
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

WEB-BASED MANAGEMENT AND LENDING SYSTEM
WEBOVÝ SYSTÉM PRO SPRÁVU A PŮJČOVÁNÍ ZAŘÍZENÍ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR JAKUB VITÁSEK
AUTOR PRÁCE

SUPERVISOR Ing. JAKUB SPANHEL
VEDOUCÍ PRÁCE

BRNO 2017

Bachelor's Thesis Specification/19670/2016Avitas02

Brno University of Technology - Faculty of Information Technology

Department of Computer Graphics and Multimedia Academic year 2016/2017

B a c h e l o r ' s T h e s i s S p e c i f i c a t i o n

For: Vitásek Jakub
Branch of study: Information Technology
Title: Web-Based Management and Lending System

Category: Image Processing

Instructions for project work:
1. Study the main principles of web-based application systems.
2. Analyze requirements of the web-based application for management and lending of

mobile and other devices at FIT VUT.
3. Desing web-based application based on these requirements.
4. Implement the proposed application and verify its functionality on a suitable sample

of data.
5. Evaluate the results of user testing and further possible follow-up of this project.
6. Create a brief poster and video presenting your work.

Basic references:
• According to instructions of supervisor

Requirements for the first semester:
• The first three points of the assignment

Detailed formal specifications can be found at http://www.fit.vutbr.cz/info/szz/

The Bachelor's Thesis must define its purpose, describe a current state of the art, introduce the theoretical
and technical background relevant to the problems solved, and specify what parts have been used from earlier
projects or have been taken over from other sources.

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version of
the complete program documentation, program source files, and a functional hardware prototype sample if
desired. The information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R,
etc.) in formats common at the FIT. In order to allow regular handling, the medium will be securely attached to
the printed report.

Supervisor: Špaňhel Jakub, Ing., DCGM FIT BUT
Beginning of work: November 1, 2016
Date of delivery: May 17, 2017

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
Fakulta Informačních technologií

Ústav počítačové grafiky a multimédií
612 66 Brnoréoíetšchova 2

Jan Černocký
Associate Professor and Head of Department

http://www.fit.vutbr.cz/info/szz/

Abstract
The a i m of this thesis is to analyze and implement a web-based equipment checkout system,
which provides an organized outlook on system data and equipment transactions history.
The final appl icat ion was implemented as a server-side applicat ion using Nette Framework
under P H P , M y S Q L and A J A X . The first half of this thesis investigates existing solutions,
describes the implementation phases and looks at design patterns present i n the code. The
second half of the paper examines the testing, mentions a l l used add-on components and
their purpose, and finally assesses the usabil i ty of the implemented system. The result of
this paper is an implemented equipment checkout system giving its users an effective way
to manage i tem lending.

Abstrakt
Cílem t é t o p r á c e je a n a l ý z a a implementace webového s y s t é m u pro s p r á v u a půjčování
zař ízení , k t e r é u ž i v a t e l ů m zp ros t ř edku je p řeh led dat v s y s t é m u a histori i t r a n s a k c í zař ízení .
Výs l edná aplikace byla i m p l e m e n t o v á n a v P H P s v y u ž i t í m Nette Frameworku, M y S Q L a
A J A X u . V p r v n í polovině t é t o p r á c e je p r o b r á n a a n a l ý z a existuj ících platforem, popis
j edno t l i vých fází implementace a seznam využ i tých n á v r h o v ý c h vzorů . D r u h á polovina
p o j e d n á v á o t e s tován í , využ i tých k o m p o n e n t á c h a jejich o p o d s t a t n ě n í , a nakonec sumarizuje
využ i t e lnos t i m p l e m e n t o v a n é h o s y s t é m u . Výs ledkem t é t o p r á c e je implementace s y s t é m u
pro s p r á v u a půjčování zař ízení , k t e r ý u ž i v a t e l ů m umožňu je vést efekt ivní evidenci půjčování
položek.

Keywords
Web applicat ion, Management system, Lending system, Equipment checkout system, Nette

Klíčová slova
W e b o v á aplikace, ev idenčn í sy s t ém, půjčování zař ízení , Nette

Reference
V I T Ä S E K , Jakub. Web-Based Management and Lending System. Brno , 2017. Bachelor's
thesis. B rno Universi ty of Technology, Facul ty of Information Technology. Supervisor
Spahhel Jakub.

Web-Based Management and Lending System

Declaration
I hereby declare that this bachelor's thesis was prepared as an original author's work under
the supervision of M r . Jakub Spahhel. A l l the relevant information sources, which were used
during preparation of this thesis, are properly cited and included in the list of references.

Jakub Vi tasek
M a y 17, 2017

Contents

1 Introduction 5
1.1 Thesis Structure 5

2 Analysis 6
2.1 Target Group 6

2.2 Possible Solutions '

3 Appl icat ion Design 8
3.1 Database Structure 8
3.2 Use Case 9
3.3 Server-side Approach 10
3.4 Framework 11

4 Implementation 12
4.1 Enti t ies 12
4.2 Presenters 13
4.3 Content Management 15
4.4 User Authent ica t ion 16
4.5 User Interface (UI) 17
4.6 Local iza t ion 19
4.7 Notifications 19
4.8 Rou t ing 20
4.9 Appl i ca t ion Programming Interface (A P I) 21

5 Design Patterns 22
5.1 Model -View-Cont ro l le r (M V C) 22
5.2 Abstract Class 22
5.3 Access Cont ro l Lis t (A C L) 22

6 Tools 23
6.1 H T M L template 23
6.2 Nette Framework 23
6.3 Database Abst rac t ion Layer (D B A L) 23
6.4 Components 24

7 Testing 25
7.1 Presenter Testing 25
7.2 Usabi l i ty Testing 25

1

8 Deployment 26
8.1 Statistics 26
8.2 Benchmarking 27
8.3 User Feedback 27

9 Extensions 29
9.1 Calendar 29

9.2 Updates 30

10 Conclusion 31

Bibl iography 32

Appendices 33

A Hotjar Heat M a p 35

B Poster 36

C Entity—Relationship Diagram 37

D A P I 38

E C R O N 39

2

List of figures

2.1 Google Trends statist ical comparison of P H P , Javascript, jQuery and A n g u ­
lar hints that server-side languages trend more as search keywords 7

3.1 Use Case Diag ram presenting different user roles and capabilities w i th 3 ac­
tors and inheritance from User to Adminis t ra tor . It also shows the scheduled
C R O N job 10

4.1 Class Diagram showing the hierarchy of the class models and interfaces that
some of the classes implement 12

4.2 D a t a G r i d as implemented in the appl icat ion layout (item listing), showing
two items and their data w i t h administrator rights 15

4.3 The layout of the appl icat ion lock screen, the landing page of any unauthen-
ticated user and the logout redirect destination 16

4.4 The drag and drop process i n a board, the i tem is being dragged from one
user to another 17

4.5 The search presenter view when searching for a user name. Sort ing of search
categories by result count is visible 18

4.6 User l is t ing wi th an active filter for the letter J 18

6.1 D i b i Fluent w i t h the use of placeholders and class to eliminate the FROM
command 24

8.1 W h i c h parts of the applicat ion d id you use? 28
8.2 Funct ional i ty and layout satisfaction 28
8.3 E - m a i l digests usabil i ty and applicat ion requirements inquiry 28

A . l This dashboard heat map shows heavy use of the left sidebar and quick-access
board l is t ing i n the content section 35

B . l A poster showing mock-ups of the applicat ion and the respective implemen­
tat ion phases 36

C . l En t i ty -Re la t ionsh ip Diagram of the appl icat ion database structure shows
the relation between tables and junct ion tables 37

D . l A P I routes, separated into C r u d routes and Resource G E T routes, which
serve as helpers for fast querying 38

E . l The C R O N settings dashboard showing the C R O N job w i l l be executed every
day of the month at 6 A M 39

3

List of Tables

2.1 Ex i s t i ng solutions wi th marked key software requirements which are met. . 6

3.1 The tables used i n the appl icat ion w i t h junct ion tables not displayed. . . . 8
3.2 Simplified board table viola t ing the second normal form 9
3.3 Simplified board table w i t h a foreign key, meeting the second normal form. 9

8.1 Page load times showing the difference between different pages being ren­
dered before and after opt imiz ing the applicat ion wi th cache and image
thumbnails 27

4

Chapter 1

Introduction

Management and lending systems are a very specialized subset of booking systems. Some
of the conventional categories of booking systems are reserving a flight, dinner or a spinning
lesson. Th is type of systems is also the most widespread one, owing to its global commercial
use.

However, the a i m of this thesis is to create an unconventional booking system which
enables users to borrow items while storing transaction data and handling e-mail notifica­
tions. Across the Internet, this type of system is also known as equipment checkout system.
Since it is highly data-driven, it is beneficial to implement it as a web application, u t i l iz ing
the accessibility, cross-platform compat ibi l i ty and usabil i ty that web applications provide.

W i t h i n the framework of this criteria, the result of this thesis is an implemented device
management system which makes organizing items and keeping track of transactions an
effectively handled task.

1.1 Thesis Structure

This paper is organized as follows: the following chapter (2) gives a brief overview of
current solutions and their usability, while analyzing the target group and presenting the
possible solutions. In Chapter 3, the applicat ion design is presented wi th the help of a use
case diagram and an entity-relationship diagram, while mentioning the chosen approach to
implementing the applicat ion.

Chapter 4 examines the implementat ion phases i n detail , going over system's entities,
content management, user authentication, notification handling and the applicat ion pro­
gramming interface. In Chapter 5, there is more on design patterns and their use across the
applicat ion. The tools used during the implementat ion are mentioned in Chapter 6, w i th
the emphasis on the framework and its components. Chapter 7 presents testing methods
employed before launching the applicat ion and also outlines presenter testing, specific for
the M V C structure.

Chapter 8 investigates the actual deployment of the application, including benchmark
results and server environment specifications. The penultimate chapter (9) looks at possible
extensions of the deployed system, wi th chapter 10 being the conclusion.

5

Chapter 2

Analysis

To make an educated decision on how to approach the implementation, there had to be a re­
search for an existing applicat ion best suit ing the software requirements. The investigation
into non-commercial platforms found following projects:

Trello [] is a project management appl icat ion featuring i tem transactions and history,

phpcheckout [8] is an open-source project offering items, i tem history and fines.

p h p L a b M a n [5] is an open-source project featuring items, groups (classes) and a calendar.

M e r c i [3] is a D r u p a l project featuring interchangeable items and groups.

Table 2.1: Ex i s t i ng solutions wi th marked key software requirements which are met.

Items Boards Users Teams
Trello / / / X
phpcheckout / X / X
p h p L a b M a n / X / /
M e r c i / X / /

A s visible from Table 2.1, there are some checkout and management systems satisfying
different parts of the software requirements. However, the majority of these projects are
not maintained anymore and are usually implemented i n an old version of P H P without
the use of design patterns and scalable code.

2.1 Target Group

A n important part of analyzing the applicat ion is recognizing the end users and their needs.
In this case, the focus group is a technical university (specifically the Department of C o m ­
puter Graphics and M u l t i m e d i a at F I T B U T) , where several items need to be distr ibuted
across different teams while keeping their current posit ion tracked.

In general, the target group is very skil led in using various website interfaces and has
extensive knowledge of web technologies. The group also works i n an academic environment,
thus preferring a pragmatic, functional and a rather formal design. Thei r pr imary need
for this appl icat ion is an organized outlook on items. A Google document or a shared
Exce l spreadsheet is too low-level, since the system has to provide transfer history, team
membership and e-mail notifications.

G

2.2 Possible Solutions

There are mult iple ways to achieve satisfying results, u t i l iz ing different technologies and
design patterns. Overal l , these approaches can be divided into a client-side and a server-
side approach. B o t h are described i n the following subsections.

2.2.1 Client-side approach

It could be argued that the client-side approach is the more current one, since client-side
frameworks like React and Angu la r are gaining massive popular i ty among developers world­
wide 1 . The ma in benefit of implementing the applicat ion as a client-side system is fast ren­
dering after the in i t i a l load. O n l y specific portions of the document object model (D O M) 2

are redrawn wi th dynamic data retrieved from the server, thus lowering the browser's work­
load when downloading the whole page again. Thanks to the high rendering speed, this
approach is ideal for a highly interactive system (e.g., games). The cons of the client-side
technologies are a higher in i t i a l loading t ime and usually the need for external libraries.

• PHP • Javascript jQuery • Angular + Search term Search term Search term Search term

Worldwide • Past 5 years T All categories T Web Search T

Interest overtime

Average May 13, 20...

Figure 2.1: Google Trends statist ical comparison of P H P , Javascript, jQuery and Angula r
hints that server-side languages trend more as search keywords.

2.2.2 Server-side approach

This approach is the more common and t radi t ional one, as shown in Figure 2.1. A l though
the client-side technologies popular i ty has recently been rising, server-side is s t i l l considered
the mature and robust approach to web applications. P H P is a widely used 3 server-side
language, and its frameworks rank high i n popula r i ty 4 .

The benefits of using the server-side approach are pr imar i ly accessibility and security.
Since the communicat ion wi th the client is handled v i a H T T P responses, usually bearing
the H T M L of the requested page, the business logic is invisible to the client, making it more
difficult to reverse-engineer the applicat ion or spoof the input based on the visible code.

1 Google Trends h t t p s : / / trends.google.com/trends/explore?cat=31&q=React,Angular&hl=en
2 Document Object Model https://www.w3.org/D0M/
3 P H P usage ht tp: / /php.net/usage.php
4 P H P frameworks showcase ht tps : / /g i thub.com/showcases/web-appl icat ion-frameworks

7

https://www.w3.org/D0M/
http://php.net/usage.php
https://github.com/showcases/web-application-frameworks

Chapter 3

Application Design

Before wr i t ing any code, it is beneficial to create an Ent i ty-Rela t ionship diagram and a Use
Case diagram to streamline the implementat ion process. These diagrams w i l l be shown and
described i n the next sections, along wi th the structural design pattern used i n this system.

3.1 Database Structure

In the beginning of the development process, it is feasible to proceed wi th database ar­
chitecture after the in i t i a l analysis. This w i l l help wi th creating a better outlook on the
general applicat ion structure. M y S Q L 1 is the database management system (D B M S) of
choice for this system, since it is an open source relational database model and features the
InnoDB storage engine, which can be used to check for existence of foreign keys.

The pr inc ipal advantage of the final data structure are associative entities, implemented
by junct ion tables, since they allow for a many-to-many relationship between entities. A s
L l o y d [] shows, an associative entity w i l l contain identifier attributes for each of the entities
that it associates. The En t i ty -Re la t ionsh ip diagram i n Figure C . l on page 37 shows the
database structure.

3.1.1 Tables

Table 3.1 lists a l l standalone tables used in the system and their specification.

Table 3.1: The tables used in the applicat ion wi th junct ion tables not displayed.

Table Specfi cation
board Boards for devices and users.
i tem The devices owned by different users.
team Teams owning different boards and having different users.
user Registered users.
log The log of changes i n the system.

1 M y S Q L https://www.mysql.com/

8

https://www.mysql.com/

3.1.2 Database Normalization

To reduce data redundancy, a l l normal forms were met while designing the database. A s
Kent shows [], the normalizat ion rules are designed to prevent update anomalies and data
inconsistencies.

First N o r m a l F o r m (I N F)

To meet the first normal form, a l l records in the database have to be atomic - i n other
words, inseparable. A n example of atomici ty can be shown on the user name i n the user
table, where user's first name and surname are both stored indiv idual ly (including the user's
degree).

Second N o r m a l F o r m (2NF)

For the database to reach the second normal form, there can be no functional dependency
on any candidate keys. The board table could be designed as i n Table 3.2 and thus violat ing
the 2 N F . Instead, the table's final design solves the problem by u t i l iz ing a foreign key, as
can be seen i n Table 3.3.

Table 3.2: Simplified board table violat ing the second normal form.

ID title owner name owner email
1 Mobi le devices John Doe john@doe.com

Table 3.3: Simplified board table w i th a foreign key, meeting the second normal form.

ID title owner id
1 Mobi le devices 5

T h i r d N o r m a l F o r m (3NF)

There can be no transitive functional dependency to meet the th i rd normal form. The table
item would have transitive dependency if it depended on any non-prime attributes (e.g., i f
the item's board name depended on the board ID) .

3.2 Use Case

The key attr ibute of any back-end based system are different user roles and capabilities.
There are two roles in the system - administrator and guest.

A guest is allowed to create teams, boards and items. His view on boards and items is
restricted to only his items and boards owned by either one of the user's teams or by the
user himself.

A n administrator inherits a l l permissions from a guest, and extends them to creating
users and accessing a minimal is t ic content management section. The administrator is also
allowed to view a l l items, users, boards and teams w i t h browse, read, edit, add and delete
(henceforth B R E A D) rights.

9

mailto:john@doe.com

A l l of these constraints are best shown 2 in the Use Case Diagram i n Figure 3.1.

Figure 3.1: Use Case Diagram presenting different user roles and capabilities w i th 3 actors
and inheritance from User to Adminis t ra tor . It also shows the scheduled C R O N job.

3.3 Server-side Approach

A s it has been established i n Chapter 2, there are two distinct approaches to implementing
the applicat ion. In this case, the server-side approach wi th the use of P H P was chosen.
The list below describes the rationale for this decision.

• Client-side technologies provide dynamic interfaces and a more fluent user experience,
which is only needed marginal ly for i tem transactions and moda l boxes.

• The applicat ion has to be accessible even from older versions of browsers, which can
have JavaScript disabled or even miss it completely.

• The system is highly dependent on permanent data, which is fetched from the database.
Since the database runs on the server side, the applicat ion is closer to it implementing
the server-side approach.

• M a n y parts of the applicat ion can be cached and stored i n a temporary directory to
minimize the time-expensive queries to the database. Server-side applications provide
more control over caching these requests.

2 Free on-line diagram software ht tps: / /www.draw.io/

10

https://www.draw.io/

The solution to the need of dynamic elements in a server-side applicat ion is A J A X ,
which allows the programmer to asynchronously execute P H P and receive parts of the
website to redraw.

3.4 Framework

To avoid implementing a custom tool set and devote more t ime to meeting the specified
software requirements, it is beneficial to use a framework. P H P frameworks offer a tem-
plat ing system, protection against known vulnerabili t ies and usually an effective database
abstraction layer. For these reasons, Nette was chosen as the framework for this applicat ion.

3.4.1 Push-based M V C

Nette has a strong presence of the M V C design pattern, which is used to separate the sys­
tem's logic and data presentation to make the applicat ion modular , scalable and organized.
Owing to this segregation of responsibilities, each component can be tested separately and
reused easily.

3.4.2 Diagnostic tools

A big part of the actual implementat ion is debugging and diagnostics. Nette offers a sepa­
rate package Tracy, which generates detailed error and exception logs for both development
and product ion environments. It also features an eloquent variable dumper w i t h customiz­
able max ima l length and depth.

Tracy can be configured to automatical ly send e-mails when an error occurs. It also
provides the option to switch itself to the strict mode. This means exceptions and notices
are sent as well . Tracy also remembers it already sent an e-mail regarding a specific error
and logs every error only once, so that the attacker cannot spam the website w i th server
error (500) logs. Also , when a server error occurs and the applicat ion is i n product ion
mode, a custom user-friendly notice is shown to the user.

3.4.3 Forms

Forms are the only way for users of this applicat ion to alter the data stored in the database.
Nette has its own F o r m s 3 class, which allows for an object-oriented composit ion and ren­
dering v ia a macro {control formName} or v ia manual rendering in the template using
n:name attributes for inputs and the form. The forms i n templates are autowired, so that
even wi th manual rendering, the form is passed through the component usually created in
the presenter - unless the programmer is u t i l iz ing the factory design pa t te rn 4 .

Nette Forms offer a wide range of val idat ion and input types, which handle the rendering
of the correct H T M L element and also its rules. To process the form, a submit action wi th
the process method callback is commonly required. Most ly , it is the submit but ton. The
form is event driven and processes the callback of the event onSuccess [] . Nette Forms also
have cross-site request forgery (C S R F) protection and handle a l l undesirable characters in
the user input data.

3 P H P framework Nette h t tp s : / / doc .ne t t e .Org / en /2 .4 / fo rms
4 Factory Design Pattern ht tp: / /www.oodesign.com/factory-pat tern.html

11

https://doc.nette.Org/en/2.4/forms
http://www.oodesign.com/factory-pattern.html

Chapter 4

Implementation

The actual implementation of entities and data structures drafted in the last chapter com­
poses of mult iple phases. A l l of these phases are addressed in following sections.

4.1 Entities

W i t h respect to the strong object-oriented design of Nette Framework 1 , which was used to
implement this applicat ion, a l l database tables have a model counterpart. A s Deacon shows
[1]: i n object-oriented terms, this w i l l consist of the set of classes which model and support
the underlying problem, and which therefore w i l l tend to be stable and as long-lived as
the problem itself. Models then represent database tables and implement reusable methods
used throughout the applicat ion.

In this case, each entity model implements the IEnt i ty interface, which enforces that
each model is capable of create, read, update and delete (hereafter C R U D) actions. The
read method takes an optional parameter - the record identifier. If no ID is passed, the
method fetches a l l records. The class hierarchy of the appl icat ion models can be seen in
Figure 4.1.

Figure 4.1: Class D iag ram showing the hierarchy of the class models and interfaces that
some of the classes implement.

4.1.1 User Entity

The class E n t i t y \ U s e r models the users table, and apart from the interface methods, it
implements functions for password reset and profile picture manipulat ion. Since password
reset needs to generate a random hash for both the confirmation e-mail and the new pass-

1 P H P framework Nette h t t p s : / / n e t t e . o r g / e n /

12

https://nette.org/en/

word (more i n section 3.3.2), the class R a n d o m 2 is used i n these methods. The entity also
handles changing states of flags and cascades over dependent rows on delete.

Furthermore, user's full name consists of four separate columns. Opt iona l columns
degree_bef ore and degree_af ter are used to enable storing the entire user name without
violat ing the first normal form of relational databases (more in section 3.1.2). Throughout
the applicat ion, the custom filter getFullName is used to compose the full user name.

4.1.2 Board Entity

The methods i n the B o a r d entity are predominantly fetching algorithms, which take an
ID of a user or a team and return respective boards. Moreover, board model implements
one of the most important methods - changeltemLocation. Th is function is called upon
completing the A J A X request of a drag and drop transaction, w i th the help of a presenter
signal.

4.1.3 Item Entity

The i tem keeps its current borrower and its original owner, so that the ownership is clear
immediately.

The i tem entity serves mainly for fetching items for boards or for a specific user. It also
uses the F i l eS ys t em 3 class to manage removal of the item's picture.

4.1.4 Team Entity

A s the class name indicates, this entity is working w i t h mult iple users being grouped into
zero or more teams - u t i l iz ing several junct ion tables to fetch membership information.

4.1.5 Log Entity

The logger i n this applicat ion is of a fairly generalized structure to make it reusable for
other log events apart from an i tem transaction. There is a helper I D to a id i n l ink ing an
entry to more than one different entity - e.g., storing the identifier of a created board while
maintaining the creator's ID .

4.2 Presenters

The appl icat ion itself uses models listed above selectively, by using dependency injection
(DI container) in each presenter depending on the needs of the view. The final data is then
handed over to the template v i a $this->template->variable_name from the respective
presenter action.

BasePresenter

This presenter is abstract, since it is only inherited by other non-abstract presenters. The
benefit of using inheritance i n presenters is having variables which are needed by more
(or all) views only i n the abstract presenter. However, models cannot be injected through
the constructor, since it is never called. The solution is to ca l l f i n a l public function

2 Net t e \Ut i l s \Random h t t p s : / /api .net te .org/2 .4/Net te .Ut i ls .Random.html
3 Net te \Ut i l s \F i leSys tem h t t p s : / / ap i . ne t t e .o rg /2 .4 /Ne t t e .U t i l s .F i l eSys t em.h tml

13

inject and pu l l models from there. Nette's autowiring automatical ly takes care of injecting
the dependencies. BasePresenter also enforces global rules. In this system, a l l presenters
(with the exception of LoginPresenter) cannot be accessed without an acquired user identity
(more i n section 4.4).

Nette allows the programmer to define custom Lat te filters (formerly called helpers).
These can be defined in the method beforeRender i n each presenter and they propagate
through inheritance as well . The two custom filters registered i n this applicat ion are very
compact, w i th one composing the full user name and the second one getting a language
shorthand and transforming it into the full name of the language.

BoardPresenter

There are two render methods i n this presenter. One of them is renderList, which takes
no arguments and assembles the variables needed by the list view. A n abridged content of
the renderList method, fetching boards from the model layer, adding an offset containing
the board's users and injecting it into the template can be seen i n the code below.

$ b o a r d s = $ t h i s - > b o a r d M o d e l - > g e t () - > f e t c h A l l () ;
/** @var Row $b */
f o r e a c h ($ b o a r d s as $b) {

$ u s e r s = $ t h i s - > b o a r d M o d e l - > g e t A l l U s e r s ($ b - > i d) ;
$ b - > o f f s e t S e t (' u z i v a t e l e _ i d s ' , $ u s e r s) ;

}

$ t h i s - > t e m p l a t e - > b o a r d s = $ b o a r d s ;

The second render method, renderDefault ($url) takes one parameter - the board
U R L . The method searches for a board wi th the specified U R L in the database. If it finds it ,
it proceeds wi th composing the template variables. However, if the database returns false,
a new BadRequestException is thrown, causing Nette to redirect to ErrorPresenter, as
visible i n the code below. The view itself is the actual management canvas, where users
can move devices from one co lumn to another, w i t h a co lumn representing a user and his
items pertaining to the respective board.

i f ($ t h i s - > t e m p l a t e - > b o a r d) {
// variables for the template

} e l s e t h r o w new B a d R e q u e s t E x c e p t i o n () ;

This presenter also has the highest number of handle methods, which are functions called
upon receiving a specific signal. For example, when the U R L /?do=removeBoard&id=l is
accessed, the signal calls the method handleRemoveBoard($id). The signals can be called
asynchronously w i t h the help of Nette A j a x and snippet redrawing.

HomepagePresenter

This presenter is the landing page of a successful log in . It lists a l l the user boards and
also a l l the boards the user has access to through team membership. Owned boards can
be edited from this view. Homepage also has a statist ical module i n the header, where the
number of each entity is listed.

ItemPresenter

This presenter is responsible for l is t ing items in the system and also their update and delete
actions. There is no i tem detail page, since the i tem data is displayed i n a modal box shown
upon cl icking the i tem link.

14

TeamPresenter

Team views offer both l is t ing and detail , while the l is t ing methods also handles creating
a profile picture object. The object contains randomly ordered profile pictures of users in
that team, which appear i n the header of each team.

UserPresenter

Users have a l is t ing page, where they can be filtered by the first letter of their name. The
filtering is s t r ic t ly i n JavaScript without the use of Nette Ajax . There is also a sidebar that
enables the user to edit his information, giving an alternative to the settings modal box
shown on cl icking the cogwheel icon i n the site's header.

User detai l contains the user's complete information, including his e-mail, phone num­
ber, number of owned items, number of borrowed items and team membership. There is
also a list of a l l transactions done by the user, where a load more but ton shows four more
logs on click.

4.3 Content Management

Owing to the system back-end characteristics, it was not necessary to create a separate
module solely for content management purposes - a l l the adminis t ra t ion l inks reside wi th in a
subsection of the left sidebar. Granted the user is in the administrator role, the subsection
is visible and each of the links lead to a data grid page as shown i n Figure 4.2.

Items

+ Create Item

É3 ip

. , Room 5.8" OLED display, A11, no home , , Jakub Jakub 14.05.20,7 , K M C ,PhoolB Mob.le De„« S ' ' Q s

,0.05.20,7O9:55:,6 « » r Ripple Power Badminton racquet j ™ " " * * * * 22 H Equipment Bártl Bartl

Figure 4.2: D a t a G r i d as implemented in the applicat ion layout (item listing), showing two
items and their data w i th administrator rights.

4.3.1 Data G r i d

A data gr id is a dynamic table which lists data fetched from a data source in a well arranged
way. D a t a grids come wi th many bui l t - in features like sorting, filtering, data export and in­
line data management. This applicat ion uses a data gr id which supports A J A X invalidat ion
of La t te snippets' 1. Snippets are parts of the template which can be asynchronously redrawn
from the presenter, using the redrawControl () method.

U t i l i z ing in-line create and update methods, it is possible to prompt ly and intui t ively
manage a l l data i n the system. The user is able to fi l l i n respective columns directly inside

4 A J A X & snippets h t t p s : / / d o c . n e t t e . O r g / e n / 2 . 4 / a j a x

15

https://doc.nette.Org/en/2.4/ajax

of the table, making it simpler to grasp the user interface. Delet ion, sorting and filtering
is handled by A J A X as well, which makes for a smooth user experience while maintaining
features like input val idat ion and notifications.

4.4 User Authentication

There is only one way to gain access to the system - a user has to complete a standard sign
up form where he specifies a desired password. He then uses his e-mail and the password
specified to log in to the system. This process begins on the lock screen seen i n Figure 4.3.

Figure 4.3: The layout of the applicat ion lock screen, the landing page of any unauthenti-
cated user and the logout redirect destination.

The lock screen consists of three sections which are displayed exclusively - a log in form,
a sign up form and a form used to retrieve a forgotten password. Switching views is handled
by j Q u e r y 0 , which uses the form's H T M L identifier to toggle the vis ib i l i ty of each form.

4.4.1 Obtaining User Identity

Dur ing a log in attempt, the authentication model compares user input against the database.
If a row is retrieved, the model returns the user iden t i ty 6 . To optimize database queries,
the identity is expanded by the user's profile picture U R L and the appropriate greeting,
which is the vocative case of the user's first name.

To determine the correct vocative case, a very lean A P I wrapper called H i was used.
If the name is not recognized by the A P I , user identity stores the first name i n its original
form. The wrapper caches a l l loaded greetings.

4.4.2 Forgotten Password

In case a user forgets his password, a standard procedure was implemented to allow the
user to reset the password. The user enters his e-mail, which triggers a mai l ing funct ion 8

5 jQuery: a fast, small, and feature-rich JavaScript library h t tps : / / j que ry . com/
6 Nette\Security\Identi ty h t t p s : / / a p i . n e t t e . o rg /2 .4 /Net te .Secur i ty . I d e n t i t y .html
7 Greeting generator A P I P H P wrapper h t t p s : / / g i t hub . com/ondr s /H i
8 Nette Mailer h t t p s : / / d o c . n e t t e . O r g / e n / 2 . 4 / m a i l i n g

16

https://jquery.com/
https://github.com/ondrs/Hi
https://doc.nette.Org/en/2.4/mailing

which sends a new randomly generated password to the input e-mail. For the new password
to take effect, the user has to click a confirmation l ink in the received e-mail.

The confirmation l ink uses a 6 character random hash which further prevents an attacker
to reverse-engineer the structure of the confirmation links.

4.5 User Interface (UI)

W h i l e the user interface is given by the H T M L template for the most part, the functionality
of filters, i tem drag and drop, search and much more had to be customized and implemented.
Each of these U I elements lead to a better user experience (U X) of the applicat ion.

4.5.1 Item Transactions

Item manipulat ion i n a board interface is the key feature of this applicat ion. Beh ind this
functionality lies a JavaScript l ibrary D r a g u l a 9 , which is t ied to the element ID of an i tem.
A user then s imply drags the i tem from the source column to another column, as can be
seen in Figure 4.4.

U p o n finishing an i tem transfer (drag and drop action), a custom presenter signal is
called v i a the Nette A j a x 1 0 extension direct ly from the script. T h i s signal handles the
location change of the i tem.

Mobile Devices
board for mobile device management

Dashboard Mobile Devices

I JakubVitasek

iPhoneS i PhoneS

Ing. Jakub Sparihel

• m
0

5.8" OLEDd i sp l ay ,A11 ,no
home button.

Figure 4.4: The drag and drop process i n a board, the i tem is being dragged from one user
to another.

The signal method parses the received J S O N structure containing the final dis t r ibut ion
of items and creates an A r r a y H a s h 1 1 variable to be used in the log create method. It then
uses snippet invalidat ion to fetch the latest log data to the sidebar log widget and redraw
the data without refreshing the page.

9 Dragula h t t p s : / /bevacqua .g i thub . io /d ragu la /
1 0 Net te Ajax ht tps : / /componet te .com/voj tech-dobes/net te .a jax. js
n N e t t e \ U t i l s \ A r r a y Hash h t t p s : / /api .net te .org/2.4/source-Uti ls .ArrayHash.php.html#13-100

17

https://componette.com/vojtech-dobes/nette.ajax.js

4.5.2 Search

For the system to be able to scale well, it was important to provide the user w i th a solid
search functionality. The search algori thm has to filter through a l l manageable entities
(items, teams, boards and users), return relevant results and sort by the number of results
in each entity.

W i t h this algori thm, the system fetches users upon searching for a given name, and
returns an i tem upon searching for a mobile device. This can be seen in Figure 4.5.

Searching for "Jakub"
Search works with users, boards, [terns and teams.

Dashboard Search Jakub

Users (3) Items (0) Teams (0) Boards (0)

Email Role

xvitas02@stLd.fit.vutbr.cz

Ing. Jakub Špařihel ispanhel@fit.vutbr.cz

Ing. Jakub Sochor isochor@fit.vutbr.cz

Figure 4.5: The search presenter view when searching for a user name. Sort ing of search
categories by result count is visible.

4.5.3 User listing

W i t h the application's target group being teams of users not necessarily knowing each other,
the list of users was made more user-friendly by implementing a name filter. Th is filter
allows users to filter a specific letter which occurs in the given name of the searched user.
W h e n no letter is selected, a l l of the users are shown in a three column layout, as seen in
Figure 4.6.

Users

Dashboard Users

©®©@©CE)©©0©©©® ® @ ® @ ® © © © © ® • Jakub Vitasek

X Y Z

i T * f » Jakub Vitasek Ing.Jakub w Ing.

W V Spafthel A S

Figure 4.6: User l is t ing wi th an active filter for the letter J

•£, Change profile picture
X Delete profile picture

18

mailto:xvitas02@stLd.fit.vutbr.cz
mailto:ispanhel@fit.vutbr.cz
mailto:isochor@fit.vutbr.cz

4.6 Localization

In order to make the system usable for the widest range of users, a translat ion system was
implemented to offer suitable versions of the user interface data. To make that possible,
al l strings in presenters and views (including components) had to be replaced by a localiza­
t ion m a c r o 1 2 . Th is macro passes the strings through a translat ion class implementing the
Net te \Loca l iza t ion \ ITrans la tor interface.

For this project, K d y b y \ T r a n s l a t i o n 1 3 was chosen to provide translat ion functionality.
It directly integrates Symfony's Translat ion and is easily used throughout Nette templates
and presenters. It also automatical ly integrates w i t h Tracy panel, where a module can be
opened to see missing translations and loaded resources used for the localization.

The translat ion files reside i n the directory lang inside the applicat ion directory. The
files are formatted following the N E O N syntax 1 ' 1 also used i n Nette configuration files.
Its syntax is very similar to Y A M L , thus allowing for a structured localizat ion file. The
filename consists of the translation category and the combination of ISO 639-1 and ISO
3166-2 codes separated by an underscore (e.g., homepage.cs_CZ.neon), and then easily
addressed i n the code as {_homepage.section.phrase]-. Th is macro finds the N E O N file
named homepage i n the currently selected language, inside of which a category named
section and a subcategory t i t led phrase is found. The found text is then printed in place
of the macro.

4.7 Notifications

To keep users informed about manipulat ion wi th their items, the system enables a user
to define i f he wants to receive notifications globally. If the user has active notifications,
he can also decide for which items the notifications apply. The granularity of notification
options was lowered so that the user can tu rn off notifications globally while maintaining
his selection of i tem notifications (e.g., a business t r ip) .

If there were transactions wi th selected items, a C R O N job running every day at 6 A M
sends out digest to users where a l l the transactions made since the last notification are
listed for each i tem.

4.7.1 E-mai l Template

One of the key parts of sending e-mail notifications is composing the H T M L of the ac­
tua l e-mail. Nette uses its own templat ing engine L a t t e 1 5 , which is used in every view of
the applicat ion. It can also be instantiated as a separate object and rendered to string,
which is then passed as the e-mail's H T M L . This allows for the complete Lat te templat ing
functionality i n e-mails.

This applicat ion uses includes to have separate e-mail header and footer files, which are
the same for each e-mail. E a c h e-mail template then includes the header and footer while
having a unique body.

1 2 Default Latte Macros https://latte.nette.Org/en/macros#toc-localization
1 3 Kdyby \Trans l a t ion https: //github.com/Kdyby/Translation
1 4 Net te \Neon https://ne-on.org/
1 5 Net te \La t t e https: //latte.nette.org/en/

19

https://latte.nette.Org/en/macros%23toc-localization
https://ne-on.org/
http://nette.org/en/

Variables are passed to the Lat te engine object, containing data for the notification -
an associative array, where the key is the i tem identifier and the value are the logs for that
item.

4.7.2 Mailer

The class used to compose the e-mail is N e t t e \ M a i l \ M e s s a g e 1 6 , which encapsulates a l l the
functionality of the P H P m a i l function but without the need of low-level H T T P headers
specification. The Message object allows to enclose attachments, specify recipients and also
to define the subject and the H T M L body.

Before instantiat ing the Message class, it is important to validate the recipient's e-mail
address to prevent server errors caused by an uncaught exception thrown by the Message
object.

W h e n the Message object is fully defined, it needs to be passed into a class implementing
the interface N e t t e \ M a i l \ I M a i l e r 1 7 . In this applicat ion, a custom S M T P connection is
provided wi th the help of N e t t e \ M a i l \ S m t p M a i l e r 1 8 . The send method, which finalizes the
mai l ing procedure, needs to be enclosed i n a try-catch block, since an exception can be
thrown i f the S M T P server does not respond.

4.7.3 C R O N

Before setting up the C R O N job for sending out notifications, it is important to decide
on the t ime at which the mai l ing w i l l occur regularly. Since a high percent of work wi th
the system is happening throughout the day (approximately from 6 A M to 6 P M) , the
notification e-mails are sent each day at 6 A M .

To have a better outlook on how each C R O N job ran, the notification method logs the
times and amount of e-mails sent for every C R O N run. This is more of a debugging step,
but important for val idat ing the functionality. The C R O N job runs from an external server
and accesses a hashed U R L dedicated for C R O N jobs. The C R O N presenter also has an
inclusive I P filter, which only allows logged-in users or the I P address of the C R O N server
to access the presenter's actions.

4.8 Routing

Semantic and explicit (also called pretty) U R L s are usually not a necessity in back-end
systems, since the content of the site is not indexed by search engines. However, for effective
routing and user-friendly links, it was op t imal to create U R L s for users, boards and teams.
The U R L is created using the method W e b a l i z e 1 9 , which takes the full t i t le of the record
and encodes it to be used in l inks (web safe characters [a-zO-9-]). Th is U R L is then used in
the routes, as can be seen i n Figure D . l .

1 6 N e t t e \ M a i l h t t p s : / / g i thub .com/ne t t e /ma i l
1 7 N e t t e \ M a i l \ I M a i l e r h t t p s : / / a p i . n e t t e . O r g / 2 . 4 / N e t t e . M a i l . I M a i l e r . l i t m l
1 8 Net t e \Ma i l \SmtpMai l e r h t t p s : / / g i thub .com/ne t t e /ma i l /b lob /mas te r / s r c /Mai l /SmtpMai l e r .php
1 9 Net te \Ut i l s \S t r ings h t t p s : / / ap i .ne t te .org /2 .3 /source-Ut i l s .S t r ings .php.h tml#207-223

20

https://api.nette.Org/2.4/Nette.Mail.IMailer.litml

4.9 Applicat ion Programming Interface (API)

A s a bonus extension to the applicat ion assignment, an A P I was created to a id in the im­
plementation of mult i -platform alternatives (e.g., A n d r o i d , i O S) . A s M i t c h e l l stated [6], an
App l i ca t ion Programming Interface (A P I) lets computer programmers access the function­
ality of published software modules and services.

4.9.1 C R U D

The A P I is based around the C R U D model, al lowing the programmer to use any methods
of the entities. Junct ion tables provide only the read, create and delete methods, update is
not available. A s a controller for handling A P I requests, this applicat ion uses the R e s t f u l 2 0

library, which provides an abstract presenter Resource. O w i n g to several methods i n this
presenter, it is fairly simple to implement networking functions (e.g., sending a response,
receiving a request, or returning an error code).

4.9.2 Implementation

Each A P I presenter (i.e., a presenter extending the ResourcePresenter) composes an
A r r a y H a s h variable which is sent to the respective model and method of the specified
entity. Tha t means the A P I calls use the same C R U D methods as the actual applicat ion,
reducing dupl ic i ty and redundant separate code for the A P I .

The A P I response was programmed so that the caller would receive a corresponding
message on success or error. Since each C R U D method i n models is encapsulated into a
try-catch block, it is fairly simple to detect errors and exceptions.

4.9.3 Feedback

The A P I was tested during the implementat ion phase. The feedback pointed to creating
more helper A P I routes to allow for faster and simpler querying to get a l l items pertaining
to a specific board or the contents of the log. The test subject also requested that create
methods return the ID of the inserted row. This request was processed and it is a part of
the final applicat ion.

4.9.4 Resulting A P I

A s can be seen in Figure D . l , unique routes were created specifically for the A P I . CrudRoute
automatical ly detects the header type (P O S T / G E T / P U T / D E L E T E) and delegates the
request to the appropriate action in the destination presenter. A P I s were created for teams,
users, boards and items, al lowing the programmer to create and delete pairs i n junct ion
tables as well . The A P I actions can be called by accessing specific U R L s wi th one of the
aforementioned header types. The complete A P I documentation is enclosed i n appendices
on page 38.

'Drahak\Restful h t t p s : / /g i thub .com/drahak/Res t fu l

21

Chapter 5

Design Patterns

Design patterns are a big part of object-oriented programming. The G a n g of Four []
shows that using design patterns makes a programmer an expert designer: One thing expert
designers know not to do is solve every problem from first principles. Rather, they reuse
solutions that have worked for them in the past. When they find a good solution, they use
it again and again.

5.1 Model-View-Controller (M V C)

W i t h Nette Framework being an M V C framework, it was desirable to leverage this feature
and create an M V C val id applicat ion. There already is a strong tie between templates
(View) and presenters (Controller) , however, there is l i t t le bui l t - in support for models.

That is why the model directory structure is modified by several namespaces 1 to give
models a more organized layout.

5.2 Abstract Class

Each base class, either a presenter or a model, is an abstract class in this applicat ion. This
means the class cannot be instantiated, only inherited from. Based on this concept, every
class inheri t ing the base class receives the same public or protected attributes and methods,
which can be overrode if needed.

In models, it is very beneficial to exploit the inheritance of the base model. For one, a
database connection can be distr ibuted throughout the model layer by only inject ing 2 the
dependency once.

5.3 Access Control List (A C L)

Since there are mult iple user roles present i n the applicat ion, the best way to solve autho­
rizat ion is v ia Access Con t ro l L i s t (henceforth named A C L) . A higher level access control
model like attribute-based access control (A B A C) is too complex for the needs of this ap-
pication. Moreover, Nette has a bu i l t - in A C L layer which is satisfactory for authorizat ion
in this case. More of user access differences can be seen in the Use Case Diag ram (Figure
3.1).

1Namespaces overview http:/ /php.net/manual/en/language.namespaces.rationale.php
2 Nette DI h t tp s : / / doc .ne t t e .Org / en /2 .4 /dependency- in j ec t ion

22

http://php.net/manual/en/language.namespaces.rationale.php
https://doc.nette.Org/en/2.4/dependency-injection

Chapter 6

Tools

To increase productivi ty, put more focus on the task at hand and make the implementat ion
phase more effective, several tools were ut i l ized. These tools can be found i n sections in
this chapter.

6.1 H T M L template

Since P H P programming is not enough to make the system usable and user friendly, an
H T M L template 1 was chosen to provide styles and code for dashboard and page layouts.
Th is solves an array of coding subproblems, ranging from mobile usabil i ty (responsive
layout) to modern and functional design, giving the programmer more t ime to focus on
back-end (P H P) and front-end (JavaScript) functionality.

6.2 Nette Framework

This applicat ion also uses a Czech-made P H P framework called Nette. This framework is
very popular among Czech developers and has a strong community which maintains the
momentum of the framework's upkeep and expansion. It comes w i t h many useful bui l t - in
packages for debugging, form bui lding, database querying or mail ing.

One of the strong points of Nette is vulnerabi l i ty protect ion 2 , securing the applicat ion
against known security flaws like cross-site scripting (XSS) or cross-site request forgery
(C S R F) .

6.3 Database Abstraction Layer (D B A L)

A reservation system of these dimensions does not yet require an object-relational mapping
(O R M) . Tha t is why a lighter and simpler D B A L called D i b i 3 was chosen to streamline
database queries and make them reusable throughout the applicat ion.

The D i b i l ibrary enables the programmer to use the fluent notation, which chains indi­
v idua l commands together without enforcing a specific order of some S Q L commands. A n
example of this notat ion is shown in Figure 6.1, where a log-in attempt is being handled.

1 P r o U I b y Pixelcave h t t p s : / / p i x e l c a v e . c o m / p r o u i
2 Vulnerabil i ty protection in Nette h t t p s : / / d o c . n e t t e . O r g / e n / 2 . 4 / v u l n e r a b i l i t y - p r o t e c t i o n
3 D i b i : smart database abstraction layer h t t p s : / / g i t h u b . c o m / d g / d i b i

23

https://pixelcave.com/proui
https://doc.nette.Org/en/2.4/vulnerability-protection
https://github.com/dg/dibi

users::select('id, name1)
where(1 email = % s ' ($username)
and(1 password = SHAl(%s)', $password)
and(1 a c t i v e = 1 1)

->fetch();

Figure 6.1: D i b i Fluent w i th the use of placeholders and class to eliminate the FROM com­
mand

6.4 Components

One of the most useful tools ut i l ized i n this applicat ion is Composer' 1 , which is helpful in
managing a l l extensions (also known as components) by keeping them updated and also
fetching a l l their dependencies. Fol lowing are the components used i n this application.

Nette A j a x A n effective u t i l i ty scr ip t 5 enabling A J A X links by giving them the H T M L
class ajax. Th is functionality was used i n refreshing sidebar logs and triggering modal
boxes without having to refresh the page.

j Q u e r y F i l eUpload A component 6 used for A J A X handling of image upload. It has
rather extensive customization possibilities and it uses an upload model interface,
which makes it easy to implement into Nette framework.

T h u m b n a i l Helper A component 7 for effective and simple thumbnai l generating. It is
used throughout the applicat ion for profile pictures and i tem images without stressing
the client side w i t h downloading the full sized file.

Session Panel Th is extension 8 is s tr ict ly a development tool , which allows the program­
mer to see each session in a clear debugging environment of the T r a c y 9 panel.

Ublaboo D a t a G r i d Th is data g r i d 1 0 has previously been mentioned i n the content man­
agement section. It is used exclusively for B R E A D administrat ion, filtering and sort­
ing of database entities.

H i Th is A P I w r a p p e r 1 1 is more of a bonus, providing the vocative case of Czech names to
greet the user on the applicat ion dashboard.

Restful A powerful t o o l 1 2 to implement an A P I intui t ively i n Nette. More information
can be found i n the App l i ca t ion Programming Interface section (Section 3.6).

4 Composer h t t p s : / /getcomposer .org/
5vojtech-dobes/nette.ajax.js h t t p s : / /g i thub.com/voj tech-dobes/net te .a jax . j s
6jzechy/jquery-fileupload h t t p s : / /g i thub .com/JZechy / jQuery-F i l eUpload
T kollarovic/thumbnail h t t p s : / / g i thub .com/Kol l a rov ic /Thumbna i lHe lpe r
8kdyby/nette-session-panel h t t p s : / /g i thub .com/f prochazka/Nette-Session-DebugBar
9 nette/tracy h t t p s : / / g i thub .com/ne t t e / t r acy

1 0 ublaboo/datagrid h t t p s : / /g i thub .com/ublaboo/da tagr id
n o n d r s / h i h t t p s : / /g i thub .com/ondrs /Hi
1 2 drahak/restful h t t p s : / /g i thub.com/drahak/Rest f u l

24

Chapter 7

Testing

Testing was an important part of both development and deployment of the applicat ion. U n i t
tests streamline the implementat ion wi th test-driven development (T D D) , while usabil i ty
tests validate the application's functionality and layout.

7.1 Presenter Testing

The M V C design pattern allows for easy testing of separate modules. Testing models would
be the task of unit testing, but a more special category of tests is presenter testing. This
can be done by the use of Nette Tester 1 , which allows for asserting the equality of two
presenter responses. Th is can be used for detection of errors, when the expected response
is of the class TextResponse and the presenter responds wi th RedirectResponse.

Also , the D O M can be searched through, looking for specific elements by their class or
ID, s imilar ly as i n C S S selectors i n jQuery. The assertion returns true i f the element is
present i n the D O M . Tha t is beneficial when testing the view module - e.g., i f the right
components are included and the right Lat te templates rendered. A l l the created presenter
tests can be found in the tests directory and can be ran by an enclosed BAT script on
Windows.

7.2 Usability Testing

Before deploying the applicat ion into product ion mode, a 5-day testing period was given
to 12 test subjects (who are also potential future users of the system). The goals of this
testing were to confirm or disprove the hypothesis that the implemented system solves the
problem of managing device lending.

Test subjects were assigned their own accounts and were shown the principles of the
applicat ion. E a c h of their sessions was recorded and stored i n Hotjar for future analysis,
including the heat maps of their behavior i n the system. A short questionnaire was also
sent out to the tests subjects to be used to assess the usabil i ty of the applicat ion and can
be found on page 28.

1 Nette\Tester h t t p s : / / t e s t e r . n e t t e . o r g / e n /

25

Chapter 8

Deployment

Before launching the applicat ion for production, a smal l set of test users was selected in
order to validate system's functionality and design.

Also , several optimizations were made to accelerate the load time.

8.1 Statistics

Dur ing the testing period, Google A n a l y t i c s 1 and Hot ja r 2 were ut i l ized as statist ical collec­
tors to maximize the aggregated data value.

Hotjar The free (Basic) version of Hotjar allows the user to view recordings of every session
on the website, including clicks, typing and cursor flow. Recordings a id in detecting
and disclosing usabil i ty and functionality problems of the applicat ion without the need
of user generated bug reports. Hotjar also generates heat maps, where the general
behavior flow and scrolling or moving patterns of users are visible. The dashboard
heat map i n appendices (Figure A . l on page 35) is the result of a 10-day testing
period.

Google Analyt ics Th is analyt ical tool p r imar i ly measures visits, but also records im­
portant attributes of visitors. F r o m this data, it can be inferred what the most used
operating system is, how high is the user bounce rate or how do users progress through
the website (users flow).

8.1.1 Results

Hotjar heat maps show that visitors use the left sidebar as the pr imary navigation point.
They also frequently target their own boards, which are placed at the topmost posit ion
of the dashboard page content. User profile drop-down situated i n the upper right corner
of the page also gets clicked fairly often, indicat ing that users understand the drop-down
functionality.

Google Ana ly t ics revealed that 90 % of visitors use Windows as their operating system,
followed by Macin tosh and L i n u x both at 5 %. Since the applicat ion was developed and
fine-tuned for Windows, this fact is rather convenient. The same can be said about the
browser, which is Google Chrome by 97 %.

1 Google Analytics h t tps : / /www.google .com/analyt ics /
2 Hotjar https:/ /www.hotjar.com/

26

https://www.google.com/analytics/
https://www.hotjar.com/

8.2 Benchmarking

This section shows the render t ime of specific pages before and after opt imizat ion. The
pr imary part of the opt imizat ion was image thumbnails, caching and database indexes.
The page load times can be seen i n the table 8.1.

Table 8.1: Page load times showing the difference between different pages being rendered
before and after opt imiz ing the applicat ion wi th cache and image thumbnails.

Before optimization After optimization
Team List 313.8 ms 235.4 ms
Dashboard 281.5ms 257.4 ms
B o a r d Detai l 421.1 ms 250.3 ms
Create Item 300.0 ms 300.0 ms
Search 354.3 ms 320.6 ms

8.3 User Feedback

Test subjects were given a questionnaire where they could report bugs and room for im­
provement. The questionnaire also served as val idat ion to see if the users are able to work
wi th the applicat ion and if the system satisfies their needs.

Lis ted below are the respective questions and selected answers. Some of the feedback
was immediately processed and is part of the final applicat ion. The implemented feedback
is marked w i t h the [processed] flag.

W h a t benefits does using the application offer?

• Easy i tem management

• Overview of lent items per person/per category

• The option to see available devices, their owner and their current state

• Information about the current location of my items for lending

Is there anything you miss in the application?

• Possibi l i ty to send a request for team invite

• [processed] Indicators of team membership, preferably differentiated by an icon or
color

• [processed] I tem l is t ing could be sorted from my owned items, my borrowed items
and then other items

• [processed] Fi l ters for i tem, board and team list ing

• [processed] Items on boards could have pictures

• [processed] Items on boards could show their owner

• Op t ion to edit items direct ly on the board

27

0 0,5 1 1,5 2 2,5 3 3,5 4

Figure 8.1: W h i c h parts of the applicat ion d id you use?

2
3 (75 %)

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

(a) On the scale of 1 to 10, say how much you are (b) On the scale of 1 to 10, say how much you are
satisfied with the system's layout. satisfied with the system's functionality.

Figure 8.2: Funct ional i ty and layout satisfaction.

• Yes
• No

(a) Do you find everyday email digests for trans- (b) Does the application meet your requirements?
actions with selected items helpful?

Figure 8.3: E - m a i l digests usabil i ty and applicat ion requirements inquiry.

28

Chapter 9

Extensions

Since it is expected that this applicat ion would be deployed across several different clients
and thus run i n many different instances, it is desirable to th ink about extending the
applicat ion. Thanks to the strong presence of the M V C pattern i n Nette projects, extensions
could be implemented as separate modules. These modules could then be activated v i a the
N E O N configuration file for each instance of this applicat ion, making it more customizable
and easily marketable.

User Chat A thread based chatt ing system allowing users to swiftly interact w i th each
other i n order to discuss the extent of the borrow.

Item Gal lery Currently, the i tem detail only enables the upload of one image which is
displayed as the main image (profile image) of the i tem. This extension would provide
an interface to upload mult iple images to be shown i n an organized manner i n the
i tem detai l moda l box.

Logger The logger currently integrated i n the appl icat ion only logs i tem transactions and
board membership changes. A n extension of this logger could also save the destination
of the i tem transaction and log the creat ion/edi t ing of each entity w i th more specific
information.

Localized Database The applicat ion is currently localized only on the static side, but
lacks the abi l i ty to store mul t i l ingual data for each entity. Th is would mean creating
a languages table and referencing the translation wi th a foreign key in a language
column of the entity translated.

9.1 Calendar

To improve the booking functionality and allow users to book items ahead of t ime, a
calendar module could be integrated. E a c h of the items could act as a single server system,
busy only in already booked times. This means the user booking the i tem for a selected time
would be granted exclusive availabil i ty of the i tem for that time, automatical ly assigning
the i tem to the borrower and making it non-movable on the item's board.

29

9.2 Updates

A s each client has different needs and expects customizabili ty, a problem arises w i th every
new module or even a bug fix - different instances of the applicat ion cannot be updated
collectively, since that would overwrite the custom changes. A satisfactory solution would
be to keep the core module (the only module getting batch updates) in a V C S repository
and ro l l out updates through a custom updater model: e.g., P H P A u t o U p d a t e 1 .

The updater model would then specific U R L wi th a J S O N (or X M L) file, which
would list an associative array of versions and paths to the update files. The update file
would most l ikely be a ZIP, only containing new or updated directories. The updater model
could then instal l the update into the root directory of each instance of the applicat ion,
creating new folders and updat ing existing ones.

To inform the user about the availabil i ty of a new version, a C R O N could run every day
to compare the J S O N file versions to the version of the applicat ion. If a higher number is
detected, the client would be notified and could manual ly start the update (e.g., by cl icking
an update button). Th is process could even become automatic.

1 Visua lAppea l \PHP-Auto -Upda te h t t p s : / /g i thub .com/Visua lAppea l /PHP-Auto-Update /

30

Chapter 10

Conclusion

In summary, this thesis led to an analysis of the needs and requirements of an equipment
checkout system where items can be tracked and borrowed on-line, and also its complete
implementation. The web applicat ion is currently hosted on http://bc.jvitasek.cz and
running i n the beta mode. The implemented system meets a l l its software requirements and
its usabil i ty can be assessed from the received feedback, in which majority of test subjects
consider the appl icat ion usable and indicate their further use of the system (see graphs on
page 28).

31

http://bc.jvitasek.cz

Bibliography

[1] Deacon, J . : Model-View-Controller (MVC) Architecture. JOHN DEACON Computer
Systems Development, Consulting and Training. 1995: pp. 1-6.

[2] G a m m a , E . ; He lm, R . ; Johnson, R . ; et a l . : Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional. 1994. I S B N 978-0201633610.

[3] Hia t t , B . : MERCI (Manage Equipment Reservations, Checkout and Inventory).
Drupa l . January 2009. [On-line; visi ted 28.04.2017].
Retrieved from: h t t p s : / / w w w . d r u p a l . o r g / p r o j e c t / m e r c i

[4] Kent , W . : A Simple Guide to Five Normal Forms in Relational Database Theory.
Communications of the ACM 26(2). 1983: pp. 120-125.

[5] M c M u r r a y , B . ; Rejfek, J . ; Reynen, K . : phpLabMan. Sourceforge. Ju ly 2001. [On-line:
visi ted 28.04.2017].
Retrieved from: h t t p s : / / s o u r c e f o r g e . n e t / p r o j e c t s / p h p l a b m a n /

[6] Mi tche l l , B . : Network Application Programming Interfaces (APIs). Lifewire. October
2016. [On-line; visi ted 25.04.2017].
Retrieved from: h t t p s :
/ / w w w . l i f e w i r e . c o m / n e t w o r k - a p p l i c a t i o n - p r o g r a m m i n g - i n t e r f a c e s - 8 1 8 1 0 2

[7] Software, F . C . : Trello. Web. 2011. [On-line; visi ted 29.04.2017].
Retrieved from: h t t p s : / / t r e l l o . c o m /

[8] Turner-Harris , W . : phpcheckout. G i thub Repository. 2000. [On-line; visi ted 29.04.2017].
Retrieved from: h t t p s : / / g i t h u b . c o m / w t u r n e r h a r r i s / p h p c h e c k o u t

[9] Wi l l i ams , L . G . ; Smi th , C . U . : Information requirements for software performance
engineering. Springer, Ber l in , Heidelberg. 2005. I S B N 978-3-540-44789-4.

32

https://www.drupal.org/project/merci
https://sourceforge.net/projects/phplabman/
http://www.lif
http://ewire.com/network-application-programming-interf
https://trello.com/
https://github.com/wturnerharris/phpcheckout

Appendices

33

A Hotjar Heat M a p 35

B Poster 36

C Entity—Relationship Diagram 37

D A P I 38

E C R O N 39

34

Appendix A

Hot jar Heat Map

Figure A . l : This dashboard heat map shows heavy use of the left sidebar and quick-access
board l is t ing in the content section.

35

Appendix B

Poster

E3RN0 I J M I U ' I
JNIVERSITY lilJIÜJihUFMilJI
:F TECHNOLOGY HJ iHI i l iH i lS l

WEB-BASED MANAGEMENT
AND LENDING SYSTEM

YEAR: 2017

AUTHOR:
JAKUBVITASEK

SUPERVISOR:
NG. JAKUB ŠPAŇHEL

- AN EFFECTIVE DEVICE MANAGEMENT SYSTEM -

EQUIPMENT CHECKOUT
WITH ITEM HISTORY

WEB-BASED APPLICATION WITH INTEGRATED CMS

SUPPORTS E-MAIL NOTIFICATIONS

I M P L E M E N T A T I O N PHASES

11
SYSTEM

ANALYSIS

d °
APPLICATION

DESIGN

• • •
IMPLEMENTATION

Q
USABILITY
TESTING

APPLICATION
DEPLOYMENT

ABOUTTHE SYSTEM
The system offers a complete sign up process, internal
CMS module for entity management, logging system
and notifications handling. Every user is allowed to ac­
cess entity lists and filter its elements by different at­
tributes. Owing to a modular implementation and the
use of design patterns, the system is extendable and
usable on any server running PHP >= 5.6.

MVC STRUCTURE
This application uses design patterns and Nette
Framework to achieve an organized and modular code,
which can be extended to implement any features
needed to make the system as effective as possible.

Try it now.
http://bc.jvitasek.cz

Figure B . l : A poster showing mock-ups of the applicat ion and the respective implementa­
t ion phases.

36

http://bc.jvitasek.cz

Appendix C

Entity—Relationship Diagram

T e a m _ U s e r
F K 1 , P K idteam
FK2 , P K iduser

Log
PK id

create_time
edit_time
content
type

T

T e a m
P K id

create_time
edit_time
title
url

s owned by

User
id
c r e a t e j i m e
edit_time
name
surname
degree_before
degree_after
url
email
password
phone
role
active
maiLnotif icat ion
profile_picture

Is owned by

Is borrowed by

id
create_time
edit_time
title
description
place
photo
display
sorting

User_Board
F K 1 , P K iduser
F K 2 , P K idboard

Board
P K id

create_t ime
edit_time
title
description
url
color
type
display
sorting

Boa rd_Team
F K 1 , P K
FK2 , P K

idboard
idteam

Figure C . l : En t i ty -Re la t ionsh ip Diag ram of the applicat ion database structure shows the
relation between tables and junct ion tables.

37

Appendix D

A P I

Enclosed below is the full list of routes available for this applicat ion and the parameters for

each route action.

/** API */
$ r o u t e r [] = new CrudRoute('<module>/api/team/crud[/<id>]', 'TeamApi');
$ r o u t e r [] = new CrudRoute('<module>/api/board/crud[/<id>]', ' B o a r d A p i ') ;
$ r o u t e r [] = new CrudRoute('<module>/api/item/crud[/<id>]', ' I t e m A p i ') ;
$ r o u t e r [] = new CrudRoute('<module>/api/user/crud[/<id>]', ' U s e r A p i ') ;
$ r o u t e r [] = new CrudRoute('<module>/api/log/crud[/<id>]', ' L o g A p i ') j

/** C r o s s API */
$ r o u t e r [] = new CrudRoute('<module>/api/c-board-team/crud[/<idnastenky>/<idtymy>]', 'CBoardTeamApi');
$ r o u t e r [] = new CrudRoute('<module>/api/c-board-user/crud[/<idnastenky>/<iduzivatele>]', ' C B o a r d U s e r A p i ') ;
$ r o u t e r [] = new CrudRoute('<module>/api/c-user-team/crud[/<iduzivatele>/<idtymy>]', 'CUserTeamApi');

/** H e l p e r s API */
$ r o u t e r [] = net «j ResourceRoute(' f r o n t / a p i / i t e m - h e l p e r / < i d n a s t e n k y > ' s ' F r o n t : I t e m H e l p e r A p i : c o n t e n t " , ResourceRoute: GET);
$ r o u t e r [] = net «j ResourceRoute(1 f r o n t / a p i / i t e m - h e l p e r / l o g s / < i d p o l o z k y > ', ' F r o n t : I t e m H e l p e r A p i : l o g ' , ResourceRoute: :GET);
$ r o u t e r [] = net =Route{'front/api/board-helper/users/<idnastenky>', ' F r o r t : B o a r d H e l p e r A p i : c o n t e n t ' , Resourc SET); |

Figure D . l : A P I routes, separated into C r u d routes and Resource G E T routes, which serve

as helpers for fast querying.

U s e r A p i :
'name ' , ' s u r n a m e ' ,
' d e g r e e _ b e f o r e ' , ;

' u r l ' , ' e m a i l ' ,
' p a s s w o r d ' , ' p h o n e '
' r o l e ' , ' a c t i v e ' ,
' m a i l n o t i f i c a t i o n s

I t e m A p i :
' t i t l e ' , ' d e s c r i p t i o n '
' l o c a t i o n ' , ' i d b o a r d ' ,
' i d u s e r ' , ' i d o w n e r ' ,
' d i s p l a y ' , ' s o r t b y '

r e e a f t e r

B o a r d A p i :
' t i t l e ' , ' d e s c r i p t i o n '
' u r l ' , ' t y p e ' ,
' i d u s e r ' , ' d i s p l a y ' ,
' s o r t b y '

L o g A p i :
' c o n t e n t '
' i d u s e r ' ,
' t y p e '

' p a g e ' ,
' i d h e l p e r ' ,

C B o a r d U s e r A p i :
' i d b o a r d ' , ' i d u s e r

T e a m A p i :
' t i t l e ' , ' u r l

C U s e r T e a m A p i :
' i d u s e r ' , ' i d t e a m

C B o a r d T e a m A p i :
' i d b o a r d ' , ' i d t e a m

38

Appendix E

C R O N

Month Days in month Days in week Hours Minutes

Enable script execution

Figure E . l : The C R O N settings dashboard showing the C R O N job w i l l be executed every
day of the month at 6 A M .

39

