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ABSTRACT 

Modern communicat ion systems often require digital predistorters ( D P D s ) , advanced 

signal-processing units, to satisfy str ingent demands on t ransmi t ter linearity and ef

ficiency. Nevertheless, D P D signif icantly increases the hardware and computat ional 

complexity of t ransmit ters, which leads t o increased power consumption and expenses. 

Therefore, we propose methods to achieve lower hardware and computat ional complexity 

of D P D adaptat ion. The principle of real-valued feedback samples allows for saving one 

of two originally-needed feedback analogue-to-digital converters (ADCs) , which implies 

reduced t ransmi t ter complexity and power consumpt ion. Furthermore, the hardware and 

computat ional complexity can be reduced if the feedback samples for the D P D adapta

t ion are undersampled and carefully selected. The proposed techniques select samples 

based on histograms and can reduce the required number o f feedback samples t o a 

few tens. The provided analyses show approximately 400-t imes reduced computat ional 

complexity achieved by the sample selection and 40-t imes reduced power consumption 

of the undersampling feedback ADCs. The real-valued feedback, its undersampling, 

and sample selection const i tute fundamental principles of the proposed D P D adapta

t ion w i th a level-crossing A D C , which is realised by a simple comparator. Replacing 

the conventional ADCs wi th a comparator signif icantly reduces the design complexity 

and power consumpt ion. Al l the proposed and described techniques are accompanied by 

simulations, usually confirmed by measurements on real hardware, and compared wi th 

state-of- the-art methods. The final discussion analyses the l imitat ions, usability and ad

vantages of the proposed techniques. It shows tha t reducing complexity might not be 

universally applicable and all the design constraints and specifications must be carefully 

assessed. 
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Digital predistort ion, power amplif ier l inearisation, low-complexity predistorter adap

ta t ion , feedback undersampling, histogram-based sample selection, comparator-based 

level-crossing analogue-to-digital converter. 



ABSTRAKT 

Moderní komunikační systémy často vyžadují digi tální předzkreslovače ( D P D ) , jednotky 

pokročilého zpracování signálu, ke splnění požadavků na linearitu a účinnost vysílačů. 

Nicméně D P D výrazně zvyšují hardwarovou a výpočetn í složitost vysílačů, což vede 

ke zvýšení spotřeby a nákladů. Z toho důvodu představujeme metody k dosažení nižší 

hardwarové a výpočetní složitosti adaptace D P D . Metoda zpětnovazebních vzorků s re

álnou hodnotou vyžaduje pouze jeden ze dvou původně potřebných zpětnovazebních 

analogově-digitálních převodníků ( A D C ) , což vede ke snížení složitosti vysílače a spo

třeby energie. Hardwarovou a výpočetn í složitost lze více snížit, pokud je zpětnovazební 

signál pro adaptaci D P D podvzorkován a jsou vybrány pouze vhodné vzorky. Navrhované 

techniky vybíraj í vzorky dle histogramu a mohou snížit potřebný počet vzorků zpětné 

vazby na několik desítek. Provedené analýzy ukazují přibližně 400násobné snížení vý

početní náročnosti dosažené výběrem vzorků a 40násobné snížení spotřeby energie díky 

podvzorkování zpětné vazby D P D . Metody zpětné vazby s reálnými hodnotami , je j í pod-

vzorkování a výběr vzorků tvoř í základ navrhované adaptace D P D využívaj ící A D C s 

detekcí jedné úrovně, který je realizován jednoduchým komparátorem. Nahrazení běž

ných zpětnovazebních A D C jednoduchým komparátorem výrazně snižuje složitost návrhu 

a spotřebu energie. Všechny navržené a popsané techniky jsou doprovozeny simulacemi, 

obvykle i měřením na reálném hardwaru a porovnány s dostupnými metodami . Závěrečný 

rozbor řeší použitelnost a omezení jednot l ivých metod. Ukazuje se, že snížení složitosti 

nemusí být univerzálně dosažitelné a je třeba pečlivě posoudit všechna specifika daného 

návrhu. 

KLICOVA SLOVA 

Digi tá ln í předzkreslovač, linearizace výkonových zesilovačů, adaptace předzkreslovače s 

nízkou složitostí, podvzorkování zpětné vazby, výběr vzorků pomocí histogramu, analo

gově digi tální převodník s detekcí jedné úrovně s komparátorem. 
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Introduction 

Modern communication systems must provide ever-increasing data throughput. This 

demand is usually satisfied by increased communication bandwidth and by devel

oping more spectrum-efficient modulation schemes. The modern spectrum-efficient 

modulations put stringent demands on transmitters and receivers, especially on 

their hardware imperfections. In the currently developed fifth generation (5G) and 

sixth generation (6G) systems, one of the main concerns is the linearity of radio 

frequency (RF) power amplifiers (PAs) in transmitters [1], because the nonlinear 

distortion leads to a degraded constellation diagram resulting in higher bit error 

rate and to the spectrum regrowth, undesired transmission and potential interfer

ence in regions close to the communication channel. The linear PAs , however, suffer 

from low power efficiency. They are usually physically larger and require power

ful cooling systems, which naturally implies their higher manufacturing expenses. 

Therefore, designers tend to prioritise their power efficiency at the expense of their 

linearity and overall transmitter linearity is achieved by linearisation techniques. 

One of the linearisation techniques is digital predistortion. The digital predis-

torter (DPD) modifies a signal going to the nonlinear P A by artificial nonlinearity 

wi th complementary characteristics to cancel the P A nonlinearity. The digital pre

distortion is currently the most promising linearisation technique wi th the highest 

achievable linearisation performance [2]. However, the D P D s , especially their adap

tation, are very computationally demanding and often require complex feedback 

circuits to track changing P A characteristics. 

The higher computational and hardware complexity represents one of the cur

rent research challenges. Even though a lot of research has been conducted in this 

direction, e.g. [3-5], there is stil l plenty of space for improvements. In this the

sis, therefore, we have oriented to low-complexity methods for D P D s . The goal of 

this thesis is to extend state-of-the-art knowledge of low-complexity methods for 

P A linearisation to make D P D s generally more applicable, less expensive and more 

efficient. We introduce three key methods to lower the computational and hardware 

complexity of the D P D adaptation: 

• real-valued feedback, 

• feedback sample selection, 

• feedback wi th a level-crossing analogue-to-digital converter ( L C - A D C ) . 

For the conventional P A adaptation, the P A output is usually down converted 

by an in-phase and quadrature (IQ) mixer and both in-phase and quadrature signals 

are sampled by two analogue-to-digital converters ( A D C s ) . The real-valued feed

back method enables avoiding one of the two A D C s which reduces the hardware 

complexity, saves power and lowers transmitter costs. 
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Usually the feedback A D C s are required to continually sample the P A output at 

a sampling frequency which covers three to five times of the communication channel 

bandwidth [6,7]. The feedback sample selection naturally allows for feedback un-

dersampling, which significantly decreases the power consumption of the feedback 

A D C s . Additionally, if the feedback samples are carefully selected, only a few sam

ples are required for successful D P D adaptation. Consequently, calculations wi th 

lower dimension matrices lead to a significant reduction of computational complex

ity. Our simulations and analyses show that the computational complexity can be 

reduced up to 400 times compared wi th the conventional approach. 

The L C - A D C in feedback replaces two conventional feedback A D C s by a simple 

comparator. The principle of this method is based on combining principles of the 

real-valued feedback samples and feedback sample selection. The P A output is 

not continuously sampled and cannot be fully recovered in the digital processing, 

but rather the comparator detects when the P A output is crossing a set reference 

voltage. Knowledge of time instants of the comparator output edges and the set 

reference voltage is sufficient for the D P D adaptation. Our measurements indicate 

performance of D P D adaptation wi th the proposed feedback comparable to D P D 

adaptation wi th the conventional feedback wi th two A D C s . The advantages of the 

L C - A D C are lower power consumption, costs and footprint than of the equivalent 

feedback solution with conventional A D C s . 

This thesis is structured as follows. Chapter 1 introduces theoretical and his

torical basics of P A linearisation. Mathematical models of P A s and D P D s , signal 

modulations, and performance metrics, which are used throughout this thesis, are 

defined here as well. Chapter 2 reviews the recent advances of P A linearisation, 

especially of the D P D s . We identified several research directions and focused par

ticularly at low-complexity predistortion methods. In Chapter 3, D P D adaptation 

wi th real-valued feedback samples by different D P D architectures is described. The 

linearisation performance of the D P D adapted by the real-valued feedback samples 

and the conventional approach are simulated and compared. Feedback sample selec

tion methods are analysed in Chapter 4. We present a general principle of sample 

selection methods for D P D adaptation in different architectures and later we pro

pose various sample selection methods. We analyse their computational complexity 

reduction and simulated linearisation performance. Additionally, we confirmed the 

simulation results by measurements. Chapter 5 describes principles of D P D adap

tation wi th the L C - A D C in the feedback, and measurements of its performance on 

three different hardware setups. Finally, Chapter 6 summarises the proposed low-

complexity approaches and discusses their limitations, usability, and advantages. 
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1 Theoretical Introduction 

1.1 Power Amplif ier Basics 

Amplifiers are electronic components that increase signal strength in terms of volt

age, current, or power. The ideal amplifier output y(t) is fully proportional to its 

input x(t) and, without limitations, follows the equation [8,9] 

y(t) = Gx(t), ( l . l ) 

where G is a constant amplifier gain. The schematic symbol of an ideal amplifier is 

depicted in F ig . 1.1. 

The described linear model is sufficient when the output signal of the amplifier 

is relatively small and the amplifier works within very l imited operating conditions. 

However, in reality, these conditions are usually met only for low-power amplifiers 

working with no or negligible load. In contrast, high-power amplifiers (simply PAs) 

usually suffer from nonlinearity and memory effects. 

F ig . 1.1: Schematic symbol of an ideal amplifier wi th gain G. 

Input power (dBm) 

F ig . 1.2: The compression point of 1 dB in output-input power characteristics. 
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1.1.1 Compression Point of 1 dB 

A s the input signal level increases and the amplifier output approaches the supply 

voltage, the amplifier output cannot follow the linear relation (1.1) anymore and 

saturates. A s a result, the output signal level is lower than the ideal output level, as 

shown in F i g 1.2. The point, where the actual output level is 1 dB lower than the 

ideal output level, is called the 1-dB-compression point. It is described by its output 

power level PidB,o and, correspondingly, by its input power level PidB,i- The 1-dB-

compression point is the simplest indicator of the nonlinearity of an amplifier. [8,9] 

1.1.2 A M / A M and A M / P M Characteristics 

A more advanced method of describing the R F amplifier is by its amplitude/ampli

tude ( A M / A M ) and amplitude/phase ( A M / P M ) characteristics. Let us assume that 

the amplifier input signal is given as 

xc(t) = x(t)e^\ (1.2) 

where x(t) is a complex envelope and fc is the carrier frequency . The power amplifier 

output can be described as 

y(t) = FAM(\x(t)\) • eJ a r ^W}+J F ™(k(t ) l ) e J2- /c t ; ( L 3 ) 

where - F A M ( | # ( £ ) | ) represents the A M / A M characteristics and Fpu(\x(t)\) represents 

the A M / P M characteristics. The operators | • | and arg{-} signify the magnitude 

and the angle of the given complex parameters, respectively. [8] 

In other words, the A M / A M characteristic defines the envelope magnitude of 

the amplifier output with respect to the envelope magnitude of the amplifier input. 

This can be seen as an amplitude distortion. The A M / P M characteristic defines 

the added angle to the complex envelope phase wi th respect to the input complex 

envelope magnitude. This can therefore be seen as a phase distortion. The examples 

of A M / A M and A M / P M characteristics are plotted in F ig . 1.3. 

1.1.3 Intermodulation Distortion 

Intermodulation occurs when two (or generally multiple) signals or tones of different 

frequencies are input into a nonlinear component. Let us assume that the input 

signal x(t) consists of two tones with frequencies / i , f2 and amplitudes A. It can be 

described as [9] 

x(t) = Acos(27r/it) + Acos(2ir f2t) = 2A COS(2TTf dt) cos(2ir fpt), (1.4) 

where fd = and / p = % • 
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0.2 0.4 0.6 0.8 
Relative input magnitude (-) 

(a) A M / A M characteristic. 

0.2 0.4 0.6 O.i 
Relative input magnitude (-) 

(b) A M / P M characteristic. 

F ig . 1.3: A n example of P A characteristics. 

Assuming the amplifier has no memory effects, the output y(t) is given by the 

actual input x(t) at time t and does not depend on its history. When considering the 

amplitude distortion only, the nonlinearity can be modelled by general polynomial 

series and the amplifier output can be written as 

y(t) = aix{t) + a2x2(t) + ... + akxk(t) + ... + aKxK(t), ; i .5) 

where k is the nonlinearity order and K is the maximum nonlinearity order. B y 

incorporating (1.4) into (1.5), we get 

A' 
y(t) = J 2 2 A a k cos f c(27r/ dt) cos f c(27r/ pt), 

k=l 

; i . 6 ) 

which can be further expanded based on the binomial theorem, the exponential 

definition of the cosine, and the substitution u = 27ifdt, v = 2nfpt as [9] 

xn{t) = TAr' 
eiU + e~iU + eiV + e ,] u c — e 

d = eiv 

An (c + c~1 + d + cT1)™ = AnJ2 ("J(c + c 

k=0 

n' 

Mi 

n—k 

E 
.i=0 

n — k 
fc=0 

c n - k - i c - i 

-l\n—k (d + d -l\k 

E 
.h=0 

\dk-hd~h 

h 

- £ S S O ( 3 ( " T 4 : 
^n—k—2i jk—2h dk 

ju(n—k—2i)-\-jv(k—2h) 

; i . 7 ) 
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When looking only at complex harmonic components, by back substituting for u. 

v, fd, and / p we get an intermodulation product at frequency / i m [ n , k, i, h] given by 

eq. (1.7) as 

fim[n, k,i,h] = ( n - k - 2i)fd + (k - 2h)fp = 

( n - k - 2z)( / 2 - / i ) + (k- 2h){h + f2) 

- i - h j f2- ( ^ - k - i - h j / i 

A s the frequency of the intermodulation product is a combination of frequencies 

fi and /2, we define the frequency / i m [m] of the m-th order intermodulation product 

as 

fim[m] = pf1 + qf2, (1.9) 

where p, q is any combination of positive or negative integers which comply wi th the 

relation m — \p\ + \q\. Even-order intermodulation distortion ( IMD) products are 

far away from the original signals. They are often ignored, as they are filtered out 

by analogue filters anyway. However, odd-order I M D products are problematic as 

they are too close to the original signals and cannot be filtered by analogue filters. 

Dominant I M D products closest to the original signals are of the 3 r d and 5 t h orders 

(Fig. 1.4). [8,9] 

Two-tone input signal 

A A 

Intermodulation products 
for 5 th-order polynomial series 

3 r d 

4 

5 l h 

± 
3 r d 

A 

5 t h 

fi h 3A-2/2 2 / i - / 2 A f2 2/2-A 3/2-2/! 

F ig . 1.4: I M D of two-tone input (left) generates intermodulation products in the 

vicinity of the original tones (right). 

The intermodulation effect has been analysed by the two-tone test. This test was 

extensively employed in history to test the linearity, when most of the communica

tion signals were amplitude or frequency modulated and narrow-band. Nowadays, 

the two-tone test importance has been lowered as the character of communication 

signals has changed significantly, and the test might not provide sufficient informa

tion about the impact of the distortion caused by a tested amplifier on a signal wi th 

a modern modulation scheme. 
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1.1.4 Intercept Point 

The intercept point of the m-th order (IPm) can be defined in two ways. F i r s t ly 

it can be defined based on the harmonics of a single tone input signal that appear 

due to nonlinear distortion at the m-th multiple of the original signal frequency. 

The other definition is based on m-th order intermodulation products of two closely 

spaced input tones. The second variant is mostly used in practice, as it does not 

require the wide bandwidth of the tested amplifier. Please note that these two 

definitions differ by approximately 9.5 dB (201og 1 03). [8,9] 

The intercept point is graphically obtained (Fig. 1.5) from the A M / A M plot wi th 

logarithmic scales. The linear parts of the output power of the wanted amplified 

original signal and the intermodulation distortion (or harmonics) of m-th order are 

extrapolated. In logarithmic scales, the function xm is translated into a straight 

line wi th slope of m which means that the slope of the wanted (linearly amplified) 

component is 1 and e.g. the 3 r d order I M D has slope of 3. The intercept point of 

m-th order is given by the intersection of extrapolated lines. In other words, the 

intercept point is a point for which the power of the m-th order intermodulation 

product is equal to the linearly amplified component power at the output. 

F ig . 1.5: A graphical representation of the intercept point in A M / A M plots. 

Similar to the compression point of 1 dB , the concept of the intercept point is 

an inappropriate way to characterise amplifiers in present communication systems 

where the signals are different from narrow band, almost single tone, signals. 

IP2 

Input power (dBm) 
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1.1.5 Power Amplifier Efficiency 

Power amplifier efficiency is an essential parameter of power amplifiers. It denotes 

how much of the spent power is delivered to the P A output. The lower the efficiency 

is, the higher the power consumption the P A has, considering a constant output 

power. This is the primary concern in battery-supplied devices. Another aspect is 

power dissipation, since the P A wi th lower efficiency requires better cooling. 

To objectively evaluate P A efficiency, power-added efficiency (PAE) has been 

introduced. It is defined as [81 

VPAE 
P — P 

PDC 
; i . i o ) 

where PY and PX are output and input signal powers, respectively, and P D C is the 

P A power consumption. 

F ig . 1.6 depicts a typical contradiction between P A efficiency and linearity. If 

the P A operating point is set far from saturation, the P A exhibits good linearity, 

but the efficiency is low. Vice versa, if the operating point is set close to saturation, 

the efficiency is high, but the linearity is inferior. A common approach is to set the 

P A back-off (operating point) such that the maximum level of the amplified signal 

is stil l in the region wi th decent linearity. 

o 

C 

A 
Saturation 1-dB compr. point 

/ 

Good efficiency 
low linearity 

/ Back off 
w 

Efficiency 
• 

Linearity 
< / ^ W 

Efficiency 
• 

Linearity 
< 

/ Low efficiency 
good linearity 

• 
Input power (dBm) 

F ig . 1.6: The trade-off between P A efficiency and linearity in A M / A M characteris

tics. 
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1.2 Basic Principles of Power Amplif ier Linearisation 

The early ideas of amplifier linearisation are quite old already. The first references 

are even older than the discovery of the transistor effect in 1956. Bendel in [10] 

showed the linearisation of an amplifier by negative feedback, quite interestingly 

already in the baseband. Leypold [11] demonstrated negative feedback for the phase 

distortion correction a few years later. Their techniques were, of course, purely 

analogue and designed for the electron tubes. 

The basic concepts of linearisation are simple. The transmitted signal or the 

P A parameters are modified to obtain a desired output signal. The P A parameters 

are modified mainly in the analogue domain, and this type of linearisation is often 

referred to as nonlinearity compensation. For example, the amplifier gain can be 

increased for higher magnitudes of the input signal. O n the other hand, the mod

ification of the transmitted signal before entering the P A is called predistortion. 

Predistortion can be achieved in both the analogue or digital domain. 

Ideally, the predistorter is set to cancel out the distortion of the transmitter 

nonlinearity. Its characteristics can be seen as a nonlinearity inverse, if the inversion 

exists. This ideal case is depicted in F ig . 1.7. 

Input magnitude Input magnitude 

F ig . 1.7: Nonlinearity and ideally-inverted predistortion characteristics in A M / A M 

and A M / P M plots. 

The motivation behind the predistortion is an increased operating range of am

plifiers. The predistortion allows for a reduction in P A back-off and, as the operation 

moves closer to saturation, an increase in P A efficiency without compromising sys

tem linearity. This effect is shown in F ig . 1.8. Consequently, the P A dimensions 

and power rating can be decreased, heat sinks can be miniaturised, and smaller 

power supplies are required, which naturally results in resource savings and price 

reduction. 
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Input power 

F ig . 1.8: Increased P A operating range by employing predistortion. 

Predistortion can be introduced at any point in the system preceding the P A . 

Based on the point where the predistortion is applied, we distinguish between base

band, intermediate frequency, and R F predistorters. Later, throughout this thesis, 

we focus exclusively on the baseband D P D s . 

The first references to the baseband D P D s were published by Nagata [12] and 

Cavers [13]. Bo th employed adaptive predistorters wi th feedback. The adaptive 

predistorter can follow changes in nonlinear P A characteristics over time. These 

changes occur mainly due to temperature changes and component ageing. The 

concept of the D P D with feedback is shown in F ig . 1.9. 

F ig . 1.9: A block diagram of a simplified real system wi th a digital baseband pre

distorter. 
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The P A output signal is taken as feedback by an R F coupler. It is usually 

down-converted by an IQ demodulator and sampled by an A D C ; hence, it can be 

digitally processed. The digital processing identifies the P A or D P D parameters; 

a few strategies to identify the P A or D P D parameters are presented later in Sec

tion 1.4. Subsequently, the transmitted signal is predistorted by the D P D with 

already identified parameters, converted into the analogue domain by the digital-to-

analogue converter ( D A C ) , up-converted by an IQ modulator, and amplified. 

Please note that the D P D can be employed in a system wi th a transmitter 

of any architecture (direct conversion, heterodyne, superheterodyne, etc.). The 

depicted architecture is just an example, and the main principle remains the same 

over different architectures. 

1.3 Employed Models 

In this section, we introduce readers to the mathematical models of P A s and D P D s 

employed in this thesis. A l l the presented models describe the baseband behaviour 

of the modelled component. 

1.3.1 Memory Polynomial Model 

The memory polynomial ( M P ) model is a basic mathematical model for modelling 

P A s and D P D s . It was firstly introduced by K i m and Konstantinou in [14] as the 

evolution of a simple polynomial baseband model without memory. The model is 

simple and, generally, it achieves l imited linearisation performance, compared to 

other more complex models. 

The discrete baseband output y of the M P model is given as [14] 

K Q 

y[n] = E E M n - ? l l i l n - 9 f 1 . (i-ii) 
k=l q=0 

where x is the M P model input, bk,q is the coefficient of the M P model, and K and 

Q represent the maximum nonlinearity order and memory length, respectively. The 

product x[n — q] \x[n — g ] | f c _ 1 is often called a basis waveform or a basis function. 

Example basis functions for the M P model are shown in F ig . 1.10. We denote the 

basis function as 

^q[n}=x[n-q}\x[n-q}\k-1. (1.12) 
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The input samples x, model coefficients bktq, and the basis waveforms 0^[n ] can be 

arranged into vectors and matrices 

6(x) - > ? > ] ^ [ i ] 1]] , 

X = x[0] x[l] ... x[7V - 1] 
T 

1 

y = y[o] ••• y[N-l{ T 
• 

b = h,o 61,1 • • • bl,Q &2,0 bK,Q_ 
T 

1 

ux = j>) A?) 
<Pl,Q 9*2,0 • 

.. 4> (x) 
K,Q 

where 6 is a column vector wi th P = K(Q + 1) rows, and the size of the matrix Ux 

is TV x K(Q + 1). Equation (1.11) can be rewritten into the matrix form 

y = uxb. ( i . i 4 ) 

32 



1.3.2 Simplified 2 n d -0 rder Dynamic Deviation Reduction-Based 

Volterra Model 

The simplified 2nd-order dynamic deviation reduction-based Volterra (DDR2) model 

is a popular model employed for modelling P A s and D P D s . Guan and Zhu presented 

it for the first time in [15]. The D D R 2 model is based on the Volterra series [16,17] 

which is a nonlinear model similar to the Taylor series [18], but it adds the ability to 

capture memory effects. The full Volterra series is, however, impractically complex 

for modelling P A s and D P D s . Therefore, the D D R 2 model includes only certain 

selected terms from the full Volterra series. 

The D D R 2 model has been defined as [15] 

^ Q 

v[n\ = J2 J2bo,k,g \x[n}\2kx[n - q} + 
k=0 q=0 
K-l 2 

+ J2 Y.Kk,q \x[n] 
k=l q=l 

|2(fc-l) _2 x [n] x*[n — q] + 
K-l 

2 
; i . i 5 ) 

+ E E hk,q \x[n] |2(fc_1) x[n] \x[n - q]\2+ 
k=l <j=l 
K-l 2 

+ J2 J2hk,q \x[n] 
k=l q=l 

|2(fc-l) _* x* [n] x [n — q], 

where bo,k,q, bi^q, &2,fc,g, &3,fc,g are the model coefficients. We can denote the basis 

function as 

\x[n]\2k x[n — q] if % = 0, 
|x[n] | 2 ( f c _ 1 ) x2[n] x*[n — q] if % — 1, 

|x[n]| 2 ( f c - 1 ) x[n] \x[n — q}\2 if % — 2, 
i,k,q ; i . i 6 ) 

\x\n\ 
|2(fc-l) * 

x \n\ x \n 3. q] if i 

The model coefficients b^q and the basis waveforms <f>k,q[n] can be arranged into 

vectors and a matrix similarly as in (1.13) 

; i . i 7 ) 

where 6 is a column vector wi th P = K{2Q + \) — Q + \ rows, and the size of the 

matrix Ux is N x K{2Q + | ) — Q + | . The matrix form of the model equation is 

the same as (1.14). 

i,k,q >il[o] 42ji] 
b = V l . O ^0,1,1 • • • t>0,l,Q &0,2,0 • • • htK,Q 

T 
i (1 

ux = ^0,1,0 (V0,1,1 • • • <h{x) <h{x) rh{x) Y 
^0,1,(9 ^0,2,0 • • • tP^K&l • 
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1.3.3 Generalised Memory Polynomial Model 

The generalised memory polynomial ( G M P ) model is another popular model em

ployed for modelling P A s and D P D s . It was presented by Morgan et al. in [19]. 

The G M P model is also derived from the Volterra series [16,17]. In contrast to the 

D D R 2 model, the G M P model selects different terms from the Volterra series and is 

defined more universally. The selected terms do not follow a predefined order, but 

they can be selected sparsely. The G M P model is one of the most complex models 

employed in this thesis. Naturally, it requires the highest number of coefficients and, 

due to our observation, it can achieve the best linearisation performance compared 

wi th the other presented models. 

The model can be defined as [19] 

y[n\ = J2 Z) b0,k,ix[n-l} \x[n-l]\k+ 
k£Ka l£La 

+ E E I! h,k,i,mx[n - 1} \x[n - I - m}\k+ 
keKb l&Lb m£Mb 

Ik 

'1.11 

+ E E I! b2,k,i,mx[n I] \x[n — I + m]\ 

where £»0,fc,z, bi,k,i,m, a n d &2,fc,z,m are the P A model coefficients; Ka and La are the 

index arrays for aligned signal and envelope (memory polynomial); Kj,, Lj,, and iWj, 

are the index arrays for signal and lagging envelope; and Kc, Lc, and Mc are index 

arrays for signal and leading envelope. We can denote its basis function as 

i,k,l,m 

x[n — I] \x[n — I]\k if % = 0, 

x[n — I] \x[n — I — m]\k if % — 1, 

x\n — I] \x\n — I + m]\k if % = 2. 

; i . l 9 ) 

The model coefficients 60,fc,/ a n d bi,k,i,m, and the basis functions 4>k,q[n] can be 

arranged into vectors and a matrix similarly as in (1.17) 

4 
(x) _ 
i,k,l,m >W,m[0] 42z,m[l] 

b = bo,k0,i0 &o,fc0,/i • • • 

ux = Ax) Ax) 
V>0,fc0,Zo,0 <rO,k0,h • 

b0. ko,, b0. kl,lo ^3,fc=,Z=,m= 
Kc Lc Mc 

dx) 
;k0,l=,0 

La 

JSX) JSX) 
rOMJofi ' ' ' <+>Z,k—,l—,m— 

Kc Lc Mc 

= ;i.2o) 

where (.) is the cardinality (number of elements) of a given set, 6 is a column vector 

wi th P = Ka • La + Kj, • Lb • Mj, + Kc- Lc- Mc rows, and the size of the matrix Ux is 

N x P. The matrix form of the model equation is the same as (1.14). 
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1.4 DPD Adaptat ion Strategies 

In this section, we present basic D P D adaptation strategies, also called architectures, 

specifically those architectures required for understanding the proposed methods or 

employed for comparison. This section does not represent a comprehensive elabora

tion of all known D P D adaptation strategies. 

1.4.1 Direct Learning Architecture 

The direct learning architecture ( D L A ) [20] is a D P D adaptation strategy which 

determines the D P D coefficients directly from the P A baseband output y(t) and the 

D P D input z(t). Its typical topology is shown in F ig . 1.11. 

Let us assume that V(-) is a nonlinear transfer function of the P A and Fpre(-) 

is a nonlinear function of the predistorter. The predistorter function should ideally 

cancel out the P A nonlinearity, resulting in the overall system being linear. This 

condition can be mathematically written as [9] 

V(Fpre(z)) = G0z, '1.21) 

where Go is intended gain. If the inversion of V(-) exists, the predistortion function 

is given as 

Fpre(z) =V-\G0z). (1.22) 

The V(-) is nonlinear, therefore, solving equation (1.22) is a nonlinear problem. To 

obtain its solution, we can employ optimisation techniques and minimise a criterion 

function J(e) with the error signal e(t) defined as [9] 

< t ) = m _ : { T ) = V(F (z)) _ 
Gr 

;i.23) 

Predistorter 

z(t) 
i 

J- pre 
x(t) 

J- pre 

Minimisation 
of criterion J(e) 

e(t) 

Fig . 1.11: The principle of D P D adaptation by the direct learning architecture. 
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A typical approach to obtaining the solution is based on solving the nonlinear 

function numerically using Newton's method. Let us assume that the predistortion 

function is prescribed by the nonlinear model stated in Sec. 1.3 wi th a matrix form 

in equation (1.14). Throughout this thesis, the iterative damped Newton's method 

is employed to solve the D P D coefficients. The coefficients are updated as [21] 

b = b'-(ie, (1.24) 

where vector b is a new solution of the D P D coefficients, vector b' is the current 

vector of the D P D coefficients, and \i is the iteration step size. Vector e is the 

coefficient error vector. It has the same dimensions as the coefficient vector b' and 

is given as the least squares (LS) solution of 

A « Uze, (1.25) 

where A = z — y. The solution of e with a pseudoinverse of matrix Uz can be 

written as 

e = ( U f t / ^ C / f A . (1.26) 

The final equation of the coefficient update is given by incorporating equation (1.26) 

into (1.24) as 

b = b'-^UfUz)-1Uf(z-y). (1.27) 

1.4.2 Indirect Learning Architecture 

The indirect learning architecture ( ILA) , contrary to the D L A , solves the D P D 

model in a noniterative way. The problem of solving the predistorter coefficients is 

reformulated and the I L A solves the postdistorter coefficients instead of the predis

torter coefficients. The employed topology is depicted in F ig . 1.12. We minimise a 

criterion function J(e) with the error signal e(t) which is a difference between the 

postdistorted P A output and the P A input [9,22] 

e(t) = F p o s t ( j - ) - * ( t ) , (1.28) 

where - F p o s t ( ' ) is a nonlinear function of the postdistorter. If the employed model 

is linear in its unknown parameters, the solution of its coefficients is a linear prob

lem. A l l models employed in this thesis, and most D P D models, comply wi th this 

condition. Note that both signals y(t) and x(t) must be known. 

B y substituting signal x wi th the inverse function V~l{y) in equation (1.28) and 

assuming the error signal e to be zero, which corresponds to the ideally adapted 

postdistorter function F p o s t ( . ) , we get 

F P o s t (J^) = V~\y) = V-\G0z). (1.29) 
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of criterion J(e) 

J _ 
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Postdistorter 

F ig . 1.12: The principle of D P D adaptation by the indirect learning architecture. 

If we compare the right-hand side of this equation with equation (1.22), we can 

see that both equations are equivalent. Consequently, we can state that the solved 

postdistorter model can be employed as the predistorter and we can set 

FPRE(-) = F p o s t ( - ) . (1.30) 

The fully derived evolution of the predistorter function from the postdistorter func

tion can be found in [23]. 

The solution of the postdistorter can be written in the form of a matrix equation. 

Assuming that the postdistorter model is described in the matrix form (1.14), the 

solution of a typical overdetermined system of equations is given by linear algebra 

as [24] 

b' = (UfUy)-lU»x, (1.31) 

where {UyUy)-1!!^ is a pseudoinverse of matrix Uy. Please note that for the post

distorter model, signal y(t) is the input and goes into matrix Uy, while signal x(t) 

is the desired postdistorter output. 

1.4.3 Indirect Learning Architecture with Forward Model Esti

mation 

It has been known [20, 25, 26] that the predistorter solution provided by the I L A 

is biassed and that the I L A could be suboptimal. This phenomenon is related to 

the present noise in the measured P A output y(t) which samples form the system 

matrix Uy. This problem does not exist for the D L A , because matrix Uz is created 

by noise-free samples of signal z(t). 
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Morgan [25] and Landin [26] solved the problem with the biassed solution by 

identifying the P A forward model followed by an internal calculation of the noise-

free output of the forward P A model and its usage for the regular I L A calculation. 

Hereinafter, we wi l l refer to this method as the forward model indirect learning ar

chitecture ( F M - I L A ) . Its block diagram is depicted in F ig . 1.13. The main drawback 

of F M - I L A is the increased computational complexity as the forward P A model and 

its output is calculated in addition to the calculation of the regular I L A . 

DPD 

C 
Q -
5 sä 

P A 

PA model 
extraction ^ y 

PA coefficients 

PA model 

DPD 
Training y 

Fig . 1.13: The block diagram of the D P D adapted by the F M - I L A . 

The F M - I L A procedure can be described mathematically as solving the forward 

P A model coefficients as 

b={UH

xUx)-1UH

xy. (1.32) 

The forward P A model output y is calculated as 

y = Uxb, (1.33) 

and the postdistorter coefficients b' are solved using the forward P A model output y 

and the P A input x as 

b' = (UfUy^Ufx. (1.34) 

The calculated postdistorter coefficients are used as the predistorter coefficients in 

the next iterations. 
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1.5 Employed Modulations 

In this section, we introduce the basics of modulation schemes employed for test 

signals, hereinafter in this thesis. This brief overview serves only as a reference for 

the performed simulations and experiments. A comprehensive elaboration would be 

out of the scope of this thesis. 

1.5.1 Orthogonal Frequency Division Multiplexing 

orthogonal frequency-division multiplexing ( O F D M ) is a multicarrier modulation 

scheme that dates back to 1966 and respective works [27-29]. Recently, multicarrier 

modulations have become very popular due to their favourable properties and the 

possibility of realistic and effective fast Fourier transform ( F F T ) and inverse fast 

Fourier transform ( I F F T ) implementations. The multicarrier modulations divide a 

given frequency channel into several subchannels, known as subcarriers. These sub-

carriers spread over a narrow band only, which allows for the effective equalisation 

of a radio channel, as one-tap equalisers can be employed to equalise subcarrier by 

subcarrier. 

Complex 
signal samples 
to DACs and 
IQ modulator 

Fig . 1.14: A simplified block diagram of an O F D M modulator. Data bits are mapped 

into data symbols from a predefined alphabet in the first block and the C P is added 

in the fourth block. 
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A simple block diagram of an O F D M modulator is shown in F ig . 1.14. The 

OFDM-modu la t ed signal y(t) can be mathematically described as [30] 

DO 

y(t) = 12 9k,m(t)dkjjn, (1.35) 
m=—oo k&K 

where c4,m is a transmitted complex symbol at the m-th time position and fc-th sub-

carrier, and fC is a set of the active subcarriers. Signal gk,m(t) describes a modulation 
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pulse shape which is defined as [30] 

9k,m(t) = P(t ~ m A T ) ^ k F ( t - m A T \ (1.36) 

where F is a frequency spacing between subcarriers, A T is a time spacing between 

transmitted symbols and function p{t) describes the modulation prototype filter. 

The O F D M modulation has the prototype filter defined as [30] 

= [ (1.37) 
I 0 otherwise, 

which is a rectangular pulse with the width of A T = 1/F. The final equation for 

the O F D M modulation can be obtained by incorporating (1.36) into (1.35) as 

oo 

V(t)= £ J2 dk,mP(t - m A T ) ^ k F ^ m A T \ (1.38) 
m=—oo k&K 

1.5.2 Filtered Orthogonal Frequency Division Multiplexing 

The filtered orthogonal frequency-division multiplexing ( F - O F D M ) modulation is an 

evolution of the O F D M . The original O F D M suffers from high out-of-band emissions 

caused by the rectangular-pulse filtering. The problem of out-of-band emissions 

has been addressed and solved by the F - O F D M in exchange for dropping strict 

orthogonality of subcarriers. 

The mathematical description of an F - O F D M modulated signal can be defined 

similarly to the O F D M and equation (1.35), employing the prototype filter. The 

F - O F D M prototype filter for this thesis has been designed as proposed in [31], [32]. 

The filter coefficients /s[n] are given as 

hH = ^ % ( 1 3 9 ) 
J2PB [n\ w[n\ 
n 

where PB\P\ is the sine function and w[n] is the window function. The sine function 

is defined as 

Ps[rz] = sine ((W + 2AW)^) , (1.40) 

where Z is the F F T size, W is the number of assigned data subcarriers, and AW 

is the tone-offset, where 2AW is the difference between the desired pass band and 

the designed sine filter pass band [32]. The window function is defined as 

w[n] = fo.5 (1 + cos f-^V)) V'6 , (1.41) 

where < n < 

L - 1. 

and L is the number of filter taps. 
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Discrete Fourier Transform Precoding 

discrete Fourier transform ( D F T ) precoding is a well-known technique that reduces 

the peak-to-average power ratio ( P A P R ) of the O F D M modulated signals before 

their transmission. The precoding principal and properties have been described 

in [33-35]. The basic principle is quite simple: a D F T precoding block is added 

before the F - O F D M (alternatively O F D M ) modulator, which results in a similar 

P A P R to single carrier modulations, while the beneficent properties of the O F D M 

modulation scheme are preserved. A simplified block diagram of the modulator wi th 

D F T precoding can be seen in F ig . 1.15. 
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Fig . 1.15: A simplified block diagram of an F - O F D M modulator with an optional 

D F T precoding. 

1.5.3 Filter Bank Multicarrier 

The filter bank multicarrier ( F B M C ) modulation is based on transmission through 

a bank of filters. This approach was first presented in [27,28]. The idea is to 

divide a given band into several subbands, similar to the O F D M subcarriers, by 

bandpass filters. The filter design is a crucial task and it needs to fulfil contradictory 

requirements, such as symbol density, out-of-band emissions, and orthogonality, have 

to be balanced [36-38]. 

We have employed the prototype filter and principles defined by the P H Y D Y A S 

project [39]. The impulse response of the filter is defined as [39-42] 

Pit) 
1 + 2 E ^ c o s f e ) if - O f < t < ^ KOToJ 2 - - 2 • 

0 otherwise, 

where O is the overlapping factor, To represents a time-scaling parameter and 

depends on the desired subcarrier spacing (or time spacing), and the numerical 
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coefficients Hi are defined by the P H Y D Y A S project [39, 41] and are stated in 

Tab. 1.1. Our modulator and demodulator are based on the publicly available 

Mat lab code [43]. 

Tab. 1.1: Numerical coefficients for the P H Y D Y A S filter. 

o # 0 # i H2 H3 

2 1 V 2 / 2 - -

3 1 0.911438 0.411438 -

4 1 0.971960 \ /2 /2 0.235147 

1.6 System Performance Metrics 

To analyse the D P D performance, we observe these metrics: the adjacent chan

nel power ratio ( A C P R ) , error vector magnitude ( E V M ) , and the normalised mean 

square error ( N M S E ) . 

1.6.1 Adjacent Channel Power Ratio 

The A C P R qualifies the unwanted spectrum regrowth caused mainly by the non-

linearity of the transmitter. This metric shows how much the transmitter would 

interfere in other communications ongoing in channels close to the transmitter's 

channel. It is defined as the power in the adjacent channel over the power in the 

main channel [44,45] (see F ig . 1.16) 

A C P R = 10 l o g 1 0

 / a / J 1 — , (1.43) 
StPv(f)4f 

where Py(f) is the signal power spectral density, / a d j i , /adj2 are bound frequen

cies of the adjacent channel and / m i , / m 2 are bound frequencies of the main chan

nel. The difference / m 2 — / m 2 denotes the main channel bandwidth B. Adjacent 

channel frequencies are set in the same way as the adjacent channel bandwidth 

/adj2 — / a d j i = P> • The A C P R is evaluated for the lower (left hand side) and higher 

(right hand side) adjacent channels separately. The adjacent channel can also be 

defined wi th an offset, e.g., / a d j i = / m 2 + 0.15 for the lower adjacent channel and 

/adj2 = / m i — 0.15 for the higher adjacent channel. 

Throughout this thesis, when we present the A C P R results, the A C P R is aver

aged for the lower and higher adjacent channels as 

1 / A C P R , A C P R H \ 

A C P R ( d B ) = 101og 1 0 - f 10—10— + 10—10— J , (1.44) 
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Fig . 1.16: The A C P R bounds depicted in the spectrum. 

where A C P R l and A C P R h are the A C P R s for the lower and higher adjacent chan

nels, respectively. Similarly to (1.44), throughout this thesis, the average A C P R 

value is calculated as 
1 N-l 
1 A C P R [ n ] 

A C P R a v g ( d B ) = 101og 1 0 - £ 1 0 ^ ^ , (1.45) 
i V n=0 

where N is the number of averaged values. 

1.6.2 Error Vector Magnitude 

The E V M evaluates the in-band signal distortion [46,47]. In contrast to the other 

presented metrics, the E V M requires the signal to be demodulated and it qual

ifies errors in the demodulated symbols. The E V M is defined as the root mean 

square (RMS) of the error vectors which connect the reference symbols wi th the 

demodulated symbols (see F ig . 1.17) over the normalisation reference expressed in 

percentages [46,47] 

I i V s - l 

\ ^ E ( / e r r [ n ] 2 + g e r r [ n ] 2 ) 

E V M ( % ) = ± — 100%, (1.46) 
^ r e f 

where n is the symbol index, N$ is the number of demodulated symbols, I e r r H = 

I r e f [ n ] — i d e m o d H is the in-phase component of the error vector, Q e r r N = Q r e f N — 

Q d e m o d N is the quadrature component of the error vector, and Arei is the E V M 

normalisation reference. 
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Fig . 1.17: A graphical representation of the received-symbol error vector for calcu

lating the E V M . 

There are two possible values for the E V M normalisation reference: the con

stellation maximum or the reference R M S . E V M normalisation reference as the 

constellation maximum can be formally written as 

Throughout this thesis, we strictly show the E V M metric normalised to the 

reference R M S . Considering its definition, an E V M average is calculated as a root-

mean-square value 

(1.47) 

or as the reference R M S , it can be written as 

(1.48) 

E V M a v g ( % ) = , - £ | E V M [ n ] | 2 , 
2 N-l 

(1.49) 
n=0 

where N is the number of averaged values. 
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1.6.3 Normalised Mean Square Error 

The N M S E is used to qualify the difference between ideal and actual signals in at 

certain point in a system, usually at the output of the transmitter. The N M S E is 

defined as the mean power of the error signal divided by the mean power of the 

reference signal x and it is expressed in dB as [48,49] 

E \y[n] - x[n}\2 

N M S E ( d B ) = 10 l o g 1 0 " — , (1.50) 
l^i \%[n\\ 
n 

where y is the actual signal and x is the reference signal. Similarly to the A C P R 

average in (1.45), the N M S E is averaged as 

1 N-l 
1 t - ^ N M S E [ n ] 

N M S E a v g ( d B ) = 101og 1 0 - £ 1 0 ^ ^ , (1.51) 
i V n=0 

where N is the number of averaged values. 
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2 State-of-the-Art 

In this chapter, we present a summary of the research in the field of predistorters, 

and especially of digital predistorters, in recent years. We do not intend to provide 

a comprehensive overview of all papers from the whole history of predistortion. A 

very brief outline of the history can be found in Sec. 1.2 and more can be found in 

the referenced review papers in Sec. 2.1. 

In recent publications in the field of predistortion, we have identified the following 

research directions: 

• adaptation methods, 

• analogue and hybrid predistorters, 

• analysis, 

• antenna arrays and multiple-input and multiple-output ( M I M O ) systems, 

• Doherty power amplifiers, 

• hardware implementation, 

• low-complexity methods, 

• machine learning, 

• mathematical models. 

Furthermore, the papers about low-complexity predistortion can be divided based 

on their focus: 

• computational complexity, 

• model pruning and sizing, 

• one-bit feedback samples, 

• real-valued feedback samples, 

• subband and multiband predistortion, 

• and undersampling methods. 

In the rest of this chapter, we briefly introduce a few papers for each research 

direction that received the most interest. More extensively, we described the papers 

aiming at low-complexity methods for digital predistortion, especially the papers on 

which this thesis is based. 

2.1 Review Papers 

K a t z et al. [50] presented an overview of P A linearisation techniques such as feed

forward linearisation, predistortion, mitigating memory effects, D P D s , look-up ta

bles (LUTs) , and approaches to D P D adaptation. A t the end, the authors outlined 

the challenges in the linearisation field. 

A n extensive overview was presented by Fager et al. in [1]. They focused 

especially on antenna phased arrays and M I M O systems in 5G communications. 
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Namely, they covered the following areas: P A behavioural modelling, PA-antenna 

interactions, power efficiency and linearisation in M I M O transmitters and hybrid or 

phased-array transmitters, and D P D adaptation with few observation receivers. 

Gilabert et al. [51] clearly explained several solutions for the identification of 

D P D parameters. They covered adaptation strategies such as least mean squares, 

recursive L S , Q R decomposition-based recursive L S , simultaneous perturbation sto

chastic approximation, principal component analysis ( P C A ) , partial L S , and others. 

Borel et al. [2] compared and evaluated the most popular linearisation techniques, 

including feedforward, feedback, and predistortion. They provided a comprehensive 

comparison of state-of-the-art methods and their performance. The authors clearly 

stated the advantages and disadvantages of the various linearisation methods and 

predicted potential future directions, bottlenecks, and obstacles. Finally, they con

sidered a hybrid of analogue and digital predistorters as a promising linearisation 

architecture. 

Singh and Mal ik [52] presented another review on P A linearity and efficiency 

The paper covered feedback, feedforward, and predistortion as linearisation tech

niques and outphasing, Doherty, and envelope-tracking P A s as efficiency enhance

ment techniques. The authors described the differences between these techniques 

and provided a comparison. 

Desgreys et al. [53] briefly reviewed predistortion techniques for wideband PAs . 

Wood in [54] presented challenges posed by wider bandwidth and lower power con

sumption and offered some potential solutions. A h m a d et al. [55] reviewed machine-

learning-based approaches in communications and partially covered applications of 

machine learning in D P D s . L i u et al. [56] presented a comprehensive review of l in

earisation techniques targeting Doherty P A s and massive M I M O systems. Gupta et 

al. [57] presented a review generally oriented towards nonlinear system identification. 

2.2 General Research Directions in Predistortion 

2.2.1 Adaptation Methods 

Researchers sti l l a im at improving the adaptation methods of the predistorter co

efficients. Chani-Cahuana et al. [58] proposed an adaptation method based on the 

iterative learning control ( ILC) , a well-established control theory technique. The 

proposed method iteratively finds an unknown P A input signal for a desired P A 

output signal. B y knowing the required P A input for the desired P A output, the 

predistorter coefficients can be easily found. The authors reported improved resis

tance to noise in the feedback compared wi th conventional predistorters. Similarly, 

Schoukens et al. [59] presented a modified technique based on the I L C . 
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Lopez-Bueno et al. and Pham et al. [60,61] described an estimation and adap

tation method based on the adaptive P C A . Their method leads to an orthogonal 

transformed matrix which reduces the number of coefficients. Due to its orthogonal

ity, new coefficients can be estimated independently. The proposed adaptive P C A 

method can find the minimum number of necessary coefficients to meet a specific 

linearity level. 

Belabad et al. [62] proposed a genetic algorithm optimisation method to identify 

coefficients of the Wiener model of the P A . According to this model, they proposed 

the Hammerstein-model based D P D . 

Rodrigues et al. [63] presented an adaptation of the D P D based on different scalar 

measurements taken from the feedback. They specifically proposed measurement of 

the A C P R and spectral mask margin. The D P D model coefficient estimation was 

reduced to a generic numerical optimisation problem. Additionally, they proposed 

an orthogonalisation algorithm, resulting in a faster convergence time and lower 

output power variations across the iterations. 

Le Due et al. [64] showed an adaptive D P D with a cascade of the adaptive I L A 

and static D L A with a linearly interpolated L U T . The static D L A compensated for 

the time-invariant part of the nonlinear distortion while the adaptive I L A compen

sated for the variable nonlinear distortion which was caused by temperature changes 

and P A ageing. 

Le et al. [65] proposed a D P D technique based on adaptive I L A wi th recursive 

prediction error minimisation. They designed the forgetting factor to be variant in 

time; a lower forgetting factor at the beginning ensures fast convergence, while a 

higher forgetting factor at the end ensures higher immunity against noise and more 

consistent results in the steady state. 

2.2.2 Analogue and Hybrid Predistorters 

The main motivations and arguments for analogue predistorters are the computa

tion complexity of D P D s and, consequently, their higher power consumption. The 

possibilities of D P D s are, however, far beyond the limits of their analogue counter

parts. Some researchers have tried combining the advantages of both analogue and 

digital predistorters and came up wi th the concept of hybrid and digitally assisted 

analogue predistorters. 

C a i et al. [66] presented a two-transistor-based R F analogue predistorter ( A P D ) . 

Their predistorter was based on the similar nonlinearity of the two transistors. How

ever, the predistorter missed adaptability and had to be adjusted for the main P A . 

The authors extended their work in [67] by adding a realisation of the predistorter 
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and its measurements to the originally simulated-only results. They reported sim

ilar or better predistortion performance wi th the simpler predistorter compared to 

competitive works. 

Braithwaite [68] proposed a hybrid analogue and digital predistorter for dual-

band R F transmitters. Each subband was compensated separately in the digital and 

analogue predistorters. The D P D was intended for compensating close intermodu-

lation products, whereas the A P D should compensate for intermodulation products 

at multiples of the carrier frequency. 

The combination of the analogue and digital predistorter was also employed by 

Torné et al. in [69]. They employed the A P D to cancel long-term memory effects in 

G a N high-electron-mobility transistor ( H E M T ) P A s caused by the electron trapping 

phenomena. They reported improvement in the intermodulation product level by 

6.8 dB for the combination of the A P D and the D P D compared to the D P D alone. 

In [70], the authors proposed a tunable reflective predistorter based on a parallel 

Schottky diode power-dependent impedance matching network. They reported an 

improvement of 6.3 dB in the power of the third-order intermodulation products 

achieved by their predistorter compared to the conventional A P D s . 

Finally, we mention the paper [71] written by Gumber and Rawat where they 

proposed a new control scheme for controlling the gain and phase of the predistorted 

signal. In addition, they compared their method wi th many state-of-the-art analogue 

and hybrid predistorters. 

2.2.3 Analysis 

Cheaito et al. [72,73] derived an analytical expression for the E V M of the nonlinear 

P A output. They modelled P A nonlinearity with the clipping effect and P A memory 

wi th the M P model. Additionally, they analysed the predistortion complexity wi th 

respect to E V M constraints. 

L i u et al. [74,75] studied the influence of reduced A D C dynamic range on D P D s . 

They also included analyses of the effect of gain and delay mismatch on predistortion 

performance in [75,76]. 

The impact of the normalisation gain of D P D s on the linearisation performance 

was studied by Wang et al. [77] and Jardin and Baudoin [78] . They showed that 

adjusting the normalisation gain can improve the P A E , E V M , or the A C P R . 

X iao [79] studied the long-term stability of closed-loop adaptation algorithms. 

She proposed a modified closed-loop adaptation algorithm achieving the long-term 

stability which the conventional closed-loop algorithms suffer from. 

Chani-Cahuana [49] derived a closed-form expression for the minimum N M S E 

that could be obtained in systems with predistorters. She based her study on an ideal 
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scenario where all the distortions introduced by the P A are perfectly compensated for 

and the linearisation is l imited only by the noise added to the measured P A output. 

Naturally, this limits the D P D adaptation and the linearisation performance. 

Finally, Wang et al. [77,80] investigated the effects of crest factor reduction and 

digital predistortion complexity on the linearity and power efficiency of PAs . The 

authors proposed an algorithm to trace an approximate Pareto front of the two 

criteria, the A C P R and the number of D P D coefficients. Their algorithm helps to 

analyse the influence of the P A operating point on its efficiency and the required 

number of D P D coefficients for given A C P R or N M S E requirements. 

2.2.4 Antenna Arrays and Ml MO Systems 

Researchers were interested in predistorters for antenna arrays and M I M O systems, 

because these systems usually contain many P A s to be linearised. There are many 

approaches to linearising a bunch of PAs . L i u et al. [81] proposed a linearisation 

method based on the feedback from a single P A to linearise beamforming M I M O sys

tems. Tervo et al. [82] introduced single over-the-air feedback for nonlinear phased 

arrays. The authors extended their work in [83] by adding the calibration of the 

feedback path and considering multiple D P D adaptation strategies. A single-input 

single-output D P D was also presented by Ng et al. [84,85]. Their architecture aimed 

at millimetre-wave beamforming arrays. 

Abdelhafiz et al. [86] proposed an augmented crossover M P model for lineari

sation in M I M O systems in the presence of linear and nonlinear crosstalk. The 

proposed model was an improvement of the crossover M P model [87]. Abdelaziz 

et al. reduced the complexity of D P D s by reduced-bandwidth filtered basis func

tions and estimated the model coefficients based on decorrelation-based closed-loop 

processing in [88]. The authors extended their work in [89] where they presented a 

D P D technique utilising the decorrelation-based learning rule in conjunction with a 

single combined output signal of the individual P A s for hybrid M I M O transmitters. 

Wang et al . [90] focused on the linearisation of M I M O transmitters using a 

real-time single-channel over-the-air data acquisition loop. The proposed technique 

identified the nonlinear behaviour of all PAs , as well as their combined signals in 

the far field. They reported excellent linearisation performance with low-complexity 

hardware. 

Zanen et al. [91] analysed the power consumption of different D P D architectures 

for M I M O systems and antenna arrays and noticed that the power consumption of 

complex D P D s themselves, in combination with wideband signals, can be higher 

than the overall consumption of the PAs . 
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2.2.5 Doherty Power Amplifiers 

Doherty P A s are based on two parallel PAs . One P A , called a carrier amplifier, is 

biassed for C l a s s - A / B or Class-B operation, while the other one, called a peaking 

amplifier, is biassed for Class-C operation. The peaking amplifier amplifies the 

peaks in the signal which are normally clipped by the carrier amplifier. The main 

challenges wi th the Doherty P A s are splitting the input for the two parallel P A s 

and connecting the P A outputs via an output power combiner. Two variants of the 

Doherty P A s exist. There are single-input Doherty P A s [92] and digitally-driven 

Doherty P A s wi th two separate inputs, one for the carrier amplifier and the other 

one for the peaking amplifier [93]. 

Ghosh and Rawat [94] proposed a digitally-driven Doherty P A wi th an analyti

cally designed combiner network and employed the D P D for its linearisation. They 

reported a drain efficiency of 45%-56%. 

Chang et al. [95] presented an aliasing-free multilevel pulse modulation architec

ture for Doherty P A implementation accompanied by a simple memoryless D P D . 

They reported the improved linearisation performance in A C P R from -36 dB of a 

conventionally linearised Doherty P A to -41 dB of their linearised architecture. 

Masood et al. [96] showed a digitally assisted Doherty P A with a segmented 

D P D architecture. According to their paper, the improved adjustment of the phase 

delay between the carrier and peaking P A and the thresholding of the peaking P A 

result in higher efficiency but degrade the linearity. The proposed segmented D P D 

architecture is reported to improve linearisation performance by ~ 11 dB in terms 

of the A C P R compared wi th the conventional D P D . 

Peng et al. [97] proposed an adaptive signal separation algorithm (ASSA) for 

dual-input Doherty P A s to minimise the mismatch between the signal separation 

functions and the intended operation which is the main source of nonlinearity. They 

reported linearisation improvement of the A C P R from -43 dB without A S S A to 

-53 d B wi th A S S A for test signals wi th 10-MHz bandwidth. 

2.2.6 Hardware Implementation 

The researchers also focused on obstacles to implementing predistorters into real 

hardware, mainly in field programmable gate arrays ( F P G A s ) . They optimised the 

predistorter topology in [98] and modified the decomposed vector rotation-based 

behavioural model in [99]. Huang et al. [100] proposed a new approach for a parallel 

processing D P D implementation and achieved a linearisation bandwidth of up to 

2.4 G H z wi th an F P G A running at a 300-MHz clock. 
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Other researchers were interested also in implementing LUT-based predistorters. 

Ren [101] proposed the interpolation of the L U T values by the Talyor series to 

achieve more accurate linearisation. Mol ina et al. [102] implemented the LUT-based 

D P D wi th linear interpolation and extrapolation and extended their work in [103] 

where they introduced a 2-D L U T based predistorter wi th bilinear interpolation for 

concurrent dual-band predistortion. 

2.2.7 Machine Learning 

Machine learning in the field of P A predistortion has experienced a boom recently. 

Bhuyan and Sarma [104] proposed an artificial neural network (NN) structure called 

the real-valued focused time delay N N for modelling P A predistorter. The proposed 

structure splits the baseband complex signal into real and imaginary samples and 

feeds these samples into delay shift registers of a certain length. A l l values from 

the registers are taken as inputs for the N N . This structure was more thoroughly 

analysed and compared wi th the conventional methods [105]. 

Wang et al. [106] continued development of the N N predistorters and introduced 

an augmented real-valued time-delay N N for joint mitigation of P A nonlinearity and 

modulator imperfections. They added the magnitudes of baseband complex samples 

and their powers as inputs to the N N . The authors reported improved mitigation of 

imperfections by 3-4 dB in terms of the A C P R compared to the real-valued focused 

time delay NNs . 

W u et al. [107] improved the real-valued time delay N N predistorter by adding 

direct connections from input to output. They called the proposed N N the residual 

real-valued time-delay N N , because, in fact, the N N learns only the P A nonlinearity 

behaviour. The authors reported a lower complexity of the proposed N N compared 

to the original N N . 

Jaraut et al. [108] proposed a composite N N D P D for M I M O systems. They 

focused on compensating for the P A nonlinearity, IQ imbalances, crosstalk, and the 

direct current (DC) offset. L i et al. in [109] extended the N N predistortion for 

M I M O systems by the I L C and focused on compensating for nonlinear crosstalk. 

C a i et al. [110] proposed a model based on a time-delay support vector regression 

( S V R ) . The authors reported that the SVR-based method can obtain the optimal 

model in a short time compared to the conventional N N models. Their S V R model 

improved modelling accuracy compared to the conventional Volterra-based models 

and to other NN-based models. X u et al. [ I l l ] extended the SVR-based model by 

adding the magnitude and phase of complex baseband samples, which reportedly 

improved the linearisation performance. 
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Sun et al. [112] presented a link between the P A memory and the memory of 

bidirectional long short-term memory N N s and based a predistorter on it. Their 

paper showed that the proposed predistorter can achieve successful linearisation; 

however, it lacks thorough comparison wi th the conventional and other N N methods. 

Zhang et al. [113] proposed a vector decomposed time-delay N N and an aug

mented vector decomposed time-delay N N . The authors claimed that the proposed 

N N s comply more wi th the physical characteristics of P A s than conventional NNs . 

Their proposed models take signal sample magnitudes only and recover the phase in 

the phase recovery layer. The augmented version added the p-ih order magnitude 

inputs. L i et al. [114] applied the idea of vector decomposed N N s and presented a 

vector decomposed long short-term memory N N and its simplified variant. The au

thors showed that the proposed model outperformed other D P D variants, but wi th 

much more variable parameters. Tanio et al. [115] proposed an envelope time-delay 

N N D P D , quite similar to the vector decomposed time-delay NNs , and a pruning 

strategy. They demonstrated that their N N can outperform vector-decomposed NNs 

while using far fewer floating point operations. 

Tripathy et al. [116] presented a deep N N predistorter with Swish [117] and 

Sigmoid-weighted linear unit [118] activation functions instead of the conventional 

rectified linear units (ReLU) activation function. 

H u et al. [119] employed a deep N N for signal recovery from the measured un-

dersampled and band-limited signal in the feedback for adaptation of D P D s . Sun 

et al . [120] presented an adaptive strategy for deep N N D P D s . 

2.2.8 Mathematical Models 

Abdelrahman et al . [121] extended the conventional M P model by adding weighting 

functions. Their model is suitable for P A characteristics that exhibit strong memory 

effects at low input power levels and mi ld memory effects at high input power levels. 

In such cases, the proposed weighted model can improve linearisation performance 

while preserving the number of model coefficients. 

L i et al. [122] redesigned the cross terms of the decomposed vector rotation ( D V R ) 

model and presented a simplified model. They showed that the proposed model 

improves the modelling performance and reduces the implementation complexity. 

Zhai et al. [123] presented a new canonical piecewise-linear function-based model 

for band-limited D P D s wi th a structure similar to the dynamic deviation reduction 

Volterra series model. Their model was simpler as it contained no higher order 

terms and no finite impulse response filters. The authors reported linearisation 

performance similar to the original model. 
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Luo et al. [124] proposed a dual-input canonical piecewise-linear function-based 

model for D P D s of multi-antenna transmitters. They reported that the proposed 

model could mitigate the higher-order nonlinearity of the antenna crosstalk. 

2.2.9 Other Works 

In this section, we include selected papers that topically did not fit into the iden

tified research directions and we consider them interesting to be mentioned in this 

thesis. Papers [125,126] were focused on over-the-air feedback for D P D adaptation 

specifically aiming at M I M O and multi-antenna systems. 

Barradas et al. [127] proposed a D P D specifically aiming at linearisation of long-

term memory effects in G a N H E M T s attributed to the electron trapping phenomena. 

Flor ian et al . [128] addressed a similar problem and proposed a prepulsing technique 

for characterisation and measurements of GaN-based PAs . 

L i et al. [129] introduced a Cartesian error feedback architecture. Their linearisa

tion was based on a typical feedback architecture where the error signal was created 

by subtracting the desired signal from the P A output at the carrier frequency. For 

this purpose, the feedforward signal was modulated at the carrier frequency of the 

original complex IQ signal. 

2.3 Low-Complexity Methods for DPD 

2.3.1 Computational Complexity 

Zhai et al. [130] simplified the D V R model [131] and presented a similar model 

without vector rotations. Their results show that the new model provides similar 

linearisation performance as the original D V R model while decreasing the compu

tational complexity. 

Wang et al . [132,133] replaced the computationally-intensive matrix inversion 

(TJ^Uz)~l in (1.27) by a precalculated inversion of the correlation matrix of the basis 

functions. The authors reported the same linearisation results as for the traditional 

approach. Additionally, they proposed an extension for dual-band applications [133]. 

Ke l ly and Zhu [134,135] proposed a low-complexity stochastic optimisation-based 

D P D adaptation. They directly measured the loss function for little varying D P D 

coefficients and by its change (its approximate derivation) they decided the update 

direction. 
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2.3.2 Model Pruning and Sizing 

Gilabert et al. [136] proposed an iterative search algorithm, called the less relevant 

basis removal, for the model order reduction and compared it wi th other three 

reduction techniques, based on the compressed sensing, P C A , and partial L S . A l l 

the compared techniques lead to approximately the same reduction factor; however, 

the P C A and partial L S need the fewest iterations. 

L i et al. [137] showed a model pruning method, called the regularised sparsity 

adaptive matching pursuit to prune MP-based models. Their method combines the 

adaptability of the adaptive sparsity matching pursuit [138] and the regularity of 

the regularised orthogonal matching pursuit ( O M P ) [139]. 

Wang et al. [140,141] presented a technique for optimal G M P - m o d e l sizing based 

on the Hi l l -Cl imbing algorithm. Their optimisation criteria are the number of coef

ficients and the N M S E of the model output. Additionally, they presented a single 

criterion combining the number of coefficients and the N M S E . The authors extended 

their work in [142] by a size-determining algorithm for multistage sparse models. 

Peng et al. [143] presented a sparse Bayesian learning algorithm. The proposed 

algorithm decreased the number of model coefficients and reduced the required num

ber of samplings. 

Peng et al. [144] proposed a sparse parameter identification algorithm. They 

selected kernels one by one according to the projection of the residual vector onto 

the kernel. The authors reported that the proposed method achieves the perfor

mance of the O M P and the regularised matching pursuit while having much lower 

computational complexity. 

Abdelhafiz et al. [145] presented a swarm optimisation wi th the Akaike informa

tion criterion [146] for determining the dimensions of P A models. They applied the 

optimisation to the G M P model and compared its results with those of simulated 

annealing. The obtained results showed similar performance for al l the compared 

methods. 

Becerra et al. [147] proposed a method for kernel selection based on the O M P 

and the Gram-Schmidt orthogonalisation. Compared wi th the O M P , they added 

one extra orthogonalisation into the algorithm, which improved the performance. 

They compared the results of the proposed algorithm wi th those of the original 

O M P , P C A , and the compressed-sampling matching pursuit [148]. They reported 

that the proposed doubly O M P achieved the best pruning performance compared 

wi th the other methods. In [149], the authors added subspace pursuit pruning and 

presented an overview of all the pruning methods; and in [150], they reduced the 

computational complexity of the doubly O M P by avoiding the calculation of the 

pseudoinverse matrix. 
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2.3.3 Real-Valued Feedback Samples 

Chani-Cahuana et al. [3] proposed a D P D architecture with real-valued feedback 

samples. They estimated the P A forward model similarly to the procedure described 

in Sec. 3.2. Afterwards, they employed the same procedure for the ILC-based D P D 

adaptation, originally described in [58]. The authors reported the same linearisation 

performance of the proposed I L C with real-valued feedback samples as that of the 

original I L C D P D . 

Guan et al. [5] presented a D L A D P D with one undersampling A D C in the 

feedback path. Basically, they proposed the same idea as Chani-Cahuana et al. 

in [3], but employed the D L A instead of the I L C and added undersampling. Bo th 

papers seem to be independent. Guan et al. reported, quite surprisingly, a higher 

linearisation performance of their real-valued undersampled D L A D P D than that of 

the conventional full-speed complex-valued D P D . 

Zhang et al. [151] derived the same formula as Guan et al. [5] in a little different 

way and without the undersampling. 

2.3.4 One-Bit and Signed-Based Feedback Samples 

Wang et al. [4,152] proposed D P D adaptation based on observing the sign of the 

P A output error signal. They observed the sign employing the comparators in the 

feedback path and, in principle, these comparators could be understood as 1-bit 

A D C s . The simplified diagram of their D P D architecture is depicted in F ig . 2.1. 

Wang et al. modified the D L A in equation (1.27) and derived its form wi th the 

sign. We can summarise their derivation as follows: The difference A = z — y in 

the original can be split into real and imaginary parts. The vector elements are 

A[n] = A r [ n ] + j - A i [ n ] , (2.1) 

where (-) r and (-)i are real and imaginary parts, respectively. B y employing the fact 

that an arbitrary real number can be written as a multiplication of its sign and its 

absolute value a = sign(a) • \a\, equation (2.1) can be reformulated as 

A[n] = sign(A r[n]) • |A r[ra]| +j • sign(Ai[ra]) • | A [ n ] | . (2.2) 

Since both absolute values, |A r [n ] | and |Aj[ra]|, tend to be very small and they are 

decreased through the D P D adaptation process, they can be replaced by an update 

constant /xo [4] 

A[n] = no sign(A r[n]) + j • Ho sign(Ai[n]) = Ho • sign(A[n]), (2.3) 

where sign(A[n]) calculates the signs of real and imaginary parts of A[n] separately. 
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Digital domain [ Analogue domain 

IQ Modulator Main PA 

IQ Demodulator 

Comparators 
(1-bit ADCs) 

Fig . 2.1: The simplified D P D architecture wi th comparators in the feedback path 

as proposed by Wang et al. in [4,152]. Grey-coloured parts are not required if 

real-valued feedback principle [153] is employed. 

The final formula of the modified D L A can be stated as 

b = b' - 0 ( B f E ^ B f • sign(A), (2.4) 

where \x = /x/xo and the sign(-) function on the vector is defined as element-wise 

function. 

Zhang et al. [153] adapted the real-valued feedback principle (in this thesis pre

sented in Chapter 3) to the feedback wi th two comparators and simplified the ar

chitecture by employing one comparator only. 

One can notice that the proposed principle in F ig . 2.1 requires two additional 

high-speed D A C s (or one D A C if real-valued feedback is implemented [153]) which 

naturally complicates the design and increases the system power consumption. 

Guan et al. [154] proposed a low-complexity approach for D P D adaptation em

ploying a signed regressor algorithm (sign-based calculation) of the D L A . Al though 

their algorithm requires complex-valued feedback samples, we consider it to be re

lated to this topic and have included it here in this section. 

Pascual Campo et al. [155] presented a comprehensive overview of sign-based 

algorithms for D P D adaptation. The authors compared the complexities and per

formance of individual algorithms as well as combinations of them. 
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2.3.5 Subband and Multiband Predistortion 

Abdelaziz et al . [156,157] and Tarver et al. [158] presented a low-complexity D P D for 

subband linearisation for spectrally noncontiguous transmissions. Furthermore, they 

developed a decorrelation-based parameter learning solution. The authors reported 

more than 10 times the reduced computational complexity of the proposed D P D 

compared wi th the conventional ones. 

Mkadem et al. [159] expounded a complexity-reduced G M P model for linearisa

tion of multiband PAs . The authors compared the proposed models wi th dual-input 

and triple-input D P D models and reported similar linearisation performance wi th a 

reduced number of coefficients. 

Zhang and Chen in [160] presented the D P D adapted by multiple band-limited 

feedback signals. Their solution estimated the P A forward model based on the 

incomplete feedback signals and, by employing the forward model, they finally ex

tracted the coefficients of the predistorter. Zhang et al. [161] implemented the 

dual-band P A linearisation employing reduced L U T s . 

Jaraut et al. [162] proposed an independent component analysis method for the 

D P D models employed in carrier aggregation scenarios. The authors reported re

duced requirements on the bit resolution of calculations and on the F P G A memory. 

Additionally, the proposed method led to improved numerical stability of the D P D 

solution. 

2.3.6 Undersampling Methods 

Huang et al. [163] proposed the D P D adaptation wi th undersampled feedback. They 

employed the D L A and kept every n-th feedback sample. They noted that the 

feedback must be sampled wi th sufficient bandwidth. Wang et al. [164] presented 

a similar approach wi th the undersampled feedback, but they estimated the P A 

forward model and employed this model to adapt the D P D by the I L A . Beltagy et 

al. [165] extended the work [163] by deriving the D P D adaptation formulas for the 

undersampled feedback sampling at an intermediate frequency. The authors claimed 

the intermediate frequency sampling could be beneficial as it does not suffer from 

IQ imbalances. The adapted D P D achieved similar performance to its full-rate 

equivalent. 

Pra ta et al. [166] presented feedback loops employing R F subsampling A D C s 

to improve concurrent dual-band transmitter linearisation. The aliasing between 

upper and lower bands could naturally occur which the authors compensated for 

based on statistical approximated nonoverlapped multisines. The authors reported 

similar performance to the other subsampling techniques but with a lower hardware 

complexity. 
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Chung et al. [167] proposed methods for joint mitigation of hardware imperfec

tions, especially IQ imbalances and nonlinear distortion caused by the IQ modulator 

and P A . They estimated both the imbalances and nonlinear distortion based on ob

serving the undersampled feedback. 

L i et al. [168] focused on time-interleaved D P D s to reduce their sampling rates. 

The authors proposed a few architectures wi th time-interleaved D P D s and solved 

the aliasing effect. Their proposed low-speed D P D was naturally narrow band and 

compensated only for the distortion close to the communication band. In that region, 

the authors reported performance similar to that of the full high-speed D P D s . 
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3 Real-Valued Feedback 

3.1 Introduction 

In this chapter, we describe a simplification of the feedback circuitry for the D P D 

adaptation by employing only the in-phase or quadrature output of the IQ down-

converting mixer. The in-phase feedback is depicted in a block diagram in F ig . 3.1. 

The main motivation is to avoid one feedback A D C , which is one of the main contrib

utors to the total system power consumption. Alongside, the feedback complexity 

is reduced. Under certain circumstances, the D P D adaptation with the real-valued 

feedback samples might be less susceptible to IQ imbalances [A9]. 

COS CDct 

Fig . 3.1: The system diagram for the D P D with real-valued feedback. 

Our contribution has been presented in the paper [A3] and is the natural evolution 

of methods described by Chani-Cahuana et al . in [3] and by Guan et al . in [5]. In 

this thesis, both works are described in Sec. 2.3.3. A l l Mat lab source codes related 

to this chapter are provided at w w w . g i t h u b . c o m / j a n k r a l x / r f m _ i l a . 

We must mention papers by Y u et al. [169] and Zhang et al. [170] which proposed 

a similar idea to our paper [A3] presented here. Bo th works were presented later in 

the same year, independently of our work. 

3.2 Forward Model Estimation 

For simplicity, we start our derivation of the real-valued feedback with the M P 

model. However, the procedure is applicable to most of the currently well-known 

P A or D P D models. We can rewrite equation (1.14) wi th the real and imaginary 

parts, denoted as (-)r and (-)i, respectively, as 

y r + j V i = (Uxr+jU^ibr+jbi). (3.1) 
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Expanding the multiplication on the right-hand side yields 

Vr + JVi = Uxrbr + jUxibr + jUxrbi - Uxibi, (3.2) 

which can be split into two systems of equations, one for the real part of y and the 

other one for the imaginary part of y 

yr = UXTbT - Uxibi, (3.3) 

y{ = Ux-A + UXM. (3.4) 

To obtain the P A coefficient vector 6, it is sufficient to solve only one of the two 

systems of equations in (3.3) and (3.4). Advantageously, each system of equations 

requires only the real or imaginary part of the feedback signal y. In real hardware, 

the real part of the feedback signal is equivalent to the in-phase of the feedback 

quadrature mixer and similarly, the imaginary part is equivalent to the quadrature 

output. 

Ma t r ix Ux is fully known, as it consists of samples given by the transmitted 

signal x. Therefore, we can obtain b as the LS solution of eq. (3.3) wi th the real 

feedback samples 

V {AH

XAX) AA«yr, (3.5) 

or as the LS solution of eq. (3.4) wi th the imaginary feedback samples 

lB»Vi, (3.6) 

where we have substituted the real and imaginary matrix Ux by matrices Ax and 

Uxr -Uj, (3.7) 

[BH

XBX) 

Bx, defined as 

(3.8) 

In this way, we have solved the coefficients of the P A forward model. However, 

these coefficients cannot be directly recomputed into the D P D coefficients. One 

of the methods allowing for calculating the D P D coefficients employing the known 

forward model is the method developed by Morgan et al. [25] and Landin et al. [26]. 

3.3 Indirect Learning Architecture 

Direct derivation of the I L A wi th real-valued feedback cannot be achieved. The I L A 

takes the feedback samples and puts them into matrix Uy on the right-hand side of 
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the system of equations and the P A input on the left-hand side. In fact, the P A 

input and output are swapped compared wi th the P A forward model. However, we 

can benefit from [25,26] and employ the F M - I L A with real-valued feedback. 

The equations wi th the real-valued feedback are similar to the original complex 

feedback equations described in Sec. 1.4.3 with P A model coefficients, originally cal

culated using equation (1.32), and calculated wi th real feedback samples by eq. (3.5). 

Hereinafter, we wi l l refer to the proposed method as the real-valued forward-model 

indirect learning architecture ( R - F M - I L A ) . 

3.4 Direct Learning Architecture 

Let us continue wi th the development started in Sec. 1.4.1. We can split eq. (1.25) 

into the real and imaginary parts as 

A r + j A i = (Lr , r +jC/, i )(e r +je i ) . (3.9) 

B y expanding the multiplication on the right-hand side, we get two equation systems 

(similarly as for the forward model output as described by eq. (3.3) and (3.4) 

A r = UZTeT - Uzieu (3.10) 

A ; = Uzier + Uzre{. (3.11) 

Vector e can be solved from either the system of equations (3.10) requiring only 

the real part of the error vector A (consequently only the real feedback samples are 

required) as 

(Az Az)~ A" Ar (3.12) 

or the system of equations (3.11) requiring only the imaginary feedback samples as 

(3.13) [BfB^BfAi, 

where Az was defined in eq. (3.7) and Bz in eq. (3.8). Back substitution of vector e 

into eq. (1.24) yields the solution for the updated D P D coefficients 

br K 
K 

-^(AfA^Afizr-y, (3.14) 

Hereinafter, the D L A with real feedback samples is referred to as the real-valued 

direct learning architecture ( R - D L A ) . 

63 



3.5 Simulation 

We have implemented and simulated D P D architectures with real-valued feedback 

( R - D L A , R - F M - I L A ) to evaluate their linearisation performance. We have per

formed simulations for conventional architectures wi th complex feedback ( ILA, D L A , 

F M - I L A ) and for the system without the D P D to compare all of them wi th the re

cently introduced R - F M - I L A and R - D L A . 

For all the architectures, the P A has been modelled by the M P model (eq. 1.12) 

wi th K — 7, Q — 1. We have extracted the P A model coefficients from measurements 

of a real P A . The P A has been excited wi th an F B M C signal wi th 1024 subcarriers, 

18 frames in each iteration. The sampling frequency has been set six times higher 

than the main channel bandwidth B. 

We have simulated all the D P D architectures iteratively. This means that the 

D P D coefficients have been trained on a signal different from the signal used for 

evaluating the D P D linearisation performance. In this way, the evaluation is more 

objective, as it represents more closely a real transmitter wi th the D P D . 

For all the architectures, one iteration consists of: 

1. generating the random-data F B M C signal z (same signal for all the D P D 

architectures), 

2. predistorting the desired signal z wi th current D P D coefficients b' yielding the 

P A input x, 

3. adjusting the signal amplitude to set the desired P A output power, 

4. calculating the P A model output y, 

5. evaluating the linearisation performance, 

6. and calculating the new D P D coefficients b. 

The important step is setting the P A reference gain. The maximum signal amplitude 

in the system without D P D was set such that the P A provided the same output 

power in the communication channel as the system wi th the I L A . The detailed 

procedure for setting the P A reference gain is described in the work of Jardin and 

Baudoin [77,78]. The calculation of the new D P D coefficients (last step) varies based 

on the D P D architecture. 

The procedure for the I L A consists of: 

1. adjusting the maximum Euclidean norm of signal x and y such as | |x | | < 1, 

| |y | | < 1 for the D P D coefficient calculation, 

2. solving coefficients b of the postdistorter as described by (1.31), 

3. using the calculated coefficients of the post-distorter as the D P D coefficients 

in the next iteration. 
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The procedure for the D L A consists of: 

1. adjusting the maximum Euclidean norm of z and t/ as \\z\\ < 1, | |y | | < 1 for 

updating the D P D coefficient, 

2. updating the D P D coefficients due to the desired signal z and feedback y as 

described by eq. (1.27). 

One can achieve the fastest convergence if the ini t ial D P D coefficients are set 

close to the optimum. We have suggested the optimum D P D coefficients be unknown 

in the first iteration. Generally, we have achieved a reasonable convergence speed 

wi th the ini t ial coefficients set to b1 0.5 0 0 This procedure is slightly 

modified for the R - D L A as described in Sec. 3.4. 

Finally, the procedure for F M - I L A consists of 

1. adjusting the maximum Euclidean norm of x and t/ as | |x | | < 1, | |y | | < 1 for 

the following calculations, 

2. estimating the forward P A model coefficients, 

3. calculating the forward model output, 

4. solving coefficients b of the post-distorter, 

5. employing the calculated postdistorter coefficients b as the D P D coefficients 

in the next iteration. 

This procedure is slightly modified for the R - F M - I L A as described in Sec. 3.3. 

3.6 Simulation Results 

The linearisation performance has been evaluated based on the N M S E and A C P R . 

We have simulated all architectures wi th the D P D modelled by the M P model 

wi th the maximum nonlinearity order of K = 7 and the maximum memory length 

of Q — 3. In the simulation, all the architectures have been computed wi th 220 

iterations. The evaluated metrics were averaged over the last 200 iterations, which 

corresponds to the range where the D L A and R - D L A converged. 

F ig . 3.2 shows the A M / A M characteristics for the R - F M - I L A wi th the trained 

D P D coefficients. The black circles represent the characteristics of the P A obtained 

from the measurement of the feedback signal, and the orange dots represent the 

characteristics of the estimated forward P A model. One can see that the P A shows 

a certain memory effect which is mostly compensated for by the predistorter. 

The frequency spectra of the P A output are shown in F ig . 3.3. The spectra for 

all the D P D architectures are almost the same and well improved compared to the 

spectrum for the system without the D P D . 
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F ig . 3.2: The A M / A M characteristics wi th the R - F M - I L A D P D . 
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Fig . 3.3: The frequency spectra of the P A output for all simulated architectures. 

The frequency axis is normalised to the sampling frequency FS. 
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The evolution of the N M S E in a few first iteration cycles is depicted in F ig . 3.4. 

A t the beginning of the simulation, I L A , F M - I L A , and R - F M - I L A are not trained 

yet and therefore provide the same N M S E as the system without the D P D . O n 

the other hand, D L A and R - D L A start wi th a lower output power due to the first 

D P D coefficient being set to 0.5 which results in a lower N M S E . In the second 

iteration, I L A , F M - I L A and R - F M - I L A achieve almost the optimum predistortion. 

The output power of the system without the D P D is lowered to be the same as for 

the system with I L A . Note the peak in the N M S E for D L A and R - D L A which the 

optimisation process goes through to achieve the solution. The convergence speed 

of the D L A and R - D L A highly depends on the ini t ial coefficients, step size //, and 

the desired signal z. Higher convergence speeds could be achieved by increasing the 

step size /x, but the convergence probability would be lower. 
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Fig . 3.4: Evolut ion of the N M S E in a few first iteration cycles. 

The detailed comparison of linearisation performance for all the architectures 

is given in Tab. 3.1. A l l the ILA-based systems provide very similar linearisation 

performance based on the evaluated metrics. Again , the D L A and R - D L A provide 

very similar results, but they are slightly better than the ILA-based systems. 
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Tab. 3.1: The linearisation performance of systems with real-valued feedback com

pared with conventional architectures. 

D P D architecture N M S E (dB) A C P R - l s t (dB) A C P R - 2 n d (dB) 

No D P D -19.9 -29.6 -46.5 

I L A -40.5 -49.6 -60.3 

D L A -40.8 -49.8 -60.7 

R - D L A -40.7 -49.7 -60.7 

F M - I L A -40.5 -49.6 -60.3 

R - F M - I L A -40.5 -49.6 -60.3 

3.7 Conclusion 

In this chapter, we have presented a D P D architecture with real-valued feedback 

samples and employing the forward P A model estimation. The presented method 

has been verified and compared to state-of-the-art D P D methods in simulations. 

We have shown that the R - F M - I L A can achieve the same linearisation performance 

as its complex variant and the I L A D P D and very similar results as complex D L A 

and R - D L A . The main advantage of the presented R - F M - I L A over the D L A and 

R - D L A is noniterative calculation and the related unnecessary setting of the ini t ial 

solution and step size. Additionally, it allows the employment of a simple R F mixer 

and one A D C instead of a quadrature mixer wi th two A D C s which decreases power 

consumption, system complexity, and the transmitter price. 
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4 DPD Adaptation with Sample Selection 

4.1 Introduction 

In this chapter, we extend methods for undersampling and sample selection [5, 

163,164, 171-176] and we propose methods for the selection of samples for D P D 

adaptation allowing computational complexity reduction. The block diagram for 

D P D adaptation with sample selection is shown in F ig . 4.1. 

The proposed methods are: a method based on the identification of important 

samples using Q R decomposition [177], a gradient-based sampling method [178], and 

two histogram-based methods. The first histogram method equalises the histogram 

of signal magnitudes to ensure evenly sampled P A characteristics while the second 

one optimises a histogram optimised by a genetic algorithm, which respects both 

LPF 1.5B 

DPD 

Adaptation 

Sample 
Selection 

LPF 1.5B 

Fig . 4.1: Linearisation of an R F P A wi th the D P D using an optional sample selec

tion method. In the direct path, D A C s are accompanied by reconstruction low-pass 

filters (LPFs) wi th bandwidth 1.55, where B is the desired channel bandwidth. 

In the feedback, there are L P F s wi th bandwidth > 1.55 to limit the noise band

width, optional sample and hold (SH) circuits and A D C s . Note that the resulting 

bandwidth of the forward and feedback paths is 3B due to IQ sampling. Al though 

the depicted S H circuits as discrete components are one possible approach, a more 

practical implementation would employ A D C s with integrated S H circuits and wi th 

periodic and equidistant sampling, performing sample selection from a sample buffer 

in the digital domain. 
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the transmitted signal statistical properties and the specific P A characteristics. A l l 

these methods are analysed wi th respect to the conventional D P D and to the simple 

undersampling method [5, 174,175]. Moreover, we provide a detailed analysis of 

the computational complexity of these methods and show how significantly some 

of them can reduce the required computational resources. The performance of the 

proposed sample selection methods is shown in simulations and eventually verified 

by measurements. 

The contributions of this chapter have been originally presented in our paper [A2] 

and include 

• a proposal of methods for sample selection for D P D adaptation compatible 

wi th the conventional DPD-enabled transmitter architectures, especially the 

histogram-based method wi th the histogram optimised by a genetic algorithm, 

which highly reduces the computational complexity while preserving the l in

earisation capabilities, 

• a comparison of the computational complexity of the proposed methods, 

• and all related Mat lab source codes available at www.g i thub . com/ j ank ra lx / 

dpd_sample_se lec t ion . 

The rest of this chapter is organised as follows. We introduce the theory behind 

the sample selection for D P D adaptation in Sec. 4.2. Sample selection methods are 

proposed and discussed in Sec. 4.5. We show how the proposed sample selection 

methods reduce the computational and hardware resources needed for D P D adap

tation in Sec. 4.6 and Sec. 4.6.5. Finally, the simulations are described in Sec. 4.7 

and the measurements in Sec. 4.8. 

4.2 Basic Principles of Sample Selection 

In this chapter, we start our description of the basic principles of undersampling in 

D P D systems on the problem of PA-model identification and later we develop the 

basic idea also for the I L A , F M - I L A , and the D L A . Let us assume that the P A is 

modelled by the M P baseband model. We have chosen the M P model for its formal 

simplicity, but al l the presented concepts can be generalised for any model which 

is linear in its unknown parameters. To identify the unknown coefficients bk,q of 

the P A model, described by equation (1.11), the conventional methods construct a 

system of equations by taking consecutive input and output baseband samples of 

the P A and inserting them into the system of equations (1.14). 

Let us supplement the theory of the undersampling in D P D systems wi th a 

fictitious example of the M P model wi th the maximum nonlinearity order K = 2 

and the maximum memory length Q — 1, which have P = K-(Q + 1) = 4 coefficients. 
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For completeness, we start the example wi th the conventional method. The system 

of equations in the vector form can be constructed as 

y[o] 

y[2] 

y[3] 

y[4] 

y[5] 

y[6] 

y[7] 

Here we would like to point out that the conventional methods take consecutive 

samples of the P A input x[n] and the P A output y[n] to construct the system of 

equations. Practically, to solve the P A model coefficients, the system of equations 

has to be overdetermined to mitigate the imperfections of the P A input generation 

and of the P A output measurement. One can figure out that if there are no imperfec

tions, every arbitrary combination of P rows from (4.1) leads to the solution of the 

model coefficients. We can benefit from a similar principle wi th the overdetermined 

system and eliminate arbitrary rows in the system of equations. The solution of the 

system is not changed significantly unti l the system contains a sufficient number of 

equations. Practically, the number of equations can be drastically reduced if correct 

samples (equations) are selected, as we wi l l demonstrate later. The reduced system 

of equations could look like 

y[2] 

pf# 

y[5] 

y[6] 

_y[7] 

Advantageously, the signal on the left-hand side of (4.2), in this case signal y[n], 

can be arbitrarily undersampled. This allows for reducing the hardware require

ments, e.g., the sampling rate of the feedback A D C s . It is important to note that 

the Nyquist-Shannon sampling theorem [179,180] is not violated by reducing the 

rows as long as we do not need to fully recover the signal waveform. One needs to 

realise that filtering and other standard signal processing methods are not achievable 

if the signal is undersampled. 

x[0] x[-l] x[0] x[0]\ x[-l] x [ - l ] | 

x[l] x[0] x[l] x[l]\ x[0] x[0]\ 
x[2] x[l] x[2] x[2]\ x[l] x[l]\ 
x[3] x[2] x[3] x[3}\ x[2] x[2}\ 

x[A\ x[3] x[A\ x[A}\ x[3\ x[3}\ 

x[5] x[A] x[5] x[5]\ x[A] x[A}\ 

x[6] x[5] x[6] x[6]\ x[5] x[5]\ 

x[7] x[6] x[7] x[7]\ x[6] x[6]\ 

x[l] x[0] 

x[2] x[l] 

xf4} xfej 

x[5] x[A] 

x[6] x[5] 

x[7] x[6] 

x[l] 
x[2] 

• f t 

x[5] 

x[6] 

x[7] 

x[l] 
x[2] 

x[5] 

x[6] 

x[7] 

x[0] 

x[l] 

* f 2 } 

xf9t 

x[A] 

x[5] 

x[6] 

x[0] 

x[l] 

x f 2 t 

xf9t 

x[A] 

x[5] 

x[6] 

bo,o 

bo,i 
(4.2) 
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Formally, we can construct the system of equations by taking the signal samples 

y[rii] wi th arbitrary sample indices n« G N;i G {1,2, ...,N} which satisfy the condi

tion rii 7̂  nK;Wi,K, : i ^ K. The reduced equation system can be expressed in the 

matrix form by arranging the output samples, model coefficients and basis functions 

into vectors, i.e., 

<b(x) 

y 

b 

ux 

y[ni] y[n2] 

bin h 1 . . 

y[nN] 

4>kX])[nN} 

T 

(4.3) 

K >2,0 

(x) <b{x) 6{x) ' 

where 6 is a column vector wi th P rows, and the size of the matrix Ux is N x P. 

The system of equations is then expressed as 

y = uxb. (4.4) 

B y solving (4.4), we obtain the model coefficients b and hence identify the P A model. 

Typically, we choose # > ? to sufficiently sample the whole characteristics of the 

P A wi th diverse signal samples and to mitigate the influence of noise and other 

imperfections of a real system. The solution can be obtained as a projection of b 

into the column space of Ux, in other words it is the L S solution which minimises 

the difference between the observed P A output and the model output 

b={UH

xUx)-1UH

xy. (4.5) 

We can also imagine the above procedure such that we first take consecutive 

samples of the P A output, bui ld a conventional overdetermined system of equations 

and before solving it, we leave out some arbitrary rows from matrix Ux and the 

equivalent samples from vector y. We would like to emphasise that the reduction of 

the system of equations preserves the memory modelling, because equation (1.11) is 

still fully valid. Please note that only the P A output y[n], on the left-hand side of 

the system in (4.4), can be arbitrarily undersampled. The P A input x[n] has to be 

known, to cover at least the memory modelling of the P A to bui ld matrix Ux. 

Hereinafter, the described method is referred to as the sample selection method 

(SSM). In the following sections, we show some possible ways of employing SSMs 

in the D P D identification process. 

4.3 Sample Selection and I LA 

In the I L A , the measured feedback samples fill the matrix Uy. Consequently, the 

advantage of arbitrarily undersampled feedback disappears and the usage of S S M is 
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l imited. However, we can benefit from the solution of the suboptimal I L A provided 

by Morgan [25] and Landin [26] (described in Sec. 1.4.3) which first estimates the 

forward P A model. The proposed S S M can be employed for the P A model estimation 

and the D P D coefficients are calculated by the I L A in the standard way. The block 

diagram of the method is depicted in F ig . 4.2. 

DPD 

Oh ,y 

x 
PA model 
extraction 

PA coefficients 

PA model 

DPD 
Training y 

Fig . 4.2: Block diagram of a transmitter wi th a baseband P A model linearised by 

D P D wi th F M - I L A . The P A output is sampled by a sample and hold (SH) circuit 

at times driven by S S M . 

4.4 Sample Selection and DLA 

We assume that equation (1.25) is originally overdetermined, therefore we can omit 

arbitrary rows of matrix Uz and the equivalent samples of vector A , similarly as 

in Sec. 4.2 for the P A model estimation. The reduced vector and matrix can be 

denoted as 

Uz 

z[ni\ z[n2] 

4$ <M:i • 
z[ns] 

4>X ^2,0 <PK,Q 

(4.6) 

The notation of the final solution employing S S M does not differ from the con

ventional D L A in eq. (1.27) and can be written as 

b = b'-^UfUz)-1Uf(z-y) (4.7) 
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The block diagram of D L A is depicted in F ig . 4.3. Please note that SSMs allow for 

arbitrary undersampling of only the P A output y. The desired scaled P A output 

z must be sufficiently known to construct the matrix Uz. This usually does not 

represent any complication, because the desired scaled P A output is also the D P D 

input. In the rest of this chapter, we focus our analysis and findings primarily on 

the D L A , because we find the D L A more efficient and usable than the F M - I L A . 

Selection timing 

F ig . 4.3: Block diagram of the transmitter wi th a baseband P A model linearised 

by the D P D with the D L A . The P A output is sampled by the S H circuit at times 

driven by S S M based on the P A input samples x. 

4.5 Sample Selection Methods 

The best D P D adaptation can be achieved if the observation errors of the input 

and output are uncorrelated [181]. However, the adjacent samples used by the 

conventional D P D are not independent, and therefore the observation errors are 

correlated. To minimise the observation errors, the conventional methods without 

sample selection require a high number of samples N, usually N > 1000 [181]. For a 

small N, the subsequent samples cause the system of equations to be ill-conditioned. 

Furthermore, a l imited number of subsequent samples cannot cover the statistical 

properties of the transmitted signal. 

We show that the proposed S S M does not suffer from the mentioned drawbacks 

for small N if the samples n\, n2, • • •, are selected carefully. The problem for 

the sample selection method can be defined as the selection of N samples from all 

samples which were acquired by the feedback A D C s . The number of all acquired 

samples is N0 and corresponds to the acquisition time and hence to the required 

update rate of D P D coefficients. The number of selected samples is naturally limited 

by the condition N < NQ. 
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4.5.1 Undersampling 

One possible approach to S S M is a simple undersampling of the feedback signal. It 

can be seen as an untargeted sample selection and henceforth it is referred to as the 

undersampling-based sample selection (US). Similar approaches were presented in [5, 

174,175]. Al though this method is very simple and does not consider the statistics of 

the transmitted signal, it can improve the conditioning of the system of equations, as 

it takes distant samples which have the potential to be more independent. Therefore, 

this simple approach can be sufficient for less demanding applications. 

4.5.2 Sample Selection Based on QR Decomposition 

The problem of selecting the samples n i , n2, UN for the calculation of new D P D 

coefficients can be solved analytically using Q R decomposition wi th column pivot

ing [177], hereinafter referred to as QR-decomposition-based sample selection (QRS) . 

First we construct the matrix UZ using all the samples from the feedback. After

wards we perform the Q R decomposition with column pivoting of the transposed 

matrix UZ, which is defined as 

UT

ZE = QR, (4.8) 

where R is an NQ x P upper triangular matrix, Q is an NQ X NQ unitary matrix, 

and E is an NQ X NQ permutation matrix. The first TV columns of the permutation 

matrix identify the TV most important rows of matrix UZ for the solution of new D P D 

coefficients. Formally, we can write that the sample indexes of selected samples are 

given as 

n1,n2,...,nN\ = [ l , 2 , J V 0 J E 1 : N , (4.9) 

where E\:N is a submatrix of matrix E consisting of its first TV columns. 

The drawback of this method is that it improves the conditioning of the pseu-

doinverse of matrix UZ, but this does not guarantee improved D P D linearisation 

performance, because this method does not respect vector A in the calculation of 

the D P D coefficients in (4.7) nor the P A characteristics. 

Moreover, the practical usability of this method for real-time D P D adaptation 

is limited, because it requires performing the Q R decomposition of the full matrix 

UZ, which in principle already solves the system of equations using all feedback 

samples. Potential usage is l imited to cases where a fast Q R decomposition wi th 

low precision [182] is applied to identify a few important samples and thus requires 

fewer computation resources and high precision calculation is performed by only the 

selected samples. 
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4.5.3 Gradient Sampling 

Another method for sample selection can be the gradient-based sampling (GS) [178], 

henceforth referred to as GS-based sample selection (GSS). GS is a representative 

of the methods for solving least squares problems of a large sample size. For D L A , 

we calculate the gradient values gi for all rows of matrix Uz and a l l samples of 

vector A [178] 

^ = | |u i(A i-u ie 0)| | , (4.10) 

where Ui is the i-th row of matrix Uz, Aj is the i-th element of vector A , and eo is 

a given pilot estimate (good guess) for solving the coefficient error vector e. Since 

e is ideally a zero vector in the converged state, we set e0 as a zero vector and thus 

we can simplify the calculation of gradient values to 

gi = \\uiAi\\. (4.11) 

The probability that the i-th feedback sample and the equivalent row of matrix Uz 

are taken into the calculation of the D P D adaptation in (4.7) is calculated as [178] 

P< = (4-12) 
E 9i 
i=l 

Based on the calculated probabilities, TV samples rii, n 2 , a r e selected for the 

calculation of new D P D coefficients. 

4.5.4 Histogram-Based SSMs 

Even though both Q R S and GSS are analytically based, they do not consider a 

priori knowledge of the P A characteristics nor signal statistics. To overcome this 

disadvantage, we propose an S S M based on the histogram of signal magnitudes of 

the P A input x. Let us make the following notations: J is the number of histogram 

bins. The target bin counts are denoted dj wi th j e 1, 2 , J . The lower and upper 

bin boundaries are 0j-\ and 0j respectively (see F ig . 4.4). Dj is a set of selected 

indices n« whose samples belong to the j - t h bin, defined as 

Dj = {ni : Bj-x < \x[rH] \ <0j}, (4.13) 

and Dj is the cardinality (number of elements) of set Dj. 

Samples for D P D adaptation are selected randomly such that the j-th histogram 

bin count reaches the target bin count dj, i.e., cardinality Dj is equal to dj. A t the 

same time, samples should be selected such that they are distant in time and hence 

the matrix conditioning is improved. Formally, the selected indices need to satisfy 

the condition 

\rii - nK\ > 7; Vi,n:i^K, (4.14) 
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where 7 is the minimum sample time distance and is set such that it ensures the 

independence of selected samples. 

Even though the papers [183,184] have proposed histogram methods with slightly 

different usage, the condition of a minimum sample distance expressed by (4.14) has 

not, to the author's best knowledge, been proposed for the histogram-based sample 

selection methods. 

Evenly Distributed Histogram 

The evenly distributed histogram ( E D H ) is a possible setting for histogram-based 

sampling. If TV is divisible by J , all target bin counts are set to the same constant 

dj = y , otherwise they are selected randomly from the values dj G {|_yjj LyJ + 1} 

such as J2 dj — N. The motivation for making the histogram evenly distributed is 

to cover the whole A M / A M characteristics of P A , as shown in F ig . 4.4. Unfortu

nately, this simple approach of setting target bin counts does not respect either the 

shape of the A M / A M characteristics of the used P A nor the statistical properties of 

the transmitted signal (Fig. 4.4) which results in a D P D model wi th similar mod

elling capabilities in all regions of A M / A M characteristics, even those not frequently 

utilised due to the high P A P R of the transmitted signal. In other words, if we con

sider the limited number of points for D P D adaptation, selecting points from highly 

nonlinear regions and high signal probability provides more information for D P D 

adaptation than selecting points from linear regions and low signal probability. 

pdf(signal magnitude) A M / A M characteristics of PA 

-5 - A 
CO 

B a 
a 3 
to O 
8 c 

C/3 

Signal magnitude 

d\ d2 
d3 d± d 5 d 6 dj d8 d9 d i o 

3 3 3 3 3 3 3 3 3 3 

0 0 01 02 0 3 0 4 0 5 0 6 0 7 0 8 0 9 *10 
Signal magnitude 

F ig . 4.4: Principle of sample selection by E D H wi th J = 10 related to the probability 

density function (pdf) of signal magnitude and the A M / A M characteristics of the 

P A . The depicted = 30 selected samples are evenly distributed over the whole 

A M / A M characteristics of the P A , irrespective of the signal statistics nor the shape 

of the A M / A M characteristics. 
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Genetically Optimised Histogram 

The genetically optimised histogram ( G O H ) is proposed to suppress E D H imperfec

tions. A n optimised histogram can respect the A M / A M characteristics of the P A 

and the statistics of the transmitted signal, as depicted in F ig . 4.5. We show that 

it is possible to set the target bin count such that a chosen criterion is optimised. 

In general, the histogram bin counts should be set such that G O H selects samples 

from regions with strong nonlinearity and high signal amplitude probability. 

w Oo 0i e2 03 o4 e5 e6 e7 e8 e9 e10 

Signal magnitude 

F ig . 4.5: Principle of the sample selection by G O H wi th J = 10 related to the prob

ability density function (pdf) of signal magnitude and the A M / A M characteristics 

of the P A . The depicted N = 30 selected samples are placed in regions with strong 

nonlinearity and/or high signal probability. 

We optimise target histogram bin counts by the genetic algorithm [185] to min

imise the N M S E of the P A output with respect to the desired output. We have 

chosen the genetic algorithm optimisation for the integer histogram bin counts, be

cause the genetic algorithm does integer optimisation by default. We assume that 

the histogram is optimised once for a specific type of P A and the transmit signals, 

just to set the target bin counts which are afterwards applied for D P D adaptation. 

Therefore, higher computational costs of optimisation calculation can be neglected, 

although it can take several hours to optimise the histogram. Therefore, the op

timisation is most likely unfeasible in real time in a transmitter, and we consider 

precalculated histograms only. However, we have not aimed to make the optimisa

tion faster, and this might be a focus in future research. 

The application of G O H can be limited in cases of changing working conditions. 

The P A characteristics change due to temperature changes and ageing. However, 
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due to our experience, temperature changes cause mainly a change of the P A gain 

and only small changes in the shape of the A M / A M characteristics (usually wi thin 

10%). A small margin in the number of selected samples TV should ensure G O H 

insensitivity to these small changes. However, extensive analysis should always be 

done for the specific application. 

Another potential usage l imitat ion arises when the communication system em

ploys signals wi th significantly changing statistics of the signal magnitudes. If a 

single precalculated histogram does not lead to sufficient linearisation performance, 

then we suggest optimising the histogram for all different types of signals and ap

plying the corresponding precalculated histogram in hardware. 

In both cases, it is always possible to apply E D H which does not require his

togram optimisation. The simulations wi th the results in Sec. 4.7.6 show that E D H 

leads to only a slightly higher computation complexity or slightly worse linearisa

tion performance compared with G O H . G O H and E D H are further discussed in 

Sec. 4.7.4 and Sec. 4.7.5. 

4.6 Reduction of Computational Complexity of DPD 

Adaptat ion 

A few properly selected samples TV significantly reduces the computational com

plexity of D P D adaptation. We evaluate the computational complexity of D P D 

adaptation with P coefficients and TV samples wi th respect to the required number 

of real-valued multiplications 0®(N,P) and real-valued additions 0®(N,P). The 

following analysis does not include any optimisation and does not exploit the prop

erties of the P A model, and the presented numbers of required multiplications and 

additions can therefore be seen as the upper bounds. We assume that a single com

plex multiplication requires four real-valued multiplications and three real-valued 

additions; a single complex addition requires two real-valued additions. 

We split the analysis into three parts: 

1. the calculation of the D P D model represented by the matrix Uz, 

2. calculation of the coefficient error vector e, 

3. and the coefficient update. 

The calculation of Uz for the M P model in equation (1.14) requires OJJ®(N,P) 

real-valued multiplications and none of the real-valued additions. Assuming that 

the calculation of is reused for the calculation of 0^+1 the number of 

multiplications can be expressed as 

Ou®(N, R) pa 2NR. (4.15) 
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The calculation of coefficient error vector e in equation (1.27) requires Oe^(N, P ) 

complex multiplications: ^NP(P + 1) for the U^UZ matrix multiplication because 

the resulting matrix is of size P x P and is symmetrical, Oj^(P) ~ P3 for the 

inversion of the symmetrical P x P complex matrix (U^UZ), NP for (U^(z — y)). 

and P2 for the multiplication of the matrix inverse ( t / f L ^ ) - 1 and vector U^(z-y). 

The calculation of coefficient correction e in equation (1.26) requires Oe^(N,P) 

complex additions: §(iV — 1)P(P+1) additions for (U^UZ) calculation, 0I(^(P) pa P3 

additions for the inversion of the symmetrical P x P complex matrix, N additions 

for subtraction (z — y), (N — 1)P for Uf(z — y), and (P — l)P additions for the 

multiplication of the matrix inverse ( t / f t / z ) _ 1 and vector (Uf(z — yj). Complexity 

can be expressed as 

Oe®(N,P) pa l-NP(P + 3) + P2 + P3, (4.16) 

Oe(h(N, P)pa^(N- l)P(P + 3) + P3 + N + ( P - 1)P. (4.17) 

The calculation of a single D L A iteration in equation (1.27) additionally requires 

2 P real-valued multiplications and additions. The total number of real-valued mul

tiplications and additions can therefore be estimated as 

0®(N, P ) = 0U9(N,P) + 40 e ^(TV, P ) + 2 P P 

2NP(P + 4) + 4 P 2 + 4 P 3 + 2P, 

Oe(N, P ) = 20e&(N, P) + 30e^(N, P) + 2 P 

5 

(4.18) 

(4.19) 
2 NP - PJ ( P + 3) + 5 P 2 + 5 P 3 + 2N. 

4.6.1 Additional Complexity of Histogram-Based SSMs 

In terms of resources, histogram-based SSMs are very simple, because they only 

require storing and incrementing the actual bin counts to select the samples. Hence, 

additional computational resources required by these methods can be neglected. 

4.6.2 Additional Complexity of GSS 

GSS additionally requires calculating the matrix Uz for all NQ samples which re

quires Ou® (No — N,P) ~ 2(^0 — N)P real-valued multiplications for the M P model. 

In (4.11) the calculation of U j A j needs P complex multiplications while the calcu

lation of the / 2 -norm of a complex vector needs 5 P real-valued multiplications and 

4 P — 1 real-valued additions, and this equation needs to be calculated N0 times. 
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Addit ional computational complexity to implement GSS is therefore 

O$>(N,P,N0)nl 1N0P - 2NP, (4.20) 

O™(N,P,N0)KN0(7P + 1). (4.21) 

4.6.3 Additional Complexity of QRS 

Q R S also requires calculating the matrix Uz for all N0 samples and Q R decompo

sition requires 337V0 + 1 complex multiplications and 87V0 complex additions [182]. 

Addi t ional computational complexity to implement Q R S is therefore 

4.6.4 Comparison of SSM Complexity 

In Tab. 4.1 we provide a comparison of the computational complexity for the above 

SSMs in terms of the number of real-valued multiplications and additions. In all 

cases there are N0 = 20 000 samples collected from the feedback. The complexity is 

evaluated for the M P model with K = 7, and Q = 1 which leads to P = 14 D P D 

coefficients. We can conclude that Q R S is computationally the most demanding as 

it performs the inversion of a large matrix Uz constructed from all NQ samples. The 

least complex methods are histogram-based SSMs whose complexity is the same 

as for conventional D P D adaptation using a block of continuous feedback samples. 

However, the conventional methods provide poor linearisation capabilities for a few 

samples TV as we show in Sec. 4.7.6. Al though Q R S and GSS have higher computa

tional complexity for the same number of selected samples TV than the conventional 

D P D , the computational complexity reduction is achieved for them as Q R S and 

GSS allow predistortion wi th lower N. 

Although we have neglected memory requirements in our analysis, please note 

that Q R S and GSS require much more memory to store the whole N0 x P matrix 

Uz and the iVo x 1 vector A than histogram-based SSMs, which only need to store 

the reduced N x P matrix Uz and the TV x 1 vector A . 

4.6.5 Reduction of Hardware Resources 

Since S S M allows undersampling the P A output, it allows for A D C s wi th decreased 

sampling frequency in the feedback. However, the A D C analogue input bandwidth 

and the speed of the A D C sample-and-hold circuit have to be sufficient to cover 

the desired signal bandwidth including close intermodulation products. In common 

O^N, P, N0) « 1327V0 + 2(7V0 - N)P + 4, 

OX(N,P,N0) « 107/V0 + 3. 

(4.22) 

(4.23) 
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Tab. 4.1: Comparison of Computational Complexity 

Conv. D P D Q R S GSS Hist. S S M 

p = 14 o 0 D N C 3.2 10 6 3.1 10 6 22 • 10 3 

N = 20 o e 
D N C 2.2 10 6 2.0 10 6 26- 10 3 

P = 14 D N C 3.3 10 6 3.1 10 6 62- 10 3 

N = 100 D N C 2.2 10 6 2.1 10 6 74- 10 3 

P = 14 o® 5.1 • 10 6 8.0 10 6 7.8 10 6 5.1 • 10 6 

N = 10 4 6.0 • 10 6 8.1 10 6 7.9 10 6 6.0 • 10 6 

Conventional D P D does not converge ( D N C ) for a low number of selected samples 

N. The complexity in the table is calculated for NQ = 20 000 and the M P model 

wi th K = 7, and Q — 1. 

state of the art, it is required that the feedback bandwidth be three to five times 

the desired channel bandwidth [6], [7]. A D C s wi th high analogue input bandwidth 

are commonly employed in current communication systems either for Sub-Nyquist 

sampling or in interleaved A D C s . 

The main advantages of the decreased sampling frequency of the feedback A D C s 

are the lower power consumption, the decreased system complexity, and the price. 

We present these parameters for the example transmitter from F ig . 4.1. We consider 

two cases: in one case the conventional D P D and in the other case an undersampled 

A D C in the feedback. The communication signal bandwidth was chosen to be 

300 M H z , which implies a required feedback bandwidth of at least 900 M H z . The 

conventional D P D requires two A D C s wi th the sampling frequency Fg > 900MSps. 

D P D wi th S S M requires two A D C s for IQ sampling with the input bandwidth Bin > 

450 M H z and arbitrary F$. For this example we have selected A D C s AD9690 [186] 

wi th Fs = 1 GSps for the conventional D P D and AD9629 [187] wi th Bin = 700 M H z 

and F s = 20 MSps for D P D wi th S S M , both labelled as low power A D C s . Tab. 4.2 

gives a comparison of a transmitter with the conventional D P D and a transmitter 

wi th the undersampled feedback allowed by the proposed S S M . The values were 

taken from A D C data sheets [186], [187]. The comparison of system parameters in 

Tab. 4.2 does not include the power consumption and price of auxiliary components, 

e.g. clock generators, buffers, filters, etc. 
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Tab. 4.2: Comparison of System Parameters 

Conventional D P D 

2x AD9690 

D P D wi th S S M 

2x AD9629 

Fs 
1000 MSps 20 MSps 

M a x . Bin 500 M H z 700 M H z 

E N O B 10.5 bits 11 bits 

Digi ta l interface JESD204B Parallel 

Power consumption Ri4 W ^ 9 0 m W 

Price « 720 U S D « 20 U S D 

4.7 Simulations 

We simulate the D P D performance with the proposed S S M described in Sec. 4.5. 

Additionally, all simulations include the conventional D P D without S S M as a refer

ence. For all methods, the D L A has been used. Since it is iterative, each simulation 

run consists of M = 80 iterations. A t the beginning of each iteration the transmit 

signal z is generated wi th random data symbols and used for all simulated SSMs. 

Afterwards, the following steps bound to the specific S S M are executed: 

1. signal z is predistorted using coefficients b' to obtain the P A input x, 

2. signal x is sent through the P A model to get the P A output y, 

3. new D P D coefficients b are calculated, 

4. the linearisation performance metrics are evaluated, 

5. and the D P D coefficients are updated 6—^6. 

For the first iteration, the D P D coefficients b' are set to [0.5, 0 , . . . , 0 ] T . The step size 

parameter \i was set to 0.1 as a decent trade-off between the convergence probability 

and the convergence speed. The whole process is repeated 1000 times to evaluate 

the 95% confidence intervals of the results. 

4.7.1 PA Models for Simulations 

In simulations we employ the P A model based on G M P [19] (see Sec. 1.3.3). We 

have chosen G M P , because it can be sufficiently complex to accurately model the 

state-of-the-art PAs . Moreover, for realistic simulation results it is necessary to 

apply the P A model of higher complexity than the D P D model. 
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We include models of the following P A s in our simulations: 

P A l : Two-stage P A in class A B designed for Satcom applications at 1625 M H z , wi th 

monolithic P A G A L I - 2 4 + from Mini -Ci rcu i t s [188] in the first stage and G a N 

SiC H E M T TGF2965 from Qorvo [189] in the second stage. The first stage 

power supply voltage was set to 8 V , the second stage power supply voltage 

was set to 32 V , and the gate voltage was set to ensure that the drain quiescent 

current was 20 m A . The total gain of both stages is approximately 30 dB. 

P A 2 : Class-F power amplifier designed for Satcom applications at 1625 M H z , wi th 

output power P 3 d B = 4 3 d B m , based on the G a N S iC H E M T T2G6003028 

from Qorvo [190]. The P A gain is approximately 12 d B , the power supply 

voltage 28 V , the gate voltage -3.03 V . Together wi th this P A , the 5-W amplifier 

Minicircuits Z H L - 5 W - 2 G - S + [191] was used as a predriver. 

P A 3 : Block amplifier A D L 5 6 1 0 [192]. 

A l l P A models were extracted from measurements at a centre frequency of 

1600 M H z , excited by a test signal with the bandwidth B pa 6 M H z , further described 

in Sec. 4.7.3. Index arrays of P A models were set to ensure sufficient fidelity of the 

models. The particular indexes were set to Ka = {0 ,1 ,2 ,3 ,4 ,5} , La = {0 ,1 ,2 ,3}, 

Kh = {2,4}, Lh = {0}, Mh = {1}, Kc = {2,4}, Lc = {0}, Mc = {1}. The P A model 

coefficients can be found in the source codes provided. 

4.7.2 DPD Model 

A s a model of digital predistorter we have chosen the D D R 2 model [15] (described 

in Sec. 1.3.2), because the simple M P model did not achieve sufficient linearisation 

results for the tested amplifiers. For the following simulations, we have chosen the 

D P D order to be K = 7 and Q — 1, which yields P = 17 D P D coefficients. 

4.7.3 Test Signal 

We have chosen the F - O F D M signal waveform wi th the 64-state quadrature ampli

tude modulation (64-QAM) as the internal modulation to demonstrate the linearisa

tion capabilities of the proposed S S M for D P D adaptation. The F - O F D M has been 

designed as described in Sec. 1.5.2. 

In each iteration, we generate the F - O F D M signal wi th 12 frames, each frame 

wi th 68 resource blocks, a block size of 12 subcarriers, resulting in W = 12 • 68 = 816. 

The F F T size is set to Z = 4096 and the filter length is L = 2049. The sampling 

frequency is l imited by the measurement setup and is set to F$ = 30 M H z . These 

parameters provide the test signal vector wi th the channel bandwidth B pa F$/5 ~ 

6 M H z and NQ = 52 064 samples. The signal mean power was set constant during 
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the D P D adaptation such that the mean P A output power over the last 20 iterations 

is equal for a l l the methods. 

4.7.4 Settings Specific to Histogram-Based Methods 

We have set the number J of histogram bins for E D H and G O H based on the 

simulation presented in F ig . 4.6, where we have analysed the influence of the number 

of bins on achievable N M S E , using D P D wi th E D H . We can see that for D P D 

adaptation the sufficient number of histogram bins J is 5. We set J = 10 to ensure 

a sufficient margin, as we expect a very low computational resource allocation for 

histogram-based SSMs. 

.40 I 1 1 1 1 
0 5 10 15 20 

Number of Histogram Bins J (-) 

Fig . 4.6: Simulated influence of the number of histogram bins on achievable N M S E 

using D P D with E D H and N = 30. 

4.7.5 Histogram Optimisation by Genetic Algorithm 

We have optimised histogram target bin counts dj by the genetic algorithm [185] for 

each simulated number of selected samples N. Optimised bin counts are integers 

from the interval [0, N] and need to fulfil the condition J2 dj = N. We have set the 

optimisation parameters as follows: the population size 100, the maximum number 

of generations 20, the population fraction at the next generation created by cross

over 0.8, the probability of mutation 1%. We have defined the objective function as 

an average of the N M S E results over 10 runs. Each run consists of 80 iterations and 

the N M S E results for averaging are taken only from the last 20 iterations. 

4.7.6 Simulation Results 

Hereinafter we present detailed simulation results for the model P A l in F ig . 4.7, 

F ig . 4.8, and F ig . 4.9. The simulation results for the other models, P A 2 and P A 3 , 

are provided to verify SSMs in a condensed form in Tab. 4.3 and Tab. 4.4. 
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F ig . 4.7: Simulation results of N M S E as a function of the number of selected samples 

N wi th 95% confidence intervals depicted by coloured dashed lines for the model 

P A 1 . The black dashed line represents the simulated N M S E of the P A output 

without D P D . 

The relationship between N M S E and the number of selected samples iV is de

picted in F ig . 4.7. We can observe that the conventional D P D starts to improve the 

transmitter linearity when more than 1300 samples are selected for D P D adapta

tion. US follows the behaviour of the conventional D P D but wi th slightly less needed 

samples. Q R S starts to improve linearity of the output signal from 18 selected sam

ples, but up to 2000 samples it provides suboptimal results. This is mainly due to 

improving problem conditioning but considering neither the signal statistics nor the 

observed feedback samples, as has been discussed above. Please recall that we have 

17 D P D coefficients and taking only 18 samples is almost equivalent to solving a 

fully determined system. 

GSS shows good linearisation performance for more than 100 selected samples. 

We suppose this is caused by choosing samples on a random basis wi th respect to 

the probabilities calculated by GS . For a few selected samples there is no margin 

for selecting unimportant samples. E D H starts to linearise from 19 selected samples 

and slightly improves wi th an increasing number of selected samples. For N < 100, 

E D H outperforms GS and for N > 100, E D H provides the N M S E less than 0.8 dB 

higher than GS . 
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Number of Selected Samples N (-) 

Fig . 4.8: Simulation results of the E V M as a function of the number of selected 

samples TV wi th 95% confidence intervals depicted by coloured dashed lines for the 

model P A l . The black dashed line represents the simulated E V M of the P A output 

without D P D . The E V M of the generated signal is 1.1% due to the nonorthogonality 

caused by the inherent F - O F D M filtering. 

In the region of up to TV < 2000 samples, G O H outperforms all other methods. 

For TV > 2000, G O H is very close to Q R S . Please note that this difference is 

negligible, about 0.5 dB in terms of N M S E . For G O H , in the region from 100 

samples, we can see the effect of a larger space in which the genetic algorithm looks 

for the optimal histogram. In this region, the N M S E is up to 1 d B worse than for 

N = 100 or TV = 50 000. This effect is caused by the fixed number of maximum 

generations and the population size of the genetic algorithm, set irrespective of the 

number of selected samples N. 

E V M as a function of the number of selected samples TV is depicted in F ig . 4.8. 

The simulated E V M results agree with the N M S E results shown in F ig . 4.7. The 

A C P R results are presented in F ig . 4.9 and agree similarly wi th the N M S E results. 

One can notice that for P A l the linearisation performance in terms of the A C P R 

improvement is not impressive. This is likely caused by specific characteristics of 

P A l and the D P D model. The key point is that the proposed methods achieve the 

maximum linearisation performance of the conventional D P D . The higher A C P R 

improvement is achieved for P A 3 wi th results in Tab. 4.4, as described below. 
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Fig . 4.9: Simulation results of A C P R as a function of the number of selected samples 

N wi th 95% confidence intervals depicted by coloured dashed lines for the model 

P A 1 . The black dashed line represents the simulated A C P R of the P A output 

without D P D . 

Summary results for P A 2 and P A 3 are presented in Tab. 4.3 and Tab. 4.4 respec

tively. Al though E D H shows good linearisation capabilities for a small number of 

samples, G O H outperforms other SSMs for a few selected samples in all cases and 

is close to the other methods for a high number of samples. 

Model P A 2 with results in Tab. 4.3 is highly nonlinear, as P A 2 is designed in 

class F , and we can see that the conventional D P D and the simple undersampling 

do not converge for a small number of samples N < 10 000. O n the other hand, 

the model P A 3 wi th results shown in Tab. 4.4 is less nonlinear and the conventional 

D P D and US provide a decent linearisation for N = 1000 selected samples. In 

Tab. 4.4 we can notice that the P A nonlinearity causes mainly leakage into adjacent 

channels while the signal in the main channel remains undistorted, as illustrated by 

E V M . 
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Tab. 4.3: Simulation Results for Model P A 2 

Metr ic N Conv. D P D US E D H G O H 

22 D N C D N C -15.4 -20.4 

40 D N C D N C -19.8 -20.8 
N M S E (dB) N M S E (dB) 

10 000 -14.0 -18.0 -20.8 -21.1 

20 000 -20.6 -21.0 -20.9 -21.1 

22 D N C D N C 9.8 4.4 

40 D N C D N C 4.9 4.2 
E V M (%) E V M (%) 

10 000 13.2 7.2 4.1 3.9 

20 000 4.2 4.0 4.0 3.9 

22 D N C D N C -22.5 -26.8 

40 D N C D N C -26.2 -27.2 
A C P R (dB) A C P R (dB) 

10 000 -21.0 -26.4 -27.1 -27.2 

20 000 -27.0 -27.2 -27.2 -27.3 

Conventional D P D and US do not converge ( D N C ) for a low number of selected sam

ples N. Simulated metrics without D P D : N M S E = -13.9 d B , E V M = 13.2%, and 

A C P R = -21.8 dB. The E V M of the generated signal is 1.1% due to the nonorthog-

onality caused by the inherent F - O F D M filtering. 

4.8 Measurements 

In addition to simulations for all models P A l , P A 2 , and P A 3 , we evaluate the 

SSMs for P A l in measurements. Our measurement setup (Fig. 4.10) employs the 

vector signal generator Rohde & Schwarz S M U 2 0 0 A to generate the input signal of 

P A l . The P A l output is connected to the real time spectrum analyser Rohde & 

Schwarz F S V R through a high-power R F attenuator wi th an attenuation of 10 dB 

and a maximum dissipated power of 50 W followed by two smaller R F attenuators 

of 10 d B each. We use the digital multimeter Keysight 34461A as an Ampere metre 

to set the drain quiescent current of the P A l second-stage transistor. 

We have performed the measurements wi th the same settings as for simulations. 

The only change is that for measurements we perform 80 iterations only once, and 

hence the values presented are not averaged. 
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Tab. 4.4: Simulation Results for Model P A 3 

Metr ic N Conv. D P D US E D H G O H 

19 D N C D N C D N C -45.8 

N M S E (dB) 22 D N C D N C -46.3 -46.7 

1000 -44.8 -46.0 -47.0 -47.0 

4000 -46.7 -46.6 -47.0 -47.1 

19 D N C D N C D N C 1.15 

E V M (%) 
22 D N C D N C 1.15 1.15 

E V M (%) E V M (%) 
1000 1.17 1.16 1.15 1.15 

4000 1.95 1.15 1.15 1.15 

19 D N C D N C D N C -58.2 

22 D N C D N C -60.4 -61.8 
A C P R (dB) A C P R (dB) 

1000 -56.5 -59.5 -64.4 -64.9 

4000 -62.4 -61.8 -64.8 -65.0 

Conventional D P D and US do not converge ( D N C ) for a low number of selected 

samples N. Simulated metrics without D P D : N M S E = -33.3 d B , E V M = 1.5%, and 

A C P R = -42.6 dB. The E V M of the generated signal is 1.1% due to the nonorthog-

onality caused by the inherent F - O F D M filtering. 
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In F ig . 4.11 we present the measured A M / A M characteristics of P A l , D P D 

and the whole linearised transmitter. The characteristics of D P D and the linearised 

transmitter are depicted for D P D adapted using G O H wi th A^ = 24 selected samples. 

Please note that the selected samples are not distributed evenly over the input 

magnitudes, but rather concentrated in the region with lower magnitudes to cover 

the region wi th higher signal occurrence probability and then in the region wi th 

higher magnitudes to cover the most nonlinear region of P A . 

Input Signal Magnitude (V) 

F ig . 4.11: Measured A M / A M characteristics of P A l , D P D , and the whole linearised 

transmitter. The depicted A^ = 24 samples were selected by G O H and used for D P D 

adaptation. 

^ -40 r 

Frequency (MHz) 

F ig . 4.12: Measured power spectral density of P A l output without D P D and wi th 

D P D adapted by different SSMs for the number of selected samples N = 400. 
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The measured power spectral density (PSD) of the P A l output linearised wi th 

D P D adapted using different techniques is depicted in F ig . 4.12. The P S D of the 

P A l output without D P D is shown as a reference. The results are shown for N = 400 

selected samples. Please note that for TV = 400 the conventional D P D causes higher 

out-of-band emissions than P A l without D P D . US slightly improves the out-of-band 

emissions, while G O H in this case provides the best linearisation. 

The measured D P D performance in terms of N M S E , E V M , and A C P R is shown 

in F ig . 4.13, F ig . 4.14, F ig . 4.15 respectively. We can see that the conventional D P D 

and US in real measurements work slightly better than in simulations. This could 

indicate that the extracted P A model is more difficult to linearise by these methods 

than the real P A . The trend for these methods follows the simulation results, and 

we can see a spread of measured points from this trend. This spread complies wi th 

the wider 95% confidence intervals shown in the simulation results. The measured 

N M S E for G O H is around 1 dB worse with respect to the average N M S E in the 

simulations. This increase could probably be caused by the measurement noise 

which is neglected in simulations. Measurement results in terms of E V M and A C P R 

follow the N M S E measurement results which exactly complies with the simulations. 
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Fig . 4.13: Measurement results of N M S E as a function of the number of selected 

samples TV compared to the simulation results. The black dashed line represents the 

measured N M S E of the P A l output without D P D . 
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Fig . 4.14: Measurement results of E V M as a function of the number of selected 

samples N compared to the simulation results. The black dashed line represents the 

measured E V M of the P A l output without D P D . The E V M of the generated signal 

is 1.1% due to the nonorthogonality caused by the inherent F - O F D M filtering. 
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Fig . 4.15: Measurement results of A C P R as a function of the number of selected 

samples N compared to the simulation results. The black dashed line represents the 

simulated A C P R of the P A l output without D P D . 
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4.9 Conclusion 

The number of samples for D P D adaptation directly influences the computational 

complexity of D P D adaptation. In this chapter we have proposed sample selection 

methods for D P D adaptation wi th the intention to minimise the required number of 

samples for D P D adaptation and thus to minimise the computational complexity of 

D P D adaptation. We have shown that the proposed G O H outperforms other sample 

selection methods in terms of linearisation capabilities. For a very small number of 

selected samples, G O H provides a linearisation performance equivalent to the max

imum achievable linearisation performance of the conventional D P D . Simulations 

on the model of a two-stage power amplifier ( P A l ) designed for Satcom applications 

have revealed that G O H can achieve a sufficient linearisation performance already 

for N = 24 selected samples while the conventional D P D achieves the equivalent 

performance only for N > 10 4. Since the computational complexity is linear wi th 

respect to the number of required samples, this indicates a 400-times improvement 

over the conventional D P D in terms of computational complexity. 
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5 DPD Adaptation with Level-Crossing ADC 

5.1 Introduction 

In this chapter, we propose a novel method for predistorter adaptation with an 

L C - A D C [193] based on a comparator and an low-speed digital-to-analogue con

verter ( L S D A C ) which replaces conventional A D C s in the feedback path. The block 

diagram of the proposed architecture is depicted in F ig . 5.1. In the feedback, there is 

an R F mixer or an IQ mixer wi th a single connected output followed by an L P F pro

viding the in-phase feedback signal yr(t). Signal yr(t) is compared with a reference 

voltage r(t) generated by the L S D A C . The output of the comparator is connected 

to a circuit for the time extraction of the comparator output edges. Employing the 

L C - A D C significantly reduces the system power consumption, system complexity 

and price. 

The idea of a comparator in the D P D feedback has already been presented by 

Wang et al. [4,152], and Zhang et al. [153]. Their methods have been analysed 

in Sec. 2.3.4. However, our architecture highly differs from their approach in the 

following aspects: 

• It does not require additional high-speed D A C s and, consequently, the pro

posed architecture reduces the power consumption more significantly. 

• It is not sensitive to gain mismatch and is only partially sensitive to delay 

mismatch [76,194]. 

Level-Crossing A D C 

F ig . 5.1: Linearisation of a P A by the D P D with a level-crossing A D C . The edge 

time extraction circuit provides the time stamps te[i] of edges at the comparator 

output. 
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The rest of this chapter is organised as follows. The second section introduces 

the basic principles of the proposed D P D adaptation approach wi th a comparator 

in the feedback. In the third and fourth sections, we discuss the adoption of the 

proposed principles into the I L A and the D L A . System implementation details are 

presented in the fifth section. The sixth and seventh sections present the measure

ment procedures and the achieved results employing the simulated comparator in 

the feedback. O n the contrary, the two final sections describe a custom-made feed

back module wi th a hardware L C - A D C and a real comparator and the linearisation 

results obtained with this module. 

5.2 Basic Principles of D P D wi th LC-ADC 

Let us continue wi th the idea of the sample selection presented in Sec. 4.2, where the 

system of equations for solving the P A model coefficients contains samples sampled 

at arbitrary discrete times. The key idea allowing for mathematical derivation of 

D P D adaptation by the feedback wi th the L C - A D C , which is constituted by a 

simple comparator, is moving from the discrete time samples into the domain of 

continuous time samples. The following notations are required: The continuous-

time signals x(t), y(t), z(t) represent the P A input, P A output, and the desired 

scaled P A output in the baseband, respectively. Their corresponding discrete-time 

equivalents are x[n], y[n], z[n] wi th n being the sample index. The transition between 

continuous and discrete time representation can be written as x[n] = x(nT), where 

T is the sampling period of the discrete-time signals. 

We can easily rewrite equation (1.12) of the M P model into the continuous-time 

domain as 
K Q 

| f c " 1 (5.1) 
k=l q=0 

The system of equations for solving the P A coefficients consists of N equations. 

Assuming that signal x(t) is sampled at distinct arbitrary time instants ti, t2, • • •, tjv, 

we can arrange the system of equations as 

~y(ti)~ "x(ti) 
y(t2) 

= 
x(t2) 

.y(tN)_ jr(tjv) 

x(ti)\x(ti)\ x(ti-T)\x(ti-T)\ 
x(t2)\x(t2)\ x(t2 - T)\x(t2 - T)\ 

x(tN)\x(tN)\ x(tN -T)\x(tN -T)\ 

x(ti - QT)\x(ti - Q T ) | K _ 1 

x(t2 - QT)\x(t2 - QT)^-1 

x(tN -QT)\x(tN -QT)\K-! 

' 6 1 , 0 

6 2 . 0 

6 2 . 1 

•bK,Q 
(5.2) 

O n the left-hand side, this system of equations has a vector of complex feedback 

samples y(ti). The L C - A D C with a comparator, however, provides only information 

96 



about the level crossing of the in-phase or quadrature signal of the feedback. Even 

if we installed comparators in both IQ branches, we would not know the exact level 

of the second signal at the precise moment the first signal crossed the set threshold. 

Consequently, we need to employ the real-valued feedback, presented in Chapter 3, to 

overcome this obstacle. The derivation is straightforward. We can split the real and 

imaginary parts, similarly to equations (3.1) and (3.2), and rewrite equation (5.2) 

in the form of equation (3.3), which yields 

yr(*i) .. x(U - Q T ) | a ; ( * i - QT)\K-X 
- " 

= 
x(t2) . •. x(t2 -QT)\x(t2- QT)\K~l 01,0 

Vr(tN)_ _x(tN) . .. x(tN -QT)\x(tN- -QT)\K-\ 
r 

pK,Q 

~x(h) . .. x{ti -QT^xih - QT)\K~l~ 
h 

— 
x(t2) . • • x(t2 -QT)\x(t2- QT)\K~l °1,0 

x(tN) . .. x(tN -QT)\x(tN- -QT)\K-\ i 
pK,Q_ 

(5.3) 

Considering the D P D feedback wi th the L C - A D C from F ig . 5.1, the signal yT(t) 

is known only for t = te[i] when the feedback signal equals the set threshold r(t). 

Time stamps te[i] are the instantaneous times of transitions of signal yv(t) over the 

reference voltage r(t). In other words, by knowing the time stamps te[i] and the 

reference voltage r(t), we can recover values of signal yT at the time instants te[i}. 

Therefore, we can set U = te[i] and yT(ti) = r(tj). 

The equation system can be expressed in the matrix form by arranging the output 

samples, model coefficients and the basis functions into vectors, i.e. 

<b{x) 

r(*i) r(t2) ... 

yr(ti) yr(t2) . 

h,o 61,1 • • 

T 

bi 

r(tN) 

Vi(tN) 

Q b2n 

(5.4) 

>K,Q 

u,. (x) <b(x) 

^2,0 
<PK,Q 

where 6 is a column vector wi th P rows, and the size of matrix Ux is TV x P. The 
(x) 

basis functions in vector 4>kq and matrix Ux require the knowledge of signal values 

x(ti — nT) at times U = te[i] while signal x(t) is practically sampled at times nT. 

A s signal x(t) is the P A input, it is fully known and, therefore, the signal values 

x(t e[i] — nT) can be calculated by interpolation. 
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The L S solution of the P A model coefficients in the matrix form is expressed as 

where 

( A c A2 
(5.5) 

(5.6) 

Please note that the described method has the capability of fully estimating the 

P A memory effects. Moreover, the output of the L C - A D C can be undersampled 

(Chap. 4), and therefore, the edge time extraction circuit need not register all the 

comparator output edges. 

5.3 I LA Employing LC-ADC 

The direct application of the L C - A D C for the D P D with I L A is not achievable 

for the same reasons as for the real-valued feedback (Sec. 3.3) and sample selection 

(Sec. 4.3). We can simply state that the methods by Morgan [25] and Landin [26] are 

required to employ I L A for the D P D adaptation wi th the L C - A D C in the feedback. 

However, further in this thesis, we wi l l explore exclusively D L A as it generally 

achieves better linearisation performance. 

5.4 DLA Employing LC-ADC 

We start our derivation of the D L A with the L C - A D C from the basic iteration step 

h = b'-fj,e. (5.7) 

Considering the real-valued feedback, vector e can be solved by equation (3.13) 

where vector A r is defined as A r = zr — yv. For our derivation, assuming the above 

definitions, vector yr is equal to vector r and we need to redefine vector zr as 

Zr{ti) ZT(t2) ZT(t N, (5. 

The solution of the updated D P D coefficients can be obtained similarly to equa

tion (3.14) incorporating the above definitions as 

br K 
K 

-niAfAJ^Afizr-r), 

where 

U„ -Uz 

(5.9) 

(5.10) 
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5.5 System Implementation Details 

Tab. 5.1 shows a system comparison of the proposed architecture wi th the conven

tional D P D and D P D with a comparator from [4]. The stated power consumption 

P p w r does not include components common for all the architectures, i.e. modulators 

and demodulators, and does not reflect the computational complexity of different 

adaptation algorithms. The power consumption of the proposed architecture does 

not include the circuit for the edge time extraction described below. We can see that 

for D A C s wi th Fs = 500 MSps the total power P p w r of the proposed architecture is 

only half of the power of the D P D from [4] and more than four times smaller than 

the power of the conventional D P D . 

Tab. 5.1: Comparison of the system parameters for the proposed and conventional 

D P D . 

Convent. D P D [4] Proposed 

D A C 

Model AD9779 AD9779 AD9779 AD9136 

Quantity 1 2 1 1 

Fs (MSps) 500 500 500 2 000 

~ P 
~ r p w r 0.6 W 1.2W 0.6 W 1.45W 

A D C Comparator 

Model AD9684 A D C M P 5 5 3 A D C M P 5 5 3 A D C M P 5 7 3 

Quantity 1 2 1 1 

Fs (MSps) 500 500 750 M H z * 8 G H z * 

~ P 
~ r p w r 2.2 W 0 .12W 0.06 W 0 . 2 W 

l ~ E -Ppwr 2 . 8 W 1 . 3 2 W 0.66 W 1 . 6 5 W 

Sampling frequency is not applicable, the equivalent input bandwidth of the com

parator is stated instead. 

5.5.1 Edge Time Extraction 

The most straightforward method for extracting the comparator output edge time 

stamps is to sample the comparator output wi th a digital flip-flop (FF) at a very 

fast clock frequency. In current F P G A s , regular input pins can be sampled wi th 

99 



clock frequencies of / c ik < 1250 M H z [195]. It should be noted that the high clock 

frequency is required only for the input deserialiser and it does not necessarily imply 

a high operational frequency of the F P G A core. Consequently, in this case the max

imum uncertainty of the edge time would be the clock period T d k = 1 / / c i k > 0.8 ns. 

Another possible approach to edge time extraction is depicted in F ig . 5.2a wi th a 

simplified time diagram shown in F ig . 5.2b. In the proposed circuit, two FFs sample 

the comparator output wi th and without a certain delay td- The edge detection is 

ensured only if the delayed edge arrives at input D l after the active clock edge plus 

the F F hold time and the undelayed edge arrives at input D2 before the active 

clock edge minus the F F setup time tsu. This results in Q2 = 1 and Q l = 0 indicating 

a rising edge, or Q2 = 0 and Q l = 1 indicating a falling edge. It can be shown that 

the maximum time uncertainty of the edge is given as td + tsn +1^. For example, 

the digital F F N B 7 V 5 2 M [196] has t s u < 40 ps and th < 50 ps, which yields the 

maximum edge-time uncertainty td + 90 ps. The probability that the time stamp is 

extracted can be approximated as (td + 0.5t s u + 0 . 5 ^ ) / ^ ^ . 

D l Ql Q l to FPGA 
— >• 

> 

Q2 to FPGA 

(a) 

elk 

D2 

D l 

Q2 

Ql 
(b) 

Fig . 5.2: (a) A possible practical circuit implementation for edge time extraction, 

(b) Waveforms explaining the function of the circuit. 

5.6 Measurements 

The linearisation performance of the D P D adapted by a comparator in the feedback 

was evaluated at two distinct setups. The first setup was composed of a laboratory 

R F generator, a real-time spectrum analyser, and a P A supplemented by an R F 

attenuator. Even though, its usable bandwidth for our experiment is limited only 

to ~ 5 M H z , the experiment is valid and can prove the proposed concept. Sub

sequently, we have also performed measurements wi th another, wide-band, setup 

which provides bandwidth of up to 4096 M H z . This wide-band setup has certain 
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imperfections which cannot be fully compensated for in our laboratory environment 

and, therefore, the linearisation performance might be degraded. In both setups, 

we have replaced the feedback comparator wi th its model created in Mat lab. A l l 

details, for both narrow-band and wide-band measurements, can be found in Mat lab 

source codes available at www.gi thub .com/ jankra lx /compara tor_dpd. 

5.6.1 Narrow-Band Measurements 

The narrow-band measurement setup is depicted in F ig . 5.3. The vector signal gen

erator, Rohde & Schwarz S M U 2 0 0 A , generates the input signal for the P A . The P A 

output is attenuated by 40 dB and connected to the real time spectrum analyser Ro

hde & Schwarz F S V R . The model of an ideal comparator is applied on the recorded 

IQ signal in Mat lab. The Ampere metre, digital multimeter Keysight 34461A, serves 

to set the drain quiescent current of the P A second-stage transistor. 

For the narrow-band measurements, the linearised P A is a two-stage P A in class 

A B presented in Sec. 4.7.1 as P A l . The drain quiescent current for this measurement 

was set to 15 m A . The measurements were performed wi th F - O F D M signals wi th 

the 6 4 - Q A M as the internal modulation. 

Power 
— Supplies 

Ampere 
Metre 

Attenuators 

Fig . 5.3: Photograph of the narrow-band measurement setup. 
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In each iteration, we generate the F - O F D M signal wi th 64 frames, each frame 

wi th 114 resource blocks, a block size of 6 subcarriers, resulting in W — 6 • 114 = 684. 

The F F T size is set to Z = 8192 and the filter length is L = 4097. The sampling 

frequency is l imited by the measurement setup and is set to Fs = 30 M H z . The D F T 

precoding is employed to reduce the signal P A P R . The signal generator wi th these 

settings provides the test signal vector wi th the channel bandwidth B pa 2.5 M H z 

and N0 = 532 992 samples. 

D P D for the P A linearisation employs the M P model wi th K = 7 and Q = 3, 

which yields P = 28 D P D coefficients. The D L A has driven the D P D adaptation, 

the iteration step was set to [/, — 0.05, and 50 iterations were performed during the 

measurements. The reference voltage r(t) was swept in equidistant steps over the 

whole range of the in-phase feedback amplitudes. The step size was set to 7.5% of 

the full scale. 

5.6.2 Wide-Band Measurements 

The block diagram of the wide-band measurement setup is depicted in F ig . 5.4 and 

the real setup is captured in photographs in F ig . 5.5 and F ig . 5.6. The setup is 

based on the development board ZCU111 [197] wi th the Zynq Ultrascale+ radio 

frequency system-on-chip (RFSoC) by X i l i n x . The R F S o C on ZCU111 provides up 

to eight R F A D C s wi th a sampling frequency < 4096 M H z and a nominal resolution 

of 12 bits, and up to eight R F D A C s wi th the sampling frequency < 6 554 M H z and 

the nominal resolution of 14 bits. For transmitting, two R F D A C s generate the 

baseband IQ signal which is frequency-shifted by IQ mixer HMC8191 [198] directly 

to the carrier frequency. The carrier frequency is set to Fc = 9 G H z and is generated 

by the R F generator S M F 1 0 0 A [199] from Rohde Schwarz. The signal from the 

DAC 

DAC 

RFSoC 
zcuiii 

ADC 

ADC 

IQ Mixer Predriver Driver Main PA Dir. Coupler 
D C Comp. HMC8191 ZX60-123LN-S+ ZVA183W QPA1010D ZUDC20-02183-S+ 

Spect. Analyser 
FSUP 

Amplifiers 
2XZJL-153+ 

a+bj (X) > N H h J 

Splitter Generator 
1 © > © > © 
1 

> © 
ZX10-2-1252-S+ SMF100A 

Attenuators 
BW-S10W20+ 
BW-S10W2+ 

IQ Mixer Attenuator 
HMC8191 Agilent 8495B+8494B 

Fig . 5.4: Block diagram of the wide-band measurement setup. 
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Fig . 5.5: Photograph of the wide-band measurement setup. 

F ig . 5.6: Detailed view on the wide-band measurement setup. 
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carrier-frequency generator is split to ensure the same frequency for IQ mixers in 

the direct and feedback paths and is amplified by two amplifiers ZJL-153+ [200] 

to achieve a sufficient signal level for the IQ mixers. The direct-path IQ mixer is 

followed by a series of amplifiers which drive the main P A close to the saturation 

point. The output of the main P A goes through a directional coupler and high-

power attenuators to the spectrum analyser F S U P [201] from Rohde Schwarz. The 

directional coupler probes the main P A output for the feedback path. The feedback 

signal level is adjusted by two variable attenuators Agilent 8495B and 8494B [202], 

down-converted by IQ mixer H M C 8 1 9 1 , and converted into a digital baseband IQ 

signal by two R F S o C A D C s . 

The main P A is an X-band GaN-on-SiC high power amplifier QPA1010 which 

operates in the frequency range from 7.9 G H z to 11 G H z and typically provides 15-

W saturated output power with power-added efficiency of 38% and large-signal gain 

of 18 dB [203]. Hereinafter, we wi l l denote this P A as P A 4 . The test signals were 

the same as for the narrow-band measurements, except for the sampling frequency 

set to Fs = 2048 M H z , number of resource blocks set to 333 and the number of 

frames set to 16. These settings result in the test signal wi th the channel bandwidth 

B « 500 M H z and JV0 = 136 320 samples. 

The D P D for the P A linearisation employs the D D R 2 model wi th K = 9 and 

<5 = 9, which yields P = 121 D P D coefficients. The D L A has driven the D P D 

adaptation, the iteration step was set to \i = 0.2, and 50 iterations were performed 

during the measurements. The reference voltage r(t) was swept in the same way as 

for the narrow-band measurements. 

5.7 Measurement Results 

5.7.1 Results of Narrow-Band Measurements 

The narrow-band measurement results of the A C P R , E V M , and N M S E evolution 

over the adaptation iterations are shown in F ig . 5.7, F ig . 5.8, F ig . 5.9, respectively. 

We can see that the results of the proposed D P D adaptation wi th the comparator 

in the feedback fairly follow the conventional D P D adaptation results. For both 

predistorters, the adaptation reaches a steady state in approximately 20 iterations. 

The horizontal dashed black line depicts the metrics of the transmitter without the 

D P D for the same output power in the main channel. The measured P S D for the 

proposed and conventional D P D compared to the P A output P S D without D P D is 

shown in F ig . 5.10. 
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F ig . 5.7: Evolut ion of the A C P R during the D P D adaptation with the narrow-band 

setup. 

4 

\ I 1 1 1 1 
0 10 20 30 40 50 

Iteration (-) 

F ig . 5.8: Evolut ion of the E V M during the D P D adaptation wi th the narrow-band 

setup. 

Tab. 5.2 shows the performance of adapted D P D in terms of N M S E , E V M , and 

A C P R . The results are averaged over the last 10 iterations. The proposed D P D 

provides comparable linearisation performance to the conventional D P D . It is to 

be noted that the conventional D P D performs the adaptation wi th the whole test 

signal vector containing 532 992 samples, whereas the proposed D P D adaptation is 

l imited by the occurrences of the signal transitions over the reference voltage r(t) 

resulting in the D P D adaptation wi th approximately 4000 — 5000 samples. 
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Fig . 5.10: Comparison of the measured power spectral density of the P A output 

without D P D and wi th the conventional and proposed D P D with the narrow-band 

setup. 

5.7.2 Results of Wide-Band Measurements 

Fig . 5.11 and F ig . 5.12 depict the A M / A M and A M / P M characteristics of the P A 

with the wide-band setup, adapted D P D , and linearised transmitter. The P A under 

test exhibits strong nonlinearity and even the smaller signal magnitudes are com

pressed. The memory effects of the P A widen the A M / A M characteristics of the 
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Tab. 5.2: Narrow-band measurement results of N M S E , E V M , and A C P R for the 

D P D wi th the proposed L C - A D C and conventional feedback. 

P m a i n (dBm) N M S E (dB) E V M (%) A C P R (dB) 

Without D P D 23.2 -26.8 3.60 -34.4 

Conventional 23.3 -40.5 1.51 -56.6 

L C - A D C 23.3 -40.7 1.48 -56.1 

E V M of the generated signal is 1.25% due to the nonorthogonality caused by the 

inherent F - O F D M filtering. 

P A and we can see that the employed D P D could not fully compensate for them. 

We believe that uncompensated memory effects are of a long-term character and are 

beyond the maximum memory length of the employed D P D . The straight-forward 

option of increasing maximum memory length would be very impractical, because 

due to high sampling frequency, capturing the long-term memory effects would dras

tically increase the number of D P D coefficients. The A M / P M characteristic of the 

P A is almost flat and its contribution to the overall P A nonlinearity is negligible. 

Normalised input-signal magnitude (-) 

Fig . 5.11: Measured A M / A M characteristics of the P A , D P D and of the linearised 

transmitter. 
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F ig . 5.12: Measured A M / P M characteristics of the P A . (The A M / P M characteris

tics of the D P D and of the linearised transmitter are not plotted, because all the 

characteristics overlap.) 

The evolution of A C P R , E V M , N M S E during the D P D adaptation is shown 

in F ig . 5.13, F ig . 5.14, F ig . 5.15, respectively. The proposed adaptation wi th a 

comparator in the feedback achieves slightly higher (worse) A C P R and N M S E than 

the conventional D P D adaptation. Bo th adaptation methods achieve a similar E V M 

of the transmitted signal. Bo th predistorters reach a steady state in approximately 

15 iterations. The horizontal dashed black lines depict the metrics of the P A without 

D P D for the same output power in the main channel. The measured P S D for the 

proposed and conventional D P D compared to the P A output P S D without D P D is 

shown in F ig . 5.16. 

The achieved linearisation performance metrics are summarised in Tab. 5.3. The 

results are averaged over the last 10 iterations. Again , the conventional D P D adap

tation calculates wi th the whole test signal vector, whereas the proposed D P D adap

tation is l imited by the occurrences of the signal transitions over the reference voltage 

r(t). Due to that the linearisation performance of the D P D with a comparator might 

be slightly limited. 
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Fig . 5.13: Evolut ion of the A C P R during the D P D adaptation wi th the wide-band 

setup. 
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Fig . 5.14: Evolut ion of the E V M during the D P D adaptation wi th the wide-band 

setup. 

5.8 Measurement Setup for DPD Adaptat ion wi th a 

Hardware LC-ADC 

To prove the proposed concept of the D P D adaptation wi th an L C - A D C in the feed

back, we have built up a measurement setup, which is depicted in a block diagram 

in F ig . 5.17 and in the photograph in F ig . 5.18. The setup is based on the Spartan-

3 A D S P Starter Board [204], E X P High-Speed D A C Converter Module from Avnet 

(with dual-channel D A C DAC5682Z, hereinafter denoted also as the D A C mod

ule) [205], our custom-designed feedback module with a real hardware L C - A D C , 

two R F signal generators for generating the carrier signal and reference clock, and 

a real-time spectrum analyser F S V R from Rohde-Schwarz [206]. 

109 



K 

Q 

-50 

-60 

-70 

-80 

-90 

-100 

1 i 

No DPD 

Proposed 

i t ' l l 1 

Conventional 

i 
-1000 -500 500 1000 

Frequency (MHz) 

Fig . 5.16: Comparison of the measured power spectral density of the P A output 

without D P D and wi th the conventional and proposed D P D with the wide-band 

setup. 

The simplified block diagram of the D A C module is depicted in F ig . 5.19. It 

contains the dual-channel D A C DAC5682Z [207], reconstruction L P F s , and up-

converting IQ mixer TRF3703 [208]. The D A C sampling clock is fed from the 

feedback module and the carrier frequency signal from an external R F generator. 

The output of the mixer is connected to the P A . 
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Tab. 5.3: Wide-band measurement results of N M S E , E V M , and A C P R for the D P D 

with the proposed L C - A D C and conventional feedback. 

P m a i n (dBm) N M S E (dB) E V M (%) A C P R (dB) 

Without D P D 34.8 -17.7 8.31 -26.3 

Conventional 34.8 -22.2 5.01 -36.4 

L C - A D C 34.9 -21.6 5.23 -34.5 

E V M of the generated signal is 1.25% due to the nonorthogonality caused by the 

inherent F - O F D M filtering. 

Reference Clock 
Generator 

DAC sampling clock 

Feedback Module 
with L C - A D C 

for D P D Adaptation 

Carrier Frequency 
Generator Splitter 

Spartan-3A 
DSP 1800A 

Starter Board 

PC 

900 MHz 

E X P High-Speed 
D A C Converter 

Module 

Main PA 

Spect. Analyser 
FSVR 

Splitter 

J 1 _ *> J 1 _ 

Fig . 5.17: Block diagram of the measurement setup for the D P D adaptation wi th a 

hardware L C - A D C . 

We had to design and build our own feedback module with a real hardware 

L C - A D C . The module contains the comparator, an edge-time extraction circuit as 

described in Sec. 5.5.1 and in F ig . 5.2a, feedback down-converting IQ mixer, and the 

clock distribution system. The block diagram of the designed module is shown in 

F ig . 5.20. The realised feedback module is captured in photographs in F ig . 5.21. The 

feedback signal from the main P A is down-converted to the baseband by IQ mixer 

TRF371125 [209] and its real differential output is converted to a single-ended signal 

by an active balun. We denote this signal yT(t), ideally it would be a baseband P A 

output, however, the down-converting mixer and active balun add certain distortion, 

which is noted by the hat. A high-speed comparator A D C M P 5 8 2 [210] compares 

the feedback signal yT(t) wi th a generated reference voltage r(t). The comparator 

output is sampled by two FFs N B 7 V 5 2 [196]. One F F is connected directly to the 
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Fig . 5.18: Photograph of the measurement setup for the D P D adaptation wi th a 

hardware L C - A D C . Transmission signal is generated by the D A C module and the 

F P G A and amplified by the main P A . The P A output is attenuated and the split

ter divides the signal for the real-time spectrum analyser F S V R and the feedback 

module wi th the comparator. The R F generator generates the carrier frequency. 
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Fig . 5.19: Simplified block diagram of the high-speed D A C converter module. 
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comparator output, the other one is connected wi th a certain small delay r created 

by printed circuit board ( P C B ) traces. The F F outputs are converted from the 

current-mode logic ( C M L ) standard to the low-voltage differential signaling (LVDS) 

standard and connected to the F P G A for further processing. The clocks for the 

F P G A , D A C sampling, and the feedback FFs are generated in a jitter cleaner and 

clock distributor L M K 0 4 1 3 3 [211]. This is the only clock source for the system (other 

clock sources are not employed or are bypassed) which ensures the clock coherency 

and minimises problems wi th clock-domain signal crossing. More details about the 

hardware design of the feedback module can be found in [212]. 

Feedback from Main PA 

Carrier frequency signal 
from RF generator 

Reference clock (10 MHz) 

IQ Mixer 
TRF371125 

Feedback Module with Level-Crossing ADC 

Comparator 
ADCMP582 Flip-Flops 

Active 
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LSDAC) 

Vr(t) 

MAX5143 

Clock System 

LMK04133 

NB7V52 

D Q 

>CLK 

CML to 
LVDS D Q 

>CLK 

CML to 
LVDS D Q 

>CLK 

D Q 

>CLK 

CML to 
LVDS D Q 

>CLK 

CML to 
LVDS D Q 

>CLK 

FPGA 
Spartan-3A 

DSP 1800A 

>CLK 

DAC sampling clock 
to DAC Module 

Fig . 5.20: Block diagram of the feedback module with L C - A D C . 

(a) Top view. (b) Bottom view. 

Fig . 5.21: Photographs of the realised the feedback module. 
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5.8.1 Operating Procedures 

The measurement setup operating procedures are executed in two places. Low-

level operations related to the hardware of the D A C module and feedback mod

ule are managed by the F P G A firmware which contains a soft core processor M i -

croblaze [213] for hardware initialisation and the F P G A logic dedicated to high-

performance operations such the signal transmission and the feedback acquisition. 

High-level operations related to the signal generation, D P D adaptation and predis-

tortion are managed by Mat lab on a connected personal computer (PC) . 

The measurement setup, after its start-up, has to be initialised. The F P G A 

processor takes these steps to initialise the hardware: 

• initialising the clock generating system wi th LMK041333 on the feedback mod

ule, 

• bypassing clock generator C D C M 7 0 0 5 on D A C module, 

• initialising the main D A C DAC5682Z on D A C module, 

• initialising the down-converting IQ mixer TRF371125 on the feedback module, 

• initialising Ethernet modules, 

• and starting the main application server. 

The main application server receives and processes commands from the P C . It 

is based on the lwIP stack and user datagram protocol ( U D P ) and implements a 

simple custom-designed protocol which ensures reliable data delivery. We have also 

experimented with transmission control protocol ( T C P ) which would inherently en

sure the communication reliability, but we have found the soft processor Microblaze 

to be underperforming for sufficient high-throughput T C P communication. 

The typical single measurement wi th the setup from the Mat lab perspective 

consists of 

• opening a U D P socket, 

• setting the number of samples to be transmitted and the operating mode, 

• sending the L S D A C waveform - the waveform of the reference voltage r(t), 

• sending the samples of signal x(t) which is up-converted and fed into the main 

P A , 

• sending a request for the measurement results, 

• obtaining the measurement results from the F P G A , 

• compensating for the setup delay, 

• and applying the calibration compensations. 

The application server in Microblaze receives the L S D A C waveform and stores 

it in a dedicated fast on-chip block random-access memory ( B R A M ) . The B R A M is 

read during the measurement by the F P G A logic and sent to the L S D A C to create 

the desired reference voltage waveform r(t). The m a i n - D A C samples cannot be re-
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ceived v ia Ethernet and sent to the D A C instantly. Therefore, the application server 

receives the samples and stores them in a dedicated space of the external double data 

rate ( D D R ) synchronous dynamic random-access memory ( S D R A M ) . When all the 

D A C samples are received, the application server triggers the measurement. The 

F P G A logic starts reading D A C samples from the D D R S D R A M and transmits 

them via the main D A C and an up-converting IQ mixer to the P A . Simultaneously, 

the F P G A logic monitors the output of the two FFs on the feedback module, and 

when it detects an edge, it saves the edge timestamp and polarity into a dedicated 

B R A M . When the measurement is finished, the application server reads the edge 

timestamps and polarities and sends them to Mat lab for further processing. 

5.8.2 Reference Voltage Amplitude Calibration 

To calibrate the reference voltage set by the L S D A C , we have proposed a method 

based on measuring the duty cycle of the comparator output expecting a periodic 

sinewave test signal as its input. If the test signal is sufficiently low to not be 

distorted by the P A , the comparator input yT(t) can be considered fully known as it 

is approximately equal to the transmitted signal, i.e. yr(t) ~ yr(t) ~ xT(t). 

The principle of the method is shown in F ig . 5.22. The method can be seen in the 

following way: The known periodic sinewave signal yT(t) crosses the unknown refer

ence voltage r(t) and generates a square wave at the comparator output (Fig. 5.22a). 

The duty cycle of the square wave is determined by a ratio of the reference voltage 

r(t) and the amplitude A of the test sinewave signal. 

The test signal period is preferred to be long, because in that case the small time 

errors of the edge time extraction circuit can be neglected. The described method 

is independent of the delay calibration, as measuring the duty cycle requires no 

information about the system delays. 

y.r 

t \ 
(a) Illustration in the time. (b) Explanation in the unit circle. 

Fig . 5.22: Principle of reference voltage calibration by measuring the duty cycle for 

a sinewave test signal. 
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Formally, we can make the following derivations: Let us expect that the real-part 

feedback is a scaled sinewave signal 

yT(t)=Asm(27TT-lt), (5.11) 

where T p e r is its period and A is its amplitude. The set reference voltage r(t) is 

constant during the measurement, thus r(t) = r. We can calculate the reference 

voltage r due to F ig . 5.22b as 

r = Acos(if), (5.12) 

and we know that 

^ = (5.13) 
± per 

which yields the final solution of r to be 

r = Acos(p±7r). (5.14) 
V -L per / 

Fig . 5.23 shows the measured duty cycle jr^ of the comparator output and the 

normalised reference voltage r as functions of the set L S D A C voltage TDAC- The 

reference voltage r is normalised with respect to the test signal amplitude A. We 

can observe that the reference voltage r is a linear function of the set L S D A C voltage 

?"DAC- We can fit a line into the measured points; its equation determines the relation 

between the reference voltage r and the set L S D A C voltage T D A C as 

r = (1.543 • TDAC — 2.477) • A. (5.15) 

1.4 1.5 1.6 1.7 1.8 1.4 1.5 1.6 1.7 1.8 
Set L S D A C Voltage r D A c (V) Set L S D A C Voltage r D A c (V) 

(a) Measured duty cycle. (b) Normalised reference voltage r. 

Fig . 5.23: Measured duty cycle and the reference voltage as functions of the set 

L S D A C voltage. 
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5.8.3 Edge-Detection Delay Calibration 

In real hardware, D A C s , up-converting and down-converting mixers, P A itself, ac

quisition circuit in the feedback, and the signal propagation cause a certain delay 

between the transmitted digital baseband signal x(t) and the respective observed 

feedback signal y(t). Practically, this delay is often considered constant and has to 

be measured once to be compensated for before the D P D adaptation. 

We have proposed a measurement method for the delay between the digital 

transmitter and the feedback receiver in two steps. The first step is a coarse delay 

measurement, when the edge acquisition circuit works in coarse mode where it de

tects all edges with higher time uncertainty. This mode allows us to measure the 

approximate delay and perform a fine delay measurement. The signal waveform 

transmitted for the coarse delay measurement is depicted in F ig . 5.24. The coarse 

delay is computed by fitting a transmitted signal to the recovered received signal by 

finding the LS optimum. 
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Fig . 5.24: The transmitted signal waveform and received comparator output before 

and after synchronisation during the coarse delay measurements. 
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The second step is a fine delay measurement which measures the delay wi th 

a resolution lower than the receiver clock period T cik. During this measurement, 

the edge acquisition circuit works wi th precise edge time detection, as proposed in 

F ig . 5.2a. The transmitter generates a signal waveform containing artificial edges 

at time instants n T d k + if, where if is a subperiod delay if < T c i k between the 

nT cik time instant and the interpolated transmitted signal crosses the set reference 

voltage r(t). The edge subperiod delay is explained in F ig . 5.25. The edge acquisition 

circuit in the precise edge time detection mode does not register all edges, but only 

edges which belong within a certain if interval. Due to the operation of the edge 

acquisition circuit, edge detection cannot be ensured at the boundaries of the if 

interval. Consequently, we employ a signal waveform with a delay of if swept in 

steps in interval [—0.5Tcik, 0.5T cik] with a step size equal to 0.01Tcik. Several edges 

are generated for each step which should increase the edge-detection probability at 

the boundaries of the interval of interest. A practical example of the detected edges 

by fine delay measurement is illustrated in F ig . 5.26. The results can be processed 

as the histogram shown in F ig . 5.27. 

The depicted if interval of edge detection defines the interval of the fine delay 

between the transmitter and the feedback receiver. For the D P D adaptation, we 

reduce the delay interval wi th a single-value delay represented by the interval centre. 

The overall measured delay is employed for the delay compensation before the D P D 

adaptation. Shifting the feedback signal y(t) in time is not achievable, as we only 

know the feedback signal in particular discrete time instants i j and, generally, signal 

y(t) cannot be fully recovered from samples y(ti). Instead, the delay compensation 

is achieved by time shifting the transmitted signal x(t) which is fully known. In our 

measurement setup, the delay is constant after the setup powers on, therefore, we 

can measure it once during the initialisation phase. 
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F ig . 5.25: The graphical explanation of the edge subperiod delay. The signal samples 

x[n] form the reconstructed signal edge x(t) which intersects the reference voltage 

r( i ) at the set time instant n T c l k + if. 
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Fig . 5.26: Rising and falling edges at the comparator output based on the variable 

generated subperiod delay. The subperiod delay has been normalised to T c i k . 
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Fig . 5.27: Histogram of the detected rising and falling edges at the comparator 

output as the function of the generated subperiod delay. The subperiod delay has 

been normalised to T^. 

119 



5.8.4 Optional LS Compensations 

The test measurements wi th the amplitude and the delay compensated for as de

scribed above have shown a sub-optimal performance of the feedback receiver. A n 

analysis showed biased errors in the amplitude and delay calibration. Therefore, we 

have decided to tune the delay and the amplitude based on the measurement wi th a 

real transmission signal. We have employed a two-parameter optimisation wi th the 

mean square error (MSE) as the optimisation criterion. 

Although, by employing the described optional LS compensations, we have 

achieved a lower M S E for the feedback-sample acquisition, the real D P D adap

tation attempts showed that this optional compensation decreased the linearisation 

performance. We believe that the introduced LS compensation well compensated 

for the average residual delay mismatch and the amplitude offset for the individual 

comparison levels, but at the same time, it introduced very small delay mismatches 

and amplitude offsets which were different for the individual comparison levels. Got-

thans et al. [194] and L i u et al. [76] showed that the D P D with memory modelling 

(M > 0) can intrinsically compensate for a small feedback path delay. Naturally, 

the D P D can compensate for linear gain in the feedback. Due to these findings, we 

have not employed the proposed optional LS compensation for the D P D adaptation. 

5.8.5 Potential Future Improvement 

Although, the presented a simple circuit for edge-time extraction wi th two FFs works 

sufficiently well for our measurement setup; its inherent time uncertainty caused by 

setup and hold times of the FFs is the main l imit ing factor for higher achievable 

bandwidth. One could overcome these limitations in the future by employing a 

more sophisticated method for edge-time extraction. We would suggest employing 

a time-to-digital converter. Mat tada and Guhilot [214] presented a comprehensive 

review of various time-to-digital converters. Some of these converters achieve time 

resolution being better than 1 ps and, simultaneously, very low power consumption 

of a few milliwatts. 

5.9 Measurement Results for DPD Adaptat ion wi th 

a Hardware LC-ADC 

The measurement results presented in this chapter have been obtained employing 

the hardware introduced in Sec. 5.8. The method labelled as conventional obtains 

the feedback samples from the spectrum analyser F S V R , while the proposed method 

employs the feedback comparator. For a l l these measurements, the linearised P A is 

120 



the two-stage P A in class A B presented in Sec. 4.7.1 as P A l . The drain quiescent 

current for this measurement was set to 15 m A . The measurements were performed 

wi th F - O F D M signals with the 6 4 - Q A M as the internal modulation. 

In each iteration, we generate the F - O F D M signal wi th 384 frames, each frame 

wi th 10 resource blocks, a block size of 6 subcarriers, resulting in W = 6 • 10 = 60. 

The F F T size is set to Z = 4096 and the filter length is L = 2049. The sampling 

frequency is l imited by the measurement setup and is set to Fs = 125 M H z . Note 

that the sampling frequency of the spectrum analyser F S V R is set to 25 M H z and 

the obtained signal is upsampled five times for the processing. D F T precoding is em

ployed to reduce the signal P A P R . The signal generator with these settings provides 

the test signal vector wi th the channel bandwidth B pa 1.9 M H z and NQ = 1 602 560 

samples. 

The D P D for the P A linearisation employs the M P model wi th K = 3 and Q — 1, 

which yields P = 6 D P D coefficients. The D L A has driven the D P D adaptation, 

the iteration step was set to \i = 0.1, and 30 iterations were performed during the 

measurements. The reference voltage r(t) was set to -0.1 and to 0.05 of the full scale 

of the in-phase feedback amplitudes and the two values were changed in the middle 

of the measurement iteration. 

F ig . 5.28, F ig . 5.29, and F ig . 5.30 show the evolution of A C P R , E V M , N M S E , 

respectively, in the iterations throughout the measurement. The horizontal black 

dashed lines depict the individual metrics without the D P D for the same main-

channel power. F ig . 5.31 shows the comparison of the resulting spectra for the 

conventional D P D and the proposed feedback comparator wi th the spectrum of the 

P A output without the linearisation. 
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Fig . 5.28: Evolut ion of the A C P R during the D P D adaptation wi th the setup wi th 

a hardware L C - A D C . 
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Fig . 5.29: Evolut ion of the E V M during the D P D adaptation wi th the setup wi th a 

hardware L C - A D C . 

- \ 
1 

\\ 

\ \ 

- \ 
1 

\\ 

\ \ -Mo UfU -

v s . A 

A * 

-

1 
A * 

A / * -' ' V-A / * -

0 5 10 15 20 25 30 
Iteration (-) 

Fig . 5.30: Evolut ion of the N M S E during the D P D adaptation with the setup wi th 

a hardware L C - A D C . 

Tab. 5.4 summarises the D P D linearisation performance. The presented results 

are averaged over the last ten iterations. We can observe that the proposed method 

wi th the feedback comparator did not achieve the linearisation performance of the 

conventional method. This could be caused by the limited number of points acquired 

by the comparator and used for the D P D adaptation. The comparator acquired 

approx. 100 samples while the conventional method employed all 1 602 560 samples. 

This l imitat ion is, however, the l imitation of our setup rather than the l imitat ion of 

the proposed method. 
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Fig . 5.31: Comparison of the measured power spectral density of the P A output 

without D P D and with the D P D adapted by the conventional and proposed methods 

on the setup wi th a hardware L C - A D C . 

Tab. 5.4: Measurement results of N M S E , E V M , and A C P R for the D P D with the 

proposed L C - A D C and conventional feedback on the setup wi th the hardware L C -

A D C . 

^main (dBm) N M S E (dB) E V M (%) A C P R (dB) 

Without D P D 24.4 -21.9 7.0 -30.4 

Conventional 24.3 -27.2 4.9 -38.5 

L C - A D C 24.2 -26.0 5.2 -37.6 

E V M of the generated signal is 3.1% due to the nonorthogonality caused by the 

inherent F - O F D M filtering. 

5.10 Conclusion 

In this chapter, we have proposed a novel method for D P D adaptation wi th the 

L C - A D C replacing the conventional A D C s . We have demonstrated the principle 

of the D P D adaptation with level-crossing detection by a comparator in the feed

back. We have shown that the proposed architecture reduces power consumption 

by approximately 75% compared wi th the conventional D P D architectures and by 

approximately 50% compared with the D P D from [4]. The linearisation performance 

has been evaluated by three measurements, where the proposed D P D achieved com-
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parable linearisation performance to the conventional D P D architectures. The re

sults achieved with the narrow-band measurement setup indicate an improvement of 

22 dB in A C P R and 2.1% in E V M by both the conventional and proposed architec

tures. We have achieved linearisation of a signal wi th 500 M H z bandwidth wi th the 

wide-band setup wi th the improvement of 10 dB in A C P R and 3.3% in E V M for the 

conventional architecture and 8 dB in A C P R and 3.1% in E V M for the proposed 

architecture wi th the L C - A D C . For the last measurement, we designed our feedback 

module with a real comparator and incorporated it into the measurement setup for 

the predistortion. Despite a l l the technical limitations of this setup, the adapted 

predistorter achieved an improvement of 8 dB in A C P R and 2.1% in E V M for the 

conventional architecture and 7 dB in A C P R and 1.8% in E V M for the proposed 

architecture with the designed feedback module. 
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6 Conclusion 

Digi ta l predistortion is considered to be the most advanced and best performing 

linearisation technique. However, at the same time, it is one of the most complex 

and computationally demanding techniques. The required extra computational re

sources and feedback circuits for D P D adaptability represent additional expenses for 

implementing D P D s and the main l imit ing factors for their wide spread use across 

various applications. Al though a lot of research has been conducted in this field, 

there is stil l plenty of room for improvements in this area. Therefore, we have ori

ented this thesis toward low-complexity methods for D P D adaptation. The main 

contributions of this thesis are three key methods to lower the complexity of D P D s : 

• real-valued feedback, 

• feedback sample selection, 

• feedback wi th an L C - A D C . 

The adaptation wi th real-valued feedback samples enables saving one of two 

conventionally-employed feedback A D C s . We have shown that the proposed method 

achieves the same linearisation performance as the conventional approaches and 

reduces the power consumption and additional expenses on the feedback circuit. 

Moreover, if real-valued feedback is employed, D P D adaptation might be less sus

ceptible to IQ imbalances of the feedback mixer [A9]. The real-valued feedback 

principle is generally applicable without limitations. Even already realised trans

mitters with conventional feedback circuits could turn off one feedback A D C , re

duce the feedback-circuit power consumption and benefit from improved immunity 

to feedback IQ imbalances. 

The feedback sample selection has been intrinsically based on the undersampling 

feedback methods. We have shown that only a few feedback samples are required for 

successful D P D adaptation if the samples are carefully selected. The limited number 

of required collected samples decreases the size of vectors and matrices entering the 

calculations and, hence, reduces the computational complexity of D P D adaptation. 

We have proposed several methods for feedback sample selection, two of them have 

been driven by respecting a predefined histogram. The proposed histogram-based 

methods respect both nonlinear P A characteristics and statistical properties of the 

transmitted signal. In our simulations and measurements, they have achieved the 

highest reduction of the required number of feedback samples and, consequently, 

the highest computational complexity reduction. Even the undersampling feedback 

alone can lead to a significant reduction 40 times) of the feedback A D C power 

consumption. The sample selection additionally reduces the computational complex

ity of D P D adaptation. The performed simulations indicate a 400-time reduction in 

computation complexity in the number of required multiplications and additions. 
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The feedback sample selection and undersampling principles are generally appli

cable and, even more, both principles can be potentially combined wi th the real-

valued feedback principle to reduce even more power consumption and hardware 

complexity. The feedback sample selection can be applied without any limitations 

in already-realised transmitters, because its implementation requires only firmware 

modification. In certain cases, the undersampling could be potentially implemented 

in already-realised transmitters to reduce the feedback A D C power consumption. 

To achieve this, the hardware would need to allow for a changing A D C sampling 

clock frequency. Of course, maximum benefits can be exploited if a new transmitter 

design is adjusted for all these methods. 

The proposed feedback wi th an L C - A D C replaces a conventional feedback A D C 

with a simple comparator complemented by a low-speed D A C . Its real implemen

tation in the hardware requires a different approach for time and amplitude cali

brations. For this purpose, we have designed and tested a method based on duty 

cycle measurements for amplitude calibration which does not require time synchro

nisation. We have synchronised the time in two steps: first coarsely with sample 

resolution and later finely with subsample resolution. In both steps, we transmitted 

an arbitrary signal with edges at different time positions and calculated the signal 

delay by fitting the transmitted signal with the observed comparator output. In all 

the conducted measurements, the D P D with L C - A D C adaptation achieved perfor

mance similar to that of the conventional D P D . A system comparison example has 

shown that the proposed L C - A D C feedback can significantly reduce the feedback 

power consumption 36 times) or can achieve higher linearisation bandwidth wi th 

unchanged power consumption. 

The usability of the L C - A D C for D P D adaptation is practically limited to special 

designs. We expect the L C - A D C could replace conventional A D C s in highly inte

grated feedback circuits. These integrated designs could benefit from the smaller 

footprint and lower power consumption of a simple comparator than that of complex 

high-speed A D C s . Additionally, the presented limitations and required compensa

tions and calibrations could be more easily achievable as the circuit parameters can 

be better controlled on a chip than in a discrete realisation. The L C - A D C concept, 

therefore, currently seems to be unpractically applicable to designs wi th discrete 

feedback circuits and is not suitable for already-realised transmitters, in contrast to 

the two previously presented methods. Even though the L C - A D C concept is not 

generally applicable, we demonstrated its funcionality by the first proof-of-concept 

implementation and we consider it the most advanced and interesting technique 

presented in this thesis. We believe its main ideas wi l l be employed or improved in 

the future. 
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6.1 Potential Future Challenges 

Recent review papers [1,2] emphasised the importance of digital predistortion for the 

5G or even 6G high-speed wireless communications and identified some potential fu

ture challenges. These primarily included improving D P D linearisation performance 

in general, lowering power consumption demands for D P D linearisation by utilising 

hybrids of analogue and digital predistorters, effective predistortion for phased ar

ray antennas and massive M I M O systems, and increasing linearised bandwidth. In 

addition, due to our experience, the power consumption of the auxiliary circuits 

required for the D P D adaptation might be reduced more. One possible approach, 

which we would like to analyse in the future, is the possibility of avoiding the feed

back down-converting mixer which is usually a very power demanding component, 

especially in wideband applications. Another potential of reducing digital predis

tortion complexity could be completely avoiding classic feedback and adapting to 

the P A nonlinearity changes based on a simpler input, e.g. P A temperature. Even 

though this approach seems to be straightforward, due to our best knowledge, the 

current state-of-the-art research lacks a comprehensive study of temperature and 

ageing effects on P A linearity changes and, therefore, it is hard to predict the abili

ties and performance of simpler D P D s without full adaptability. 

Al though there are still unanswered questions and many potential challenges to 

be addressed in the future, we believe that this dissertation thesis satisfies its goal 

and extends the current state-of-the-art knowledge in the field of digital predistor

tion aiming at low-complexity methods. We hope this thesis wi l l supplement the 

published papers and provide a different view on the presented topics and wi l l be 

one of the starting points for young researchers working on low-complexity digital 

predistortion. 
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Abbreviations 

5 G fifth generation 

6 G sixth generation 

6 4 - Q A M 64-state quadrature amplitude modulation 

A C P R adjacent channel power ratio 

A D C analogue-to-digital converter 

A M / A M amplitude / amplitude 

A M / P M amplitude / phase 

A P D analogue predistorter 

A S S A adaptive signal separation algorithm 

B R A M block random-access memory 

C M L current-mode logic 

C P cyclic prefix 

D A C digital-to-analogue converter 

D C direct current 

D D R double data rate 

D D R 2 simplified 2 n d -order dynamic deviation reduction-based Volterra 

D F T discrete Fourier transform 

D L A direct learning architecture 

D N C do not converge 

D P D digital predistorter 

D R A M dynamic random access memory 

D S P digital signal processing 

D V R decomposed vector rotation 

E D H evenly distributed histogram 
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E V M error vector magnitude 

F - O F D M filtered orthogonal frequency-division multipf 

F B M C filter bank multicarrier 

F F flip-flop 

F F T fast Fourier transform 

F M - I L A forward model indirect learning architecture 

F P G A field programmable gate array 

G M P generalised memory polynomial 

G O H genetically optimised histogram 

G S gradient-based sampling 

G S S GS-based sample selection 

H E M T high-electron-mobility transistor 

I F F T inverse fast Fourier transform 

I L A indirect learning architecture 

I L C iterative learning control 

I M D intermodulation distortion 

IQ in-phase and quadrature 

L C - A D C level-crossing analogue-to-digital converter 

L P F low-pass filter 

L S least squares 

L S D A C low-speed digital-to-analogue converter 

L U T look-up table 

L V D S low-voltage differential signaling 

M I M O multiple-input and multiple-output 

M P memory polynomial 
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M S E mean square error 

N M S E normalised mean square error 

N N neural network 

O F D M orthogonal frequency-division multiplexing 

O M P orthogonal matching pursuit 

P A power amplifier 

P A E power-added efficiency 

P A P R peak-to-average power ratio 

P C personal computer 

P C A principal component analysis 

P C B printed circuit board 

pdf probability density function 

P S D power spectral density 

Q R S QR-decomposition-based sample selection 

R - D L A real-valued direct learning architecture 

R - F M - I L A real-valued forward-model indirect learning architecture 

R A M random-access Memory 

R e L U rectified linear units 

R F radio frequency 

R F S o C radio frequency system-on-chip 

R M S root mean square 

S D R A M synchronous dynamic random-access memory 

S H sample and hold 

S H sample and hold 

S S M sample selection method 
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S V R support vector regression 

T C P transmission control protocol 

U D P user datagram protocol 

U S undersampling-based sample selection 
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Symbols 

j complex unit 

arg{-} angle of a complex number 

| • | magnitude of a complex number 

(•)r real part of a complex number 

(•)i imaginary part of a complex number 

(•)* complex conjugate 

(•) T transposed matrix 

(•) H Hermitian matrix 

|| • || /2-norm 

[•J number rounded down towards zero 

Dj cardinality (number of elements) of set Dj 

JC set of active O F D M subcarriers 

O overlapping factor in F B M C 

V(-) nonlinear transfer function of the P A 

A T time spacing between transmitted O F D M symbols 

AW tone offset for the F - O F D M modulation 

2AW difference between the desired passband and the designed sine filter 

passband 

7 minimum sample time distance in SSMs 

e(t) error signal 

VPAE power added efficiency 

9j-i lower boundary of the j - t h bin in histogram-based SSMs 

dj higher boundary of the j - t h bin in histogram-based SSMs 

p iteration step size 

pit) modulation prototype filter 

basis function wi th k nonlinearity order and q memory index created 

for signal x 

b vector of P A model coefficients 

b' vector of D P D coefficients 

b vector of updated D P D coefficients 

e vector of coefficient errors 

y vector of forward P A model output samples 

jjrit) real part of the P A output including imperfections of down-converting 

mixer and active balun 

A constant amplitude 

B channel bandwidth 

C D A C set L S D A C code 
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dj target count for the j-ih b in in histogram-based SSMs 

dk,m transmitted complex O F D M symbol at the m-th time position and the 

fc-th subcarrier 

Dj set of selected indices rii whose samples belong to the j - t h bin 

/ a d j i , / ad j2 bound frequencies of the adjacent channel for A C P R calculation 

IB [n] prototype-filter coefficients for the F - O F D M modulation 

fc carrier frequency 

/ c i k clock frequency 

/ m i , / m 2 bound frequencies of the main channel for A C P R calculation 

F frequency spacing between O F D M subcarriers 

FAM(-) function of A M / A M characteristics 

F P M ( - ) function of A M / P M characteristics 

Fpost(-) nonlinear function of postdistorter 

F p r e ( - ) nonlinear function of predistorter 

F s sampling frequency 

gk,m(t) modulation pulse at the m-th time position and the fc-th subcarrier 

G linear P A gain 

Hi numerical coefficients for P H Y D Y A S filter 

J number of histogram bins in histogram-based SSMs 

k general index, mainly nonlinearity order index of a D P D or P A model 

K maximum nonlinearity order of a D P D or P A model 

Ka G M P index array for nonlinearity order of aligned signal and envelope 

Kb G M P index array for nonlinearity order of signal and lagging envelope 

Kc G M P index array for nonlinearity order of signal and leading envelope 

L number of taps of the prototype filter for the F - O F D M modulation 

La G M P index array for memory back shift of aligned signal and envelope 

Lb G M P index array for memory back shift of signal and lagging envelope 

Lc G M P index array for memory back shift of signal and leading envelope 

Mb G M P index array for memory forward shift of signal and lagging enve

lope 

Mc G M P index array for memory forward shift of signal and leading enve

lope 

m general index, mainly memory order index of a D P D or P A model 

n sample index 

N number of selected samples or number of averaged values 

N0 number of acquired samples 

Ns number of demodulated symbols 

ps[n] sine function for the F - O F D M modulation 

P number of model coefficients 
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PDC power consumed from power supply rails 
p 
1 pwr 

power consumption 

PX 
amplifier input-signal power 

Py amplifier output-signal power 

Q memory order index of a D P D or PA model 

Q maximum memory length of a D P D or PA model 

r(t) reference voltage signal 

rDAC LSDAC output voltage 

t time 

td 
time of delay 

U subperiod delay of generated edges 

th hold time of digital F F 

thigh time of the comparator output in the high state 

setup time of digital F F 

T sampling period of discrete-time signals 

To time-scaling parameter in F B M C 

Tclk clock period 

T 
± per 

period of the test sinewave signal 

w[n] window function for the F - O F D M modulation 

W number of assigned data subcarriers for the F - O F D M modulation 

X PA input 

y PA output 

z desired PA output and usually D P D input 

Z F F T length for the F - O F D M modulation 
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