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Ph.D.

NIKITA VOSTROSABLIN
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ABSTRACT

This Thesis is based on four original publications and concludes my theoretical

research during the years of my Ph.D. studies.

Firstly we proposed a new way to deterministically transfer an arbitrary quantum

state of light to the mechanical oscillator. It is shown that it is possible to enhance the

coupling of light to matter with the help of only local Gaussian operation on the light.

This approach is proved to help to transfer negativity of Winger function from light to

mechanics.

Next, we introduced a scheme efficiently entangling two distant mechanical oscil-

lators mediated by the optical or microwave field. At the time the work was performed,

there have been no mechanical oscillators coupled at the quantum level demonstrated.

The proposed scheme assumes a certain coupling between the mechanical systems – the

quantum nondemolition (QND) one, which is very useful for basic continuous-variable

quantum gates.

We also studied quantum transducers which are very important for the development

of quantum technology. The proposed transducer is based on a sequence of long-pulsed

interactions between the systems of interest (optical or microwave fields) and the me-

diating system (mechanical oscillator). We showed that with the help of the geometric

phase effect it is possible to eliminate the noisy influence of the mechanical mediator.

To follow the development of quantum optomechanics, we explored the very similar

transducer, but in the regime of high-intensive ultra-short pulses (stroboscopic regime).

It was unclear before whether the geometric phase effect will be sufficient to obtain a

robust transducer in this regime. Our proposal is suitable for arbitrary wavelengths of

radiation which might stimulate a much broader class of feasible quantum transducers

mediated by mechanical systems.

We believe that this thesis supported research and advanced the field making impor-

tant theoretical explorations that open the way for future experimental implementations

and studies of other setups based on similar principles.

Keywords: Quantum Optomechanics, Quantum Optics, Quantum technology, Gaus-

sian states, Gaussian operations, Quantum state transfer, Quantum transducer, Quan-
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tum correlations, Gaussian entanglement.
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Introduction

In 2016 a team of representatives of European academic and administrative institutions
formulated [48] a common strategy for Europe to stay at the front of the second quantum
revolution. This strategy has been named the “Quantum Manifesto” and it distinguishes
four main directions in which quantum technologies could bring the next breakthrough.
Those are quantum communication, simulations, sensors, and computers. As will be
shown in the overview below, quantum optomechanics is an useful platform for all listed
core fields. No less important, quantum optomechanics is very promising in expanding
our understanding of quantum mechanics in general, including the study of classical-
to-quantum transition [40] or quantum gravity [75, 193]. Because of these reasons, the
field is getting more and more attention in recent years.

Origins of the field

Optomechanics relies traditionally on the radiation pressure phenomenon. Generally
speaking, optomechanics refers to the radiation-pressure induced interaction between
light and the mechanical harmonic oscillator. It is based on the idea that light-induced
pressure can affect the mechanical properties of the oscillator being the subject of this
pressure. To some degree, one could state, that we can trace back its origins to the fa-
mous experiments on measurements of the radiation pressure force conducted by Lebe-
dev [115], and Nichols and Hull [153]. In the 20th century, the invention of laser made
it possible to explore the radiation force at the new level, leading to the creation of
optical tweezers after Ashkin’s demonstration of a small dielectric ball being trapped
by focused laser beams [10], to experiments with laser-trapped atoms [185, 165] and
atomic Bose-Einstein condensates [4, 47].

A very important milestone in the formation of contemporary cavity optomechanics
was the works of Vladimir Braginsky and colleagues in the 1960s-1970s, where they
showed the action of light on a harmonically suspended mirror. In their works [28,
26] it was theoretically shown that in the case when the mirror is incorporated into a
Fabry-Pérot cavity, its motion could be damped or amplified based on how the driving
light frequency is tuned with respect to the optical resonance frequency of the cavity.
The experimental demonstration in the microwave domain followed in the 1970 [27].
The idea of cavity optomechanics started being implemented in the 70s and 80s to the
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detection of gravitational waves with Michelson-type laser interferometers [224]. This
lead to the first detection of gravitational waves in 2015 [2].

The recent growth of interest to the quantum optomechanics is related to the possi-
bility of a good level of control of the quantum states of various mechanical oscillators.
However, these states are very fragile and present a big challenge in their experimental
implementation. This fragility is related to the fact that quantum systems are never com-
pletely isolated from the environment [192]. When interacting with the environment a
quantum system becomes entangled with a large number of environmental degrees of
freedom, which influences what we can observe after measuring the system. Quantum
interference effects become effectively suppressed and this process is known as quan-

tum decoherence or environment-induced decoherence [238, 234, 191]. In other words,
the external influences from the environment mask the quantum properties of large ob-
jects, and the most pervasive environmental factor is the thermal noise. To reach the
regime in which it is possible to observe quantum effects, one first has to suppress this
noise. The partial compensation of the thermal noise can be achieved by cooling a
mechanical oscillator to its lowest energy state - ground state.

Optomechanical cooling

The principle of optomechanical cooling is based on the dynamical backaction effects
and the resulting optomechanical damping rate [227, 138]. The very first experimental
observation of possibility of the damping of mechanical motion of a harmonic oscillator
with radiation pressure was performed by Vladimir Braginsky and coworkers in 1970
[27]. The experiment was based on a microwave cavity, where the modification of the
damping rate of the end-mirror pendulum could be observed. The same year Ashkin
demonstrated [10] laser-trapped dielectric ball. Cooling in the resolved sideband regime
was achieved in 1995 by Blair and others [21] with high-Q niobium resonant mass
gravitational antenna getting noise temperatures of 2 mK.

Another method of optomechanical cooling - optical feedback cooling, based on a
feedback mechanism controlling the motion of a mechanical mirror via the radiation
pressure of a laser beam, was implemented in 1999 [44]. In 2004 the dynamical back-
action cooling with the help of photothermal forces was achieved [145] in the optical
domain and then in 2006 using radiation pressure forces [7, 77, 189].

Aformentioned experiments operated in the regime where the optical decay rate of
the cavity (κ) was exceeding the mechanical frequency Ωm. However, an important
requirement for many applications is the so-called resolved-sideband regime κ � Ωm

(or sometimes - good cavity regime). The first experiment to demonstrate that was
performed in a microwave domain with a high-Q cryogenic sapphire transducer, where
it served to reduce the effective noise temperature [46]. Then in 2008, it was first
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demonstrated in the optical domain [190]. Since then a number of experiments with
novel systems have been carried out in this regime [207, 205, 123].

It is a challenge to reach the quantum ground state of micromechanical oscillators
at low frequencies. The strategy is to combine cryogenic precooling with dynami-
cal backaction laser cooling. Initial attempts in this direction resulted in a few dozen
quanta level of cooling in the optical domain [82, 162, 188]. But later experiments
demonstrated first-ever cooling of mechanical mode below one quantum of energy for
microwave [204] and optical [179] domains. In [156] authors performed the ground
state cooling by the means of a conventional cryogenic refrigerator.

It’s also worth mentioning achievements in cooling with other geometries like mi-
crotoroidal resonators [215].

Important progress has been made in recent years. In the experiment with highly
sideband-resolved silicon optomechanical crystal, the cooling near the ground state with
mean thermal phonon occupancy being around 0.09 quanta was demonstrated [172].
Another experiment showed the sideband cooling of the multimode optomechanical
system consisting of two nearly degenerate mechanical oscillators coupled to a mi-
crowave cavity [155]. There was a progress in a feedback cooling of a room temperature
mechanical oscillator to nearly its ground state by combining integrated nanophotonics
with phononic band gap engineering [84].

Another milestone to mention is a progress in the cooling of levitated nanoparti-
cles with feedback technique relying on Coulomb force and optimized using a machine
learning algorithm [45], in a resolved-sideband cooling in the presence of laser phase
noise [146] and using cavities populated solely by coherent scattering [52, 211].

Recently demonstration of cooling via sideband asymmetry [201] emerged.

Quantum state preparation and control

Optomechanical systems are a promising platform for the realization of non-classical
states of a mechanical oscillator due to recent experimental advances in optomechanical
devices providing low dissipation and high Q factors. Back in 1997, it was shown
[23] that the Fabry-Perot-type optomechanical system can be potentially used for the
preparation of a plethora of non-classical states for both the cavity field and the mirror
itself.

There were a number of studies proposing the preparation of single phonon excita-
tions. For example, in [178] authors proposed a system where the mechanical resonator
is coupled to multiple laser-driven resonances of the optical cavity. By lowering the
resonance frequency of the oscillator with the help of an inhomogeneous electrostatic
field, the level of non-linearity was significantly enhanced leading to the possibility to
prepare individual phonon Fock states. In [171] it was shown that in case the optome-
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chanical coupling is strong enough (comparable to or larger than the optical decay rate
and the mechanical frequency), it is possible to develop a negative Wigner function for
the steady state of a mechanical oscillator. Finally, in [22] a multimode optomechanical
system stabilizing the mechanical oscillator at the level of first energy excitation was
proposed.

Another direction of research is the preparation of squeezed states. In [110] steady-
state quantum squeezing of a mechanical resonator beyond 3 dB was proposed. The
scheme implied two driving lasers with different amplitudes and used a dissipative
mechanism with the driven cavity acting as an engineered reservoir. Experimental
demonstration of quantum squeezing of a mechanical resonator followed in 2015 [229]
with the microwave driving that resulted in 1 dB level of squeezing. The same year,
another experimental demonstration emerged [168] with the level of squeezing about
1.1 dB for a micromechanical resonator. Recently a mechanical squeezing based on
a sequence of four pulsed optomechanical interactions with pulse length much shorter
than the mechanical period was proposed [17].

In the last few years, there has been a lot of progress in the preparation of en-
tangled states of mechanical oscillators. Entanglement between pulsed radiation and
mechanical mode has been demonstrated [161]. In [177] the entanglement between two
chip-based micromechanical resonators placed on a solid-state platform and separated
by 20 centimeters was achieved. The superposition state of mechanical excitations was
created in [220] where authors demonstrated a Duan-Lukin-Cirac-Zoller-type [57] me-
chanical quantum memory controlled through an optical interface operating at telecom
frequencies. The optomechanical Bell test was performed [137] using two silicon op-
tomechanical oscillators violating Bell inequality by more than 4 standard deviations.
Another demonstration of the entanglement in the steady state between two massive mi-
cromechanical oscillators in the microwave domain was conducted in [154]. We should
also mention recent experiments in preparation of optical/microwave entanglement via
mechanical element [15, 38, 184]. A number of new theoretical proposals to gener-
ate entangled states of radiation field and mechanics [42, 85], of mechanical systems
[42, 122, 183] and even whole optomechanical systems [103] emerged in recent years.

Importantly, similar to quantum electrodynamics and quantum optics, the control of
the quantum state of a mechanical oscillator requires operation in the strong coupling
regime where the energy exchange between the mechanical system and the electromag-
netic field is not distorted by dissipation and decoherence. Significant effort is concen-
trated on achieving this regime in optomechanical systems. In [81] the first demonstra-
tion of normal mode splitting was realized. It is important as the normal mode splitting
is the characteristic of strongly coupled systems. Teufel and colleagues carried out a
series of experiments with the demonstration of strong optomechanical coupling [206].
Another important experiment [215] demonstrated quantum coherent coupling with a
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micro-mechanical oscillator. In recent years new platforms emerged which demon-
strated a strong and ultra-strong coupling [62, 182] together with a new approach of
engineering conventional bulk optomechanical devices [74, 64, 199] resulting in higher
Q-factors and enhanced optomechanical coupling.

Among other works it is worth mentioning new proposals to generate nonclassical
states in stroboscopic regime [31] which includes squeezing and entangling of mechan-
ical modes, an extensive research in the direction of creation of non-Gaussian states
[118, 235, 194, 202, 108] and recent demonstration of subpoissonian phonon distribu-
tion [129].

Quantum communication with optomechanics

Optomechanics is considered today as one of the important candidates to create oper-
ational quantum networks for quantum information distribution and processing, due to
slower speed and lower losses of acoustic waves which allow for the design of efficient
elements for delaying, filtering and storing of electric signals [141]. One of the impor-
tant ways to transfer an arbitrary quantum state between two objects that are possibly
distinct in nature and distant from each other is to use quantum teleportation [16]. There
were a number of theoretical proposals to realize teleportation protocol in optomechan-
ical systems for the case of continuous variables, including the schemes entangling
mechanical mode with radiation field [133, 166, 94] and remote mechanical resonators
[65]. However, to date, there is no experimental realization of quantum optomechanical
teleportation. Some of the recent theoretical works explore discrete-variable teleporta-
tion in the pulsed regime [119] and simulate state-of-the-art gigahertz optomechanical
devices [163].

Transferring quantum states from one site to another is a very important task of
quantum processing and networking. Quantum teleportation is not the only way to
achieve that goal, especially this is not necessary when the systems are not spatially
separated. One of the limitations of quantum teleportation is the fragility of the en-
tanglement which is needed to be established between the parties. Instead, the basic
coupling between light and the mechanical system could be used. The systems inter-
connecting optical, mechanical and microwave modes has been proposed in a number
of works for continuous-wave [186, 222, 209, 210, 236], pulsed [101, 142, 95, 174] and
stroboscopic regimes [95]. Experimental demonstration followed for continuous-wave
one [93, 5, 6, 116]. New approaches have been taken to the quantum transducers’ exper-
imental realization. A system combining silicon photonics, cavity optomechanics, and
superconducting circuits demonstrated efficient transduction between the microwave
and the telecom bands at millikelvin temperatures [9]. In another experiment [71] au-
thors used an integrated, on-chip electromechanical setup with the mechanical mode

6



being in its quantum ground state. Finally, in [92] a mechanically-mediated microwave-
to-optical converter has been implemented with 47% of conversion efficiency. This
converter operated at millikelvin temperatures and used the feed-forward protocol to
reduce added noise. Some more details on the topic of optomechanical transducers can
be found in Chapter 5.

Metrological and sensing applications

Finally, we would like to mention other possible practical applications where quantum
optomechanics can bring a lot of value.

The researches in the field of detection of gravitational waves launched the explo-
ration of the quantum limits of measurement’s precision. The Heisenberg uncertainty
principle imposes a limit on precision of simultaneous knowledge about conjugated
quadratures, which leads to the base measurement limit known as the standard quan-

tum limit (SQL) [25, 76]. The first idea of surpassing this limit belongs to Braginsky
[25], where he proposed so-called quantum non-demolition (QND) measurements - the
method of projectively measuring a quadrature with measurement operator commuting
with freely moving mirror’s Hamiltonian. This measurement shouldn’t affect the mir-
ror’s evolution, and the quadrature could be known with arbitrary precision by repeating
the measurement an infinite number of times. This approach was also studied by Kip
Thorne [208], Vladimir Braginsky [29], William Unruh [212], and Carlton Caves [37].
In recent years the SQL was beat via back-action evading techniques in electromechan-
ics [49] and optomechanics [195, 194], and using a negative-effective-mass oscillator
in optical domain [151].

Other applications include quantum-enhanced magnetometry like [117], where au-
thors used a silicon-chip-based cavity optomechanical magnetometer with squeezed
light to increase its sensitivity.

It is possible to build optomechanical accelerometers as demonstrated [109] with a
setup based on photonic-crystal nanocavity monolithically integrated with nanotethered
test mass or with a single chip-based device based on subwavelength grating pair and
rotated serpentine springs [126].

Mass sensing is another application of optomechanics as described for instance in
[124] with sub-pg mass sensitivity in a large microtoroid optomechanical oscillator.

New and improved optomechanical platforms

Quantum optomechanics is a fast-growing field. In the last years, we witnessed a lot of
improvements and advances.

Recent achievements in engineering can be noticed in the experiment with nanopho-
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tonic interface with levitated dielectric nanoparticle [132] demonstrating single-photon
optomechanical coupling of three orders of magnitude larger than previously reported,
or in the demonstration of linear, quadratic and tertiary optomechanical interactions
in the resolved-sideband regime together with the demonstration of high quantum co-
operativity for levitated nanoparticle [51]. New techniques of coherent scattering for
levitated nanoparticles [53, 228, 80, 198] which allowed motional ground-state cooling
[52] should be noticed. New advances in electromagnetic fabrication have been demon-
strated in [180] where authors created flux-mediated optomechanical coupling with a
single-photon coupling strength, reaching state-of-the-art rates, and in [164], where
ultrastrong parametric coupling between the superconducting cavity and mechanical
mode has been achieved.

It is important to mention new platforms that emerged in the last years. Among
them are levitated optomechanics and electromechanics [149, 79, 139] or quantum
magnetomechanics [182], which we already mentioned few times in this chapter, or
new hybrid devices like the one directly and parametrically manipulating the mechan-
ical nanobeam resonator of a cavity electromechanical system [24], systems with cir-
cuit quantum electrodynamics [43], flux-mediated optomechanics [107] or Brillouin-
coupling-enabled optomechanics with superfluid helium droplets [62].
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CHAPTER 1

Basic concepts of quantum optics

1.1 Quantization of electromagnetic field

As the light is the central essence of the field of quantum optics required to prepare,
operate and measure optomechanical systems, we first need to briefly introduce some
of the concepts of the mathematical description of the electromagnetic field in both
classical and quantum cases. In the next two sections, we will discuss how the quantum
representation of light is related to classical concepts, and why it was necessary to
introduce quantization and we will present references for further details.

1.2 Classical representation of light

In the classical theory of electromagnetism [112, 98], the electromagnetic field is con-
sidered as a solution of the famous Maxwell’s equations [140]. Under the assumption of
electromagnetic field propagating in vacuum, these equations take the following form:

∇E = 0, (1.1a)

∇B = 0, (1.1b)

∇× E = −∂B
∂t
, (1.1c)

∇× B = ε0µ0
∂E
∂t

(1.1d)

where E and B are three-dimensional vectors being called electric vector and magnetic

induction correspondingly and ε0 and µ0 are universal constants – permittivity and per-
meability of free space respectively.

Another way to describe the electromagnetic field useful after the quantization is
with the help of so-called potential formulation [98], where the electric vector and
magnetic induction are expressed through the vector-potential A(r, t) as follows:

E = −∂A
∂t
, (1.2a)
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B = ∇× A. (1.2b)

Vector-potential A is defined up to curl-free component, and Coulomb gauge is used as
a part of the definition:

∇ A = 0. (1.3)

This gauge is used when no sources of electromagnetic field are present and it is par-
ticularly useful in quantum electrodynamics. In quantum-mechanical description the
quantization of only vector-potential is necessary [98].

Substituting (1.2a) and (1.2b) to (1.1c) and (1.1d), we get the following wave equa-
tion:

∇2A(r, t) =
1

c2

∂2A(r, t)
∂t2

, (1.4)

where we introduced the speed of light in vacuum c = 1/
√
ε0µ0. Expression (1.4) is

called the wave equation for vector potential. We now can express the vector potential
as a sum of two complex components [219]:

A(r, t) = A(+)(r, t) + A(−)(r, t), (1.5)

where A(−) = [A(+)]∗ and A(+) contains all the amplitudes which vary as e−iωt whereas
A(+) contains all the amplitudes which vary as eiωt. Let us consider field restricted in
a volume of space then we can expand the vector potential as a linear combination of
orthogonal modes uk(r):

A(+) =
∑
k

ckuk(r)e−iωkt, (1.6)

which form a complete orthonormal set:∫
V

u∗k(r)uk′(r)dr = δkk′ , (1.7)

where k describes elements of wave-vector k and polarization. This allows considering
a discrete set of modes instead of an infinite continuum and simplify the description of
their amplitudes ck. Substituting (1.6) to wave equation (1.4) we get an equation for the
mode function uk(r): (

∇2 +
ω2
k

c2

)
uk(r) = 0, (1.8)

which is called the Helmholtz equation. The solution of this equation leads to different
possible types of spatial modes uk(r), depending on the boundary conditions. The
vector potential can be written now based on (1.5):

A(r, t) =
∞∑
k=0

√
~

2ωkε0

(
akuk(r)e−iωkt + a†ku∗k(r)eiωkt

)
, (1.9)
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with k ∈ N, ~ being the reduced Planck constant and ak =
√

2ωkε0
~ ck.

Substituting (1.9) to (1.2a) we can get an expression for the electric field which
reads as follows:

E(r, t) = i
∑
k

√
~ωk
2ε0

(
akuk(r)e−iωkt − a†ku∗k(r)eiωkt

)
, (1.10)

with normalization factors guarantying amplitudes ak, a
†
k being dimensionless. As the

electric field is the only measurable on optical frequencies, (1.10) is a key point for the
next section.

1.3 Quantum representation of light

In the 19th century the study of black-body radiation [134] and photoelectric effect
[91] both demonstrated that classical representation of light is not able to describe all
observed phenomena. In 1905 Albert Einstein, in purpose to explain experimental data,
proposed [59] that the energy is transferred by discrete portions. This was a key step to
the development of quantum mechanics.

To switch from classical theory to quantum one the canonical quantization pro-
cedure is needed. It was introduced by Paul Dirac in his doctoral thesis [54]. The
method is to replace canonical conjugate variables, {qi, pj} = δij , by Hermitian oper-
ators satisfying canonical commutation relation [q̂i, p̂j] = iδij . The Poisson bracket of
two functions f and g of a set of variables (q1, ..., qN , p1, ..., pN) is defined as {f, g} =∑N

i=1

(
δf
δqi

δg
δpi
− δf

δpi

δg
δqi

)
, whereas the commutator is defined as [Â, B̂] = ÂB̂− B̂Â and

reflects the importance of the operation’s order.
In our case, we choose amplitudes ak and a†k to be replaced by the operators satis-

fying boson commutation relations [219]:

[âi, â
†
j] = δij, [âi, âj] = [â†i , â

†
j] = 0 (1.11)

These operators are called creation (â†) and annihilation (â) operators. Based on that,
we can now derive the expression for the Hamiltonian of the electromagnetic field in
quantum representation. Classical Hamiltonian compatible with Maxwell equations
(1.1) in a quantization box is represented in the following way [125]:

Ĥcl =
1

2

∫ (
ε0E2 + µ0H2

)
dr (1.12)

After substituting expression for E (1.10) and corresponding expression for H to (1.12),
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we obtain the following:

Ĥq =
∑
k

~ωk
(
â†kâk +

1

2

)
. (1.13)

The term 1
2
~ωk represents the energy of vacuum fluctuations in mode k. Such quantum

fluctuations will play a key role later.
It is important to notice that creation and annihilation operators do not represent any

directly measurable observables. But as it may be seen from the way they have been
introduced above, they can be linked to the actual optical field observables:

X̂k =
1√
2

(
âk + â†k

)
, (1.14a)

P̂k = − i√
2

(
âk − â†k

)
, (1.14b)

which are called amplitude and phase quadrature operators (referred later as just quadra-

tures). Advantageously, in quantum optics they can be directly measured by homodyne
detection [13], in addition to measurement of the photon number Nk = a†kak. These
quadratures are the subject of the more general Heisenberg’s uncertainty principle [89]
which states that two canonically conjugated variables are limited in the certainty of the
determination of their exact values from initial conditions. This uncertainty is defined
by the relation between the variances of (1.14):

〈(δX̂k)
2〉〈(δP̂k)2〉 ≥ 1

4
, (1.15)

where δÔ = Ô − 〈Ô〉 for an arbitrary operator Ô.
In the following sections, we stop the usage of “hat-notion” for operators as we

already defined all operators we will use.

1.4 Fock states

The eigenvalues of Hamiltonian (1.13) are ~ωk(nk + 1
2
) with nk taking non-negative

integer values. The eigenstates |nk〉 are called number or Fock states [219], and they
are also the eigenstates of the number operator Nk. The Fock states represent discrete
basis states with certain occupancy of the system by quanta of energy (photon in case
of optical field).

These states obey following orthogonality and completeness conditions:

〈nk|mk〉 = δmn,

∞∑
nk=0

|nk〉〈nk| = 1. (1.16)
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The norm of these states is finite and, hence they form a complete set of basis vectors in
Hilbert space. Below we consider only a single mode case omitting the lower indices.

Application of annihilation and creation operators to Fock states leads to the follow-
ing:

a|n〉 =
√
n|n− 1〉, a†|n〉 =

√
n+ 1|n+ 1〉, (1.17)

clearly showing where the terms ”annihilation” and ”creation” came from. The expec-
tation values of annihilation and creation operators and field quadratures are zero in
Fock state:

〈a〉 = 〈n|a|n〉 = 〈a†〉 = 0, 〈X〉 = 〈P 〉 = 0, (1.18)

which is a manifestation of the fact that the phase of the Fock state is not certain. It
is worth noticing that the variance of the quadratures is linearly proportional to the
occupation number n:

〈(δX)2〉 = 〈(δP )2〉 = n+
1

2
, (1.19)

therefore, such states never have a quadrature variance below 1/2 of vacuum state (see
below). On the other hand, photon-number uncertainty is vanishing for all the Fock
states.

Another important example of the Fock states is the so-called vacuum state |0〉. This
state has the zero-point energy of the system. As it is clearly seen from the eigenvalues
of the Hamiltonian (1.13), this energy is equal to ~ω/2 and is non-zero as well as the
field quadrature variances for this state. This means that there is always some level of
minimal noise in any quadrature operator present in the system. Because the variance
of this noise is the same as for coherent states introduced in the next section, we refer
to it as the shot noise.

1.5 Coherent states

Because of the undefined phase and zero quadrature mean Fock states are not convenient
to describe optical fields approaching classical light waves, for example, maser radiation
or phase-stabilized laser light. It is more convenient to use coherent states for this
purpose [78]. As one could see from this section these states have a more precisely
defined phase and less precisely defined number of photons – see Fig. 1.1, where the
coherent state is represented as uncertainty circle (whose area is defined by Heisenberg
uncertainty principle) with defined phase φ1. Coherent states can be introduced through
Fock states using unitary displacement operator D(α) = exp(αa† − α∗a) with α being
a complex number. The coherent state |α〉 is defined from the vacuum state as follows:

|α〉 = D(α)|0〉. (1.20)
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Fig. 1.1 Schematic diagram of the uncertainty areas in the phase space of vacuum,
coherent, displaced squeezed and vacuum squeezed states. Vacuum state is a red circle
at the origin, which area is defined by the Heisenberg uncertainty principle. A coherent
state is represented as a green circle with a minimum uncertainty area displaced from
the origin. Displaced squeezed state is represented as purple ellipse being a result of
squeezing of vacuum state and displacing it from the origin. Vacuum squeezed state is
shown as a blue ellipse at the origin.

From this definition it can be easily derived that coherent state is an eigenstate of anni-
hilation operator:

a|α〉 = α|α〉, (1.21)

and two additional properties follow as well:

〈α|a† = α∗〈α|, 〈α|α〉 = 1. (1.22)

In the classical coherence theory, the complex value α of coherent state is related to the
electromagnetic field amplitude.

Another important property of coherent state is that the photon number of a given
state is not defined precisely, but rather by probability distribution which is a Poisson
distribution:

P (n) = |〈n|α〉|2 =
|α|2n
n!

e−|α|
2

. (1.23)

It follows from the Poisson distribution that the mean value and the variance of the
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number operator are equal. As the Poissonian distribution corresponds to a stream of
statistically independent photons, such light is shot-noise limited.

Coherent states are the states with minimum uncertainty and the variances of the
quadratures are equal to those of vacuum state:

〈(δX)2〉 = 〈(δP )2〉 =
1

2
. (1.24)

From the properties of coherent states described above it is straightforward to cal-
culate mean values of field quadratures:

〈X〉 =
√

2<α, 〈P 〉 =
√

2=α. (1.25)

It can be seen from these expressions that the phase of coherent state is better defined
and, as for classical wave, is proportional to argα in contrast to Fock states.

1.6 Squeezed states

Coherent states belong to the more general class of minimum-uncertainty states called
squeezed states [219]. Quadrature squeezed states are the states with less noise in one
quadrature than the shot noise level. To not violate the uncertainty principle, the second
quadrature should contain quadrature noise at the level greater than the shot noise. This
can be represented in phase-space as a squeezed circle (see Fig.1.1) and expressed as
follows:

〈(δQφ)2〉 ≤ 1

2
, 〈(δQφ+π

2
)2〉 ≥ 1

2
, (1.26)

for a more general set of quadratures defined as:

Qφ = X cosφ+ P sinφ, Qφ+π
2

= −X sinφ+ P cosφ. (1.27)

As can be seen from these equations, coherent states are the special case of squeezed
states with variances being equal to shot noise level.

In general, squeezing of a state |ψ〉 can be performed by applying the unitary
squeeze operator S(ξ) on this state [36]:

S(ξ) = e
1
2

(ξ∗a2−ξa†2), (1.28)

where ξ = rse
2iθs , with rs being squeeze parameter and θs - squeeze angle. Differently

to displacement operation (1.20) achievable by linear driving, here we need second-
order nonlinearity to squeeze the state.

In case the squeezing operator is applied to the vacuum state the resulting state is
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called a vacuum squeezed state. See Fig.1.1 where it is represented as a blue ellipse at
the origin.

Another case of the squeezed state is the displaced squeezed coherent state which is
obtained after the displacement operator is applied to the squeezed vacuum (see Fig.1.1
where it is represented as a purple ellipse displaced from origin):

|α, ξ〉 = D(α)S(ξ)|0〉. (1.29)

When θs = 0 the state is called amplitude squeezed, whereas for θs = π/2 – phase
squeezed. The conjugate quadrature variances of this state for θs = 0 are given by:

〈(δX)2〉 =
1

2
e−2rs , 〈(δP )2〉 =

1

2
e2rs , (1.30)

thus satisfying the uncertainty principle 〈(δX)2〉〈(δP )2〉 = 1
4
.

From reduced variance (1.30) below 1/2 follows that squeezed states cannot be
reached by any mixture of coherent states representing classical waves in quantum op-
tics. Therefore, they belong to the nonclassical states. The same is true for the Fock
states, however, their nonclassical aspect is different. Coherent states cannot reach the
variance of the photon number below its mean, but amplitude squeezed states can. This
variance is however limited if the mean photon number is restricted. This limit can be
overcome when we use the Fock states. These two most common representatives of
nonclassical states however differ much more in the following representations of the
electromagnetic fields.

1.7 Representations of the electromagnetic field

An appropriate description of the electromagnetic field requires a systematic quantum
statistical approach, but simultaneously, it has to be computable and ideally, visualize
the state in terms of classical waves to compare with classical optics. The electromag-
netic field consists of an infinite number of modes, but they can be considered indepen-
dent, although could be statistically correlated, and we can proceed with single-mode
description simplification.

In this section, we introduce several possible statistical representations of the elec-
tromagnetic field.

To describe states with only a partial knowledge, we introduce the trace-one positive
semidefinite density operator:

ρ =
∑
i

pi|ψi〉〈ψi|, (1.31)

where pi is the probability that the system is in the pure state |ψi〉. This operator allows

16



describing a more general mixed quantum state in that diagonal basis, which is an in-
coherent statistical mixture of pure states as we know from classical statistics. In the
extreme case of a pure state, when our knowledge is maximal, the density operator has
the idempotence property ρ2 = ρ – so-called purity condition.

1.7.1 Glauber–Sudarshan PGS function

The overlapping coherent states form an overcomplete set of states, however still de-
composing unity operator, so they can be used as a basis set. The representation of the
density operator in the form:

ρ =

∫
PGS(α)|α〉〈α|d2α (1.32)

was firstly introduced by Glauber and Sudarshan [78, 200]. Naively, PGS(α) may be
considered as the analog of the probability distribution for the α. However, it should be
noticed that PGS(α) can take negative values for some quantum states or singular more
than Dirac delta function. For these states no description using classical coherence
theory is possible. It complicates both the calculations and also visualization of non-
classical states using PGS(α) function. This can be shown by the example of squeezed
states. The variances of quadratures can be expressed in the following form [219]:

〈(δX)2〉 =
1

2
+

∫
PGS(α)

2
[(α + α∗)− (〈α〉) + 〈α∗〉)]2 d2α, (1.33a)

〈(δP )2〉 =
1

2
+

∫
PGS(α)

2

[(
α− α∗
i

)
−
(〈α〉 − 〈α∗〉

i

)]2

d2α (1.33b)

It is clearly seen that condition for squeezing (〈(δX)2〉 < 1
2
) requires PGS(α) to take

negative values. The same holds for second quadrature P if it is squeezed.
States with positive PGS(α) can be considered in classical description with PGS(α)

being probability distribution of the stochastic random variable α. They exhibit same
effects as described in the classical coherence theory if the standard optical detectors
are used.

1.7.2 Wigner function

In 1932 Eugene Wigner introduced [226] a quasiprobability distribution function, while
he was studying quantum corrections to quantum mechanics. This function can be ex-
pressed as the Fourier transform of the quantum characteristic function χ(η). This quan-
tum characteristic function is directly measurable [88] and can be expressed through the

17



density operator in the following form:

χ(η) = Tr(ρD(η)) (1.34)

and the Wigner function turns to the integral formula as follows:

W (α) =
1

π

∫
exp (η∗α− ηα∗)χ(η)d2η. (1.35)

The relation between Wigner function and P (α) distribution can be easly obtained
using (1.32) and (1.34):

W (α) =
2

π

∫
P (β) exp(−2|β − α|2)d2β. (1.36)

As we can see the Wigner function is a convolution of P function with a Gaussian
kernel. Therefore, Wigner function is less singular and negative than the PGS function
and can be more broadly used to compute and visualize nonclassical states.

Often it is useful to express Wigner function in terms of quadratures X and P . We
can do this remembering that a = 1√

2
(X + iP ). Assuming that |x〉 is the eigenstate of

X , we can rewrite Wigner function in the following form:

W (x, p) =
1

π

∫ ∞
−∞
〈x+ y|ρ|x− y〉e−2ipy/~dy (1.37)

Similarly to the P function, this function can be negative in the region of parameters
where the system clearly demonstrates non-classical behaviour. However, it is always
regular which simplifies the visualization. If the Wigner function is positive, it can be
used as hidden variable model to simulate predictions from finite sample of the mea-
sured data. On the other hand, if it becomes negative, such the states exhibit quantum
non-Gaussianity. These features are not obtainable from any mixture of the all displaced
squeezed states and represent new higher level of nonclassical aspects. However, there
are criteria how to detect quantum non-Gaussian states for a positive Wigner function
as well [111].

It might be of use to mention how Wigner function looks like for some of the quan-
tum states of electromagnetic field.

1. Coherent state with α = X+iP√
2

W|α〉(x, p) =
1

π
exp

(
−[(p− P )2 + (x−X)2]

)
(1.38)
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2. Squeezed state with θs = 0

W|α,ξ〉(x, p) =
1

π
exp

(
−[(x−X)2e−2rs + (p− P )2e2rs ]

)
(1.39)

3. Fock n-th state

W|n〉(x, p) =
2

π
(−1)nLn(4r2)e−2r2 , (1.40)

with r2 = x2 + p2, and Ln(x) being the Laguerre polynomial.

Apparently, this Wigner function of nonclassical Fock state becomes negative for n > 0,
in the contrast to positive Wigner function of any displaced squeezed state. It proves
that the Fock states with n > 0 are quantum non-Gaussian. Moreover, the criteria [111]
proves that such quantum non-Gaussianity of Fock states survives arbitrary optical loss.

1.7.3 Husimi Q representation

Another possible representation is Q representation or so-called Husimi representation.
It was first introduced by Kôdi Husimi in 1940 [97] and can be interpreted as the diag-
onal matrix elements of the density operator in a pure coherent state:

Q(α) =
1

π
〈α|ρ|α〉 (1.41)

As this convolution smears out PGS function even more, Q function is non-negative and
is bounded by value 1/π from above. Similarly to the Wigner function, it is a Gaussian
convolution of the PGS function:

Q(α) =
1

π

∫
PGS(β)e−|α−β|

2

d2β. (1.42)

This function has the advantage of existing for the states, for which the PGS function is
not regular and unlike Wigner function it is always positive.

As the Wigner function, it is measurable, even by ordinary double homodyne detec-
tion, and can be always used to do finite sample simulations. However, the nonclassical
effects are very small here, hardly visible, and deconvolution to obtain the Wigner func-
tion or even PGS function is generally not a sufficiently stable procedure. Therefore, the
Wigner function is the most suitable phase-space representation for the majority of ex-
periments with nonclassical states in quantum optics.

As mentioned at the beginning of this section, we considered only one-mode states.
However, this representation is not always sufficient, and more general multi-mode rep-
resentation is needed. The rule of thumb is to replace field operator with the individual
operators for all the modes, and field state by the product of field states. This rule can
give more complicated results for the case the superpositions of product states are con-
sidered or for the measurements that involve products of different mode operators. It is
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therefore desirable to use another representation if our states can be well approximated
by the Gaussian states in the phase space or if we are interested only to covariances of
X and P variables.

1.8 Quantum correlations of Gaussian states

Single-mode quantum states can demonstrate properties, which can’t be described in
terms of classical physics. Another fundamental aspect of quantum behaviour is the
possibility of more than one quantum systems to be correlated with each other in the
way that no local operations and classical communication could achieve. These corre-
lated states can have much diverse quantum features that we demonstrated on the dif-
ference of single mode squeezed and Fock state. We will consider this on the example
of bipartite Gaussian states used dominantly in the quantum optomechanics described
in this Thesis.

Gaussian states are continous-variable states whose Wigner functions are Gaus-
sian. Some of the states of electromagnetic field described in previous sections are
examples of Gaussian states, like coherent or displaced squeezed states. The bipar-
tite Gaussian state of two subsystems A and B, with quadratures forming a vector
f = [XA, PA, XB, PB]T where upper index T stands for the matrix transposition op-
eration, can be fully characterized by a vector of means µ = [〈XA〉, 〈PA〉, 〈XB〉, 〈PB〉]T
and a covariance matrix [...] with elements Vij = 1

2
〈fifj + fjfi〉 − 〈fi〉〈fj〉:

V =

[
VA C

CT VB

]
, (1.43)

with VA, VB and C being 2 × 2 matrices. VA,B describe individual variances of the
systems A and B, whereas C stands for co-variances between those systems. Covari-
ance matrix allows to introduce the multimode Heisenberg uncertainty principle, which
states that if [fi, fj] = iΦij then

V + iΦ ≥ 0 (1.44)

holds.
Every Gaussian state can be decomposed into independent thermal states, which are

the most fundamental Gaussian states [223] without a loss of a purity. These thermal
states then represent overall amount of the classical noise globally contained in that
state. The thermal state is a mixed state of harmonic oscillator which is characterized by
temperature T , mean occupation number 〈n〉 = 1

e~ω/kBT−1
, where kB is the Boltzmann

constant, and mean energy E = ~ω
(
〈n〉+ 1

2

)
. The density operator has the following
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form in the number-state representation:

ρ =
∞∑
i=0

〈n〉n
(〈n〉+ 1)n+1

|n〉〈n|. (1.45)

The field quadratures of the system in the thermal state have zero mean and the covari-
ance matrix has the following form:

V th =

(
〈n〉+

1

2

)
I, (1.46)

where I is the 2× 2 identity matrix.
In the particular case of linear dynamics of quadratures

f → f ′ = Tf + ν, (1.47)

the transformations for the vector of means and covariance matrix introduced above can
be expressed in a simple form:

µ→ µ′ = Tµ+ 〈ν〉, (1.48a)

V → V ′ = TV T T + Vν , (1.48b)

where T is the matrix describing the transformations of these quadratures, ν is the
vector of additive quadrature noise terms and it is assumed that the noises are not cor-
related with the system quadratures. Such dynamics are described by a Hamiltonian
up to quadratic terms in bosonic operators, and the corresponding operations are called
Gaussian operations. These operations transform Gaussian states to Gaussian ones.

Under some conditions two or more quantum systems can demonstrate quantum
correlations, which are fundamentally different from the ones achievable by local oper-
ations and classical communication. It proves that correlated systems indeed interacted
quantum mechanically. Quantum correlations exhibiting entanglement arise in states
that can’t be prepared from separable ones with the help of local operations and classi-
cal communication (LOCC) [96]. Separable states are the states which ca be presented
in the following form:

ρAB =
∑
i

ciρ
A
i ⊗ ρBi , (1.49)

where ρA,Bi is the density operators of systems A and B correspondingly and ci are
probabilities. However, it is not the only threshold for nonclassical correlations and
different approaches are proposed to quantify non-classicality [90, 158, 159, 83, 127,
100]. From our end we will introduce several metrics ordered by gradually increasing
demand on the amount of quantum correlations.
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We start with generalized squeezing [197]. This quantity specifies the total amount
of squeezing that can be extracted from the system by global passive transformations
including local phase rotations and beamsplitting operations. It can be expressed as the
minimal eigenvalue of the covariance matrix. Nonclassical states and quadratic non-
linearity have to be involved to reach such correlation. As the generalized squeezing
upperbounds maximum of single mode squeezing extractable from the state, it is there-
fore broader phenomena than Gaussian entanglement.

The second measure of quantum correlations is so-called conditional squeezing.
This squeezing is induced by measurement on one system. After the homodyne de-
tection of the amplitude quadrature of mode B, the covariance matrix of mode A is
transformed in the following way [223]:

V
′

A = VA −
1

VB,11

CΠCT, (1.50)

where Π = diag(1, 0). We say that there is a conditional squeezing in the system A

if the smallest eigenvalue of V ′A (so-called conditional variance, in the simplest case it
corresponds to the variance of amplitude or phase quadrature of system A) is smaller
than the shot-noise variance 1/2, defined by the Heisenberg’s uncertainty principle.
The same approach holds for system B. Conditional squeezing presence shows that
the generalized squeezing can be induced in the second mode. However, generalized
squeezing does not always allow to observe conditional squeezing [68]. Therefore, con-
ditional squeezing is more demanding threshold for nonclassical correlations. All these
nonclassical aspects can appear even if the systems never interacted quantum mechani-
cally, they can be provided just by local operations and classical communication.

Next characteristic, which interests us, is Gaussian quantum entanglement . The
bipartite Gaussian state ρAB is called entangled if it is not possible to present it in the
separable form (1.49) achievable by LOCC methods [56, 196]. One possible measure
of quantum entanglement is logarithmic negativity. For bipartite Gaussian system it can
be defined in the following way:

EN = max (0,− ln 2ν−), (1.51)

with ν− being the smallest symplectic eigenvalue of the covariance matrix of the par-
tially transposed state:

ν− =
1√
2

√
ΣV −

√
Σ2
V − 4 detV , ΣV = detVA + detVB − 2 detC. (1.52)

The modes A and B are considered entangled if EN > 0. Logarithmic negativity con-
stitutes an upper bound to the distillable entanglement [169].
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Last measure which we are introducing selects even smaller subset of entangled
states. It is Gaussian quantum steering. The system is called A → B steerable if
after performing measurement on the system A, it is possible to predict measurement
outcome on the system B with the accuracy better than for a pure separable minimum
uncertainty state such as coherent state. To quantify the the steering of bipartite Gaus-
sian state, we use steerability [105]:

GA→B = max

0,−
∑

j:0<νj<1

ln νBj

 , (1.53)

where {νBj } are orthogonal eigenvalues of the matrix |iΩMB|with Ω = antidiag(1,−1)

and MB = VB − CTV −1
A C. The steerability in opposite direction can be calculated by

swapping matrices VA and VB and substituting C → CT and vice versa in (1.53). Simi-
larly, as not all generalized squeezing allows conditional squeezing, not all of entangled
states allow quantum steering.
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CHAPTER 2

Introduction to quantum optomechanics

After introducing relevant quantum optics concepts for the Thesis, we briefly discuss
basic concepts of quantum optomechanics. The interested reader can address multiple
overviews of the field [147, 40, 11] for more details. We will focus here only on the
parts crucial for the understanding of the Thesis.

2.1 Radiation pressure

We explain in this section the basics of the radiation-pressure interaction of electromag-
netic radiation with a mechanical object. In essence, it can be reduced to the momentum
exchange between them. Let us consider the simplest example of a single photon re-
flecting from a mechanical oscillator. We are interested in situation when the induced
by interaction displacement is larger than zero-point fluctuations of the mechanical os-
cillator (we assume that this oscillator is in a ground state as in another case its position
spread is larger) xzp =

√
~/2mΩ, otherwise the interaction with photons cannot be

resolved in presence of thermal fluctuations. The momentum of the photon with wave-
length λ is h/λ, so the momentum transmitted to the mechanical oscillator after an
elastic reflection is 2h/λ. It is well known that equations of motion of the simplest
harmonic oscillator are the following:

q̇(t) =
p(t)

m
, ṗ(t) = −mΩ2q(t) (2.1)

where Ω is the frequency of mechanical oscillator. It is seen from these equations that
after a quarter period, the momentum kick from photon produces the displacement of
∆q = 8πx2

zp/λ. Condition to exceed the zero-point fluctuation of mechanical oscillator
leads to inequality:

xzp
λ

>
1

8π
. (2.2)

This condition is quite hard to satisfy for optical wavelength and typical micromechan-
ical oscillators. For example, based on parameters from [143] and [58] one could es-
timate that the left side of (2.2) is smaller than the right side by approximately 109
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Fig. 2.1 Schematic representation of the optomechanical system: Fabry-Pérot cavity
with mechanical oscillator forming the end mirror. Length of the cavity L is varying
by the value x of mirror displacement, κ and γ are optical and mechanical decay rates
correspondingly.

times. To reach the quantum regime of interaction some amplification methods should
be used, like optical or microwave cavity. This increases the number of times the pho-
ton interacts with the oscillator, effectively allowing to enter the quantum regime of
interaction.

2.2 Optomechanical coupling

A cavity optomechanical system can be presented as consisting of a large immovable
mirror and smaller mirror, able to move under the radiation pressure (see Fig. 2.1). Such
a Fabry-Pérot cavity configuration allows to model most of the optomechanical systems
of different design [11]. In essence, an optomechanical system can be considered as
two harmonic oscillators (optical and mechanical ones) coupled via radiation pressure.
In this section we derive the optomechanical Hamiltonian and equations of motion of
optical and mechanical modes, closely following [12, 11].

When the end mirror displaced, the resonant frequency of the optical cavity changes
as well, leading to the dependence ωopt(x). After expanding this dependence in Taylor
series and keeping only linear term, the basic cavity-optomechanical Hamiltonian can
be written in the following form:

H0 = ~(ωopt(0)−Gx)a†a+ ~ΩMb
†b+ i~E(a†e−iωlt − aeiωlt), (2.3)

where ΩM is mechanical frequency, a and b are annihilation operators for optical and
mechanical modes correspondingly, G = ωopt/L is the optomechanical frequency shift
per displacement, L is the cavity length and E describes the pump and being related to
input power P as E =

√
2P
~ωl

where ωl is the frequency of the driving field. It is clearly
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seen that smaller cavities imply larger coupling strengths. A more detailed derivation
of this Hamiltonian can be found for instance in [114].

Now we can switch to the frame rotating with the pumping laser frequency. After
introducing the detuning ∆ = ωl − ωopt(0), single photon coupling g0 = Gxzp and
rewriting x = xzp(b+ b†) we get

H = −~∆a†a− ~g0(b+ b†)a†a+ ~ΩMb
†b+ i~E(a† − a). (2.4)

Usually, g0 � κ,ΩM , where κ is the cavity decay frequency. This is the reason why
the strong laser pumping is needed in (2.3) - to increase the optomechanical interaction.
This allows us to rewrite a = α + δa, where α is the average light field amplitude
and δa represents weak quantum fluctuations of electromagnetic field. Similarly, we
expand b = β + δb with β being the average mechanical amplitude and δb standing
for quantum fluctuations of the mechanical mode. After the substitution to (2.4) and
keeping only linear in α and β terms, we obtain the following linearized optomechanical
Hamiltonian:

H = −~∆δa†δa− ~g(δb+ δb†)(δa+ δa†) + ~ΩMδb
†δb, (2.5)

where g = g0α is the enhanced optomechanical coupling strength. This Hamiltonian is
a good approximation to model a large spectrum of optomechanical systems. One can
notice that we consider only one optical and one mechanical mode. We can do that with
optical modes because the strong laser pump drives the other cavity modes negligibly.
For the mechanical mode – optomechanical cooling or amplification in the side-band
resolved regime (we will talk about it later) usually affects mostly one mode, selected
by the laser frequency.

From the linearized Hamiltonian (2.5) after adding dissipation and noise terms to
the Heisenberg equations of motion, one can derive linearized Langevin equations [14]:

δȧ = (i∆− κ/2)δa+ ig(δb+ δb†) +
√
κain (2.6a)

δḃ = −(iΩM + γ/2)δb+ ig(δa+ δa†) +
√
γbin, (2.6b)

with ain, bin being input noise operators and γ - mechanical damping coefficient. These
equations define the dynamics of the optomechanical system.

To describe the interaction of the light pulse with the optomechanical cavity, the
Hamiltonian should be complemented with input-output relations for the light reflected
from the Fabry-Perot cavity. According to the input-output theory of open quantum
systems, this relation looks as follows:

δaout =
√
κδa− δain, (2.7)
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where δaout describes the light leaving the optomechanical cavity.

2.2.1 Different types of interaction

In the interaction picture the interaction part of the Hamiltonian (2.5) can be rewritten
in the following form:

Hint = −~g(δbe−iΩM t + δb†eiΩM t)(δaei∆t + δa†e−i∆t) (2.8)

Depending on the detuning ∆ of the drive, three different regimes can be identified in
the sideband resolved regime after rotating-wave approximation (RWA) applied, mean-
ing that the terms rapidly oscillating at frequencies∼ 2ΩM are omitted. For ∆ = −ΩM

(red detuning), there are two harmonic oscillators able to coherently interchange quanta
- the mechanical oscillator and the cavity mode. In the RWA the interaction part of the
Hamiltonian (2.5) can be rewritten in the following way:

Hbs = −~g(δa† δb+ δa δb†). (2.9)

This type of interaction is often referred to as beam-splitter interaction. This is the
case used for cooling of mechanical mode and quantum state transfer (See Introduction
Optomechanical cooling and Quantum communication with optomechanics).

Another type of interaction is the amplifier type [11] of interaction when ∆ = ΩM

(blue detuning). In the RWA it can be written in the following way:

Hamp = −~g(δa† δb† + δa δb). (2.10)

When there is no dissipation in the system, it would lead to exponential growth of
the energies stored in mechanical and optical modes with strong quantum correlation
between the two. It can be used to entangle these modes [94, 161].

The third type of interaction is of particular interest in this thesis, and it is called
quantum non-demolition (QND) type of interaction [29]. In the case when the strong
classical pump is in resonance with the cavity ∆ = 0, modulated at the frequency of the
mechanical oscillator and after adopting RWA, one could arrive to the QND coupling
with Hamiltonian:

HQND = ~gXoptPM , HQND = ~gPoptXM , (2.11)

depending on the phase of the driving field. Here {X,P}opt,M are the optical and me-
chanical field quadratures correspondingly defined in the same way as (1.14a), (1.14b).
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Fig. 2.2 a) Cavity resonance curve in case of the resolved sideband limit. b) Cavity
resonance curve in case of the unresolved sideband limit. In both figures, ω0 stands for
the cavity resonance frequency.

2.2.2 Resolved and unresolved sideband limits

Detuning ∆ is not the only parameter defining which effects can be observed in the
system. There are two regimes that are defined by the relation of mechanical frequency
to the optical bandwidth.

The first one is the good cavity or resolved sideband limit , when κ � ΩM (see
Fig. 2.2 (a)). The name of this limit underlines the possibility to distinguish motional
sidebands from the cavity resonance. This regime is a necessary requirement to ob-
serve such effects as sideband cooling [179] or parametric heating [7] and entanglement
[216]. This regime provides us with powerful tools but also has some drawbacks. For
example, it is impossible to use low-frequency oscillators or tiny optical cavities (they
have larger g0 and κ). In this regime, relatively large optical powers are required to
improve optomechanical coupling as the red and blue sideband are far-detuned from
the resonant frequency. Also, sideband-resolved cavities impose the limit on the pulse
duration, for instance, pulses with a duration close to the mechanical period will be
strongly distorted, as we discuss in [173, 218].

Another limit is bad cavity or unresolved sideband one. It requires opposite in-
equality to be satisfied κ � ΩM (see Fig. 2.2 (b)). In this case, mechanical sidebands
are also cavity-enhanced and the cavity acts as an optical amplifier. This regime also
allows for low-frequency and high-mass resonators, which was a limitation of resolved
sideband regime. Bad cavity limit is of big interest among researches and a number of
important achievements have been made. It is very useful for a number of applications
like quantum-limited position and force sensing [1, 187]. Recently the first experiment
on ground-state cooling of a macroscopic oscillator in the unresolved sideband regime
was performed [41], not mentioning unrealized proposals of cooling and manipulat-
ing mechanical oscillators in the unresolved sideband regime – interference of mul-
tiple sub-period pulses [131, 130] which allows suppressing undesirable interactions,
leaving only cooling ones, schemes involving variation of the detuning [121], optome-
chanical coupling [221], mechanical frequency [120, 63, 231] and the input power [63].
Hybrid systems are the other target of different proposals to achieve quantum control
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Fig. 2.3 Different temporal regimes representation. a) Continuous regime, when the
pulse duration is much longer than the mechanical period b) Long pulses, the interaction
happens during many of mechanical periods, but can be switched on and off c) Pulsed
regime, when the interaction is much faster than mechanical period.

beyond the resolved sideband limit - superconducting circuits [73], cold atoms, ions,
NV-centers [230] and others [181]. Large bandwidth κ opens the way for fast detection
of mechanics, which is important for the feedback-based quantum control.

2.2.3 Different temporal interaction regimes

It is possible to determine, among others, three different temporal regimes of interac-
tion (See Fig. 2.3). The first one is the so-called continuous regime. In this case,
the laser drive duration is much longer comparing with the mechanical period of os-
cillations (τ � 2π/ΩM ) and the system is in resolved sideband regime κ < ΩM

(however, exceptions exists such as the Laser Interferometer Gravitational-Wave Ob-
servatory (LIGO)). The interaction happens during many of the mechanical periods. In
this case, the steady-state is analyzed.

The second one is long-pulsed regime when τ > 2π/ΩM and κ < ΩM . In this
regime, the interaction again proceeds for many mechanical periods, but comparing
with the continuous regime, the light may be switched off, so the state of mechanics
can be immediately analyzed after the interaction.

In both mentioned regimes, provided that optical decay rate κ is much smaller than
the mechanical frequency ΩM , one typically detunes driving frequency away from the
cavity resonance. Based on the value and sign of the detuning, one gets either beam-
splitter or amplifier types of interaction.

There is the third regime of interaction, pulsed regime, pioneered by Vanner [214],
developed in this thesis and in [31]. In this regime τ � 2π/ΩM and κ � ΩM so the

29



interaction is much faster than a mechanical period and the mechanical position may
be considered as constant during the interaction. No distinguishable optical sidebands
are produced in this regime. Regardless of the detuning, the interaction is always H ∼
XoptXM .
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CHAPTER 3

High efficiency transfer of non-classical state of light to mechanical
system

One of the purposes of this thesis is to propose the physical interconnection of recent
methods of quantum optics [72] with quantum optomechanics [147, 40, 11].

The first step we are considering is the key problem of efficient quantum state trans-
fer from an electromagnetic system to a mechanical one. Coherent exchange of quan-
tum states between different systems is a very important line of research in the area of
quantum optics, which has a prominent application in quantum memory [128]. This is
a non-trivial task, as, negative values of Wigner function (an indicator of quantum non-
Gaussianity) are very fragile [34, 33, 238, 50], so the high-efficient interface should be
developed.

To design such an interface we were inspired by several theoretical and experimental
works. Among them, there is a demonstration of entanglement between pulsed radiation
and mechanical system [161], which can be used for quantum state teleportation. As
it was mentioned previously, quantum teleportation is not necessary for quantum state
transfer when the state is not transferred on a long distance. Instead, the very basic in-
teraction between light and mechanics, caused by radiation pressure, can be used. This
coupling provides a basic continuous-variable gate - quantum non-demolition (QND)
interaction. Note, that the improvement of transfer through beam-splitter or amplifier
type coupling between light and mechanics will require much complex quantum pro-
cessing [67]. The QND coupling is therefore the most feasible and versatile for such
improvements. This interaction was studied in detail in the pulsed regime beyond the
sideband resolved limit in a number of works [214, 213, 18]. Nevertheless, pulsed QND
interaction in the sideband resolved limit remains attractive for a basic continuous vari-
able gate design. One of the drawbacks of long pulses for a quantum interface is the
weak coupling to the mechanics which is not enough for perfect upload. In [66] a very
elegant solution was proposed - a combination of presqueezing of the input light and
feedforward control can effectively enhance QND coupling between light and mechan-
ics. As it was demonstrated that non-Gaussian states of light can be squeezed [70, 150],
it was a very natural step to propose quantum interface incorporating all these achieve-
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ments together.
The contribution of this thesis is the proof of the feasibility of quantum interface

for efficient non-classical state transfer between light and mechanics, which exploits
local Gaussian preprocessing of light to enhance optomechanical coupling. We have
clearly shown that the negativity of the Wigner function is preserved. Moreover, we
have demonstrated that for interfaces failing to do so, presqueezing helps to preserve
Wigner function negativity. Our estimations include a range of experimental parameters
that are suitable for further implementation in the laboratory.

This subject attracted an investigation of similar ideas. For example, in [95] a pro-
tocol generating entanglement of distinct states of the mechanical oscillator is pro-
posed. This protocol relies on a sequence of three pulsed optomechanical quantum
non-demolition interactions in the bad-cavity regime, and the presqueezing of optical
mode is used to enhance cooling by measurement of mechanical mode. In [174] au-
thors introduced the protocol for photon-phonon-photon transfer of highly nonclassical
quantum state. In another work [113] it is shown that a particular kind of imperfect
transducer that uses QND swapping of quantum states can be transformed into a perfect
one-way transducer with the help of feed-forward and squeezing.
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We prove feasibility of high-fidelity pulsed optomechanical interface based on all-optical presqueezing of
non-Gaussian quantum states of light before they enter the optomechanical system. We demonstrate that feasible
presqueezing of optical states effectively increases the low noise transfer of them to mechanical oscillator. It
allows one to surpass the limit necessary to transfer highly nonclassical states with negative Wigner function. In
particular, we verify that with this help single photon states of light can be efficiently turned to single phonon
states of mechanical oscillator, keeping the negativity of the Wigner function. It opens the possibility to merge
quantum optomechanics with the recent methods of quantum optics.
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I. INTRODUCTION

Recent development of continuous-variable tools of quan-
tum optics [1] and quantum optomechanics [2–4] merges these
two disciplines in one unique platform. Advantageously, both
these fields can mutually benefit. A necessary step for their
complete merger is the high fidelity transfer of nonclassical
states of light to mechanical systems. Such quantum interface
should be able to transfer a broad class of highly nonclassical
states of light, for example, exhibiting negative Wigner
function [5–13]. It is known that negative values of Wigner
function are very fragile [14–17]; they can quickly disappear
under influence of damping and noise, but also vanish in an
inefficient interface.

Recently, entanglement between pulsed radiation and me-
chanical oscillator has been demonstrated [18]. It can be
used to teleport quantum state of pulsed light in cavity
optomechanical systems [19]. However, teleportation strategy
is not necessary for this purpose, since the state is not trans-
ferred at a distance. Instead of generating continuous-variable
entanglement that is fragile under loss, we can directly use
basic coupling between light and mechanical oscillator caused
by a pressure of light. Advantageously, this coupling provides
a basic continuous variable gate—quantum nondemolition
(QND) interaction, when quantum states are strongly displaced
before they start to interact with a mechanical system [4].

This nondemolition interaction in optomechanics has been
already exploited in the regime of very short and intensive
pulses to manipulate mechanical system without the cavity
[20–23]. Very recently, the pulsed interface without the cavity
based on multiple QND interactions has been proposed [24].
This platform exploits very short intensive pulses of light
to reach sufficiently large optomechanical QND coupling
existing beyond sideband resolved regime. However, the QND
interaction in the sideband resolve regime exhibits generally
attractive potential of basic continuous variable gate with the
nondemolition variables. From this reason, also the pulsed
cavity optomechanics [19] can advantageously use this type
of interaction. Moreover, it can be simultaneously merged with
cavity quantum optics, capable to produce and operate various
non-Gaussian states of light [1].

*andrey.rakhubovskiy@upol.cz

The strong and coherent displacement of a quantum state,
achieved from long pumping pulses, is however not sufficient
for its perfect upload as the pulse containing quantum state of
light cannot be arbitrarily long. Consequently, the quantum
interface is seriously limited by weak and slow coupling
of light pulse to mechanical object. Moreover, the interface
suffers from residual thermal noise of mechanical oscillator,
and additional technical noise and damping in the direct
interface. Although this interface does not necessarily break
entanglement, it can be very limiting for a transmission
of highly nonclassical quantum states of light. In general,
quantum entanglement propagating through the interface can
be enhanced by quantum distillation. Quantum distillation of
entanglement is only probabilistic, moreover, very demanding
and practically requires quantum memories to improve the
transfer of quantum states. For the continuous variable states,
it moreover requires a venture beyond Gaussian operations and
hence cannot be well applied here [25–27].

It was already principally recognized that QND coupling
between light and matter oscillator can be enhanced by a
local presqueezing of quantum states of light before the
coupling [28]. Interestingly, the mutual coupling to matter
is enhanced purely by a local Gaussian operation on light.
In a fruitful combination with high-fidelity measurement of
light and feedforward control of the oscillator, this allows one
to achieve the optimal transfer of any, even non-Gaussian,
state of light to matter oscillator. The transfer is suffering
only from residual pure damping and all excess noise is in
principle eliminated. Moreover, the residual damping can be
made arbitrarily small as the presqueezing increases.

The squeezer-based QND interface can universally and
deterministically transfer any state of light to mechanical
oscillator. It is therefore different from conditional methods
of preparation of non-Gaussian quantum states of mechanical
systems [29–32]. Furthermore, the proposed interface is
capable of transferring of arbitrary states of light, without
any prior knowledge about that state, which distinguishes it
from recent proposals for preparation of mechanical oscillator
in nonclassical states (see [33] and references therein, and
[34–36]). The ability to enhance the transfer by presqueezing
makes the interface stand out from the ones relying on the
beamsplitter-type optomechanical interaction [37,38].

Such the method can be extended to advanced QND
scheme, which does not require the sophisticated cooling of the
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mechanical oscillator [39]. These extensions are advantageous,
because the procedures leading to better interface are fully
deterministic and require only feasible Gaussian all-optical op-
erations. Squeezing of single photon states and superposition
of coherent states, both exhibiting negative Wigner function,
have been already experimentally demonstrated [40,41].

In this paper, we investigate the application of this proof-of-
principle approach to pulsed quantum optomechanics which
is suitable for a merger with current optomechanical methods
[19] with already demonstrated online optical squeezer oper-
ating on the non-Gaussian states of light [41]. We analyze the
method beyond adiabatic elimination of the cavity mode and
under the mechanical decoherence. We confirm that proof-
of-principle idea can be applied to pulsed optomechanical
systems. The squeezing is capable to obtain transmission
of non-Gaussian states with negative Wigner function, when
commonly used prolongation of coherent pulse is not helpful.
We demonstrate this on a feasible example of squeezed single
photon state transferred to the mechanical oscillator [42]. This
study certifies feasibility of merge of current quantum optics
technology [1] and developing quantum optomechanics.

II. QUANTUM NONDEMOLITION
OPTOMECHANICAL COUPLING

We consider an interface allowing one to transfer quantum
state encoded in an optical pulse to the mechanical oscillator
of an optomechanical system. The scheme of the interface is
sketched at Fig. 1 and mainly relies on the QND interaction
in a cavity optomechanical system between the optical and
mechanical modes comprising the system. The interaction
is followed by detection on the optical side and consequent
displacement of the mechanical mode based on the outcome
of the detection.

The QND interaction with a macroscopic mechanical object
was first proposed [43,44] to circumvent the standard quantum
limit [45] of sensitivity of gravitational-wave detectors. This
method was later revisited under the title of back-action
evading measurement [46] and has been recently realized
experimentally [47,48].

The QND interaction between the two oscillators I and II is
described by the Hamiltonian of the form Hqnd ∝ gQIQII, with
Q denoting quadrature amplitudes of different oscillators, and
g, coupling. In the rotating frame where the quadratures Q are
constants of motion the interaction of this type does not disturb
them, but instead displaces the conjugate quadratures P by an
amount proportional to gQ. Consequently, prior squeezing of
a mode that results in expansion of Q is formally equivalent
to an increase of the interaction strength. Using postsqueezing
of the mode after the interaction, we can simply recover the
QND with the increased interaction strength.

An optomechanical cavity can be thought of as a Fabry-
Pérot resonator pumped through a semitransparent stationary
mirror with another mirror being movable and perfectly
reflective. The system thus comprises two harmonic oscillators
(optical and mechanical modes) coupled via the radiation
pressure. The Hamiltonian of the system reads [49]

H = �ωca
†a + �ωmb†b − �g0a

†a(b† + b),
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FIG. 1. (a) Simplified scheme of the interface. The optical mode
(O) is prepared in the desired state, passes the squeezing operation
(S), and is coupled via the QND interaction with the mechanical mode
(M). The optical mode is then detected (D) and the outcome of the
measurement is used to displace M. (b) A sketch of optomechanical
implementation; C—circulator. (c) Principal scheme of squeezing
operation (see Sec. III); OPO—optical parametric oscillator.

with a (b) standing for annihilation operator of the optical
(mechanical) mode with eigenfrequency ωc (ωm). The op-
tomechanical coupling is inherently nonlinear and represents
a nondemolition probe of the number of intracavity photons
(a†a) by the displacement of the mechanics. This nondemoli-
tion nature of the interaction has been proposed for instance
for detection of photon number [50] or increasing precision of
thermal noise measurement [51].

In experimental realizations typically the single-photon
coupling strength g0 is small and the interaction is thus
very weak. In order to observe it usually the system is
considered in presence of a strong classical pump. This allows
to linearize the dynamics of the system and consider quantum
fluctuations near the classical mean values. The Hamiltonian
of the system is then written in the rotating frame defined by
Hrf = �ωca

†a + �ωmb†b as follows:

H = �g0
√

ncav(a†e−iψ + a eiψ )(b e−iωmt + b†eiωmt ),

where we assumed the pump to be resonant with the cavity.
The phase ψ is defined by the phase of the pump. The
optomechanical coupling is enhanced by the mean opti-
cal amplitude proportional to the mean intracavity photon
number ncav.

Assuming that the optical pump is modulated in such a way
that

√
ncav → √

ncav cos(ωmt + φ), we apply rotating wave
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approximation (RWA) omitting terms rapidly oscillating at
frequencies ∼2ωm and obtain the following Hamiltonian:

H = �g(X cos ψ − Y sin ψ)(q cos φ − p sin φ), (1)

where we defined the enhanced optomechanical coupling
g ≡ g0

√
ncav and the optical and mechanical quadratures X =

(a† + a), Y = i(a† − a), q = (b† + b), and p = i(b† − b).
A proper choice of phases φ and ψ transforms (1) into a

particular Hamiltonian corresponding to the QND interaction,
for instance putting ψ = 0, φ = π yields HI = −�gXq.

Finally, to account for coupling to the environment we
include viscous damping of the mechanical mode at rate γ ,
optical damping at rate κ , and noise terms [52] and write the
Heisenberg-Langevin equations:

q̇ = −γ

2
q + √

γ ξq,

ṗ = −γ

2
p + gX + √

γ ξp,

(2)
Ẋ = −κX +

√
2κXin,

Ẏ = −κY + gq +
√

2κY in.

Here Xin,Y in are the quadratures of the optical input mode, ξ

is the mechanical damping force with quadratures ξq,p, which
we assume to be Markovian and satisfy usual commutation
relations [ξq(t),ξp(t ′)] = 2iδ(t − t ′).

Note that to write (1) we applied RWA at the mechanical
frequency ωm which requires the latter to exceed the rates
of all the other processes taking place in the system, i.e.,
ωm � κ,g,γ . In practice it is sufficient to ensure the so-
called resolved sideband regime, ωm � κ . The experimental
platform discussed here is therefore different from the one
used in Ref. [24].

The system thus effectively comprises three modes: the
input optical mode that encodes the target state, the intracavity
optical mode, and the mechanical mode. The former two are
coupled at rate κ and the latter two are coupled at rate g.
The intracavity mode thus serves as a transducer between
the input optical and the mechanical modes. Under certain
conditions the intracavity mode can be eliminated. In Sec. IV
this elimination is performed to consider the system in a
simple approximation. The system is considered without this
elimination in Sec. V and the account of the mechanical bath
is examined in Sec. VI.

III. PRESQUEEZING OF NON-GAUSSIAN
STATES OF LIGHT

During the past decade, quantum optics has progressed
in the implementation of squeezing operation on quantum
states of light. It was mainly due to development of the
measurement-induced operations [40], which do squeeze any
quantum state of light without injecting it into the cavity-based
degenerate optical parametric amplifier. The basic scheme is
depicted in Fig. 1(c). The input state of light is mixed with
squeezed vacuum from OPO at the variable beam splitter
with transmittivity T and one output is measured by a
high efficiency and low-noise homodyne detection HD1. The
electric signal from the detector is amplified in the electronic
amplifier EA with the variable gain G. It can be used to

directly modulate (D) the undetected output from the beam
splitter in suitable optical quadrature. After optimization of G
to eliminate noise of the nonsqueezed variable from OPO, we
can reach the transformation

Xin → 1√
T

Xin, Y in →
√
T Y in + √

1 − T Y sq

of the input operators Xin,Y in, where Y sq is squeezed variable
at the output of the OPO. In the limit of sufficiently large
squeezing produced by OPO, the input state can be intensively
amplified in the variable Xin by the factor S = 1/

√
T , as has

been demonstrated, for example, for the single photon state
[41]. The complementary variable Xin is squeezed by the factor
S−1. Recently, dynamical control of the squeezing operation
has been demonstrated [53]. The purity of squeezed light from
OPO is not limiting, because noise from antisqueezed quadra-
ture can be eliminated in the feedforward loop. Recently,
maximum squeezing from OPO reached −12 dB, which is
sufficient to perform high-quality squeezing of non-Gaussian
states of light. Moreover, recently fully optically integrated
version of measurement-induced squeezer can improve phase
stability and provide much higher quality of the squeezing pro-
cedure for very nonclassical states [54]. Other improvements
can be expected from the recent control of quantum states in
optical cavities [55]. The efficient schemes based on an optimal
control of injection and extraction of non-Gaussian states in
the cavity of OPO could in future substitute the measurement
induced squeezers.

The feedforward strategy of all optical presqueezing can
be further combined with the feedforward optomechanical
interface. Instead to directly modulate light before it enters
the optomechanical cavity, we can combine the results from
homodyne measurement HD1 with other results of homodyne
detection D of light leaving the optomechanical cavity and
apply them together to properly displace the mechanical state.
The situation simplifies even more for a transfer of given state
to mechanical oscillator. In this case, it is sufficient to prepare
the squeezed version of this state directly, for example, using
recent high-fidelity tunable multiphoton subtraction schemes.
The squeezing on the top of non-Gaussian states can be very
large, up to already experimentally generated −12 dB [56].
Although this method is conditional and not universal, it
can be versatile for high-quality preparation of non-Gaussian
quantum state of mechanical system. The simplest testing
situation appears if the highly squeezed state is transferred
to the mechanical oscillator. The squeezing is then used to
prepare a ground state or squeezed state of mechanical system.
It can be done differently, using the projection by homodyne
measurement D, than recently demonstrated squeezing in
electromechanical oscillators [57,58].

IV. ADIABATIC ELIMINATION OF INTRACAVITY MODE

Before we present full analysis, we repeat the basic idea
of the squeezer-based interface [28] in the simplest approx-
imation, where the cavity mode is adiabatically eliminated
and mechanical bath is not very occupied. It allows us to
simply imagine the ideal performance of the squeezer-based
optomechanical interface.
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Typically in an optomechanical experiment κ � γ /2 holds,
so if the mechanical bath is not very occupied, one could
assume γ = 0. The condition κ � g is commonly satisfied
as well, which means that the optical mode in the cavity can
respond to any changes in the input mode or the mechanical
mode instantaneously [this amounts to putting Ẋ = Ẏ = 0
in (2)].

Consequently the intracavity mode is removed and in this
simple picture the QND interaction between the input optical
and mechanical modes results in exchange of one of the
quadratures

q(τ ) = q(0), p(τ ) = p(0) + KXin,
(3)

Xout = Xin, Yout = Yin + Kq(0),

with transfer coefficient

K = g
√

2τ/κ. (4)

To write the transformations (3) we defined the quadratures of
input and output pulses as integral over the rectangular pulse

Qk = 1√
τ

∫ τ

0
ds Qk(s), Q = X,Y, k = in,out,

so that [Xk,Yk] = 2i, and used input-output relations Qout =√
2κQ − Qin.
To complete the state transfer to the mechanical mode we

need to upload Yin to the mechanical quadrature q. This can
be achieved by a feedforward displacing the mechanical mode
by amount equal to −K ′Yout. The feedforward control of
mechanical oscillator in an optomechanical cavity was realized
in several setups, for instance, by means of radiation pressure
or dielectric gradient force actuation [59–63].

The feedforward can in principle be implemented by a QND
interaction with the second pulse via the Hamiltonian HII =
−�g′Yp. If the duration of the second pulse equals τ ′, the
coupling will be analogous to (3) with transfer coefficient
K ′ = g′√2τ ′/κ . After this procedure the two quadratures of
the input optical mode are written to the quadratures of the
mechanical mode

q ′ = q(0)(1 − KK ′) − K ′Yin,

p′ = p(0) + KXin.

The quadratures of the optical pulse are transferred to
the mechanical mode in two steps, one quadrature at time.
Therefore, squeezing of the pulse that amplifies one of the
quadratures at cost of reduction of the other one can help to
transfer the amplified quadrature. Indeed, squeezing of the
pulse amounts to substitution Xin → SXin; Yin → S−1Yin in
(3) and this is equivalent to replacement K → SK .

The other quadrature transfer can be enhanced by increasing
the feedforward gain. Or, if we think of the feedforward as of
another QND interaction with limited strength, by appropriate
amplification of the optical mode. Note that the squeezing
of the first pulse weakens the quadrature Yin that should be
transfered in the second step, so the amplification should
account for it, which means, the gain of the feedforward should
be replaced as K ′ → K ′S. However, since the other quadrature
Xout is no longer of our interest, the amplification needs not to
be noiseless as long as the noises are concentrated in this other
quadrature.

After the feedforward the mechanical mode contains the
squeezed target state:

qf =
√

K ′

KS
[q(0)

√
1 − T −

√
T Yin],

pf =
√

KS

K ′ [p(0)
√

1 − T +
√

T Xin],

(5)

with transmittivity

T = (KS)2

1 + (KS)2
,

provided that K ′ = KS
1+(KS)2 .

The transfer coefficient thus depends only on the product
KS and increasing this product allows to approach an ideal
transfer with T = 1. From the definition (4) of K it follows
that for a given κ the same increase in the product KS

can be provided by means of equal increase of either S,
g, or

√
τ . Increasing coupling strength or duration of the

pulse can impose difficulties in experimental optomechanical
realization. At the same time stronger presqueezing of the
optical pulse helps to improve the transfer by cost of additional
resource of external quantum optical tools.

The equations (5) can be recast in terms of target state and
added noise (we formally consider squeezing of the mechanical
state to symmetrize the expressions)

qf = −
√

T Yin + √
1−T XN, pf =

√
T Xin + √

1−T YN.

(6)

The transformation is effectively combining the target state
with quadratures Xin,Yin and a noisy mode with quadratures
XN,YN on a beam splitter with the transmittivity T .

The variance of the added noise is defined as the product of
the variances of quadratures of the noisy mode

VN ≡ √
VXN

VYN
(7)

and is limited (see [64]) from below by the shot noise level:
VN � 1. Protocol that saturates the inequality is said to realize
the excess-noise-free upload [28]. This excess-noise-free is
very advantageous for transmission of nonclassical features
of non-Gaussian states, like transfer of single photon states
to single phonon state. It is due to much higher robustness of
quantum non-Gaussianity to loss than to the phase-insensitive
noise.

The transfer defined by (5) represents mixture of the target
state with the initial state of the mechanical mode and is excess-
noise-free, provided the mechanical mode is initially in the
ground state.

V. BEYOND ADIABATIC APPROXIMATION
OF OPTOMECHANICAL COUPLING

In the previous section we demonstrated the principal
possibility of an excess-noise-free transfer of a quantum
state of light to mechanics that can be enhanced by optical
presqueezing. The necessary condition of the transfer was the
instantaneous reaction of the cavity mode to any changes.
In this section we perform analysis showing that the cavity
memory effects caused by the finite cavity reaction time do not
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limit the interface performance. We first analyze the system
assuming no mechanical decoherence (γ = 0) and then carry
out the full analysis in Sec. VI.

After interacting with a presqueezed pulse, the mechanical
system has quadratures

q(τ ) = q(0),

p(τ ) = p(0) + KSXin

+ g

κ
(1 − e−κτ )X(0) − gS

κ

√
1 − e−2κτ Xin

δ .

Due to the cavity memory effect, the simple transformations
(3) become disturbed by the quadrature of the intracavity mode
X(0) and an auxiliary asymmetric mode of input field Xin

δ ,
defined as

Qin
δ =

√
2κ

1 − e−2κτ

∫ τ

0
ds e−κ(τ−s)Qin(s), Q = X,Y, (8)

in order to satisfy commutations [Xin
δ ,Yin

δ ] = 2i.
By definition the asymmetric mode is composed primarily

of the values of Qin(t) adjacent to the end of the interval of
integration, which is a manifestation of memory. In the limit
where the cavity mode could be eliminated, κ → +∞ the
integration kernel approaches Dirac delta [e−κ(τ−s) ∼ δ(τ −
s)], so Xin

δ ∼ Xin(τ ) up to normalization. Finally, the prefactor
makes contribution of this term negligible.

The input-output transformation for the optical quadrature
Yout that is of our interest reads

Yout = q(0)K

(
1 − 1 − e−κτ

κτ

)
+ S−1Yin

+Y (0)

√
2

κτ
(1 − e−κτ ) − S−1

√
2

κτ
(1 − e−2κτ )Yin

δ .

We would like to note that the cavity memory effect manifests
itself differently in the optical output and the mechanical
modes, which makes introduction of the asymmetric mode
in the form (8) necessary.

After the displacement q(τ ) → q(τ ) − K ′SYout and formal
postsqueezing with amplitude

√
KS/K ′, the mechanical mode

has quadratures

qf = −
√

T Yin + √
1 − T

[
q(0)

(
1 + 2g2S2

κ2
(1 − e−κτ )

)

−Y (0)
2gS2

κ
(1 − e−κτ ) + Yin

δ

2gS

κ

√
1 − e−2κτ

]
,

(9)

pf =
√

T Xin + √
1 − T

[
p(0) + X(0)

g

κ
(1 − e−κτ )

− Xin
δ

gS

κ

√
1 − e−2κτ

]
.

The presqueezing of the incoming pulse is thus not completely
equivalent to increasing coupling strength due to the fact that
the squeezing changes the ratio in Yout of the uploaded and
intracavity modes in favor of the latter.
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FIG. 2. Added noise variance VN (6),(7) in shot noise units as a
function of the transfer coefficient T in case of increase of squeezing
S, coupling g, or pulse duration τ . (a) Solution without the mechanical
bath (Sec. IV); (b) solution accounting for the mechanical bath but
with adiabatically eliminated cavity mode; (c) full solution (Sec. VI).
The point (O) corresponds to the initial set of parameters (10) with
no presqueezing (S = 1). Markers denote points corresponding to
sequential increase of squeezing with the step 3 dB. Dashed line
marks the perfect excess-noise-free transfer VN = 1. Dotted curve
indicates the maximum VN allowing transfer of the negativity of the
Wigner function of a single-photon state for a given transmittivity
T [V 2

N < T/(1 − T )].

The added noises in this scheme are provided by the
initial occupation of the optical and mechanical modes of the
optomechanical cavity, and the asymmetric mode caused by
the finite cavity decay κ . Assuming all the noise modes in
ground state, the added noise variance VN can be approximated
by

VN ≈
√

1 + 4g2S4/κ2.

Therefore, for high quality low-noise transfer we need to
secure gS2/κ � 1 that keeps the added noise close to the
vacuum level and gS

√
τ/κ � 1 for high transmittivity. Both

inequalities are satisfied by making pulses longer: τ � 1/g.
This is illustrated at Fig. 2(a), where we plot the added noise
variance as a function of the transmittivity of the interface
for the cases of increasing squeezing, coupling, or pulse
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duration. It is evident from the figure and from (9) that
increasing τ allows one to increase transfer while adding
little excess noise. At the same time increasing coupling or
squeezing adds more noise than increasing τ . It is due to
the intracavity mode which disturbs ideal dynamics observed
in the adiabatic approximation. The larger τ is, however,
prolonging the interaction which requires better phase stability
of the transfer and, mainly, smaller decoherence potentially
caused by mechanical environment of the oscillator. To make
a proper conclusion on the choice of the best strategy, therefore,
we need to take into account the mechanical bath.

VI. TRANSFER UNDER MECHANICAL DECOHERENCE

In this section we consider an imperfect QND interaction
of a pulse with the system during which the mechanical mode
is affected by its bath. Simultaneously, we keep the analysis
beyond the adiabatic approximation. We still consider that
highly efficient homodyne measurement is followed by a
perfect instantaneous electromechanical feedforward. We first
present an approximate analysis to get order-of-magnitude
estimates, then sketch the steps to obtain full analytical
solution, and provide its results.

In the case of small mechanical damping γ � g,κ the
simplest estimates can be easily obtained from Eqs. (9) by
the substitution

Q(0) → Q(0) + √
1 − e−γ τQB, Q = q,p,

where QB represents effective quadratures of the mechanical
bath with variance 2nth + 1, with nth being the average bath
occupation. The corresponding contribution of the thermal
noise to the variances of each of the added noise terms XN,YN

is γ 2τ 2(2nth + 1)/(1 − T ).
In the region of parameters where the thermal noise from the

bath dominates making other noises negligible, the added noise
variance can be approximated by VN = 1 + 2γ (gτS)2(2nth +
1)/κ . Despite the fact that g, τ , and S enter this expression
equally, we note that T ∝ gS

√
τ , and hence increase in pulse

length that produces the same increase in transmittivity, adds
much more thermal noise then stronger coupling or squeezing.

We therefore can write several asymptotic requirements for
high-transmittivity low-noise state transfer. First, to achieve
high transfer gain, we need g2S2τ/κ ≡ ε � 1. Second, in or-
der to make cavity mode induced effects negligible, g2S4/κ2 =
S2ε/(κτ ) � 1. Finally, to keep the thermal noise influence
moderate, γ (gτS)2nth/κ = γ τnthε � 1. The two latter com-
bine to set the proper range for the available values of τ :

S2ε

κ
� τ � 1

εγ nth
.

Along with the simplest estimates one can perform a full
analysis of the system dynamics to properly quantify the
impact of different sources of the noise.

The system of dynamical equations (2) is linear and
therefore has [65] a formal analytical solution that involves
exponential of the matrix of its coefficients. The solution
is rather complicated, and so we will present here only the

expression for p(τ )

p(τ ) = p(0)e−γ τ/2 +
∫ τ

0
ds eγ (s−τ )/2√γ ξp(s) + θ (τ )X(0)

+KSXin −
∫ τ

0
ds

[
K√
τ

−
√

2κθ (τ − s)

]
SXin(s),

θ (t) ≡ g

κ − γ

2

(e−γ t/2 − e−κt ).

The last summand in the expression for p(τ ) represents the
asymmetric mode modified by mechanical decoherence. In
the limit γ → 0 this summand is reduced to Xin

δ .
Using the formal solution one can write expressions for

q(τ ) and Yout and proceed further to obtain the beamsplitterlike
transformations in the form (6). With this transformation one
can analyze the added noise variance VN (7).

Our result of estimation for the added noise variance is
presented in Fig. 2(c). For estimations we used the following
initial set of parameters:

κ = 221.5 MHz, g = 1 MHz, γ = 328 Hz,
(10)

τ = 4 × 10−5 s

of a recent reported experiment with optomechanical crystal
[42]. The mechanical system is very well precooled in
this experiment; however, there is intensive heating of the
mechanical mode by optical pump already at the level of
circulating power equivalent to a few photons. We model
this by setting initial mechanical occupation to n0 = 0.01 and
mechanical bath occupation to nth = 2.

Starting from the set (10) that is represented by the point O

in the figure, we continuously increased one of the parameters
S, g, or τ . Comparing Fig. 2(c) with Fig. 2(a) allows one to
conclude that for the parameters we chose the main source of
added noise is indeed the thermal mechanical environment.
In this case, optical presqueezing is effectively equivalent to
increasing the interaction strength as it follows from the simple
estimate. This is as well seen from Fig. 2(c), where the curves
corresponding to increase in S and g overlap.

The effect of the intracavity optical mode has two contribu-
tions. First, this mode itself produces some excess noise and,
second, it serves as a memory that enhances the impact of the
thermal noise. To illustrate this we analyze the transfer under
the mechanical decoherence but adiabatically eliminating the
cavity mode. The result of this analysis is presented at Fig. 2(b).
Although the mechanical bath is the main source of noise in
both Figs. 2(b) and 2(c), it is clearly seen that elimination of
the cavity mode leads to underestimation of the noise impact.

The dotted lines in Fig. 2 denote the maximum variance
of added noise for a given transmittivity that allows one
to transfer negativity of a single-photon state. Our analysis
shows that the interface we consider is capable of such a
transfer. It is due to positive effect of the presqueezing, which
allows one to shorten the interaction time. From this reason,
the squeezer-based pulsed optomechanical interfaces in the
cavities is a feasible road to achieve high-fidelity transfer
of the non-Gaussian quantum states of light to mechanical
oscillators. Indeed, the Wigner function of an uploaded state
manifests negativity at the origin. The simplest example is
transfer of a highly nonclassical single photon state to a single
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FIG. 3. Wigner function of a Fock state |1〉 transmitted to the
mechanical system using the proposed protocol working in the
regimes, denoted by corresponding named points at Fig. 2. O, without
the presqueezing; A with 12 dB of presqueezing with intracavity mode
formally eliminated; B with 12 dB of presqueezing, full solution; C,
same transmittivity as in A and B, but no excess noise (VN = 1). The
negativity at the origin is presented at the framed insets.

phonon state. This is demonstrated in Fig. 3, where we compare
the Wigner functions of a single photon state, transferred
with help of the proposed protocol in regimes, denoted in
Fig. 2 by the points O, A, B with the state uploaded via
the excess-noise free protocol (VN = 1, point C). We clearly
observe a detectable preservation of negativity of the Wigner
function of a single phonon state. It witnesses high-fidelity
quantum transfer preserving effects which cannot be explained
by stochastic mechanics. Based on this example, we can
conclude that squeezed-based pulsed optomechanical interface
is a feasible road to single photon-phonon transfer. Moreover,
it can be used more generally to transfer other non-Gaussian
states of light to mechanical systems.

We did not consider mechanical decoherence during the
feedforward control of the mechanical system. This simpli-
fication is not very coarse, even if we consider a second
QND interaction in place of the feedforward. In our protocol
interaction gains K and K ′ relate to each other as K ′ ∝ K−1.

Therefore, with increase K � 1 which is a natural condition to
achieve T close to 1, the gain of the second interaction K ′ and
consequently its duration τ ′ decrease. The second interaction
therefore effectively approaches an instantaneous feedforward
that does not suffer much from the thermal noise.

VII. CONCLUSION

We have verified feasibility and performance of the
squeezer-based high-fidelity optomechanical interface for
deterministic transfer of non-Gaussian highly nonclassical
quantum states of light to mechanical oscillators. We observed
clearly that interfaces which cannot transfer negativity of
Wigner function can be improved by this method to be able
to preserve it. We demonstrated importance of verification be-
yond the adiabatic elimination. We proved that squeezer-based
interface is especially useful when the transfer is influenced
by mechanical decoherence, which limits time duration of
transfer. We predicted achievable quality of the interface
for the experiment [42]. This interface merges developing
pulsed cavity optomechanics [4] with recent state-of-the-art
of continuous-variable quantum optics [1]. It opens therefore
a new joint direction of cavity-based quantum optomechanics
and cavity-based quantum optics. In this joint direction,
the fields can be mutually fruitful and produce a united
physical platform for new continuous-variable experiments
with nonclassical light and mechanical oscillators.

Note added in proof. Recently, we became aware of two
new relevant papers: Hof et al., arXiv:1601.01663 [quant-ph]
and Milburn et al., arXiv:1602.01835 [quant-ph].
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[26] J. Fiurášek, Gaussian Transformations and Distillation of En-
tangled Gaussian States, Phys. Rev. Lett. 89, 137904 (2002).

[27] G. Giedke and J. Ignacio Cirac, Characterization of Gaussian
operations and distillation of Gaussian states, Phys. Rev. A 66,
032316 (2002).

[28] R. Filip, Excess-noise-free recording and uploading of nonclas-
sical states to continuous-variable quantum memory, Phys. Rev.
A 78, 012329 (2008).

[29] F. Khalili, S. Danilishin, H. Miao, H. Müller-Ebhardt, H.
Yang, and Y. Chen, Preparing a Mechanical Oscillator in
Non-Gaussian Quantum States, Phys. Rev. Lett. 105, 070403
(2010).

[30] H. Mueller-Ebhardt, H. Rehbein, C. Li, Y. Mino, K. Somiya,
R. Schnabel, K. Danzmann, and Y. Chen, Quantum state

preparation and macroscopic entanglement in gravitational-
wave detectors, Phys. Rev. A 80, 043802 (2009).

[31] H. Mueller-Ebhardt, H. Miao, S. Danilishin, and Y.
Chen, Quantum-state steering in optomechanical devices,
arXiv:1211.4315 [quant-ph].

[32] U. Akram, W. P. Bowen, and G. J. Milburn, Entangled mechani-
cal cat states via conditional single photon optomechanics, New
J. Phys. 15, 093007 (2013).

[33] K. Hammerer, C. Genes, D. Vitali, P. Tombesi, G. Milburn, C.
Simon, and D. Bouwmeester, Nonclassical States of Light and
Mechanics, in Cavity Optomechanics, Quantum Science and
Technology, edited by M. Aspelmeyer, T. J. Kippenberg, and F.
Marquardt (Springer, Berlin, 2014), pp. 25–56.

[34] M. Paternostro, Engineering Nonclassicality in a Mechanical
System Through Photon Subtraction, Phys. Rev. Lett. 106,
183601 (2011).

[35] P. Sekatski, M. Aspelmeyer, and N. Sangouard, Macroscopic
Optomechanics from Displaced Single-Photon Entanglement,
Phys. Rev. Lett. 112, 080502 (2014).

[36] C. Galland, N. Sangouard, N. Piro, N. Gisin, and T. J.
Kippenberg, Heralded Single-Phonon Preparation, Storage, and
Readout in Cavity Optomechanics, Phys. Rev. Lett. 112, 143602
(2014).

[37] T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds,
and K. W. Lehnert, Coherent state transfer between itinerant
microwave fields and a mechanical oscillator, Nature (London)
495, 210 (2013).

[38] J. Zhang, K. Peng, and S. L. Braunstein, Quantum-state transfer
from light to macroscopic oscillators, Phys. Rev. A 68, 013808
(2003).

[39] P. Marek and R. Filip, Noise-resilient quantum interface based
on quantum nondemolition interactions, Phys. Rev. A 81,
042325 (2010).

[40] R. Filip, P. Marek, and U. L. Andersen, Measurement-induced
continuous-variable quantum interactions, Phys. Rev. A 71,
042308 (2005).

[41] Y. Miwa, J.-i. Yoshikawa, N. Iwata, M. Endo, P. Marek, R. Filip,
P. van Loock, and A. Furusawa, Exploring a New Regime for
Processing Optical Qubits: Squeezing and Unsqueezing Single
Photons, Phys. Rev. Lett. 113, 013601 (2014).

[42] S. M. Meenehan, J. D. Cohen, G. S. MacCabe, F. Marsili,
M. D. Shaw, and O. Painter, Pulsed Excitation Dynamics
of an Optomechanical Crystal Resonator near Its Quan-
tum Ground State of Motion, Phys. Rev. X 5, 041002
(2015).

[43] C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg,
and M. Zimmermann, On the measurement of a weak classical
force coupled to a quantum-mechanical oscillator. I. Issues of
principle, Rev. Mod. Phys. 52, 341 (1980).

[44] V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, Quantum
nondemolition measurements, Science 209, 547 (1980).

[45] V. B. Braginsky and F. Y. Khalili, Quantum Measurement
(Cambridge University Press, Cambridge, UK, 1995).

[46] A. A. Clerk, F. Marquardt, and K. Jacobs, Back-action evasion
and squeezing of a mechanical resonator using a cavity detector,
New J. Phys. 10, 095010 (2008).

[47] J. Suh, A. J. Weinstein, C. U. Lei, E. E. Wollman, S. K. Steinke, P.
Meystre, A. A. Clerk, and K. C. Schwab, Mechanically detecting
and avoiding the quantum fluctuations of a microwave field,
Science 344, 1262 (2014).

033813-8



SQUEEZER-BASED PULSED OPTOMECHANICAL INTERFACE PHYSICAL REVIEW A 93, 033813 (2016)

[48] F. Lecocq, J. B. Clark, R. W. Simmonds, J. Aumentado,
and J. D. Teufel, Quantum Nondemolition Measurement of a
Nonclassical State of a Massive Object, Phys. Rev. X 5, 041037
(2015).

[49] C. K. Law, Interaction between a moving mirror and radiation
pressure: A Hamiltonian formulation, Phys. Rev. A 51, 2537
(1995).

[50] K. Jacobs, P. Tombesi, M. J. Collett, and D. F. Walls, Quantum-
nondemolition measurement of photon number using radiation
pressure, Phys. Rev. A 49, 1961 (1994).

[51] B. C. Buchler, M. B. Gray, D. A. Shaddock, T. C. Ralph, and
D. E. McClelland, Suppression of classical and quantum
radiation pressure noise via electro-optic feedback, Opt. Lett.
24, 259 (1999).

[52] C. Gardiner and P. Zoller, Quantum Noise: A Handbook of
Markovian and Non-Markovian Quantum Stochastic Methods
with Applications to Quantum Optics (Springer Science &
Business Media, New York, 2004).

[53] K. Miyata, H. Ogawa, P. Marek, R. Filip, H. Yonezawa, J.-i.
Yoshikawa, and A. Furusawa, Experimental realization of a
dynamic squeezing gate, Phys. Rev. A 90, 060302 (2014).

[54] G. Masada, K. Miyata, A. Politi, T. Hashimoto, J. L. O’Brien,
and A. Furusawa, Continuous-variable entanglement on a chip,
Nat. Photon. 9, 316 (2015).

[55] J.-i. Yoshikawa, K. Makino, S. Kurata, P. van Loock, and
A. Furusawa, Creation, Storage, and On-Demand Release of
Optical Quantum States with a Negative Wigner Function, Phys.
Rev. X 3, 041028 (2013).

[56] M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch,
and R. Schnabel, Squeezed light at 1550 nm with a quantum

noise reduction of 12.3 dB, Opt. Express 19, 25763
(2011).

[57] E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F.
Marquardt, A. A. Clerk, and K. C. Schwab, Quantum squeezing
of motion in a mechanical resonator, Science 349, 952 (2015).

[58] J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and
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CHAPTER 4

Quantum non-demolition interaction between two mechanical
oscillators

In the previous Chapter we have shown that methods of quantum optics can be effec-
tively applied to the quantum state transfer in optomechanics. The next step in this
direction would be a demonstration of the efficiency of a similar approach to another
challenging problem, namely coupling two mechanical systems at the quantum level.
Many interesting and promising experimental works in the domain of coupling differ-
ent systems to mechanical oscillators, like continuous-variable cold-atom ensembles
[86, 35, 99], individual atoms [86, 217], superconducting qubits [156, 167], solid-state
systems [8, 106, 203, 160] and semiconductor systems [232, 152], have been performed.
Despite these achievements and the fact that current experimental techniques allow to
make two mechanical systems, mediated with light or microwave filed, interact with
each other – no such result has been demonstrated at that time. Even more, no quantum
entanglement-generating coupling between two mechanical systems outside the single
cavity has been demonstrated.

Our goal was to complement the recent experiment on coupling quantized mechan-
ical oscillations of trapped ions [30]. We wanted to establish QND coupling between
two mechanical systems, using the methods proved their efficiency before [173] - Gaus-
sian local operation on input light (presqueezing) together with feedforward control on
the mechanical system. We also wanted to show that these mechanical oscillators can
be efficiently entangled, indicating the quantum nature of the interaction.

The contribution of this thesis is the demonstration of the feasibility and robustness
of the QND type coupling and of the ways to achieve maximum entanglement for op-
tomechanical and electromechanical setups in the pulsed regime under the influence of
transmission losses and mechanical thermal bath. This work potentially allows pulsed
studies of quantum synchronization of mechanical objects [136, 233, 225], it is also im-
portant for research of the connection with quantum thermodynamics [55, 237, 60, 32]
and can be extended to the coupling of more mechanical systems by different types of
Gaussian and non-Gaussian interactions.

Following our publication, new proposals emerged for the state teleportation and
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quantum state transfer between distant mechanical resonators [65] and for the gener-
ation of mechanical and optomechanical entanglement outside the resolved-sideband
regime using the precooling and local optical squeezers for performance improvement
[42]. This topic is under active exploration and recently the entanglement between
two mechanical oscillators has been experimentally demonstrated in several works. In
[177] authors used a set up with two on-chip based micromechanical oscillators made of
nanostructured silicon beams and demonstrated entanglement at the distance of 20 cm.
Light-matter entanglement between the vibrational motion of two silicon optomechan-
ical oscillators was achieved in the setup for the optomechanical Bell test [137]. The
entanglement of two massive micromechanical oscillators comprising of 1012 atoms
and coupled through a microwave-frequency cavity which stabilized the entanglement
of the centers of mass of mechanical motion was demonstrated [154]. And finally, in
[220] the superposition state |0〉+ |1〉 of mechanical excitations was created in the tool
designed for quantum memory at telecom wavelength.
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Feasible setup for pulsed quantum nondemolition interaction between two distant mechanical oscillators
through an optical or microwave mediator is proposed. The proposal uses homodyne measurement of the mediator
and feedforward control of the mechanical oscillators to reach the interaction. To verify the quantum nature of the
interaction, we investigate the Gaussian entanglement generated in the mechanical modes. We evaluate it under
influence of mechanical bath and propagation loss for the mediator and propose ways to optimize the interaction.
Finally, both currently available optomechanical and electromechanical platforms are numerically analyzed. The
analysis shows that implementation is already feasible with current technology.

DOI: 10.1103/PhysRevA.94.063801

I. INTRODUCTION

Quantum optomechanics and electromechanics connect-
ing light and microwaves with mechanical motion at the
quantum level is an emerging field of quantum physics and
technology [1–3]. Recently, Gaussian quantum entanglement
between mechanical oscillator and microwave field [4] and
between nonclassical photon-phonon correlation of mechani-
cal membrane and optical pulse [5] have been experimentally
demonstrated. Both experiments used modern pulsed optome-
chanics [6–10]. They open new possibilities to experimentally
connect other physical platforms with mechanical oscillator,
like continuous-variable cold-atom ensembles [11–13], and
further many discrete systems like individual atoms [11,14],
superconducting qubits [15,16], solid-state systems [17–20],
and semiconductor systems [21,22]. Together with these
interesting and challenging interdisciplinary experiments,
state-of-the-art of laboratory techniques could currently allow
us to let two mechanical oscillators mediated by light or
microwave field interact. It is another interesting step forward;
two similar mechanical oscillators coupled at the quantum
level have not been demonstrated yet. It can be very stimulating
especially because the connection between two mechanical
systems can physically connect quantum optomechanics to
classical thermodynamics. If two similar quantum mechanical
oscillators will be interfaced by the quantum version of
the coupling typically used in classical mechanics, they
can naturally generate entanglement. It is a simple witness
that they were coupled quantum mechanically. Additionally,
the mechanical-mechanical interaction can be of quantum
nondemolition type, which is required for basic continuous-
variable quantum gates [23], which are useful for specific
features for both gate-based [24] and cluster-state-based [25]
quantum computing. Recently, the nonlocal optical QND gate
was demonstrated [26] following the theoretical proposals in
Refs. [27,28]. Such a QND coupling was already broadly
exploited between two atomic ensembles [29]. It is therefore
much more important for the future to achieve such well-
defined quantum interaction of mechanical oscillators, not only
the generation of an entangled state of two mechanical systems.

*nikita.vostrosablin@upol.cz

Generation of entanglement between two mechanical sys-
tems has already been proposed in three different configu-
rations. In the first type of proposed setup, two mechanical
oscillators have been placed in a single optical cavity [30–38].
In this case, the continuous generation of steady-state entan-
glement appears because the mechanical oscillators interact
with join optical intracavity field. This configuration has
been extensively used to discuss continuous-time quantum
synchronization [39–41]. In the second kind of proposal, two
entangled beams of light were used to entangle two mechanical
systems without the necessity of measuring them [42–44]. In
the third kind of proposed setups, two continuous-wave beams
of light, leaving two continuously pumped optomechanical
cavities, are jointly detected in Bell measurement and pho-
tocurrent is used to correct the mechanical oscillators [45–47].
These schemes can generate entanglement at a distance;
however, it is very limited because of instabilities in the blue-
detuned continuous-wave regime. Advanced time-continuous
quantum measurement and control has been suggested to
prepare mechanical entanglement [48]. Recently, theoretical
investigation of optomechanical crystals has offered many
other ways to obtain mechanical entanglement [49,50]. Our
goal is to propose a currently feasible scheme with potential to
use the power of quantum optical tools to complement a recent
experimental test of coupled quantized mechanical oscillations
of trapped ions [51].

In this paper, we propose a currently feasible way to
build basic pulsed quantum nondemolition (QND) interaction
between two mechanical oscillators at a distance, connected
by light or microwave field. The scheme is depicted in Fig. 1.
Using homodyne detection of light or microwave field and
feedforward control, means of both mechanical oscillators
precisely follow the QND interaction. To generate significant
entanglement of mechanical oscillators, coherent light is
sufficient, and the entanglement can be very well estimated
when intracavity field can be adiabatically eliminated. On the
other hand, squeezed light is advantageous to approach ideal
QND interaction between two mechanical systems. Feasible
squeezing of light is capable to enhance entangling power
of the QND interaction. However, for larger optomechanical
coupling strength and larger squeezing, nonadiabatic methods
taking the intracavity field fully into account are required.
Importantly, the nonadiabatic calculations predict a decrease
of the entanglement power for larger squeezing. It is due to
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FIG. 1. The protocol of QND interaction between two mechanical
modes. (a) Simplified scheme: S, squeezing operation; HD, homo-
dyne detector. (b) Possible experimental implementation with the
imperfections: η, optical losses between the cavities; nth, thermal
mechanical environment.

presence of the intracavity field and the squeezing has to be
therefore optimized to get maximum of entangling power. We
prove sufficient stability of the QND interaction under the
influence of mechanical bath and transmission loss between
two separated cavities. Finally, we verified that it is feasible
to build the mechanical QND interaction for both current
optomechanical [52] and electromechanical [53] setups.

The paper is organized in the following way. We begin by
mathematical definition of quantum-nondemolition interaction
and principal description of the experimental setup. First,
in Sec. III we carry out a simple principal analysis of the
physics of the setup. To do so we start from a brief derivation
of equations of motion for an optomechanical system in
Sec. III A and solve those in Sec. III B, ignoring for a
while the decoherence and eliminating intracavity modes.
We quantify the interaction between the mechanical modes,
analyzing the transfer of first moments of quadratures and for
the strength of the interaction we employ the entanglement
between the modes. We use logarithmic negativity [54] as a
measure of entanglement. We show principal possibility of the
protocol performance and derive the simplest conditions on
the experimental parameters.

Second, in Sec. IV we perform a full numerical analysis
of the system allowing for the imperfections. Those include
impact of the intracavity modes that mediate the interaction
between the traveling light pulse and the mechanical modes
and the thermal bath causing decoherence of the latter. We
as well investigate the impact of the optical loss between the

cavities. We show that with currently available parameters the
protocol can establish a QND interface between the two distant
mechanical modes.

II. SETUP FOR PULSED QND INTERACTION BETWEEN
MECHANICAL OSCILLATOR

In this paper, we propose a feasible way of implementa-
tion of quantum nondemolition (QND) interaction between
mechanical modes of two distant optomechanical cavities.
The QND interaction of two harmonic oscillators may be
described by Hamiltonian Hint = �gQ1Q2 with Q1,2 being
the position or momentum of the corresponding oscillator and
g, interaction strength. After the interaction both the variables
Q1 and Q2 remain unperturbed (not demolished), whereas the
complementary ones to Q1 (Q2) become linearly displaced
by a value proportional to gQ2 (gQ1). The nondemolition
interaction has been demonstrated in a few electromechanical
experiments recently [55,56].

The proposed scheme is presented in the Fig. 1. It is the
simplest setup for generation of QND coupling between two
mechanical systems. It is basically a serial scheme which
does not require multiple pass of optical pulse through single
optomechanical cavity. Moreover, it exploits the advantage of
squeezed light and homodyne detection, which are very effi-
cient resources of quantum optics. The feedforward correction
on mechanics can be done simply at any time by classical
pulses of laser light. The modes of two mechanical oscillators
M1 and M2 interact by turns with an optical (or microwave)
pulse L via opto- (electro-)mechanical coupling. The pulse
is then detected and the result of the detection is used to
linearly displace the mechanical mode of the first cavity (if
needed, in the second one is displaced as well). In principle
this feedforward is not necessary to achieve entanglement, as
the latter could be created conditional on the results of the
detection. A similar method was used recently for conditional
state preparation in optomechanics [57].

The optical pulse can be prepared in a squeezed intensive
coherent state and sent into the optomechanical cavity. The
latter in essence comprises an optical mode coupled via
radiation pressure to a mechanical harmonic oscillator [58].
We follow the standard approach [1,59,60] and assume that the
optical pulse is displaced with a strong classical component
that is modulated at mechanical frequency. This ensures that
the effective interaction within the cavity is the nondemolition
type.

The QND interaction allows a partial exchange of the
variables between the mechanical mode M1 and the traveling
pulse [see Fig. 1(a)]. The latter is then redirected to the second
cavity with mechanical oscillator M2, which we assume to be
identical to the M1. The QND interaction within the second
cavity allows us to transmit a variable of the mode M1 carried
by the pulse to the mode M2 and in turn to transmit a variable
of the mode M2 to the light. The pulse is then detected and the
result of detection is used to displace the mode M1 to complete
transfer of the M2 variable. A proper strong presqueezing of
the light pulse and the feedforward correction allow us to
eliminate all variables from the final transformation of the
mechanical modes that consequently approach an ideal QND
interaction between them.
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III. PERFORMANCE OF SETUP FOR QND INTERACTION

A. Optomechanical quantum nondemolition interaction

Let us first consider a single optomechanical cavity that
in essence embodies an optical mode and a mechanical one.
The two modes are coupled by radiation pressure with the
Hamiltonian [58] Hrp = −�g0ncavx/xzp, where ncav stands
for intracavity photon number, x, mechanical displacement
from equilibrium, and g0, so-called single-photon coupling
strength. The mechanical zero-point fluctuation amplitude,
denoted by xzp, for a mechanical oscillator with mass m and
eigenfrequency ωm equals xzp = √

�/2mωm.
In order to enhance the radiation pressure coupling, a

strong coherent field is used as the pump. This allows us to
linearize the dynamics around a steady classical state and solve
for quantum corrections. Moreover, we assume this strong
classical field is resonant with the cavity and modulated at
the frequency of the mechanical oscillator [59]. In this case if
the mechanical frequency ωm exceeds all other characteristic
frequencies of the system, one can perform averaging to
get rid of the terms at 2ωm (i.e., adopt the rotating wave
approximation, RWA) to obtain the nondemolition coupling.
The latter condition is usually equivalent to the requirement
that the optical decay rate κ of the cavity be smaller with
respect to ωm., known as resolved-sideband regime.

After the linearization and averaging out the rapid os-
cillating terms we arrive to the QND coupling within the
optomechanical cavity with Hamiltonian that reads (depending
on the phase of the pump)

H = �gXp or H = �gYq, (1)

where g = g0
√〈ncav〉 is the enhanced optomechanical cou-

pling strength, X and Y , and q and p are quadratures of,
respectively, the optical and mechanical modes which obey
usual commutation relations ([X,Y ] = i; [q,p] = i). The
mechanical displacement x can be expressed in terms of
quadratures as x/xzp = q cos ωmt + p sin ωmt and a similar
expression holds for the optical quadratures.

The counter-rotating terms at 2ωm could provide additional
back action. In Appendix B we analyze this back action and
prove that for typical experimental parameters it is sufficient
to consider the system within RWA.

To describe the interaction of the propagating light pulse
with the optomechanical cavity we complement the Hamilto-
nian of the optomechanical interaction H1 = −�g1X1p1 with
input-output relations [61] (henceforth we denote with index
“1” or “2” quantities corresponding to the respective cavity).
The system is thus described by the following set of equations:

q̇1 = −γ

2
q1 − g1X1 + ξq1, Ẋ1 = −κX1 +

√
2κXin,

ṗ1 = −γ

2
p1 + ξp1, Ẏ1 = −κY1 +

√
2κY in + g1p1, (2)

Qout =
√

2κQ − Qin, Q = X,Y.

Here Xin,Y in are the quadratures of the pulse with commu-
tator [Xin,Y in(t ′)] = iδ(t − t ′), ξq,p are the quadratures of
mechanical noise. κ and γ are respectively optical and viscous
mechanical damping coefficients.

B. Adiabatic regime

As a first approximation we consider the system in adiabatic
regime. Given that optical decay rate exceeds the other rates
in (2) (which is typically the case in experiments), one
can assume that the optical mode reacts to any changes
instantaneously, which is equivalent to putting Ẋ = Ẏ = 0 in
Eqs. (2). Formally this corresponds to replacement of all the
functions of time with their own versions averaged over the
interval with duration τ∗ such that κ � 1/τ∗ � γ,g.

Lastly, in this section we leave out the mechanical decoher-
ence, setting γ = 0, ξq1 = ξp1 = 0.

With these assumptions the solution of Eqs. (2) reads

q1(τ ) = q1(0) − SK1X in, X out
1 = SX in,

p1(τ ) = p1(0), Yout
1 = 1

S
Y in + K1p1(0).

We have introduced the squeezing magnitude S and the
effective interaction strength K1 = g1

√
2τ/κ . We also have

defined the input and output quadratures of the cavity as

Qk = 1√
τ

∫ τ

0
Qk(s)ds, Q = X,Y, k = in, out.

The quadratures are normalized to obey [X k,Yk] = i.
The output field from the first cavity is then delivered to the

input of the second one through a purely lossy channel that
performs an admixture of vacuum to the signal; therefore

Qin
2 = √

ηQout
1 +

√
1 − ηQls, Q = X,Y.

Here Qls are the quadratures of vacuum mode.
The optomechanical interaction within the second cavity

is described by the Hamiltonian H2 = �g2Y2q2 and starts at
time t = τ . One can obtain the input-output relations for the
second cavity in a similar fashion. For simplicity we assume
the parameters of the second cavity (except the coupling g2)
to replicate the parameters of the first one.

The optical output quadrature X out
2 is measured and the

position of the mechanical mode of the first cavity is displaced
so that the final value equals q1 = q1(τ ) + KfX out

2 :

q1 = q1(0) + K2Kf q2(τ )

− SX in(K1 − Kf

√
η) + XlsKf

√
1 − η,

p1 = p1(0),

q2 = q2(τ ),

p2 = p2(τ ) − K1K2p1(0)
√

η

−Y in K2
√

η

S
− K2

√
1 − ηYls. (3)

Similarly, we have introduced K2 = g2

√
2τ
κ

here.
To approach the ideal QND interaction of the two me-

chanical modes with Hamiltonian HQND = �K1K2τ
−1p1q2

one needs to fulfill a few conditions. First, ensure low loss
(η → 1) to get rid of the noisy mode Qls. Second, pick a proper
feedforward gain Kf = K1/

√
η and provide high squeezing

S � 1 to suppress the optical mode Qin.
To quantify the strength of the interaction we estimate the

entanglement between the two mechanical modes, namely the
logarithmic negativity [54] (see Appendix A for details).
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FIG. 2. Entanglement between the two mechanical modes as a
function of optical presqueezing. Thick lines correspond to adiabatic
solution; thin lines with markers to solution with cavity mode.
Different colors and dashes are used for different ratio of the gains
K1 and K2. Losses are absent: η = 1. Highlighted is the region of
squeezing magnitudes not exceeding the value of 12.7 dB reported in
Ref. [62].

In the lossless case, the optimal value of squeezing yielding
maximum of entanglement is given by S = |K2/(K1 − Kf )|.
Therefore, for the feedforward Kf = K1 the entanglement
increases with squeezing infinitely. In the limit of moder-
ately strong coupling (K1,2 � 1) the following approximation
holds:

Eη ≈ − ln
1

2K1K2

√
1 + K2

2

S2
. (4)

From this expression follows that although increase of both S

and K1,2 leads to stronger entanglement, it is more efficient
to increase K1. This can be seen from the latter equation
in (3), where the noisy mediator quadrature Y in enters with
a multiplier ∝ K2.

The LN for this simple model is presented as a function
of the presqueezing S in Fig. 2 (solid lines). The parameters
used for simulation are κ/2π = 221.5 MHz, γ /2π = 328 Hz,
τ = 4.5 μs that correspond to a recent optomechanical exper-
iment [52] with increased pulse duration τ .

From the Fig. 2 is is clear that for low squeezing the LN is
mostly defined by the interaction strength K1 in the first cavity
as it follows from (4). In the limit of high squeezing the LN
saturates to the value that is defined by the product of gains
K1K2, again in agreement with (4).

IV. ROBUSTNESS TO IMPERFECTIONS

There are two sources of hindrance that we left out for the
previous section. First is the intracavity modes that mediate
interaction between the propagating pulse and the mechanical
modes of interest. In addition, the intracavity modes produce
unwanted memory effects that disturb the desired QND
interaction. Second is the interaction of mechanical modes
with the thermal environment.

In this section we first study these two sources indepen-
dently and finally provide a full solution, taking both into
account simultaneously.

A. Impact of the intracavity modes

To consider the effect of the intracavity modes on the QND
interface, we solve the set of dynamical equations (2) without
the mechanical decoherence (γ = 0, ξq,p = 0). The solution
reads (for compactness we write the solution for the lossless
case, η = 1)

q1 = q1(0) + q2(τ )K2Kf

(
1 − 1 − e−κτ

κτ

)

− S(K1 − Kf )
1√
τ

∫ τ

0
Xin

1 (s)ds

+ SK1

∫ τ

0
Xin

1 (s)

{
e−κ(τ−s)

[
1 − 4κ(τ − s)

Kf

K1

]}
ds

+X1(0)

{
2gf

κ
[(1 − e−κτ ) − 2κτe−κτ ] − g1

κ
[1 − e−κτ ]

}

+X2(0)
2gf

κ
(1 − e−κτ ),

p1 = p1(0),

q2 = q2(τ ),

p2 = p2(τ ) − p1(0)K1K2

(
1 + e−κτ − 2

κτ
(1 − e−κτ )

)

− K2

S

1√
τ

∫ τ

0
{1 − e−κ(τ−s)[2κ(τ − s) + 1]}Y in

1 (s)ds

−Y1(0)
2g2

κ
[1 − e−κτ (1 + κτ )] − Y2(0)

g2

κ
(1 − e−κτ ),

(5)

where we defined gf ≡ Kf

√
κ/2τ .

These equations deviate from the idealized set (3) by
presence of the initial intracavity quadratures Q1,2(0). In
addition, the pulse quadratures Qin can no longer be eliminated
completely by a proper choice of Kf and high squeezing
S. Moreover, in this case high squeezing amplifies the noisy
summand with Xin degrading the interface. The impact of this
summand can be reduced by redefining the temporal mode of
the output pulse (applying optimal time filter at the detection).
This, however, cannot cancel the noisy summand completely
as the optical quadratures that are written during the first pass
(Xin) and second pass (Y in) are distorted in different manner;
see Eq. (5).

From the Eqs. (5) follows that in the limit κ � g1,2,f and
κτ � 1 these equations reduce to the pure QND transforma-
tions (3). Furthermore, from the first equation it follows that
the effect of the unwanted summand ∝ SXin can be reduced
by decreasing K1. This is illustrated in Fig. 2 where we plot
the LN for solution including the cavity modes as a function of
squeezing for different couplings. At high squeezing the full
solution deviates from the adiabatic one; however, the curves
with lower K1 show this deviation at higher squeezing than
the curves with higher K1.

The proper choice of the coupling thus allows us to
approach the performance of the idealized adiabatic regime.
Note that in order to increase the LN it is more efficient to
increase K1 than K2. To increase the LN staying close to the
preferred adiabatic regime (and therefore a pure QND interface
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FIG. 3. Entanglement as a function of squeezing in the presence
of a mechanical bath with mean number of phonons nth and optical
losses with transmittivity η. The optomechanical gains equal K1 =
1, K2 = 8, the same as for the blue dot-dashed line in Fig. 2.

between the mechanical modes), on the contrary it is preferable
to increase K2.

B. Mechanical thermal bath

Finally we consider the system in the presence of the
thermal mechanical environment.

We assume that each of the mechanical modes is coupled
at rate γ to its own environment that is in a thermal state
with occupation nth (see Fig. 1). The coupling for both modes
takes place during the interaction with the pulse. Moreover,
the first mode remains coupled to the environment during the
interaction of the second system with the pulse. Before the
interaction with the pulse the mechanical modes are in
the ground state (the possibility to precool the mechanical
oscillator close to the ground state has been demonstrated for
a number of setups [5,63,64]).

The thermal bath is represented in Eqs. (2) by Langevin
force quadratures ξq,p. These quadratures are assumed Marko-
vian so that

〈ξa(t)ξa(t ′) + ξa(t ′)ξa(t)〉 = γ (2nth + 1)δ(t − t ′), a = q,p;

〈ξq(t)ξp(t ′) + ξp(t ′)ξq(t)〉 = 0.

The LN in adiabatic regime with intracavity modes elimi-
nated is approximately given by (here K1 = K2 = K)

Eη ≈ − ln
1

2K2

√
1 + 
K4 + K2

S2
(1 + 
K4), 
 = 2γ τnth.

(6)

In the case of zero mechanical damping the expression is
reduced to (4).

The LN corresponding to the full solution with all the
imperfections is plotted as a function of the squeezing S in
Fig. 3 for a set of different parameters.

The main means of how the mechanical environment
affects the entanglement is by adding the thermal noise to
the mechanical quadratures. Besides this, the environment also
creates a small imbalance that prohibits the perfect cancellation
of the optical mediator mode in q1 by feedforward. The
magnitude of this imbalance is, however, almost negligible.

We as well plot the LN as a function of the squeezing
for nonzero loss (1 − η �= 0). Figure 3 shows that at higher

FIG. 4. Maximal entanglement achievable with the coupling rate
g (in units of κ), for optomechanical parameters [52] (blue dot-dashed
and violet dotted lines) and electromechanical [53] (brown dashed and
green solid).

squeezing the entanglement between the mechanical modes
is more tolerant to the mechanical bath than to the optical
loss. Nevertheless, even with realistic loss parameters the
entanglement does not vanish. We observe that adiabatic
elimination is capable of fitting very well the results for a
wide range of feasible squeezing of radiation.

Numerical analysis shows that the nonzero occupation of
the mechanical bath creates a threshold for the coupling that
allows the entanglement. At the same time, nonzero optical
loss only decreases the value of the LN, so in the case of zero
occupation of the bath, the entanglement can tolerate any finite
loss.

C. Coupling optimization for experiments [52,53]

In prior sections we focused on approaching a pure QND
interaction between the two mechanical modes. Therefore we
assumed the feedforward to be adjusted in a way that helps to
cancel most of the optical mediator quadrature Xin, i.e., Kf =
K1/

√
η. Now we aim for maximization of the entanglement

between the two modes. We waive the constraint on Kf and
numerically optimize the logarithmic negativity with respect
to the optomechanical gains K1,2, feedforward strength Kf ,
and the pulse duration τ given a limitation on the coupling
strength.

The results of the numerical optimization are presented in
Fig. 4. The optimal regime to achieve maximal entanglement
appears to be very close to the regime of pure QND between
the mechanical oscillators with long pulses κτ � 1 and Kf =
K1/

√
η.

A squeezed source of radiation apparently helps to improve
entanglement in both opto- and electromechanical scheme
for large η close to perfect transmission and smaller nth.
Simultaneously, the threshold for g/κ to observe entanglement
is lowered as well for higher η and lower nth. On the
other hand, for larger nth and lower η, the squeezing of
radiation is not important; however, we can still observe
entanglement of mechanical systems if γ /κ is not too large
and g/κ is sufficiently large. Our analysis (see Appendix B)
shows that under these conditions and for moderate squeezing
the rotating-wave approximation standardly employed in the
theory of optomechanics is well justified. It is therefore
fully feasible to generate entanglement with state-of-the-art
systems.
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The optomechanical setup noticeably outperforms the
electromechanical one due to higher eigenfrequency of the
mechanical oscillator and consequently lower bath occupation.
The high occupation of the mechanical thermal bath in the
electromechanical setup places a constraint on the available
pulse durations, which in turn limits the QND gain K .

V. CONCLUSION

We have proposed feasible way of the simplest pulsed im-
plementation of entangling quantum nondemolition coupling
between two distant but very similar mechanical oscillators,
implementable with both current electromechanical and op-
tomechanical setups. The method exploits squeezed light and
microwave radiation and highly efficient homodyne detection
to induce maximal entanglement for this purely mechanical
coupling. We verified robustness of the procedure under small
transmission loss between the oscillators and under mechan-
ical thermal baths. We realized that both current optome-
chanical [52] and electromechanical [53] setups are sufficient
for the implementation of an extended version of multiple
QND interaction. It will allow pulsed studies of quantum
synchronization of mechanical objects [39–41]. Afterwards,
a detailed study of quantum interaction of possibly very
different mechanical systems is important for development of
physical connection with quantum thermodynamics [65–68].
The method can be further extended to controllably couple
more mechanical systems in the future by different types of
Gaussian interactions and possibly challenging non-Gaussian
transformations.
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APPENDIX A: LOGARITHMIC NEGATIVITY

The mechanical modes in our system are initially in thermal
states and the optical modes are all in vacuum, and the
linear dynamic preserves the Gaussianity of the states of
mechanical modes. A Gaussian state of a two-mode system
with quadratures f = [q1,p1,q2,p2]T is fully determined by
a vector of means 〈f 〉 and a covariance matrix (CM) with
elements defined as

Vij = 1
2 〈�fi�fj + �fj�fi〉.

Here angular brackets denote the averaging over the quantum
state, and �fi ≡ fi − 〈fi〉.

The covariance matrix may be divided into 2 × 2 blocks
such that

V =
[V1 Vc

VT
c V2

]
,

where V1 and V2 characterize internal correlations in me-
chanical subsystems. The matrix Vc stands for the correla-
tions between the first and second mechanical modes. The

diagonalization of the CM leads to symplectic eigenvalues
ν± [54],

ν± =
√

1
2 (
(V ) ±

√

(V )2 − 4 det V ),

with


(V ) = detV1 + detV2 − 2 detVc.

Logarithmic negativity is defined then as Eη = max[0,

− ln 2ν−] and we use it as the measure of the entanglement of
the system under the consideration.

APPENDIX B: BEYOND ROTATING WAVE
APPROXIMATION

The rotating wave approximation (RWA) is usually adopted
for considerations of the optomechanical systems working
in the resolved-sideband regime (κ 
 ωm). In this appendix
we consider our protocol without this approximation. We
outline here the main steps that lead to an analytical expression
for the covariance matrix of the mechanical modes. The
covariance matrix contains additional terms from back action
compared to the case of RWA. We show that these terms do
not impact the entanglement of the modes much. For the sake
of simplicity we do not consider in this appendix thermal
environments of mechanics and optical losses between the
cavities. Both these effects can be easily taken into account.

The equations of motion for the first system read

q̇1 = g1X1(cos 2ωmt − 1), (B1)

ṗ1 = g1X1 sin 2ωmt, (B2)

Ẋ1 =
√

2κXin
1 − κX1, (B3)

Ẏ1 =
√

2κY in
1 − κY1

+ g1p1(1 − cos 2ωmt) + g1q1 sin 2ωmt. (B4)

As is easily seen, this system of equations allows an
analytical solution. First, Eq. (B3) has the solution

X1(t) = e−κt

[
X1(0) +

√
2κ

∫ t

0
ds eκsXin

1 (s)

]
. (B5)

We then plug this expression into Eqs. (B1) and (B2) to solve
for q1 and p1. The solution for p1 reads

p1(τ ) − p1(0) = X1(0)g1

∫ τ

0
dt e−κt sin 2ωmt

+ g1

√
2κ

∫ τ

0
dt e−κt sin 2ωmt

×
∫ t

0
ds eκsXin(s)

= X1(0)g1I(0) + g1

√
2κ

∫ τ

0
dseκsXin(s)I(s),

(B6)

where

I(s) ≡
∫ τ

s

dt e−κt sin 2ωmt. (B7)
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Notice that we swapped the order of integration when going to
the last line in (B6) in order to have Xin in the outermost
integration. We do a similar swap with the consequent
expressions.

The solution for q1 can be written in a similar fashion. This
with (B6) can then be substituted into Eq. (B4) to obtain the
solution for Y1.

The very same procedure repeatedly applied to the equa-
tions of motion for the second cavity and input-output relations
allows us to obtain a full analytical solution for the vector of
quadratures of the mechanical modes. The solution itself is
rather cumbersome so we do not present it here.

Having the solution, we proceed to compute the covariance
matrix. To demonstrate the method of calculation we use
Eq. (B6) to compute the element V2,2 = 〈p1(τ )2〉:

V2,2 = 〈
p2

1(0)
〉 + 〈

X2
1(0)

〉
g2

1I2(0)

+ 2κg2
1

∫∫ τ

0
dsds ′ 〈Xin

1 (s) ◦ Xin
1 (s ′)

〉
eκ(s+s ′)I(s)I(s ′)

= 〈
p2

1(0)
〉 + 〈

X2
1(0)

〉
g2

1I2(0) + VX2κg2
1

∫ τ

0
ds e2κsI2(s),

(B8)

where we used

〈
Xin

1 (s) ◦ Xin
1 (s ′)

〉 = VXδ(s − s ′). (B9)

It is illustrative to estimate the difference between the
full solution (B8) and the straightforward solution V RWA

2,2 =
〈p2

1(0)〉 obtained with advantage of RWA. The quantity I
defined above serves as a measure of this divergence. One

FIG. 5. Entanglement (logarithmic negativity) as a function of
squeezing of the input state computed from the full solution (thick
lines) and with help of RWA (thin lines with markers). For details,
see the caption of Fig. 2.

can make estimations:

[g1I(0)]2 ∼
(

g1

2ωm

)2

=
(g1

κ

)2
(

κ

2ωm

)2


 1,

2κg2
1

∫ τ

0
ds e2κsI2(s) ∼ cos2 2ωmτ

(
g1

2ωm

)2


 1.

Besides these simple estimates, we present the computed
logarithmic negativity of the mechanical modes in Fig. 5. One
can see that the adoption of RWA leads to an overestimation
of entanglement due to the back action that comes from
the counter-rotating terms in the Hamiltonian. However, for
appropriate parameters, the full solution without RWA still
approaches rather closely the idealized adiabatic one provided
that the optomechanical coupling is not too strong (cf. blue dot-
dashed lines in Figs. 2 and 5). We use the sideband-resolution
parameter κ/ωm = 0.04, which is a conservative estimate for
a number of current experimental setups [4,52].

We became aware recently of another publication [69] that
deals with a QND interaction beyond RWA.
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CHAPTER 5

Quantum opto- and electromechanical transducers

The next logical step in our exploration of quantum interaction of different systems
would be a quantum transducer between different electromagnetic fields mediated by
the mechanical system. Such a transducer allows entangling two directly non-interacting
radiation modes and thus – quantum state transfer, which is of our high interest as it is
an important milestone for the development of unified quantum technology [104].

There was sufficient progress in the development of different types of transducers
interconnecting optical and microwave fields – both theoretical proposals and exper-
imental realizations, together with transducers coupling optical fields. These works
present a wide range of different hybrid designs. The interested reader can address a
short overview of the main achievements in this field in the introduction of our paper
presented in this section.

However, most of these transducers have two main drawbacks. Firstly, they cannot
operate in the time-resolved quantum regime, when the quantum states are defined in
a short time interval and, secondly – they are very restricted by a performance by the
mechanical noise of the mediator.

Being inspired by [69], we propose a new kind of opto- and electromechanical
transducer, based on geometric phase effect [20], which allows establishing robust en-
tanglement between directly non-interacting systems with a noisy mechanical mediator.
Moreover, by optimization of system parameters, we establish a particular type of quan-
tum interaction between radiation modes - a quantum non-demolition (QND) type of
interaction.

The impact of this thesis is the theoretical development of symmetric (optical field
to optical field) transducer and study of the influence of optical losses and mechanical
bath on the performance of such a setup. The same analysis is performed for asymmet-
ric transducer for mechanical mode shared across two opto(electro-)mechanical cavi-
ties. This analysis has been performed for state-of-the-art experimental parameters. It
was shown that the optimization of parameters of individual interactions allows getting
sufficient entanglement in the domain of parameters where this entanglement wouldn’t
be possible otherwise. The research opens a way for further study of pulsed transducers
and their implementation with other physical platforms.
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Our work might be very relevant as we witness a growing interest in the topic of
quantum optomechanical transducers. New approaches have emerged in the last years.
A mechanically mediated microwave–optical converter with 47% conversion efficiency
using a feed-forward protocol [92] has been shown. In [9] authors demonstrated the
conversion of microwave and telecom photons in a setup based on silicon photonics,
cavity optomechanics, and superconducting circuits. And finally, efficient microwave-
to-optics conversion using a mechanical oscillator in its quantum ground state was
demonstrated in [71].
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1. Introduction

Quantum transducers are hybrid quantum systems important for development of unified quantum
technology [1]. They practically demonstrate ability to universally entangle even very different
quantum systems [2–4] and therefore, exchange quantum states between them. The transducer in
principle connects two different systems A and B that otherwise are not interacting [5]. For an
example, the systems A and B individually interact only in the pairs A − M and B − M with a
mediating system M. The latter is however also a quantum system, therefore it can introduce
quantum noise to the transducer. Moreover, M is typically open to an environment, which is noisy
and lossy and limitedly measurable. It is therefore important to take this connection into account
to propose a feasible quantum transducer. Continuous-variable (CV) quantum transducers are
capable to quantum mechanically couple two different oscillators A and B by a mediating
oscillator M . They can generate Gaussian CV entanglement, which can be used, for example, to
teleport states between A and B [6]. Advantageously, they can be built, without any nonlinearity,
from the most common linearized interactions A − M, B − M of the oscillators. First type of
transducers use simultaneously running linearized couplings A − M and B − M towards a steady
state where A − B coupling can be of a high quality and sufficient strength [7]. Ideally, the
mediator M should be completely eliminated and not influence the coupling A − B. Nontrivial
optimization of the A − M and B − M coupling strengths over time can improve the transducer
quality.

These transducers, however, cannot operate in time-resolved quantum regime, with nonclassi-
cal states defined within a shorter time interval, used in modern optical [8, 9] and microwave
experiments [10, 11]. To solve this problem, pulsed CV quantum transducers operating with
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optical and microwave pulses are required. The pulsed regime was already used to generate
entanglement [10] and propose for quantum teleportation [12]. Complementary to previous
approach, the pulsed transducers individually control the interactions A − M and B − M by
time non-overlapping pump pulses. The main idea is to use twice a sequence of the interactions
A − M and B − M and exploit power of geometric phase effect [13] for CVs to eliminate the
mediator M regardless of its noisy initial state. Recently, a principal robustness of such the
proof-of-principle pulsed transducer between arbitrary quantum oscillators has been proven
theoretically and temporal optimization of pulse control beyond the geometric phase effect has
been suggested to reach the robust regime [14]. It opens a way to propose the pulsed transducers
for various experimental platforms, for example, quantum optomechanics and electromechanics,
what is the subject of our investigation. In this approach authors were considering short-time
interactions A − M and B − M. This allowed them to drop the decoherence of the mediator
during the interactions and model all the damping processes by beam-splitting-type interaction
with the environment between the unitary interactions of the system M with the systems A and
B. As it will be discussed further, we consider longer interactions what pushes us to study the
mechanical damping during the interactions with the mediator. It brings our system closer to real
pulsed optomechanical experiments with long pulses.

Rapid development of quantum optomechanics [15, 16] puts forward a mechanical oscillator
as a suitable mediator for the construction of the pulsed transducers. A lot of progress is done
in the direction of optoelectromechanical transducers. The reversible optoelectromechanical
transducer which used the effective source of two-mode squeezing between optical idler and a
microwave signal to transfer quantum states between optical and microwave fields via quantum
teleportation was proposed in [17]. High-fidelity quantum state conversion between microwave
and optical fields may be performed through the excitation of the mechanical dark mode [5, 18–
21]. This approach allows significant suppression of the mechanical noise from the mediator. An
opto-magneto-mechanical system was proposed in [22] to interconnect microwave-to-optical
quantum information. In this device the optical field was coupled to the mechanical degree
of freedom which was, from its part, coupled to the magnetic field of the superconducting
flux qubit. This scheme was also analyzed to transfer quantum information between distant
superconducting qubits. Several experimental works were performed in the direction of quantum
state transfer. In [23] an integrated optomechanical and electromechanical nanocavity was
used to efficiently interconvert microwave and optical signals. In this device a photonic crystal
defect cavity and an electrical circuit were both coupled to the same mechanical degree of
freedom. In [24] a piezoelectric optomechanical crystal was used for coherent signal transfer
between itinerant microwave and optical fields. In another experimental work [25] a mechanically
compliant silicon nitride membrane was used to realize a high-fidelity conversion between optical
light and microwave. In [26] a transducer utilizing a high-Q nanomembrane to interconvert
radio-frequency waves with optical light was demonstrated. Very recently a new experimental
work [27] considering the device capable for microwave-to-optics conversion by placing all
components inside a re-entrant microwave cavity was performed. This design allows the wireless
coupling to the transmission line with the possibility to vary the strength of this coupling
without affecting the performance of the setup. There was also sufficient progress in the domain
of transducers interconnecting optical fields. Optomechanical device entangling two optical
fields was proposed in [28]. This setup was also considered to be used for quantum state
teleportation of light signals over long distances, mediated by concatenated swap operations.
The scheme containing two-mode optical cavity and the closed-loop feedback control was
studied in [29]. This setup allowed to entangle the outputs and to coherently teleport quantum
states between them. Coherent quantum state transfer between optical fields by the sequence of
optomechanical pulses was studied theoretically [30]. In the experiment [31] a conversion of
optical fields between two different frequencies by coupling them to a mechanical mode of a
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silica resonator was demonstrated. It was also the first experimental observation of a mechanical
dark mode for the optomechanical transducer. Another experimental setup for optical wavelength
conversion was demonstrated in [32] with a silicon optomechanical crystal nanocavity. The
optical frequency up- and down-conversion was also demonstrated in [33] for silicon nitride
microdisk resonators. There were also observations of low-noise frequency conversion between
two microwave fields as, for instance, in [34] where two microwave fields were coupled to
a single mechanically compliant capacitor. Despite this remarkable progress in the field of
opto- and electromechanical transducers, there is still one sufficient limitation — mechanical
noise which restricts the performance of aforementioned setups. Our approach, based on the
geometric phase effect allows to bypass this limitation. This method requires a pulsed control of
mechanical systems, which is simultaneously advantageously compatible with modern quantum
optics [8, 9, 35].

In this paper, we propose a pulsed CV quantum transducer with a noisy mechanical system as a
mediator and analyze its feasibility for optoelectromechanical experiment. We study the influence
of radiation losses and mechanical bath and we show that optimization of parameters allows
high performance of the proposed transducer even for very noisy mediator. To demonstrate the
feasibility of the proposed setup we firstly consider the symmetrical transducer which connects
optical field to optical field. Such scheme is a good demonstration of the viability of the proposed
concept and does not require involved modifications of the state-of-the-art experimental platforms
for near-future implementation. Only then we consider more general case of the asymmetrical
transducer coupling optical to microwave fields. This case is very important since it follows the
trend to connect different quantum systems which is crucial for the future development of hybrid
quantum systems [36, 37].

2. Pulsed CV quantum symmetrical transducer

2.1. Setup description

The basic idea of the setup which we consider is depicted in Fig. 1. The two radiation modes A
and B are coupled to the same mechanical oscillator M but do not interact directly. The quantum
states of the modes A and B are defined in flat-top temporal pulses with duration τA and τB
correspondingly (see Fig. 1(a)). We discuss the timescales of the pulses in Sec. 2.3. Each pulse
interacts with the mechanical mediator M twice during the protocol. After the interaction of
the first pulse with the mechanical mode is complete, the former is sent to the delay line (see
Fig. 1(a)) while the second pulse enters its cavity to interact with the mechanical mode. The
operation is then repeated until the four interactions are performed. The block scheme of the
protocol is depicted on Fig. 1(b). Note that the transducer between two optical modes requires
only one one-sided optomechanical cavity, to which the pulses are directed in turns.

The mechanical mediator is coupled to the radiation modes by the means of four sequential
quantum non-demolition (QND) interactions [38, 39]. The nondemolition interactions preserve
always one quadrature variable (generalized position or momentum) of the single oscillator
and perform therefore a partial quadrature exchange between the two oscillators. Only a single
non-demolition variable is transferred between two systems during an individual interaction. This
type of interaction was demonstrated to be a good candidate for constructing quantum interfaces
between light and matter in purpose, for instance, to transfer a quantum state of light, what was
proposed to realize with the help of two QND interactions [40]. The appropriate combination of
such QND interactions of the modes A and B with mechanical mediator M allows driving the
latter around a closed path in the phase space in such a way that the geometric phase appears.
The geometric phase effect has been already used in quantum optics [41–43] and optomechanics
where mechanical oscillator was coupled to a qubit [44] or light [45, 46]. As a result of the
geometric phase imparted to the mechanical system the modes A and B appear to be coupled
to each other but not to the mediator M that is brought back to the initial state. This result is
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Fig. 1. (a) Schematic representation of the pulsed transducer interconnecting two radiation
modes A and B which may be both optical as well as optical and microwave fields. The first
amplitude-modulated pulse A (red) containing classical Stokes and anti-Stokes sidebands on
ωA

cav ± ωm and quantum fluctuations, which are in the vacuum state |0〉, on ωA
cav, is sent to

the first cavity to interact with mechanical mode M during the time τA . After the interaction
is complete the pulse is sent to the delay line whereas the second pulse B (blue), being
in the vacuum state |0〉 as well, interacts with M during τB within the second cavity. The
interactions of the two pulses are then repeated one more time and both pulses are released
to the outputs. The pulses do not overlap during the protocol. Radiation pulses are subject to
losses Tls and the mechanical mode is coupled at rate γ to the mechanical bath with mean
occupation number nth. (b) Block-diagram of the sequence of the interactions between the
pulses of modes A and B with the mechanical mediator M .

achievable due to specific character of the QND interaction, which qualify it to be a basic CV
quantum gate. The transducer can therefore principally work for any initial state, even a very
noisy one, of the mediator M .

In [14], it has been observed that the transducer can be stable against the small in-coupling and
out-coupling losses of the radiation modes and losses in the delay lines, if the interaction gains
of all four QND coupling are optimized. To reach sufficiently high gain of individual interactions
with mediator and overall gain of the transducer, the enhancement by a high-Q cavity is necessary.
The intracavity field is continuously leaking out the cavity. Simultaneously, the mechanical mode
is also continuously damped to its noisy environment. Considerations of these imperfections go
far beyond the basic stability check in [14]. In more realistic setup with the cavities and noisy
mechanical environment, we therefore need to carefully analyze the performance of quantum
transducer through noisy mediator and compare it to realistic parameters of the experimental
schemes.

2.2. Optomechanical interaction

In a basic case an optomechanical system may be modeled as a single cavity mode of the optical
resonator interacting with a single one of a mechanical oscillator via the radiation pressure (see
Fig. 1(a)). The Hamiltonian of the optomechanical system may thus be written as [47]:

H =
~ωc

4

(
X2 + Y 2

)
+
~ωm

4

(
p2 + q2

)
− ~g0

4
q

(
X2 + Y 2

)
,
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with X,Y and q, p being the quadratures of optical and mechanical modes correspondingly,
with eigenfrequencies ωc and ωm . These quadratures satisfy commutation relations [X,Y ] = 2i,
[q, p] = 2i. The single-photon coupling rate g0 is usually very small and thus the optomechanical
interaction is very weak. To further enhance this interaction the cavity is pumped by a strong
classical field. This approach allows to linearize the dynamics of the system and consider small
quantum corrections to the mean classical values of the quadratures. The CV transducer is
capable to generate Gaussian entanglement correlating these corrections.

To obtain a QND interaction we consider each pump to be resonant with the cavity and properly
modulated at the mechanical resonant frequency which is assumed to exceed the corresponding
cavity decay rates ωm � κA , κB (the resolved sideband condition). After using a rotating wave
approximation where we get rid of terms oscillating at 2ωm , in terms of the quantum corrections
defined at linearization, we obtain the following QND interaction Hamiltonian depending on the
phase of the pump:

Hi = ~κiqYA or H j = ~κ j pXB , (1)

where i = {1, 3}, j = {2, 4} denotes the interaction number, κ1 = −g1, κ2 = g2, κ3 = g3,
κ4 = −g4 are individual interaction strengths of radiation modes with the mechanical one. The
change of the sign of interaction strength can be obtained by a suitable adjustment of pump
phase. The large intracavity photon number ncav,i corresponding to i-th interaction enhances
the optomechanical coupling strength so that gi = g0

√
ncav,i . See Fig. 1(b) for our choice of the

sequence of the QND interactions. This sequence of interactions leads to the closed rectangular
path in the phase space of mediator’s variables q and p. Due to this the mediator becomes
uncoupled from the radiation modes at the end of the protocol and does not affect its efficiency.

It is worth noting that another type of QND interaction in which the interaction time is very
short compared to the mechanical period is possible. It was firstly introduced by Braginsky and
coworkers [48] within the context of sensitive force detecting. This approach was studied within
other optomechanical systems [49–51] and might be used to improve the robustness of the setup
under consideration against thermal excitations.

In the Heisenberg picture the system of quantum Langevin Eqs. [52] describing the dynamics
of the first and second QND interactions may be written as follows:

ẊA = −κAXA +
√

2κAX in
A + κ1q,

ẎA = −κAYA +
√

2κAY in
A ,

q̇ = −γ
2

q +
√
γξx1 ,

ṗ = −γ
2

p +
√
γξp1 − κ1YA ,

ẊB = −κBXB +
√

2κBX in
B ,

ẎB = −κBYB +
√

2κBY in
B − κ2p,

q̇ = −γ
2

q +
√
γξx2 + κ2XB ,

ṗ = −γ
2

p +
√
γξp2 ,

(2)

where κA ,B are cavity decay rates of two corresponding cavities, γ is the mechanical damping
coefficient, X in ,Y in are the optical (microwave) input quadratures, and ξxi ,pi are mechanical
noise quadratures. Note, here the mechanical decoherence is present during whole the time of
the entangling process, differently to simplified analysis in [14].

2.3. Adiabatic elimination and the entanglement generation

As it was mentioned previously we firstly consider symmetrical transducer putting equal decay
rates κA = κB = κ and assuming that κ is much larger than other rates in the dynamical Eqs. (2).
The latter condition gives us a possibility to adiabatically eliminate the influence of the intracavtiy
field by setting the derivatives of field quadratures equal to zero [12]. To find theoretical upper
bound for generated entanglement, we assume here the mechanical mode decoherence-free
putting γ = 0 and ξxi ,pi = 0. Previous studies [53] show that the optomechanical QND
interaction can be degraded by cavity memory effects due to finite linewidth κ and mechanical
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bath. The consideration when these effects are eliminated therefore allows to estimate the ultimate
performance of our transducer that we will later use to evaluate the realistic regimes. We refer to
this adiabatic lossless and noiseless regime as the ideal one.

Using Langevin Eqs. and the input-output relations in the form

Qout(t) =
√

2κQ(t) − Qin(t), (3)

where Q = {X,Y }, we can show that the scheme depicted in Fig. 1 is equivalent to the QND
interaction between modes A and B (see Appendix A for the rigorous derivation):

Xout
A = Xin

A − η2Xin
B , Xout

B = Xin
B ,

Yout
A = Y in

A , Yout
B = Y in

B + η2Y in
A ,

q = q(0),
p = p(0),

(4)

where we have introduced effective QND coupling strength η = g
√

2τ
κ , new quadratures Q =

{X ,Y}, Q = 1√
τ

∫ τ
o

Q(t)dt integrated over rectangular pulses, pulse duration time τ (at this
point we assumed identical pulses τA = τB = τ) and we have put all optomechanical couplings
equal to each other and equal to g. As we can see from (4) the mechanical mode is completely
traced out from these transformations due to geometric phase effect discussed in the Section 2.1
and 2.2.

Let us now discuss the main assumptions that led us to the Eqs. (4). First, in order to achieve
the QND-type optomechanical interaction we use the rotating wave approximation, that requires
the resolved-sideband condition (ωm � κ) and rather long pulses ωmτ � 1. Second, to avoid
the dispersion and justify the adiabatic elimination of the cavity modes we assume the pulses
long enough compared to the inverse cavity bandwidth: κτ � 1. Finally, we assume the pulses
to be shorter than the mechanical decoherence time: nthγτ � 1. These inequalities could be
combined into a single chain inequality

ωm � κ � τ−1 � γnth.

Provided these conditions are fulfilled by a certain experimental setup we could expect of this
setup the performance close to the desired one, described by the Eqs. (4).

We choose the entanglement of the modes A and B as the measure of the efficiency of the
proposed transducer. Our consideration is limited to zero-mean Gaussian states as the initial states
of the three modes are such (the vacuum states for the radiation ones and the thermal state for the
mechanical mode) and the nondemolition interaction due to its linearity preserves the Gaussianity
of the quantum states. Any zero-mean Gaussian state ρ̂ of two modes A and B with quadratures
f = [XA ,YA ,XB ,YB]T can be fully described by the covariance matrix [54, 55] with elements
Vi j = 1

2 Tr
[
ρ̂
(

f i f j + f j f i
)]

. To numerically characterize the Gaussian entanglement we use
logarithmic negativity defined as

EN = max
[
0, − log2 ν−

]
, (5)

with ν− being the smallest symplectic eigenvalue of the partially transposed covariance ma-
trix [56] that can be computed as follows:

ν− =
1√
2

√
Σ(V ) −

√
Σ(V )2 − 4 det V ,

where

Σ(V ) = detV1 + detV2 − 2 detVc ,
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withV1,2,Vc being 2 × 2 block-matrices composing the covariance matrix:

V =

[V1 Vc

VT
c V2

]
.

In the ideal case of adiabatic elimination of the intracavity modes and the absence of decoherence
processes the symplectic eigenvalue for the two radiation modes A and B may be expressed in
the following form:

ν0
− =

√
1 − 2η4

[√
1 + η−4 − 1

]
. (6)

The corresponding logarithmic negativity is nonzero for arbitrary η > 0 and monotonically in-
creases regardless of the state of the mechanical mediator since in (4) the mechanical quadratures
appear to be traced out of the transformations of the radiation modes. The dependence of the
entanglement on the coupling strength is illustrated in Fig. 2 (solid purple curve). The main
question is how close the realistic transducer can be to this idealized case.

3. Decoherence processes for the symmetrical transducer

In this section we consider the radiation loss and mechanical decoherence during whole time of
the transducer operation. First we include radiation losses in the delay lines, then we study the
influence of the mechanical bath and finally we combine both to explore their joint contribution.
In each case we start with Eqs. (2) in adiabatic regime, from which we obtain the input-output
relations, equivalent to (4) that in turn are used to analyze the coupling of the two radiation
modes. These procedures allow a detailed analysis of decoherence in the quantum transducer.
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Fig. 2. Logarithmic negativity EN as the function of QND coupling strength η = g
√

2τ
κ in

the lossless adiabatic case (top purple curve) and in the case of radiation losses Tls present
(lower solid curves). See definition of Tls in (7). Dotted lines correspond to the case of
the optimal combination of the strengths of individual interactions. It demonstrates that
radiation losses only partially limit generation of entanglement from the transducer. The
optimization of gains is efficient only for large loss.

3.1. The influence of radiation losses

In the state-of-the-art cavity optomechanical systems the dominant cause of photon loss is
the imperfect coupling of the cavity to the detection channel [15]. The ineffective in- and out-
coupling can be modelled [57] as a beamsplitter admixing a part of vacuum to the signal. The
other optical (microwave) imperfections including photon losses, imperfect mode matching, dark
counts can be modelled by another beamsplitter [58]. Since all these photon leakage processes
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are linear, they can all be combined and characterized by a single virtual beamsplitter with a
given transmittance.

Finally, the imperfections preceding the very first and following the very last optomechanical
interactions can be attributed to an imperfect, respectively, state preparation and detection, and
can be left out for the analysis of the scheme. Therefore the only losses that are crucial for the
performance of the protocol, are the ones taking place between the two sequential interactions of
each of the radiation modes with the mechanical mode.

As explained above, we model the radiation losses by a virtual beamsplitter with the trans-
mittance Tls (so that Tls = 1 corresponds to the lossless case). After a mode with quadratures Q
passes this beamsplitter the quadratures are transformed in the following way:

Q →
√

TlsQ +
√

1 − TlsQls (7)

with Qls being noise quadratures of vacuum.
To qualitatively allow for losses, we use the adiabatic consideration of the Sec. 2.3 and

introduce these beamsplitters after the first and the second QND interactions (see Fig. 1(b)). For
the sake of simplicity we assume damping coefficients Tls to be the same for both modes. We
consider the initial mechanical state to be in the ground state within this section.

The radiation losses break the entanglement monotonicity for increased interaction gain η.
Instead, the maximal value of logarithmic negativity is reached for a finite coupling. This effect
is obviously more pronounced at larger losses as may be seen from Fig. 2. For higher η smaller
amounts of losses are sufficient to break the entanglement. In the limit of small losses Tls ∼ 1 and
weak coupling η � 1 the symplectic eigenvalue may be approximated in the following form:

ν− ' 1 − 1
2

(1 + Tls) η2. (8)

Losses therefore do not impose a threshold on the value of η — for any transmittance Tls there is
entanglement for arbitrarily low values of η. The coupling strength η however becomes bounded
from above as shown in Fig. 2. We also see from this figure that the entanglement behavior
near the origin is defined by the losses value — the approximated value of the derivative of the
logarithmic negativity reads:

∂EN

∂η

∣∣∣∣∣
η→0

' 2
ln 2

√
Tlsη. (9)

In the ideal case without any losses we compensate for the influence of the noisy mechanical
mediator setting strengths of each interaction equal to each other. This makes the mechanical
system to go along the closed path in the phase space. Losses lead to the imbalance in the
system what destroys the closed form of the trajectory and makes it opened. This phase-space
representation explains well why the behavior of the logarithmic negativity is non-monotonous
with respect to g: in the presence of losses larger optomechanical coupling values lead to the
larger imbalance of the phase-space trajectory what increases the coupling with the mediator. The
imbalance can be corrected by making the strengths of individual QND interactions non-equal.
We numerically find the optimal combination of gains ηi that brings the phase-space trajectory to
be as close to the ideal closed one as possible and thus provides the maximum of the achievable
entanglement given the constraint on coupling strengths 0 < ηi < η. The coupling strength can
be manipulated by change of interaction time or pumping. They are equivalent at this point. The
result of the numerical optimization is presented in Fig. 2. The maximal logarithmic negativity
EN is plotted as a function of the upper boundary of the region over which we optimize. As we
can see from this figure the optimization helps to restore high values of entanglement especially in
case of high losses. In the case of small losses and small η non-optimized logarithmic negativity
is close to the maximally achievable value (6).
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Fig. 3. Logarithmic negativity EN as the function of the QND coupling η = g
√

2τ
κ . For both

top and bottom figures solid and dashed lines correspond to the non-optimized case with
respectively g or τ varied, dotted lines with markers show the result of optimization. For the
plots we used γ = 1.5×10−6 κ. (a) Lossless case in presence of mechanical bath. Parameters
are varied in the following regions: 0 ≤ g ≤ 0.4κ (for fixed τ = 687/κ); 7 × 102/κ ≤ τ ≤
9 × 104/κ (for fixed g = 0.03κ). This plot demonstrates that mechanical bath does not affect
the entanglement drastically and the optimization is efficient for larger mechanical bath
occupation numbers. (b) Mechanical bath and radiation losses. Parameters here are varied in
the following regions: 0 ≤ g ≤ 0.4κ (for fixed τ = 687/κ); 7 × 102/κ ≤ τ ≤ 9 × 104/κ (for
fixed g = 0.03κ). This plot demonstrates that the performance of the proposed transducer
may be quite high. Even for large bath occupation nth = 200 the optimization helps to reach
significant values of the entanglement.

3.2. The influence of the thermal environment

Now we explore the proposed setup with the presence of the thermal mechanical environment
and investigate its influence on the protocol performance. We consider the mechanical bath to be
in the thermal state with mean occupation number nth, being coupled to the mechanical mode
at rate γ and we model it by the noisy quadratures ξxi ,pi in (2). We then solve the Eqs. (2) in
adiabatic approximation and analyze the solution.

We assume that the damping force in (2) is the Markovian one, that the noisy quadratures
satisfy commutation relations:

[ξxi ,pi (t), ξxi ,pi (t′)] = 2iδ(t − t′),

and in the high-temperature limit (~ω � 2kBT) they have the following property:

〈ξxi ,pi (t)ξxi ,pi (t′)〉 = (2nth + 1)δ(t − t′).

In the idealised adiabatic case each of interactions is parametrized by a single coupling
parameter ηi , upper-bounded by maximal η. In presence of the mechanical bath the entanglement
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changes differently with respect to changes in optomechanical coupling g and pulse duration τ
even if those result in equal coupling parameter η. It is reflected in Fig. 3(a). Increasing of g causes
deviation from the monotonic increase of entanglement which is seen more clearly for large
values of g. If we instead increase the temporal duration of pulses τ to achieve same interaction
gain η the entanglement is suppressed stronger because the influence of the mechanical bath is
obviously more significant for longer interaction times. It is worth noting that for any thermal
occupation arbitrarily low coupling η generates entanglement. We also note that in contrast to
previous section, the derivatives near the origin are the same in this case, so in the limit η � 1
all curves coincide.

To reach maximal entanglement we again optimize the logarithmic negativity with respect
to the four unequal optomechanical couplings gi and different interaction times τ. In other
words, we numerically find maximum of the function EN(gi , τi ) given the constraint that the
corresponding effective couplings ηi ≡ gi

√
2τi/κ < η. The result of this optimization is presented

in Fig. 3(a). The optimization proves especially useful for larger values of mean occupation
number nth: in contrast to the non-optimal case of equal couplings, in the optimized regime
entanglement monotonically increases with η.

We would like to note that in the region of small values of the mean bath occupation number
nth and QND coupling η the entanglement values are close to the ones of the ideal adiabatic case.
On the other hand, in the case of large nth, which is of our interest, the entanglement increases at
different rate than in the adiabatic regime.
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Fig. 4. Optimized logarithmic negativity as the function of the radiation losses Tls for
different values of the initial occupation number nth. This figure reflects the fact that the
influence of the radiation losses on the performance of the setup is more significant than
the one of the thermal state of the mechanical mediator. For high value of losses (Tls � 1),
independently from the value of initial occupation, the optimization does not help sufficiently.

3.3. Joint influence of radiation losses and mechanical bath

To complete the full analysis we consider the joint impact of the radiation losses and mechanical
bath on the protocol performance which is reflected in Fig. 3(b). Apparently, joint influence of
the radiation losses and mechanical bath is not critical. The transducer still keeps possibility to
generate detectable entanglement, especially for low η. The figure shows that including radiation
losses in addition to mechanical bath depresses the curves more for larger interaction strength in
agreement with results of Section 3.1. The figure shows as well that the influence of the radiation
losses is more drastic than the mechanical bath impact when both are present simultaneously. It
is therefore important to keep the delay lines lossless.

We once again optimize the interaction parameters ηi by varying simultaneously optome-
chanical couplings gi and the pulse durations τi to achieve maximum of entanglement (finding
numerically maximum of the function EN(gi , τi )). We see that in the case of joint influence of
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both mechanical bath and radiation losses the optimization helps sufficiently, especially for larger
values of mean occupation number nth and radiation losses. In particular, for high nth = 200 (and
non zero losses) where for the non-optimized case the entanglement is not generated at all, the
optimal regime shows sufficient values of logarithmic negativity which is a very promising result.
In agreement with Section 3.1 the optimal entanglement saturates to a finite value apparently
set by the value of losses and thermal noise. This can be regarded as a proof that the maximum
achievable entanglement is as high as close the trajectory of the mechanical mode in the phase
space can approach the closed one. It clearly demonstrates advantage of the optimization beyond
the basic idea of geometric phase effect in the real pulsed cavity quantum transducer.

The optimization helps us as well to prove that the radiation losses have more dramatic negative
impact on the transducer performance than the mechanical bath occupation. To confirm this point
we also plot Fig.4 where the optimized logarithmic negativity as the function of radiation losses
for different values of the initial occupation of the mechanical mode is presented. For small
amount of losses the optimal logarithmic negativity has remarkable values even for quite high
nth whereas for small nth and high losses the value of the maximal entanglement is significantly
lower.

Since along this section we consider all main decorence processes, what brings us closer to
the experiment, and the QND interaction is the basis of the proposed scheme, we would like to
mention few experimental works related with the implementation of the QND interaction. In [59]
the two-tone QND measurement in a superconducting electromechanical device was performed
to detect back-action forces, reduce the quantum noise and the measurement imprecision. In
another experiment [60] authors coupled a mechanical resonator to two microwave cavities and
demonstrated the ability to perform a QND measurement of a single mechanical quadrature.
This kind of measurement was further used to verify the preparation of a squeezed state in the
mechanical oscillator. Despite the fact that these experiments weren’t pulsed ones we made
estimations about the QND coupling η available within them and found that it ranges from ∼ 0.3
for the first one to ∼ 0.6 for the second one. This demonstrates that state-of-the-art experimental
possibilities allow to implement proposed device in the laboratory.

4. Asymmetrical transducer

Up to this moment we considered a symmetric transducer that could in principle be implemented
with two radiation modes entering in turns a same optomechanical cavity. Now we switch to a
principally different case, where a common mechanical mode is shared across two opto(electro-
)mechanical cavities. This type of transducer allows coupling physically different modes of
radiation, for instance, optical and microwave fields and was implemented in continuous wave
regime in [25,26]. The performance of the transducer has been proven [25] to be partially limited
by mechanical environment occupation. We show that our scheme is capable of reasonable
performance at relatively high temperatures.

To characterize the system performance we introduce new effective QND coupling param-

eter η′ =

√
2gAgB

√
τAτB
κAκB

, where subscripts A and B denote optical and microwave systems

correspondingly. We take into account losses in both modes and the mechanical bath.
Our analysis shows that in the case of small radiation losses and low mechanical bath occupa-

tion the optoelectromechanical transducer demonstrates very small deviations from maximally
achievable performance even without optimization of the individual interactions what is reflected
in Fig. 5. For the numerical parameters of the analysis we were inspired by two experimental
works. The first one reported in [61] considers a nanoscale silicon optomechanical crystal and
the second one [10] explores pulsed entanglement in an electromechanical system. Both these
setups are operating in the pulsed regime what suits well our analysis and allows to estimate the
feasibility of the future experimental implementation.
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Fig. 5. Logarithmic negativity EN as the function of QND coupling η′ =

√
2gAgB

√
τAτB
κAκB

in the presence of mechanical bath and radiation losses for the case of asymmetric transducer.
Solid lines correspond to the non-optimized cases with gA ,B varied (for fixed τA = 690/κA
and τB = 80/κB), dashed lines — for the same case with τA ,B increased (for fixed
gA = 0.03κA and gB = 0.03κB), dotted lines with markers stand for the optimized cases.
Parameters are varied in the following regions: 0 ≤ gA ≤ 0.07κA; 0 ≤ gB ≤ 0.1κB ;
2.2 × 102/κA ≤ τA ≤ 4.4 × 103/κA; 2.3/κB ≤ τB ≤ 113/κB with κB = 0.01 × κA
and γ = 1.5 × 10−4κB . Brown dashed line is responsible for the changes in τB while
changes in τA in the corresponding region does not lead to any entanglement appearance
thus demonstrating the asymmetry of the system. This figure demonstrates that the proposed
transducer is feasible to entangle optical and microwave fields with the state of the art
experimental possibilities.

To achieve maximum of entanglement we performed the same optimization of parameters
as we did previously unless this time the coupling strengths gA ,B and pulse durations τA ,B for
the two modes were bounded in individual regions in order to reflect the difference between
the two modes. It means that we numerically maximized the function EN(gA , gB , τA , τB ) over
the region 0 ≤ gA ≤ 0.07κA, 0 ≤ gB ≤ 0.1κB , 2.2 × 102/κA ≤ τA ≤ 4.4 × 103/κA,
2.3/κB ≤ τB ≤ 113/κB . In the case of small losses and low occupations this optimization does
not help sufficiently (See Fig. 5 where green lines virtually overlap). However for the case of
high thermal occupation nth = 200 where the entanglement is not observable (solid brown line on
Fig. 5) the optimized curve demonstrates significant values of the logarithmic negativity (brown
dotted line with markers).

It is worth noting that variation of τA and τB leads to different results in the entanglement
behavior. As you may see for the case of nth = 200 variation of τB (dashed brown curve) leads to
a region of non-zero entanglement, whereas variation of τA in the region of realistic parameters
does not produce any entanglement. This is related to the fact that at large bath occupation
number the individual subsystems are very sensitive to the changes in the pulse duration thus the
asymmetry of the transducer becomes more apparent.

5. Conclusion

In this paper we explored pulsed optomechanical transducer which entangles two directly non-
interacting radiation modes with assistance of a noisy mechanical mediator. We considered this
system in the adiabatic regime for the case of symmetrical transducer interconnecting optical
fields and we explored the realistic performance of this system in the presence of decoherence
for both symmetrical and asymmetrical (allowing to connect optical to microwave radiation)
cases. We have shown that the appropriate choice of parameters and their numerical optimization
over controllable interaction time and pumping power allow promising performance of such
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device for experiment. It goes beyond simple understanding based on the geometric phase
effect [14]. Particularly, for the case of very high bath occupation number nth = 200 where
the entanglement is not generated in the non-optimal case, the optimization shows significant
values of achievable logarithmic negativity. It is apparently measurable value of the entanglement
detectable in the experiments. This result is a good demonstration of potential efficiency of
proposed pulsed transducer and a stimulation for the experimental teams. It opens the way for
further exploration of pulsed transducers combining them with other physical platforms, like for
example atoms [62, 63] or solid-state systems like NV centers [64, 65].

A. Derivation of the input-output relations in the adiabatic lossless regime

In this Appendix we derive in details the input-output relations for a single pulsed optomechanical
interaction and outline the steps necessary to obtain the Eqs. (4). For simplicity we assume all
the parameters to be equal for all pulsed interactions (e.g., κA = κB = κ, κi = κ).

In the adiabatic regime when κ � {κ, γ} the Eqs. of motion for the quadratures read in
absence of the mechanical environment

0 = −κXA +
√

2κX in
A + κq; q̇ = 0;

0 = −κYA +
√

2κY in
A ; ṗ = −κYA .

The solution for the intracavity quadratures is straightforward

XA (t) =

√
2
κ

X in
A (t) +

κ
κ

q(t), YA (t) =

√
2
κ

Y in
A (t).

The solution for the mechanical quadratures is then

q(τ) = q(0); p(τ) = p(0)−κ
∫ τ

0
YA (t)dt = p(0)−κ

√
2
κ

∫ τ

0
Y in
A (t)dt ≡ p(0)−κ

√
2τ
κ
Y in

A ,

where we used the solution for YA (t) and defined the new quadrature of the input noiseY in
A . With

help of the input-output relations (3) we can write the output quadratures of the leaking field
corresponding to the first pulse, i.e., for 0 ≤ t ≤ τ:

Xout
A (t) = X in

A (t) + κ
√

2
κ

q(0), Y out
A (t) = Y in

A (t). (10)

In a fully similar fashion, for the second pulse the expressions for the quadratures read (for
τ ≤ t ≤ 2τ)

Xout
B (t) = X in

B (t), Y out
B (t) = Y in

B (t)−κ
√

2
κ

p(τ), q(2τ) = q(τ)+κ
√

2τ
κ
Xin
B , p(2τ) = p(τ).

The second interaction of the the mode A with the optomechanical cavity is described by the
Eqs. in the left column of (2) with substitution κ → −κ. Furthermore, since the pulse of the
mode A is sent back to the cavity to participate in the pulsed interaction during 2τ ≤ t ≤ 3τ, the
input field quadratures {X,Y }inA are defined by the output quadratures {X,Y }out

A
of the first pulse:

X in
A (t) = Xout

A (t − 2τ), Y in
A (t) = Y out

A (t − 2τ), for 2τ ≤ t ≤ 3τ.

Therefore, by advantage of (10)

YA (t) =

√
2
κ

Y in
A (t) =

√
2
κ

Y out
A (t − 2τ) =

√
2
κ

Y in
A (t − 2τ), for 2τ ≤ t ≤ 3τ,
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and consequently

p(3τ) = p(2τ) + κ
∫ 3τ

2τ
YA (t)dt = p(0) − κ

√
2
κ

[∫ τ

0
Y in
A (t)dt −

∫ 3τ

2τ
Y in
A (t − 2τ)dt

]
= p(0).

Moreover, for 2τ ≤ t ≤ 3τ

Xout
A (t) = X in

A (t) − κ
√

2
κ

q(2τ) = X in
A (t − 2τ) + κ

√
2
κ

q(0) − κ
√

2
κ

q(0) + κ
√

2τ
κ
Xin
B



= X in
A (t − 2τ) − 2κ2√τ

κ
Xin
B .

The other quadratures read after the third pulsed interaction (for 2τ ≤ t ≤ 3τ)

q(3τ) = q(2τ), Y out
A (t) = Y in

A (t − 2τ).

Integrating the expressions for {X,Y }out
A

(t) over the duration of the third pulsed interaction allows
to write the final input-output relations for the mode A, as in (4):

Xout
A ≡ 1√

τ

∫ 3τ

2τ
dtXout

A (t) =
1√
τ

∫ τ

0
dtX in

A (t) − 2κ2τ

κ
Xin
B ≡ Xin

A − η2Xin
B ,

Yout
A ≡ 1√

τ

∫ 3τ

2τ
dtY out

A (t) = Y in
A .

Carefully analyzing the fourth pulsed interaction in a similar way one can show that p(4τ) =

p(0), q(4τ) = q(0) and

Xout
B ≡ 1√

τ

∫ 4τ

3τ
dtXout

B (t) = Xin
B ,

Yout
B ≡ 1√

τ

∫ 4τ

3τ
dtY out

B (t) = Y in
B + η2Y in

A .
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CHAPTER 6

Optomechanical transducer with ultrashort pulses

Next iteration in our study of possibilities to connect different quantum systems is the
exploration of another parameter region - bad cavity or unresolved sideband regime
[214].

This regime is of big interest among researchers now. In many of the optomechan-
ical applications, like the construction of quantum information networks, interconnect-
ing different systems (see the overview of opto- and electromechanical transducers in
the previous section) or proposals to prepare massive mechanical oscillators in non-
classical states, which can be of use for probing of quantum-to-classical transition [40]
or mass sensing [124] and accelerometry [109], it is beneficial to use a low-frequency
mechanical oscillator [148].

State-of-the-art technologies allow to cool mechanical oscillator to near its ground
state in the unresolved sideband limit, like optical measurement-based feedback cool-
ing [170] or with other techniques, to mention a few – methods of dissipative optome-
chanics [61], optomechanically-induced transparency [157] or using hybrid quantum
systems [19, 99, 39]. However, an alternative approach is to engineer quantum non-
demolition (QND) interactions between short pulses and mechanics [214]. QND in-
teractions are frequently used for upload of quantum states [66, 135, 101] and can be
considered as some sort of “basis” for this kind of tasks.

In this work, we extended our previous results for the quantum transducer, based
on the geometric phase effect to the so-called stroboscopic regime. The contribution of
this thesis is the demonstration of potential good performance of such a system under
the influence of different decoherence processes and, what is important, for an almost
arbitrary noisy mechanical mediator. We analyze different measures of quantum cor-
relations between radiation modes – generalized and conditional squeezing, entangle-
ment, and steering (See Sec.1.8 for a brief introduction of these metrics) at different
levels of protocol’s build-up. We also performed the same analysis for the system with-
out a cavity. This work was done in close collaboration with the experimental group
of Prof. Ulrik Andersen from Denmark Technical University and there is an expecta-
tion of the experimental realization of this scheme and further researches in the area of
quantum transducers. Our exploration fits well to the current trend of development of
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optomechanics, as the stroboscopic approach is very promising direction that continues
to develop fast today [175, 42, 31].
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Abstract
Wepropose an optomechanical setup allowing quantummechanical correlation, entanglement and
steering of two ultrashort optical pulses. The protocol exploits an indirect interaction between the
pulsesmediated optomechanically by letting both interact twice with a highly noisymechanical
system.We prove that significant entanglement can be reached in the bad cavity limit, where the
optical decay rate exceeds all other damping rates of the optomechanical system.Moreover, we
demonstrate that the protocol generates a quantumnon-demolition interaction between the
ultrashort pulses which is the basic gate for further applications.

1. Introduction

According to the rules of quantumtheory, a quantumstate canbe swappedbetweenphysical systemsof the same
dimensionwithout any limitation. Such transductionbetweendifferent physical platformsopens the full operation
space for quantumtechnology [1].Manydifferent systems,however, donot interact directly and transduction canbe
realizedonly throughamediator.Mechanical systemsare very goodcandidates for suchmediators, interconnecting
electromagnetic radiationofdifferent or same frequencies andbuildinguniversal transducers [2–5], as they can couple
to variousquantumsystems including spins, cold atoms,Bose–Einstein condensates andphotonsof awide rangeof
frequencies. The interactionof lightwithmechanical oscillators is the subject of the specialfieldof optomechanics.The
principle of interconnecting radiationfieldswithhelpof amechanicalmediatorhasbeendemonstrated in anumberof
experiments connectingoptical andmicrowavefields [6–10]. Experimentshavebeen reported connectingoptical to
optical [11–13] andmicrowave tomicrowave [14]fields.Theoretical proposals for building transducers connecting
light andmicrowave radiation in the continuous-wave regime [15–21]have alsobeenput forward.

To be fully compatible withmodern hybrid quantumoptics [22–25], pulsed versions of quantum
optomechanics have been initiated in two regimes: exponentiallymodulated pulses with duration significantly
exceeding themechanical period [26] and high-intensity pulses which are very short compared to the
mechanical period [27]. The former has been used to demonstrate Gaussian entanglement betweenmicrowave
field andmechanical oscillator [28], quantum state transfer [29, 30], non-classical photon–phonon correlations
[31, 32], entanglement between distantmechanical oscillators [33], and alsomotivated other theoretical ideas
[34–36]. Likewise, the latter approach, also known as stroboscopic, has stimulated a number of experimental
[37] and theoretical [38, 39]works. Recently, quantum transducers based on geometric phase effect have been
proposed [40] and analysed in the regime of long pulses [41]. There it was shown that by proper optimization an
entangling quantumnon-demolition (QND) interaction [27, 42] can be established between two systems
mediated by amechanical oscillator, without the need to cool the latter close to the ground state. The idea has
been applied to generate entanglement between optical andmicrowave field [28]. Such a scheme requires high-
Q cavity systems, resolved-sideband regime, and intensive two-tone driving to eliminate the destructive free
mechanical evolution and thereby reach nearly ideal performance. It, however, still remains unclear, whether
the geometric phase effect will be sufficient to obtain a robust transducer in the stroboscopic regimewith
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ultrashort pulses without entering the sideband resolved regime, and potentially without cavity. Such a proposal
will stimulate amuch broader class of feasible quantum transducersmediated bymechanical systems.

In this paperwe propose a pulsed stroboscopic quantum transducer based on the geometric phase effect,
which generates aQNDcoupling between optical fields of possibly different frequencies.We show that for state-
of-the-art optomechanical systems the proposed scheme performs verywell under the influence of different
decoherence processes and for an almost arbitrarily noisymechanicalmediator.We also analyse the gradual
build-up of non-classical correlations, entangling power and quantum steering after different numbers of
sequential pulses, demonstrating that even simplified versions of the protocol produce quantum correlations. It
allows for a verification of its performance in themiddle of the transducer protocol. In additionwe prove that
this protocol is also efficient in a systemwhich does not contain an optical cavity.

2. Protocol

Wepropose a setup allowing to entangle two opticalmodes (possibly of different wavelengths),A andB,
applying sequential interactions with amechanical oscillator.We start by considering amechanicalmode of the
optomechanical cavity (as infigure 1), although the protocol can be extended to a systemwithout the cavity (see
section 8). The optomechanical cavity is typically a system consisting of twomodes, an optical and amechanical
one. In the presence of a strong classical optical pump at the cavity resonance, the inherently nonlinear
optomechanical interaction [43] can be linearized. In the frame rotatingwith the pump frequency the
Hamiltonian of the system including this linearized interaction, reads [44]

  w a q q= + + +( ) ( ) ( )( ) ( )t q p g t X Y q
1

2
cos sin , 1m

2 2

where thefirst summand describes the free evolution of themechanicalmode and the second one describes the
optomechanical coupling of the opticalmodewith quadratures (X,Y) and themechanicalmodewith
dimensionless displacement q andmomentum p, such that = =[ ] [ ]X Y q p i, , . Here g is the single-photon
optomechanical coupling rate,ωm is themechanical frequency and θ is the optical quadrature phase. Themean
intracavity amplitudeα(t) induced by the pump is assumed to have constant value a kt= N4 over the pulse
duration τ, whereκ is the energy decay rate of the cavity. This amplitude is normalized in such away that the
average number of photons in the corresponding pulse isN=α2τκ/16 . If the interaction time is short
compared to themechanical period, as, for instance, in the experiment [37], the free evolution of themechanical
mode can approximately be ignored, so that only the second (coupling) term in theHamiltonian(1) remains.
Numerical estimations prove that the freemechanical evolution during the pulsed interaction does indeed not
influence the entanglement of themodes significantly. This step significantly simplifies the resonant

Figure 1. (a)The block-scheme of the transducer. Opticalmodes of possibly different wavelengthsA andB interact sequentially with
themechanical systemM by fourQND interactions withHamiltonians i. Between these interactions themechanicalmode
undergoes free evolution through one quarter of themechanical periodwhile interactingwith themechanical environment ( ) and
the opticalmodes are subject to optical losses (η). tidenote corresponding interaction endmoments. (b)Apossible experimental
implementation of the protocol. Themirror (dashed) is optional. OpticalmodesA andB interact alternately with themechanical
systemM. DL—delay lines. (c)Path of themechanicalmode of the transducer in phase-space. Themechanical system starts in the first
quadrant. Then themomentumkick by themodeA occurs (red vertical arrow). After that themechanical system evolves freely per one
quarter of themechanical period, ending up in the second quadrant (purple arrow). Subsequently the interactionwith themodeB
occurs. The procedure is repeated until the system reaches the ‘end’ point. In the ideal case the trajectory of themechanicalmode in
the phase space is closed and thismode appears to be effectively decoupled from the optical ones. A and B stand for amplitude and
phase quadratures of systemsA andB, respectively, andχ is the interaction strength.

2
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optomechanical interaction, becausewe can reach two differentQND interactions associatedwith θ=0,π/2
in(1), without any change in the non-demolition variablesX, q andY, q.

Our proposed protocol consists of four sequential pulsedQND interactions (two for each of the optical
modes) separated by a quarter of the period of the freemechanical evolution duringwhich there is no interaction
with any of the opticalmodes (seefigure 1(c)). Between the optomechanical interactions with themechanical
oscillator, each of the opticalmodes is directed to the delay line. TheHamiltonians of the individual pulsed
interactions read (the quadratures ofmodesA andB are labelledwith corresponding subscript)

  kt kt= - = ( )g N Y q g N X q4 , 4 . 2A B1,3 1,3 2,4 2,4

Each of theQND interactions shift themomentumof themechanicalmode and also one of the quadratures of
the corresponding opticalmode. Combinedwith the precisely timed free evolutions of themechanicalmode
that effectively swap themechanical quadratures «q p this ideally allows themechanicalmode to follow a
closed path in phase space (figure 1 (c)). The geometric phase induced by this closed path enables coupling of the
opticalmodes while keeping themechanicalmode decoupled from those.

For theQND interactionwithHamiltonian  kt= - g N Y q4 A1 1 (for the phase θ=0) the quantum
Langevin equations take the following form [3, 45]:

k
k kt

k
k kt

=- + - =

=- + =

˙ ˙
˙ ˙ ( )

X X X g N q q

Y Y Y p g N Y

2
4 , 0,

2
, 4 . 3

A A A

A A A A

in
1

in
1

Here X Y,A A
in in are thequadratures of the inputopticalfluctuationswith commutator d¢ = - ¢[ ( ) ( )] ( )X t Y t t t, iin in .

We assume the optical decay rateκ to bemuch larger than other characteristic rates of the system—inverse
pulse duration τ−1,mechanical frequencyωm and the enhanced optomechanical coupling strength ktg N4
which is well justified in certain experiments [46, 47]. This corresponds to the adiabatic regimewhere the optical
mode reacts instantaneously to influences. This allows us to set = =˙ ˙X Y 0A A in(3). Thuswith the help of the
input–output relations [48] in the form

k k= - = -( ) ( ) ( ) ( ) ( ) ( ) ( )X t X t X t Y t Y t Y t, 4A A A A A A
out in out in

we canwrite down the solution of(3):

ò

k t

k t

= - =

= = +
t

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

X t X t
g N

q q t q

Y t Y t p t p
g N

Y t t

8
0 , 0 ,

, 0
8

d .

A A

A A A

out in 1

out in 1

0

in

Nowwe introduce newopticalmodeswith quadratures ò=
t

t ( )Q t td1

0
andQND interaction strength

c =
k

g N
1

8 1 , and integrate the equations for Xout and Y out over the duration of thefirst pulsed interaction.We
then obtain the standardQND form [49] of interaction:

 

  

c t

t c

= - =

= = +

( ) ( ) ( )
( ) ( ) ( )
q q q

p p

0 , 0 ,

, 0 , 5

A A

A A A

out in
1

out in
1

in

validwhen k t w-  m
1 . Equations (5) describe the ideal unitary coupling between the new temporalmodes

which are not affected by decoherence during the short period of the pulse.We apply the same approach for the
remaining interactions.

3.Decoherence processes

In this sectionwe describe themodel of the decoherence processes in the system. Themost fundamental
decoherence processes are that ofmechanical decoherence due to the coupling to the thermal environment and
optical losses.

3.1.Mechanical thermal noise
Since the pulsed optomechanical interactions in our scheme are very short compared to themechanical period
(t w-  m

1 ) and the thermal decoherence time (t G-  n1
th), it is safe to neglect the free evolution of the

mechanicalmode for the time of the interaction. Between the interactions, however, themechanicalmediator is
subject to damped harmonic oscillations that last for a quarter ofmechanical period ( *t p w= ( )2 m ). This
evolution is described by the following equations ofmotion

3
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w w x= = - + G - G˙ ˙ ( ) ( )q p p q t p, 2 , 6m m

whereΓ is themechanical damping coefficient, ξ(t) is the thermal noise operator that obeys the autocorrelation
x x dá ¢ ñ = + - ¢( ) ( ) ( ) ( )t t n t tth

1

2
with nth being themean occupation number of themechanical bath.

We can formally solve the equations (6) andfind the transformation of themechanicalmode for a high-Q
mechanical oscillator that satisfiesΓ=ωm:

* * * ** *t t t t= + D = - + Dt t-G -G( ) [ ( ) ( )] ( ) [ ( ) ( )] ( )q p t q p q t pe , e , 72 2

withΔ q,Δ p beingmechanical noise operators defined as:

ò

ò

w x

w x

D = G ¢ - ¢ ¢

D = G ¢ - ¢ ¢

G ¢

G ¢

( ) ( ( )) ( )

( ) ( ( )) ( )

q t t t t t

p t t t t t

2 d e sin ,

2 d e cos .

t
t

m

t
t

m

0

2

0

2

These operators have the following properties:

* *

* *

t t
p
w

t t
w

áD ñ = áD ñ = +
G

áD D ñ = +
G

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )

( ) ( )

q p n

q p n

1

2 2
,

1

2
,

m

m

2 2
th

th

which resembles standardMarkovian noise [50].

3.2.Optical losses
The optical losses in the system stem from imperfect coupling to the optomechanical cavity,mismatch ofmodes,
propagating photon losses etc. Importantly, all these processes are linear and this leads to admixture of vacuum.
Therefore the effect of losses on an opticalmodewith quadraturesQ can bemodelled as a beamsplitter with
vacuum in the unused port. The corresponding phase-insensitive transformations of quadraturesQ read

h h + - ( )Q Q Q1 , 8N

withQN being the quadrature of the optical vacuumnoise (á ñ =QN
2 1

2
) and η, the transmittance of the

beamsplitter. For example, when η=1 there are no optical losses in the system.
We introduce the optical loss after thefirstQND interaction for the opticalmodeA and after the second

QND interaction for the opticalmodeB (seefigure 1(a) for reference). The optical losses before thefirst and after
the last interactions are not taken into account since theymay be considered as not being inherent in the
protocol itself andmay be easily added to the final results if needed.

We have nowdescribed each of the evolution blocks constitutingfigure 1 in terms of input–output relations
for the quadratures of themodes affected. Sequentially applying this formalism,we can obtain expressions for
the quadratures at a certain instant of time, fromwhichwe can evaluate the required parameters, in particular,
the covariancematrices.

4.Generalized squeezing, conditional squeezing, Gaussian entanglement andGaussian
quantum steering

A zero-meanGaussian state r̂ of a bipartite systemA+Bwith the quadratures forming a vector f=(XA,YA,XB,

YB) can be completely described by the covariancematrix [51, 52]with elements r= +[ ˆ ( )]V f f f fTrij i j j i
1

2
. This

matrix has the block structure

=
⎡
⎣⎢

⎤
⎦⎥V

V C

C V
,

A
T

B

whereVA,VB andC are the 2×2matrices describing individual variances and co-variances correspondingly.
Superscript Tmeans transposition.

Themathematical formalism forGaussian states allows us to investigate different signatures of quantum
mechanical correlations between twomodes [53].Wewill use four suitable Gaussian quantifiers: generalized
squeezing, conditional squeezing, entanglement and steering. They have gradually higher demand on quantity
of quantum correlations betweenA andB.

Generalized squeezing [54] specifies squeezing available in the systemby global passive transformations. It is
also the signature that the covariancematrix corresponds to a non-classical state. This quantity is defined as the
minimal eigenvalue of the covariancematrix.

4
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Conditional squeezing proceduremay be described in the followingway [55]. Let us performhomodyne
detection of the amplitude quadrature ofmodeB. After this procedure the covariancematrix of systemA is
transformed in the followingway:

¢ = - P ( )V V
V

C C
1

, 9A A
B,11

T

with P = ( )diag 1, 0 . The conditional squeezing is possible when the smallest eigenvalue of ¢VA (whichwewill
later refer to as conditional variance andwhich in the simple case of diagonal ¢VA corresponds to the variance of
amplitude or phase quadrature of systemA) is smaller than the shot-noise variance, established by the
Heisenberg’s uncertainty principle. An analogous procedure can be applied to check for the possibility of
obtaining conditional squeezing of systemB. Conditional squeezing justifies that generalized squeezing can be,
at least partially, induced in onemode by ameasurement of the other one.

The state rAB of a bipartite system is called an entangled state if it cannot be presented in the form

r r r= å ÄcAB i i i
A

i
B with ri

A B, being the states of the first and second systems correspondingly and ci being the
probabilities. Ameasure of entanglement is the logarithmic negativity defined forGaussian states as follows [53]:

n= - -[ ] ( )E max 0, ln 2 , 10N

where ν− is the smallest symplectic eigenvalue of the covariancematrix of the partially transposed state. This
eigenvalue can be calculated in the followingway:

n = S - S - S = + -- V V V C
1

2
4 det , det det 2 det .V V V A B

2

ThemodesA andB are entangledwhen >E 0N .
The logarithmic negativity constitutes an upper bound to the distillable entanglement, and is a proper

entanglementmonotone that can be easily evaluated provided a covariancematrix and does not require
complicated optimization. Thereforewe prefer it to other entanglementmeasures, includingDuan’s criterion
[51]. The latter could be used aswell, but it requires a proper optimization of the combination of the quadratures
of the subsystemsA andB.

The state rAB isA→B steerable if after performingmeasurements on subsystemA, it is possible to predict the
measurement results of systemBwith an accuracy better than for a pure separableminimumuncertainty state.
To quantify the steering of bipartite Gaussian systemswe use the steerability [56]:

å n= -
n


< <

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

( )G max 0, ln , 11A B
j

j
B

:0 1j

where n{ }j
B are the orthogonal eigenvalues of thematrix W∣ ∣Mi B with W = -( )antidiag 1, 1 and

= - -M V C V CB
B

T
A

1 . The steerability in opposite direction frompartyB to partyAmay be calculated by
replacingmatricesVA andVB.

5. Basic quantum transducer

Tounderstand the process of building quantum correlations and entanglement, wewill analyse the correlations
after output of each step of the protocol. After only twoQND interactions the transducer is capable of building
correlations sufficient for conditional squeezing of at least one opticalmode. The presence of this non-classical
aspects of correlations would be a demonstration of the feasibility of the basic protocol.

We consider a sequence of interactions, wheremodeAfirst interacts with themediatorMwithHamiltonian
1, then themechanical system evolves quarter of amechanical period and after thatmodeB interacts with the
mediator withHamiltonian2 (see figure 1(a)).We start with the simplest case when there is no decoherence in
the system and all individual QND interaction strengths are equal toχ. The opticalmodes are initially in
vacuum, and themechanicalmode in a thermal state with occupation n0.When each of the two opticalmodes
have interactedwith themediator, the transformations of quadratures are as follows:

    

     

c c

c c c

= - = - - =

= = - - = - -

( ) ( )
( ) ( ) ( )

q q q

p p p

0 , 0 , ,

, 0 , 0 , 12

A A B B B

A A A B B A

out in II in out in

out in II in out in 2 in

where q(0) and p(0) are themechanical quadratures before the first optomechanical interaction.
After homodyning an arbitrary quadrature Q + QX Ycos sinB B of systemB, the covariancematrix of

systemA takes the form: c s= + á ñ¢ ( ( ) )V qdiag 0 , ,A A
out 1

2
2 2 II where

5
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

s
c

c

c c

=
+ á ñ Q

+ Q á ñ +

-
+ á ñ +- -

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )
( ( ) )

( ) ( )

p

p

p

1

2

1 2 0 sin

1 sin 2 0 1

1

2
1

1

1 2 0
. 13

A
II

2 2 2

2 2 2

2 2 4

The diagonal elements of the covariancematrix of aGaussian system (in the diagonal form) showuncertainties
in its quadratures.When one of the elements is below the shot noise level, the system is squeezed. Therefore,
homodyne detection on systemB is capable of squeezing themode of systemA. This is already a nontrivial aspect
of Gaussian quantum correlations build-up achieved using themechanicalmediator. The possibility of
squeezing can be understood from the equations (12). Homodynemeasurement of  B

out effectively reduces its
variance to zero. Since the quadrature  A

in constitutes a part of this quadrature, its variance could aswell be
reduced as a result of thismeasurement, that is it will become squeezed. To achieve significant squeezing,
however, one needs the coupling to be strong enough to secure c á ñ = + ( )p n02 2

0
1

2
, so that the dominant

term in the expression for B
out is provided by fluctuations in A

in and not by the initialmechanicalfluctuations
inp(0). Formally this amounts to the need to decrease the denominator of the fraction in(13). Thismeans that
for realistic values of the couplingχ�10, squeezing can be observed for amechanical occupancy of n0≈100.
Cooling the phonon number to this level is achievable within the sideband unresolved regime using different
techniques such as active feedback cooling [58], hybrid systems [59], optomechanically induced transparency
[46] or dissipative optomechanics [60]. Experimentally, feedback cooling has allowed for an occupancy of
n0=5 of amechanical oscillator [61, 62]which can be improved to yield ground state cooling using a higher
detection efficiency or using squeezed state probing [63]. These experiments on near ground state cooling have
been performed in a 4K cryostat, but with the development of new high-Qmechanical oscillators [64–66],
ground state cooling in a room temperature environment is within reach.

To determine the full dynamics, includingmechanical decoherence and optical losses, we resort to
numerical estimations. The results are presented infigure 2(a). The good correspondence between the lossless
solution and the onewith losses should be noted. This indicates that the approximatemodel captures the system
really well and that the initial occupation is themain source of decoherence.

Our estimations show that in the case of twoQND interactions conditional squeezingσA is identical to the
generalized one sg meaning that the former reaches themaximal possible value of squeezing in this system
(darker and lighter lines coincide infigure 2(a)).

Conditional squeezing ofmodeB is, however, not possible as no information aboutB is written intoA after
only twoQND interactions.

Our analytical and numerical estimates of the logarithmic negativity and the steerability show that there is no
entanglement betweenmodesA andB and that steering is not possible in either direction.

6. Advanced quantum transducer

Wenowproceed to consider 3 interactions and investigate differentmeasures of quantum correlations between
the opticalmodes. In the ideal case without decoherencewhen the interaction strengths are equal, the
transformations of quadratures take the following form:

Figure 2.Generalized and conditional squeezing after two (a), three (b) and four(c)QND interactions as a function of the initial
mechanical occupation (note different axis range in (a) and (b), (c)). Corresponding generalized (sg) and conditional variances (sA,B)
after the phase quadrature of the systemB (A)was homodyned as the function of initial occupation of themechanicalmodeM for
different values of theQNDcoupling strength. Darker colours denote conditional squeezing and lighter colours denote generalized
one. Solid lines stand for the case including all the decoherence processes, dotted ones stand for ideal cases without any decoherence
and lines withmarkers are responsible for the optimized values. Conditional squeezing coincides with generalized one for every case
except the case ofχ=1 in (b) and (c). Parameters used are the following: w k= ´ -4 10m

3 , kG = ´ -6 10 10 , g=4×10−7κ,
τ=16/κwhat corresponds to the recent experiment [57].We also assume =n 10th

6 and η=0.9.
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SystemB is not affected by the third interaction, thereby themeasurement performed on it will provide the
same squeezing ofmodeA as after only the two interactions. Aswe see from these equations the initial state of the
mechanical oscillator is completely traced out from systemA, and nowquadrature A

out contains information
about B

in. From this we conclude that by homodyning systemA in this ideal case one can perform squeezing of
systemB and the amount of squeezing does not depend on the initial occupation of themechanical oscillator.
The conditional variance in this case is expressed as s =

c+( )B
III 1

2 1 4 and is defined only by the value of theQND

coupling strength.
When there are optical losses in the system, the conditional variance becomes dependent on the initial

occupation of themechanical system andmay be approximated for small losses by:
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The optimization ofσBwith respect to unequal individualQND interaction strengthsχ1,2,3 allows us to partially
compensate for the influence of optical losses and tomakeσB independent of n0 and equal to s =∣B n 00

. The
presence of themechanical bath defines themaximal achievable amount of squeezing and cannot be
compensated by the optimization. In the case of a highmechanical quality factorQ=ωm /Γ the conditional
variance takes the following form:
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The reasoning above proves that themajor impediment to successful performance is the initial thermal
occupation n0. In the lossless case it is automatically balanced out by the equalQNDgains, andwhen the losses
break the balance, the proper combination of unequal gains can help to alleviate the influence of n0. Numerical
estimations for the full dynamics includingmechanical bath and optical losses are presented in thefigure 2(b).
The upper bound of the range of initial occupation, n0=106, corresponds to the equilibriumoccupation of a
mechanical oscillator with frequencyωm=2π×100 kHz at temperature of 5 K.

Comparison of the conditional squeezingwith the generalized one shows that for the case of lowQND
coupling strengths (χ1) the amount of squeezing produced by conditionalmeasurement does not reach the
maximal possible one (in both cases of the idealized dynamics without any decoherence and in the case of full
model). To attain themaximally available squeezing the valueχ should be increased. See figure 2(b) for details.

We now investigate the entanglement generated in this system. From (14)we conclude that logarithmic
negativity should be sensitive to the initial occupation of themechanicalmode as the term−χ p(0) enters the
expression for  B

out. In the ideal case, the logarithmic negativity is amonotonically increasing function ofχ.
Optical losses break thismonotonicity. This is related to the fact that lossesmodify the trajectory of the
mechanical system in phase space, displacing it away from the optimal final point,most pronounced for higher
QNDgains. Optimizationwith respect toQNDcouplings of individual interactionsχ1,2,3 partially compensates
the optical losses andmakes the logarithmic negativity amonotonic function again. The presence of the
mechanical bath imposes a limit on themaximal achievable amount of entanglement. The optimizationwith
respect to unequalQND strengths partially compensates the influence of themechanical bath and allows higher
values of entanglement to be reached, compared to the non-optimized case. This is represented in the figure 3(a)
togetherwith estimates for non-optimized values.

The steerability properties are very similar to the ones of logarithmic negativity—optical losses break the
monotonicity whereas themechanical bath is responsible for limiting themaximal value of steerability. The
optimization of this quantity with respect toχ1,2,3 partially compensates these two decoherence effects (see
figure 3(b)). There is, however, a threshold value of optomechanical coupling necessary to achieve steering. For

GA B, in absence of the decoherence processes, it is defined by the value of n0. The joint impact of optical losses
andmechanical bathmakes this threshold higher. In contrast, GB A does not demonstrate such a threshold in
the ideal case, and only the presence of decoherence processes causes this limitation.

7. Full quantum transducer

In this sectionwefinally consider the complete scheme of four sequential QND interactions (figure 1(a)). As
above, we study different signatures of quantum correlations. In the idealized symmetric adiabatic case without
decoherence the transformation of quadratures takes the following form:
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describing theQND interaction between themodesA andBwith theHamiltonian:

  t c= - .B Aint
1 2 in in

As can be seen from(17) themechanicalmediator isfinally traced out from the opticalmodes. This is a
manifestation of the geometric phase effect.

We start by estimating the amount of conditional squeezing. SystemA is not involved in the fourth
interaction, thereforemeasuringA yields the same conditional variance sB

III as after only three interactions, as
analysed in section 6. SystemB does not contain any influence of themechanicalmomentum and in the ideal
case, the conditional variance s =

c+( )A
IV 1

2 1 4 is a function of only theQNDcoupling strength. The optical losses

modify the trajectory of themechanical system in phase-space andmake it non-closed. As a consequence, sA
IV

becomes dependent on n0 and for small losses, it takes the following form:
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Optimizationwith respect to individualQND couplingsχi allows to bring this phase-space trajectory as close to
the ideal one (figure 1(c)) as possible. The optimized value ofσA becomes equal to s =( )n 0A 0 . Themechanical
bath defines themaximal achievable value of conditional squeezing and its influence cannot be compensated in
this case. The corresponding conditional variance for highmechanical quality factorQ approximately reads:
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It is clear that the influence of n0 is themajor encumbrance for good protocol performance. In the absence of
optical losses in the system, n0 is automatically traced out from the equations by proper combination ofQND
gains. Once losses are introduced, they break this balance. This can be compensated by the optimization of
unequalQNDgains, which is presented in thefigure 2(c).

Analogous to the case of threeQND interactions, conditional squeezing coincide with the generalized one
for large enough values ofχ. For experimentally attainable valuesχ<1 the amount of conditional squeezing is
lower thanmaximally possible one (see figure 2(c)).

We now study the entanglement and steerability. In the ideal case the logarithmic negativity and steerability
are defined only by the value of theQNDcouplingχ. Optical lossesmodify them in away that they become
dependent on n0. In the region of weakQNDcouplings and for small optical losses the eigenvalues defining the
quantities (10), (11) can be approximately expressed by:

Figure 3.Entanglement and steerability after three interactions. (a) Logarithmic negativity as a function of the initial occupation of the
mechanicalmode n0 for different values of themechanical bath occupation number nth and forχ=1. Inset: logarithmic negativity as
a function of theQNDcoupling strengthχ for different values of themechanical bath occupation number nth, n0=0 and pulse
photon numbers 0�N�1013. (b) Steering GA B and GB A as a function of theQNDcouplingχ for different values of the
mechanical initial occupation n0 andΓ/κ=3×10−10. Dashed red lines represent the ideal casewithout any decoherence, whereas
the solid lines represent the casewith all decoherence processes included. Lines withmarkers indicate optimized parameter values.
Parameters which are notmentioned separately are the same as infigure 2.
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demonstrating that the optical losses are responsible for the appearance of the summand proportional to n0. The
influence of themechanical bath is expressed by the additional term independent from n0 and defining the
maximal achievable entanglement and steerability. In the region of weakQNDcouplings and for high
mechanical quality factor the eigenvalues are expressed as:
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It follows from the analysis above that n0 is themain obstacle for the entanglement and steerability
generation. The influence of optical losses andmechanical bathmay be partially compensated by the
optimization of individual unequalQNDgainsχ1,2,3,4. For the case of a coldmechanical bath andweakQND
gains, the optimized values of logarithmic negativity and steerability tend to =( )E n 0N 0 and

=  ( )G n 0A B B A, 0 correspondingly. It is worthwhile to note that decoherence effects are responsible for the
appearance of a threshold value of theQNDcouplingχ required to reach non-zero steerability. The numerical
estimations for the full dynamics are presented in the figure 4.

8. Transducerwithout a cavity

The so-called bad cavity regime (κ?ωm) is advantageous for our transducer, because a cavitywith higher decay
rate does not distort the shape of pulses significantly, which allows us to consider the system in the adiabatic
regime. Therefore a natural next step is to consider the transducer without the optical cavity, where the
mechanicalmode is coupled directly to the propagating lightfields. The transducer without the cavity does not
face the problemofmodematching between the propagating light and cavity so it does not need delicate cavity
operationwhich is beneficial for the experiment. In this sectionwe estimate the achievable amounts of
entanglement and quantum steering for such a transducer.

The optomechanical systemwithout a cavitymay bepresented byfigure 1(b)without themirror in a dashed
box.We still consider four sequentialQND interactionswith themechanicalmediator as depicted in the
figure 1(a). The transformations of thequadratures in the ideal casewithout any decoherence effects included take
the same formas(17)with replacement c c p l ¢ = x N4i i0 [37]where  w=x m2 m0 is the amplitude of
zero-pointfluctuationswithmbeing themass of themechanical oscillator andλ—the opticalwavelength.

The dynamics of the systemwithout the cavity is completely equivalent to the onewith the cavity, and the
numerical estimation results replicate offigure 4 after the replacement c c ¢. Parameters used are the same
with additionλ=1064 nm,m=10−12 kg and 0�N�1016. The systemwithout the cavity does not have the

Figure 4.Entanglement and steerability after four interactions. (a): Logarithmic negativity as a function ofQNDcouplingχ for
different values of themechanical bath occupation number nth. Inset: logarithmic negativity as a function of the initial occupation of
themechanicalmode for different values ofmechanical bath occupation number nth andχ=1. (b) Steerability GA B and GB A as a
function of the initial occupation forχ=1. Inset: steerability as a function ofQND interaction strength for n0=10. Red dashed line
shows the ideal case without any decoherence included, while the solid lines show the full dynamics. Lines withmarkers represent the
case of optimized parameters.Mean photon number is varied in the region 0�N�1015. Other parameters are the same as in the
figure 2.
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advantage of resonant enhancement of the circulating power. Therefore, to achieve the same performance as in
the systemwith the cavity, one has to supply the input power approximately  times higher, where  is the
finesse of the cavity.

9. Conclusion

In this paper we explored the pulsed optomechanical transducer operating beyond the sideband resolved
regime. This transducer allows to interconnect two opticalmodesA andB via a sequence of interactions with the
same noisymechanicalmediator, which can be an element of an optomechanical cavity or just be coupled to
freely propagating pulses. An advantage of the proposed scheme is that it is suitable for, in principle, arbitrary
wavelengths of radiation, therefore it is capable of creating quantum correlations of pulses at different
frequencies that would not interact otherwise.

We studied non-classical correlations after any number of sequential QND interactions in the adiabatic
regime.We have shown that twoQND interactions are enough to create conditional squeezing at least in one
direction. Three sequential interactions allow conditional squeezing in both directions, entanglement between
opticalmodes and quantum steering in both directions, provided that themechanicalmode is cooled close to its
ground state. Finally, the full transducer with four sequential QND interactions is capable of producing
sufficient values of conditional squeezing of both opticalmodes, entanglement and steerability in both
directions at almost an arbitrary initial occupation of themechanicalmode.

The three negative effects that can degrade the performance of the transducer are the initial thermal
occupation of themechanicalmode, its thermal environment and the losses in themodes of radiation.We have
shown that the initial occupation is themost significant impediment to quantum correlations, until it is traced
out from the opticalmodes by a proper combination ofQNDgains. The presence of optical losses breaks this
balance andmakes quantum correlations sensitive to the initial occupation again, whereas the interactionwith
themechanical bath defines themaximally achievable amount of quantum correlations. Remarkably, the
optimization of unequal gains of individualQND interactions allows to substantially compensate these two
unwanted effects.

Thus, we have shown that the geometric phase effect allows for realizing an optomechanical transducer in
the stroboscopic regime outside the sideband resolved limit for the systemswith low-Q cavity, potentially
without cavity.We have also demonstrated that it is feasible in the context of state-of-the-art optomechanical
experiments. This investigationmay stimulate further researches in the area of quantum transducers based on
mechanicalmediators.
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Conclusion

The research conducted in this dissertation is very timely. We are on the verge of a sec-
ond quantum revolution and quantum optomechanics is an important part of this pro-
cess. By itself, this branch of quantum physics is very rapidly developing and promises
many breakthroughs, both in terms of technology and in terms of a better understanding
of the fundamental questions of quantum mechanics. We believe that this thesis ad-
vanced the field making important theoretical explorations that open the way for future
experimental implementations and studies of other setups based on similar principles.
In order not to be unsubstantiated, this section will present the main achievements of
our research with reflections on their contribution to the field and the outlook of future
exploration.

We proposed a new way to surpass the limit imposed on the transfer of highly non-
classical quantum states of light to the mechanical oscillator. The proposed setup can
deterministically transfer an arbitrary state of light without any prior knowledge about
this state. It was shown that with the help of only local Gaussian operation on the light
it is possible to enhance the coupling of light to matter. This approach is proved to help
to transfer negativity of Wigner function for the setups unable to do so previously. The
impact of this work is the new possibility to merge developing pulsed quantum optome-
chanics with state-of-the-art quantum optics to produce a united physical platform for
new experiments.

Next, we introduced and explored in detail a scheme allowing entanglement of two
distant mechanical oscillators mediated by optical or microwave field. This work was
very relevant as two similar mechanical oscillators coupled at the quantum level have
not been demonstrated at that time. More importantly, the proposed scheme assumes
a certain type of coupling between the mechanical oscillators - the quantum nonde-
molition one. This makes it useful for future quantum computing applications as this
type of interaction is required for basic continuous-variable quantum gates, which are
used to flexibly operate information in continuous-variable quantum processing. This
work also might be of use in future studies of quantum synchronization of mechanical
oscillators [136, 233, 225]. Additionally, such studies of quantum interaction of me-
chanical systems are important for potential connection with quantum thermodynamics
[55, 237, 60, 32].

We then moved to the study of quantum transducers which are very important for
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the development of unified quantum technology. We proposed to use a sequence of
long-pulsed interactions between the systems of interest and the mediating system. The
systems themselves do not interact directly with each other. We showed that by ex-
ploiting the power of the geometric phase effect it is possible to eliminate the noisy
influence of the mediator. This approach is quite universal and opens the way for var-
ious experimental realizations. We explored and proved the feasibility for opto- and
electromechanical experiments, however, this work might serve as an inspiration for
combining other physical platforms, like atoms or NV centers (Chapter 14 in [12]).

To be fully compatible with modern hybrid quantum optics [72, 3], we explored a
very similar transducer, but in the regime of high-intensive ultra-short pulses known as a
stroboscopic regime. Before this exploration was done, it was unclear whether the geo-
metric phase effect will be sufficient to obtain a robust transducer in this regime without
entering the sideband resolved one. Our proposal is suitable for arbitrary wavelengths of
radiation which might stimulate a much broader class of feasible quantum transducers
mediated by mechanical systems. The work was performed in close collaboration with
the experimental group of Prof. Ulrik Andersen from Denmark Technical University
and there is big anticipation that the experimental realization will come in the near fu-
ture. Moreover, further proposals from our team [176] and team of Prof. Michael Van-
ner at Imperial College London [102, 42, 144] show that stroboscopic optomechanics
is an interesting future platform compatible with ultra-short quantum optics [87, 88].
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Shrnutı́ v českém jazyce

Tato dizertačnı́ práce se zabývá aktuálnı́mi tématy vědeckého výzkumu. V současnosti
se nacházı́me na počátku druhé kvantové revoluce a kvantová optomechanika je důležitou
součástı́ tohoto procesu. Kvantová optomechanika sama o sobě je velmi rychle se
vyvı́jejı́cı́ disciplı́na, která má potenciál pro mnoho průlomových objevů jak v tech-
nologiı́ch, tak v hlubšı́mu porozuměnı́ kvantové fyziky. Věřı́me, že tato dizertačnı́ práce
posouvá vpřed tento vědnı́ obor tı́m, že činı́ důležitý teoretický výzkum, který otevı́rá
cestu pro uskutečněnı́ budoucı́ch experimentů a studia dalšı́ch schémat založených na
podobných principech. Tato sekce prezentuje hlavnı́ výsledky našeho výzkumu s analýzou
jejich přı́spěvků do kvantové opto-mechaniky a výhledu pro budoucı́ výzkum.

Navrhli jsme nový způsob jak překonat limity, které omezujı́ přenos vysoce nekla-
sických kvantových stavů světla do mechanického oscilátoru. Navrhované schéma
může deterministicky přenést libovolný stav světla bez apriornı́ znalosti o tomto stavu.
Ukázali jsme, že pouze pomocı́ lokálnı́ch Gaussovských operacı́ na světle je možné
zesı́lit interakci světla a látky. Tento nový postup prokazatelně pomáhá přenosu nega-
tivity Wignerovy funkce u schémat, která to dřı́ve neumožňovala. Přı́nos této práce je
nová možnost spojit vyvı́jejı́cı́ se kvantovou optomechaniku s nejmodernějšı́ kvantovou
optikou, aby bylo dosaženo jednotné fyzikálnı́ platformy pro nové experimenty.

Dále jsme zavedli a detailně zkoumali schéma dovolujı́cı́ vznik entanglementu mezi
dvěma vzdálenými mechanickými oscilátory a to prostřednictvı́m optického nebo
mikrovlnného pole. Tento výzkum byl je aktuálnı́, protože dva podobné mechanické
oscilátory spojené na kvantové úrovni nebyly předtı́m nikdy demonstrovány. Navı́c
toto navržené schéma předpokládá jistý typ interakce mezi mechanickými oscilátory
– kvantově nedemoličnı́ interakci. To je užitečné pro aplikace budoucı́ho kvantového
počı́tánı́, neboť tento typ interakce je potřebný pro základnı́ kvantová hradla ve spo-
jitých proměnných, která se využı́vajı́ pro flexibilnı́ zpracovánı́ informace ve spojitých
proměnných. Tato práce by také mohla být využita pro budoucı́ studium kvantové syn-
chronizace mechanických oscilátorů [136, 233, 225]. Navı́c tento výzkum kvantové
interakce mechanických systémů je důležitý pro potenciálnı́ spojenı́ s kvantovou ter-
modynamikou [55, 237, 60, 32].

Následně jsme zkoumali kvantové převodnı́ky, které jsou velmi důležité pro vývoj
univerzálnı́ kvantové technologie. Navrhli jsme aplikovat sekvenci pulznı́ch interakcı́
mezi cı́lovými systémy a zprostředkujı́cı́mi systémy. Samotné cı́lové systémy neinter-
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agujı́ přı́mo mezi sebou. Ukázali jsme, že pomocı́ efektu geometrické fáze je možné
eliminovat vliv šumu mediátoru. Tento způsob je poměrně univerzálnı́ a otevı́rá cestu
pro různé experimentálnı́ realizace. Zkoumali jsme a prokázali proveditelnost tohoto
postupu v optických a elektrooptických experimentech. Tato práce však může sloužit
jako inspirace pro kombinovánı́ jiných fyzikálnı́ch platforem jako jsou atomy nebo NV
centra (kapitola 14 v [12]).

Abychom byli plně kompatibilnı́ s modernı́ hybridnı́ kvantovou optikou [72, 3], zk-
oumali jsme velmi podobný převodnı́k v režimu ultra krátkých pulzů s vysokou inten-
zitou, což je známo jako stroboskopický režim. Předtı́m než byl proveden tento výzkum
nebylo jasné, zda efekt geometrické fáze bude postačujı́cı́ pro zı́skánı́ robustnı́ho převodnı́ku
v tomto režimu. Náš návrh je přijatelný pro libovolnou vlnovou délku zářenı́, což by
mohlo stimulovat mnohem širšı́ třı́du proveditelných převodnı́ků, které jsou zprostředkovány
mechanickými systémy. Tato práce byla provedena v blı́zké spolupráci s experimentálnı́
skupinou prof. Ulrika Andersena z Technické Univerzity v Dánsku, kde očekáváme,
že by se v budoucnu mohl uskutečnit experimentálnı́ realizace. Navı́c, dalšı́ návrhy
našeho týmu [176] a týmu Prof. Michaela Vannera na Imperial College v Londýně
[102, 42, 144] ukazujı́, že stroboskopická optomechanika je zajı́mavá budoucı́ plat-
forma kompatibilnı́ s kvantovou optikou se velmi krátkými pulsy [87, 88].
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