
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FRAMEWORK FOR DEVELOPMENT AND
OPERATION OF CLOUD SERVICES
RÁMEC PRO VÝVOJ A PROVOZ CLOUDOVÝCH SLUŽEB

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR PETER HAMRAN
AUTOR PRÁCE

SUPERVISOR doc. Ing. RADEK BÜRGET, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

Department of Information Systems (DIFS) Academic year 2021/2022

M a s t e r ' s T h e s i s S p e c i f i c a t i o n |||||||||||||||||||||||||
2 4 7 9 1

Student: Hamran Peter, Be.
Programme: Information Technology and Artificial Intelligence
Specialization: Intelligent Systems
Title: Framework for Development and Operation of Cloud Services
Category: Information Systems
Assignment:

1. Learn about the major global cloud providers and the type and range of services available.
2. Explore the current technologies for implementing both the server and client side of web

applications, with a focus on running in the cloud.
3. With supervisor's agreement, select a cloud platform and design the architecture of

a framework solution for application development that includes user management, client
component integration, and other parts.

4. Implement the proposed solution using appropriate technologies.
5. Test the developed solution on a suitable demonstration application.
6. Evaluate the achieved results.

Recommended literature:
• Kavis, M. J.: Architecting the Cloud: Design Decisions for Cloud Computing Service Models

(SaaS, PaaS, and laaS), Wiley, 2014, ISBN: 978-1-118-61761 -8
Requirements for the semestral defence:

• Items 1 to 3.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Burget Radek, doc. Ing., Ph.D.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 18, 2022
Approval date: January 28, 2022

Master's Thesis Specification/24791/2021/xhamraOO Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract
The complexity of modern applicat ion development is r is ing. In this thesis, m y efforts
a im at designing and demonstrating a framework consisting of cloud-native services that
target common business-critical issues. I explore the available cloud service providers on
the market and current technologies for implementing both server and client-side web ap
plications running i n c loud environments. I have developed the services of this framework
following microservice architecture principles w i t h a working demo applicat ion that utilizes
this framework.

Abstrakt
Zložitosť vývoja moderných aplikácií postupne narastá. V tejto práci sa snažím navrhnúť a
demonštrovať aplikačný rámec skladajúci sa zo služieb navrhnutých pre cloudové prostredie,
ktorý rieši problémy dôležité pre podnikanie . V y t v o r i l som súhrn existujúcich poskyto-
vateľov cloudových služieb spolu s prehľadom technológií dôležitých pre implementáciu
serverovej a klientskej strany aplikácií so zameraním na prevádzku v cloude. Aplikačný
rámec je navrhnutý s ohľadom na princípy architektúry mikroslužieb ako distribuovaný
systém služieb spolu s fungujúcou demo aplikáciou, ktorá ich využíva.

Keywords
C l o u d , Framework, Framework Design, Microservice Architecture , P l a t f o r m as a Service,
P y t h o n Django, React, Google C l o u d P l a t f o r m

Kľúčové slová
C l o u d , Aplikačný Rámec, Návrh Aplikačného Rámca , Architektúra Microservice, P la t forma
ako Služba, P y t h o n Django, React, Google C l o u d P l a t f o r m

Reference
H A M R A N , Peter. Framework for Development and
Operation of Cloud Services. B r n o , 2022. Master 's thesis. B r n o Univers i ty of Technology,
Faculty of Information Technology. Supervisor doc. Ing. Radek Bürget, P h . D .

Rozšírený abstrakt
Moderný prístup k vývoju aplikácií sa s príchodom inovácií v sektore cloudových výpoč
tov stal viac dynamickým. Prístup k výpočtovým zdro jom je jednoduchší ako kedykoľvek
predtým a súčasne sa vývojář môže spoľahnúť na stabilné pripojenie k internetu. Avšak
tento stav technologického vývoja zvyšuje t lak na individuálnych developerov a zapríčiňuje
nárast požiadaviek na finálny produkt . Tento fakt má dopad a l imituje l u k r a t i v i t u ind i
viduálneho podnikania p r i narastajúcom trende freelancingu.

Problémom je, že developer sa prostredníctvom svojej aplikácie snaží vyriešiť určitú
prekážku, ktorú vo svojom okolí identifikoval. Aplikácia však musí pokrývať technické aj
podnikateľské výzvy. To pre developera prezentuje značnú počiatočnú investíciu. A j ked
technologické riešenia, ktoré ponúkajú poskytovatelia cloudových služieb sú veľmi dostupné,
ich porozumenie a implementácia vôbec nie je zanedbateľné kritérium. P r e vývoj p r o d u k t u ,
s ktorým sa dá prezentovať na t r h u je ale potrebné pokryť aj aspekty ako napríklad licencov-
anie alebo platby. Aplikačný rámec prezentuje extrakciu takýchto služieb na vyššiu úroveň,
pričom využíva znalosti , ktoré priemerný developer nemusí mať. Vďaka tomu dokáže p r i
vývoji poskytnúť služby ako napríklad licencovanie, ale aj základňu užívateľov, čo následne
prispieva k nárastu záujmu o aplikácie.

Mojím cieľom v tejto práci bolo navrhnúť aplikačný rámec, ktorý podporuje vývoj ap
likácií v cloudovom prostredí. V takto navrhnutom informačnom systéme som identifikoval
dvoch aktérov, jedná sa o užívateľov a developerov.

• Developer je osoba, ktorá aktívne využíva služby navrhnuté v aplikačnom rámci na
vývoj aplikácií.

• Užívateľ je osoba, ktorá následne konzumuje tieto aplikácie.

Preto takýto systém vystupuje ako platforma ako služba pre developerov a ponúka softvér
ako službu pre užívateľov.

V kapitole 2 predstavujem najväčších poskytovateľov cloudových služieb na t rhu . Keďže
počet cloudových poskytovateľov je obrovský, rozhodol som sa zamerať na tro j icu najväčších
a to A m a z o n Web Services, Microsoft A z u r e a Google C l o u d P l a t f o r m . Služby, ktoré
poskytujú, sa čiastočne prekrývajú z dôvodu, že sa snažia pokrývať značnú časť t rhu, avšak
aj napriek tomu t u existujú rozdiely.

K a p i t o l a 3 zahŕňa teóriu potrebnú pre pochopenie a návrh škálovateľných webových ap
likácií. V tejto kapitole vysvetľujem prečo a kedy využívať výhody architektúry mikroslužieb
v takýchto aplikáciách oproti zaužívanému monol i tu . Taktiež sa snažím poukázať na isté
problémy, ktoré z toho rozhodnutia plynú.

Technológie na vývoj aplikácií v cloude sú predstavené v kapitole 4. Demonštruje
technológie nevyhnutné alebo užitočné p r i návrhu a implementácií cloudových aplikácií,
ako napríklad aplikačné rozhrania (A P I) , jazyky, ktoré majú dobrú podporu v cloudovom
prostredí, ako aj rámce použiteľné na vývoj aplikácií.

K a p i t o l a 5 obsahuje samotný návrh a implementačně detaily aplikačného rámca. D o
práce som sa snažil zhrnúť zaujímavé adôležité fakty a poukázať na procesy, ktoré som p r i
práci využil. Taktiež t u predstavujem návrh a využitie demo aplikácie, ktorá využívate
aplikačný rámec v prax i .

Nakoniec kapi tola 6 sumarizuje problémy, s ktorými som sa p r i riešení uvedenej prob
lematiky stretol a musel vysporiadať. Taktiež t u spomínam zaujímavosti, na ktoré som p r i
vypracovávaní tejto témy narazi l .

Framework for Development and
Operation of C l o u d Services

Declaration
I hereby declare that this Master 's thesis was prepared as an original work by the author
under the supervision of doc. Ing. Radek Burget P h . D . I have listed a l l the l i terary sources,
publications and other sources, which were used dur ing the preparation of this thesis.

Peter H a m r a n
M a y 18, 2022

Acknowledgements
Firs t and foremost, I would like to thank my professor Ing. Radek Burget , P h . D for
al lowing me to pursue the topic of this thesis. I also want to thank m y friends and family
for their mora l support . Namely, I want to thank m y friends and colleagues K a m i l Pšenák
and Tomáš Daniš for our brainstorming sessions and their technological expertise and also
N i k i t a Nikolaenko for his great expertise i n c loud technology. This thesis would not be
possible without the support of the people I have around me.

Contents

1 I n t r o d u c t i o n 3

2 S t a t e o f t h e a r t C l o u d C o m p u t i n g 5
2.1 Wor ldwide c loud service providers 5
2.2 The *aaS W o r l d 6

2.2.1 Infrastructure as a Service 7
2.2.2 P l a t f o r m as a Service 7
2.2.3 Software as a Service 7
2.2.4 Server less C o m p u t i n g 8

2.3 Container izat ion 8
2.4 A m a z o n Web Services 10
2.5 Microsoft A z u r e 13
2.6 Google C l o u d P l a t f o r m 15

2.6.1 Google C o m p u t e Engine 16
2.6.2 C l o u d R u n 16
2.6.3 C l o u d Storage 17
2.6.4 Spanner 18
2.6.5 Firebase 18

3 W e b A p p l i c a t i o n A r c h i t e c t u r e 20
3.1 M o n o l i t h i c Architecture 20
3.2 Microservice Architecture 22
3.3 Dis t r ibuted Transactions 25

4 C l o u d N a t i v e T e c h S t a c k 29
4.1 Gateway to the C l o u d 29
4.2 H T T P Messaging 30
4.3 R E S T - f u l A P I 31
4.4 G r a p h Q L A P I 32
4.5 P u b - S u b Messaging 34
4.6 A P I Gateway 36
4.7 O p e n A P I Specification 38
4.8 Technology Stack for A p p l i c a t i o n Development in C l o u d 42
4.9 Java and Jakar ta E E 42
4.10 Java Spring Framework 43
4.11 C # A S P . N E T Framework 44
4.12 Node.js Express Framework 44
4.13 P y t h o n Flask 45

1

http://ASP.NET

4.14 P y t h o n Django Framework 45
4.15 Typescr ipt 46
4.16 React 46
4.17 A n g u l a r 48

5 T e c h n o l o g i c a l D e s i g n 49
5.1 D o m a i n M o d e l 49
5.2 Infrastructure 52
5.3 A P I Design 53
5.4 Transactional Consistency 54
5.5 Component Design 54
5.6 User Authent ica t ion 55
5.7 A p p l i c a t i o n State Management 55
5.8 Demo A p p l i c a t i o n 56

6 P r o j e c t T a k e a w a y s 59
6.1 C l o u d Runt ime 59
6.2 A u t o m a t i c Scaling 59
6.3 Framework Authent ica t ion 60
6.4 Asynchronous Frontend 60

6.5 Service Provis ioning 61

7 C o n c l u s i o n a n d F u t u r e W o r k 62

B i b l i o g r a p h y 63

2

Chapter 1

Introduction

W i t h innovations i n the c loud comput ing sector, modern appl icat ion development has
shifted to a more dynamic model . Access to computat ional resources is easier than ever,
and the developer can rely on the stabi l i ty of the internet connection. However, this state
of technological development puts pressure on i n d i v i d u a l developers where their solutions
have the potential to be more thorough w i t h the available resources. It strains the rising
trend of freelancing in applicat ion development and I T in general.

The problem is that a developer can have a specific business problem i n m i n d w i t h an
applicat ion designed to solve i t . The applicat ion has to solve both technical and business
challenges. Therefore, it carries an in i t i a l cost to the developer. The technological solutions
offered by cloud providers might be more accessible, but they become more complex. It
requires upfront research when choosing the right services to consume to prevent the project
from fai l ing i n the beginning. The business challenges are harder to get right w i t h no
previous experience. The framework tries to leverage the knowledge of business processes
and an existing user base of its plat form to provide tools while accelerating the applicat ion
adoption by users.

M y goal i n this thesis is to design an appl icat ion framework that aims at a iding the
developers i n appl icat ion development in the c loud environment. The implementat ion of
this framework is a P l a t f o r m as a Service solution. It acts as a development por ta l providing
services that target business-critical concerns like licensing and b i l l ing while providing an
interface for user authentication and applicat ion management. It also aims to provide a
plat form for consumers where they can potential ly f ind solutions that fit their needs. The
plat form offers Software as a Service solutions to the consumer.

In chapter 2, I introduce the biggest worldwide providers of c loud services. There are
many cloud service providers on the market. The holy t r in i ty of A m a z o n Web Services,
Microsoft A z u r e , and Google C l o u d P l a t f o r m is the staple of c loud comput ing in the modern
era. The overlap of offered services is significant, yet the specific implementations frequently
differ.

Chapter 3 introduces the theory needed to understand and design scalable web-oriented
applications. I go into why and when using microservice architecture benefits the applica
t ion compared to the monoli thic design. I also outline some challenges that emerge from
this transit ion.

I explore the technologies necessary for cloud-native applicat ion development in chap
ter 4. It contains technologies like A P I s , c loud-friendly languages and language-specific
frameworks.

3

Chapter 5 outlines the framework design choices and their implementat ion. I t r ied to
tackle a l l the important topics and thought processes that went into designing the frame
work. I also introduce the design of the demo applicat ion that aims to put the services into
practice.

Last but not least, chapter 6 summarizes the lessons learned and challenges encountered
dur ing the design and implementat ion parts of this thesis.

1

Chapter 2

State of the art Cloud Computing

The N a t i o n a l Institute for Standards and Technology (NIST) defined cloud computing as:
Cloud computing is a model for enabling convenient, on-demand network access to

a shared pool of configurable computing resources (e.g., networks, servers, storage, applica
tions, and services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction[17].

C l o u d comput ing is a market response to the inevitable expansion of the internet. A s the
internet infrastructure grows, more and more people gain access to online services. Yet , the
world is s t i l l unevenly covered w i t h internet connectivity ranging f rom over 97% coverage
in Nor thern Europe to some regions i n A f r i c a having below 10% of coverage [16]. Experts
predict that those regions w i l l generate new users exponentially [4].

Another huge consumer of online services is IoT devices. In the last five years, the
amount of IoT devices have grown larger than non-IoT users of the internet [24]. A n d this
amount of devices requires resilient and secure architecture to r u n reliably.

E x i s t i n g c loud comput ing covers the needs of both groups by providing a spectrum of
products like infrastructure, plat form or software as a service. B u t also raw computing
resources, disc storage or pre-built databases. There are many ways that a business can
benefit f rom using c loud comput ing services, and I w i l l attempt to outline some of them in
this chapter. Th is approach is often adopted to improve user experience by br inging the
services geographically closer to the end-user.

Wor ldwide c loud coverage roughly follows the internet coverage trends. We can see
a high density of c loud providers i n more developed regions to lesser developed ones.

2.1 W o r l d w i d e c loud service providers

C l o u d comput ing is the new go-to model for globally deployed services. In the last years,
it has gained tract ion as companies priori t ize as-a-service providers over the t radi t ional
hosting vendors. One of the reasons is how easy it is to start using these services out
of the box. A l l the major c loud comput ing providers guarantee high levels of security,
compliance w i t h data retention standards and availabil ity. A n d businesses have to consider
these aspects when bui ld ing their infrastructure.

Another reason for considering c loud over local hosting providers is its elasticity. C l o u d
elasticity is one of the cloud functions that allow it to scale up or scale down its resources.
Th is funct ional i ty can be automatic or manual based on the nature of the scaled technology.
It provides businesses w i t h an opt ion to meet occasional spikes i n demand that usually

5

f CHALLENGERS 1 LEADERS

ATHKjiWEhSHVjces

•

* Oracle

• Alba!» Claud

Tsicaiidnud ft
ft IBM

1 NICHE PLAYERS | ^ ^ ^ ^ H VISIONARIES J

COMPLETENESS OF VISION As of Ju ly 2021 © Gartner, Inc

Gartner

Figure 2.1: Magic Quadrant for C l o u d Infrastructure and P l a t f o r m Services[21]

Enterprise IT Infrastructure Platform Software
(legacy IT] (as a service) ™ (as a service) {as-a service)

Applications | Applications | ? Applications Applications

| Secjrity | = Security 3 Security Security

Databases | Databases Databases Databases

Operating Systems Operating Systems "5 Operating Systems g, Operating Systems

Virtual ization Virtualization ^ Virtualization ^ Virtualization

Servers Servers & Servers s Servers

Storage ? Storage Storage Storage

Networki ng & Networking Networking Networking

Data Centers Data Centers Data Centers Data Centers

Figure 2.2: C l o u d provider versus customer roles for managing cloud services[6]

happen i n rush hours or at launches of new products. Another non-technical aspect of
cloud elasticity is that businesses don't need to pay the price for the resources they are not
using. T h i s way, c loud providers attempt to optimize the load across their hardware.

2.2 T h e *aaS W o r l d

The cloud ecosystem has become a complex, ever-changing pool of providers, technologies,
products and services. The general publ ic recognizes it as a service p o o l due to many other
business aspects that come alongside (e.g. S L A s , He lp Desk, guides). Therefore, the market
has adopted the naming convention of as a Service. Some of the frequently used services are
infrastructure, p la t form or software, but there is no l i m i t a t i o n to what can clouds provide
as a Service 2.2.

(i

2 . 2 . 1 I n f r a s t r u c t u r e a s a S e r v i c e

Infrastructure as a service (IaaS) is the most elementary service modern cloud providers
offer. It provides the consumer w i t h options for managing the resources required for bui ld ing
an I T infrastructure. It abstracts the consumer f rom problems that come from owning on-
premise hardware. The consumer accesses the hardware components using a web-based
management console where he has direct control over a set of services. Th is abstraction
from a hardware component to service enables c loud service providers to shield the customer
from the underlying structure.

There are many benefits to using IaaS instead of an on-prem solution. The cloud
service provider is managing the security of your infrastructure for you. There are many
measures i n place to protect your data f rom being stolen or altered. Some of them are
end-to-end encrypt ion and encryption at rest. Increased resilience and disaster recovery
are other benefits provided by c loud service providers. W i t h guaranteed data backup, your
infrastructure w i l l r u n even if there is a failure. A n d this is a l l covered by the service level
agreements that c loud providers offer.

2 . 2 . 2 P l a t f o r m a s a S e r v i c e

P l a t f o r m as a service (PaaS) is the next abstraction on the c loud stack. In PaaS , the
consumers rely heavily on the service provider for development tools, infrastructure and
operating systems. It focuses on the development, runtime and growth of applications.
Provides high-level services like caching, asynchronous communicat ion and comput ing and
storage services while keeping the underlying infrastructure hidden together w i t h patch
management, capacity planning or resource procurement.

P l a t f o r m as a service works best for smal l businesses and individuals thanks to its
abstractions. It allows more focus on the specifics of your applicat ion while you do not
need to worry about maintenance. It results i n t ime and cost-saving and increased speed
to market ratio. PaaS also provides options for dynamic scaling of your applications.

O n the other hand, the plat form as a service introduces a vendor lock- in . W h e n we b u i l d
our appl icat ion w i t h the functions provided by a vendor plat form, we essentially intertwine
our technology stack w i t h their platform-specific services. It can become an issue when
the vendor substantially changes the product offering or when the price increases and the
solution is no longer viable.

2 . 2 . 3 S o f t w a r e a s a S e r v i c e

Software as a service (SaaS) is at the top of a c loud stack structure. It is a complete prod
uct supported by the service provider that requires only application-specific configurations
and user management. The consumers of SaaS are usually the end-users of cloud-native
applications. The service provider manages everything from the business logic of a SaaS ap
pl icat ion to its delivery. C o m m o n examples of SaaS applications are customer relationship
management (C R M) , accounting and other business appl icat ion. B u t also, a web-based
email client can be considered a SaaS applicat ion.

Appl icat ions buil t as software as a service are inherently multitenant applications to
provide services to many customers. It is the case because the underlying infrastructure
and business logic are the same for a l l consumers.

7

a. a. m a. a. a. m a.

£ £ I £ * * I *

Docker

Host Operating System

Infrastructure

Guest I I Quest 1 Guest
Operating 1 Operating 1 Operating

System II _ System

Hypervisor

Infrastructure

Figure 2.3: Containers versus V i r t u a l Machines[8]

2 . 2 . 4 S e r v e r l e s s C o m p u t i n g

Serverless comput ing is a very similar concept to the plat form as a service. T h e service
provider allows the consumer to rent out backend services on the go.

The difference between serverless computing and plat form as a service is better scalabil
ity. The applications based on serverless technology scale instantly and automatical ly w i t h
any addit ional configuration. Serverless also allows applications to scale down to complete
inact ivi ty when there is no traffic.

2.3 Conta iner iza t ion

Containerizat ion i n c loud comput ing is packaging the code together w i t h its related de
pendencies. Therefore, the applicat ion has everything it needs and can r u n smoother in
an isolated environment. It also helps the deployment process because containers are pre
defined and create the same environment wherever we deploy them. It is very s imilar to
v i r tual izat ion . W h i l e both technologies allow the packaging of applications into an envi
ronment, containers do this more efficiently.

The m a i n difference between containers and vir tual izat ion is resource al location. W h i l e
both technologies provide a segregated environment for our applications, v i r tual izat ion takes
it up a notch and creates guest operating systems to r u n the applicat ion. W h i l e containers
r u n direct ly on the host operating system, they share the host O S kernel and libraries. It
results in much lightweight and portable architecture.

The first th ing when working w i t h containers is to have an appl icat ion you want to con
tainerize. Y o u want to put it i n an isolated environment together w i t h a l l the dependencies
it needs. We define the outlines of our container by creating a docker file. Docker files
serve as container manifests. Once we have a docker file, we b u i l d a docker imagine based
on the rules we have established i n i t . W h e n we have our image bui l t , it can be pushed to
a registry and create a final container out of it .

Another feature of containers is that they heavily rely on resource sharing. W h e n
deploying mult iple containers on the same machine, they reuse the already existing resources
they share and only contain the bare m i n i m u m they require to r u n i n isolation.

8

W h a t i s D o c k e r ?

Docker is fair ly popular nowadays and is often used interchangeably w i t h containers. Docker
is a software framework for bui ld ing , running and managing containers. It is one of many
tools developers use for containerization on servers and clouds.

L i n u x containers have facil i tated a massive shift i n high-availabil i ty comput ing [2].
There are many toolsets to help r u n services or even entire operating systems i n con
tainers. The O p e n Container Init iat ive (OCI) is an industry standards organization that
encourages innovation while avoiding the danger of vendor lock- in . Thanks to the O C I ,
there is a choice when choosing a container toolchain, inc luding Docker, C R I - O , P o d m a n ,
L X C , and others.

The Docker engine is a useful tool for lone developers as it is lightweight, clean envi
ronment for testing, but without a need for complex orchestration. It introduces its own
terminology and structure that is found i n every container engine available i n some form.
I w i l l go into further details on these s tructural elements i n the upcoming sections.

D o c k e r f i l e

The dockerfile serves as an instruct ion manifest for docker. Y o u can th ink of it as a classic
shell script. The file contains commands a user would manual ly enter on the command line
to create an image manually. B u t this way, the file contains commands that specify how to
b u i l d a docker image.

Dockerfiles are just regular text files w i t h a special syntax. Docker defines a set of
supported instructions, and I w i l l t ry to outline the most common ones. Y o u can find the
complete dockerfile instruct ion documentat ion on the docker docs website.

A s an example demonstrat ion of a dockerfile, I create a dockerfile that builds an image
w i t h python and flask.

1
2
3
4
5
6
7
8
9

10
11
12

syntax=docker/dockerfile:1

FROM python:3.8-slim-buster

WORKDIR /app

COPY requirements.txt requirements.txt
RUN pip3 i n s t a l l - r requirements.txt

COPY . .

CMD ["python3", "-m" , " f l a s k " , "run", "—host=0.0.0.0"]

Every docker file has to start w i t h the 'FROM' command to specify a start ing point to
b u i l d the image. Y o u can use the ' F R O M scratch' to expl ic i t ly init ial ize w i t h an empty
docker image, but usually, you w i l l use an existing docker image to start. I have ini t ia l ized
my docker image from 'python:3.8-slim-buster ' w i t h the first command i n the example.

Addi t ional ly , you can specify a parser directive i n your dockerfile on the first line. The
parser directive is not considered being a command and is opt ional . It is s imilar to using
a shebang at the beginning of a script file or specifying a schema specification at the start
of J S O N schema.

The next set of commands sets our working directory w i t h the 'WORKDIR' command to
'/app'. Th is way, we can have an easier t ime w i t h paths. We need to copy everything we
need to set up our environment. In this case, it w i l l be our 'requirements.txt' file w i t h the

9

' C O P Y ' command. The 'RUN' command executes standard bash scripts and binaries like
you would on any L i n u x O S . In this case, 'RUN pip3 i n s t a l l - r requirements.txt'
installs dependencies from 'requirements.txt'. T h e n the 'COPY . . ' command copies a l l
the files located i n the current directory and copies them into the docker image. The last
command from the example runs the flask applicat ion once the docker image executes inside
a container.

Every command we issue i n a docker file acts as a separate layer. Y o u can understand
layers as image snapshots. W h e n we introduce a change in a layer, the engine w i l l only
rebuild the image from that layer, and everything before w i l l stay the same. It is called
layer caching. Y o u can disable the layer caching when the functionali ty is not desirable by
using the -no-cache=true option.

D o c k e r I m a g e

The docker image is an intermediate immutable object between the dockerfile manifest
and a container. It contains the applicat ion code, libraries, tools and other dependencies
required by the applicat ion.

A hierarchy of base images containing different base technologies like programming
languages or tools developers can base on their docker images.

The naming i n the official docker images follows a simple principle. F i r s t , the name
starts w i t h a technology the docker image contains. In the example from the Dockerfiles
section, we have used the 'python:3.8-slim-buster ' image as a source image. The binaries
for the python environment are i n this docker image. W h a t follows after the colon is
called a docker tag. This tag contains various information about the docker image itself.
For example, '3.8' is the version of python binaries, ' s l im' makes the image smaller by
instal l ing only the necessary packages to r u n python, 'buster' is a Debian release i n case
the appl icat ion has compat ib i l i ty requirements.

C o n t a i n e r

The docker image becomes a container at runtime. Docker images are immutable and
therefore can not change their state. The state inside a docker image can only change
before being bui l t or running.

The best practice for creating containers is that each container should take responsibil ity
for one aspect of the project. Containers are also stateless. Once the container is destroyed,
it starts f rom a clean slate, just as designed in the dockerfile.

2.4 A m a z o n W e b Services

A m a z o n Web Services (A W S) was the first provider of c loud comput ing services out of the
big tr io of A W S , Microsoft A z u r e and Google C l o u d P l a t f o r m . M a n y organisations use
the services and products offered by A W S as they hold over 30% market share. One of
A W S ' s most used services is A m a z o n E C 2 , which lets customers create v i r t u a l machines for
their strategic projects while spending less t ime on mainta ining servers. Another service is
A m a z o n Simple Storage Service (S3), which offers a secure file storage service. In addi t ion ,
A m a z o n also provides security, website infrastructure management, and identity and access
management solutions.

10

A m a z o n Web Services (A W S) operates i n regions in the U n i t e d States, South A m e r i c a ,
Europe and the A s i a Pacif ic . E a c h region contains between two and five availabil i ty zones
that are geographically separate f rom one another.

A m a z o n E l a s t i c C o m p u t e C l o u d

The A m a z o n Elast ic C o m p u t e C l o u d is also known as E C 2 . It is the lowest form of abstrac
t ion that A W S offers and the service is considered to be IaaS 2.2.1. It offers the users access
to the creation and management of v i r t u a l machines based on predefined images f rom the
predefined A m a z o n Machine Image (A M I) or from a custom A M I image. T h e E C 2 also
enables the import of existing on-premise v i r t u a l machine images to the cloud.

The benefit of E C 2 comes f rom the basis that it is an IaaS and therefore offers computing
capabil i ty for rent instead of the need for purchasing the underlying hardware. In addi t ion to
general-purpose instances, A W S offers an instance type for computing, memory, accelerated
computing, and storage-optimized workloads that can a l l be deployed under the E C 2 service.

The E C 2 service allows for complete control of instances which makes the operations as
simple as on an owned machine. The underlying secure connectivity to other c loud services
makes it a secure and easy solution for computing, query processing and cloud storage use-
cases. The downside of operating in the c loud at such a low abstraction poses challenges in
resource ut i l iza t ion . E C 2 service is pa id for instance per hour of runt ime. This means that
the developer must manage the number of instances needed for the task at hand to avoid
long and costly runtimes. A l s o , the developer is responsible for the management of A M I
instances i n case of custom configurations.

The most common use-cases[l][3] for E C 2 instances are:

• R u n n i n g enterprise applications

• R u n n i n g high-performance computat ional applications

• Tra in ing and deployment of machine learning applications

• Creat ing environments for development and testing

A m a z o n S i m p l e S t o r a g e S e r v i c e

The A m a z o n Simple Storage Service is also known as A m a z o n S3. It is a scalable and
high-speed cloud storage PaaS 2.2.2 for online backups and data archiving. It differs from
regular storage models as it is an object storage service. Object storage is an abstraction
where the developer does not have to manage the data as files or blocks. The data are
represented by an object I D , which the developers and applications can use to access the
stored object.

The S3 service offers developers a set of storage classes. E a c h storage class is opt imized
for different use-cases. There is a standard storage class designed for the most common type
of use where the data stored are frequently accessed w i t h low latency and high throughput.
T h e n the S3 service offers mult iple classes w i t h so-called intelligent t iering. These classes
expect that data access needs w i l l be changing or are generally unknown to the developer.
It has four different access tiers and can be adapted on the fly, the tiers are frequent access,
infrequent access, archive and deep archive. Last but not least I w i l l mention the Glacier
storage class. A s one would expect this storage class is opt imized for infrequent access and
is a good solution for archiving data.

11

The storage itself is organized i n units called buckets. The bucket can be viewed as
a logical container or a namespace to store objects. There is no l imi t to the number of
objects that can be stored i n a bucket, but A W S poses a quota of 100 buckets per account.

A m a z o n D y n a m o D B

A m a z o n D y n a m o D B is a N o S Q L database hosted on the A W S plat form. More specifically
it is a ful ly managed, serverless, key-value N o S Q L database designed for high-performance
queries. The storage for D y n a m o D B instances is created using arrays of solid-state drives.
It creates a suitable environment for high I / O performance and fast handl ing of high-scale
requests.

The D y n a m o D B infrastructure enforces replicat ion across at least three availabil i ty
zones for high availabil i ty and durabi l i ty . A n availabil i ty zone is an isolated locat ion w i t h i n
the data centre region.

Using the A m a z o n D y n a m o D B service is a good fit for:

• Extensive integration w i t h A W S L a m b d a makes D y n a m o D B a great fit for bui ld ing
serverless applications. The integration enables L a m b d a functions to directly interact
w i t h the D y n a m o D B and respond to data changes without the need for a lot of custom
logic.

• D y n a m o D B simple key-value access patterns make it a fast and reliable solution for
generating and serving recommendations to the users of a client applicat ion.

• Appl ica t ions working w i t h large amounts of data can experience latency problems
when using standard S Q L queries and joins over massive databases. D y n a m o D B
guarantees predictable latency for queries of any size.

A W S L a m b d a

A W S L a m b d a service is a function based, self-contained environment. It classifies as
a serverless comput ing service 2.2.4 that offers a set of supported languages and runtimes
for developers to use for their applications. However, A W S L a m b d a does not support ap
plications i n itself. The code running under this service is considered to be a funct ion. The
L a m b d a functions can perform any k i n d of comput ing task, f rom serving web pages and
processing streams of data to cal l ing A P I s and integrating w i t h other A W S services.

The L a m b d a functions r u n i n separate containers. W h e n the funct ion is created, the
L a m b d a service packages it into a new container based on the selected language and en
vironment and then executes the container once triggered. One of the m a i n architectural
features of A W S L a m b d a is that many instances of the same function can be created and
executed concurrently without the need for complicated configuration. Once the function
is done w i t h the work is has been assigned it is shut down. It enables the system to scale
down to nothing when the services are not used.

A W S L a m b d a functions are a great fit for tasks that r u n for a short per iod of t ime, are
generally self-contained and have the potential to experience spikes in usage. Some of the
most common use-cases for A W S L a m b d a are scalable A P I s . They perfectly fit the profile
of being simple requests that are self-contained and w i t h potential spikes i n usage. Th is
profile of execution greatly benefits the microservice architecture 3.2. W i t h its event-driven
model , A W S L a m b d a is a great fit for data processing. A good example of this is to have

12

a L a m b d a funct ion do some work every t ime a new record is submit ted to the database,
therefore, creating a notif ication for this change.

2.5 M i c r o s o f t A z u r e

Microsoft A z u r e is one of the two most dominat ing c loud comput ing platforms on the
market. Microsoft provides various I T solutions ranging f rom desktop applications to en
terprise solutions. W h e n ta lk ing about cloud computing, they offer the highest data centre
coverage. It allows the deployment of solutions to different locations around the world and
ensures high accessibility of resources. Consumers of A z u r e services can rely on the triple
replication guaranteed by most service level agreements.

Thanks to Microsoft having previous experiences w i t h infrastructure and enterprise
systems, they offer a well-integrated set of services like A z u r e Act ive Directory as an identity
provider or services to manage v i r t u a l machines, among other things. Access to a l l the
resources is through the A z u r e portal .

A z u r e V i r t u a l M a c h i n e s

A z u r e V i r t u a l Machines service is typica l ly the IaaS2.2.1 developers choose when they need
more control over the computing environment. A s it can be understood from its name, this
service offers the lowest abstraction in the c loud environment available i n form of v i r t u a l
machines. A z u r e V i r t u a l Machines are scalable, on-demand computing resources offered by
Microsoft .

A t its core, it is s imilar to Amazon ' s Elast ic Compute C l o u d . It offers the f lexibi l i ty of
creating a c loud infrastructure without having to buy and own any hardware.

A z u r e V i r t u a l Machines uses v i r t u a l hard disks (V H D s) as storage for O S and data.
A z u r e provides many images for use w i t h various versions of the W i n d o w s Server operating
system in the marketplace.

The key component of A z u r e V i r t u a l Machines architecture is the A z u r e Fabric con
troller. Independent of any operational intervention, it governs the patching, provisioning
and scaling of c loud nodes.

A z u r e V i r t u a l Machines is often used as:

• Development and test environments that can be scaled up i n comput ing power as
necessary and easily duplicated.

• R u n n i n g an appl icat ion on a v i r t u a l machine i n A z u r e caters to the unpredictabi l i ty
in demand for an applicat ion. It avoids m a k i n g a big investment into on-premise
components and instead allows better and faster scalability.

• On-premise infrastructure extension. The A z u r e c loud has great native intra-operabil i ty
w i t h running on-premise infrastructure based on W i n d o w s Server operating system.
This enables developers easy integrations w i t h already existing cloud-native and on-
premise services.

A p p S e r v i c e

A z u r e A p p Service is a Platform-as-a-Service 2.2.2 that is suitable for web applications,
R E S T A P I s and mobile backends. It supports a variety of programming languages and

13

applicat ion environments. The m a i n support for operating systems on this p lat form are
W i n d o w s and L i n u x operating systems, but there is also ful ly supported Docker container-
izat ion and therefore, any development environment that can be created using containers.

The appl icat ion running on A p p Service itself is restricted by an A p p Service p lan . A n
A p p Service p lan defines a set of comput ing resources available to a single appl icat ion or
an appl icat ion pool . Therefore, an A p p Service plan can be viewed as a b i l l ing model as
well as the feature set that is available to the applications running on the given plan.

A n interesting idea an A p p Service promotes is the concept of deployment slots. Deploy
ment slots can be created for any given A p p Service and they are used to r u n an instance
of the appl icat ion. It enables developers to r u n mult iple versions of the applicat ion. For
example, a developer can decide to release a newer version of the appl icat ion. T h e deploy
ment itself is done using a deployment slot while the appl icat ion is running in product ion.
Once the deployment is done the A z u r e environment can be reconfigured so that the service
redirects users to an instance running in the newer deployment slot.

A z u r e C o s m o s D B

A z u r e Cosmos D B is a ful ly managed N o S Q L serverless database for app development. The
main idea behind Cosmos D B is to b u i l d a horizontal ly scalable and globally distr ibuted
database service. The big selling point f rom A z u r e for Cosmos D B is low latency accessibility
and high availability.

Cosmos D B provides support for different A P I s . Based on the data model used in the
applicat ion, a developer can use a specific A P I to interact w i t h the Cosmos D B database
service. The N o S Q L types that Cosmos D B supports are:

• Key-value persistent dict ionary

• C o l u m n , wide-column, or column-family for the organization of related data into
columns

• Document storage that allows persisting J S O N objects

• G r a p h for the storage and navigation of complex relationships

W h e n provisioning a Cosmos D B database the developer has an opt ion to choose what A P I s
the database supports. Th is determines what types of N o S Q L databases w i l l be created in
the background. Cosmos D B supports the creation of:

• M o n g o D B for document storage

• Cassandra for wide-column storage

• A z u r e Table for key-value storage

• G r e m l i n for graph storage

A z u r e B l o b S t o r a g e

A z u r e B l o b Storage is a c loud storage service for storing unstructured data . Unstructured
data is data that doesn't fit a part icular data model or definition, such as text or binary
data. This unstructured piece of data is often called a b inary large object or blob. The

14

A z u r e B l o b Storage is designed for storing and serving documents, images and videos from
anywhere on the internet.

B l o b storage offers three types of resources:

• The storage accounts

• Containers i n the storage account

• Blobs i n the container

The storage account can be viewed as a unique namespace. It contains a l l the data objects
and exposes them through the B l o b Storage A P I . A container serves as a folder to better
organize the blobs inside of the namespace. A z u r e Storage supports three types of blobs:

• Block blobs to store text and binary data

• A p p e n d blobs that are made of block blobs and opt imized for append operations

• Page blobs to store v i r t u a l hard drive files and mostly used w i t h A z u r e V i r t u a l M a
chines

A z u r e F u n c t i o n s

A z u r e Functions is a serverless service provided by Microsoft A z u r e . It is a service that runs
the code for you without the need for provisioning infrastructure. The code running under
this service is often regarded as a funct ion instead of an appl icat ion and is usually triggered
by an H T T P or t imed event. A z u r e functions are by design stateless, which means once
the funct ion finishes running a l l its data w i l l be deleted together w i t h the runtime.

A z u r e functions implement an extension called „Durable Funct ions" . It lets the develop
ers design stateful functions i n a serverless environment, and define workflows i n code. The
A z u r e Functions environment automatical ly checkpoints the progress whenever the function
awaits and makes sure that the state is not lost if the process restarts or the underlying
infrastructure reboots.

The most common use-cases for A z u r e Functions are:

• Reminders and notifications

• Scheduled tasks and messages

• D a t a or data streams processing

• R u n n i n g background backup tasks

• P r o t o t y p i n g and M V P s

2.6 Google C l o u d P l a t f o r m

Google C l o u d P l a t f o r m (G C P) covers the infrastructure and plat form sides of the Google
C l o u d . G-Suite covers the software side where Google provides software like Google Sheets,
Google Documents etc. B u t I w i l l focus on the G C P part of Google C l o u d and leave the
G-Suite out as it is irrelevant for the contents of this thesis. There are too many services to
cover as a subsection in this thesis, so I w i l l focus on the most useful ones to use the G C P
for appl icat ion development.

15

G C P global architecture offers resources i n 24 locations globally. The locat ion consists
of regions, and each provides one or more availabil i ty zones, which are isolated from a single
point of failure. Some resources like H T T P load balancers are global , which means they
are not regionally dependent. Other resources such as storage or computat ion are regional
and must be deployed per region.

2 . 6 . 1 G o o g l e C o m p u t e E n g i n e

Google Compute Engine (G C E) is an Infrastructure as a Service offering that allows clients
to r u n workloads on Google's physical hardware. Us ing v i r t u a l machines for appl icat ion
infrastructure poses addit ional challenges where developers have to manage the underlying
infrastructure. W h i l e being shielded from hardware components, it falls on the developers
to handle instance updates, patches and environmental management. G C E offers the lowest
abstraction of a l l the c loud services offered by the Google C l o u d P l a t f o r m .

G C E offers mult iple pre-sets of v i r t u a l machines to handle different requirements. They
vary in the number of v i r t u a l C P U s , memory, and memory types. Some applications can
be performing heavy computations on G P U s . These demands are covered by the following
types:

• General-purpose machines offer a good balance between the price and computat ional
power. They are often used for databases or testing environments.

• Scale-out types are opt imized for tasks that are expected to rapidly scale-out like web
servers or microservices. They are based on the new family of v i r t u a l machines called
T A U V M s .

• U l t r a - h i g h memory or Compute-intensive types that offer specialized types of com
ponents to handle the respective tasks at hand more efficiently

Management of G C E ' s instances is done v i a a R E S T f u l A P I , Google S D K command-line
interface or the c loud console.

2 . 6 . 2 C l o u d R u n

Google C l o u d R u n takes the concept of serverless and merges it w i t h containers to provide
a seamless alternative for developers. C l o u d R u n utilizes the portabi l i ty and f lexibil i ty
of containerization to deploy and scale applications to meet traffic demands. The service
supports auto-scaling options which enable developers to ful ly uti l ize this feature without
the need for changes i n the underlying technology.

C l o u d R u n focuses on resource management and accessibility benefits while support
ing any development environment that fits inside a container. It runs on the open-source
Google-backed project K n a t i v e [20] to enable portabi l i ty across platforms. The developers
have mult iple options when deploying C l o u d R u n projects. Thanks to the container en
capsulation the project is deployable under the C l o u d R u n service itself as a pay-per-use
project or a custom Kubernetes cluster.

Developers can use C l o u d R u n to deploy anything from smal l , function-like A P I end-
points to monoli thic web applications as long as those workloads comply w i t h a few basic
rules:

• T h e y must listen for requests on the port defined by the P O R T environment variable.

16

• They must be stateless, meaning they cannot rely on a persistent local state.

• They must not perform background activities outside the scope of request handl ing.

W h i l e C l o u d R u n sets up a subdomain to help access your services, it also offers custom
domain support . The developer can power an entire web appl icat ion w i t h i n a C l o u d R u n
service without touching any addit ional infrastructure.

The resources needed to r u n the instances i n the C l o u d R u n environment are automat
ical ly determined by the service based on the load it handles. The auto-scaling feature is
the selling point of C l o u d R u n service as it can the appl icat ion by running new instances of
a provided container and handl ing the load balancing i n the background. It can also scale
down to zero instances when there is no workload present to save costs and computing re
sources. Settings for m a x i m u m and m i n i m u m instances are present to avoid infinite scaling
in case of an error. The m i n i m u m quota specifies the number of instances to be kept idle
at any t ime i n the system. It prevents the in i t i a l delay of start ing up the first instances.

2 . 6 . 3 C l o u d S t o r a g e

Google C l o u d Storage is a publ ic c loud storage plat form for unstructured data sets. U n
structured data is information that is not arranged according to a pre-set data model or
schema, and therefore cannot be stored i n a t radi t ional way. T h e common examples of
unstructured data are text documents and mult imedia .

The service stores the data close to the chosen geological location for faster response
times. It provides unified object storage i n the c loud for storing live or archival data. The
objects stored i n C l o u d Storage are organized into buckets. A bucket is a container w i t h i n
the c loud architecture that can be assigned to a storage class.

The Google C l o u d P l a t f o r m offers four storage classes to developers:

• Mul t i - reg iona l storage stores data i n data centres across the globe. It is suitable for
use-cases where data needed to be accessed frequently. Th is storage class ensures the
replication of data to at least two separate locations, which improves the availability.

• Regional storage class stores data i n a single region instead of spreading the data . It
works the best when the storage and compute resources are in the same region.

• T h e nearline storage class is opt imized for long-term storage of data w i t h infrequent
access.

• Coldl ine storage class aims at storing data that are accessed very rarely. It is the
cheapest opt ion out of a l l but this storage class comes w i t h a fee for data retrieval.

One of the challenges of properly leveraging storage classes is that the same type of data
might require different handl ing over the lifecycle. For example, let's imagine logging data
generated by an appl icat ion. In the beginning, the data needs to be accessed regularly for
debugging and monitor ing purposes. Later i n the project, the data become less frequently
accessed and in the latest stage the data become archival and we want to keep them for
compliance reasons, therefore being rarely ever accessed. For this use-case, there is a service
that automatical ly manages storage lifecycle management rules. It is a b u i l t - i n feature of
C l o u d Storage that enables developers to define logic rules over data objects stored in
buckets.

17

2 . 6 . 4 S p a n n e r

Google C l o u d Spanner is a distr ibuted relational database service that runs on Google
C l o u d . It supports global deployment, S Q L semantics and transactional consistency and is
horizontal ly scalable.

Google C l o u d Spanner's strengths are in the abi l i ty to provide both availabil i ty and
consistency. These traits are usually contradict ing each other, w i t h data designers typical ly
deciding whether to emphasize either availabil i ty or consistency. The trade-off has been
outl ined by the C A P Theorem, which in i t ia ted a general move to N o S Q L databases for
availabil i ty and scalabil i ty i n web and cloud distr ibuted systems. In pursuing both system
availabil i ty and data consistency, Google C l o u d Spanner combines S Q L and N o S Q L traits .

Google C l o u d Spanner as its name indicates is a database that can possibly span over
mult iple data centres while s t i l l keeping the data consistent. It supports dis tr ibuted S Q L
queries (as wel l as query restarts). Th is is a l l possible due to the fact that C l o u d Spanner
utilizes TrueTime, a Google C l o u d clock synchronization service that uses a combinat ion of
atomic clocks and G P S . A n atomic clock is the most accurate type of t ime measuring device
in the wor ld . C l o u d Spanner uses this functionali ty to assign system consistent t imestamps
to transactions and ensures l inearizabil i ty.

2 . 6 . 5 F i r e b a s e

Google Firebase is a Google-backed appl icat ion development plat form. It provides tools
for developing web and mobile applications. A developer can use services offered on the
Firebase plat form as a generic backend for his appl icat ion directly or uti l ize them as tools in
his own infrastructure. The services are hosted i n the c loud environment and are designed
w i t h scaling in m i n d . Services such as analytics, authentication, databases, messaging or file
storage are just a few to mention of the tool-set provided by the Google Firebase plat form.

The most commonly used tools that the Google Firebase plat form offers:

• Firebase Authent ica t ion enables developers to quickly and easily b u i l d secure systems
w i t h enhanced sign-in experience for their users. Firebase itself is not an identity
platform as it does not offer functionali ty like multi - factor or S A M L authentication.
B u t it offers complete support for email and password accounts as well as provides
easy access to wel l -known identity providers such as Facebook, Microsoft and others.

• Firebase Real t ime Database and C l o u d Firestore are cloud-hosted N o S Q L databases
that enable data to be stored and synced between users i n real-time. The data are
synced across a l l clients i n real-time and are s t i l l available when an app goes offline.

• Firebase C l o u d Messaging is a cross-platform messaging service that enables devel
opers to rel iably receive and deliver messages on i O S , A n d r o i d and the web at no
cost.

• Firebase offers fu l l support of Google A n a l y t i c s to collect and present data about
user behaviour and enable better decision-making about applicat ion performance and
marketing strategies.

Firebase is considered to be a Backend as a Service (BaaS) by many. BaaS is concep
tual ly very similar to PaaS. T h e m a i n difference is that while PaaS focuses on reducing the
load of infrastructure management on the developer BaaS offers concrete out of the box

18

tools to a id i n the applicat ion development while generalizing the aspects PaaS helps de
velopers to solve. Firebase services are exposed to the developers either direct ly by call ing
the respective R E S T f u l A P I s or by using a language-specific S D K .

B o t h Real t ime Database and C l o u d Firestore offer realtime data updates through the
Firebase S D K . It is done by registering a webhook that triggers a notif ication when certain
data are updated. It allows an applicat ion to present an up to date state to users without
the need to regularly p o l l user data.

19

Chapter 3

Web Applicat ion Architecture

W h e n bui ld ing any piece of software, whether it is a smal l or b ig project, it is always a
good practice to have a p lan . W i t h o u t i t , we can forget to include a feature or f ind out
too late that we underestimated the complexity. W h a t it contains is usually based on the
scope and complexity of the problem at hand.

The applicat ion architecture and software design patterns help developers i n the first
stages of designing an appl icat ion. They are condensed knowledge f rom many previous
projects buil t by clever and diligent people. E a c h architecture comes w i t h an ideology and
design patterns enforcing i t .

M a n y concerns go into choosing the architecture for your applicat ion, like whether it
is an appl icat ion that needs to interact w i t h users or just a background service. To have
the abi l i ty to rapidly provide new functionali ty and services to consumers and fast feature
development. The need for a database access layer and much more.

3.1 M o n o l i t h i c A r c h i t e c t u r e

It is hard to upsell the advantages of a microservices architecture without first introducing
its predecessor, the monoli thic architecture. A monoli thic architecture is a t radi t ional
unified model for designing various software products. It is successfully used i n smaller
projects as it has a straightforward structure. B u t w i t h the rise of c loud comput ing , it
lacks the abi l i ty to scale w i t h demand.

A monoli thic appl icat ion is self-contained w i t h interconnected and dependant compo
nents by design. More often than not, it consists of a single code base and is deployable
as a uni t . The architecture is decomposable into i n d i v i d u a l layers, namely Presentation
Layer, Logic Layer and D a t a Layer. Th is architecture pattern is also known as a three-tier
architecture, but we w i l l refer to it as a monoli thic i n this thesis.

A simple yet perfect example of a monoli thic appl icat ion would be a personal event
planner accessible online. Let 's say that the use-case of this appl icat ion w i l l require acces
sibi l i ty from various devices. T h e applicat ion can have single or mult iple users and store
the events permanently. I w i l l go more into detai l on each tier i n the separate section. A n d
then showcase the strengths and shortcomings of monol i thic applications.

P r e s e n t a t i o n T i e r

The presentation tier is an applicat ion layer or a separate applicat ion that conveys informa
t ion f rom an applicat ion state to the user and takes user inputs to alter the appl icat ion state.

20

Presentat ion Tier Logic Tier Data Tier

C l i e n t S e r v e r D a t a b a s e

Figure 3.1: Three tier architecture

The sole purpose of this tier is to present and collect information f rom the user. Nowadays,
web applications function as a presentation layer for most modern applications. B u t we can
consider any user interface connected w i t h some business logic to be a presentation tier of
an applicat ion.

We could b u i l d a web appl icat ion as a web-based user interface for our event planner
applicat ion. T h e n the running of an applicat ion inside any web browser supported by
selected technology is possible. This tier can, at least to some extent, validate the input
user data before sending them to the appl icat ion core.

L o g i c T i e r

A l s o known as an A p p l i c a t i o n T ier handles the logic and computations of an applicat ion
designed as monol i thic . Information collected i n the presentation tier is sent here and
processed using business logic, a specific set of functions realizing processes, transactions
and queries.

Here you can imagine everything that goes into bui ld ing a proper appl icat ion back-
end in any language of your l ik ing . A l l the logic creating, deleting and updat ing events
w i l l be placed i n the logic t ier i n separate modules. The applicat ion uses a lightweight
communicat ion protocol to connect w i t h the presentation tier.

D a t a T i e r

The final tier of a three-tier architecture is responsible for data persistence. This tier
communicates exquisitely w i t h the logic tier v ia a query system. T y p i c a l l y a relational
database management system such as Pos tgreSQL or M y S Q L stores the data. B u t i n some
cases, more modern technologies such as N o S Q L databases are more efficient.

The data tier for the event planner applicat ion consists of a database scheme and a
script for table creation. It has to store our events w i t h information like date, t ime, place
and potential ly some notes.

21

S t r e n g t h s a n d S h o r t c o m i n g s o f M o n o l i t h i c A r c h i t e c t u r e

I have already talked a bit about the usefulness of developing monoli thic applications.
B u t w i t h the technological trends advancing, a set of flaws emerged. B o t h strengths and
shortcomings of monoliths depend on the problem definit ion.

The strengths of monoli thic architecture lie in the straightforward approach that devel
opers take when designing a monol i th . A n d these strengths shine the most at the begin
ning of a project. W h i l e the codebase is clean and smal l and functional complexity is low
monoli thic applications are easy to test as a l l the dependencies are always present. The
deployment and scaling of a smal l monol i thic appl icat ion are relatively simple. The two
most common approaches to scaling a monoli thic appl icat ion are adding a more powerful
machine or running more of them w i t h a load balancer. This type of scaling is also called
horizontal scaling. W h e n it comes to product ion, developers look for options on handl ing
cross-cutting concerns like logging, monitor ing and configuration. It is easy to solve in
monoli thic applications by introducing specialized modules.

The shortcomings of monol i thic architecture start showing once our monol i th grows in
complexity and userbase. M o n o l i t h requires a long-term commitment to a specific tech
nology stack. B u t once the applicat ion becomes large, changing a single module becomes
challenging. Performing an update of a monoli thic appl icat ion includes completely rede
ploying a l l its instances, which can take a lot of t ime and effort. It becomes a problem once
we adopt the modern approach to continuous deployment. We can not forget about the
human factor in every project, and large monoli thic applications pose a significant challenge
to onboarding new developers. Hence, reducing the agil i ty of large monol i thic projects.

3.2 M i c r o s e r v i c e A r c h i t e c t u r e

A s the applicat ion grows, some aspects of the project get complicated. These complications
can then take their to l l on the user experience or the final cost of the service. M a n y internet
giants like Amazon[14], Netflix[15] and Instagram[13] are pioneering the microservice archi
tecture i n their products. A n d its success can be seen i n the continuous delivery and quali ty
of service. M a n y companies are following this trend and implementing their products using
microservice architecture [2 3].

The microservice architecture is a modern adaptat ion of the Service-Oriented A r c h i
tecture, shortly S O A . S O A tr ied to break down monol i thic applications into more agile
components, w i t h communicat ion realised through a lightweight communicat ion protocol .
It s t i l l only used a single data storage layer. Therefore, S O A is s t i l l monol i thic due to
having a single database schema. This approach is challenging when caching over a vast
amount of data w i t h a broad userbase.

W h a t i s a M i c r o s e r v i c e ?

B u i l d i n g an applicat ion using microservice architecture requires a breakdown of business
logic into i n d i v i d u a l services. E a c h of these services offers a subset of the overall busi
ness logic. Indiv idual microservices have isolated codebase and use whatever technology
independently.

Furthermore, i n d i v i d u a l services should have a separate database layer containing only
the information relevant to the given microservice. It contributes to why microservices
are great at solving scalability and deployment issues of monoli thic applications. Th is

22

Figure 3.2: Microservice architecture[22]

approach to data separation is also called D o m a i n - D r i v e n Design. The database layer is
exposed externally through an applicat ion interface. It should only be accessible this way.

A microservice can then be easily deployed, scaled and tested independently. It follows
a single responsibil i ty principle and fulfils only one funct ion. It allows teams to choose
a development language per service and treat it as a separate project. The services can
scale independently without scaling the whole appl icat ion because a single feature faces
a higher load.

If I take a look back at the event planner example, i n d i v i d u a l microservices could be

• user management service,

• event service,

• calendar service and a

• service that is managing holidays based on user location.

D o m a i n - D r i v e n D e s i g n

D o m a i n - D r i v e n Design centres the whole software development approach around under
standing processes a business domain needs. The name originates f rom a book by E r i c
Evans that carries the same name [7]. A domain-driven design process is not mechanical
and does not guarantee the „right" result. It promotes th ink ing and provides tools to
communicate the design to others i n the process.

This approach has two iterative phases. The first phase is a strategic domain-driven
design, and it helps keep the architecture focused on the business domain structure. The
central pattern i n this phase is creating a set of bounded contexts. Th is pattern divides
a large domain into smaller subdomains based on the data decoupling. E r i c Evans, the
originator of domain-driven design, portrays this process as the creation of a ubiquitous
language [9]. A n d this ubiqui ty should be understood as present across a l l stages of software
development.

23

Figure 3.3: Event planner domain analysis

Figure 3.4: Event planner bounded concepts

The second phase is a tact ical domain-driven design, which provides a set of design
patterns to create the domain model . It works w i t h i n a single bounded context and applies
tact ical design patterns. W h e n using domain-driven design for designing microservices, the
entity and aggregate patterns are what we need.

A n entity is a unique persistent object w i t h an identity that can span mult iple bounded
contexts. It has an identifier that enables us to retrieve it f rom a database. The purpose of
an aggregate is to model transactional invariants[10]. It consists of one or mult iple entities.
There are some challenges this approach poses, and I w i l l address them later on.

D e c e n t r a l i z a t i o n

Central isat ion i n microservice architecture almost does not exist. Microservices use lightweight
communicat ion protocols to communicate over the internet or message brokers to commu
nicate w i t h each other. This separation of concerns helps drive the decision-making closer
to the problem. It enables the developers to use more fine-grained technology stacks to
solve specific problems and use tools better suited for them.

24

S t r e n g t h s a n d S h o r t c o m i n g s o f M i c r o s e r v i c e A r c h i t e c t u r e

Microservices solve some of the concerns I have outl ined in the monol i thic architecture.
These concerns are mostly related to the modern state of appl icat ion development, where
applications have to be accessible anytime, and many companies focus on U X .

Component independence helps us to tackle scaling and unit testing. W h i l e also i m
proving readability. It enables i n d i v i d u a l developer teams to choose and implement the
technologies they like and want. Indiv idua l components are easier to understand compared
to a huge monoli thic appl icat ion w i t h fewer dependencies f loating around and much cleaner
infrastructure.

B u t not everything is simplif ied by implementing a microservice architecture. It brings
added complexity when looking at the system as a whole. W h i l e microservices make the
testing and understanding of i n d i v i d u a l components simpler. T h e resulting infrastructure
is intricate and requires a deeper understanding of business processes. Deal ing w i t h cross-
cut t ing concerns like logging, monitor ing and configuration become challenging. Testing
the whole system once there are many microservices becomes difficult.

3.3 D i s t r i b u t e d Transactions

Transactions are an essential part of applications. W i t h o u t them, it would be impossible to
mainta in data consistency. Transactions must be atomic, consistent, isolated, and durable
(A C I D) .

• A t o m i c i t y means that each statement i n a transaction (read, write , update or delete
data) is treated as a single uni t . E i ther the entire statement is executed, or none of
it is executed.

• Consistency ensures that transactions only make changes to tables i n predefined,
predictable ways.

• Isolation happens when mult iple users are reading and w r i t i n g f rom the same table
al l at once, isolation of their transactions ensures that the concurrent transactions do
not interfere w i t h or affect one another.

• D u r a b i l i t y ensures that changes to your data made by successfully executed transac
tions w i l l be saved, even i n the event of system failure.

Transactions w i t h i n a single service are A C I D , but cross-service data consistency re
quires a cross-service transaction management strategy. A database-per-microservice model
provides many benefits for microservices architectures. Encapsulat ing domain data lets each
service use its best datastore type and schema, scale its data store as necessary, and be insu
lated from other services failures. However, ensuring data consistency across service-specific
databases poses challenges.

W h e n we start sharing our data through distr ibuted systems, we can no longer guarantee
data consistency, availabil i ty and par t i t ion tolerance. Computer scientist E r i c Brewer put
forward the C A P theorem. It states that a distr ibuted system can not guarantee a l l three
aspects (consistency, availabil i ty and par t i t ion tolerance) at a l l times.

• A consistent system always returns the same information no matter what node we
query.

25

Client Coord "at; r

Comni [

Done

- C n n r r i t " fr]

- C t m r r i t 2

Preparation
phase

Commit
phase

Figure 3.5: Sequential diagram for successful 2 P C

• A n available system gives every read or write request an appropriate successful re
sponse.

• A n d par t i t ion tolerance refers to the abi l i ty of a system to function normal ly i n case
of a network failure.

T w o - P h a s e C o m m i t

The Two-Phase C o m m i t (2PC) protocol is an atomic protocol for transaction coordination.
It consists of two m a i n components, the coordinator and the nodes.

The two phases of 2 P C are the preparation phase and the commit phase. In the prepa
rat ion phase, the nodes part ic ipat ing in the process acquire resources needed for the second
phase. It includes placing locks on resources across the system. Once a node has a l l the
necessary resources, it confirms its commitment to the coordinator. Once a l l the nodes
confirm, the coordinator proceeds to init ial ize a distr ibuted commit . If any node is unable
to promise a commitment to the transaction, the coordinator initializes a rollback for the
transaction.

The problems w i t h 2 P C are:

• There is a single point of failure in the form of a centralized coordinator.

• T h e throughput of the system is dependent on the slowest node.

• In a complicated system, 2 P C locks a l l the resources it is working w i t h , and they
become unavailable u n t i l the process finishes.

• N o S Q L databases do not support the 2 P C protocol .

T h e S a g a s P a t t e r n

The sagas were proposed as a solution to a L o n g - L i v e d Transaction (L I T) i n a single
relational database i n the original paper [11]. A single L L T like a f inancial aggregation

26

Figure 3.6: Sequential diagram for 2 P C w i t h failure

would bottleneck a system for an extended period. The paper proposes a breakdown of
L L T s into a sequence of independent smaller transactions that can be interleaved. These
transactions can support A C I D on a single database.

The sequence of transactions is either completed successfully, and the operation is con
sidered finished or compensating transactions are r u n to amend the par t ia l execution. A
compensating transaction semantically undoes a transaction but does not necessarily re
t u r n the system to the original state. Some transactions may be irreversible, and therefore
a compensating transaction performs a set of steps to counteract the previous actions.

There are two common saga implementat ion approaches, choreography and orchestra
t ion . E a c h approach has its own set of challenges and technologies to coordinate the trans
action flow.

The choreography sagas is a way to coordinate an exchange of events between nodes
without a centralized point of control . It promotes further decentralization of the system
and does not introduce a single point of failure as w i t h the two-phase commit . Further , it
does not require an addi t ional service for operation.

B u t the drawbacks of implementing choreography sagas are that each service has to
implement the rout ing logic for requests. It can be hard to interpret and can introduce
cyclic dependencies between nodes. A l s o , this approach introduces tight coupling between
dependent services.

The orchestration-based sagas introduce a centralized service that orchestrates the
nodes. This coordinator service executes saga requests, stores and interprets the states
of each task in the saga log, and handles failure recovery w i t h compensating transactions.
It introduces a centralized element into the system, but it is stateless and can be restarted
at any point without consequences.

27

Ss r \ - ;>5 2 Ss r ' .- ce 2

r n P0ST/serv ice1 n

relurn {id}
Evenl sen/ice 1 finished
I H

Evenl service2 finished
I W

Figure 3.7: Sequential diagram for Choreography-based saga

Client Coordinator Service 1 Ser', 2 Ser', 3

POST/service!

relurn {id} Event: slail servicel

Evenl: servicel finished
H 1

Event: slart service!

-Evenl: service2 firiished-

-Event: slart serviceS-

z . e " :er. ce j f r :l~e-:

Figure 3.8: Sequential diagram for Orchestration-based saga

28

Chapter 4

Cloud Native Tech Stack

4.1 Gateway to the C l o u d

W h e n developing applications i n the c loud, we have to figure out a way to reach them so
that our clients or other applications can use and communicate w i t h them. A p p l i c a t i o n
programming interface (A P I) is the most common pattern used for enabling communicat ion
flows. M o d e r n A P I s usually communicate through H T T P and expose appl icat ion business
logic and underlying data layer, while H T T P S provides an out-of-the-box security layer for
the requests. It is a perfect package able to cover a wide range of scenarios.

We can break the appl icat ion programming interface (A P I) can down into two separate
elements:

• Procedures - are the functions the underlying software provides

• Protocols - the formats used to communicate the data between applications

The separation helps w i t h the design process of endpoints and data structures. Frequent
data formats used for A P I s are C S V , X M L and J S O N . The J S O N data format is the most
common one used in modern applications.

The concept of A P I s is loosely defined in the scope and structure of services provided.
F irs t commercial A P I s emerged on the break of the mi l l ennium by tech companies like
Salesforce and eBay and revolutionized the commercial use of the web [reference]. T i m e
has shown that consistency for this type of service is necessary. The answer for this need
is architectural styles like R E S T and G r a p h Q L that propose a set of rules to follow when
designing an A P I .

A P I s are a good start when developing a set of intercommunicat ing services, but once
the network grows, the demands on the infrastructure get overwhelming. W h e n many
clients are t ry ing to reach different services, it is easy to imagine how this complexity scales
w i t h adding a client or a service. A n d a client can be s imply another service in the system
as well . This issue does not only pose a challenge f rom a networking perspective but also
a development one. It is hard to keep track of a l l the messages going through a system like
this. It is t ime to consider asynchronous communicat ion, where services publ ish and react
to events rel iably delivered by a pub-sub messaging system.

Direct client-to-microservice communicat ion means exposing the A P I s for each microser-
vice. However, the granularity of microservice A P I s can be different to the client's demands.
More outstanding issues are A P I changes, authentication, monitor ing, throt t l ing and other
aspects of any A P I that would have to be developed independently for each microservice,

29

method path protocol
GETl|/tutorial3/other/tQp-2Q-ir . v 3 C t l-t:e3t-practice3/|| HTTP/1. l]
Host: net. t u t s p l j s . coir.
User-Agent: Mozilla/5.0 [Windows; U; Windows NT 6.1; en-US; i v : 1.9.1
Accept: text/htir.l, application/xhtrr.l + xir.l, application/xir.l; q=0 . 9, */*; g =

Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-l,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Cookie: F:iFSESSID=r2t5avjq435r4q7it3vtdjql20
Fragrria: no-cache
Cache-Control: no-cache

HTTP headers as Name: Value

Figure 4.1: H T T P Request Header Example[12]

potential ly i n different programming languages. To mitigate the outl ined issues, I w i l l
introduce an A P I Gateway pattern and its challenges.

4.2 H T T P Messaging

The Hypertext Transfer P r o t o c o l (H T T P) message is the most common carrier of informa
t ion i n client-server communicat ion. It uses the H T T P protocol to carry the data over the
internet to its destination. The message is either a request or a response, depending on the
flow of the communicat ion. H T T P messages are composed of textual information encoded
in A S C I I . H T T P is a protocol and therefore is language and framework agnostic.

H T T P is stateless and every request is ful ly independent and can be compared to S Q L
transactions i n a way. Therefore, i n case we need information about a state we need to
handle them externally. For example when a user is browsing through our webpage, we
can use tools contained i n the web browser like IndexedDB Storage and Cookies to help us
create a context. H T T P allows us to send various information inside its headers and body.
We can use this to our advantage and create our own context.

H T T P itself is not secured in any way and a l l the information inside the messages are
clear text. Th is was acommon problem i n many cases and therefore H y p e r Text Transfer
Protoco l Secure was created. Where data sent are encrypted by Secure Socket Layer (SSL)
or (Transport Layer Security) T L S . A l l data that are sent over the internet should be
secured at least by using H T T P S .

C o m m o n H T T P methods:

• G E T - Retrieves data from the server

• P O S T - Submits (adds) data to the server

• P U T - Updates data that are already on the server

• D E L E T E - Deletes data from the server

W i t h each request and response message comes a header and a body. The body typical ly
contains the requested data or submit ted data . B o t h of the headers contain the protocol
used to send the message. The request header 4.1 then contains the H T T P method used
and the path while the response header 4.2 comes w i t h an H T T P status code. The rest of
the header is a list of key-value pairs.

30

protocol status code
IHTTP/l .xll200 OK I
Transfer-Encoding: chunked
Date: Sat, 28 Nov 2009 04:36:25 GMT
Server: LiteSpeed
Connection: c l o s e
X-Powered-By: W3 T o t a l Cache/0.8
Pragma: p u b l i c
E x p i r e s : Sat, 28 Nov 2009 05:36:25 GMT
Etag: "publ259380237;gz"
Cache-Control: max-age=3600, p u b l i c
Content-Type: text/html; charset=UTF-8
L a s t - M o d i f i e d : Sat, 28 Nov 2009 03:50:37 GMT
X-Pingback : ht tp : //net . t u t s p l u s . com/xmlrpc . php
Content-Encoding: g z i p
Vary: Accept-Encoding, Cookie, User-Agent

HTTP headers as Name: Value

Figure 4.2: H T T P Response Header Example[12]

H T T P status code groups:

• l x x - Informational

. 2xx - Success (200 - O K , 201 - O K created)

• 3xx - Redirect (301 - Moved to new U R L)

• 4xx - Cl ient E r r o r (400 - B a d request, 401 - Unauthor ized, 404 - N o t found)

• 5xx - Server E r r o r (500 Internal server error)

4.3 R E S T - f u l A P I

R E S T is an acronym for Representational State Transfer, and R E S T - f u l generally means
that the service implements R E S T methodology. It is not a protocol or a standard but
rather a set of architectural constraints.

W h e n a client requests information through the R E S T A P I , it transfers the representa
t ion of the state of the resource to h i m . The service can return the state representation in
different formats, and it depends on the implementat ion of the service, whether it supports
mult iple or not. The most common resource formats are J S O N and X M L .

For an A P I to be considered R E S T - f u l , it needs to implement the following:

• A client-server architecture of clients, servers, and resources, w i t h requests managed
through H T T P .

• Stateless, client-server communicat ion where a l l requests are separate and uncon
nected, and the server does not store information about a client between the G E T
requests.

• D a t a are cacheable to streamline the communicat ion between the server and a client.

• A uni form interface between components to transfer the data i n a standardised form.

• R E S T allows for an architecture composed of mult iple layers of servers.

31

• More often than not a R E S T A P I w i l l return a static representation of an object as
a J S O N or X M L . However, when necessary, servers can send executable code to the
client.

It can be challenging to adhere to a l l these demands for implementing a fu l l R E S T -
ful A P I . Thankful ly , an A P I does not need to implement everything at a l l costs, as these
architectural constraints are just a guideline. However, other aspects can cause problems
when designing a R E S T A P I :

• The endpoint paths should be consistent, following the web standard.

• E ndpoin t U R L s should not be invalidated when used internally or in other applica
tions, introducing an A P I versioning.

• The amount of data can increase in t ime and cause prolonged response times.

• T h e security aspects inc luding H T T P S , U R L val idat ion, fraud prevention, request
logging and failure investigation.

• Choosing and deploying an authentication model (basic authentication, A P I keys,
J W T , O A u t h 2.0).

• A P I testing and automated A P I testing.

• Defining error codes and messages.

4.4 G r a p h Q L A P I

G r a p h Q L A P I is a powerful alternative to the R E S T A P I . G r a p h Q L is a query language for
the A P I and a server-side runtime to process user define queries over the data . It is a newer
A P I standard than R E S T , and it enables declarative data fetching, where a client can
specify exactly the data it needs from an A P I . Compared to R E S T , G r a p h Q L only exposes
a single A P I endpoint and responds w i t h precisely the data that a client has requested.

G r a p h Q L S c h e m a

G r a p h Q L A P I uses a schema to describe a l l the data accessible v i a the A P I to the client
through the service. A n A P I designer creates a G r a p h Q L schema, defines the object types
the schema is made up of and defines the kinds of objects requestable and their fields.
G r a p h Q L has its type system that is used to define the schema of A P I . The syntax for
w r i t i n g schemas is The Schema Def ini t ion Language (S D L) . S D L allows us to define custom
types composed of elementary types like int or str ing, but also introduces relationships
between these types.

G r a p h Q L schema is one of the most important concepts when working w i t h G r a p h Q L
A P I

• the schema defines the capabilities of the A P I

• represents a contract between a client and the server

• is a collection of G r a p h Q L types w i t h special root types

32

The root types of a schema define the entry points for the G r a p h Q L A P I . The root types
are Query, M u t a t i o n and Subscription.

A s an example, I w i l l use a simple system where users can create posts and retrieve
them. The schema for this system would have to cover two custom entities User and Post.
The relationship between them is that a User can have any number of posts (one to N) and
a Post has to be posted by a single User (one to one).

type User { type Post {
i d : ID! t i t l e : S t r i n g !
name: String! content: S t r i n g !
age: Int! author: Person!
posts : [Post!]! }

}

L i s t i n g 4.1: E x a m p l e of G r a p h Q L entities schema

T h e n the root types could look like this.

1
2
3
4
5
6
7
8
9

10
11

type Query {
a l l U s e r s (l a s t : I n t) : [User!]!

}

type Mutation {
createUser(name: S t r i n g ! , age: S t r i n g !) : Person!

}

type Subscription {
newPost: Post!

}

Lis t ing 4.2: E x a m p l e of G r a p h Q L root types schema

Funct ional capacity of this example is l imi ted and does not have fu l l C R U D (Create,
Read, Update , Delete) support . B u t I believe that as an example it displays the important
details of G r a p h Q L schema.

W h i l e R E S T A P I 4.3 follows the principles of H T T P Message 4.2 when requesting or
submit t ing data. G r a p h Q L uses Queries to request the data and mutations to submit or
update them.

G r a p h Q L Q u e r y

G r a p h Q L A P I typica l ly exposes only a single endpoint for data access contrary to R E S T
A P I w i t h many endpoints. It works because the structure of data returned by the G r a p h Q L
endpoint is not fixed as w i t h the R E S T endpoints. The data are flexible based on the client's
needs. It also means that the server requires more information from the client to understand
and cover its data needs. Th is information is called a query.

A s an example of a G r a p h Q L query i n our system of Users and Posts, let's retrieve a l l
the user records from the database and the posts they posted. The first query returns an
array of users w i t h only the „name" field included. The second query demonstrates the
strength of G r a p h Q L , requesting nested objects through relationships. Furthermore, the
G r a p h Q L query enables a client to only request the subset of a l l the data by adding filter
parameters.

a l l U s e r s {
name

allUs e r s {
name

33

posts {
t i t l e

}

}

}

L i s t i n g 4.3: E x a m p l e of G r a p h Q L Query schema

G r a p h Q L M u t a t i o n

O n l y requesting information from the applicat ion would not cover a l l the needs functional
solution needs. To create, update and delete information on the appl icat ion server G r a p h Q L
uses a mutat ion system. The G r a p h Q L mutations always have to start w i t h the „mutation"
keyword. To submit data mutations use the aforementioned field arguments. A niche
feature that G r a p h Q L mutations provide is that the client can submit a query request
together w i t h the mutat ion to query certain aspects of the object that are generated by the
server upon creation such as object identifier.

1 mutation {
2 createUser(name: "Peter", age: 25) {
3 i d
4 }
5 }

L i s t ing 4.4: E x a m p l e of G r a p h Q L M u t a t i o n schema

G r a p h Q L S u b s c r i p t i o n

Subscriptions are a G r a p h Q L feature that allows the server to send data to the client
when a specific event occurs on the backend. For this functionali ty to work a client needs
to mainta in a long-l ived connection w i t h the server. The client in i t ia l ly opens the long-
lived connection by sending a subscription query which specifies what events is the client
interested i n . E v e r y t ime this event the client is subscribed to occurs, the server uses the
connection to push the notif ication about this change to the client.

G r a p h Q L subscription i n the example system could enable a client to subscribe to an
event of post creation. T h e n the client would get notified once a post is posted and show
it to the user in form of a notif ication.

1 subscription {
2 newPost {
3 t i t l e
4 }
5 }

L i s t ing 4.5: E x a m p l e of G r a p h Q L Subscription schema

4.5 P u b - S u b Messaging

In sections 4.2 and 4.3 I have outl ined how R E S T and G r a p h Q L A P I can be applied to
client-server communicat ion. However, this type of communicat ion is not the most efficient
at conveying information i n a distr ibuted system. B o t h R E S T and G r a p h Q L are forms of
synchronous communicat ion (with exception of G r a p h Q L subscriptions). Over-reliance on

34

the use of synchronous patterns has negative consequences that apply to the communicat ion
between microservices and in some cases are at odds w i t h the principles of microservice
architecture.

• T ight coupling - Some level of coupling between services w i l l always be present (specif
ically around the data structures) but regular A P I services assume that the message
w i l l only be delivered to a single client. For each new component in the structure,
there has to be a new message to a new endpoint. Th is way a simple microservice w i l l
become an orchestrator and this breaks the „single purpose" at tr ibute of microser
vices.

• B lock ing - W h e n invoking a synchronous service, the invoking applicat ion thread is
blocked wai t ing for a response. Th is behaviour might seem innocent but becomes an
issue once scaling is considered.

• E r r o r H a n d l i n g - The underlying protocol for R E S T and G r a p h Q L is H T T P and it
was designed for the web. It does not offer a good retry logic in case of failure. This
responsibility lies on the client itself and is not a clean-cut process. Depends on the
type of error and data the client is requesting therefore b inding it even more t ight ly
to the server.

The issues are addressed i n G r a p h Q L subscriptions, yet they are s t i l l client-server oriented
in their use-case. The server tries to push each message based on the subscription and this
functionality remotely resembles pub-sub architecture.

B a s i c s o f P u b - S u b M e s s a g i n g

A n y pub-sub model consists of the four core components:

• T h e topic is an intermediary channel that maintains a list of subscribers to relay
messages that are received f rom publishers. Topics allow pub-sub messages to be
broadcasted asynchronously across mult iple sections of the applications.

• A message i n the pub-sub model can be any serialized piece of informat ion sent to
a topic by a publisher.

• T h e publisher is the appl icat ion that owns or creates data subscribers are interested
in getting. A publisher does not know anything about subscribers.

• A subscriber is an applicat ion that registers itself w i t h the desire to receive the mes
sages of a specific topic w i t h no knowledge of where these messages originate.

Th is separation of concerns makes it possible to create event-driven services without the
constant need for querying a message queue for updates. It also aids developers i n the cre
at ion of decoupled services using the same data that can be provided to mult iple subscribers
at the same time.

W i n s a n d L o s s e s o f P u b - S u b M e s s a g i n g

Pub-sub systems are robust messaging services that br ing solutions to problems i n dis
t r ibuted systems like microservices. A well designed pub-sub messaging enriches the system
by introducing:

35

Subscriber

Figure 4.3: Pub-sub model structure

• Loose coupling between system components by decoupling the communicat ion logic
from business logic.

• A better view of the system-wide Workflow.

• Enables faster integration as it is language-agnostic, which allows disparate compo
nents of a system to be integrated faster.

• Promotes scalability by not al lowing the recipients to talk back to the senders.

O n the other hand, every design pattern has l imitat ions and trade-offs and pub-sub is not
an exception. It is not a silver bullet when it comes to communicat ion between services
and it is for these reasons:

• Simpler systems that are unl ikely to scale up do not benefit as much from the pub-sub
messaging. O n the contrary, it can introduce unwanted complexity to the system.

• It is not suitable for media streaming systems. M e d i a streaming systems have nuanced
requirements and pub-sub messaging can not provide a steady connection to the client.

• W h e n dealing w i t h periodic tasks it is important to keep i n m i n d that pub-sub mes
saging is asynchronous, therefore not suitable for systems that r u n periodic tasks in
the background.

4.6 A P I Gateway

W h e n designing a microservice architecture one of the problems we need to deal w i t h is
how to make the services available and accessible from the internet. The number of services
varies based on the purpose of the solution and certain technologies can pose challenges
when not managed w i t h abstractions. In this section, I w i l l outline how A P I Gateway can
solve the availabil i ty issues together w i t h authentication and other A P I specific aspects.

The concept of an A P I Gateway can be viewed from different perspectives. One is
the perspective of a client, where the A P I Gateway serves as a single-entry point for the

36

Backend

Figure 4.4: S impli f ied microservice-based architecture without an A P I Gateway

client appl icat ion. The developers view the A P I Gateway as a reverse proxy that routes
the traffic from the clients to services. Therefore, the A P I Gateway sits between the client
applications and the microservices.

The A P I Gateway is located between the client appl icat ion and the backend microser
vices. It works as a reverse proxy, rout ing the requests from the clients to the services
and returning the responses back to the clients. T h i s rout ing is often done based on an
O p e n A P I specification file that is provided to the gateway and serves as a configuration
and documentat ion at the same time. The A P I Gateway is often used to accommodate
cross-cutting concerns like authentication, S S L , throt t l ing and cache.

M i c r o s e r v i c e - b a s e d a r c h i t e c t u r e w i t h o u t a n A P I G a t e w a y

A P I s over the internet are nothing new. A distr ibuted system design w i t h microservice
architecture contains at least several services that a client appl icat ion needs to communicate
w i t h .

Designing such a system without an A P I Gateway means that the client appl icat ion
needs to access the backend services directly over H T T P . This approach has several obvious
problems for both the client and the developer.

It's often impract ica l for a client to perform A P I composit ion over the internet. The
granularity of the service A P I s provided by microservices is often different f rom what a client
needs. The A P I s are fine-grained as the microservice architecture enforces single-purpose
services and this forces a client to interact w i t h mult iple services to finish a single request.
Another problem for the client is when the under lying service infrastructure changes. For
example, when the developers split a single service into two due to the design changes. This
forces the client to reimplement change how they query the information from the backend
and is generally considered a bad practice.

O n the other hand, m a k i n g a distr ibuted system of services without an A P I Gateway
creates an addi t ional load on the development. The developer has to be concerned w i t h
the A P I authentication and user authorizat ion on the service level. This approach violates
the D R Y principle as well as breaks the single-purpose rule on the service itself. A d d i t i o n a l
challenges might be caused by specifics of a service implementat ion such that the service
can be using a different type of communicat ion than over an H T T P protocol .

37

Backend

Figure 4.5: A P I Gateway i n a simplif ied microservice-based architecture

M i c r o s e r v i c e - b a s e d a r c h i t e c t u r e w i t h a n A P I G a t e w a y

Usually, an A P I Gateway is used as a single-entry point to the set of backend services.
The A P I Gateway then serves as a reverse proxy service for the client appl icat ion. It also
reduces the number of messages the client needs to send to get a l l the information it needs.
A s a result of using a single-entry point , the client is shielded from infrastructure changes.

One of the key functions that A P I Gateway handles is request rout ing. The gateway
itself does not process the request in-depth but forwards them to the respective services
and then aggregates the result into a single response. The request rout ing itself can be
a simple one-to-one mapping of endpoints or a more complicated composit ion.

There might be several client applications running on different platforms connected to
a single A P I Gateway. Support ing mult iple platforms such as desktop, mobile or web the
requirements on the gateway increase as well . Support ing platforms can result in the need
of adding more business logic to the gateway and therefore increases complexity. Th is can
escalate into creating a single point of failure in the architecture.

B a c k e n d s F o r F r o n t e n d s

Rather than provide a one-size-fits-all style A P I , the A P I gateway can expose a different
A P I for each client. The requirements of mobile, desktop and web applications can differ
significantly. This can cause an A P I Gateway to become bloated w i t h different calls and
data structures which goes against the single-purpose per service principle.

The Backend For Frontend architecture of A P I Gateways addresses the separation of
concerns between different types of appl icat ion platforms and serves the data an applicat ion
needs. The front-end developer can then focus on the gateway dedicated to support ing data
for a specific plat form.

4.7 O p e n A P I Specif icat ion

A n A P I is just a set of protocols that allow different applications to communicate w i t h each
other. It can be imagined as a data channel between a client appl icat ion and a server. The
client generates a request and sends it over the data channel to the server, and the server
sends back a response. I have already explained the details of how this process works in
section 4.2. B u t how does the client know what protocols to use and what endpoints to
call? H o w does he know what to expect in the response? In the previous sections, the A P I

38

Backend

Figure 4.6: A P I Gateway used as Backend For Frontend

was just a black box or the user that just worked. In this section, I w i l l explore the tools
needed to properly document and mainta in an A P I .

In A P I design, the specification is meant to standardize the exchange of data between
the client and the server. Developers rely on the specification to understand how exactly
the A P I should behave. There are many types of A P I specifications that developers can
use to describe their A P I s . The description formats that were used in the past are Service
Object Access P r o t o c o l (S O A P) and Web A P I Descr ipt ion Language (W A D L) . Nowadays
O p e n A P I Specification has become the „industry s tandard" for describing A P I s .

The noteworthy characteristics of O p e n A P I Specification that dist inguish it from other
specifications are:

• O p e n A P I Specification offers a standardized and language-agnostic interface for defin
ing A P I s

• It is in both machine and human readable format

• It conveys the capabilities of the underlying service i n a comprehensible way to both
human and machine consumers without direct access to the source code, network
traffic or other documentat ion

O p e n A P I R o o t D o c u m e n t

The O p e n A P I specification comes i n a form of a text document called a root document.
Th is file is usually i n either J S O N or Y A M L format and is commonly called openapi.json or
openapi.yaml respectively. The official principles of these document formats apply to the
specification definit ion.

The fu l l O p e n A P I specification file structure is too complex to go through and is out
of the scope of this thesis. Therefore, I w i l l outline what could be considered a m i n i m a l
document structure containing a set of must-have fields. The document basically defines
a top-level root Element that is called O p e n A P I Object [18] and then further defines fields
such as openapi, info, paths and components are required.

• openapi - indicates the version of O p e n A P I specification this document is using,
similar to using a $schema field i n J S O N schema definit ion.

• info - provides general information about the A P I like t i t le , version and description.

39

• paths - this field describes a l l the endpoints an A P I has, inc luding their parameters
and server responses.

• components - often the A P I definitions share some common parameters or return the
same structure. Components are used to avoid code dupl icat ion.

The O p e n A P I document defined i n Y A M L could look something like the following:
This part of an O p e n A P I document defines the version of the O p e n A P I specification

used. Sets the t i t le , version and description. There is nothing t r icky or complicated as it is
just the header of the document.

openapi: 3.1.0
i n f o :

t i t l e : P o r t a l API d e f i n i t i o n
d e s c r i p t i o n : I

This API allows a p p l i c a t i o n developers to use the developed
t o o l s e t to handle common f u n c t i o n a l i t y across applications
to enhance the f u n c t i o n a l i t y and speed up development,

version: 1.0.0

L i s t i n g 4.6: E x a m p l e of O p e n A P I specification header

The next part is responsible for endpoint definitions. Y o u start by defining the path
i tem first by specifying the endpoint location. E a c h of the path items defined here can
contain operations that are available on this object such as H T T P methods for example.
To display how this a l l looks I w i l l define the /users endpoint that implements the G E T
H T T P method and on success returns a list of users.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

paths:
/users:

get:
summary: Get the user object

responses:
200:

de s c r i p t i o n : OK
content:

ap p l i c a t i o n / j s o n :
schema:

type: array
minltems: 1
maxltems: 10
items:

type: object
properties:

userld:
type: number

userName:
type: s t r i n g

userRole:
type: s t r i n g
enum: ["ADMIN", "USER", "DEVELOPER"]

Lis t ing 4.7: E x a m p l e of O p e n A P I endpoint specification

I believe it is clear how to define a simple A P I endpoint using O p e n A P I specification. N o w
if we wanted to query for a specific user using the „userld" U R L parameter we would have
to copy and paste the definition of the user resource. This is where O p e n A P I components
come to assist.

40

1
2
3
4
5
6
7
8
9

10
11
12

components:
User:

t i t l e : User
type: object
properties:

userId:
type: number

userName:
type: s t r i n g

userRole:
type: s t r i n g
enum: ["ADMIN", "USER", "DEVELOPER"]

L i s t i n g 4.8: E x a m p l e of O p e n A P I component

A n d last but not least let us define a detailed view of a user and demonstrate how to use
the User component. We have to define an addi t ional field named parameters that dictates
what parameters are supported by the endpoint, how are they supposed to be provided and
whether they are mandatory.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

paths:
/users/-[id]-:

get:
summary: Get the user object
parameters:
- name: i d

i n : path
required: true
responses:

200:
de s c r i p t i o n : OK

content:
a p p l i c at i on/j s on:

schema:
$ref: '#/components/schemas/User'

Lis t ing 4.9: E x a m p l e of using O p e n A P I components

T h e B e n e f i t s a n d C o n c e r n s o f O p e n A P I S p e c i f i c a t i o n

A p a r t from the A P I documentation, the O p e n A P I specification comes w i t h several tools
for accelerated development. Tools such as:

• A u t o generators that take the O p e n A P I specification and t u r n it into the code or vice
versa.

• Documentat ion tools to generate H T M L pages out of O p e n A P I specification.

• M o c k servers that take the description document as input and then handle the rout ing
of incoming H T T P traffic or generate example responses.

O p e n A P I specification promotes a design-first approach where an A P I designer defines
the endpoints and data structure ahead of the implementat ion. This allows for issues to be
spotted ahead of t ime and avoided, therefore saving t ime dur ing the implementat ion process.
Later i n the development process, the O p e n A P I specification serves mult iple purposes. A t

41

first, it can be used to auto-generate resource classes and A P I interfaces. It also increases
the chance of a more stable implementat ion. Once the A P I is implemented the O p e n A P I
specification serves as a reliable source of t r u t h for clients and testing in form of standardized
documentation.

O n the other hand, O p e n A P I has a learning curve for any new developer who has not
interacted w i t h the standard.

4.8 Technology Stack for A p p l i c a t i o n Development i n C l o u d

Developing cloud-based applications has become almost a silver bullet i n modern appl i
cation development. Cloud-based applications are not much different from their regular
counterpart, the difference being that the cloud-based applications consume or uti l ize some
cloud service. Developers working on mobile and web applications have adopted c loud tech
nologies into the development methodology as well as the business logic. W i t h a reliable
internet connection and high internet speeds, the applicat ion development has shifted from
bui ld ing monoli thic systems that handle everything to bui ld ing more distr ibuted systems
w i t h A P I interfaces and relying on communicat ion and data sharing.

A p p l i c a t i o n development i n the c loud era has shifted f rom the previously enclosed sys
tem w i t h infrequent updates to the modern approach. T h e modern approach enables de
velopers to deliver new features and updates to their applications on dai ly basis. C l o u d
services also play a major role i n delivering much needed computat ional power and infras
tructure to enable even the smallest of development teams. The development teams that
choose to uti l ize c loud environments for their applications gain very powerful tools that
help them on every step. Tools like Containers as outl ined in section 2.3, C I / C D pipelines
for D e v O p s and many services are provided by the modern c loud providers that I went into
detai l i n capter 2.

Backend appl icat ion development has moved away from robust web servers serving
H T M L pages while performing the applicat ion logic and more towards bui ld ing smal l and
agile A P I s . A P I s that deliver the queried data they retrieve from a local database and
offer some logic have become very common practice and they have the potential to u t i
lize c loud environments. W h e n developing backend services there is not much difference
between locally deployable code and a c loud appl icat ion. The approach that has been pro
moted by c loud providers leverages local-like environments that are deployable i n the cloud
environment i n the form of containers.

For some services, it is okay to only have the opt ion of delivering raw data when queried.
For other applications that require user interaction or have a need to present the data in
a human-understandable format, the developer has to consider implementing a front-end
part of the applicat ion.

In this section, I w i l l go over the languages and frameworks that are popular choices
when it comes to applicat ion development in clouds. Furthermore, I have chosen to go w i t h
the P y t h o n Django framework when developing the backend part of the c loud development
framework and Typescript w i t h React framework combinat ion for the frontend part.

4.9 Java and J a k a r t a E E

Java is one of the world's most used programming languages and the basis of some of the
world's biggest software projects. B u t standalone Java might not be enough for running and

42

support ing more complex software projects. Y o u need to use it w i t h Jakar ta E E , formerly
called Java E E . Jakar ta E E extends the popular Java S E w i t h specifications for developing
and running scalable, reliable, and secure applications. Jakar ta E E has been formerly
known as Java E E before when it was s t i l l developed by Oracle. Nowadays, the whole
project has been taken up by the Ecl ipse Foundat ion software organisation and Jakar ta E E
has been made open-source.

Jakar ta E E is i n the simplest terms, a collection of A P I s and a framework for creating
new ones. Therefore, Jakar ta E E is a relevant piece of technology in backend and server-side
development. W i t h clouds, dis tr ibuted environments like microservice systems and contain
ers became increasingly popular . Appl ica t ions developed i n distr ibuted environments are
required to communicate w i t h other applications and systems.

The Jakar ta E E specifications are designed to work w i t h a Jakar ta E E compatible
runtime. A runtime is a program which runs the applicat ion and handles the H T T P requests
that connect it to its users on the internet. Larger runtimes help developers w i t h introducing
addit ional features to handle common applicat ion concerns like security, configuration and
logging. Jakar ta E E is designed to work w i t h these larger runtimes.

Jakar ta E E server provides underlying services i n the form of a container for every
component type. Containers are the interface between a component and the low-level,
platform-specific functionality.

4.10 Java S p r i n g Framework

The Spring Framework (Spring) is an open-source appl icat ion framework that provides
infrastructure support for developing Java applications. It is one of the most popular
applicat ion development frameworks in Java. Spring is considered to be a secure, low-cost
and flexible framework. Spring improves coding efficiency and reduces overall appl icat ion
development t ime because it is lightweight. Spr ing handles the infrastructure so developers
can focus on the applicat ion.

Spring Framework includes a number of th i rd-party l ibrary integrations and offers cus
t o m dependency injection (DI) and inversion of control (IoC) components. Developers can
uti l ize the D I and IoC to b u i l d loosely coupled applications that are scalable and easier to
unit test. Developers have access to interfaces such as Dispatcher Servlet, M o d e l A n d V i e w
and ViewResolver to decouple applicat ion objects and further s impli fy development.

The Spring Boot framework module enables developers to create stand-alone applica
tions that can r u n immediately as self-contained deployment units . Moreover, developers
can create various configuration profiles for different development environments and easily
differentiate parts of their appl icat ion configuration.

Spring C l o u d builds on the concepts of Spring Boot to solve some of the problems that
developers encounter when bui ld ing microservices. Spring C l o u d incorporates both Spring
Framework's unified programming model and Spring Boot 's rap id applicat ion development
capabilities. Spring C l o u d essentially provides a variety of design patterns and services
such as registry and discovery support , therefore, avoiding a need for static hostnames. O n
the downside, Spring is unable to interchange technology stacks, libraries and languages.
Moreover, a developer must make sure the Spring C l o u d Conf ig Server is up and running
every t ime in order to r u n a single microservice.

43

4.11 C # A S P . N E T Framework

A S P . N e t is an open-source web development plat form provided by Microsoft . It is used for
the development of fast and secure web-based applications. It is an extension of the .Net
plat form for cross-platform appl icat ion development. W i t h support for mult iple program
ming languages, I w i l l pr imar i ly focus on the C language as it is by far the most popular
one.

A S P . N E T offers three frameworks for creating web applications: Web Forms, A S P . N E T
M V C , and A S P . N E T Web Pages. E a c h framework targets a different development style.
A S P . N E T M V C gives you a patterns-based way to b u i l d web applications that enables a
clean separation of concerns. A S P . N E T Web Pages and the Razor syntax provide a fast
way to combine the backend, and server-side code w i t h H T M L elements to create dynamic
web content. The three frameworks are not independent and choosing one does not exclude
using another. A S P . N E T Web A P I is a framework that makes it easy to b u i l d H T T P
services. A S P . N E T Web A P I is an ideal plat form for bui ld ing R E S T f u l applications on the
. N E T Framework.

The .Net framework offers access to many official and custom packages through the
Nugget package management system. Nugget helps developers search and download poten
t ia l ly helpful libraries for their projects while also managing the versions and dependencies.
It is a powerful too l that can be used w i t h publ ic or private Nugget repositories.

4.12 Node. j s Express Framework

Node.js is an open-source, cross-platform runtime environment that allows developers to
b u i l d server-side tools and applications i n JavaScript . However, the runtime is expected to
be running directly on the operating system instead of running in a browser environment
like standard JavaScript . A s such, the environment omits browser-specific JavaScript A P I s
and adds support for more t radi t ional O S A P I s inc luding H T T P and file system libraries.
It has become the standard server framework for node.js. Express is the backend part of
something known as the M E A N stack. The M E A N is a free and open-source JavaScript
software stack consisting of M o n g o D B , Express, A n g u l a r and Node.js .

Express comes w i t h an express-generator tool that helps developers quickly set up an
Express appl icat ion skeleton by running a simple command v i a the command-l ine interface.
Express does not have any b u i l t - i n O R M systems. It utilizes a r ich package ecosystem to
connect to different types of databases. A d d i n g the capabi l i ty to connect databases to
Express apps is just a matter of loading an appropriate Node.js driver for the database in
the applicat ion.

Express is a rout ing and middleware web framework that has m i n i m a l functionali ty of its
own. A n Express appl icat ion is essentially a series of middleware function calls. Middleware
functions have access to the request and response objects and the next middleware function
in the application's request-response cycle.

The node package manager (N P M) provides access to hundreds of thousands of reusable
packages. It also has best-in-class dependency resolution and can also be used to automate
most of the b u i l d toolchain.

44

http://ASP.NET

4.13 P y t h o n F lask

Flask is a Python-based micro framework used for the development of web applications. It
joins two solutions together to create a l ibrary capable of bui ld ing web applications. The
aforementioned solutions are Wekzeug, a web server framework and Jinja2, a templat ing
l ibrary. It does not depend on external libraries to perform the tasks of a framework. A l l the
tools are readily available for developers to support the functionali ty of a web applicat ion.

The " m i c r o " in microframework means F lask aims to keep the core simple but extensible.
F lask is not an opinionated framework and therefore abstains from m a k i n g technological
decisions for the developer and the decisions made, like for example the templat ing engine
can be easily changed. B y default, F lask does not include a database abstraction layer or
form val idat ion but instead promotes the usage of already existing libraries. It supports
extensions to add such funct ional i ty to the applicat ion as if it was implemented i n Flask
itself.

F lask framework requires a certain level of experience in designing applications to get
right. W i t h no enforced project structure a l l the decision m a k i n g is directed at the devel
oper. This approach creates certain freedom i n design, but sometimes too much freedom can
hurt . F lask does not offer any support for database systems and Object -Relat ion M a p p i n g
(O R M) out of the box. Therefore, while being a lightweight microframework, the developer
has to solve a lot of problems at the beginning of the project before he even starts devel
oping the appl icat ion. Concerns like administrat ion tools, O R M , security and more has to
be solved i n advance and add to the tota l t ime of the project. Th is i n m y opinion renders
Flask unfriendly towards the development of M i n i m u m V i a b l e Product applications.

4.14 P y t h o n Django Framework

Django is a high-level open-source P y t h o n web framework that encourages rap id develop
ment and clean, pragmatic design. It takes care of much of the hassle of web development
so the developer can focus on w r i t i n g the business logic. Django offers a b ig collection of
modules which can be used i n web appl icat ion development.

Django is considered to be an opinionated framework. A n opinionated framework is
one which is designed i n such a way that its users w i l l experience the least fr ict ion w i t h
that framework when the framework is used i n a way that does not violate the assumptions
made by the framework designer. It means that the framework itself offers the developer
sensible defaults that enable rapid development. Django offers a clear project structure
w i t h Django projects and Django apps. Django project is a python package that represents
the whole applicat ion and can contain mult iple Django apps. However, the Django app is
just a P y t h o n module inside a project containing business logic that can either be shared
or contained inside the applicat ion.

Django implements a Model -View-Contro l l e r (M V C) pattern i n its own way. It uses
the principles of the M V C pattern but introduces its own terminology and calls it M o d e l -
Template-View (M T V) . Django uses the term Template for the views and V i e w for the
controllers. The templates represent the H T M L code enriched by the Django template
language.

Django framework provides a very powerful Object -Relat ion M a p p e r (O R M) . O R M is
a service or a too l that enables the developer to interact w i t h the applicat ion database.
Django's O R M is just a pythonic way to create S Q L to query and manipulate the database
and get results i n a pythonic fashion. Django uses P y t h o n classes that subclass from a

45

Django M o d e l class to map S Q L data onto P y t h o n objects. It allows Django O R M to
provide developers w i t h automatical ly generated database access A P I . Th is approach to
data access is also called the Act ive Record pattern.

D j a n g o R E S T F r a m e w o r k

Django R E S T framework (D R F) is an open-source and well supported P y t h o n l ibrary for
Django Framework that helps developers w i t h bui ld ing R E S T - f u l A P I s . It provides devel
opers w i t h a fully-featured toolkit for the development of b o t h turn-key and complicated
R E S T A P I s .

D R F allows developers to define U R L structure and not rely on an auto-generated one
based on a conversion from Django models to R E S T endpoints. Web A P I developed w i t h
D R F is r ich and web browsable and supports a wide range of media types, authentication
and permission policies out of the box.

D R F introduces the concept of model serializers. D R F serializer is a class that subclasses
the ModelSerial izer class f rom the D R F module. D R F ' s Serializers convert model instances
to P y t h o n dictionaries, which can then be rendered i n various A P I appropriate formats like
J S O N or X M L .

4.15 Typescr ip t

TypeScr ipt is a superset of JavaScript . It builds on top of the JavaScript base functionali ty
and syntax and introduces addi t ional aspects to the language. TypeScr ipt uses a special
compiler that converts TypeScr ipt code into JavaScript while checking the type compati
b i l i ty dur ing the compilat ion. B y being a superset, any JavaScript program that is val id
is also a TypeScr ipt program. However, most TypeScr ipt compilers enforce a rule against
type inference where the type can not be inferred based on the assigned value. Therefore,
typescript would infer type any.

TypeScr ipt is intended to be used when developing complex applications i n JavasScript.
The consistent use of TypeScr ipt in a project in i t ia l ly increases the sk i l l level requirement
of a l l developers. B u t over the course of a project, this i n i t i a l effort can pay off in many
areas like better code readabil i ty and avoiding runtime errors due to incorrect types.

4.16 React

React is a JavaScript-based U I development l ibrary. However, React is not a framework,
it is indeed specified as a l ibrary. The explanation for this is that React only deals w i t h
rendering the U I components and reserves many things at the discretion of i n d i v i d u a l
projects. A component is a mixture of H T M L and JavaScript that captures a l l the logic
required to display a smal l port ion of the U I . Components can be nested in each other thus
creating a tree. Th is tree is then roughly transformed into a representation of a D O M .

React embraces the fact that rendering and U I logic are inherently intertwined. Instead
of separating the technologies handl ing events and data display, React components contain
both technologies. React uses a syntax extension called J S X (or T S X if using typescript) to
describe what the U I should look l ike. It is a markup language that allows developers to m i x
H T M L w i t h JavaScript expressions. Af ter compilat ion J S X becomes a regular JavaScript
function that calls and evaluates to JavaScript objects.

46

The simplest way to define a component is to write a JavaScript funct ion. The JavaScript
function is a va l id React component when it accepts the „props" argument and returns a
React element. Funct ional components can be then used instead of the regular H T M L tags
using the H T M L syntax when used w i t h J S X . It allows developers to compose component
elements out of other user-defined or H T M L components.

React provides developers w i t h a declarative A P I to abstract component rendering
from the applicat ion logic. To make this possible React needs to implement a reconcil iation
algori thm. React uses a render funct ion to generate a tree of React elements. Whenever
an appl icat ion state or component property is changed, React needs to figure out how to
update U I to match the potential ly affected tree. The state of the art algorithms [5] for
figuring out the tree transformations have a complexity i n the order of 0 (n 3) where n is the
number of elements i n the tree. Th is would be problematic and therefore React implements
a heuristic a lgor i thm w i t h the complexity i n the order of 0{n) based on assumptions that:

• Two elements of different types w i l l produce different trees.

• T h e developer can hint at which chi ld elements may be stable across different renders
w i t h a key prop.

Sometimes it is unavoidable that a component needs to return a list of children. For this case
React implements Fragments and their sole purpose is to map a collection of components
to a fragment.

React faced many issues regarding readabil i ty and reusability. Funct ional components
were main ly used as U I components due to the fact they could not manage the state by
themselves. Some client libraries t r ied to solve this issue for developers by creating a
shareable context between components. Ever since the React version 16.8, this a l l has been
changed. React developers released hooks to address a number of problems.

React faced many issues regarding readabil i ty and reusability. Funct ional components
were main ly used as U I components due to the fact they could not manage the state by
themselves. Some client libraries t r ied to solve this issue for developers by creating a
shareable context between components. Ever since the React version 16.8, this a l l has been
changed. React developers released hooks to address a number of problems.

React hooks are functions that let developers interact w i t h the state and lifecycle fea
tures inside funct ional components. There are a number of hooks b u i l t - i n the React l ibrary
but there are options to b u i l d custom hooks also. Just to name a few:

• Effect hook adds the abi l i ty to trigger side effects from a functional component. It
automatical ly triggers when a given component is mounted or when a property is
updated.

• State hook declares a state variable inside a functional component. State variables
are preserved by React between the function calls and allow developers to pass a
state between components. W h e n a state variable is updated, a l l components that
are dependent on this variable are re-rendered.

• T h e memo hook w i l l only recalculate the memoized value when there is a change in
its dependencies. It is main ly used i n opt imizat ion and should not contain any side
effects as the funct ion provided runs dur ing the component's render.

47

4.17 A n g u l a r

A n g u l a r (also referred to as A n g u l a r 2 + , do not m i x w i t h AngularJs) is an open-source,
JavaScript-based front-end framework wri t ten i n TypeScr ipt . Google maintains i t , and its
pr imary purpose is to develop single-page applications. A n g u l a r is s t i l l the second most
used JavaScript front-end framework. However, user satisfaction has dropped over the past
few years which shows the complexity of the framework. A s a framework, A n g u l a r has clear
advantages while also providing a standard structure for developers to work w i t h .

A n g u l a r utilizes a component-based architecture where a large applicat ion is broken
down into logical components. Developer designed components are then organized into
N g M o d u l e s . N g M o d u l e is the basic bui ld ing block of the A n g u l a r framework and an A n g u l a r
applicat ion is defined by a set of N g M o d u l e s . A n g u l a r components define view sets of screen
elements and use services, which can provide specific functionali ty to the component.

Modules , components and services are classes that use decorators. These decorators
mark their type and provide metadata that tells A n g u l a r how to use them. The metadata
for a component class associates it w i t h a template that defines a view. A template com
bines ordinary H T M L w i t h A n g u l a r directives and b inding markup that allow A n g u l a r to
modify the H T M L before rendering it for display. The metadata for a service class provides
the information A n g u l a r needs to make it available to components through dependency
injection.

Due to a layered architecture angular can end up being a sl ightly difficult framework
to debug sometimes and people who are not used to n-tier architectures can f ind some of
the concepts complicated. The concepts of dependency injection and inversion of control
are both great tools i n development but they can be very challenging in more complex
systems. In many frameworks that use dependency injections, the injection itself happens
at the bean or configuration level. A n g u l a r uses an injector associated w i t h a N g M o d u l e
that is responsible for dependency creation and injection based on the module metadata.

18

Chapter 5

Technological Design

In this section, I w i l l go over the design process and thoughts on the framework together
w i t h implementat ion insights. I w i l l introduce the domain model as a monol i th and then
split it into i n d i v i d u a l services. T h e n I w i l l design a system infrastructure buil t on the
Google C l o u d P l a t f o r m and go over the A P I endpoint design. In the end, I introduce the
demo appl icat ion and how I intend to demonstrate the functionali ty of the framework.

5.1 D o m a i n M o d e l

In a system design w i t h microservice architecture, there is no single point of t r u t h . Every
service owns a specific set of data and knows either nothing or very l i t t le about its surround
ings. It is a common practice when developing a monoli thic appl icat ion to design a robust
database where tables reflect real objects as outl ined in the section 3.1. T h i s principle is
not applicable when designing a dis tr ibuted system as every service is only concerned about
a specific part of the global functionality. B u t a good start is to design a famil iar schema
and then iteratively split it into separated domains.

U s e r s T a b l e

The user table i n the database represents a system user entity. Records i n the user table
represent the system-wide user identity, roles and permissions. The user entity implements
the following fields:

• User's name as a part of user identity i n the system. This field contains a str ing w i t h
the user's fu l l name.

• E m a i l address is a unique field that carries the user's identity in the system. The
assumption is made that the user account binds to a unique address as only one user
should be entitled to this unique address.

• Role i n the system. Users can be assigned mult iple roles based on their registration.
It is an enumerable value as the roles are defined by the system itself.

A p p l i c a t i o n s T a b l e

Appl icat ions play an important role in this system. Therefore, they inevitably carry i m
portant data that needs to be persisted and shared. Under the applicat ion entity, you can

49

Figure 5.1: P o r t a l use-case diagram

B i l l a b l e E n t i t y

P K

- F < 1

il l i l l t N O T N U L L

T o r _ u s e r i n t N O T MULL

r j i l l ing_addre5s cha r (254) N O T N U L L

c a r d _ n u m b e r cha r (254)

ca rd_exp i r y da te

a c c o u n t j n f o r m a t i o n c l ia r {254)

u s e r id i n t N O T N U L L

er iE l l c l i a r (254) N O T N U L L

n a m e char f lOO] N O T M U L L

role e n u m N O T MULL

L i c e n s e

P K id i n t N O T N U L L

FK1 fo r_app l i ca t ion int N O T N U L L

FK2 bil led to int N O T N U L L

FK3 a s s i g n e d j o int

c rea l i r jn_date date N O T N U L L

id Int NOT N U L L

f o r j i s e r l n t N O T N U L L

token cha r (512) N O T N U L L

t o k e n _ e * p i r a l i o n date

serv ice e n u m N O T N U L L

A p p l i c a t i o n

a o p i d i n t N O T N U L L P K a o p i d i n t N O T N U L L

F R 1 o r i g i n_use r_ id int N O T N U L L

name cna r (264) N O T N U L L

descr ip t ion textCinf] N O T N U L L

v e r s i o n char(64J

u n i t _ p r i c e f l o a t N O T N U L L

d e p l o y m e n L u r t c l i a r (512) N O T N U L L

state e n u m N O T N U L L

F e d _ a p p _ p e r m i s s i o n s

P K id i n t N O T N U L L

T F < 1 f o r _key int N O T N U L L F < 1 f o r _key int N O T N U L L

F < 2 f o r _ a p p int N O T N U L L

scope e n u m N O T N U L L

Figure 5.2: M o n o l i t h i c P o r t a l E R D diagram

50

imagine an applicat ion that a user can subscribe to and use i n this system. The applicat ion
entity implements the following fields:

• Deployment U R L field which is important for user redirects. Once the appl icat ion is
deployed on the plat form this field keeps track of the U R L the appl icat ion is running
on and accessible to the public .

• A p p l i c a t i o n version field. T h e applicat ion can have mult iple versions deployed and
this field acts as a versioning element.

• A p p l i c a t i o n state field to represent what state the applicat ion is i n . Whether the
applicat ion is deployed, running or having issues.

• A p p l i c a t i o n metadata fields like appl icat ion name, description, pr ic ing etc.

L i c e n s e s T a b l e

C o m p u t a t i o n a l resources are not free. Therefore, the system needs to keep track of who
uses what applications. The licenses table represents a relationship between the user and
the applicat ion entities. T h e license entity implements the necessary fields to map the
applications to a specific user.

B i l l i n g T a b l e

B u l l i n g is an integral part of monetizat ion and subscription. Every user entity has a cor
responding bil lable entity created in the system. T h e b i l l ing entity is created atomical ly
together w i t h the user entity upon registration. It stores important b i l l ing information
about the user that is used by the system. Information such as:

• User's b i l l ing address field for the legal documents and invoices.

• User's card information for potential processing of subscription payments.

• Developer's account information for earnings.

F e d e r a t i o n T a b l e

The Federation table aims to store information necessary for system interactions w i t h th i rd-
party service providers. It is a common demand to provide integration w i t h already existing
solutions through A P I s . The Federation table enables developers to integrate their solutions
w i t h existing services on the user's behalf by querying for a stored access token. The
federation entity implements the following fields:

• Token field storing the encoded access token.

• F i e l d w i t h the token expirat ion date.

• A reference to the origin service.

51

G o o g l e C l o u d P l a t f o r m

Multiple
Clients
API Requests

API Gateway
service
Cloud Run

Cloud SQL

)>
User management
service
Cloud Run

)>
App management
service
Cloud Run

)>
Licensing service
Cloud Run

)>
Federation service
Cloud Run

)>
Billing service
Cloud Run

Figure 5.3: Google C l o u d P l a t f o r m infrastructure diagram

M i c r o s e r v i c e A r c h i t e c t u r e A d o p t i o n

The breakdown of monoli thic architecture into i n d i v i d u a l services requires spl i t t ing the
domain model into isolated subdomains. I have explained i n the section 3.2 why it is a
good idea to separate a single monoli thic database into dedicated isolated databases. In
the case of por ta l design, I w i l l go w i t h the separation of tables into i n d i v i d u a l databases.
Where each database w i l l serve a dedicated microservice.

The standard foreign keys w i l l s t i l l exist but they w i l l no longer point to a specific record
in the database. For the service and the database itself, they w i l l act as external identifiers.
The responsibil ity of keeping the database consistent is shifted to the developer instead.
The values w i l l s t i l l correspond to the identifiers of existing entities therefore, they can be
queried f rom a different microservice when needed.

5.2 Infrastructure

I have chosen the ful l infrastructure for this thesis to be located i n the publ ic c loud en
vironment. There are mult iple reasons why I chose this approach. A t first, I wanted to
explore the options and solutions provided by c loud providers. A l s o , some direct and indi
rect experiences played a role where the solution created was not prepared for the traffic it
experienced and this effect caused distress for a lot of people.

C l o u d infrastructure offers easy to opt - in technologies where the developer is not re
quired to own the underlying hardware when taking advantage of computat ional resources.
Th is fact can also reduce i n i t i a l costs for startup projects. Some technologies are even
offered for free u n t i l a certain threshold is reached. Furthermore, modern cloud solutions
usually offer some form of service scaling out of the box.

I have chosen to b u i l d my project infrastructure on the Google C l o u d P l a t f o r m specifi
cally u t i l i z ing their C l o u d R u n service. C l o u d R u n offers strong support for containerization
and as I have outl ined in the section 2.3, containers are capable of packing the project de
pendencies into a sort-of executable package. Th is package is then pushed to the cloud

52

repository, and by ut i l i z ing the power of serverless technology as mentioned in section
2.2.4, deployed.

I a m using Docker containers to deploy i n d i v i d u a l services to the C l o u d R u n service.
E a c h of the microservices implements an A P I that is exposed to the internet. Google
C l o u d P l a t f o r m offers a setting, where the endpoint is secured by a service account access.
Therefore, the A P I s are secured and can not be accessed by anyone except the A P I Gateway
service. More about the A P I Gateway i n the next chapter.

The architecture contains a single S Q L Server running on the Google C l o u d . I have
decided to go w i t h a M y S Q L version as the data of the core services seems to be relational
and the data locat ion can be regionally based on the user's locat ion. The server runs
mult iple databases specifically one for each microservice.

5.3 A P I Des ign

R E S T - f u l A P I s are the golden standard of the internet. The ease of development and
understanding of the structure of R E S T endpoints made it very popular amongst developer
communities. For this project, I have chosen to implement a l l the service A P I s using the
R E S T principles outl ined i n section 4.3.

Each microservice offers a specific set of endpoints granting access to its data. Endpoints
are secured by a Google C l o u d P l a t f o r m configuration, requiring service account creden
tials for authentication. I have made this design decision to restrict access to the service
endpoints. The endpoints are not meant to be accessed outside the plat form architecture.
It is pr imar i ly done to avoid the need for implementing features like authentication and
request caching on every service. Therefore, any request would pass unauthenticated and
bypass any permission settings.

A s I mentioned, the services themselves are not the way to access their endpoints. I a m
using an A P I Gateway service to aggregate a l l the endpoints into a single service alongside
the authentication, rout ing and other A P I features. The A P I Gateway first serves the
purpose of a request proxy. The problem w i t h running mult iple microservices, other than
the development challenges, is that each of the services runs under a different U R L . It
makes it challenging for consumers especially as they act as a single system. Therefore,
the A P I Gateway exposes its own A P I endpoints w i t h intention of proxying the requests
made to a single U R L to the rest of the system. A P I endpoints are then only k n o w n by
the Gateway service and this configuration can be performed dur ing the deployment of the
service.

The A P I Gateway service implements a basic user authentication using the username
and password to grant access. There are better modern approaches to user authentication,
for example, O A u t h 2 . I have chosen to implement only the basic auth as it demonstrates
the posit ion and functionali ty of A P I authentication while having very l i t t le architectural
demands. O A u t h 2 authentication requires the deployment of a custom identity server.
Another opt ion for user authentication is using one of the many identity providers on the
market like Facebook, Google or Microsoft . The decision to not uti l ize these technologies
was to make the core of the framework as isolated as possible.

53

5.4 Transact ional Consis tency

Support ing a transactional consistency in a dis tr ibuted system is a reoccurring problem.
Different solutions lean towards different approaches to solving i t . For example, as I have
explained i n the section 2.6 Google Spanner tackled this issue by implementing a transaction
synchronisation that spans the globe. A more common approach is by introducing Sagas
to the infrastructure.

There are two approaches to implementing the Sagas pattern i n the microservice ar
chitecture as I have outl ined i n the section 3.3. I have decided to implement the Sagas
pattern i n this thesis very s imi lar ly to the choreography approach instead of the orches-
trator. T h e reason behind this decision was that the implementat ion of an orchestrator
seemed too complicated. T h e orchestrator needs to have the support of a service discovery
microservice. A l s o , the orchestrator should be able to restart a l l the sagas that were in
execution once they failed. M y approach has the downsides of not being language-agnostic
and introduces a service level responsibil ity for mainta ining the saga itself.

The implementat ion works on a basis, that the service uses a saga wrapper for methods
that need to mainta in consistency across mult iple services or w i t h 3rd party solutions. The
method then registers a set of rollback callbacks that undo the actions performed by its
execution i n case something fails.

1
2
3
4
5
6
7
8
9

10

class SubscriptionManager():
@is_saga
def c r e a t e _ s u b s c r i p t i o n (s e l f , saga):

subs c r i p t i o n = Subscription.create(
customer=customer_id,
items=sub_items,

)

saga.register_rollback(lambda: Subs c r i p t i o n . d e l e t e (s u b s c r i p t i o n . i d))

return self.create(sub_id=subscription.id)
Lis t ing 5.1: Usage example of Sagas i n P y t h o n

5.5 C o m p o n e n t Des ign

The frontend appl icat ion is d iv ided into a couple of root components. Two of those com
ponents are dedicated to handl ing the users who are not signed into the system. I a m
using two components to handle sing i n and sign up flows. The last top-level component is
restricted to signed-in users and provides the applicat ion overlay and rout ing for the rest
of the applicat ion components.

1
2
3
4
5
6
7
8
9

10
11
12

<BrowserRouter>
<Routes>

<Route path="login" element={<Login />}/>
<Route path="register" element={<Register />}/>
<Route path="/" element={<AuthRoute><Home /></AuthRoute>}>

<Route path="dashboard" element=-[<Dashboard />}/>
<Route path="profile" element=i<Profile />}/>
<Route path="profile/:userld" element=i<Profile />}/>
<Route path="solutions" element={<Solutions />}/>
<Route path="solutions/:solutionld" element={<SolutionDetail />}/>
<Route index element={<Marketplace />} />

</Route>

54

13
14

</Routes>
</BrowserRouter>

Lis t ing 5.2: A p p l i c a t i o n U R L rout ing using react-router l ibrary

I a m using the react-router l ibrary for serving U I components based on the U R L path.
The structure is designed so that the overlay component is always rendered as a parent
component and the content is served separately. React-router provides the developer
w i t h an Outlet component. The Outlet component acts as a component injector based
on the appl icat ion routing.

5.6 User A u t h e n t i c a t i o n

P o r t a l authentication is a key component as it serves mult iple purposes. A t first, it verifies
the user identity and role i n the system. However, it also serves as a user identity context
for the appl icat ion. Once the user logs i n , the applicat ion stores information about h i m and
provides them to the other components. I have achieved this functionali ty by implementing
a custom authentication hook.

The authentication hook gets distr ibuted between the components by using a context
provider as a parent component. The AuthProvider component creates a context provider
that enables children components to access and use the authentication hook. I have achieved
this by using A u t h P r o v i d e r as a parent component to the Browser Router .

1 <AuthProvider>
2 <BrowserRouter>
3
4 </BrowserRouter>
5 </AuthProvider>

L i s t i n g 5.3: Authent ica t ion provider placement i n the applicat ion tree

A p p l i c a t i o n components then can cal l the useAuthO hook to accept the context object
containing authentication functions and the user object. There exists only one instance of
the shared context and therefore a l l the applications that get the context from the same
AuthProvider w i l l have access to the same instance of the user object.

5.7 A p p l i c a t i o n State Management

The applicat ion state is inherently outdated. W h a t I mean by saying that is that when an
applicat ion is separated into a frontend and backend, the frontend is usually responsible for
obtaining and displaying data stored on the backend. However, once the data are pulled
there is usually no backwards l ink to keep the data updated. Therefore, the data could
have been changed the moment after they were pul led, and the frontend applicat ion would
not know about i t .

The problem w i t h applicat ion state consistency can be solved i n mult iple ways. I have
decided to solve this issue by implementing a query strategy for the data. I a m using a
react-query l ibrary that provides tools to implement data fetching, caching, synchronizing
and updat ing server state asynchronously.

React-query l ibrary provides two key hooks for managing data. F i rs t is the useQuery
hook. Semantically it represents the HTTP GET method w i t h addi t ional functionality. React-
query does not perform the fetching itself, it just provides a wrapper to the fetch function

55

that uses the funct ion to make the asynchronous request while adding addit ional logic as
to when to perform the fetch and what to do w i t h the data . Therefore, a function that
implements the data acquisit ion and returns a Promise object has to be provided i n the
form of a callback. For HTTP POST calls a useMutation hook is used w i t h s imilar principles
to the useQueryhook.

React-query manages query caching based on query keys. Query keys can be as simple
as a str ing, or as complex as an array of many strings and nested objects. A s long as the
query key is serializable, and unique to the query's data. React-query w i l l trigger data
refetch automatical ly whenever the query key changes. Th is is part icular ly useful when
working w i t h filters.

A s I have mentioned at the beginning of this section, data become stale when pulled
from the backend server to the frontend almost immediately. The developer can make
assumptions about his data based on the knowledge he has about the system. B u t there is
another guaranteed way to avoid unnecessary data fetching. W h e n the user is not looking at
the data, it does not matter if they are up to date or not. React-query l ibrary implements
a few refetch strategies out of the box:

• ref etchOnMount - this strategy refetches data whenever a new component that calls
useQuery mounts.

• ref etchOnWindowFocus - this strategy refetches data whenever the focus returns to
the browser tab.

• ref etchOnReconnect - this strategy triggers a refetch whenever the applicat ion comes
back online after losing connection to the network.

5.8 D e m o A p p l i c a t i o n

I have implemented a Fitness tracker appl icat ion as a demonstration of how the framework
can benefit bo th the developer and the end-user. The intention of the applicat ion is to
serve as a SaaS to the end-user. The developer can leverage the framework as a plat form
that offers some common services for users. This includes services such as login and bi l l ing
but also extends to non-technical services like market ing or user experience (U X) . In this
section, I w i l l outline the development steps a developer has to go through to implement
any type of cloud-native SaaS appl icat ion using the framework.

A p p l i c a t i o n D e s i g n

The Fitness tracker appl icat ion allows its users to track their progress between tra ining
sessions and compete w i t h friends. The appl icat ion calculates and displays the progress of
the user's body-mass index (B M I) as he logs in his progress in weight gain and loss. Th is
metric is projected to the user by a line chart on the m a i n page of the applicat ion.

The appl icat ion also allows the user to create different profiles (very similar to the
concept of Netf l ix profiles). Profiles are the objects that the appl icat ion uses to organize
its data. E a c h profile is intended to be potential ly a different person. E a c h profile has a
separate tracking for weight and exercise progression.

This brings me to the last interesting design feature the applicat ion has. It is a feature
that enables a competi t ion mode. D a t a f rom a l l profiles w i l l be shown on the user's exercise
graph. This way the user can compare his achievements w i t h their friends.

56

Failed

Failed
Portal

SetCredentials

Local Storage

GetCredentials

Figure 5.4: Shared authentication schema

S h a r e d A u t h e n t i c a t i o n a n d L i c e n s i n g

The idea is for users to only have one identity when j u m p i n g between different applications
ut i l iz ing the framework services. The application-level access is then determined by the
combination of user identity and a license object for the given appl icat ion. The applicat ion
first verifies that the user t ry ing to access is a part of the plat form and then validates his
license. The user's license plays a role of a system permission object to an applicat ion.

Current implementat ion stores the user identification as an object i n the indexedDB
storage inside the web browser. Different applications can leverage this storage to check if
the user identification token is present and validate its legit imacy w i t h the plat form.

The approach of shared authentication is very common among modern technological
solutions. Often this aspect is implemented using single-sign-on that basically works as
outl ined above.

L e v e r a g i n g B a c k e n d a s a S e r v i c e

I have decided to leverage the Firebase plat form 2.6.5 as a backend for m y demo applicat ion.
M o s t l y to demonstrate the ful l power of services provided by c loud providers nowadays. A l s o
because I have identified a great fit for the idea I came up w i t h .

The funct ional i ty of the Fitness tracker appl icat ion can easily be handled by the frontend
components designed i n React and M a t e r i a l U I therefore, I only needed to handle the
data persistence. I have decided to use Firestore document storage for this purpose. The
applicat ion uses a „users collection" to store the necessary documents. E a c h document is
representing the data of a single user.

Firebase project provides an S D K for JavaScript applications w i t h addi t ional functions
to manage the access to Firestore collections. This was not enough for my use case as it
only allowed me to create, read and delete the documents I needed to work w i t h . This
posed a challenge for data storage capabilities as it d i d not allow modif icat ion of nested
structures. I have implemented a custom A P I that the demo appl icat ion uses that provides
addit ional features by addit ional ly modi fy ing the data structure.

57

B e n e f i t s o f U s i n g t h e F r a m e w o r k

Appl icat ions developed w i t h the framework i n m i n d gain significant technological and non-
technological benefits. I believe they a l l are equally important . A n applicat ion that is
capable of fulf i l l ing its purpose is worthless without the userbase.

Demo applicat ion pr imar i ly leverages the technological benefits to support its users and
provide seamless access. It uses the authentication and licensing endpoints to identify its
users and determine their permissions.

58

Chapter 6

Project Takeaway s

Designing a framework for the development of cloud-native applications was a big challenge.
Understanding the underlying technologies needed to deploy and r u n applications in a
cloud environment is a never-ending story as there is too much to unpack. M o d e r n cloud
environments provide a near unl imi ted set of options for appl icat ion hosting and monitor ing.
The technological spectrum supported by these options is also huge where a developer can
decide to use mult iple languages, deployment options, and frameworks i n a single project.
C l o u d b i l l ing is also an aspect worth considering when designing a s turdy system w i t h an
intention to last a long time.

6.1 C l o u d R u n t i m e

In this project, I have focused on using computat ional resources provided by the Google
C l o u d P l a t f o r m (G C P) 2.6. I have designed the infrastructure to mostly r u n on the C l o u d
R u n service, which offers great support for containerization and automatic scaling. A s I
mentioned i n section 2.6.2, C l o u d R u n natively support scaling down to zero instances. It
means that when the project is not generating any traffic it also does not cost anything.

However, C l o u d R u n is a serverless service which generally costs more for the same
runtime. W h e n compared w i t h a G C P C o m p u t e Engine, which I have described in section
2.6.1, it is more expensive to r u n a steady service on a C l o u d R u n instance t h a n on the
Compute Engine ones. G C P C o m p u t e Engine also grants price discounts for long term
commitment to using their services. However, C o m p u t e Engine does not scale as quickly as
C l o u d R u n instances can and also can not scale to zero. B u t when considering a significant
steady demand for the services running there Compute Engine comes on top.

A technological strategy can possibly be devised out of this observation where once an
average traffic threshold is reached it makes sense to change the c loud infrastructure to
avoid higher costs. However, for the projects where the demand and traffic generated are
unknown, I believe it is a good choice to go w i t h a C l o u d R u n as a default option.

6.2 A u t o m a t i c Scal ing

A u t o m a t i c scaling is a good servant but a bad master. It is great when you have a great
spike i n traffic and service unavailabi l i ty is undesirable. For example, when i n 2020 the
Czech government released web eDalnice together w i t h a system for buy ing electronic v i
gnettes. The system crashed shortly after being released to the publ ic [19]. However,

59

Request count

U T C + 2 8 : 1 0 P M 8:20 P M 8 :30 PM 8 :40 P M 8:50 P M 6:00 PM 9 : 1 0 P M 9:20 P M

Figure 6.1: Request count recorded by the C l o u d R u n environment

Container instance count

U T C + 2 8 : 1 0 P M 8:20 P M 8 :30 PM 8 :40 P M 8:50 P M 9:00 PM 9 : 1 0 P M 9:20 P M

Figure 6.2: Container instance count recorded by the C l o u d R u n environment

automatic scaling i n clouds protects the system from crashing or unavailabi l i ty when expe
riencing heavy traffic by increasing the number of computat ional resources available i n the
infrastructure.

O n the other hand, it can drastical ly increase the costs of a project when managed
poorly. The system might get under attack, where attackers send many requests to your
services, and the natura l response of a system w i t h automatic scaling is to scale up. I learned
this the hard way when I made a mistake i n the business logic of a frontend implementation.
I have started generating 60 to 80 requests a second and sending them to my backend
implementation. Th is resulted in the backend scaling up f rom a couple of instances to 50.

6.3 Framework A u t h e n t i c a t i o n

D u r i n g the process of deciding on the technology stack for the framework, I ended up w i t h
basic authentication. I believe it demonstrates the authentication process well enough when
it comes to A P I s while sacrificing security for ease. I have implemented the authentication
on the A P I Gateway service to authenticate the users when they t ry to access endpoints.
Also , I have implemented an A u t h P r o v i d e r webhook on the frontend to handle and validate
the user credentials.

However, when I started working on the implementat ion of the demo applicat ion. I
have realized how impract ica l basic authentication is when dealing w i t h single-sign-on-like
behaviour. I wanted to implement a system to automatical ly perform the user authenti
cation in the demo appl icat ion if he was previously signed i n on the plat form. I had too
many dependencies at this point , so I have defaulted to storing the user credentials as
an authentication object inside the in de xe dD B storage. It is a trend adopted from Fire-
base Authent ica t ion . Firebase Authent ica t ion stores the user's J W T as a value inside the
browser's index storage.

6.4 Asynchronous Frontend

A frontend applicat ion is one way to serve user data and allow them to interact w i t h them.
It uses A P I calls to operate w i t h the data (C R U D operations), but this communicat ion
is usually only ini t iated by the frontend appl icat ion. It means that anytime the state

60

changes on the backend, the frontend appl icat ion has to request the new data. B u t how is
it supposed to know?

One way to solve this issue is by implementing webhooks on the backend service. How
ever, this approach is expensive and not pract ical for the majori ty of systems. The more
common method is implementing a refetching strategy i n the frontend applicat ion.

W h e n I implemented a refetching strategy into the frontend applicat ion i n this project.
It instantly became livelier, and the data showed kept refreshing without the need for a
refresh but ton or a user invoked page refresh. However, refetching can be challenging and
tricky. I have decided to use automatic refetching only when the user focus came back to
the page and when a user got reconnected. I have also invoked a manual refetch upon data
update. Th is helped to prevent situations like in section 6.2.

6.5 Service P r o v i s i o n i n g

W h e n I designed the framework as I a m presenting it i n this thesis, there were many
services I have considered. I would classify the service types in this system into two cate
gories, platform-oriented and application-oriented. Platform-oriented services provide the
much needed infrastructural support to the framework like b i l l ing . O n the other hand,
application-oriented services provide much-needed support for appl icat ion functionali ty like
authentication or licensing.

The framework aims at e l iminat ing the need for having to implement business-critical
services for your applicat ion. B u t it should not provide a ful l range of services that can be
generally used. I w i l l use the example of the Google C l o u d P l a t f o r m . It provides a range of
base services like databases and computat ional power as services. The framework should
never degrade to such granularity as to start exposing its underlying structure to the user
or the developer. It would result i n becoming another c loud service provider.

Another mot ivat ion for implementing addit ional services is the potential integration
w i t h th ird-party systems. The federation service aims to address this issue partial ly.

61

Chapter 7

Conclusion and Future Work

M y thesis aimed to design and implement a framework for the development and operation of
cloud services. A t first, I had to learn about major c loud service providers and understand
the range of offered services. T h e n devise a technology stack w i t h a focus on developing
applications in the c loud environment.

The framework was implemented as dis tr ibuted system following the microservice archi
tecture principles. Backend services were implemented using the P y t h o n Django framework
completed by the Django Rest Framework extension to implement a set of R E S T A P I end-
points. The frontend applicat ion of this project was implemented using React JavaScript
l ibrary ut i l i z ing the M a t e r i a l U I components.

I have designed mult iple independent services such as licensing, b i l l ing and applicat ion
management. A n important backend component b inding the system together is an A P I
Gateway implementat ion that serves as a reverse proxy server and enforces user authen
t icat ion. The frontend part of implementat ion consists of two applications. One is the
porta l appl icat ion that serves as a framework hub for users and developers. The second
applicat ion is a demo appl icat ion ut i l i z ing the framework services.

I f i rmly believe that a framework like this has potential when it comes to the current
applicat ion development market. M a i n l y as the current professional sector is experiencing
a shift where many developers and other professionals are moving from big corporates to
smaller teams or deciding to work on their own terms as freelancers. Th is framework is
t ry ing to provide the necessary tools to accommodate this talent and expand on i t . The
bigger picture is to allow people to sell their talents and services w i t h ease while helping
someone else i n the process.

However, I feel like I have only scratched the top of the issue. There are certainly
more services that could be offered under this framework. A s the part of the framework
serves the actual users of the applications I believe a huge step could be made in aspects
of user experience. Including services like product recommendation and data analysis and
improving the user experience of frontend applications. Another idea would be to introduce
a static analysis for submitted applications. The current process requires someone to review
the appl icat ion source code before deployment to ensure the legit imacy of its intentions.

62

Bibliography

[1] What are some Amazon EC2 use cases'? [online], [cit. 2022-04-26]. Available at:
h t t p s : //www.awsforbusiness.com/amazon-ec2-use-cases/.

[2] What is Docker? [online]. Available at:
https ://www.gartner .com/doc/reprints?id=l-2710E4VR&ct=210802&st=sb.

[3] Amazon EC2 [online]. 2022 [cit. 2022-04-26]. Available at:
h t t p s : / / aws.amazon.com/ec2/.

[4] A B I O D U N , B . , O N E Y I B O , O . , N W O K O M A , C , K O L A W O L E , O . and M O G O L I , P . By
2025 internet penetration will increase by 130% in Sub-Saharan africa. M a r 2018.
Available at: h t t p s :
/ / t e c h p o i n t . a f r i c a/2018/03/08 / g l o b a l - i n t e r n e t - u s e r s - t o - h i t-5billion-by-2025/.

[5] B I L L E , P . A survey on tree edit distance and related problems. Theoretical Computer
Science. 2005, vol . 337, no. 1, p. 217-239. D O I :
https://doi.Org/10.1016/j .tcs.2004.12.030. I S S N 0304-3975. Available at:
h t t p s : //www. sciencedirect .com/science/art ic le/pi i/S0304397505000174.

[6] B O N D , J . The enterprise cloud. O ' R e i l l y M e d i a , Inc. Available at: h t t p s :
//www.oreilly.com/library/view/the-enterprise-cloud/9781491907832/ch01.html.

[7] E V A N S . Domain-Driven Design: Tacking Complexity In the Heart of Software. U S A :
Addison-Wesley L o n g m a n P u b l i s h i n g C o . , Inc., 2003. I S B N 0321125215.

[8] F O N G , J . Are containers replacing virtual machines? 2018. Available at:
h t t p s : / / w w w . d o c k e r . c o m / b l o g / c o n t a i n e r s - r e p l a c i n g - v i r t u a l - m a c h i n e s / .

[9] F O W L E R , M . UbiquitousLanguage [online]. 2006 [cit. 2022-01-22]. Available at:
h t t p s : / /mart in fowler . com/bl ik i /Ubiqui tousLanguage .html .

[10] F O W L E R , M . DDD Aggregate [online]. 2013 [cit. 2022-01-22]. Available at:
h t t p s : / / mart i n f owler. com/bl ik i /DDD_Aggregate .html.

[11] G A R C I A M O L I N A , H . and S A L E M , K . Sagas. SIGMOD Rec. N e w York , N Y , U S A :
Associat ion for C o m p u t i n g Machinery, dec 1987, vol . 16, no. 3, p. 249-259. D O I :
10.1145/38714.38742. I S S N 0163-5808. Available at:
https://doi.org/10.1145/38714.38742.

[12] G U Z E L , B . Záhlaví HTTP pro nechápavé [online]. 2021 [cit. 2022-03-20]. Available at:
h t t p s : / / code . tu t sp lus . com/cs / tu tor ia l s /h t tp -headers - for -dummies - -ne t-8039.

63

http://www.awsforbusiness.com/amazon-ec2-use-cases/
https://www.gartner.com/doc/reprints?id=l-2710E4VR&ct=210802&st=sb
http://aws.amazon.com/ec2/
https://doi.Org/10.1016/j.tcs.2004.12.030
http://sciencedirect.com/science/article/pii/S0304397505000174
http://www.oreilly.com/library/view/the-enterprise-cloud/9781491907832/ch01.html
https://www.docker.com/blog/containers-replacing-virtual-machines/
http://infowler.com/bliki/UbiquitousLanguage.html
https://doi.org/10.1145/38714.38742
http://splus.com/cs/tutorials/http-headers-for-dummies--net-8039

[13] K A V I S , M . J . Architecting the cloud: design decisions for cloud computing service
models (SaaS, PaaS, and IaaS). John W i l e y & Sons, 2 0 1 4 . I S B N 9 7 8 1 1 1 8 6 1 7 6 1 8 .

[14] K R A M E R , S. The biggest th ing amazon got right: The plat form. Retrieved August.
2 0 1 1 , vo l . 1 6 , p. 2 0 1 9 .

[15] M A U R O , T . A d o p t i n g microservices at netflix: Lessons for architectural design.
Recuperado de https:/'/www. nginx.
com/blog/microservices-at-netflix-architectural-best-practices. 2 0 1 5 .

[16] M A X R O S E R , H . R . and O R T I Z O S P I N A , E . Internet. Our World in Data. 2 0 1 5 .
https: / / ourworldindata.org/internet .

[17] M E L L , P . M . and G R A N C E , T . SP 800-145. The NIST Definition of Cloud
Computing. Gai thersburg, M D , U S A , 2 0 1 1 .

[18] M I L L E R , D . , W H I T L O C K , J . , G A R D I N E R , M . , R A L P H S O N , M . , R A T O V S K Y , R . et a l .

OpenAPI Specification vS.1.0 [online]. 2 0 2 1 [cit. 2022-04-25] . Available at:
h t t p s : / / spec , openapis.org/oas/v3.1.0#openapi-object.

[19] N E U F U S , O . Web k elektronickým vinétám nefunguje. Garáž.cz. 2 0 2 0 . Available at:
https: / /www.gar az.cz/clanek/web-k-elektronickým-vinetam-nefunguje-21005230.

[20] P A R I S E A U , B . K n a t i v e server less Kubernetes bypasses FaaS to revive PaaS.
Techtarget. 2 0 1 9 . Available at: h t tps : / /www.techtarget . com/searchi toperat ions/
news/252469607 /Knative-serverless-Kubernetes-bypasses-FaaS - to-revive-PaaS.

[21] R A J B A L A , D . S. D . W . K . J . Magic Quadrant for C l o u d Infrastructure and
P l a t f o r m Services. Gartner. 2 0 2 1 . Available at:
https://www.gartner.com/doc/reprints?id=l-2710E4VR&ct=210802&st=sb.

[22] R I C H A R D S O N , C . What are microservices? [online]. 2 0 2 1 [cit. 2022-01-18] . Available
at: h t t p s : / / m i c r o s e r v i c e s . i o / .

[23] S W O Y E R , S. and L O U K I D E S , M . Microservices adoption in 2020. O ' R e i l l y M e d i a ,
2 0 2 0 . Available at:

h t t p s : / / w w w . o r e i l l y . c o m / r a d a r / m i c r o s e r v i c e s - a d o p t i o n - i n -2020/.

[24] V A I L S H E R Y , L . S. Global IOT and non-IoT Connections 2010-2025. M a r 2 0 2 1 .
Available at: h t t p s : / /www.sta t i s ta . com/s ta t i s t i cs /1101442/ io t -number-of -
connected-devices-worldwide/ .

6 4

http://ourworldindata.org/internet
http://openapis.org/oas/v3
https://www.gar
https://www.techtarget.com/searchitoperations/
https://www.gartner.com/doc/reprints?id=l-2710E4VR&ct=210802&st=sb
https://microservices.io/
https://www.oreilly.com/radar/microservices-adoption-in-2020/
http://www.statista.com/statistics/1101442/iot-number-of-

