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Abstract 
Goal of this work was to create system capable of visualisation of activation function 
values, which were produced by neurons placed in hidden layers of neural networks used 
for speech recognition. In this work are also described experiments comparing methods 
for visualisation, visualisations of neural networks with different architectures and neural 
networks trained with different types of input data. Visualisation system implemented 
in this work is based on previous work of Mr. Khe Chai Sim and extended with new 
methods of data normalization. Kaldi toolkit was used for neural network training data 
preparation. C N T K framework was used for neural network training. Core of this 
work — the visualisation system was implemented in scripting language Python. 

Abstrakt 
Cílem této práce je vytvořit systém schopný zobrazení hodnot aktivačních funkcí neuronů 
nacházejících se v skrytých vrstvách neuronových sítí použitých na rozpoznávání řeči. 
Dále byly na tomto systému provedeny experimenty porovnávající vizualizační metody, 
vizualizace neuronových sítí s různými architekturami a s různými druhy vstupních dat. 
Vizualizační systém implementovaný v rámci této práce je založen na předchozí práci 
pana Khe Chai Sim a rozšířen o nové způsoby normalizace vstupních dat. Pro přípravu 
trénovacích dat neuronových sítí byl použit framework Kaldi . Pro samotné trénování 
neuronových sítí byl použit nový framework C N T K . Jádro práce — samotný vizualizační 
systém byl implementován v skriptovacím jazyce Python. 
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Chapter 1 

Introduction 

Current state of the art methods in Automatic Speech Recognition and in many other fields, 
for example computer vision, stock market prediction or scheduling optimization are using 
artificial neural networks. 

Artificial neural networks are mathematical models inspired by principles of biological 
nervous systems, in particular human brain. Although neural networks are widely 
and frequently used and their models and learning algorithms are mathematically well 
defined, they are used essentially as black boxes, without much understanding of their 
inner workings. Reason behind this is that practically used neural networks have large 
number of learnable parameters, therefore their structure easily becomes very complex. 

This thesis is mainly based on the work of Khe Chai Sim and it aims to recreate 
and extend experiments described in his recent article [16]. Motivation for this work is 
in visualisation of artificial neuron activations in similar fashion to methods used in human 
brain research, like positron emission tomography (PET) scan, which shows how the human 
brain and its parts are working. 

First part of this text provides basic theoretical knowledge and overview 
of technologies used in current research of neural networks and automatic speech 
recognition. This part of the thesis was done in the therm project. The second part 
describes implementation of system capable of visualising different neural network 
architectures. Subsequently, experiments performed using this system on selected 
architectures are described and analysed. 

This work is segmented in chapters as follows. Chapter 2 - - Neural networks 
describes basic structural units and learning principles of neural networks. There are also 
described particular types of neural networks used later in experimental part of this 
work. Chapter 3 — Automatic Speech Recognition deals with the usage of neural 
networks in automatic speech recognition. In chapter 4 — High dimensional data 
projection are provided basic informations about the Stochastic Neighbour Embedding, 
method selected for high-dimensional data visualization. Chapter 5 — Implementation 
of visualisation system describes implemented system for experiments on neural 
networks and their usage in speech recognition. This system covers conversion of sound 
files to acoustic features, training neural network on these features, printing the activation 
values of hidden layers of the neural network and - - the main concern of this 
work - - visualizing the result. Consequently, multiple experiments conducted with 
different types of neural networks are described in chapter 6 • Experiments. 
Finally, chapter 7 — Conclusion and future plans contains overall review of this 
diploma thesis, results of conducted experiments and suggestions for possible future work. 
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Chapter 2 

Neural networks 

This chapter explains origins and basic principles of neurons, neural networks and learning. 
Content of this chapter is mainly based on publication [ ], unless otherwise stated. 

2.1 B io log ica l neuron 

Biological neuron (see figure 2.1) consists of main body named soma, which has many 
"input" endings called dendrites and one very long projection - axon, which splits into 
multiple synaptic terminals. Synaptic terminals are "output" endings of neuron connected 
to dendrites of other neurons. Neuron "fires", when there is sufficient amount of electrical 
impulses from neuron's dendrites that is greater than threshold. It means that the neuron 
propagates electrical signal through his axon and synaptic terminals to following connected 
neurons. The neuron becomes numb for a short period of time after propagation. 

Figure 2.1: Biological neuron . 

l rThe picture is based on http://bio3520.nicerweb.com/Locked/chap/ch03/neuron.html 
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2.2 A r t i f i c i a l neuron 

2.2.1 General model 

A n artificial neuron or neural network unit is basic building block of neural networks. It 
transforms vector of inputs x = (xi, X2, •••,Xd) to single output y using composition of two 
functions: 

1. A net value function £, which computes net value v using neurons inputs x and their 
respective weights w: 

v = £(x,w) (2.1) 

Mostly weighted sum or some kind of a vector distance function is used. 

2. A n activation function (ft, which computes neurons output y using net value v: 

y = <Kv) (2.2) 

Resulting output value is then copied to all following neurons. There are many types 
of activation functions. The most used, with regards to speech recognition, will be 
described in following sections. 

Artificial neuron was inspired by the biological neuron. The similarity between 
artificial and biological neurons can be seen in previous function definitions. The net 
value function aggregates weighted input values, like biological neuron aggregates 
electrical impulses. Consequently, according to this net value, activation function decides 
intensity, with which the neuron will fire (or inhibit input signals). 

2.2.2 Types of units 

Because of many possible combination of suitable net value and activation functions, there 
are multiple types of neural network units. In following sections are briefly described 
important currently used units. Content of this section is inspired by the book [2]. 

Linear threshold unit 

Linear threshold unit is sometimes incorrectly called perceptron, after single layer neural 
network in which it was originally used. It is considered to be first artificial neuron. 
Perceptron was designed by Frank Rosenblatt in 1957 [13], based on mathematical model 
provided by McCulloch and Pitts [10]. 

Linear threshold unit uses linear net value function: 

m 
v = J2(wi*Xi) (2.3) 

i. 
The step function (see figure 2.2a) or the sign function (see figure 2.2b) is used as the 

activation function. Output of the unit depends on its property b called bias. Bias is 
negative threshold independent of any input variables. When weighted sum of inputs is 
greater than \b\, linear threshold unit produces value 1 on its output - the neuron fires, 
otherwise it produces 0 (for step function) or —1 (for sign function) - it inhibits inputs. 
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(a) Step activation function (for bias 6 = 0). (b) Sign activation function (for bias 6 = 0). 

Figure 2.2: Activation functions of linear threshold unit. 

Sigmoid unit 

Sigmoid neuron uses same net value function as the linear threshold unit - weighted sum 
of inputs. Sigmoid function (sometimes called logistic function) is used as the activation 
function (see figure 2.3a). This function has the output in range (0; 1), which is suitable for 
representing probabilities of classified samples to belong to certain class. Other alternative is 
hyperbolic tangent function (see figure 2.3b). Both functions have continuous output range. 
It enables them to be used in neural networks that are using some variation of gradient 
descent learning described later in text. 

(a) Sigmoid function. (b) Hyperbolic tangent function. 

Figure 2.3: Activation functions of sigmoid unit. 
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Rectified linear unit (ReLU) 

Rectified linear unit (ReL U) uses linear net value function similarly to functions described 
above. Rectified linear function is used as the activation function (see figure 2.4). These 
units are becoming more popular than the sigmoid ones, because they have far lower 
computational complexity - practically only instruction needed comparison with zero. 

1 

•it 0 

-1 

- 6 - 4 - 2 0 2 4 6 
x 

f(x) = max(0, x) 

Figure 2.4: Activation function of rectified linear unit. 

2.3 N e u r a l N e t w o r k 

Neural Networks (NNs) are considered as universal functions approximators from the 
mathematical point of view. Given the sufficient number of parameters, neural networks 
can approximate any given vector space mapping, therefore NNs should be capable 
of performing any classification task. The most basic type of neural network is 
feed-forward neural network. It is acyclic oriented graph with one output layer and at 
least one hidden layer. Nodes in these layers are neurons and edges are outputs of neurons 
of the previous layer and at the same time inputs to neurons of the next layer [8]. Every 
edge has assigned its respective weight. There is convention, that inputs are also 
considered as layer, even though this input layer contains no neurons. Example 
of feed-forward neural network is depicted in figure 2.5. 

7 



Input layer 1. Hidden layer 2. Hidden layer Output layer 

Figure 2.5: Neural network example. 
[Inspired by http://www.texample.net/tikz/examples/neural-network/.] 

2.3.1 Deep Neural Network 

Deep Neural Networks (DNNs) is designation for neural network that has several hidden 
layers (often containing multiple different types of units), as opposed to shallow neural 
network, which has usually only one hidden layer [5]. 

2.3.2 Softmax output layer 

For multi-class classification tasks, it is usually desirable to normalize neural network 
classification results. Softmax function (see equation (2.4)) is usually used for this 
purpose. It normalizes the j — th neuron's output, with respect to all outputs of neurons 
xo, x i , X k in output layer. Softmax output layer is different from previously mentioned 
feed forward layers, because its neurons are fully interconnected. 

« = n s f f ( 2 - 4 ) 

k 

2.4 L e a r n i n g 

Learning in biological neural networks is based on strengthening of the synapses which are 
connections between neurons. In artificial neural networks, these connections are 
represented with weights of unit inputs. Because learning can be defined as making less 
mistakes in given task, the amount of weights which are strengthened (or weakened) is 
based on number of correctly (or incorrectly) classified samples. Content of this section 
originates in publications [2, 8, 5]. Content of section 2.4.3 is mainly inspired by 
publications [17, 11]. 
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2.4.1 Error function 

Error function £ (w) is function that represents quality of neural network. It is used 
in learning with teacher to determine ratio of incorrect outputs. The main goal of learning 
is to minimize this objective function. It is defined in equation (2.5), as expectation 
of error metric i£(w;x) , between desired output vector t = (h,t2, •••,tn) and real neural 
network output vector o = ( 0 1 , 0 2 , o n ) for given input vector x = (xi, X2, ...,xm). 

^( w ) = ^ E ^ w ) ( 2- 5) 

Currently, two of the most used examples of error metrics are Mean Square Error 
(MSE) (see equation (2.6)) and Cross-Entropy (CE) (see equation (2.7)). The M S E metric 
is mainly used in pattern learning applications, whereas the C E metric is mostly used 
in classification tasks. 

K 
EMSE(*; w ) = Y,(°k ~ tk? (2.6) 

fc=0 

K 
£cs(x;w) = - ^ t f c l n ( o f c ) (2.7) 

k=l 

2.4.2 Gradient descent 

Gradient descent is an algorithm for minimization of functions with multiple input variables. 
The main idea behind gradient descent is to initialize input variables to random values at the 
start and keep changing them until we reach point where difference between two consequent 
output values are acceptably small. Values are changed in respect to negative gradient which 
is the vector of first derivations of the minimized function (see equation (2.8)). Condition 
to gradient descent method is, that it requires function to be defined and differentiable for 
all possible input variables in order to find the derivatives. 

V / ( x ) 
df df df 

(2.8 
_dx\' dx2' ' dxn_ 

One step of the gradient descent algorithm can be represented with equation (2.9): 

x(t + l) = x(t)-»Vf(x(t)), (2.9) 

where x(t) is the vector of inputs in current step t of the algorithm, Vf(x(t)) is gradient 
of function / in point x(t), fx is learning coefficient and x(t + 1) is the resulting vector 
of inputs. 

Learning coefficient \x represents step size of the algorithm. If it is too small, the learning 
is too slow. On the other hand, if it is too big, it is possible, that the algorithm misses the 
desired minimum. The fact that learning coefficient can vary between steps is often used 
in methods determining suitable learning coefficient dynamically [ ]. 

Disadvantage of gradient descent is, that for non-convex functions the algorithm can get 
stuck in local minimums. Another disadvantage is that the resulting minimum is dependent 
on selection of starting points. 
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For large training sets, it is usually more convenient to generate so called mini-batches 
- batches of randomly selected training vectors, which represent whole training set. During 

learning phase, weights are not updated after every training vector but after every mini-
batch and average gradient computed of the mini-batch is used for the update. This method 
speeds up the learning process and it is called stochastic gradient descent (SGD) [ ]. 

2.4.3 Backpropagation 

Learning in DNNs consists of two phases: 

1. Forward phase: The neural network inputs are in this phase propagated forward, 
as they would in the case of classification. Output values of the classification are 
compared to expected values and an error value is computed based on chosen error 
metric. 

2. Backpropagation phase: Error values are propagated in backward direction from 
outputs to inputs throughout the network layers. The gradients at the previous 
layers are learned as a function of the errors and weights in the layer ahead. 

Every weight of nodes in neural network is updated according to equation (2.10), which 
is clearly based on gradient descent method described in section 2.4.2. If the minimized 
function is error metric E and its input is vector wji, it can be deduced: 

where: 

. m dE 

A ( ' W - - - u d E d i % i 

dE d ®yj d W, 

A ®Wji = n ®5j {l)Xi (2.10) 

A ('V- - ™ o "Vj a *>VJ 

and: 

dE y.i 

d 0)Vj 8 Wvj 
(2.11) 

®xi = o m V j (note: see equation (2.1)) (2.12) 
a (l>Wji 

where A ®Wji is the error derivative - value by which the i — th input of the j — th 
neuron in layer I will be updated, Wx is the input vector of layer I, is the output 
vector of layer I, \x is the learning rate, ®Vj is the net value of the j — th neuron in layer I 
and W Sj which is the derivation of error metric and activation function and it is typically 
called the credit of the neuron. 

Backpropagation starts in the output layer L, where the error derivative A ^Wji 
is computed by differentiating the error metric function E with respect to output 
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y (Q ®L)Y ) a n < i the output of the activation function y with respect to output 

of the net value function v (jrrrr*-), multiplied by inputs (L)x; and learning rate 
(see equation (2.13)). 

In every hidden layer is the error derivative computed as weighted sum of credits 
of the following layer with respect to the total inputs to the units in layer above C+1)<5j, 
multiplied by the output of the activation function y with respect to output of the 
net value function v of the current layer (g (i)VJmultiplied by inputs (̂ x; and learning 
rate \x (see equation (2.14)). 

A = C + i ) ^ . « + % ) ^ (2.14) 
k=i ° VJ 

2.5 Specific types of N e u r a l N e t w o r k s 

This section introduces some of the many specific architectures of neural networks, that 
are currently researched and used for their particular abilities. Content of this section is 
inspired by articles [8, 7, 4]. 

2.5.1 Bottleneck Neural Networks 

Bottleneck NNs have at least one hidden layer called bottleneck (BN) with significantly 
smaller number of units than hidden layers before and after this layer. This results 
in compression of the information flowing through the bottleneck layer. Since the 
information is forced to be compressed, the neural network learns to discard unnecessary 
information and compress useful information. Systems based on bottleneck NNs are 
generally slightly more resilient against noised data. They are also less prone to the 
over-fitting problem, which in simple terms means, that the neural network is unable to 
generalize - to classify different data than it was trained on. Bottleneck NNs are often 
used for noise removal and compression in image or audio precessing tasks and feature 
extraction. 

2.5.2 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) are different than standard feed-forward DNNs 
described in section 2.3, because they allow creating cycles in their topology. This fact 
allows RNNs to efficiently model sequential processes. The cycle creates feedback 
connection in neural network, which provides for the RNNs the ability to predict following 
input values from the previous input values of the sequence. This ability is especially 
useful in tasks where output does not depend solely on current input value but on 
arbitrary number of previous values like speech or language. For simplicity, the R N N can 
be viewed as standard feed forward N N , with added memory cells, which store the 
internal state of the neural network units. When plain RNNs are trained using modified 
version of back-propagation algorithm {Back Propagation Through Time (BPTT)) , they 
are very prone to vanishing / exploding gradient problem. This problem is caused by the 
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fact that when trained, one layer of R N N units can by unfolded as t layers of standard 
feed-forward D N N , where t is count of all inputs Xf up to current input xt- In such 
extremely deep neural network the gradient can easily fade away or start exponentially 
growing. Currently there exist many modifications of R N N neural networks, but this work 
concerns only with the most popular type - the Long Short Term Memory N N , which does 
not suffer from vanishing - exploding gradient problem. 

2.5.3 Long Short-Term Memory Neural Networks 

Long Short-Term Memory (LSTM) neural network is a subtype of Recurrent Neural 
Networks suggested by Hochreiter and Schmidhuber in [7]. L S T M neural networks are 
composed of complex neural units called memory blocks. These blocks with feedback loops 
are able to store network state information in small memory called memory cell. 
Information flow of memory block is controlled by three standard sigmoid neural units 
called gates. The input gate controls amount of information able to enter the L S T M unit. 
Similarly, the output gate controls amount of information proceeding to the next layer 
of the L S T M network. The last gate - forget gate enables the memory block to discard 
information stored in memory cell, which enables the L S T M network to dynamically 
adapt to continuous input streams. 

As stated above, all these gates are sigmoid units, which have their own weight matrices 
capable of learning and activation functions determining the amount of information to input, 
forget or output. Action of the gate is implemented as point-wise multiplication of the gate 
value and the respective input which gate controls. This effectively solves vanishing / 
exploding gradient problem from which suffer the RNNs, because the activation functions 
of the gates, especially the forget gate, prevent the gradient from decreasing / increasing 
uncontrollably. 

It is necessary to note that the input to the L S T M unit before it reaches the input gate 
is squashed into range (—1; 1) with the tanh function. The output of the memory before 
reaching the output gate is also adjusted with the tanh function to range (—1; 1). 

Some practical implementations of L S T M NNs are employing several times more 
memory cells while maintaining the computational complexity by using special projection 
layers. These projection layers are reducing the number of recurrent outputs of memory 
cells. In this way there are more units for data processing, but less recurrent outputs 
which reduces learning time. This approach is described in more detail in article [15]. 

This section provided only very brief introduction to the currently popular L S T M neural 
networks. For more detailed informations about L S T M NNs and their abilities, please see 
articles [7, 4, 14]. 
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Chapter 3 

Automatic Speech Recognition 

A n Automatic Speech Recognition (ASR) is a system that converts the speech signal into 
words. Such systems are used to control digital devices with simple commands or data 
entering in mobile devices. Current state-of-the-art A S R systems are providing great results 
on simple tasks, such as recognition of isolated words or read speech. Some practical 
applications are already usable, but there is still more research needed to improve their 
performance. Contents of this chapter are inspired by publications [18, 5]. 

3.1 A u t o m a t i c speech recognit ion system 

Basic scheme of Automatic Speech Recognition system is depicted in figure 3.1. Functions 
of individual blocks will be briefly described in following sections. 

speech 
feat ure accoustic decoding w 

w extraction matching 
decoding 

t A 
i 
• 
i 

accoustic 
models language 

or model 
patterns 

Figure 3.1: Automatic speech recognition system [18]. 

3.1.1 Feature extraction 

The first thing that is needed in order to create speech recognition system, is to extract 
speech coefficients, sometimes also called features, from the input speech recordings. This 
is done by filtering out unnecessary components of speech signal like D C offset, mean value 
or pitch to unify the speech and to limit the data to reasonable size. Consequently, the 
speech is split into smaller overlapping parts called frames, in which the speech signal 
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should be relatively stationary. Frames are commonly processed by the spectral or linear 
prediction analysis to compute the Mel Frequency Cepstral Coefficient (MFCC) or the 
Linear Predictive Coefficients (LPC) respectively. Vectors of these coefficients are the 
previously mentioned features. DNNs used for speech recognition are usually trained using 
filter-bank (sometimes called "f-bank") features. These features are created from frames 
by Discrete Fourier Transformation (DCT) and by using bank of filters with usually 41 
coefficients (including energy) distributed on a log mel-scale [18]. 

3.1.2 Acoustic modelling 

Acoustic modelling in speech recognition systems often utilized Gaussian Mixture Models 
(GMM) which are predicting posterior probabilities of Hidden Markov Model (HMM) 
states. In other words, in every state of H M M is statistical distribution represented by 
mixture of diagonal covariance Gaussians (the G M M ) , which returns a likelihood for a 
vector of features. Acoustic model consists of many individual H M M s , each representing 
one basic acoustic unit - phoneme (sometimes also called phone). Since phonemes are 
context dependent, current systems usually use triplets of phonemes - triphones. In the 
triphone, every individual phoneme is in triplet with preceding and following phoneme. 
This extends number of possible output classes, but it significantly improves overall 
speech recognition results. 

3.1.3 Acoustic matching 

Acoustic matching is the process of scoring incoming feature vectors with individual H M M 
models. Problem of acoustic matching is spatial and temporal variability. Spatial 
variability is caused by inability to say same thing twice, exactly the same way - this 
variability is resolved by using G M M s mentioned in acoustic modelling, which are 
mapping similar utterances to the same class, respectively to the same state of the H M M . 
Temporal variability is caused by inability to say same thing twice with exactly same 
speed. This is resolved by using H M M s , which allow for one state to accept variable 
number of feature vectors. Outputs of acoustic matching are alignments, probabilities 
with which sequences of input vectors correspond to H M M states representing phonemes. 

3.1.4 Language model 

Language model (LM) is probability model created from transcriptions of recordings. It 
incorporates vocabulary of words and their occurrence probabilities based on their 
frequencies or possibly some grammar rules. L M is typically word based only. It gives 
probability of word sequence P(W), where probability of the current word P(Wi) depends 
on probabilities of n previous words P(Wi_rn_i\), P(Wi_rn_2)), P (Wj_ i ) . Such models 
are called n-gram models [18]. 

3.1.5 Speech decoding 

In speech decoding block of the A S R system, phoneme sequences are produced by acoustic 
matching transformed to symbols, respectively words with respect to language model which 
can influence output of similarly sounding phrases. For example, phrases "recognize speech" 
and "wreck a nice beach" have similar phoneme sequence, because they sound very similar, 
but based on language model, which provides context, correct phrase is selected. Usual 
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methods for decoding are Viterbi algorithm, A*-search, best-first decoding, Finite State 
Transducers and others [18]. 

3.2 Deep N e u r a l Networks i n A S R 

Still more popular trend in A S R research is using DNNs, mainly because their ability to 
generalize is much better that with G M M / H M M based systems. In order to generate D N N 
modelled A S R system, it is necessary to extract feature vectors as described in section 3.1.1 
and to compute their alignments to phonemes as described in section 3.1.2 and section 3.1.3. 
For this purpose the classical G M M / H M M system is used. Subsequently, feature vectors 
are used as D N N inputs and alignments are used as D N N outputs in training. After the 
D N N is trained, its outputs are probabilities in the form: 

P(S\X) (3.1) 

This represents probability of H M M state S to be selected when feature vector X is observed 
by the H M M . For following processing, it is required to convert this probability to form 
of the likelihood: 

P(X\S) (3.2) 

This is done by using Bayes theorem (see equation (3.3)). Posterior probabilities P(S\X), 
usually returned from softmax output layer of the N N , are converted to scaled likelihoods by 
dividing them by the P(S). The factor P(S) is determined from frequencies of H M M states 
in forced alignment. A l l likelihoods should be then multiplied by factor P(X), but this is 
simply omitted, since it has no effect on the alignment of the feature vectors and H M M 
states [5]. 

TO - (3.3) 
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Chapter 4 

High dimensional data projection 

This chapter briefly describes Stochastic Neighbour Embedding (SNE) and t-distribution 
Stochastic Neighbour Embedding (t-SNE) methods which are used for high-dimensional 
data visualization. Content of this chapter is mainly inspired by articles [6, 9]. 

4.1 D i m e n s i o n reduct ion 

Dimensionality reduction methods are mathematical functions or algorithms, which 
convert high-dimensional data set X = {xi, X2, xn} into low-dimensional data set 
y = {y1,2/2, •••,yn}- Number of dimensions of low dimensional data is usually 2 which is 
proper for plots or 3 for spacial models. Low-dimensional data representation y is 
sometimes referred as a map and individual data points y\ as map points [9]. Main goal 
of these methods is to convert these data points in such way, that structural relations 
between them will be preserved. This implies that similar high dimensional data points 
will stay close and dissimilar data will be distributed far apart. 

4.2 Stochastic N e i g h b o u r E m b e d d i n g ( S N E ) 

Stochastic Neighbour Embedding is based on converting Euclidean distances between data 
points in high-dimensional space to probabilities that represent similarities. Similarity 
of data point Xj to data point Xi is the conditional probability pj^, that Xi will be 
neighbour of Xj with chance proportional to their probability density under Gaussian with 
center at x\. This relation is represented with equation (4.1), where a\ is variance of the 
mentioned Gaussian and can be used as parameter for adjusting densities of data point 
clusters. Equation (4.2) models similar conditional probability between data points y, 
and yj, only difference is, that variance parameter a is fixedly set to 4 ,̂ because in two 
dimensional space it has only scaling effect. Since both of these equations are modelling 
pairwise similarities, both values Pju and are set to zero. 

exp(-\\xi-xJ\\2/2a2)  
P l l j Ek\=ieM-\\xi-xk\\2/2a2) 1 • > 

exp(-\\yi - yj\\2) 
Hi 1 Ti MoT i 4- 2) 

Efe!=jexp(-\\yi-yk\r) 
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In ideal case, map points yi and yj would correctly model similarities between points 
Xi and Xj and therefore probabilities PJL and qju would be equal. This correctness 
of mapping high-dimensional space into low-dimensional space is expressed with objective 
function defined as Kullback-Leibner (KL) divergence. The SNE method uses gradient 
descent algorithm described in section 2.4.2, to stochastically find such mapping from 
high to low dimensional space, that K L function (see equation (4.3)) is minimized. 

C = £ K L ( P t \ \ Q t ) = £ £ m log ^ (4.3) 
i i j Qjli 

4.3 C r o w d i n g p r o b l e m 

The crowding problem can be illustrated with sphere centred on data point Xi with size given 
by radius rm, where m is relatively high number of dimensions. If data points are evenly 
distributed in the region of the sphere, in attempt to model this sphere in two-dimensional 
map, the crowding problem arises, because area to accommodate data points in moderate 
distance is not large enough compared to area available to accommodate nearby data points. 
Therefore, if small distances will be modelled accurately in the map, moderate distances 
from data point Xi will have to be modelled too far away in the map. For more information 
about this problem see article [9]. 

4.4 t - D i s t r i b u t e d Stochastic N e i g h b o u r E m b e d d i n g ( t - S N E ) 

Even though the SNE method gives quite good results in visualization of high-dimensional 
space, its objective function - Kullback-Leibner divergence is difficult to optimize and it is 
suffering from crowding problem described in section 4.3. As solution of crowding 
problem, Van der Maaten and Hinton proposed in [ ] an alternative method, the 
t-Distributed Stochastic Neighbour Embedding (t-SNE). 

First major differences between SNE and t-SNE is that t-SNE uses joint probability 
distributions instead of the conditional probabilities which gives objective function 
represented with equation (4.4). This is referred to as symmetric SNE because for Vi , j 
joint probability pij = pji and qij = qji. Advantage of symmetric SNE is simpler form 
of its gradient which implies faster computation in gradient descent algorithm. 

C = KL(P\\Q) = J2 E Pii l o S — ( 4- 4) 
i j Qij 

Second difference of t-SNE method lies in using of Student-t distribution with one degree 
of freedom instead of the Gaussian in the equation for low-dimensional space similarities 
(see equation (4.5)). Since in high-dimensional space is still used Gaussian distribution 
and Student-t distribution function has heavier tails, it models moderate similarities in high-
dimensional space with larger distances in low dimensional space. This effectively copes 
the crowding problem. 

q . . - a + l l K - r f ) - 1

 ( 4 5 ) 

Definition of similarities in high-dimensional space using joint probability distribution 
instead of conditional probabilities would cause problems in case of outlier data points. 
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Because of this, joint probabilities are forcefully set to be symmetric conditional 
probabilities as indicated by equation (4.6). 

Pij 
Pj\i+Pi\j 

2n 
(4.6) 

In summary, t-SNE method models dissimilar data points with much larger pairwise 
distances and similar data points with relatively small pairwise distances. This is 
consequence of using symmetric K L function and Student-t distribution 
in low-dimensional space. As a result, it solves crowding problem of the SNE method 
and produces better results of visualization. 

It is necessary to emphasize that the low-dimensional output of t-SNE is based on 
probabilities, not distances, therefore only relative positions of data points provide 
informational value of the modelled data. This causes modelled data to be invariant to 
scale and rotation. Example of t-SNE method used for visualization of handwritten digits 
can be seen in figure 4.1. In this figure it is possible to see that digits similar 
in handwriting like 3 and 5 or 7 and 9 are placed relatively close, whereas dissimilar digits 
like 0 and 9 are placed far apart. 

0 0 
0 1 
0 2 
O B 
0 4 
0 5 
0 6 
%-l 
O 8 

O 9 

Figure 4.1: Demonstration of t-SNE method performance used on MNIST handwritten 
digits recognition task 1. 

l rThis image was generated using demonstration data distributed with t-SNE implementation in python 
from web site of the t-SNE author Laurens van der Maaten — https://lvdmaaten.github.io/tsne/ 
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Chapter 5 

Implementation of visualisation 
system 

Chapter 2 - Neural networks and chapter 3 - Automatic Speech Recognition summarize 
basic theoretical background needed for understanding principles of neural networks 
and their use in automatic speech recognition. This chapter provides information about 
system designed for training and visualization of neural networks used for speech 
recognition. This system can be structurally divided into four parts: 

1. Data preparation 

2. Neural Network training 

3. Activation extraction 

4. Activation visualization 

5.1 D a t a preparat ion 

Goal of data preparation is extraction of phonetic features from speech recordings. Kaldi 
toolkit [12] and its standard scripts were used in this work. The Kaldi toolkit is an 
open-source framework for Automatic Speech Recognition providing functions for 
generating G M M / H M M or D N N / H M M systems, described in section 3.1.2. It contains 
simple command line tools written in 0++, which are then called usually from bash, 
python or perl scripts. 

In this work, Kaldi framework was used to extract speech features from A M I dataset 
I H M sound recordings. These features and A M I dataset labels were used to generate 
classic G M M / H M M recognition system producing feature alignments dataset for 
training and testing D N N , as described in section 3.2. 

5.2 N e u r a l N e t w o r k t r a i n i n g 

Even though the Kaldi framework can be used to train DNNs and first experiments of the 
term project were based on this toolkit, after recommendations from my supervisor, 
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Martin Karafiát, C N T K framework was selected for D N N training. The C N T K has better 
and much simpler neural network design capabilities and it provides simple and efficient 
way of printing hidden units activations. Moreover it is compatible with Kaldi file format 
so no file conversions are necessary. 

5.2.1 Computational Network Toolkit ( C N T K ) 

The Computational Network Toolkit (CNTK) [1] is open-source framework for deep learning 
developed by Microsoft Research group. In the C T N K , neural networks are represented as 
computational nodes of directed graph. Leaf nodes of this graph represent input values or 
network parameters and other nodes represent matrix operations upon their inputs. This 
representation allows users to easily create and modify various types of neural networks. 
Another advantage of the C N T K is high performance on multiprocessor machines and high 
utilization of GPUs . Disadvantage of the C N T K framework is, that it is still in beta phase, 
so some features are not yet available and bugs are occurring. 

5.3 A c t i v a t i o n extrac t ion 

C N T K scripts similar to the one specified in appendix B . l was used for activation 
printing. It prints values of activation functions of hidden units in response to neural 
network inputs. Activation values from every layer are stored in separate files. These files 
are formatted as Kaldi binary matrix feature files (sometimes called ark files) with format: 

utterance_id_keylIBINARY_FLAGIDATATYPE_FLAGIrow_count|col_count|data 

utterance_id_key2|BINARY_FLAGIDATATYPE_FLAGIrow_count|col_count|data 

utterance_id_key3IBINARY_FLAGIDATATYPE_FLAGIrow_count|col_count|data 

Rows in these records are representing the reaction of hidden layer output to feature 
frame input indicated by line number in given utterance. Columns in these records are 
representing individual neuron outputs of specified layer and input. A l l outputs are floating 
point numbers with single precision as defined in C N T K configuration scripts. 

For reading files containing extracted activations in Kaldi format described above, 
scripts providing python interface were used. These scripts (kaldi_io.py and htk.py) 
were created by Karel Veselý at B U T FIT and are available under the Apache License, 
Version 2.0 (the "License"). These scripts are reading the activation files one record at 
the time thanks to use of python iterators. This comes very handy since activation files 
tend to be quite big and loading them whole to memory is not possible. 

5.4 A c t i v a t i o n v isua l iza t ion 

For the visualization and analysis of unit activations, special scripts in python was written. 
These scripts are based mainly on the previous work of Khe Chai Sim [16]. The steps 
of the algorithm for creation of interpretable activity regions and activation visualisation 
are described in following paragraphs. 
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5.4.1 Activity vectors 

Consider activation value hf\t), which is response of the i-th neural unit in l-th layer to 
input feature at time t. 

Before all, the activation values h^p (t) extracted from hidden layers must be rescaled to 
satisfy condition hf\t) > 0. This is true for sigmoid and rectified linear units. For L S T M 
unit, which output is based on hyperbolic tangent function, values must be rescaled using 
feature scaling normalization: 

X' = / = j g g (5.1) 
A- max A- min 

Activation values normalised in this way can be used to create activation vectors which 
represent activations of certain unit with respect to given attributes (for example phonemes, 
speakers or noise types). As proposed by Khe Chai Sim in [16], the activity vector for S 
instances of the observed attribute is defined as: 

o i , ) = [ a i , ) ( l ) > af{2), af\S)] (5.2) 

The s-th element of this vector is then given by: 

< o w = p i M M ( 5 . 3 ) 

Value 7 S (t) represents the probability of associating attribute s with input feature at 
time t. Usually, number of attribute instances is the number of classes, which the neural 
network is supposed to classify. Then 7 s(t) is set to 1 if the frame at time t corresponds 
to correct class, respectively with the data label at time t, otherwise 7 s(t) is set to 0. The 
labels can be represented as probabilities, in which case the value of 7 s(t) will represent 
confidences of associating attribute s with given input feature t. 

Using normalisation described above, it is evident that af\s) > 0 for all s and 
J2saf\s) = 1- Based on this, it can be said that the value af\s) is weight of hidden 
units activation in respect to attribute s. In other words, value af\s) is high when input 
acoustic frame belongs to attribute s and low when it does not. 

5.4.2 Normalised entropy 

From activation vector a!p can be calculated normalised entropy indicating information 
content, respectively sensitivity of given neural network unit a% to observed attributes. 
Formula for normalised entropy of neural unit aj is defined as: 

2^=1 S

 i o S S 

Lower entropy value corresponds to unit with higher information content and higher 
sensitivity to given attribute. In ideal case, unit which has entropy E^ = 0, has perfect 
(100%) sensitivity to one of the attributes and no sensitivity at all to any other attribute. 
Opposite case is unit af^ which is uniform vector of values 1/5, therefore its entropy is 
maximal - E^ = 1 and its informational content is none - it is called insensitive unit. Sim 
in his experiments discovered that almost 50 % of units are actually insensitive. From his 
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experiments with entropy based pruning it can be assumed that they have no contribution 
to the result of classification and they could be pruned from the neural network in order to 
speed up the system. 

5.4.3 Hidden activity space 

In order to create interpretable 2D images, S-dimensional activation vectors need to be 
projected to 2-dimensional plane. The t-SNE method, described in section 4.2, is used for 
this projection. This plane is called hidden activity space. Based on the principle of the 
t-SNE method, units are positioned with probabilities corresponding to the similarities 
of their respective activation vectors. That means, units with similar activity vectors are 
positioned close together and units with different activity vectors are positioned far apart. 
Units placed in this manner form convex hull. Shape of the convex hull is determined by 
most outer units, which are usually units with most entropy, therefore were placed as far 
as possible from each other. Since t-SNE place units according with probabilities and not 
distances, it is not useful to measure distances in hidden activity space, useful information 
is contained only in relative positions of units. Example of hidden activity space and convex 
hull without interpretable regions is in figure 5.1. 

It is necessary to note that t-SNE is randomly initialized and also highly 
data-dependent, because when reducing dimensions, pairwise probabilities are computed 
for every possible pair of points. In other words significant change in small number 
of points can entirely change the outcome. Therefore it is not possible to directly compare 
two visualisations created with different t-SNE projections. Solution to the random 
initialization is in this work solved by randomly pre-generating more initialization values 
than it is necessary. These values are then stored in file and loaded every time t-SNE is 
invoked. This change in t -SNE script does not have severe negative impact on quality 

Figure 5.1: Example of hidden activity space. 
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of visualisations, because it is possible to compensate for it with more iterations of the 
t-SNE algorithm. As for the data dependency problem, even for multiple different data 
batches to compare, it is possible to perform single t-SNE projection for all data-points as 
long as dimensions of the activity vectors are identical and they represent identical 
attributes. This is done simply by horizontally concatenating high-dimensional data 
points (over all layers of neural network or even over several neural networks), performing 
the t-SNE projection and afterwards horizontally splitting the low-dimensional vectors. 
This is possible because t-SNE method preserves order of the data-points. Subsequently 
can be split portions visualised and compared with each other. Only negative of this 
approach is that both time and memory complexity of the t-SNE method are 0 (n 2 ) , so 
concatenating large batches quickly becomes very resource-consuming. 

5.4.4 Delaunay triangulation 

Algorithm for interpretable regions is dependent on computing Delaunay triangulation on 
points of the convex hull resulting from the t-SNE method. Delaunay triangulation was 
proposed by Boris Delaunay in 1934 [ ]. 

Delaunay triangulation DT{P) is mathematically defined for set of non-linear points P 
in a plane. Triangles DT{P) are constructed in such way that no point from set P can be 
inside of any circle created by circumscribing all triangles DT{P). When there are more 
ways to create triangulation, the way with maximal values of the smallest angles is selected, 
in order to prevent creation of slim triangles. Example of Delaunay triangulation performed 
on convex hull points is depicted in figure 5.2. 

Figure 5.2: Example of Delaunay triangulation. 
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5.4.5 Ranking vectors 

Before creating interpretable activity regions, it is necessary to compute ranking vectors. 
Ranking vectors are defined as: 

r j ° = [ f j ° ( l ) , rf>(2) rf](S)] (5.5) 

where rf\s) G 1, 2, S is the rank of attribute s computed from activation vector 
af\s) based on formula: 

rf\s) < rf\s') af\s) > af\s') V a, s' (5.6) 

Practically this means that values of ranking vector represent order of attributes. 
Attribute for which the i-th unit activation is highest is ranked first, attribute for which 
the unit has the second highest activation is ranked second and so on up to the attribute 
for which the unit has the lowest activation value which is ranked as S-th. 

5.4.6 Interpretable activity regions 

Interpretable activity regions is the name of the first visualisation method proposed in [16]. 
Interpretable regions in hidden activity space are created according to following steps: 

1. Find a seed unit Os for each observed attribute s. The seed unit has the largest 
average activity value computed from itself and its immediate neighbours in Delaunay 
triangulation. 

2. Use the seed units to initialise their respective regions: ps = { Os }: 

3. Set the ranking threshold to r* = 1; 

4. For each attribute s, recursively add all units, 

which satisfy condition rf\s) < r* and are connected by Delaunay triangulation to 
units in region. 

5. Increment the threshold: r* = r* + 1; 

6. If r* < S, go to step 4: 

First seed units for each observed attribute are found. Subsequently seed units are used 
to initialize activity regions, which are incrementally expanding by including neighbouring 
units with higher or equal activation values (which are represented by lower or equal rank 
values) for current attribute. Adding of units continues until all units belong to some 
attribute. 

For this work slight modification of the above algorithm was used. Instead 
of recursively adding neighbouring units, units were added iteratively. Iterative adding 
resulted in slightly more fair region creation since there were more cycles of the algorithm 
and therefore assigning of the units with high entropy (and low information value) is less 
dependant on the order of attributes in algorithm and more dependant on the activation 
values. 

Example visualisation of neural units in hidden activity space using modified algorithm 
is depicted in figure 5.3. 
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Figure 5.3: Example of interpretable attribute regions in 2D space. 
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5.4.7 Interpretable regions in 3D 

Algorithm described in previous sections can be easily generalized for more than 2 
resulting dimensions, because t-SNE method is capable of transforming its high 
dimensional input data to any dimension lower than the input dimension. The Delaunay 
triangulation can also be generalized to higher dimensionality for example 
in three-dimensional space, tetrahedrons are created instead of triangles and are inscribed 
in spheres instead of circles. A l l other parts of the algorithm are invariant to change 
of output dimensionality. Example visualisation of neural units in three-dimensional 
hidden activity space is depicted in figure 5.4. Although creating three (and theoretically 
even more) dimensional regions is possible and should retain more information than 2D 
visualisation, interpretation of such visualisations is difficult, therefore it is not used 
in experiments of this work, but it is worth to note such possibility exists. 

Figure 5.4: Example of interpretable regions in 3D space. 
(Only three groups of attributes are shown for clarity.) 

5.4.8 Activity visualisation 

Activity visualisation is alternative visualisation method proposed in [ ]. Creating 
visualisations of hidden units activities is also dependent on producing hidden activity 
space by t-SNE method as described in section 5.4.3. Similarly to creation 
of interpretable activity regions, Delaunay triangulation is performed over all units 
creating triangular mesh. Every vertex of this triangular mesh is representing hidden unit 
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in activity space. To these units — vertices are assigned activation values of particular 
observed attribute instance from activity vector (described in section 5.4.1) corresponding 
to the individual unit. Subsequently, these activation values are converted to colours using 
suitable colour map. Finally, triangles produced by Delaunay triangulation are filled with 
colour gradient based on colours, respectively activations of their respective vertices. 

Example of activity visualisation of three different attribute instances (phonemes 
/sil/, /AH/ and /S/) visualised for every layer of selected neural network is in figure 5.5. 
For conversion of unit activity to colour in this example, jet colour map was selected. 
Using jet colour map, red colour corresponds to high activation values and blue colour 
indicates low activation values of hidden units. This method makes possible to observe 
changes in activations corresponding to selected attribute instance over all layers of neural 
network. It would be even possible to observe these changes over time, although such 
experiment would require to snapshot activation values in every discrete time step, which 
would require tremendous amount of computational resources. 

/sil/ 

/SI 

/AH/ 0 9 ^ ^ ^ 
Layer 1 Layer 2 Layer 3 Layer 4 

^ ^ ^ V 

Layer 5 Layer 6 

Figure 5.5: Example of activation visualisations of phonemes /sil/, /AH/ and /S/ over all 
6 layers of neural network. 
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Chapter 6 

Experiments 

Since this work deals with visualisations of neural networks used in ASR, for experiments 
in this work was selected the most basic task of this field — the phoneme recognition. 
Following sections discus choice of the dataset, modifications in approach of visualisation, 
neural network architectures and interpretations of resulting visualisations. 

6.1 Dataset descr ipt ion 

The AMI Corpus dataset was selected for experiments with retrieving activations from 
N N . Main reason for this selection was, that this dataset is well established in community 
of automatic speech recognition, and there are prepared examples for its use in most of the 
A S R frameworks like Kaldi or C N T K . 

A M I (Augmented Multi-party Interaction) corpus is multi-modal data set consisting 
of 100 hours of conference room meeting recordings, intended for developing meeting 
browsing technology. This work will concern only with the audio part of the dataset. The 
audio data are divided into three parts based on microphone devices used for recording: 

• Independent headset microphone (IHM) 

• Multiple distant microphone (MDM) 

• Single distant microphone (SDM) 

Multiple distant microphone part of the corpus was recorded with microphone array 
put on the table. Single distant microphone part was generated as output of one of the 
microphones in array. Unfortunately, these parts are considerably suffering from 
microphone and environment noise, which presents itself also in speech recognition results 
in comparison to I H M data part. For this reason, only the I H M data part was used 
in experiments for neuron activations extraction. 

The I H M data part contains 27822 979 frames in 108 221 utterances. Features used 
in neural network training were computed by standard A M I recipe for Kaldi . Type of the 
features is MFCC (see section 3.1.1) with Constrained Maximum Likelihood Linear 
Regression for speaker adaptation. 

28 



6.2 C o m p e n s a t i n g dataset stat ist ical characteristics 

In first experiments with interpretable region visualisations of neural networks came up 
problem with large regions of one or more frequent attributes (e.g /sil/, /S/, /AH/ phones 
in phoneme recognition), which covered more than 90% of all units in every layer and every 
architecture type. This is caused by the statistical imbalance of input data. Large portion 
(almost 25%) frames of the dataset is actually silence and the rest of the frames is more or 
less evenly distributed amongst other 42 phonemes. This way the average portion of frames 
for phone other than silence is under 1.8% of dataset frames. When majority of the units 
have very high rank for silence, they are "swallowed" by it in the recursive part of the 
algorithm. This problem occurred most evidently in visualisations depicting individual 
layers transformed by the t-SNE method given only data of the single respective individual 
layer. 

Because visualisations taken over almost entirely by the silence or another very common 
phones like /S/ or /AH/ have almost none informational value, two modifications of the 
visualisation algorithm were suggested. These modifications are described in following 
subsections. 

6.2.1 Attribute occurrence normalisation 

First option is to weight individual phonemes by number of occurrences of given phoneme 
in the dataset. This effectively changes the equation (5.3) to: 

where w(s) is the relative number of occurrences of attribute s in the dataset. This 
results in more evenly distributed values in activation vector, which subsequently results 
in higher entropy for neurons and more evenly distributed ranks. This manifests itself 
in the higher number of smaller attribute regions in resulting visualisations. Although this 
method artificially minimizes regions with large occurrence rate it provides the detailed 
view on the rare units. 

6.2.2 Silence trimming 

This solution is particular to visualisation of phoneme recognizing neural networks on 
dataset with very large ratio of silence in data. Since main purpose of silence is only to 
divide words, it is possible to discard large portion of it by restricting the sequences 
of silence in the dataset to maximal value of 15 consecutive frames. This modification 
of the dataset shows benefit in visualisations, because more attributes can take up the 
units usurped by the silence region. 

Sadly, this approach cannot be used when dealing with large counts of phones other 
than silence and also it cannot be used for other other types of attributes, but it can be 
generalized to selecting statistically uniform subset of the dataset and use it for the neural 
network training. Of course in this way characteristics of the original dataset are lost, but 
such approach could be useful in comparison of different visualisation methods. 
Visualisations using the uniform subset should be similar to the ones using attribute 
occurrence normalisation described in section 6.2.2. 
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6.3 E x p e r i m e n t a l set-ups 

For visualization and analysis of activation, 5 different neural networks were trained on 
the whole A M I dataset. These networks were divided into two experimental set-ups. First 
experimental set-up consists of four NNs with different architectures. Second experimental 
set-up consist of two identical neural networks trained on different datasets. Every set
up was individually processed whole in single t-SNE pass. This makes networks within 
the set-up comparable by using same high-to-low dimensional t-SNE mapping for every 
network / layer / unit. Specific architectures and parameters of neural network set-ups are 
described in following subsections. Finally, every set-up was processed in three different 
views — ORIGINAL, NORMED and SILENCE. The O R I G I N A L view is the basic view 
with no normalization used. The N O R M E D view is based on normalizing dataset with 
attribute occurrences as described in section 6.2.1. The S I L E N C E view is based on silence 
trimming normalisation described in section 6.2.2. 

6.3.1 Experimental architectures 

Four different types of D N N architectures were selected for experiments in this work. These 
neural networks were given names by their distinct properties: "Normal" DNN, Bottleneck 
DNN, REL U DNN and LSTM DNN. Baseline for this work is "Normal" D N N . It is standard 
feed-forward N N with 6 layers of sigmoid units and 2048 units per layer and Softmax output 
layer. Bottleneck D N N was derived from "Normal" D N N by reducing number of units in the 
5-th hidden layer to 80 units. R E L U D N N has also 6 hidden layers, 2048 neurons per layer 
and Softmax output layer, but it uses rectified linear activation function instead of sigmoid. 
Last N N architecture is L S T M which has only 3 hidden layers with 1024 L S T M units per 
layer reduced by projection layer to 512. The error prediction metric used in training 
of all mentioned architectures was cross-entropy. Parameters of trained architectures are 
recapitulated in table 6.1. 

Experiment Layers Units per layer Activation function 
"Normal" D N N 6 2048 sigmoid 
Bottleneck D N N 6 2048 (80)1 sigmoid 
R E L U D N N 6 2048 R e L U 
L S T M D N N 3 1024(512) L S T M 

Table 6.1: Distinctions between selected architectures for visualisation experiments. 

6.3.2 Experimental environments 

For comparing behaviour of the neural networks with identical architecture on different 
dataset, neural network referred to as "Noised" DNN was trained. Architecture of "Noised" 
D N N is exactly the same as "Normal" D N N , so it has 6 hidden layers with 2048 sigmoid 
units per layer and Softmax output function and cross-entropy error prediction metric, but 
it is trained on slightly different dataset. In order to train this network, the A M I dataset 
was randomly noised with 9 different types of environmental noise (•restaurant, fan, music, 

1Number of units in the 5-th layer - the bottleneck. 
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keyboard, nature, dishes, crowd, motor and office noise) with 5 different types of SNR 
(-5dB, OdB, 5dB, WdB, 15dB). 

6.4 Performance of the analysed networks 

This section provides comparisons of performances of individual trained neural networks. 
These comparisons are separated into two parts based on common factors. 

Table 6.2 displays performances of neural networks with different architectures, trained 
on the clean A M I dataset described in section 6.1. The Kaldi D N N results in this table 
are results provided by authors of Kaldi A M I recipe [12]. These results should correspond 
with the "Normal" D N N network trained in C N T K framework. It serves as baseline for 
comparison with other types of networks. Since differences between the official Kaldi results 
and my baseline network are well within margin of error, it can be concluded that the 
"Normal" D N N is correctly trained and suitable for use as reference to other networks 
trained for this work. 

It is worth to mention that even with such changes in architecture like reducing one 
of the layers to 80 units in Bottleneck D N N or changing the type of activation function to 
from sigmoid to ReLU, trained neural networks were able to maintain roughly similar word 
error rates. It is also noteworthy that best results has the L S T M network with only half 
count of layers and half count of units per layer compared to baseline "Normal" D N N . 

Experiment 
Total 
Error [%] Subs. [%] Ins. [%] Del.[%] 

Total 
Correct [%] 

Kaldi D N N 27.2 15.5 3.5 8.1 76.2 
"Normal" D N N 27.4 15.7 3.4 8.1 76.2 
Bottleneck D N N 27.5 15.8 3.3 8.3 75.8 
R E L U D N N 27.6 15.8 3.5 8.4 75.9 
L S T M D N N 25.1 14.3 3.1 7.7 78.0 

Table 6.2: Word error rates of different neural networks trained on A M I dataset. 

Table 6.3 displays performances of neural networks with identical architectures described 
in section 6.3.2. The "Normal" D N N was trained on clean A M I dataset, whereas the 
"Noised" D N N was trained on noised A M I dataset also described in section 6.3.2. It resulted 
in its noticeably worse performance. 

Experiment 
Total 
Error [%] Subs. [%] Ins. [%] Del.[%] 

Total 
Correct [%] 

"Normal" D N N 27.4 15.7 3.4 8.1 76.2 
"Noised" D N N 54.2 29.3 4.7 20.2 50.5 

Table 6.3: Word error rates of identical neural networks trained on clean and noised A M I 
dataset. 
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6.5 C o m p a r i s o n of different views on exper imenta l data 

As described in the beginning of section 6.3, all experimental set-ups were processed in three 
different views motivated by unevenness of phoneme distribution in interpretable activity 
regions. This comparison tries to determine the best of the proposed views for neural 
network analysis using interpretable activity regions. 

In figures 6.1, 6.2 and 6.3 are depicted views of the third layer of the baseline 
" N O R M A L " D N N . Numbers in legend indicate count of the units assigned to the concrete 
phoneme region. The dashed polygon in these figures represents the convex hull of the 
whole network. The solid polygon represents the convex hull of the current displayed 
layer. 

The O R I G I N A L view in figure 6.1 is very similar to the S I L E N C E view depicted 
in figure 6.3, with only difference of reduced silence attribute cluster in S I L E N C E view. 
Motivation behind creation of the S I L E N C E view was expectation that after reducing the 
significantly dominating silence phone, it will be possible to observe other less dominant 
phones. This assumption was based on inner workings of the activity region algorithm, 
especially the ranking vector creation. It was assumed that silence which had first rank in 
very high number of phonemes was effectively "hiding" phones which were ranked second 
or third in ranking vectors. Unfortunately, presented images indicate that neurons 
corresponding to silence in the O R I G I N A L view were taken over by phoneme / A H / . 
Similar phenomenon can be observed by comparing other layers and networks of the 
O R I G I N A L and S I L E N C E view. These images are available on the enclosed D V D . It can 
be concluded, that silence trimming view is not beneficial to the interpretable activity 
region method in terms of enabling more detailed observation of attributes. 

The N O R M E D view in figure 6.2 on the other hand displays many different regions 
than the O R I G I N A L view. Wi th some exceptions like / B / or / S / in can be seen that 
numbers of units corresponding to certain phonemes are inverse — high number of units 
for certain phone in O R I G I N A L view corresponds to low number of units in N O R M E D 
view and vice versa. This is expected because N O R M E D view was created by normalizing 
the O R I G I N A L view by number of occurrences. The exceptions can be explained by units 
being taken over by neighbouring cluster with similar phoneme properties. For example, 
phoneme / B / should have high number of units in N O R M E D view but it does not, instead 
phone / D / has very significant number of units. Both phone clusters are located in close 
proximity in both views, therefore it can be assumed that some of the units that phone 
/ B / was supposed to have in N O R M E D view were "stolen" by / D / . Similar inverse units 
"stealing" can be seen for / V / units being stolen by / F / . This was most probably caused in 
recursive stage of the activity regions method where "stealing phone" got to the proximity of 
the "victim's" units sooner and took them over even thou he had smaller rank than victim. 
These exceptions could be solved by grouping phones or generally observed attributes into 
larger logical categories with similar attributes like / B / and / D / in category "stops" or 
/ F / and / V / in category "fricatives". Regardless of exceptions, it can be concluded that 
N O R M E D view provides way to display units suppressed in original view. However, it 
should be noted that activation rate of these suppressed units is inverse. 
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• A A (1) A M (31) 
-4 A E (99) A N (61) 
A A i l (135) • N G (1) 
^ A O (13) V O W (103) 
• A W (1) < O Y (1) 
^ A Y (4) A P (2) 
A B ( l ) A R (72) 
• C H (1) V S (402) 
• D (3) A SH (1) 
-4 D i l (9) A T (461) 
A Hi I (15) A T H (1) 
• E R (2) V U H (1) 
• E Y (1) A U W (5) 
< F ( l ) A V ( l ) 
A G (1) A W (17) 
• (1) V Y ( 7 ) 
• III (132) A Z (1) 

<3 IY (27) A ZH (1) 

A J H (1) A oov (1) 
A K (10) A sil (382) 
V L (50) 

Figure 6.1: Third layer of " N O R M A L " D N N in O R I G I N A L view. 

~i 1 1 1 1 r 

_i I I I I I i_ 

• A A (23) A M (92) 
•4 A E (22) A N(2) 

- A A i l (37) • N G (56) 
^ A O (133) V O W (1) 
• A W (79) A O Y (95) 
A A Y (2) A P (28) 
A B (8) A R (129) 
^ C H (2) A S (171) 
• D (188) A SH (48) 
< D i l (26) A T (24) 

- A E H (149) A T H (18) 
E R (8) V U H (17) 

• E Y (34) A U W (98) 
A F (182) A V ( 3 ) 
A G (5) A W (26) 
^ Hi I (3) A Y(25) 
• (4) A Z (1) 
A IY (130) A ZH (100) 

- A J H (70) A oov (1) 
A K ( 3 ) A sil (12) 

V L (2) 

Figure 6.2: Third layer of " N O R M A L " D N N in N O R M E D view. 
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• A A (1) < M (49) 

< AE (77) A N (158) 
A AH (344) • NG (1) 

AO (3) V OW (77) 
• AW (1) < OY (1) 

AY (8) A P (2) 
A B (4) • R (106) 
• CH (2) • S (312) 
• D (1) < SH (1) 

< DH (8) A T (368) 
A EH (2) • TH (1) 
• ER (1) V UH (1) 
T EY(1) <] UW (18) 
<] F(2) A v (i) 
• G (1) • W (97) 
• HH (2) V Y ( 3 ) 
V IH (101) < Z ( l ) 

< IY (141) A zh (1) 
A JH (1) ^ oov (1) 
> K (24) A sil (127) 
T L(2) 

Figure 6.3: Third layer of " N O R M A L " D N N in S I L E N C E view. 
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6.6 C o m p a r i s o n of visual isat ion methods 

This section compares two implemented visualisation methods proposed by Khe Chai Sim 
in [16]. In figures 6.4 and 6.5 is depicted layer three of the " N O R M A L " D N N in the 
O R I G I N A L view. Visualisation in figure 6.4 was generated using interpretable activity 
region method described in section 5.4.6. Figure 6.5 was created using activity visualisation 
method described in section 5.4.6. It depicts unit activation vectors for the / s i l / phone. 
The silence phone has very active units in the top of the convex hull, which corresponds to 
its interpretable region but it has also another region in the bottom which is not indicated 
in the interpretable regions. This can be cause by other phones having better rank in this 
region and therefore effectively hiding the silence. Another, more probable, explanation 
is that lack of silence region in the bottom of the convex hull is caused by the nature of 
interpretable region algorithm, since it allows only one seed unit being chosen. In this case, 
the seed unit is chosen in the top of the convex hull where the activation is highest, but 
other phone clusters in the middle are effectively preventing it (as they should) to reach 
the second large activity region. 

From above-mentioned can be concluded, that interpretable regions provide fairly good 
overall information about most attribute regions with most significant activation values, but 
they have lower informational value, since regions are created only in one place, whereas in 
activity visualisations there is detailed information about individual unit activations. 

A A (1) < M (31) 
A E (99) A N (61) 
A H (135) > N G (1) 
A O (13) V O W (103) 
A W (1) <] O Y (1) 
A Y (4) A P (2) 
B (1) • R (72) 
C P (1) • S (402) 
D (3) A SH (1) 
D H (9) A T (461) 
E H (15) [> T H (1) 
E R (2) V U H (1) 
E Y (1) < U W (5) 
F (1) A V (1) 
G (1) > W (17) 
H H (1) V Y (7) 
IH (132) < Z (1) 
IV (27) A Z H (1) 
J H (1) ^ oov (1) 
K (10) A sil (382) 
L (50) 

Figure 6.4: Interpretable regions in third layer of " N O R M A L " D N N in O R I G I N A L view. 
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6.7 A n a l y s i s of N N s w i t h different architectures 

Purpose of this experiment is to compare 4 DNNs with different architectures trained 
on identical dataset. Neural networks are compared using activation visualisation for 4 
phonemes: /sil, /AH/, /AE/ and /S/ which are displayed in figures 6.6, 6.7, 6.8 and 6.9. 
A l l layers of all networks were computed in single t-SNE pass and therefore lie in the 
common activity space. The dashed polygon in these figures represents the convex hull of 
the whole network. The solid polygon represents the convex hull of the current displayed 
layer. Intensity of activation values are represented using jet colour map — red colour 
represents high activation values and blue colour represents low activation values. 

At first glance, the layers of first three neural networks look very similar in shape and 
also in colour. Unfortunately, the shape of L S T M neural network came out deformed in 
arc shape. This is almost certainly caused by data scaling of the L S T M values to conform 
to interval < 0; 1 >, therefore there was correlation between all L S T M units which t -SNE 
modelled in this way. This reasoning is also confirmed by the fact that their region is 
relatively small in comparison to other networks and it is placed far from the centre of 
the common activity space. Because of the deformation, there can not be made any other 
conclusions about the L S T M neural networks in this experiment. 

NORMAL 

BOTTLENECK 

RELU 

4 • # «1 • • * • • 4 
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 

LSTM 

Layer 1 Layer 2 Layer 3 

Figure 6.6: Visualisation of /sil/ phoneme activations in different N N architectures. 

Layers of the Bottleneck D N N are almost identical to layers of the baseline " N O R M A L " 
D N N . This is caused by fact that they have identical architecture with exception of the 5-th 
layer which is the bottleneck. In the bottleneck is represented with small region of more 
active units for every phone. This is in concert with theory that bottleneck compresses 
the information. It seems that the bottleneck is influencing the activations in both, the 
preceding and the following layer. Interesting is that 6-th layer of the " N O R M A L " D N N 
and 4-th layer of the B O T T L E N E C K D N N are almost identical. It is possibly caused by 
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the the Softmax layer following the 6-th layer which has only 660 outputs and therefore it 
can be acting like the bottleneck. 

There are also interesting similarities in shapes and activations between " N O R M A L " 
D N N and R E L U D N N layers. Layer 6, respectively 4 of " N O R M A L " D N N is similar to 
layer 2 respectively 1 of R E L U D N N for silence phoneme. There are similarities in other 
phonemes for higher layers of the " N O R M A L " D N N and lover layers of the R E L U D N N . 
This can be explained only by difference between their activation functions (sigmoid vs. 
ReLU). It is possible that steeper gradient in R e L U propagates more information back into 
the lower layers. 

It is necessary to note that most significant differences in activations between 
" N O R M A L " , B O T T L E N E C K and R E L U DNNs are occurring in first layers (with 
exception of the bottleneck layer). It is possible that in this layer the neural network is 
learning some other properties like extraction of phone information from features or 
trimming speaker information which manifests itself in phoneme attributes in presented 
way. 

Another interesting observation is that similar phones have high activity units placed 
near each other. This can be seen by comparing same phonemes / A H / and / A E / . These 
phones belong to same phonetic group — vowels. They are voiced (modulated by vocal 
cords) and they also sound similar, therefore it is expected that they will have similar 
activity vectors and units responsible for these phones were placed by the t-SNE method 
close to each other. On the other hand / S / phone is unvoiced consonant. It is expected 
that it will be placed as far as possible from voiced vowels and it is also possible that it will 
be assigned to considerable number of units since it is similar to noise. The silence phone 
/ s i l / , had most occurrences in dataset. For this reason it is expected that it have many 
significant activation values. 

NORMAL 

BOTTLENECK 

RELU 

;4i « • 
# # • * • 4 
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 

LSTM 1W f 1 w 
Layer 1 Layer 2 Layer 3 

Figure 6.7: Visualisation of /S/ phoneme activations in different N N architectures. 
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BOTTLENECK 

RELU 

4 • 
• 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 

LSTM 

Layer 1 Layer 2 Layer 3 

Figure 6.8: Visualisation of /AH/ phoneme activations in different N N architectures. 
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BOTTLENECK 

RELU 
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||||| 
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 

1 1 LSTM 

Layer 1 Layer 2 Layer 3 

Figure 6.9: Visualisation of /AE/ phoneme activations in different N N architectures. 

39 



6.8 A n a l y s i s of N N s t ra ined w i t h different datasets 

This experiment concerns two neural networks with identical architectures trained on 
different datasets. The analysis will be based on the same phones as in the previous 
experiment, namely /sil, /AH/, /AE/ and /S/ which are displayed in figures 6.10, 6.11, 
6.12 and 6.13. It must be noted that figures in this section can not be directly compared 
to figures from previous section, because they were mapped from high to low dimensional 
space using different t-SNE passes. 

In figure 6.10 depicting silence, it can be seen that the NOISED D N N has slightly less 
activation values than the " N O R M A L " D N N . It is most evident in the 5-th layer. This is 
very much expected because of the noise added to the recording. The noised neural network 
is mistakenly classifying silence as some of the phonemes. This occurs most evidently for 
/ A E / phone in layers 2, 3 and especially 4. 

Another implication caused by noised data is that NOISED dataset has bigger convex 
hulls. This can be clearly seen in the first layer of every phoneme. The noise is effectively 
diversifying the data and therefore the activation vectors. The t-SNE method is then trying 
to place units with diverse activation vectors as far as possible from each other which results 
in increase of the convex hull size. 

NORMAL 

NOISED 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 

Figure 6.10: Visualisation of /sil/ phoneme activations in different environments. 

NORMAL 

NOISED V 

p̂l p̂l 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 

Figure 6.11: Visualisation of /S/ phoneme activations in different environments. 
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NORMAL 

NOISED 

€3 0 0 
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 

Figure 6.12: Visualisation of /AH/ phoneme activations in different environments. 

NORMAL 

NOLSED 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 

Figure 6.13: Visualisation of /AE/ phoneme activations in different environments. 

6.9 E x p e r i m e n t s epilogue 

It is important to note that experiments in this chapter were evaluated by closely observing 
zoomed detailed versions of images. A l l images generated by the implemented visualisation 
system for these experiments can be found on enclosed D V D disk (see appendix A) . 
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Chapter 7 

Conclusion and future plans 

In the first part of this work, basic theoretical knowledge of neural networks, their structure 
and learning principles was provided in chapter 2 — Neural networks. 

Chapter 3 — Automatic Speech Recognition concerned with brief introduction 
to the usage of neural networks for acoustic modelling in automatic speech recognition. 
In Chapter 4 — High dimensional data projection were described basic informations 
about t-SNE — the method, selected for high-to-low dimensional mapping. 

Second part of this work described implementation of system capable of visualising 
activations of neural networks used for automatic speech recognition in 
chapter 5 - - Implementation of visualisation system. This part was based on 
article [16] written by Khe Chai Sim. Proposed method was in this work extended with 
creating two different views on the dataset. Motivation for this extension was statistical 
non-uniformity of the A M I dataset, which had negative impact on method 
creating interpretable regions. Fortunately, it did not influence creation of activity 
visualisations. Also, the possibility of creating 3D visualisations was noted. 

Last part of this work contained experiments using implemented system. These are 
described in chapter 6 - - Experiments. In these experiments were first compared 
different dataset views and visualisation methods. Conclusion of these comparisons is that 
creation of interpretable activity regions is very prone to hiding relevant detailed 
information about unit activations. On the other hand activity visualisation method 
provides stable, consistent and detailed visualisations. Subsequently, experiments 
analysing neural networks with different architectures and neural networks trained 
in different environments were evaluated. These experiments were performed on the 
original dataset view using activity visualisation method. 

A l l work on this thesis was processed on the Czech National Computational grid 
Metacentrum. This includes compilation of Kaldi and C N T K frameworks, feature 

preparation using Kaldi , training and printing activations of 5 different neural networks 
using C N T K , each on 27822 979 frames in 108 221 utterances of the A M I dataset, 
which produced overall over 4.5 T B of unit activation data. Subsequently, these data 
were processed into activation vectors which were in three different views (original, 
normalized with occurrences and with trimmed silence) transformed using t-SNE 
spanning over 4 neural networks with different architectures and 2 neural networks 
in different environments. Using results of t-SNE, interpretable activity regions 
and activity visualisations were created and analysed. Overall C P U usage of this work 
was more than 660 CPUdays. Statistics for G P U usage are not available but it is 
expected to be several times the C P U usage since all N N training, activation printing 
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and substantial part of feature preparation ran on G P U . 
This work opens wide range of possibilities for future work. It is possible to use 

implemented system for analysing more different architectures and more different 
environments. The visualisation system could also be easily extended to other fields of 
neural network research like image processing or stock market prediction. It is also 
possible to increase speed of neural networks by analysing activity vectors of neurons and 
pruning neurons with low informational value as suggested in [16]. It should also be 
worthwhile to research advantages of visualising interpretable regions in 3D space. It is 
probable that there would be more information retained after high-to-low dimensional 
mapping. 

43 



Bibliography 

[1] Agarwal, A . ; Akchurin, E . ; Basoglu, C ; et al.: A n Introduction to Computational 
Networks and the Computational Network Toolkit. Technical Report 
MSR-TR-2014-112. August 2014. 

[2] Aggarwal, C : Data Classification: Algorithms and Applications. Chapman & 
H a l l / C R C Data Mining and Knowledge Discovery Series. Taylor & Francis. 2014. 
ISBN 9781466586741. 707 pp. 

[3] Delaunay, B. : Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i 
Estestvennyka Nauk. vol. 7, no. 793-800. 1934: pp. 1-2. [In French]. 

[4] Greff, K . ; Srivastava, R. K . ; Koutnik, J.; et al.: L S T M : A Search Space Odyssey. 
CoRR. vol. abs/1503.04069. 2015. 

[5] Hinton, G.; Deng, L . ; Yu, D.; et al.: Deep Neural Networks for Acoustic Modeling in 
Speech Recognition. Signal Processing Magazine. 2012. 

[6] Hinton, G . E. ; Roweis, S. T.: Stochastic Neighbor Embedding. In Advances in Neural 
Information Processing Systems 15, edited by S. Becker; S. Thrun; K . Obermayer. 
M I T Press. 2003. pp. 857-864. 

[7] Hochreiter, S.; Schmidhuber, J.: Long Short-Term Memory. Neural Comput.. vol. 9, 
no. 8. November 1997: pp. 1735-1780. ISSN 0899-7667. 
doi:10.1162/neco.l997.9.8.1735. 

[8] LeCun, Y . ; Bengio, Y . ; Hinton, G. : Deep learning. Nature, vol. 521, no. 7553. May 
2015: pp. 436-444. ISSN 0028-0836. insight. 

[9] Van der Maaten, L . ; Hinton, G. E . : Visualizing High-Dimensional Data Using t-SNE. 
Journal of Machine Learning Research, vol. 9: 2579-2605. Nov 2008. 

[10] Mcculloch, W . S.; Pitts, W. H . : A Logical Calculus of the Ideas Immanent in 
Nervous Activity. Bulletin of Mathematical Biophysics, vol. 5. 1943: pp. 115-133. 

[11] Munakata, T.: Fundamentals of the New Artificial Intelligence: Neural, 
Evolutionary, Fuzzy and More (Texts in Computer Science). Springer Publishing 
Company, Incorporated, second edition. 2008. ISBN 184628838X. 

[12] Povey, D.; Ghoshal, A . ; Boulianne, G. ; et al.: The Kaldi Speech Recognition Toolkit. 
In IEEE 2011 Workshop on Automatic Speech Recognition and Understanding. I E E E 
Signal Processing Society. Dec 2011. i E E E Catalog No.: CFP11SRW-USB. 

44 



[13] Rosenblatt, F . : The Perceptron: A Probabilistic Model for Information Storage and 
Organization in The Brain. Psychological Review. 1958: pp. 65-386. 

[14] Sak, H . ; Senior, A . W.; Beaufays, F. : Long Short-Term Memory Based Recurrent 
Neural Network Architectures for Large Vocabulary Speech Recognition. CoRR. vol. 
abs/1402.1128. 2014. 

[15] Sak, H . ; Senior, A . W.; Beaufays, F. : Long short-term memory recurrent neural 
network architectures for large scale acoustic modeling. In INTERSPEECH 2014, 
15th Annual Conference of the International Speech Communication Association, 
Singapore, September 14-18, 2014, edited by H . L i ; H . M . Meng; B . Ma; E . Chng; 
L . Xie. ISCA. 2014. pp. 338-342. 

[16] Sim, K . C : On Constructing and Analysing A n Interpretable Brain Model for the 
D N N Based on Hidden Activity Patterns. In The 2015 IEEE Automatic Speech 
Recognition and Understanding Workshop (ASRU 2015), Scottsdale, Arizona, USA, 
December 13-17, 2015. I E E E . 2015. 

[17] Zbořil, F . V . : Soft Computing - Neuronové sítě Madaline a Back Propagation. 2016. 
[In Czech]. 

[18] Cernocký, H . : Zpracování řečových signálů — studijní opora. 2006. [In Czech]. 

45 



Appendices 

46 



Lis t of Appendices 

A Contents of D V D 48 

B Example scripts for C N T K 49 
B . l Activation printing script 49 

47 



Appendix A 

Contents of D V D 

/ 
_ SRC_C0DES 

J_KALDI_SCRIPTS 

_ CNTK_SCRIPTS 

_UTILITY_SCRIPTS 

1_VISUALISATION_SCRIPTS 

TECHNICAL_REPORT 

_ TRAINED_NEURAL_NETWORKS ... 

BOTTLENECK 

LSTM 

NOISE 

_ NORMAL 

L-RELU 
_VISUALISATIONS 

_ ARCHITECTURES_EXPERIMENT 

J _ NORMED 

ORIGINAL 

1_ SILENCE 
_ ENVIRONMENTS_EXPERIMENT 

NORMED 

_ORIGINAL 

_SILENCE 

Standard Kaldi A M I recipe scripts used for 
feature preparation. 

Standard C N T K scripts edited for training 
and activation printing. 

Miscellaneous utility scripts mostly for 
Metacentrum set-up. 

Implementation of the described visualisation 
system. 

This technical report. 

C N T K network files and configuration files. 

18 



Appendix B 

Example scripts for C N T K 

B . l A c t i v a t i o n p r i n t i n g script 
#### deviceld = -1 for CPU, >= 0 for GPU devices 

DeviceNumber = $DeviceNumber$ 

numCPUThreads=$numThreads$ 

command = $action$ 

precision = float 

ACTIVATIONS=[ 

action=write 

modelPath = $modelName$ 

outputNodeNames = {L$nj$.S} 

# deviceld=-l for CPU, >=0 for GPU devices 

deviceId=$DeviceNumber$ 

traceLevel=l 

useValidation=true 

printValues=true 

reader= [ 

# reader to use 

readerType=Kaldi2Reader 

readMethod=blockRandomize 

frameMode=false 

miniBatchMode=Partial 

randomize=None 

verbosity=0 

features=[ 

dim=$featDim$ 

scpFile=$ input C ount s $ 

rx=$inputFeats$ 

] 
] 
writer=[ 

# reader to use 

writerType=Kaldi2Reader 

readMethod=blockRandomize 

frameMode=false 

miniBatchMode=Partial 

randomize=None 

verbosity=0 

L$nj$.S=[ 

#dim=$labelDim$ 

dim=2048 

Kaldicmd="ark:/storage/brno6/home/xfabry01/L$nj$.txt" 

scpFile=$ input C ount s $ 

] 
] 

] 
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