
complex DPDs themselves, in combination with wideband signals, can be higher
than the overall consumption of the PAs.
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2.2.5 Doherty Power Amplifiers

Doherty PAs are based on two parallel PAs. One PA, called a carrier amplifier, is
biassed for Class-A/B or Class-B operation, while the other one, called a peaking
amplifier, is biassed for Class-C operation. The peaking amplifier amplifies the
peaks in the signal which are normally clipped by the carrier amplifier. The main
challenges with the Doherty PAs are splitting the input for the two parallel PAs
and connecting the PA outputs via an output power combiner. Two variants of the
Doherty PAs exist. There are single-input Doherty PAs [92] and digitally-driven
Doherty PAs with two separate inputs, one for the carrier amplifier and the other
one for the peaking amplifier [93].

Ghosh and Rawat [94] proposed a digitally-driven Doherty PA with an analyti-
cally designed combiner network and employed the DPD for its linearisation. They
reported a drain efficiency of 45%–56%.

Chang et al. [95] presented an aliasing-free multilevel pulse modulation architec-
ture for Doherty PA implementation accompanied by a simple memoryless DPD.
They reported the improved linearisation performance in ACPR from -36 dB of a
conventionally linearised Doherty PA to -41 dB of their linearised architecture.

Masood et al. [96] showed a digitally assisted Doherty PA with a segmented
DPD architecture. According to their paper, the improved adjustment of the phase
delay between the carrier and peaking PA and the thresholding of the peaking PA
result in higher efficiency but degrade the linearity. The proposed segmented DPD
architecture is reported to improve linearisation performance by ≈ 11 dB in terms
of the ACPR compared with the conventional DPD.

Peng et al. [97] proposed an adaptive signal separation algorithm (ASSA) for
dual-input Doherty PAs to minimise the mismatch between the signal separation
functions and the intended operation which is the main source of nonlinearity. They
reported linearisation improvement of the ACPR from -43 dB without ASSA to
-53 dB with ASSA for test signals with 10-MHz bandwidth.

2.2.6 Hardware Implementation

The researchers also focused on obstacles to implementing predistorters into real
hardware, mainly in field programmable gate arrays (FPGAs). They optimised the
predistorter topology in [98] and modified the decomposed vector rotation-based
behavioural model in [99]. Huang et al. [100] proposed a new approach for a parallel
processing DPD implementation and achieved a linearisation bandwidth of up to
2.4 GHz with an FPGA running at a 300-MHz clock.
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Other researchers were interested also in implementing LUT-based predistorters.
Ren [101] proposed the interpolation of the LUT values by the Talyor series to
achieve more accurate linearisation. Molina et al. [102] implemented the LUT-based
DPD with linear interpolation and extrapolation and extended their work in [103]
where they introduced a 2-D LUT based predistorter with bilinear interpolation for
concurrent dual-band predistortion.

2.2.7 Machine Learning

Machine learning in the field of PA predistortion has experienced a boom recently.
Bhuyan and Sarma [104] proposed an artificial neural network (NN) structure called
the real-valued focused time delay NN for modelling PA predistorter. The proposed
structure splits the baseband complex signal into real and imaginary samples and
feeds these samples into delay shift registers of a certain length. All values from
the registers are taken as inputs for the NN. This structure was more thoroughly
analysed and compared with the conventional methods [105].

Wang et al. [106] continued development of the NN predistorters and introduced
an augmented real-valued time-delay NN for joint mitigation of PA nonlinearity and
modulator imperfections. They added the magnitudes of baseband complex samples
and their powers as inputs to the NN. The authors reported improved mitigation of
imperfections by 3–4 dB in terms of the ACPR compared to the real-valued focused
time delay NNs.

Wu et al. [107] improved the real-valued time delay NN predistorter by adding
direct connections from input to output. They called the proposed NN the residual
real-valued time-delay NN, because, in fact, the NN learns only the PA nonlinearity
behaviour. The authors reported a lower complexity of the proposed NN compared
to the original NN.

Jaraut et al. [108] proposed a composite NN DPD for MIMO systems. They
focused on compensating for the PA nonlinearity, IQ imbalances, crosstalk, and the
direct current (DC) offset. Li et al. in [109] extended the NN predistortion for
MIMO systems by the ILC and focused on compensating for nonlinear crosstalk.

Cai et al. [110] proposed a model based on a time-delay support vector regression
(SVR). The authors reported that the SVR-based method can obtain the optimal
model in a short time compared to the conventional NN models. Their SVR model
improved modelling accuracy compared to the conventional Volterra-based models
and to other NN-based models. Xu et al. [111] extended the SVR-based model by
adding the magnitude and phase of complex baseband samples, which reportedly
improved the linearisation performance.
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Sun et al. [112] presented a link between the PA memory and the memory of
bidirectional long short-term memory NNs and based a predistorter on it. Their
paper showed that the proposed predistorter can achieve successful linearisation;
however, it lacks thorough comparison with the conventional and other NN methods.

Zhang et al. [113] proposed a vector decomposed time-delay NN and an aug-
mented vector decomposed time-delay NN. The authors claimed that the proposed
NNs comply more with the physical characteristics of PAs than conventional NNs.
Their proposed models take signal sample magnitudes only and recover the phase in
the phase recovery layer. The augmented version added the 𝑝-th order magnitude
inputs. Li et al. [114] applied the idea of vector decomposed NNs and presented a
vector decomposed long short-term memory NN and its simplified variant. The au-
thors showed that the proposed model outperformed other DPD variants, but with
much more variable parameters. Tanio et al. [115] proposed an envelope time-delay
NN DPD, quite similar to the vector decomposed time-delay NNs, and a pruning
strategy. They demonstrated that their NN can outperform vector-decomposed NNs
while using far fewer floating point operations.

Tripathy et al. [116] presented a deep NN predistorter with Swish [117] and
Sigmoid-weighted linear unit [118] activation functions instead of the conventional
rectified linear units (ReLU) activation function.

Hu et al. [119] employed a deep NN for signal recovery from the measured un-
dersampled and band-limited signal in the feedback for adaptation of DPDs. Sun
et al. [120] presented an adaptive strategy for deep NN DPDs.

2.2.8 Mathematical Models

Abdelrahman et al. [121] extended the conventional MP model by adding weighting
functions. Their model is suitable for PA characteristics that exhibit strong memory
effects at low input power levels and mild memory effects at high input power levels.
In such cases, the proposed weighted model can improve linearisation performance
while preserving the number of model coefficients.

Li et al. [122] redesigned the cross terms of the decomposed vector rotation (DVR)
model and presented a simplified model. They showed that the proposed model
improves the modelling performance and reduces the implementation complexity.

Zhai et al. [123] presented a new canonical piecewise-linear function-based model
for band-limited DPDs with a structure similar to the dynamic deviation reduction
Volterra series model. Their model was simpler as it contained no higher order
terms and no finite impulse response filters. The authors reported linearisation
performance similar to the original model.
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Luo et al. [124] proposed a dual-input canonical piecewise-linear function-based
model for DPDs of multi-antenna transmitters. They reported that the proposed
model could mitigate the higher-order nonlinearity of the antenna crosstalk.

2.2.9 Other Works

In this section, we include selected papers that topically did not fit into the iden-
tified research directions and we consider them interesting to be mentioned in this
thesis. Papers [125, 126] were focused on over-the-air feedback for DPD adaptation
specifically aiming at MIMO and multi-antenna systems.

Barradas et al. [127] proposed a DPD specifically aiming at linearisation of long-
term memory effects in GaN HEMTs attributed to the electron trapping phenomena.
Florian et al. [128] addressed a similar problem and proposed a prepulsing technique
for characterisation and measurements of GaN-based PAs.

Li et al. [129] introduced a Cartesian error feedback architecture. Their linearisa-
tion was based on a typical feedback architecture where the error signal was created
by subtracting the desired signal from the PA output at the carrier frequency. For
this purpose, the feedforward signal was modulated at the carrier frequency of the
original complex IQ signal.

2.3 Low-Complexity Methods for DPD

2.3.1 Computational Complexity

Zhai et al. [130] simplified the DVR model [131] and presented a similar model
without vector rotations. Their results show that the new model provides similar
linearisation performance as the original DVR model while decreasing the compu-
tational complexity.

Wang et al. [132, 133] replaced the computationally-intensive matrix inversion
(𝑈𝐻

𝑧 𝑈𝑧)−1 in (1.27) by a precalculated inversion of the correlation matrix of the basis
functions. The authors reported the same linearisation results as for the traditional
approach. Additionally, they proposed an extension for dual-band applications [133].

Kelly and Zhu [134,135] proposed a low-complexity stochastic optimisation-based
DPD adaptation. They directly measured the loss function for little varying DPD
coefficients and by its change (its approximate derivation) they decided the update
direction.
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2.3.2 Model Pruning and Sizing

Gilabert et al. [136] proposed an iterative search algorithm, called the less relevant
basis removal, for the model order reduction and compared it with other three
reduction techniques, based on the compressed sensing, PCA, and partial LS. All
the compared techniques lead to approximately the same reduction factor; however,
the PCA and partial LS need the fewest iterations.

Li et al. [137] showed a model pruning method, called the regularised sparsity
adaptive matching pursuit to prune MP-based models. Their method combines the
adaptability of the adaptive sparsity matching pursuit [138] and the regularity of
the regularised orthogonal matching pursuit (OMP) [139].

Wang et al. [140,141] presented a technique for optimal GMP-model sizing based
on the Hill-Climbing algorithm. Their optimisation criteria are the number of coef-
ficients and the NMSE of the model output. Additionally, they presented a single
criterion combining the number of coefficients and the NMSE. The authors extended
their work in [142] by a size-determining algorithm for multistage sparse models.

Peng et al. [143] presented a sparse Bayesian learning algorithm. The proposed
algorithm decreased the number of model coefficients and reduced the required num-
ber of samplings.

Peng et al. [144] proposed a sparse parameter identification algorithm. They
selected kernels one by one according to the projection of the residual vector onto
the kernel. The authors reported that the proposed method achieves the perfor-
mance of the OMP and the regularised matching pursuit while having much lower
computational complexity.

Abdelhafiz et al. [145] presented a swarm optimisation with the Akaike informa-
tion criterion [146] for determining the dimensions of PA models. They applied the
optimisation to the GMP model and compared its results with those of simulated
annealing. The obtained results showed similar performance for all the compared
methods.

Becerra et al. [147] proposed a method for kernel selection based on the OMP
and the Gram-Schmidt orthogonalisation. Compared with the OMP, they added
one extra orthogonalisation into the algorithm, which improved the performance.
They compared the results of the proposed algorithm with those of the original
OMP, PCA, and the compressed-sampling matching pursuit [148]. They reported
that the proposed doubly OMP achieved the best pruning performance compared
with the other methods. In [149], the authors added subspace pursuit pruning and
presented an overview of all the pruning methods; and in [150], they reduced the
computational complexity of the doubly OMP by avoiding the calculation of the
pseudoinverse matrix.
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2.3.3 Real-Valued Feedback Samples

Chani-Cahuana et al. [3] proposed a DPD architecture with real-valued feedback
samples. They estimated the PA forward model similarly to the procedure described
in Sec. 3.2. Afterwards, they employed the same procedure for the ILC-based DPD
adaptation, originally described in [58]. The authors reported the same linearisation
performance of the proposed ILC with real-valued feedback samples as that of the
original ILC DPD.

Guan et al. [5] presented a DLA DPD with one undersampling ADC in the
feedback path. Basically, they proposed the same idea as Chani-Cahuana et al.
in [3], but employed the DLA instead of the ILC and added undersampling. Both
papers seem to be independent. Guan et al. reported, quite surprisingly, a higher
linearisation performance of their real-valued undersampled DLA DPD than that of
the conventional full-speed complex-valued DPD.

Zhang et al. [151] derived the same formula as Guan et al. [5] in a little different
way and without the undersampling.

2.3.4 One-Bit and Signed-Based Feedback Samples

Wang et al. [4, 152] proposed DPD adaptation based on observing the sign of the
PA output error signal. They observed the sign employing the comparators in the
feedback path and, in principle, these comparators could be understood as 1-bit
ADCs. The simplified diagram of their DPD architecture is depicted in Fig. 2.1.

Wang et al. modified the DLA in equation (1.27) and derived its form with the
sign. We can summarise their derivation as follows: The difference Δ = 𝑧 − 𝑦 in
the original can be split into real and imaginary parts. The vector elements are

Δ[𝑛] = Δr[𝑛] + 𝑗 · Δi[𝑛], (2.1)

where (·)r and (·)i are real and imaginary parts, respectively. By employing the fact
that an arbitrary real number can be written as a multiplication of its sign and its
absolute value 𝑎 = sign(𝑎) · |𝑎|, equation (2.1) can be reformulated as

Δ[𝑛] = sign(Δr[𝑛]) · |Δr[𝑛]| + 𝑗 · sign(Δi[𝑛]) · |Δi[𝑛]|. (2.2)

Since both absolute values, |Δr[𝑛]| and |Δi[𝑛]|, tend to be very small and they are
decreased through the DPD adaptation process, they can be replaced by an update
constant 𝜇0 [4]

Δ[𝑛] = 𝜇0 sign(Δr[𝑛]) + 𝑗 · 𝜇0 sign(Δi[𝑛]) = 𝜇0 · sign(Δ[𝑛]), (2.3)

where sign(Δ[𝑛]) calculates the signs of real and imaginary parts of Δ[𝑛] separately.
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Fig. 2.1: The simplified DPD architecture with comparators in the feedback path
as proposed by Wang et al. in [4, 152]. Grey-coloured parts are not required if
real-valued feedback principle [153] is employed.

The final formula of the modified DLA can be stated as

𝑏̂ = 𝑏′ − 𝜇̂(𝑈𝐻
𝑧 𝑈𝑧)−1𝑈𝐻

𝑧 · sign(Δ), (2.4)

where 𝜇̂ = 𝜇𝜇0 and the sign(·) function on the vector is defined as element-wise
function.

Zhang et al. [153] adapted the real-valued feedback principle (in this thesis pre-
sented in Chapter 3) to the feedback with two comparators and simplified the ar-
chitecture by employing one comparator only.

One can notice that the proposed principle in Fig. 2.1 requires two additional
high-speed DACs (or one DAC if real-valued feedback is implemented [153]) which
naturally complicates the design and increases the system power consumption.

Guan et al. [154] proposed a low-complexity approach for DPD adaptation em-
ploying a signed regressor algorithm (sign-based calculation) of the DLA. Although
their algorithm requires complex-valued feedback samples, we consider it to be re-
lated to this topic and have included it here in this section.

Pascual Campo et al. [155] presented a comprehensive overview of sign-based
algorithms for DPD adaptation. The authors compared the complexities and per-
formance of individual algorithms as well as combinations of them.

58



2.3.5 Subband and Multiband Predistortion

Abdelaziz et al. [156,157] and Tarver et al. [158] presented a low-complexity DPD for
subband linearisation for spectrally noncontiguous transmissions. Furthermore, they
developed a decorrelation-based parameter learning solution. The authors reported
more than 10 times the reduced computational complexity of the proposed DPD
compared with the conventional ones.

Mkadem et al. [159] expounded a complexity-reduced GMP model for linearisa-
tion of multiband PAs. The authors compared the proposed models with dual-input
and triple-input DPD models and reported similar linearisation performance with a
reduced number of coefficients.

Zhang and Chen in [160] presented the DPD adapted by multiple band-limited
feedback signals. Their solution estimated the PA forward model based on the
incomplete feedback signals and, by employing the forward model, they finally ex-
tracted the coefficients of the predistorter. Zhang et al. [161] implemented the
dual-band PA linearisation employing reduced LUTs.

Jaraut et al. [162] proposed an independent component analysis method for the
DPD models employed in carrier aggregation scenarios. The authors reported re-
duced requirements on the bit resolution of calculations and on the FPGA memory.
Additionally, the proposed method led to improved numerical stability of the DPD
solution.

2.3.6 Undersampling Methods

Huang et al. [163] proposed the DPD adaptation with undersampled feedback. They
employed the DLA and kept every 𝑛-th feedback sample. They noted that the
feedback must be sampled with sufficient bandwidth. Wang et al. [164] presented
a similar approach with the undersampled feedback, but they estimated the PA
forward model and employed this model to adapt the DPD by the ILA. Beltagy et
al. [165] extended the work [163] by deriving the DPD adaptation formulas for the
undersampled feedback sampling at an intermediate frequency. The authors claimed
the intermediate frequency sampling could be beneficial as it does not suffer from
IQ imbalances. The adapted DPD achieved similar performance to its full-rate
equivalent.

Prata et al. [166] presented feedback loops employing RF subsampling ADCs
to improve concurrent dual-band transmitter linearisation. The aliasing between
upper and lower bands could naturally occur which the authors compensated for
based on statistical approximated nonoverlapped multisines. The authors reported
similar performance to the other subsampling techniques but with a lower hardware
complexity.
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Chung et al. [167] proposed methods for joint mitigation of hardware imperfec-
tions, especially IQ imbalances and nonlinear distortion caused by the IQ modulator
and PA. They estimated both the imbalances and nonlinear distortion based on ob-
serving the undersampled feedback.

Li et al. [168] focused on time-interleaved DPDs to reduce their sampling rates.
The authors proposed a few architectures with time-interleaved DPDs and solved
the aliasing effect. Their proposed low-speed DPD was naturally narrow band and
compensated only for the distortion close to the communication band. In that region,
the authors reported performance similar to that of the full high-speed DPDs.
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3 Real-Valued Feedback

3.1 Introduction
In this chapter, we describe a simplification of the feedback circuitry for the DPD
adaptation by employing only the in-phase or quadrature output of the IQ down-
converting mixer. The in-phase feedback is depicted in a block diagram in Fig. 3.1.
The main motivation is to avoid one feedback ADC, which is one of the main contrib-
utors to the total system power consumption. Alongside, the feedback complexity
is reduced. Under certain circumstances, the DPD adaptation with the real-valued
feedback samples might be less susceptible to IQ imbalances [A9].
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Fig. 3.1: The system diagram for the DPD with real-valued feedback.

Our contribution has been presented in the paper [A3] and is the natural evolution
of methods described by Chani-Cahuana et al. in [3] and by Guan et al. in [5]. In
this thesis, both works are described in Sec. 2.3.3. All Matlab source codes related
to this chapter are provided at www.github.com/jankralx/rfm_ila.

We must mention papers by Yu et al. [169] and Zhang et al. [170] which proposed
a similar idea to our paper [A3] presented here. Both works were presented later in
the same year, independently of our work.

3.2 Forward Model Estimation
For simplicity, we start our derivation of the real-valued feedback with the MP
model. However, the procedure is applicable to most of the currently well-known
PA or DPD models. We can rewrite equation (1.14) with the real and imaginary
parts, denoted as (·)r and (·)i, respectively, as

𝑦r + 𝑗𝑦i = (𝑈𝑥r + 𝑗𝑈𝑥i)(𝑏r + 𝑗𝑏i). (3.1)
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Expanding the multiplication on the right-hand side yields

𝑦r + 𝑗𝑦i = 𝑈𝑥r𝑏r + 𝑗𝑈𝑥i𝑏r + 𝑗𝑈𝑥r𝑏i − 𝑈𝑥i𝑏i, (3.2)

which can be split into two systems of equations, one for the real part of 𝑦 and the
other one for the imaginary part of 𝑦

𝑦r = 𝑈𝑥r𝑏r − 𝑈𝑥i𝑏i, (3.3)

𝑦i = 𝑈𝑥i𝑏r + 𝑈𝑥r𝑏i. (3.4)

To obtain the PA coefficient vector 𝑏, it is sufficient to solve only one of the two
systems of equations in (3.3) and (3.4). Advantageously, each system of equations
requires only the real or imaginary part of the feedback signal 𝑦. In real hardware,
the real part of the feedback signal is equivalent to the in-phase of the feedback
quadrature mixer and similarly, the imaginary part is equivalent to the quadrature
output.

Matrix 𝑈𝑥 is fully known, as it consists of samples given by the transmitted
signal 𝑥. Therefore, we can obtain 𝑏 as the LS solution of eq. (3.3) with the real
feedback samples ⎡⎣𝑏r

𝑏i

⎤⎦ = (𝐴𝐻
𝑥 𝐴𝑥)−1𝐴𝐻

𝑥 𝑦r, (3.5)

or as the LS solution of eq. (3.4) with the imaginary feedback samples⎡⎣𝑏r

𝑏i

⎤⎦ = (𝐵𝐻
𝑥 𝐵𝑥)−1𝐵𝐻

𝑥 𝑦i, (3.6)

where we have substituted the real and imaginary matrix 𝑈𝑥 by matrices 𝐴𝑥 and
𝐵𝑥, defined as

𝐴𝑥 =
[︁
𝑈𝑥r −𝑈𝑥i

]︁
, (3.7)

𝐵𝑥 =
[︁
𝑈𝑥i 𝑈𝑥r

]︁
. (3.8)

In this way, we have solved the coefficients of the PA forward model. However,
these coefficients cannot be directly recomputed into the DPD coefficients. One
of the methods allowing for calculating the DPD coefficients employing the known
forward model is the method developed by Morgan et al. [25] and Landin et al. [26].

3.3 Indirect Learning Architecture
Direct derivation of the ILA with real-valued feedback cannot be achieved. The ILA
takes the feedback samples and puts them into matrix 𝑈𝑦 on the right-hand side of
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the system of equations and the PA input on the left-hand side. In fact, the PA
input and output are swapped compared with the PA forward model. However, we
can benefit from [25,26] and employ the FM-ILA with real-valued feedback.

The equations with the real-valued feedback are similar to the original complex
feedback equations described in Sec. 1.4.3 with PA model coefficients, originally cal-
culated using equation (1.32), and calculated with real feedback samples by eq. (3.5).
Hereinafter, we will refer to the proposed method as the real-valued forward-model
indirect learning architecture (R-FM-ILA).

3.4 Direct Learning Architecture
Let us continue with the development started in Sec. 1.4.1. We can split eq. (1.25)
into the real and imaginary parts as

Δr + jΔi = (𝑈𝑧r + j𝑈𝑧i)(𝑒r + j𝑒i). (3.9)

By expanding the multiplication on the right-hand side, we get two equation systems
(similarly as for the forward model output as described by eq. (3.3) and (3.4)

Δr = 𝑈𝑧r𝑒r − 𝑈𝑧i𝑒i, (3.10)

Δi = 𝑈𝑧i𝑒r + 𝑈𝑧r𝑒i. (3.11)

Vector 𝑒 can be solved from either the system of equations (3.10) requiring only
the real part of the error vector Δ (consequently only the real feedback samples are
required) as ⎡⎣𝑒𝑟

𝑒𝑖

⎤⎦ = (𝐴𝐻
𝑧 𝐴𝑧)−1𝐴𝐻

𝑧 Δ𝑟 (3.12)

or the system of equations (3.11) requiring only the imaginary feedback samples as⎡⎣𝑒𝑟

𝑒𝑖

⎤⎦ = (𝐵𝐻
𝑧 𝐵𝑧)−1𝐵𝐻

𝑧 Δ𝑖, (3.13)

where 𝐴𝑧 was defined in eq. (3.7) and 𝐵𝑧 in eq. (3.8). Back substitution of vector 𝑒

into eq. (1.24) yields the solution for the updated DPD coefficients⎡⎣𝑏̂𝑟

𝑏̂𝑖

⎤⎦ =
⎡⎣𝑏′

𝑟

𝑏′
𝑖

⎤⎦− 𝜇(𝐴𝐻
𝑧 𝐴𝑧)−1𝐴𝐻

𝑧 (𝑧𝑟 − 𝑦𝑟). (3.14)

Hereinafter, the DLA with real feedback samples is referred to as the real-valued
direct learning architecture (R-DLA).
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3.5 Simulation
We have implemented and simulated DPD architectures with real-valued feedback
(R-DLA, R-FM-ILA) to evaluate their linearisation performance. We have per-
formed simulations for conventional architectures with complex feedback (ILA, DLA,
FM-ILA) and for the system without the DPD to compare all of them with the re-
cently introduced R-FM-ILA and R-DLA.

For all the architectures, the PA has been modelled by the MP model (eq. 1.12)
with 𝐾 = 7, 𝑄 = 1. We have extracted the PA model coefficients from measurements
of a real PA. The PA has been excited with an FBMC signal with 1024 subcarriers,
18 frames in each iteration. The sampling frequency has been set six times higher
than the main channel bandwidth 𝐵.

We have simulated all the DPD architectures iteratively. This means that the
DPD coefficients have been trained on a signal different from the signal used for
evaluating the DPD linearisation performance. In this way, the evaluation is more
objective, as it represents more closely a real transmitter with the DPD.

For all the architectures, one iteration consists of:
1. generating the random-data FBMC signal 𝑧 (same signal for all the DPD

architectures),
2. predistorting the desired signal 𝑧 with current DPD coefficients 𝑏′ yielding the

PA input 𝑥,
3. adjusting the signal amplitude to set the desired PA output power,
4. calculating the PA model output 𝑦,
5. evaluating the linearisation performance,
6. and calculating the new DPD coefficients 𝑏̂.

The important step is setting the PA reference gain. The maximum signal amplitude
in the system without DPD was set such that the PA provided the same output
power in the communication channel as the system with the ILA. The detailed
procedure for setting the PA reference gain is described in the work of Jardin and
Baudoin [77,78]. The calculation of the new DPD coefficients (last step) varies based
on the DPD architecture.

The procedure for the ILA consists of:
1. adjusting the maximum Euclidean norm of signal 𝑥 and 𝑦 such as ||𝑥|| ≤ 1,

||𝑦|| ≤ 1 for the DPD coefficient calculation,
2. solving coefficients 𝑏̂ of the postdistorter as described by (1.31),
3. using the calculated coefficients of the post-distorter as the DPD coefficients

in the next iteration.
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The procedure for the DLA consists of:
1. adjusting the maximum Euclidean norm of 𝑧 and 𝑦 as ||𝑧|| ≤ 1, ||𝑦|| ≤ 1 for

updating the DPD coefficient,
2. updating the DPD coefficients due to the desired signal 𝑧 and feedback 𝑦 as

described by eq. (1.27).

One can achieve the fastest convergence if the initial DPD coefficients are set
close to the optimum. We have suggested the optimum DPD coefficients be unknown
in the first iteration. Generally, we have achieved a reasonable convergence speed
with the initial coefficients set to 𝑏′ =

[︁
0.5 0 0 . . .

]︁𝑇
. This procedure is slightly

modified for the R-DLA as described in Sec. 3.4.

Finally, the procedure for FM-ILA consists of
1. adjusting the maximum Euclidean norm of 𝑥 and 𝑦 as ||𝑥|| ≤ 1, ||𝑦|| ≤ 1 for

the following calculations,
2. estimating the forward PA model coefficients,
3. calculating the forward model output,
4. solving coefficients 𝑏̂ of the post-distorter,
5. employing the calculated postdistorter coefficients 𝑏̂ as the DPD coefficients

in the next iteration.
This procedure is slightly modified for the R-FM-ILA as described in Sec. 3.3.

3.6 Simulation Results
The linearisation performance has been evaluated based on the NMSE and ACPR.
We have simulated all architectures with the DPD modelled by the MP model
with the maximum nonlinearity order of 𝐾 = 7 and the maximum memory length
of 𝑄 = 3. In the simulation, all the architectures have been computed with 220
iterations. The evaluated metrics were averaged over the last 200 iterations, which
corresponds to the range where the DLA and R-DLA converged.

Fig. 3.2 shows the AM/AM characteristics for the R-FM-ILA with the trained
DPD coefficients. The black circles represent the characteristics of the PA obtained
from the measurement of the feedback signal, and the orange dots represent the
characteristics of the estimated forward PA model. One can see that the PA shows
a certain memory effect which is mostly compensated for by the predistorter.

The frequency spectra of the PA output are shown in Fig. 3.3. The spectra for
all the DPD architectures are almost the same and well improved compared to the
spectrum for the system without the DPD.
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Fig. 3.2: The AM/AM characteristics with the R-FM-ILA DPD.

Fig. 3.3: The frequency spectra of the PA output for all simulated architectures.
The frequency axis is normalised to the sampling frequency 𝐹s.
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The evolution of the NMSE in a few first iteration cycles is depicted in Fig. 3.4.
At the beginning of the simulation, ILA, FM-ILA, and R-FM-ILA are not trained
yet and therefore provide the same NMSE as the system without the DPD. On
the other hand, DLA and R-DLA start with a lower output power due to the first
DPD coefficient being set to 0.5 which results in a lower NMSE. In the second
iteration, ILA, FM-ILA and R-FM-ILA achieve almost the optimum predistortion.
The output power of the system without the DPD is lowered to be the same as for
the system with ILA. Note the peak in the NMSE for DLA and R-DLA which the
optimisation process goes through to achieve the solution. The convergence speed
of the DLA and R-DLA highly depends on the initial coefficients, step size 𝜇, and
the desired signal 𝑧. Higher convergence speeds could be achieved by increasing the
step size 𝜇, but the convergence probability would be lower.

Fig. 3.4: Evolution of the NMSE in a few first iteration cycles.

The detailed comparison of linearisation performance for all the architectures
is given in Tab. 3.1. All the ILA-based systems provide very similar linearisation
performance based on the evaluated metrics. Again, the DLA and R-DLA provide
very similar results, but they are slightly better than the ILA-based systems.
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Tab. 3.1: The linearisation performance of systems with real-valued feedback com-
pared with conventional architectures.

DPD architecture NMSE (dB) ACPR-1st (dB) ACPR-2nd (dB)

No DPD -19.9 -29.6 -46.5

ILA -40.5 -49.6 -60.3

DLA -40.8 -49.8 -60.7

R-DLA -40.7 -49.7 -60.7

FM-ILA -40.5 -49.6 -60.3

R-FM-ILA -40.5 -49.6 -60.3

3.7 Conclusion
In this chapter, we have presented a DPD architecture with real-valued feedback
samples and employing the forward PA model estimation. The presented method
has been verified and compared to state-of-the-art DPD methods in simulations.
We have shown that the R-FM-ILA can achieve the same linearisation performance
as its complex variant and the ILA DPD and very similar results as complex DLA
and R-DLA. The main advantage of the presented R-FM-ILA over the DLA and
R-DLA is noniterative calculation and the related unnecessary setting of the initial
solution and step size. Additionally, it allows the employment of a simple RF mixer
and one ADC instead of a quadrature mixer with two ADCs which decreases power
consumption, system complexity, and the transmitter price.
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4 DPD Adaptation with Sample Selection

4.1 Introduction
In this chapter, we extend methods for undersampling and sample selection [5,
163, 164, 171–176] and we propose methods for the selection of samples for DPD
adaptation allowing computational complexity reduction. The block diagram for
DPD adaptation with sample selection is shown in Fig. 4.1.

The proposed methods are: a method based on the identification of important
samples using QR decomposition [177], a gradient-based sampling method [178], and
two histogram-based methods. The first histogram method equalises the histogram
of signal magnitudes to ensure evenly sampled PA characteristics while the second
one optimises a histogram optimised by a genetic algorithm, which respects both
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Fig. 4.1: Linearisation of an RF PA with the DPD using an optional sample selec-
tion method. In the direct path, DACs are accompanied by reconstruction low-pass
filters (LPFs) with bandwidth 1.5𝐵, where 𝐵 is the desired channel bandwidth.
In the feedback, there are LPFs with bandwidth > 1.5𝐵 to limit the noise band-
width, optional sample and hold (SH) circuits and ADCs. Note that the resulting
bandwidth of the forward and feedback paths is 3𝐵 due to IQ sampling. Although
the depicted SH circuits as discrete components are one possible approach, a more
practical implementation would employ ADCs with integrated SH circuits and with
periodic and equidistant sampling, performing sample selection from a sample buffer
in the digital domain.
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the transmitted signal statistical properties and the specific PA characteristics. All
these methods are analysed with respect to the conventional DPD and to the simple
undersampling method [5, 174, 175]. Moreover, we provide a detailed analysis of
the computational complexity of these methods and show how significantly some
of them can reduce the required computational resources. The performance of the
proposed sample selection methods is shown in simulations and eventually verified
by measurements.

The contributions of this chapter have been originally presented in our paper [A2]
and include

• a proposal of methods for sample selection for DPD adaptation compatible
with the conventional DPD-enabled transmitter architectures, especially the
histogram-based method with the histogram optimised by a genetic algorithm,
which highly reduces the computational complexity while preserving the lin-
earisation capabilities,

• a comparison of the computational complexity of the proposed methods,
• and all related Matlab source codes available at www.github.com/jankralx/

dpd_sample_selection.
The rest of this chapter is organised as follows. We introduce the theory behind

the sample selection for DPD adaptation in Sec. 4.2. Sample selection methods are
proposed and discussed in Sec. 4.5. We show how the proposed sample selection
methods reduce the computational and hardware resources needed for DPD adap-
tation in Sec. 4.6 and Sec. 4.6.5. Finally, the simulations are described in Sec. 4.7
and the measurements in Sec. 4.8.

4.2 Basic Principles of Sample Selection
In this chapter, we start our description of the basic principles of undersampling in
DPD systems on the problem of PA-model identification and later we develop the
basic idea also for the ILA, FM-ILA, and the DLA. Let us assume that the PA is
modelled by the MP baseband model. We have chosen the MP model for its formal
simplicity, but all the presented concepts can be generalised for any model which
is linear in its unknown parameters. To identify the unknown coefficients 𝑏𝑘,𝑞 of
the PA model, described by equation (1.11), the conventional methods construct a
system of equations by taking consecutive input and output baseband samples of
the PA and inserting them into the system of equations (1.14).

Let us supplement the theory of the undersampling in DPD systems with a
fictitious example of the MP model with the maximum nonlinearity order 𝐾 = 2
and the maximum memory length 𝑄 = 1, which have 𝑃 = 𝐾 ·(𝑄+1) = 4 coefficients.
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For completeness, we start the example with the conventional method. The system
of equations in the vector form can be constructed as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦[0]
𝑦[1]
𝑦[2]
𝑦[3]
𝑦[4]
𝑦[5]
𝑦[6]
𝑦[7]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥[0] 𝑥[−1] 𝑥[0]|𝑥[0]| 𝑥[−1]|𝑥[−1]|
𝑥[1] 𝑥[0] 𝑥[1]|𝑥[1]| 𝑥[0]|𝑥[0]|
𝑥[2] 𝑥[1] 𝑥[2]|𝑥[2]| 𝑥[1]|𝑥[1]|
𝑥[3] 𝑥[2] 𝑥[3]|𝑥[3]| 𝑥[2]|𝑥[2]|
𝑥[4] 𝑥[3] 𝑥[4]|𝑥[4]| 𝑥[3]|𝑥[3]|
𝑥[5] 𝑥[4] 𝑥[5]|𝑥[5]| 𝑥[4]|𝑥[4]|
𝑥[6] 𝑥[5] 𝑥[6]|𝑥[6]| 𝑥[5]|𝑥[5]|
𝑥[7] 𝑥[6] 𝑥[7]|𝑥[7]| 𝑥[6]|𝑥[6]|

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
𝑏0,0

𝑏0,1

𝑏1,0

𝑏1,1

⎤⎥⎥⎥⎥⎥⎦ . (4.1)

Here we would like to point out that the conventional methods take consecutive
samples of the PA input 𝑥[𝑛] and the PA output 𝑦[𝑛] to construct the system of
equations. Practically, to solve the PA model coefficients, the system of equations
has to be overdetermined to mitigate the imperfections of the PA input generation
and of the PA output measurement. One can figure out that if there are no imperfec-
tions, every arbitrary combination of 𝑃 rows from (4.1) leads to the solution of the
model coefficients. We can benefit from a similar principle with the overdetermined
system and eliminate arbitrary rows in the system of equations. The solution of the
system is not changed significantly until the system contains a sufficient number of
equations. Practically, the number of equations can be drastically reduced if correct
samples (equations) are selected, as we will demonstrate later. The reduced system
of equations could look like⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦[0]
𝑦[1]
𝑦[2]
𝑦[3]
𝑦[4]
𝑦[5]
𝑦[6]
𝑦[7]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥[0] 𝑥[−1] 𝑥[0]|𝑥[0]| 𝑥[−1]|𝑥[−1]|
𝑥[1] 𝑥[0] 𝑥[1]|𝑥[1]| 𝑥[0]|𝑥[0]|
𝑥[2] 𝑥[1] 𝑥[2]|𝑥[2]| 𝑥[1]|𝑥[1]|
𝑥[3] 𝑥[2] 𝑥[3]|𝑥[3]| 𝑥[2]|𝑥[2]|
𝑥[4] 𝑥[3] 𝑥[4]|𝑥[4]| 𝑥[3]|𝑥[3]|
𝑥[5] 𝑥[4] 𝑥[5]|𝑥[5]| 𝑥[4]|𝑥[4]|
𝑥[6] 𝑥[5] 𝑥[6]|𝑥[6]| 𝑥[5]|𝑥[5]|
𝑥[7] 𝑥[6] 𝑥[7]|𝑥[7]| 𝑥[6]|𝑥[6]|

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
𝑏0,0

𝑏0,1

𝑏1,0

𝑏1,1

⎤⎥⎥⎥⎥⎥⎦ . (4.2)

Advantageously, the signal on the left-hand side of (4.2), in this case signal 𝑦[𝑛],
can be arbitrarily undersampled. This allows for reducing the hardware require-
ments, e.g., the sampling rate of the feedback ADCs. It is important to note that
the Nyquist-Shannon sampling theorem [179, 180] is not violated by reducing the
rows as long as we do not need to fully recover the signal waveform. One needs to
realise that filtering and other standard signal processing methods are not achievable
if the signal is undersampled.
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Formally, we can construct the system of equations by taking the signal samples
𝑦[𝑛𝑖] with arbitrary sample indices 𝑛𝑖 ∈ N; 𝑖 ∈ {1, 2, ..., 𝑁} which satisfy the condi-
tion 𝑛𝑖 ̸= 𝑛𝜅; ∀𝑖, 𝜅 : 𝑖 ̸= 𝜅. The reduced equation system can be expressed in the
matrix form by arranging the output samples, model coefficients and basis functions
into vectors, i.e.,

𝜑
(𝑥)
𝑘,𝑞 =

[︁
𝜑

(𝑥)
𝑘,𝑞 [𝑛1] 𝜑

(𝑥)
𝑘,𝑞 [𝑛2] . . . 𝜑

(𝑥)
𝑘,𝑞 [𝑛𝑁 ]

]︁𝑇
,

𝑦 =
[︁
𝑦[𝑛1] 𝑦[𝑛2] . . . 𝑦[𝑛𝑁 ]

]︁𝑇
,

𝑏 =
[︁
𝑏1,0 𝑏1,1 . . . 𝑏1,𝑄 𝑏2,0 . . . 𝑏𝑃,𝑄

]︁𝑇
,

𝑈𝑥 =
[︁
𝜑

(𝑥)
1,0 𝜑

(𝑥)
1,1 . . . 𝜑

(𝑥)
1,𝑄 𝜑

(𝑥)
2,0 . . . 𝜑

(𝑥)
𝐾,𝑄

]︁
,

(4.3)

where 𝑏 is a column vector with 𝑃 rows, and the size of the matrix 𝑈𝑥 is 𝑁 × 𝑃 .
The system of equations is then expressed as

𝑦 = 𝑈𝑥𝑏. (4.4)

By solving (4.4), we obtain the model coefficients 𝑏 and hence identify the PA model.
Typically, we choose 𝑁 ≫ 𝑃 to sufficiently sample the whole characteristics of the
PA with diverse signal samples and to mitigate the influence of noise and other
imperfections of a real system. The solution can be obtained as a projection of 𝑏

into the column space of 𝑈𝑥, in other words it is the LS solution which minimises
the difference between the observed PA output and the model output

𝑏 = (𝑈𝐻
𝑥 𝑈𝑥)−1𝑈𝐻

𝑥 𝑦. (4.5)

We can also imagine the above procedure such that we first take consecutive
samples of the PA output, build a conventional overdetermined system of equations
and before solving it, we leave out some arbitrary rows from matrix 𝑈𝑥 and the
equivalent samples from vector 𝑦. We would like to emphasise that the reduction of
the system of equations preserves the memory modelling, because equation (1.11) is
still fully valid. Please note that only the PA output 𝑦[𝑛], on the left-hand side of
the system in (4.4), can be arbitrarily undersampled. The PA input 𝑥[𝑛] has to be
known, to cover at least the memory modelling of the PA to build matrix 𝑈𝑥.

Hereinafter, the described method is referred to as the sample selection method
(SSM). In the following sections, we show some possible ways of employing SSMs
in the DPD identification process.

4.3 Sample Selection and ILA
In the ILA, the measured feedback samples fill the matrix 𝑈𝑦. Consequently, the
advantage of arbitrarily undersampled feedback disappears and the usage of SSM is
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limited. However, we can benefit from the solution of the suboptimal ILA provided
by Morgan [25] and Landin [26] (described in Sec. 1.4.3) which first estimates the
forward PA model. The proposed SSM can be employed for the PA model estimation
and the DPD coefficients are calculated by the ILA in the standard way. The block
diagram of the method is depicted in Fig. 4.2.
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Fig. 4.2: Block diagram of a transmitter with a baseband PA model linearised by
DPD with FM-ILA. The PA output is sampled by a sample and hold (SH) circuit
at times driven by SSM.

4.4 Sample Selection and DLA
We assume that equation (1.25) is originally overdetermined, therefore we can omit
arbitrary rows of matrix 𝑈𝑧 and the equivalent samples of vector Δ, similarly as
in Sec. 4.2 for the PA model estimation. The reduced vector and matrix can be
denoted as

𝑧 =
[︁
𝑧[𝑛1] 𝑧[𝑛2] . . . 𝑧[𝑛𝑆]

]︁𝑇
,

𝑈𝑧 =
[︁
𝜑

(𝑧)
1,0 𝜑

(𝑧)
1,1 . . . 𝜑

(𝑧)
1,𝑄 𝜑

(𝑧)
2,0 . . . 𝜑

(𝑧)
𝐾,𝑄

]︁
.

(4.6)

The notation of the final solution employing SSM does not differ from the con-
ventional DLA in eq. (1.27) and can be written as

𝑏̂ = 𝑏′ − 𝜇(𝑈𝐻
𝑧 𝑈𝑧)−1𝑈𝐻

𝑧 (𝑧 − 𝑦). (4.7)
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The block diagram of DLA is depicted in Fig. 4.3. Please note that SSMs allow for
arbitrary undersampling of only the PA output 𝑦. The desired scaled PA output
𝑧 must be sufficiently known to construct the matrix 𝑈𝑧. This usually does not
represent any complication, because the desired scaled PA output is also the DPD
input. In the rest of this chapter, we focus our analysis and findings primarily on
the DLA, because we find the DLA more efficient and usable than the FM-ILA.

PA

DPD

Training

DPD

b’

xz

y
SHSSM

z

x

Selection timing

Fig. 4.3: Block diagram of the transmitter with a baseband PA model linearised
by the DPD with the DLA. The PA output is sampled by the SH circuit at times
driven by SSM based on the PA input samples 𝑥.

4.5 Sample Selection Methods
The best DPD adaptation can be achieved if the observation errors of the input
and output are uncorrelated [181]. However, the adjacent samples used by the
conventional DPD are not independent, and therefore the observation errors are
correlated. To minimise the observation errors, the conventional methods without
sample selection require a high number of samples 𝑁 , usually 𝑁 > 1000 [181]. For a
small 𝑁 , the subsequent samples cause the system of equations to be ill-conditioned.
Furthermore, a limited number of subsequent samples cannot cover the statistical
properties of the transmitted signal.

We show that the proposed SSM does not suffer from the mentioned drawbacks
for small 𝑁 if the samples 𝑛1, 𝑛2, ..., 𝑛𝑁 are selected carefully. The problem for
the sample selection method can be defined as the selection of 𝑁 samples from all
samples which were acquired by the feedback ADCs. The number of all acquired
samples is 𝑁0 and corresponds to the acquisition time and hence to the required
update rate of DPD coefficients. The number of selected samples is naturally limited
by the condition 𝑁 ≤ 𝑁0.
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4.5.1 Undersampling

One possible approach to SSM is a simple undersampling of the feedback signal. It
can be seen as an untargeted sample selection and henceforth it is referred to as the
undersampling-based sample selection (US). Similar approaches were presented in [5,
174,175]. Although this method is very simple and does not consider the statistics of
the transmitted signal, it can improve the conditioning of the system of equations, as
it takes distant samples which have the potential to be more independent. Therefore,
this simple approach can be sufficient for less demanding applications.

4.5.2 Sample Selection Based on QR Decomposition

The problem of selecting the samples 𝑛1, 𝑛2, ..., 𝑛𝑁 for the calculation of new DPD
coefficients can be solved analytically using QR decomposition with column pivot-
ing [177], hereinafter referred to as QR-decomposition-based sample selection (QRS).
First we construct the matrix 𝑈𝑧 using all the samples from the feedback. After-
wards we perform the QR decomposition with column pivoting of the transposed
matrix 𝑈𝑧, which is defined as

𝑈𝑇
𝑧 𝐸 = 𝑄𝑅, (4.8)

where 𝑅 is an 𝑁0 × 𝑃 upper triangular matrix, 𝑄 is an 𝑁0 × 𝑁0 unitary matrix,
and 𝐸 is an 𝑁0 × 𝑁0 permutation matrix. The first 𝑁 columns of the permutation
matrix identify the 𝑁 most important rows of matrix 𝑈𝑧 for the solution of new DPD
coefficients. Formally, we can write that the sample indexes of selected samples are
given as [︁

𝑛1, 𝑛2, ..., 𝑛𝑁

]︁
=
[︁
1, 2, ..., 𝑁0

]︁
𝐸1:𝑁 , (4.9)

where 𝐸1:𝑁 is a submatrix of matrix 𝐸 consisting of its first 𝑁 columns.
The drawback of this method is that it improves the conditioning of the pseu-

doinverse of matrix 𝑈𝑧, but this does not guarantee improved DPD linearisation
performance, because this method does not respect vector Δ in the calculation of
the DPD coefficients in (4.7) nor the PA characteristics.

Moreover, the practical usability of this method for real-time DPD adaptation
is limited, because it requires performing the QR decomposition of the full matrix
𝑈𝑧, which in principle already solves the system of equations using all feedback
samples. Potential usage is limited to cases where a fast QR decomposition with
low precision [182] is applied to identify a few important samples and thus requires
fewer computation resources and high precision calculation is performed by only the
selected samples.
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4.5.3 Gradient Sampling

Another method for sample selection can be the gradient-based sampling (GS) [178],
henceforth referred to as GS-based sample selection (GSS). GS is a representative
of the methods for solving least squares problems of a large sample size. For DLA,
we calculate the gradient values 𝑔𝑖 for all rows of matrix 𝑈𝑧 and all samples of
vector Δ [178]

𝑔𝑖 = ||𝑢𝑖(Δ𝑖 − 𝑢𝑖𝑒0)||, (4.10)

where 𝑢𝑖 is the 𝑖-th row of matrix 𝑈𝑧, Δ𝑖 is the 𝑖-th element of vector Δ, and 𝑒0 is
a given pilot estimate (good guess) for solving the coefficient error vector 𝑒. Since
𝑒 is ideally a zero vector in the converged state, we set 𝑒0 as a zero vector and thus
we can simplify the calculation of gradient values to

𝑔𝑖 = ||𝑢𝑖Δ𝑖||. (4.11)

The probability that the 𝑖-th feedback sample and the equivalent row of matrix 𝑈𝑧

are taken into the calculation of the DPD adaptation in (4.7) is calculated as [178]

𝑝𝑖 = 𝑁𝑔𝑖

𝑁0∑︀
𝑖=1

𝑔𝑖

. (4.12)

Based on the calculated probabilities, 𝑁 samples 𝑛1, 𝑛2, ..., 𝑛𝑁 are selected for the
calculation of new DPD coefficients.

4.5.4 Histogram-Based SSMs

Even though both QRS and GSS are analytically based, they do not consider a
priori knowledge of the PA characteristics nor signal statistics. To overcome this
disadvantage, we propose an SSM based on the histogram of signal magnitudes of
the PA input 𝑥. Let us make the following notations: 𝐽 is the number of histogram
bins. The target bin counts are denoted 𝑑𝑗 with 𝑗 ∈ 1, 2, ..., 𝐽 . The lower and upper
bin boundaries are 𝜃𝑗−1 and 𝜃𝑗 respectively (see Fig. 4.4). 𝐷𝑗 is a set of selected
indices 𝑛𝑖 whose samples belong to the 𝑗-th bin, defined as

𝐷𝑗 = {𝑛𝑖 : 𝜃𝑗−1 < |𝑥[𝑛𝑖]| < 𝜃𝑗}, (4.13)

and 𝐷𝑗 is the cardinality (number of elements) of set 𝐷𝑗.
Samples for DPD adaptation are selected randomly such that the 𝑗-th histogram

bin count reaches the target bin count 𝑑𝑗, i.e., cardinality 𝐷𝑗 is equal to 𝑑𝑗. At the
same time, samples should be selected such that they are distant in time and hence
the matrix conditioning is improved. Formally, the selected indices need to satisfy
the condition

|𝑛𝑖 − 𝑛𝜅| ≥ 𝛾; ∀𝑖, 𝜅 : 𝑖 ̸= 𝜅, (4.14)
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where 𝛾 is the minimum sample time distance and is set such that it ensures the
independence of selected samples.

Even though the papers [183,184] have proposed histogram methods with slightly
different usage, the condition of a minimum sample distance expressed by (4.14) has
not, to the author’s best knowledge, been proposed for the histogram-based sample
selection methods.

Evenly Distributed Histogram

The evenly distributed histogram (EDH) is a possible setting for histogram-based
sampling. If 𝑁 is divisible by 𝐽 , all target bin counts are set to the same constant
𝑑𝑗 = 𝑁

𝐽
, otherwise they are selected randomly from the values 𝑑𝑗 ∈ {⌊𝑁

𝐽
⌋; ⌊𝑁

𝐽
⌋ + 1}

such as ∑︀ 𝑑𝑗 = 𝑁 . The motivation for making the histogram evenly distributed is
to cover the whole AM/AM characteristics of PA, as shown in Fig. 4.4. Unfortu-
nately, this simple approach of setting target bin counts does not respect either the
shape of the AM/AM characteristics of the used PA nor the statistical properties of
the transmitted signal (Fig. 4.4) which results in a DPD model with similar mod-
elling capabilities in all regions of AM/AM characteristics, even those not frequently
utilised due to the high PAPR of the transmitted signal. In other words, if we con-
sider the limited number of points for DPD adaptation, selecting points from highly
nonlinear regions and high signal probability provides more information for DPD
adaptation than selecting points from linear regions and low signal probability.
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Fig. 4.4: Principle of sample selection by EDH with 𝐽 = 10 related to the probability
density function (pdf) of signal magnitude and the AM/AM characteristics of the
PA. The depicted 𝑁 = 30 selected samples are evenly distributed over the whole
AM/AM characteristics of the PA, irrespective of the signal statistics nor the shape
of the AM/AM characteristics.
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Genetically Optimised Histogram

The genetically optimised histogram (GOH) is proposed to suppress EDH imperfec-
tions. An optimised histogram can respect the AM/AM characteristics of the PA
and the statistics of the transmitted signal, as depicted in Fig. 4.5. We show that
it is possible to set the target bin count such that a chosen criterion is optimised.
In general, the histogram bin counts should be set such that GOH selects samples
from regions with strong nonlinearity and high signal amplitude probability.
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Fig. 4.5: Principle of the sample selection by GOH with 𝐽 = 10 related to the prob-
ability density function (pdf) of signal magnitude and the AM/AM characteristics
of the PA. The depicted 𝑁 = 30 selected samples are placed in regions with strong
nonlinearity and/or high signal probability.

We optimise target histogram bin counts by the genetic algorithm [185] to min-
imise the NMSE of the PA output with respect to the desired output. We have
chosen the genetic algorithm optimisation for the integer histogram bin counts, be-
cause the genetic algorithm does integer optimisation by default. We assume that
the histogram is optimised once for a specific type of PA and the transmit signals,
just to set the target bin counts which are afterwards applied for DPD adaptation.
Therefore, higher computational costs of optimisation calculation can be neglected,
although it can take several hours to optimise the histogram. Therefore, the op-
timisation is most likely unfeasible in real time in a transmitter, and we consider
precalculated histograms only. However, we have not aimed to make the optimisa-
tion faster, and this might be a focus in future research.

The application of GOH can be limited in cases of changing working conditions.
The PA characteristics change due to temperature changes and ageing. However,
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due to our experience, temperature changes cause mainly a change of the PA gain
and only small changes in the shape of the AM/AM characteristics (usually within
10%). A small margin in the number of selected samples 𝑁 should ensure GOH
insensitivity to these small changes. However, extensive analysis should always be
done for the specific application.

Another potential usage limitation arises when the communication system em-
ploys signals with significantly changing statistics of the signal magnitudes. If a
single precalculated histogram does not lead to sufficient linearisation performance,
then we suggest optimising the histogram for all different types of signals and ap-
plying the corresponding precalculated histogram in hardware.

In both cases, it is always possible to apply EDH which does not require his-
togram optimisation. The simulations with the results in Sec. 4.7.6 show that EDH
leads to only a slightly higher computation complexity or slightly worse linearisa-
tion performance compared with GOH. GOH and EDH are further discussed in
Sec. 4.7.4 and Sec. 4.7.5.

4.6 Reduction of Computational Complexity of DPD
Adaptation

A few properly selected samples 𝑁 significantly reduces the computational com-
plexity of DPD adaptation. We evaluate the computational complexity of DPD
adaptation with 𝑃 coefficients and 𝑁 samples with respect to the required number
of real-valued multiplications 𝑂⊗(𝑁, 𝑃 ) and real-valued additions 𝑂⊕(𝑁, 𝑃 ). The
following analysis does not include any optimisation and does not exploit the prop-
erties of the PA model, and the presented numbers of required multiplications and
additions can therefore be seen as the upper bounds. We assume that a single com-
plex multiplication requires four real-valued multiplications and three real-valued
additions; a single complex addition requires two real-valued additions.

We split the analysis into three parts:
1. the calculation of the DPD model represented by the matrix 𝑈𝑧,
2. calculation of the coefficient error vector 𝑒,
3. and the coefficient update.

The calculation of 𝑈𝑧 for the MP model in equation (1.14) requires 𝑂𝑈⊗(𝑁, 𝑃 )
real-valued multiplications and none of the real-valued additions. Assuming that
the calculation of 𝜑

(𝑥)
𝑘,𝑞 [𝑛] is reused for the calculation of 𝜑

(𝑥)
𝑘+1,𝑞[𝑛], the number of

multiplications can be expressed as

𝑂𝑈⊗(𝑁, 𝑅) ≈ 2𝑁𝑅. (4.15)
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The calculation of coefficient error vector 𝑒 in equation (1.27) requires 𝑂𝑒⊗̂(𝑁, 𝑃 )
complex multiplications: 1

2𝑁𝑃 (𝑃 + 1) for the 𝑈𝐻
𝑧 𝑈𝑧 matrix multiplication because

the resulting matrix is of size 𝑃 × 𝑃 and is symmetrical, 𝑂𝐼⊗̂(𝑃 ) ≈ 𝑃 3 for the
inversion of the symmetrical 𝑃 × 𝑃 complex matrix (𝑈𝐻

𝑧 𝑈𝑧), 𝑁𝑃 for (𝑈𝐻
𝑧 (𝑧 − 𝑦)),

and 𝑃 2 for the multiplication of the matrix inverse (𝑈𝐻
𝑧 𝑈𝑧)−1 and vector 𝑈𝐻

𝑧 (𝑧 −𝑦).
The calculation of coefficient correction 𝑒 in equation (1.26) requires 𝑂𝑒⊕̂(𝑁, 𝑃 )
complex additions: 1

2(𝑁−1)𝑃 (𝑃 +1) additions for (𝑈𝐻
𝑧 𝑈𝑧) calculation, 𝑂𝐼⊕̂(𝑃 ) ≈ 𝑃 3

additions for the inversion of the symmetrical 𝑃 × 𝑃 complex matrix, 𝑁 additions
for subtraction (𝑧 − 𝑦), (𝑁 − 1)𝑃 for 𝑈𝐻

𝑧 (𝑧 − 𝑦), and (𝑃 − 1)𝑃 additions for the
multiplication of the matrix inverse (𝑈𝐻

𝑧 𝑈𝑧)−1 and vector (𝑈𝐻
𝑧 (𝑧 − 𝑦)). Complexity

can be expressed as

𝑂𝑒⊗̂(𝑁, 𝑃 ) ≈ 1
2𝑁𝑃 (𝑃 + 3) + 𝑃 2 + 𝑃 3, (4.16)

𝑂𝑒⊕̂(𝑁, 𝑃 ) ≈ 1
2(𝑁 − 1)𝑃 (𝑃 + 3) + 𝑃 3 + 𝑁 + (𝑃 − 1)𝑃. (4.17)

The calculation of a single DLA iteration in equation (1.27) additionally requires
2𝑃 real-valued multiplications and additions. The total number of real-valued mul-
tiplications and additions can therefore be estimated as

𝑂⊗(𝑁, 𝑃 ) = 𝑂𝑈⊗(𝑁, 𝑃 ) + 4𝑂𝑒⊗̂(𝑁, 𝑃 ) + 2𝑃 ≈

2𝑁𝑃 (𝑃 + 4) + 4𝑃 2 + 4𝑃 3 + 2𝑃,
(4.18)

𝑂⊕(𝑁, 𝑃 ) = 2𝑂𝑒⊕̂(𝑁, 𝑃 ) + 3𝑂𝑒⊗̂(𝑁, 𝑃 ) + 2𝑃 ≈(︂5
2𝑁𝑃 − 𝑃

)︂
(𝑃 + 3) + 5𝑃 2 + 5𝑃 3 + 2𝑁.

(4.19)

4.6.1 Additional Complexity of Histogram-Based SSMs

In terms of resources, histogram-based SSMs are very simple, because they only
require storing and incrementing the actual bin counts to select the samples. Hence,
additional computational resources required by these methods can be neglected.

4.6.2 Additional Complexity of GSS

GSS additionally requires calculating the matrix 𝑈𝑧 for all 𝑁0 samples which re-
quires 𝑂𝑈⊗(𝑁0 −𝑁, 𝑃 ) ≈ 2(𝑁0 −𝑁)𝑃 real-valued multiplications for the MP model.
In (4.11) the calculation of 𝑢𝑖Δ𝑖 needs 𝑃 complex multiplications while the calcu-
lation of the 𝑙2-norm of a complex vector needs 5𝑃 real-valued multiplications and
4𝑃 − 1 real-valued additions, and this equation needs to be calculated 𝑁0 times.
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Additional computational complexity to implement GSS is therefore

𝑂GS
⊗ (𝑁, 𝑃, 𝑁0) ≈ 11𝑁0𝑃 − 2𝑁𝑃, (4.20)

𝑂GS
⊕ (𝑁, 𝑃, 𝑁0) ≈ 𝑁0(7𝑃 + 1). (4.21)

4.6.3 Additional Complexity of QRS

QRS also requires calculating the matrix 𝑈𝑧 for all 𝑁0 samples and QR decompo-
sition requires 33𝑁0 + 1 complex multiplications and 8𝑁0 complex additions [182].
Additional computational complexity to implement QRS is therefore

𝑂QR
⊗ (𝑁, 𝑃, 𝑁0) ≈ 132𝑁0 + 2(𝑁0 − 𝑁)𝑃 + 4, (4.22)

𝑂QR
⊕ (𝑁, 𝑃, 𝑁0) ≈ 107𝑁0 + 3. (4.23)

4.6.4 Comparison of SSM Complexity

In Tab. 4.1 we provide a comparison of the computational complexity for the above
SSMs in terms of the number of real-valued multiplications and additions. In all
cases there are 𝑁0 = 20 000 samples collected from the feedback. The complexity is
evaluated for the MP model with 𝐾 = 7, and 𝑄 = 1 which leads to 𝑃 = 14 DPD
coefficients. We can conclude that QRS is computationally the most demanding as
it performs the inversion of a large matrix 𝑈𝑧 constructed from all 𝑁0 samples. The
least complex methods are histogram-based SSMs whose complexity is the same
as for conventional DPD adaptation using a block of continuous feedback samples.
However, the conventional methods provide poor linearisation capabilities for a few
samples 𝑁 as we show in Sec. 4.7.6. Although QRS and GSS have higher computa-
tional complexity for the same number of selected samples 𝑁 than the conventional
DPD, the computational complexity reduction is achieved for them as QRS and
GSS allow predistortion with lower 𝑁 .

Although we have neglected memory requirements in our analysis, please note
that QRS and GSS require much more memory to store the whole 𝑁0 × 𝑃 matrix
𝑈𝑧 and the 𝑁0 × 1 vector Δ than histogram-based SSMs, which only need to store
the reduced 𝑁 × 𝑃 matrix 𝑈𝑧 and the 𝑁 × 1 vector Δ.

4.6.5 Reduction of Hardware Resources

Since SSM allows undersampling the PA output, it allows for ADCs with decreased
sampling frequency in the feedback. However, the ADC analogue input bandwidth
and the speed of the ADC sample-and-hold circuit have to be sufficient to cover
the desired signal bandwidth including close intermodulation products. In common
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Tab. 4.1: Comparison of Computational Complexity

Conv. DPD QRS GSS Hist. SSM

𝑃 = 14 𝑂⊗ DNC 3.2 · 106 3.1 · 106 22 · 103

𝑁 = 20 𝑂⊕ DNC 2.2 · 106 2.0 · 106 26 · 103

𝑃 = 14 𝑂⊗ DNC 3.3 · 106 3.1 · 106 62 · 103

𝑁 = 100 𝑂⊕ DNC 2.2 · 106 2.1 · 106 74 · 103

𝑃 = 14 𝑂⊗ 5.1 · 106 8.0 · 106 7.8 · 106 5.1 · 106

𝑁 = 104 𝑂⊕ 6.0 · 106 8.1 · 106 7.9 · 106 6.0 · 106

Conventional DPD does not converge (DNC) for a low number of selected samples
𝑁 . The complexity in the table is calculated for 𝑁0 = 20 000 and the MP model
with 𝐾 = 7, and 𝑄 = 1.

state of the art, it is required that the feedback bandwidth be three to five times
the desired channel bandwidth [6], [7]. ADCs with high analogue input bandwidth
are commonly employed in current communication systems either for Sub-Nyquist
sampling or in interleaved ADCs.

The main advantages of the decreased sampling frequency of the feedback ADCs
are the lower power consumption, the decreased system complexity, and the price.
We present these parameters for the example transmitter from Fig. 4.1. We consider
two cases: in one case the conventional DPD and in the other case an undersampled
ADC in the feedback. The communication signal bandwidth was chosen to be
300 MHz, which implies a required feedback bandwidth of at least 900 MHz. The
conventional DPD requires two ADCs with the sampling frequency 𝐹S ≥ 900MSps.
DPD with SSM requires two ADCs for IQ sampling with the input bandwidth 𝐵in ≥
450 MHz and arbitrary 𝐹S. For this example we have selected ADCs AD9690 [186]
with 𝐹S = 1 GSps for the conventional DPD and AD9629 [187] with 𝐵in = 700 MHz
and 𝐹S = 20 MSps for DPD with SSM, both labelled as low power ADCs. Tab. 4.2
gives a comparison of a transmitter with the conventional DPD and a transmitter
with the undersampled feedback allowed by the proposed SSM. The values were
taken from ADC data sheets [186], [187]. The comparison of system parameters in
Tab. 4.2 does not include the power consumption and price of auxiliary components,
e.g. clock generators, buffers, filters, etc.
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Tab. 4.2: Comparison of System Parameters

Conventional DPD DPD with SSM

2× AD9690 2× AD9629

𝐹S 1000 MSps 20 MSps

Max. 𝐵in 500 MHz 700 MHz

ENOB 10.5 bits 11 bits

Digital interface JESD204B Parallel

Power consumption ≈ 4 W ≈ 90 mW

Price ≈ 720 USD ≈ 20 USD

4.7 Simulations
We simulate the DPD performance with the proposed SSM described in Sec. 4.5.
Additionally, all simulations include the conventional DPD without SSM as a refer-
ence. For all methods, the DLA has been used. Since it is iterative, each simulation
run consists of 𝑀 = 80 iterations. At the beginning of each iteration the transmit
signal 𝑧 is generated with random data symbols and used for all simulated SSMs.
Afterwards, the following steps bound to the specific SSM are executed:

1. signal 𝑧 is predistorted using coefficients 𝑏′ to obtain the PA input 𝑥,
2. signal 𝑥 is sent through the PA model to get the PA output 𝑦,
3. new DPD coefficients 𝑏̂ are calculated,
4. the linearisation performance metrics are evaluated,
5. and the DPD coefficients are updated 𝑏̂ → 𝑏′.

For the first iteration, the DPD coefficients 𝑏′ are set to [0.5, 0, . . . , 0]𝑇 . The step size
parameter 𝜇 was set to 0.1 as a decent trade-off between the convergence probability
and the convergence speed. The whole process is repeated 1000 times to evaluate
the 95% confidence intervals of the results.

4.7.1 PA Models for Simulations

In simulations we employ the PA model based on GMP [19] (see Sec. 1.3.3). We
have chosen GMP, because it can be sufficiently complex to accurately model the
state-of-the-art PAs. Moreover, for realistic simulation results it is necessary to
apply the PA model of higher complexity than the DPD model.

83



We include models of the following PAs in our simulations:
PA1: Two-stage PA in class AB designed for Satcom applications at 1625 MHz, with

monolithic PA GALI-24+ from Mini-Circuits [188] in the first stage and GaN
SiC HEMT TGF2965 from Qorvo [189] in the second stage. The first stage
power supply voltage was set to 8 V, the second stage power supply voltage
was set to 32 V, and the gate voltage was set to ensure that the drain quiescent
current was 20 mA. The total gain of both stages is approximately 30 dB.

PA2: Class-F power amplifier designed for Satcom applications at 1625 MHz, with
output power 𝑃3dB = 43 dBm, based on the GaN SiC HEMT T2G6003028
from Qorvo [190]. The PA gain is approximately 12 dB, the power supply
voltage 28 V, the gate voltage -3.03 V. Together with this PA, the 5-W amplifier
Minicircuits ZHL-5W-2G-S+ [191] was used as a predriver.

PA3: Block amplifier ADL5610 [192].

All PA models were extracted from measurements at a centre frequency of
1600 MHz, excited by a test signal with the bandwidth 𝐵 ≈ 6 MHz, further described
in Sec. 4.7.3. Index arrays of PA models were set to ensure sufficient fidelity of the
models. The particular indexes were set to 𝐾𝑎 = {0, 1, 2, 3, 4, 5}, 𝐿𝑎 = {0, 1, 2, 3},
𝐾𝑏 = {2, 4}, 𝐿𝑏 = {0}, 𝑀𝑏 = {1}, 𝐾𝑐 = {2, 4}, 𝐿𝑐 = {0}, 𝑀𝑐 = {1}. The PA model
coefficients can be found in the source codes provided.

4.7.2 DPD Model

As a model of digital predistorter we have chosen the DDR2 model [15] (described
in Sec. 1.3.2), because the simple MP model did not achieve sufficient linearisation
results for the tested amplifiers. For the following simulations, we have chosen the
DPD order to be 𝐾 = 7 and 𝑄 = 1, which yields 𝑃 = 17 DPD coefficients.

4.7.3 Test Signal

We have chosen the F-OFDM signal waveform with the 64-state quadrature ampli-
tude modulation (64-QAM) as the internal modulation to demonstrate the linearisa-
tion capabilities of the proposed SSM for DPD adaptation. The F-OFDM has been
designed as described in Sec. 1.5.2.

In each iteration, we generate the F-OFDM signal with 12 frames, each frame
with 68 resource blocks, a block size of 12 subcarriers, resulting in 𝑊 = 12 · 68 = 816.
The FFT size is set to 𝑍 = 4096 and the filter length is 𝐿 = 2049. The sampling
frequency is limited by the measurement setup and is set to 𝐹S = 30 MHz. These
parameters provide the test signal vector with the channel bandwidth 𝐵 ≈ 𝐹S/5 ≈
6 MHz and 𝑁0 = 52 064 samples. The signal mean power was set constant during
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the DPD adaptation such that the mean PA output power over the last 20 iterations
is equal for all the methods.

4.7.4 Settings Specific to Histogram-Based Methods

We have set the number 𝐽 of histogram bins for EDH and GOH based on the
simulation presented in Fig. 4.6, where we have analysed the influence of the number
of bins on achievable NMSE, using DPD with EDH. We can see that for DPD
adaptation the sufficient number of histogram bins 𝐽 is 5. We set 𝐽 = 10 to ensure
a sufficient margin, as we expect a very low computational resource allocation for
histogram-based SSMs.

Fig. 4.6: Simulated influence of the number of histogram bins on achievable NMSE
using DPD with EDH and 𝑁 = 30.

4.7.5 Histogram Optimisation by Genetic Algorithm

We have optimised histogram target bin counts 𝑑𝑗 by the genetic algorithm [185] for
each simulated number of selected samples 𝑁 . Optimised bin counts are integers
from the interval [0, 𝑁 ] and need to fulfil the condition ∑︀ 𝑑𝑗 = 𝑁 . We have set the
optimisation parameters as follows: the population size 100, the maximum number
of generations 20, the population fraction at the next generation created by cross-
over 0.8, the probability of mutation 1%. We have defined the objective function as
an average of the NMSE results over 10 runs. Each run consists of 80 iterations and
the NMSE results for averaging are taken only from the last 20 iterations.

4.7.6 Simulation Results

Hereinafter we present detailed simulation results for the model PA1 in Fig. 4.7,
Fig. 4.8, and Fig. 4.9. The simulation results for the other models, PA2 and PA3,
are provided to verify SSMs in a condensed form in Tab. 4.3 and Tab. 4.4.
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Fig. 4.7: Simulation results of NMSE as a function of the number of selected samples
𝑁 with 95% confidence intervals depicted by coloured dashed lines for the model
PA1. The black dashed line represents the simulated NMSE of the PA output
without DPD.

The relationship between NMSE and the number of selected samples 𝑁 is de-
picted in Fig. 4.7. We can observe that the conventional DPD starts to improve the
transmitter linearity when more than 1300 samples are selected for DPD adapta-
tion. US follows the behaviour of the conventional DPD but with slightly less needed
samples. QRS starts to improve linearity of the output signal from 18 selected sam-
ples, but up to 2000 samples it provides suboptimal results. This is mainly due to
improving problem conditioning but considering neither the signal statistics nor the
observed feedback samples, as has been discussed above. Please recall that we have
17 DPD coefficients and taking only 18 samples is almost equivalent to solving a
fully determined system.

GSS shows good linearisation performance for more than 100 selected samples.
We suppose this is caused by choosing samples on a random basis with respect to
the probabilities calculated by GS. For a few selected samples there is no margin
for selecting unimportant samples. EDH starts to linearise from 19 selected samples
and slightly improves with an increasing number of selected samples. For 𝑁 < 100,
EDH outperforms GS and for 𝑁 > 100, EDH provides the NMSE less than 0.8 dB
higher than GS.
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Fig. 4.8: Simulation results of the EVM as a function of the number of selected
samples 𝑁 with 95% confidence intervals depicted by coloured dashed lines for the
model PA1. The black dashed line represents the simulated EVM of the PA output
without DPD. The EVM of the generated signal is 1.1% due to the nonorthogonality
caused by the inherent F-OFDM filtering.

In the region of up to 𝑁 < 2000 samples, GOH outperforms all other methods.
For 𝑁 > 2000, GOH is very close to QRS. Please note that this difference is
negligible, about 0.5 dB in terms of NMSE. For GOH, in the region from 100
samples, we can see the effect of a larger space in which the genetic algorithm looks
for the optimal histogram. In this region, the NMSE is up to 1 dB worse than for
𝑁 = 100 or 𝑁 = 50 000. This effect is caused by the fixed number of maximum
generations and the population size of the genetic algorithm, set irrespective of the
number of selected samples 𝑁 .

EVM as a function of the number of selected samples 𝑁 is depicted in Fig. 4.8.
The simulated EVM results agree with the NMSE results shown in Fig. 4.7. The
ACPR results are presented in Fig. 4.9 and agree similarly with the NMSE results.
One can notice that for PA1 the linearisation performance in terms of the ACPR
improvement is not impressive. This is likely caused by specific characteristics of
PA1 and the DPD model. The key point is that the proposed methods achieve the
maximum linearisation performance of the conventional DPD. The higher ACPR
improvement is achieved for PA3 with results in Tab. 4.4, as described below.
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Fig. 4.9: Simulation results of ACPR as a function of the number of selected samples
𝑁 with 95% confidence intervals depicted by coloured dashed lines for the model
PA1. The black dashed line represents the simulated ACPR of the PA output
without DPD.

Summary results for PA2 and PA3 are presented in Tab. 4.3 and Tab. 4.4 respec-
tively. Although EDH shows good linearisation capabilities for a small number of
samples, GOH outperforms other SSMs for a few selected samples in all cases and
is close to the other methods for a high number of samples.

Model PA2 with results in Tab. 4.3 is highly nonlinear, as PA2 is designed in
class F, and we can see that the conventional DPD and the simple undersampling
do not converge for a small number of samples 𝑁 < 10 000. On the other hand,
the model PA3 with results shown in Tab. 4.4 is less nonlinear and the conventional
DPD and US provide a decent linearisation for 𝑁 = 1000 selected samples. In
Tab. 4.4 we can notice that the PA nonlinearity causes mainly leakage into adjacent
channels while the signal in the main channel remains undistorted, as illustrated by
EVM.
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Tab. 4.3: Simulation Results for Model PA2

Metric N Conv. DPD US EDH GOH

NMSE (dB)

22 DNC DNC -15.4 -20.4
40 DNC DNC -19.8 -20.8

10 000 -14.0 -18.0 -20.8 -21.1
20 000 -20.6 -21.0 -20.9 -21.1

EVM (%)

22 DNC DNC 9.8 4.4
40 DNC DNC 4.9 4.2

10 000 13.2 7.2 4.1 3.9
20 000 4.2 4.0 4.0 3.9

ACPR (dB)

22 DNC DNC -22.5 -26.8
40 DNC DNC -26.2 -27.2

10 000 -21.0 -26.4 -27.1 -27.2
20 000 -27.0 -27.2 -27.2 -27.3

Conventional DPD and US do not converge (DNC) for a low number of selected sam-
ples 𝑁 . Simulated metrics without DPD: NMSE = -13.9 dB, EVM = 13.2%, and
ACPR = -21.8 dB. The EVM of the generated signal is 1.1% due to the nonorthog-
onality caused by the inherent F-OFDM filtering.

4.8 Measurements
In addition to simulations for all models PA1, PA2, and PA3, we evaluate the
SSMs for PA1 in measurements. Our measurement setup (Fig. 4.10) employs the
vector signal generator Rohde & Schwarz SMU200A to generate the input signal of
PA1. The PA1 output is connected to the real time spectrum analyser Rohde &
Schwarz FSVR through a high-power RF attenuator with an attenuation of 10 dB
and a maximum dissipated power of 50 W followed by two smaller RF attenuators
of 10 dB each. We use the digital multimeter Keysight 34461A as an Ampere metre
to set the drain quiescent current of the PA1 second-stage transistor.

We have performed the measurements with the same settings as for simulations.
The only change is that for measurements we perform 80 iterations only once, and
hence the values presented are not averaged.
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Tab. 4.4: Simulation Results for Model PA3

Metric N Conv. DPD US EDH GOH

NMSE (dB)
19 DNC DNC DNC -45.8
22 DNC DNC -46.3 -46.7

1000 -44.8 -46.0 -47.0 -47.0
4000 -46.7 -46.6 -47.0 -47.1

EVM (%)

19 DNC DNC DNC 1.15
22 DNC DNC 1.15 1.15

1000 1.17 1.16 1.15 1.15
4000 1.95 1.15 1.15 1.15

ACPR (dB)

19 DNC DNC DNC -58.2
22 DNC DNC -60.4 -61.8

1000 -56.5 -59.5 -64.4 -64.9
4000 -62.4 -61.8 -64.8 -65.0

Conventional DPD and US do not converge (DNC) for a low number of selected
samples 𝑁 . Simulated metrics without DPD: NMSE = -33.3 dB, EVM = 1.5%, and
ACPR = -42.6 dB. The EVM of the generated signal is 1.1% due to the nonorthog-
onality caused by the inherent F-OFDM filtering.

Ampere
Metre

Attenuator

Power
Supplies

PA

SMU200A

FSVR

Fig. 4.10: Measurement setup with PA1, the vector signal generator SMU200A, and
the real time spectrum analyser FSVR.
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In Fig. 4.11 we present the measured AM/AM characteristics of PA1, DPD
and the whole linearised transmitter. The characteristics of DPD and the linearised
transmitter are depicted for DPD adapted using GOH with 𝑁 = 24 selected samples.
Please note that the selected samples are not distributed evenly over the input
magnitudes, but rather concentrated in the region with lower magnitudes to cover
the region with higher signal occurrence probability and then in the region with
higher magnitudes to cover the most nonlinear region of PA.

Fig. 4.11: Measured AM/AM characteristics of PA1, DPD, and the whole linearised
transmitter. The depicted 𝑁 = 24 samples were selected by GOH and used for DPD
adaptation.

Fig. 4.12: Measured power spectral density of PA1 output without DPD and with
DPD adapted by different SSMs for the number of selected samples 𝑁 = 400.
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The measured power spectral density (PSD) of the PA1 output linearised with
DPD adapted using different techniques is depicted in Fig. 4.12. The PSD of the
PA1 output without DPD is shown as a reference. The results are shown for 𝑁 = 400
selected samples. Please note that for 𝑁 = 400 the conventional DPD causes higher
out-of-band emissions than PA1 without DPD. US slightly improves the out-of-band
emissions, while GOH in this case provides the best linearisation.

The measured DPD performance in terms of NMSE, EVM, and ACPR is shown
in Fig. 4.13, Fig. 4.14, Fig. 4.15 respectively. We can see that the conventional DPD
and US in real measurements work slightly better than in simulations. This could
indicate that the extracted PA model is more difficult to linearise by these methods
than the real PA. The trend for these methods follows the simulation results, and
we can see a spread of measured points from this trend. This spread complies with
the wider 95% confidence intervals shown in the simulation results. The measured
NMSE for GOH is around 1 dB worse with respect to the average NMSE in the
simulations. This increase could probably be caused by the measurement noise
which is neglected in simulations. Measurement results in terms of EVM and ACPR
follow the NMSE measurement results which exactly complies with the simulations.

Fig. 4.13: Measurement results of NMSE as a function of the number of selected
samples 𝑁 compared to the simulation results. The black dashed line represents the
measured NMSE of the PA1 output without DPD.
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Fig. 4.14: Measurement results of EVM as a function of the number of selected
samples 𝑁 compared to the simulation results. The black dashed line represents the
measured EVM of the PA1 output without DPD. The EVM of the generated signal
is 1.1% due to the nonorthogonality caused by the inherent F-OFDM filtering.

Fig. 4.15: Measurement results of ACPR as a function of the number of selected
samples 𝑁 compared to the simulation results. The black dashed line represents the
simulated ACPR of the PA1 output without DPD.
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4.9 Conclusion
The number of samples for DPD adaptation directly influences the computational
complexity of DPD adaptation. In this chapter we have proposed sample selection
methods for DPD adaptation with the intention to minimise the required number of
samples for DPD adaptation and thus to minimise the computational complexity of
DPD adaptation. We have shown that the proposed GOH outperforms other sample
selection methods in terms of linearisation capabilities. For a very small number of
selected samples, GOH provides a linearisation performance equivalent to the max-
imum achievable linearisation performance of the conventional DPD. Simulations
on the model of a two-stage power amplifier (PA1) designed for Satcom applications
have revealed that GOH can achieve a sufficient linearisation performance already
for 𝑁 = 24 selected samples while the conventional DPD achieves the equivalent
performance only for 𝑁 ≥ 104. Since the computational complexity is linear with
respect to the number of required samples, this indicates a 400-times improvement
over the conventional DPD in terms of computational complexity.
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5 DPD Adaptation with Level-Crossing ADC

5.1 Introduction
In this chapter, we propose a novel method for predistorter adaptation with an
LC-ADC [193] based on a comparator and an low-speed digital-to-analogue con-
verter (LSDAC) which replaces conventional ADCs in the feedback path. The block
diagram of the proposed architecture is depicted in Fig. 5.1. In the feedback, there is
an RF mixer or an IQ mixer with a single connected output followed by an LPF pro-
viding the in-phase feedback signal 𝑦r(𝑡). Signal 𝑦r(𝑡) is compared with a reference
voltage 𝑟(𝑡) generated by the LSDAC. The output of the comparator is connected
to a circuit for the time extraction of the comparator output edges. Employing the
LC-ADC significantly reduces the system power consumption, system complexity
and price.

The idea of a comparator in the DPD feedback has already been presented by
Wang et al. [4, 152], and Zhang et al. [153]. Their methods have been analysed
in Sec. 2.3.4. However, our architecture highly differs from their approach in the
following aspects:

• It does not require additional high-speed DACs and, consequently, the pro-
posed architecture reduces the power consumption more significantly.

• It is not sensitive to gain mismatch and is only partially sensitive to delay
mismatch [76,194].

+
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DAC
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DPD
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xi[n]
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Edge Time
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Fig. 5.1: Linearisation of a PA by the DPD with a level-crossing ADC. The edge
time extraction circuit provides the time stamps 𝑡e[𝑖] of edges at the comparator
output.
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The rest of this chapter is organised as follows. The second section introduces
the basic principles of the proposed DPD adaptation approach with a comparator
in the feedback. In the third and fourth sections, we discuss the adoption of the
proposed principles into the ILA and the DLA. System implementation details are
presented in the fifth section. The sixth and seventh sections present the measure-
ment procedures and the achieved results employing the simulated comparator in
the feedback. On the contrary, the two final sections describe a custom-made feed-
back module with a hardware LC-ADC and a real comparator and the linearisation
results obtained with this module.

5.2 Basic Principles of DPD with LC-ADC
Let us continue with the idea of the sample selection presented in Sec. 4.2, where the
system of equations for solving the PA model coefficients contains samples sampled
at arbitrary discrete times. The key idea allowing for mathematical derivation of
DPD adaptation by the feedback with the LC-ADC, which is constituted by a
simple comparator, is moving from the discrete time samples into the domain of
continuous time samples. The following notations are required: The continuous-
time signals 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) represent the PA input, PA output, and the desired
scaled PA output in the baseband, respectively. Their corresponding discrete-time
equivalents are 𝑥[𝑛], 𝑦[𝑛], 𝑧[𝑛] with 𝑛 being the sample index. The transition between
continuous and discrete time representation can be written as 𝑥[𝑛] = 𝑥(𝑛𝑇 ), where
𝑇 is the sampling period of the discrete-time signals.

We can easily rewrite equation (1.12) of the MP model into the continuous-time
domain as

𝑦(𝑡) =
𝐾∑︁

𝑘=1

𝑄∑︁
𝑞=0

𝑏𝑘,𝑞𝑥(𝑡 − 𝑞𝑇 )|𝑥(𝑡 − 𝑞𝑇 )|𝑘−1. (5.1)

The system of equations for solving the PA coefficients consists of 𝑁 equations.
Assuming that signal 𝑥(𝑡) is sampled at distinct arbitrary time instants 𝑡1, 𝑡2, . . . , 𝑡𝑁 ,
we can arrange the system of equations as

⎡⎢⎢⎣
𝑦(𝑡1)
𝑦(𝑡2)

...
𝑦(𝑡𝑁 )

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝑥(𝑡1) . . . 𝑥(𝑡1)|𝑥(𝑡1)| 𝑥(𝑡1 − 𝑇 )|𝑥(𝑡1 − 𝑇 )| . . . 𝑥(𝑡1 − 𝑄𝑇 )|𝑥(𝑡1 − 𝑄𝑇 )|𝐾−1

𝑥(𝑡2) . . . 𝑥(𝑡2)|𝑥(𝑡2)| 𝑥(𝑡2 − 𝑇 )|𝑥(𝑡2 − 𝑇 )| . . . 𝑥(𝑡2 − 𝑄𝑇 )|𝑥(𝑡2 − 𝑄𝑇 )|𝐾−1

...
. . .

...
...

. . .
...

𝑥(𝑡𝑁 ) . . . 𝑥(𝑡𝑁 )|𝑥(𝑡𝑁 )| 𝑥(𝑡𝑁 − 𝑇 )|𝑥(𝑡𝑁 − 𝑇 )| . . . 𝑥(𝑡𝑁 − 𝑄𝑇 )|𝑥(𝑡𝑁 − 𝑄𝑇 )|𝐾−1

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑏1,0
...

𝑏2,0
𝑏2,1

...
𝑏𝐾,𝑄

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(5.2)

On the left-hand side, this system of equations has a vector of complex feedback
samples 𝑦(𝑡𝑖). The LC-ADC with a comparator, however, provides only information
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about the level crossing of the in-phase or quadrature signal of the feedback. Even
if we installed comparators in both IQ branches, we would not know the exact level
of the second signal at the precise moment the first signal crossed the set threshold.
Consequently, we need to employ the real-valued feedback, presented in Chapter 3, to
overcome this obstacle. The derivation is straightforward. We can split the real and
imaginary parts, similarly to equations (3.1) and (3.2), and rewrite equation (5.2)
in the form of equation (3.3), which yields⎡⎢⎢⎢⎢⎢⎢⎣

𝑦r(𝑡1)
𝑦r(𝑡2)

...
𝑦r(𝑡𝑁)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥(𝑡1) . . . 𝑥(𝑡1 − 𝑄𝑇 )|𝑥(𝑡1 − 𝑄𝑇 )|𝐾−1

𝑥(𝑡2) . . . 𝑥(𝑡2 − 𝑄𝑇 )|𝑥(𝑡2 − 𝑄𝑇 )|𝐾−1

... . . . ...
𝑥(𝑡𝑁) . . . 𝑥(𝑡𝑁 − 𝑄𝑇 )|𝑥(𝑡𝑁 − 𝑄𝑇 )|𝐾−1

⎤⎥⎥⎥⎥⎥⎥⎦
r

⎡⎢⎢⎢⎣
𝑏1,0
...

𝑏𝐾,𝑄

⎤⎥⎥⎥⎦
r

−

−

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥(𝑡1) . . . 𝑥(𝑡1 − 𝑄𝑇 )|𝑥(𝑡1 − 𝑄𝑇 )|𝐾−1

𝑥(𝑡2) . . . 𝑥(𝑡2 − 𝑄𝑇 )|𝑥(𝑡2 − 𝑄𝑇 )|𝐾−1

... . . . ...
𝑥(𝑡𝑁) . . . 𝑥(𝑡𝑁 − 𝑄𝑇 )|𝑥(𝑡𝑁 − 𝑄𝑇 )|𝐾−1

⎤⎥⎥⎥⎥⎥⎥⎦
i

⎡⎢⎢⎢⎣
𝑏1,0
...

𝑏𝐾,𝑄

⎤⎥⎥⎥⎦
i

.

(5.3)

Considering the DPD feedback with the LC-ADC from Fig. 5.1, the signal 𝑦r(𝑡)
is known only for 𝑡 = 𝑡e[𝑖] when the feedback signal equals the set threshold 𝑟(𝑡).
Time stamps 𝑡e[𝑖] are the instantaneous times of transitions of signal 𝑦r(𝑡) over the
reference voltage 𝑟(𝑡). In other words, by knowing the time stamps 𝑡e[𝑖] and the
reference voltage 𝑟(𝑡), we can recover values of signal 𝑦r at the time instants 𝑡e[𝑖].
Therefore, we can set 𝑡𝑖 = 𝑡e[𝑖] and 𝑦r(𝑡𝑖) = 𝑟(𝑡𝑖).

The equation system can be expressed in the matrix form by arranging the output
samples, model coefficients and the basis functions into vectors, i.e.

𝜑
(𝑥)
𝑘,𝑞 =

[︁
𝜑

(𝑥)
𝑘,𝑞(𝑡1) 𝜑

(𝑥)
𝑘,𝑞(𝑡2) . . . 𝜑

(𝑥)
𝑘,𝑞(𝑡𝑁)

]︁𝑇
,

𝑟 =
[︁
𝑟(𝑡1) 𝑟(𝑡2) . . . 𝑟(𝑡𝑁)

]︁𝑇
=

=
[︁
𝑦r(𝑡1) 𝑦r(𝑡2) . . . 𝑦r(𝑡𝑁)

]︁𝑇
,

𝑏 =
[︁
𝑏1,0 𝑏1,1 . . . 𝑏1,𝑄 𝑏2,0 . . . 𝑏𝐾,𝑄

]︁𝑇
,

𝑈𝑥 =
[︁
𝜑

(𝑥)
1,0 𝜑

(𝑥)
1,1 . . . 𝜑

(𝑥)
1,𝑄 𝜑

(𝑥)
2,0 . . . 𝜑

(𝑥)
𝐾,𝑄

]︁
,

(5.4)

where 𝑏 is a column vector with 𝑃 rows, and the size of matrix 𝑈𝑥 is 𝑁 × 𝑃 . The
basis functions in vector 𝜑

(𝑥)
𝑘,𝑞 and matrix 𝑈𝑥 require the knowledge of signal values

𝑥(𝑡𝑖 − 𝑛𝑇 ) at times 𝑡𝑖 = 𝑡e[𝑖] while signal 𝑥(𝑡) is practically sampled at times 𝑛𝑇 .
As signal 𝑥(𝑡) is the PA input, it is fully known and, therefore, the signal values
𝑥(𝑡e[𝑖] − 𝑛𝑇 ) can be calculated by interpolation.
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The LS solution of the PA model coefficients in the matrix form is expressed as⎡⎣𝑏r

𝑏i

⎤⎦ = (𝐴𝐻
𝑥 𝐴𝑥)−1𝐴𝐻

𝑥 𝑟, (5.5)

where
𝐴𝑥 =

[︁
𝑈𝑥r −𝑈𝑥i

]︁
. (5.6)

Please note that the described method has the capability of fully estimating the
PA memory effects. Moreover, the output of the LC-ADC can be undersampled
(Chap. 4), and therefore, the edge time extraction circuit need not register all the
comparator output edges.

5.3 ILA Employing LC-ADC
The direct application of the LC-ADC for the DPD with ILA is not achievable
for the same reasons as for the real-valued feedback (Sec. 3.3) and sample selection
(Sec. 4.3). We can simply state that the methods by Morgan [25] and Landin [26] are
required to employ ILA for the DPD adaptation with the LC-ADC in the feedback.
However, further in this thesis, we will explore exclusively DLA as it generally
achieves better linearisation performance.

5.4 DLA Employing LC-ADC
We start our derivation of the DLA with the LC-ADC from the basic iteration step

𝑏̂ = 𝑏′ − 𝜇𝑒. (5.7)

Considering the real-valued feedback, vector 𝑒 can be solved by equation (3.13)
where vector Δr is defined as Δr = 𝑧r − 𝑦r. For our derivation, assuming the above
definitions, vector 𝑦r is equal to vector 𝑟 and we need to redefine vector 𝑧r as

𝑧r =
[︁
𝑧r(𝑡1) 𝑧r(𝑡2) . . . 𝑧r(𝑡𝑁)

]︁𝑇
. (5.8)

The solution of the updated DPD coefficients can be obtained similarly to equa-
tion (3.14) incorporating the above definitions as⎡⎣𝑏̂𝑟

𝑏̂𝑖

⎤⎦ =
⎡⎣𝑏′

𝑟

𝑏′
𝑖

⎤⎦− 𝜇(𝐴𝐻
𝑧 𝐴𝑧)−1𝐴𝐻

𝑧 (𝑧𝑟 − 𝑟), (5.9)

where
𝐴𝑧 =

[︁
𝑈𝑧r −𝑈𝑧i

]︁
. (5.10)
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5.5 System Implementation Details
Tab. 5.1 shows a system comparison of the proposed architecture with the conven-
tional DPD and DPD with a comparator from [4]. The stated power consumption
𝑃pwr does not include components common for all the architectures, i.e. modulators
and demodulators, and does not reflect the computational complexity of different
adaptation algorithms. The power consumption of the proposed architecture does
not include the circuit for the edge time extraction described below. We can see that
for DACs with 𝐹s = 500 MSps the total power 𝑃pwr of the proposed architecture is
only half of the power of the DPD from [4] and more than four times smaller than
the power of the conventional DPD.

Tab. 5.1: Comparison of the system parameters for the proposed and conventional
DPD.

Convent. DPD [4] Proposed

DAC

Model AD9779 AD9779 AD9779 AD9136

Quantity 1 2 1 1

𝐹s (MSps) 500 500 500 2 000

≈ 𝑃pwr 0.6 W 1.2 W 0.6 W 1.45 W

ADC Comparator

Model AD9684 ADCMP553 ADCMP553 ADCMP573

Quantity 1 2 1 1

𝐹s (MSps) 500 500 750 MHz* 8 GHz*

≈ 𝑃pwr 2.2 W 0.12 W 0.06 W 0.2 W

≈ ∑︀
𝑃pwr 2.8 W 1.32 W 0.66 W 1.65 W

* Sampling frequency is not applicable, the equivalent input bandwidth of the com-
parator is stated instead.

5.5.1 Edge Time Extraction

The most straightforward method for extracting the comparator output edge time
stamps is to sample the comparator output with a digital flip-flop (FF) at a very
fast clock frequency. In current FPGAs, regular input pins can be sampled with
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clock frequencies of 𝑓clk ≤ 1250 MHz [195]. It should be noted that the high clock
frequency is required only for the input deserialiser and it does not necessarily imply
a high operational frequency of the FPGA core. Consequently, in this case the max-
imum uncertainty of the edge time would be the clock period 𝑇clk = 1/𝑓clk > 0.8 ns.

Another possible approach to edge time extraction is depicted in Fig. 5.2a with a
simplified time diagram shown in Fig. 5.2b. In the proposed circuit, two FFs sample
the comparator output with and without a certain delay 𝑡d. The edge detection is
ensured only if the delayed edge arrives at input D1 after the active clock edge plus
the FF hold time 𝑡h and the undelayed edge arrives at input D2 before the active
clock edge minus the FF setup time 𝑡su. This results in Q2 = 1 and Q1 = 0 indicating
a rising edge, or Q2 = 0 and Q1 = 1 indicating a falling edge. It can be shown that
the maximum time uncertainty of the edge is given as 𝑡d + 𝑡su + 𝑡h. For example,
the digital FF NB7V52M [196] has 𝑡su ≤ 40 ps and 𝑡h ≤ 50 ps, which yields the
maximum edge-time uncertainty 𝑡d + 90 ps. The probability that the time stamp is
extracted can be approximated as (𝑡d + 0.5𝑡su + 0.5𝑡h)/𝑇clk.

+

−

clk

Delay
td

Q1 to FPGA

Q2 to FPGA

D1 Q1

D2 Q2

(a)

tsu th

td
D1

Q2

Q1

D2

clk

(b)

Fig. 5.2: (a) A possible practical circuit implementation for edge time extraction.
(b) Waveforms explaining the function of the circuit.

5.6 Measurements
The linearisation performance of the DPD adapted by a comparator in the feedback
was evaluated at two distinct setups. The first setup was composed of a laboratory
RF generator, a real-time spectrum analyser, and a PA supplemented by an RF
attenuator. Even though, its usable bandwidth for our experiment is limited only
to ≈ 5 MHz, the experiment is valid and can prove the proposed concept. Sub-
sequently, we have also performed measurements with another, wide-band, setup
which provides bandwidth of up to 4096 MHz. This wide-band setup has certain
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imperfections which cannot be fully compensated for in our laboratory environment
and, therefore, the linearisation performance might be degraded. In both setups,
we have replaced the feedback comparator with its model created in Matlab. All
details, for both narrow-band and wide-band measurements, can be found in Matlab
source codes available at www.github.com/jankralx/comparator_dpd.

5.6.1 Narrow-Band Measurements

The narrow-band measurement setup is depicted in Fig. 5.3. The vector signal gen-
erator, Rohde & Schwarz SMU200A, generates the input signal for the PA. The PA
output is attenuated by 40 dB and connected to the real time spectrum analyser Ro-
hde & Schwarz FSVR. The model of an ideal comparator is applied on the recorded
IQ signal in Matlab. The Ampere metre, digital multimeter Keysight 34461A, serves
to set the drain quiescent current of the PA second-stage transistor.

For the narrow-band measurements, the linearised PA is a two-stage PA in class
AB presented in Sec. 4.7.1 as PA1. The drain quiescent current for this measurement
was set to 15 mA. The measurements were performed with F-OFDM signals with
the 64-QAM as the internal modulation.

Ampere
Metre

Power
Supplies

PA
SMU200A

FSVR

Attenuators

Fig. 5.3: Photograph of the narrow-band measurement setup.
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In each iteration, we generate the F-OFDM signal with 64 frames, each frame
with 114 resource blocks, a block size of 6 subcarriers, resulting in 𝑊 = 6 · 114 = 684.
The FFT size is set to 𝑍 = 8192 and the filter length is 𝐿 = 4097. The sampling
frequency is limited by the measurement setup and is set to 𝐹s = 30 MHz. The DFT
precoding is employed to reduce the signal PAPR. The signal generator with these
settings provides the test signal vector with the channel bandwidth 𝐵 ≈ 2.5 MHz
and 𝑁0 = 532 992 samples.

DPD for the PA linearisation employs the MP model with 𝐾 = 7 and 𝑄 = 3,
which yields 𝑃 = 28 DPD coefficients. The DLA has driven the DPD adaptation,
the iteration step was set to 𝜇 = 0.05, and 50 iterations were performed during the
measurements. The reference voltage 𝑟(𝑡) was swept in equidistant steps over the
whole range of the in-phase feedback amplitudes. The step size was set to 7.5% of
the full scale.

5.6.2 Wide-Band Measurements

The block diagram of the wide-band measurement setup is depicted in Fig. 5.4 and
the real setup is captured in photographs in Fig. 5.5 and Fig. 5.6. The setup is
based on the development board ZCU111 [197] with the Zynq Ultrascale+ radio
frequency system-on-chip (RFSoC) by Xilinx. The RFSoC on ZCU111 provides up
to eight RF ADCs with a sampling frequency ≤ 4 096 MHz and a nominal resolution
of 12 bits, and up to eight RF DACs with the sampling frequency ≤ 6 554 MHz and
the nominal resolution of 14 bits. For transmitting, two RF DACs generate the
baseband IQ signal which is frequency-shifted by IQ mixer HMC8191 [198] directly
to the carrier frequency. The carrier frequency is set to 𝐹𝑐 = 9 GHz and is generated
by the RF generator SMF100A [199] from Rohde Schwarz. The signal from the

QPA1010DZVA183W
Driver

ZX60-123LN-S+
Main PAPredriverIQ Mixer

ZUDC20-02183-S+
Dir. Coupler

BW-S10W20+
Attenuators

FSUP
Spect. Analyser

HMC8191

Agilent 8495B+8494B
AttenuatorIQ Mixer

HMC8191

a+bj

DC Comp.DAC

DAC

ADC

ADC

Amplifiers
2×ZJL-153+

ZX10-2-1252-S+

Splitter

SMF100A

Generator
RFSoC

ZCU111

BW-S10W2+

Fig. 5.4: Block diagram of the wide-band measurement setup.
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Fig. 5.5: Photograph of the wide-band measurement setup.
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Fig. 5.6: Detailed view on the wide-band measurement setup.
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carrier-frequency generator is split to ensure the same frequency for IQ mixers in
the direct and feedback paths and is amplified by two amplifiers ZJL-153+ [200]
to achieve a sufficient signal level for the IQ mixers. The direct-path IQ mixer is
followed by a series of amplifiers which drive the main PA close to the saturation
point. The output of the main PA goes through a directional coupler and high-
power attenuators to the spectrum analyser FSUP [201] from Rohde Schwarz. The
directional coupler probes the main PA output for the feedback path. The feedback
signal level is adjusted by two variable attenuators Agilent 8495B and 8494B [202],
down-converted by IQ mixer HMC8191, and converted into a digital baseband IQ
signal by two RFSoC ADCs.

The main PA is an X-band GaN-on-SiC high power amplifier QPA1010 which
operates in the frequency range from 7.9 GHz to 11 GHz and typically provides 15-
W saturated output power with power-added efficiency of 38% and large-signal gain
of 18 dB [203]. Hereinafter, we will denote this PA as PA4. The test signals were
the same as for the narrow-band measurements, except for the sampling frequency
set to 𝐹s = 2048 MHz, number of resource blocks set to 333 and the number of
frames set to 16. These settings result in the test signal with the channel bandwidth
𝐵 ≈ 500 MHz and 𝑁0 = 136 320 samples.

The DPD for the PA linearisation employs the DDR2 model with 𝐾 = 9 and
𝑄 = 9, which yields 𝑃 = 121 DPD coefficients. The DLA has driven the DPD
adaptation, the iteration step was set to 𝜇 = 0.2, and 50 iterations were performed
during the measurements. The reference voltage 𝑟(𝑡) was swept in the same way as
for the narrow-band measurements.

5.7 Measurement Results

5.7.1 Results of Narrow-Band Measurements

The narrow-band measurement results of the ACPR, EVM, and NMSE evolution
over the adaptation iterations are shown in Fig. 5.7, Fig. 5.8, Fig. 5.9, respectively.
We can see that the results of the proposed DPD adaptation with the comparator
in the feedback fairly follow the conventional DPD adaptation results. For both
predistorters, the adaptation reaches a steady state in approximately 20 iterations.
The horizontal dashed black line depicts the metrics of the transmitter without the
DPD for the same output power in the main channel. The measured PSD for the
proposed and conventional DPD compared to the PA output PSD without DPD is
shown in Fig. 5.10.
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Fig. 5.7: Evolution of the ACPR during the DPD adaptation with the narrow-band
setup.

Fig. 5.8: Evolution of the EVM during the DPD adaptation with the narrow-band
setup.

Tab. 5.2 shows the performance of adapted DPD in terms of NMSE, EVM, and
ACPR. The results are averaged over the last 10 iterations. The proposed DPD
provides comparable linearisation performance to the conventional DPD. It is to
be noted that the conventional DPD performs the adaptation with the whole test
signal vector containing 532 992 samples, whereas the proposed DPD adaptation is
limited by the occurrences of the signal transitions over the reference voltage 𝑟(𝑡)
resulting in the DPD adaptation with approximately 4000 − 5000 samples.
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Fig. 5.9: Evolution of the NMSE during the DPD adaptation with the narrow-band
setup.

Fig. 5.10: Comparison of the measured power spectral density of the PA output
without DPD and with the conventional and proposed DPD with the narrow-band
setup.

5.7.2 Results of Wide-Band Measurements

Fig. 5.11 and Fig. 5.12 depict the AM/AM and AM/PM characteristics of the PA
with the wide-band setup, adapted DPD, and linearised transmitter. The PA under
test exhibits strong nonlinearity and even the smaller signal magnitudes are com-
pressed. The memory effects of the PA widen the AM/AM characteristics of the
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Tab. 5.2: Narrow-band measurement results of NMSE, EVM, and ACPR for the
DPD with the proposed LC-ADC and conventional feedback.

𝑃main (dBm) NMSE (dB) EVM (%) ACPR (dB)

Without DPD 23.2 -26.8 3.60 -34.4
Conventional 23.3 -40.5 1.51 -56.6

LC-ADC 23.3 -40.7 1.48 -56.1

EVM of the generated signal is 1.25% due to the nonorthogonality caused by the
inherent F-OFDM filtering.

PA and we can see that the employed DPD could not fully compensate for them.
We believe that uncompensated memory effects are of a long-term character and are
beyond the maximum memory length of the employed DPD. The straight-forward
option of increasing maximum memory length would be very impractical, because
due to high sampling frequency, capturing the long-term memory effects would dras-
tically increase the number of DPD coefficients. The AM/PM characteristic of the
PA is almost flat and its contribution to the overall PA nonlinearity is negligible.

Fig. 5.11: Measured AM/AM characteristics of the PA, DPD and of the linearised
transmitter.
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Fig. 5.12: Measured AM/PM characteristics of the PA. (The AM/PM characteris-
tics of the DPD and of the linearised transmitter are not plotted, because all the
characteristics overlap.)

The evolution of ACPR, EVM, NMSE during the DPD adaptation is shown
in Fig. 5.13, Fig. 5.14, Fig. 5.15, respectively. The proposed adaptation with a
comparator in the feedback achieves slightly higher (worse) ACPR and NMSE than
the conventional DPD adaptation. Both adaptation methods achieve a similar EVM
of the transmitted signal. Both predistorters reach a steady state in approximately
15 iterations. The horizontal dashed black lines depict the metrics of the PA without
DPD for the same output power in the main channel. The measured PSD for the
proposed and conventional DPD compared to the PA output PSD without DPD is
shown in Fig. 5.16.

The achieved linearisation performance metrics are summarised in Tab. 5.3. The
results are averaged over the last 10 iterations. Again, the conventional DPD adap-
tation calculates with the whole test signal vector, whereas the proposed DPD adap-
tation is limited by the occurrences of the signal transitions over the reference voltage
𝑟(𝑡). Due to that the linearisation performance of the DPD with a comparator might
be slightly limited.
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Fig. 5.13: Evolution of the ACPR during the DPD adaptation with the wide-band
setup.

Fig. 5.14: Evolution of the EVM during the DPD adaptation with the wide-band
setup.

5.8 Measurement Setup for DPD Adaptation with a
Hardware LC-ADC

To prove the proposed concept of the DPD adaptation with an LC-ADC in the feed-
back, we have built up a measurement setup, which is depicted in a block diagram
in Fig. 5.17 and in the photograph in Fig. 5.18. The setup is based on the Spartan-
3A DSP Starter Board [204], EXP High-Speed DAC Converter Module from Avnet
(with dual-channel DAC DAC5682Z, hereinafter denoted also as the DAC mod-
ule) [205], our custom-designed feedback module with a real hardware LC-ADC,
two RF signal generators for generating the carrier signal and reference clock, and
a real-time spectrum analyser FSVR from Rohde-Schwarz [206].
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Fig. 5.15: Evolution of the NMSE during the DPD adaptation with the wide-band
setup.

Fig. 5.16: Comparison of the measured power spectral density of the PA output
without DPD and with the conventional and proposed DPD with the wide-band
setup.

The simplified block diagram of the DAC module is depicted in Fig. 5.19. It
contains the dual-channel DAC DAC5682Z [207], reconstruction LPFs, and up-
converting IQ mixer TRF3703 [208]. The DAC sampling clock is fed from the
feedback module and the carrier frequency signal from an external RF generator.
The output of the mixer is connected to the PA.
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Tab. 5.3: Wide-band measurement results of NMSE, EVM, and ACPR for the DPD
with the proposed LC-ADC and conventional feedback.

𝑃main (dBm) NMSE (dB) EVM (%) ACPR (dB)

Without DPD 34.8 -17.7 8.31 -26.3
Conventional 34.8 -22.2 5.01 -36.4

LC-ADC 34.9 -21.6 5.23 -34.5

EVM of the generated signal is 1.25% due to the nonorthogonality caused by the
inherent F-OFDM filtering.

Splitter

DSP 1800A
Starter Board

Spartan-3A EXP High-Speed
DAC Converter

Module

Feedback Module
with LC-ADC

for DPD Adaptation

Main PA Splitter
FSVR

Spect. AnalyserGenerator
Reference Clock

10 MHz

Generator
Carrier Frequency

900 MHz

DAC sampling clock

PC Ethernet

Fig. 5.17: Block diagram of the measurement setup for the DPD adaptation with a
hardware LC-ADC.

We had to design and build our own feedback module with a real hardware
LC-ADC. The module contains the comparator, an edge-time extraction circuit as
described in Sec. 5.5.1 and in Fig. 5.2a, feedback down-converting IQ mixer, and the
clock distribution system. The block diagram of the designed module is shown in
Fig. 5.20. The realised feedback module is captured in photographs in Fig. 5.21. The
feedback signal from the main PA is down-converted to the baseband by IQ mixer
TRF371125 [209] and its real differential output is converted to a single-ended signal
by an active balun. We denote this signal 𝑦r(𝑡), ideally it would be a baseband PA
output, however, the down-converting mixer and active balun add certain distortion,
which is noted by the hat. A high-speed comparator ADCMP582 [210] compares
the feedback signal 𝑦r(𝑡) with a generated reference voltage 𝑟(𝑡). The comparator
output is sampled by two FFs NB7V52 [196]. One FF is connected directly to the
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Fig. 5.18: Photograph of the measurement setup for the DPD adaptation with a
hardware LC-ADC. Transmission signal is generated by the DAC module and the
FPGA and amplified by the main PA. The PA output is attenuated and the split-
ter divides the signal for the real-time spectrum analyser FSVR and the feedback
module with the comparator. The RF generator generates the carrier frequency.
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Fig. 5.19: Simplified block diagram of the high-speed DAC converter module.
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comparator output, the other one is connected with a certain small delay 𝜏 created
by printed circuit board (PCB) traces. The FF outputs are converted from the
current-mode logic (CML) standard to the low-voltage differential signaling (LVDS)
standard and connected to the FPGA for further processing. The clocks for the
FPGA, DAC sampling, and the feedback FFs are generated in a jitter cleaner and
clock distributor LMK04133 [211]. This is the only clock source for the system (other
clock sources are not employed or are bypassed) which ensures the clock coherency
and minimises problems with clock-domain signal crossing. More details about the
hardware design of the feedback module can be found in [212].

Carrier frequency signal
from RF generator

IQ Mixer
TRF371125

LSDAC

Active
Balun

CLK

D Q

CLK

D Q

CML to
LVDS

CML to
LVDS

Comparator
ADCMP582 Flip-Flops

NB7V52

MAX5143

LMK04133

Clock System

FPGA
Spartan-3A

Feedback Module with Level-Crossing ADC

DSP 1800A
τ

CLK

DAC sampling clock
to DAC Module

Feedback from Main PA
r(t)

ŷr(t)

Reference clock (10 MHz)

Fig. 5.20: Block diagram of the feedback module with LC-ADC.

(a) Top view. (b) Bottom view.

Fig. 5.21: Photographs of the realised the feedback module.
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5.8.1 Operating Procedures

The measurement setup operating procedures are executed in two places. Low-
level operations related to the hardware of the DAC module and feedback mod-
ule are managed by the FPGA firmware which contains a soft core processor Mi-
croblaze [213] for hardware initialisation and the FPGA logic dedicated to high-
performance operations such the signal transmission and the feedback acquisition.
High-level operations related to the signal generation, DPD adaptation and predis-
tortion are managed by Matlab on a connected personal computer (PC).

The measurement setup, after its start-up, has to be initialised. The FPGA
processor takes these steps to initialise the hardware:

• initialising the clock generating system with LMK041333 on the feedback mod-
ule,

• bypassing clock generator CDCM7005 on DAC module,
• initialising the main DAC DAC5682Z on DAC module,
• initialising the down-converting IQ mixer TRF371125 on the feedback module,
• initialising Ethernet modules,
• and starting the main application server.

The main application server receives and processes commands from the PC. It
is based on the lwIP stack and user datagram protocol (UDP) and implements a
simple custom-designed protocol which ensures reliable data delivery. We have also
experimented with transmission control protocol (TCP) which would inherently en-
sure the communication reliability, but we have found the soft processor Microblaze
to be underperforming for sufficient high-throughput TCP communication.

The typical single measurement with the setup from the Matlab perspective
consists of

• opening a UDP socket,
• setting the number of samples to be transmitted and the operating mode,
• sending the LSDAC waveform – the waveform of the reference voltage 𝑟(𝑡),
• sending the samples of signal 𝑥(𝑡) which is up-converted and fed into the main

PA,
• sending a request for the measurement results,
• obtaining the measurement results from the FPGA,
• compensating for the setup delay,
• and applying the calibration compensations.
The application server in Microblaze receives the LSDAC waveform and stores

it in a dedicated fast on-chip block random-access memory (BRAM). The BRAM is
read during the measurement by the FPGA logic and sent to the LSDAC to create
the desired reference voltage waveform 𝑟(𝑡). The main-DAC samples cannot be re-
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ceived via Ethernet and sent to the DAC instantly. Therefore, the application server
receives the samples and stores them in a dedicated space of the external double data
rate (DDR) synchronous dynamic random-access memory (SDRAM). When all the
DAC samples are received, the application server triggers the measurement. The
FPGA logic starts reading DAC samples from the DDR SDRAM and transmits
them via the main DAC and an up-converting IQ mixer to the PA. Simultaneously,
the FPGA logic monitors the output of the two FFs on the feedback module, and
when it detects an edge, it saves the edge timestamp and polarity into a dedicated
BRAM. When the measurement is finished, the application server reads the edge
timestamps and polarities and sends them to Matlab for further processing.

5.8.2 Reference Voltage Amplitude Calibration

To calibrate the reference voltage set by the LSDAC, we have proposed a method
based on measuring the duty cycle of the comparator output expecting a periodic
sinewave test signal as its input. If the test signal is sufficiently low to not be
distorted by the PA, the comparator input 𝑦r(𝑡) can be considered fully known as it
is approximately equal to the transmitted signal, i.e. 𝑦r(𝑡) ≈ 𝑦r(𝑡) ≈ 𝑥r(𝑡).

The principle of the method is shown in Fig. 5.22. The method can be seen in the
following way: The known periodic sinewave signal 𝑦r(𝑡) crosses the unknown refer-
ence voltage 𝑟(𝑡) and generates a square wave at the comparator output (Fig. 5.22a).
The duty cycle of the square wave is determined by a ratio of the reference voltage
𝑟(𝑡) and the amplitude 𝐴 of the test sinewave signal.

The test signal period is preferred to be long, because in that case the small time
errors of the edge time extraction circuit can be neglected. The described method
is independent of the delay calibration, as measuring the duty cycle requires no
information about the system delays.

thigh Tper

ŷr(t)

r(t)

Comparator Output

y,r

t

t

A

(a) Illustration in the time.

ϕ A
r

(b) Explanation in the unit circle.

Fig. 5.22: Principle of reference voltage calibration by measuring the duty cycle for
a sinewave test signal.
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Formally, we can make the following derivations: Let us expect that the real-part
feedback is a scaled sinewave signal

𝑦r(𝑡) = 𝐴 sin
(︁
2𝜋 𝑇 −1

per 𝑡
)︁

, (5.11)

where 𝑇per is its period and 𝐴 is its amplitude. The set reference voltage 𝑟(𝑡) is
constant during the measurement, thus 𝑟(𝑡) = 𝑟. We can calculate the reference
voltage 𝑟 due to Fig. 5.22b as

𝑟 = 𝐴 cos(𝜙), (5.12)

and we know that
2𝜙

2𝜋
= 𝑡high

𝑇per
, (5.13)

which yields the final solution of 𝑟 to be

𝑟 = 𝐴 cos
(︃

𝑡high

𝑇per
𝜋

)︃
. (5.14)

Fig. 5.23 shows the measured duty cycle 𝑡high
𝑇per

of the comparator output and the
normalised reference voltage 𝑟 as functions of the set LSDAC voltage 𝑟DAC. The
reference voltage 𝑟 is normalised with respect to the test signal amplitude 𝐴. We
can observe that the reference voltage 𝑟 is a linear function of the set LSDAC voltage
𝑟DAC. We can fit a line into the measured points; its equation determines the relation
between the reference voltage 𝑟 and the set LSDAC voltage 𝑟DAC as

𝑟 = (1.543 · 𝑟DAC − 2.477) · 𝐴. (5.15)

(a) Measured duty cycle. (b) Normalised reference voltage 𝑟.

Fig. 5.23: Measured duty cycle and the reference voltage as functions of the set
LSDAC voltage.
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5.8.3 Edge-Detection Delay Calibration

In real hardware, DACs, up-converting and down-converting mixers, PA itself, ac-
quisition circuit in the feedback, and the signal propagation cause a certain delay
between the transmitted digital baseband signal 𝑥(𝑡) and the respective observed
feedback signal 𝑦(𝑡). Practically, this delay is often considered constant and has to
be measured once to be compensated for before the DPD adaptation.

We have proposed a measurement method for the delay between the digital
transmitter and the feedback receiver in two steps. The first step is a coarse delay
measurement, when the edge acquisition circuit works in coarse mode where it de-
tects all edges with higher time uncertainty. This mode allows us to measure the
approximate delay and perform a fine delay measurement. The signal waveform
transmitted for the coarse delay measurement is depicted in Fig. 5.24. The coarse
delay is computed by fitting a transmitted signal to the recovered received signal by
finding the LS optimum.

Fig. 5.24: The transmitted signal waveform and received comparator output before
and after synchronisation during the coarse delay measurements.
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The second step is a fine delay measurement which measures the delay with
a resolution lower than the receiver clock period 𝑇clk. During this measurement,
the edge acquisition circuit works with precise edge time detection, as proposed in
Fig. 5.2a. The transmitter generates a signal waveform containing artificial edges
at time instants 𝑛𝑇clk + 𝑡f , where 𝑡f is a subperiod delay 𝑡f < 𝑇clk between the
𝑛𝑇clk time instant and the interpolated transmitted signal crosses the set reference
voltage 𝑟(𝑡). The edge subperiod delay is explained in Fig. 5.25. The edge acquisition
circuit in the precise edge time detection mode does not register all edges, but only
edges which belong within a certain 𝑡f interval. Due to the operation of the edge
acquisition circuit, edge detection cannot be ensured at the boundaries of the 𝑡f

interval. Consequently, we employ a signal waveform with a delay of 𝑡f swept in
steps in interval [−0.5 𝑇clk, 0.5 𝑇clk] with a step size equal to 0.01𝑇clk. Several edges
are generated for each step which should increase the edge-detection probability at
the boundaries of the interval of interest. A practical example of the detected edges
by fine delay measurement is illustrated in Fig. 5.26. The results can be processed
as the histogram shown in Fig. 5.27.

The depicted 𝑡f interval of edge detection defines the interval of the fine delay
between the transmitter and the feedback receiver. For the DPD adaptation, we
reduce the delay interval with a single-value delay represented by the interval centre.
The overall measured delay is employed for the delay compensation before the DPD
adaptation. Shifting the feedback signal 𝑦(𝑡) in time is not achievable, as we only
know the feedback signal in particular discrete time instants 𝑡𝑖 and, generally, signal
𝑦(𝑡) cannot be fully recovered from samples 𝑦(𝑡𝑖). Instead, the delay compensation
is achieved by time shifting the transmitted signal 𝑥(𝑡) which is fully known. In our
measurement setup, the delay is constant after the setup powers on, therefore, we
can measure it once during the initialisation phase.
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Fig. 5.25: The graphical explanation of the edge subperiod delay. The signal samples
𝑥[𝑛] form the reconstructed signal edge 𝑥(𝑡) which intersects the reference voltage
𝑟(𝑡) at the set time instant 𝑛𝑇clk + 𝑡f .
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Fig. 5.26: Rising and falling edges at the comparator output based on the variable
generated subperiod delay. The subperiod delay has been normalised to 𝑇clk.

Fig. 5.27: Histogram of the detected rising and falling edges at the comparator
output as the function of the generated subperiod delay. The subperiod delay has
been normalised to 𝑇clk.
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5.8.4 Optional LS Compensations

The test measurements with the amplitude and the delay compensated for as de-
scribed above have shown a sub-optimal performance of the feedback receiver. An
analysis showed biased errors in the amplitude and delay calibration. Therefore, we
have decided to tune the delay and the amplitude based on the measurement with a
real transmission signal. We have employed a two-parameter optimisation with the
mean square error (MSE) as the optimisation criterion.

Although, by employing the described optional LS compensations, we have
achieved a lower MSE for the feedback-sample acquisition, the real DPD adap-
tation attempts showed that this optional compensation decreased the linearisation
performance. We believe that the introduced LS compensation well compensated
for the average residual delay mismatch and the amplitude offset for the individual
comparison levels, but at the same time, it introduced very small delay mismatches
and amplitude offsets which were different for the individual comparison levels. Got-
thans et al. [194] and Liu et al. [76] showed that the DPD with memory modelling
(𝑀 > 0) can intrinsically compensate for a small feedback path delay. Naturally,
the DPD can compensate for linear gain in the feedback. Due to these findings, we
have not employed the proposed optional LS compensation for the DPD adaptation.

5.8.5 Potential Future Improvement

Although, the presented a simple circuit for edge-time extraction with two FFs works
sufficiently well for our measurement setup; its inherent time uncertainty caused by
setup and hold times of the FFs is the main limiting factor for higher achievable
bandwidth. One could overcome these limitations in the future by employing a
more sophisticated method for edge-time extraction. We would suggest employing
a time-to-digital converter. Mattada and Guhilot [214] presented a comprehensive
review of various time-to-digital converters. Some of these converters achieve time
resolution being better than 1 ps and, simultaneously, very low power consumption
of a few milliwatts.

5.9 Measurement Results for DPD Adaptation with
a Hardware LC-ADC

The measurement results presented in this chapter have been obtained employing
the hardware introduced in Sec. 5.8. The method labelled as conventional obtains
the feedback samples from the spectrum analyser FSVR, while the proposed method
employs the feedback comparator. For all these measurements, the linearised PA is
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the two-stage PA in class AB presented in Sec. 4.7.1 as PA1. The drain quiescent
current for this measurement was set to 15 mA. The measurements were performed
with F-OFDM signals with the 64-QAM as the internal modulation.

In each iteration, we generate the F-OFDM signal with 384 frames, each frame
with 10 resource blocks, a block size of 6 subcarriers, resulting in 𝑊 = 6 · 10 = 60.
The FFT size is set to 𝑍 = 4096 and the filter length is 𝐿 = 2049. The sampling
frequency is limited by the measurement setup and is set to 𝐹s = 125 MHz. Note
that the sampling frequency of the spectrum analyser FSVR is set to 25 MHz and
the obtained signal is upsampled five times for the processing. DFT precoding is em-
ployed to reduce the signal PAPR. The signal generator with these settings provides
the test signal vector with the channel bandwidth 𝐵 ≈ 1.9 MHz and 𝑁0 = 1 602 560
samples.

The DPD for the PA linearisation employs the MP model with 𝐾 = 3 and 𝑄 = 1,
which yields 𝑃 = 6 DPD coefficients. The DLA has driven the DPD adaptation,
the iteration step was set to 𝜇 = 0.1, and 30 iterations were performed during the
measurements. The reference voltage 𝑟(𝑡) was set to -0.1 and to 0.05 of the full scale
of the in-phase feedback amplitudes and the two values were changed in the middle
of the measurement iteration.

Fig. 5.28, Fig. 5.29, and Fig. 5.30 show the evolution of ACPR, EVM, NMSE,
respectively, in the iterations throughout the measurement. The horizontal black
dashed lines depict the individual metrics without the DPD for the same main-
channel power. Fig. 5.31 shows the comparison of the resulting spectra for the
conventional DPD and the proposed feedback comparator with the spectrum of the
PA output without the linearisation.

Fig. 5.28: Evolution of the ACPR during the DPD adaptation with the setup with
a hardware LC-ADC.
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Fig. 5.29: Evolution of the EVM during the DPD adaptation with the setup with a
hardware LC-ADC.

Fig. 5.30: Evolution of the NMSE during the DPD adaptation with the setup with
a hardware LC-ADC.

Tab. 5.4 summarises the DPD linearisation performance. The presented results
are averaged over the last ten iterations. We can observe that the proposed method
with the feedback comparator did not achieve the linearisation performance of the
conventional method. This could be caused by the limited number of points acquired
by the comparator and used for the DPD adaptation. The comparator acquired
approx. 100 samples while the conventional method employed all 1 602 560 samples.
This limitation is, however, the limitation of our setup rather than the limitation of
the proposed method.
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Fig. 5.31: Comparison of the measured power spectral density of the PA output
without DPD and with the DPD adapted by the conventional and proposed methods
on the setup with a hardware LC-ADC.

Tab. 5.4: Measurement results of NMSE, EVM, and ACPR for the DPD with the
proposed LC-ADC and conventional feedback on the setup with the hardware LC-
ADC.

𝑃main (dBm) NMSE (dB) EVM (%) ACPR (dB)

Without DPD 24.4 -21.9 7.0 -30.4

Conventional 24.3 -27.2 4.9 -38.5

LC-ADC 24.2 -26.0 5.2 -37.6

EVM of the generated signal is 3.1% due to the nonorthogonality caused by the
inherent F-OFDM filtering.

5.10 Conclusion
In this chapter, we have proposed a novel method for DPD adaptation with the
LC-ADC replacing the conventional ADCs. We have demonstrated the principle
of the DPD adaptation with level-crossing detection by a comparator in the feed-
back. We have shown that the proposed architecture reduces power consumption
by approximately 75% compared with the conventional DPD architectures and by
approximately 50% compared with the DPD from [4]. The linearisation performance
has been evaluated by three measurements, where the proposed DPD achieved com-
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parable linearisation performance to the conventional DPD architectures. The re-
sults achieved with the narrow-band measurement setup indicate an improvement of
22 dB in ACPR and 2.1% in EVM by both the conventional and proposed architec-
tures. We have achieved linearisation of a signal with 500 MHz bandwidth with the
wide-band setup with the improvement of 10 dB in ACPR and 3.3% in EVM for the
conventional architecture and 8 dB in ACPR and 3.1 % in EVM for the proposed
architecture with the LC-ADC. For the last measurement, we designed our feedback
module with a real comparator and incorporated it into the measurement setup for
the predistortion. Despite all the technical limitations of this setup, the adapted
predistorter achieved an improvement of 8 dB in ACPR and 2.1% in EVM for the
conventional architecture and 7 dB in ACPR and 1.8% in EVM for the proposed
architecture with the designed feedback module.
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6 Conclusion
Digital predistortion is considered to be the most advanced and best performing
linearisation technique. However, at the same time, it is one of the most complex
and computationally demanding techniques. The required extra computational re-
sources and feedback circuits for DPD adaptability represent additional expenses for
implementing DPDs and the main limiting factors for their wide spread use across
various applications. Although a lot of research has been conducted in this field,
there is still plenty of room for improvements in this area. Therefore, we have ori-
ented this thesis toward low-complexity methods for DPD adaptation. The main
contributions of this thesis are three key methods to lower the complexity of DPDs:

• real-valued feedback,
• feedback sample selection,
• feedback with an LC-ADC.
The adaptation with real-valued feedback samples enables saving one of two

conventionally-employed feedback ADCs. We have shown that the proposed method
achieves the same linearisation performance as the conventional approaches and
reduces the power consumption and additional expenses on the feedback circuit.
Moreover, if real-valued feedback is employed, DPD adaptation might be less sus-
ceptible to IQ imbalances of the feedback mixer [A9]. The real-valued feedback
principle is generally applicable without limitations. Even already realised trans-
mitters with conventional feedback circuits could turn off one feedback ADC, re-
duce the feedback-circuit power consumption and benefit from improved immunity
to feedback IQ imbalances.

The feedback sample selection has been intrinsically based on the undersampling
feedback methods. We have shown that only a few feedback samples are required for
successful DPD adaptation if the samples are carefully selected. The limited number
of required collected samples decreases the size of vectors and matrices entering the
calculations and, hence, reduces the computational complexity of DPD adaptation.
We have proposed several methods for feedback sample selection, two of them have
been driven by respecting a predefined histogram. The proposed histogram-based
methods respect both nonlinear PA characteristics and statistical properties of the
transmitted signal. In our simulations and measurements, they have achieved the
highest reduction of the required number of feedback samples and, consequently,
the highest computational complexity reduction. Even the undersampling feedback
alone can lead to a significant reduction (≈ 40 times) of the feedback ADC power
consumption. The sample selection additionally reduces the computational complex-
ity of DPD adaptation. The performed simulations indicate a 400-time reduction in
computation complexity in the number of required multiplications and additions.
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The feedback sample selection and undersampling principles are generally appli-
cable and, even more, both principles can be potentially combined with the real-
valued feedback principle to reduce even more power consumption and hardware
complexity. The feedback sample selection can be applied without any limitations
in already-realised transmitters, because its implementation requires only firmware
modification. In certain cases, the undersampling could be potentially implemented
in already-realised transmitters to reduce the feedback ADC power consumption.
To achieve this, the hardware would need to allow for a changing ADC sampling
clock frequency. Of course, maximum benefits can be exploited if a new transmitter
design is adjusted for all these methods.

The proposed feedback with an LC-ADC replaces a conventional feedback ADC
with a simple comparator complemented by a low-speed DAC. Its real implemen-
tation in the hardware requires a different approach for time and amplitude cali-
brations. For this purpose, we have designed and tested a method based on duty
cycle measurements for amplitude calibration which does not require time synchro-
nisation. We have synchronised the time in two steps: first coarsely with sample
resolution and later finely with subsample resolution. In both steps, we transmitted
an arbitrary signal with edges at different time positions and calculated the signal
delay by fitting the transmitted signal with the observed comparator output. In all
the conducted measurements, the DPD with LC-ADC adaptation achieved perfor-
mance similar to that of the conventional DPD. A system comparison example has
shown that the proposed LC-ADC feedback can significantly reduce the feedback
power consumption (≈ 36 times) or can achieve higher linearisation bandwidth with
unchanged power consumption.

The usability of the LC-ADC for DPD adaptation is practically limited to special
designs. We expect the LC-ADC could replace conventional ADCs in highly inte-
grated feedback circuits. These integrated designs could benefit from the smaller
footprint and lower power consumption of a simple comparator than that of complex
high-speed ADCs. Additionally, the presented limitations and required compensa-
tions and calibrations could be more easily achievable as the circuit parameters can
be better controlled on a chip than in a discrete realisation. The LC-ADC concept,
therefore, currently seems to be impractically applicable to designs with discrete
feedback circuits and is not suitable for already-realised transmitters, in contrast to
the two previously presented methods. Even though the LC-ADC concept is not
generally applicable, we demonstrated its funcionality by the first proof-of-concept
implementation and we consider it the most advanced and interesting technique
presented in this thesis. We believe its main ideas will be employed or improved in
the future.
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6.1 Potential Future Challenges
Recent review papers [1,2] emphasised the importance of digital predistortion for the
5G or even 6G high-speed wireless communications and identified some potential fu-
ture challenges. These primarily included improving DPD linearisation performance
in general, lowering power consumption demands for DPD linearisation by utilising
hybrids of analogue and digital predistorters, effective predistortion for phased ar-
ray antennas and massive MIMO systems, and increasing linearised bandwidth. In
addition, due to our experience, the power consumption of the auxiliary circuits
required for the DPD adaptation might be reduced more. One possible approach,
which we would like to analyse in the future, is the possibility of avoiding the feed-
back down-converting mixer which is usually a very power demanding component,
especially in wideband applications. Another potential of reducing digital predis-
tortion complexity could be completely avoiding classic feedback and adapting to
the PA nonlinearity changes based on a simpler input, e.g. PA temperature. Even
though this approach seems to be straightforward, due to our best knowledge, the
current state-of-the-art research lacks a comprehensive study of temperature and
ageing effects on PA linearity changes and, therefore, it is hard to predict the abili-
ties and performance of simpler DPDs without full adaptability.

Although there are still unanswered questions and many potential challenges to
be addressed in the future, we believe that this dissertation thesis satisfies its goal
and extends the current state-of-the-art knowledge in the field of digital predistor-
tion aiming at low-complexity methods. We hope this thesis will supplement the
published papers and provide a different view on the presented topics and will be
one of the starting points for young researchers working on low-complexity digital
predistortion.
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Abbreviations
5G fifth generation

6G sixth generation

64-QAM 64-state quadrature amplitude modulation

ACPR adjacent channel power ratio

ADC analogue-to-digital converter

AM/AM amplitude/amplitude

AM/PM amplitude/phase

APD analogue predistorter

ASSA adaptive signal separation algorithm

BRAM block random-access memory

CML current-mode logic

CP cyclic prefix

DAC digital-to-analogue converter

DC direct current

DDR double data rate

DDR2 simplified 2nd-order dynamic deviation reduction-based Volterra

DFT discrete Fourier transform

DLA direct learning architecture

DNC do not converge

DPD digital predistorter

DRAM dynamic random access memory

DSP digital signal processing

DVR decomposed vector rotation

EDH evenly distributed histogram
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EVM error vector magnitude

F-OFDM filtered orthogonal frequency-division multiplexing

FBMC filter bank multicarrier

FF flip-flop

FFT fast Fourier transform

FM-ILA forward model indirect learning architecture

FPGA field programmable gate array

GMP generalised memory polynomial

GOH genetically optimised histogram

GS gradient-based sampling

GSS GS-based sample selection

HEMT high-electron-mobility transistor

IFFT inverse fast Fourier transform

ILA indirect learning architecture

ILC iterative learning control

IMD intermodulation distortion

IQ in-phase and quadrature

LC-ADC level-crossing analogue-to-digital converter

LPF low-pass filter

LS least squares

LSDAC low-speed digital-to-analogue converter

LUT look-up table

LVDS low-voltage differential signaling

MIMO multiple-input and multiple-output

MP memory polynomial
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MSE mean square error

NMSE normalised mean square error

NN neural network

OFDM orthogonal frequency-division multiplexing

OMP orthogonal matching pursuit

PA power amplifier

PAE power-added efficiency

PAPR peak-to-average power ratio

PC personal computer

PCA principal component analysis

PCB printed circuit board

pdf probability density function

PSD power spectral density

QRS QR-decomposition-based sample selection

R-DLA real-valued direct learning architecture

R-FM-ILA real-valued forward-model indirect learning architecture

RAM random-access Memory

ReLU rectified linear units

RF radio frequency

RFSoC radio frequency system-on-chip

RMS root mean square

SDRAM synchronous dynamic random-access memory

SH sample and hold

SH sample and hold

SSM sample selection method
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SVR support vector regression

TCP transmission control protocol

UDP user datagram protocol

US undersampling-based sample selection
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Symbols
j complex unit
arg{·} angle of a complex number
| · | magnitude of a complex number
(·)r real part of a complex number
(·)i imaginary part of a complex number
(·)* complex conjugate
(·)𝑇 transposed matrix
(·)𝐻 Hermitian matrix
‖ · ‖ 𝑙2-norm
⌊·⌋ number rounded down towards zero
𝐷𝑗 cardinality (number of elements) of set 𝐷𝑗

𝒦 set of active OFDM subcarriers
𝒪 overlapping factor in FBMC
𝒫(·) nonlinear transfer function of the PA
Δ𝑇 time spacing between transmitted OFDM symbols
Δ𝑊 tone offset for the F-OFDM modulation
2Δ𝑊 difference between the desired passband and the designed sinc filter

passband
𝛾 minimum sample time distance in SSMs
𝜖(𝑡) error signal
𝜂PAE power added efficiency
𝜃𝑗−1 lower boundary of the 𝑗-th bin in histogram-based SSMs
𝜃𝑗 higher boundary of the 𝑗-th bin in histogram-based SSMs
𝜇 iteration step size
𝜌(𝑡) modulation prototype filter
𝜑

(𝑥)
𝑘,𝑞(·) basis function with 𝑘 nonlinearity order and 𝑞 memory index created

for signal 𝑥

𝑏 vector of PA model coefficients
𝑏′ vector of DPD coefficients
𝑏̂ vector of updated DPD coefficients
𝑒 vector of coefficient errors
𝑦̃ vector of forward PA model output samples
𝑦r(𝑡) real part of the PA output including imperfections of down-converting

mixer and active balun
𝐴 constant amplitude
𝐵 channel bandwidth
𝐶DAC set LSDAC code
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𝑑𝑗 target count for the 𝑗-th bin in histogram-based SSMs
𝑑𝑘,𝑚 transmitted complex OFDM symbol at the 𝑚-th time position and the

𝑘-th subcarrier
𝐷𝑗 set of selected indices 𝑛𝑖 whose samples belong to the 𝑗-th bin
𝑓adj1, 𝑓adj2 bound frequencies of the adjacent channel for ACPR calculation
𝑓𝐵[𝑛] prototype-filter coefficients for the F-OFDM modulation
𝑓c carrier frequency
𝑓clk clock frequency
𝑓m1, 𝑓m2 bound frequencies of the main channel for ACPR calculation
𝐹 frequency spacing between OFDM subcarriers
𝐹AM(·) function of AM/AM characteristics
𝐹PM(·) function of AM/PM characteristics
𝐹post(·) nonlinear function of postdistorter
𝐹pre(·) nonlinear function of predistorter
𝐹s sampling frequency
𝑔𝑘,𝑚(𝑡) modulation pulse at the 𝑚-th time position and the 𝑘-th subcarrier
𝐺 linear PA gain
𝐻𝑖 numerical coefficients for PHYDYAS filter
𝐽 number of histogram bins in histogram-based SSMs
𝑘 general index, mainly nonlinearity order index of a DPD or PA model
𝐾 maximum nonlinearity order of a DPD or PA model
𝐾𝑎 GMP index array for nonlinearity order of aligned signal and envelope
𝐾𝑏 GMP index array for nonlinearity order of signal and lagging envelope
𝐾𝑐 GMP index array for nonlinearity order of signal and leading envelope
𝐿 number of taps of the prototype filter for the F-OFDM modulation
𝐿𝑎 GMP index array for memory back shift of aligned signal and envelope
𝐿𝑏 GMP index array for memory back shift of signal and lagging envelope
𝐿𝑐 GMP index array for memory back shift of signal and leading envelope
𝑀𝑏 GMP index array for memory forward shift of signal and lagging enve-

lope
𝑀𝑐 GMP index array for memory forward shift of signal and leading enve-

lope
𝑚 general index, mainly memory order index of a DPD or PA model
𝑛 sample index
𝑁 number of selected samples or number of averaged values
𝑁0 number of acquired samples
𝑁𝑆 number of demodulated symbols
𝑝𝐵[𝑛] sinc function for the F-OFDM modulation
𝑃 number of model coefficients
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𝑃DC power consumed from power supply rails
𝑃pwr power consumption
𝑃𝑥 amplifier input-signal power
𝑃𝑦 amplifier output-signal power
𝑞 memory order index of a DPD or PA model
𝑄 maximum memory length of a DPD or PA model
𝑟(𝑡) reference voltage signal
𝑟DAC LSDAC output voltage
𝑡 time
𝑡d time of delay
𝑡f subperiod delay of generated edges
𝑡h hold time of digital FF
𝑡high time of the comparator output in the high state
𝑡su setup time of digital FF
𝑇 sampling period of discrete-time signals
𝑇0 time-scaling parameter in FBMC
𝑇clk clock period
𝑇per period of the test sinewave signal
𝑤[𝑛] window function for the F-OFDM modulation
𝑊 number of assigned data subcarriers for the F-OFDM modulation
𝑥 PA input
𝑦 PA output
𝑧 desired PA output and usually DPD input
𝑍 FFT length for the F-OFDM modulation
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