

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV RADIOELEKTRONIKY

DEPARTMENT OF RADIO ELECTRONICS

DRUŽICOVÝ PŘIJÍMAČ S INTEGROVANÝM ANTÉNNÍM TUNEREM

SATELLITE RECEIVER WITH INTEGRATED ANTENNA TUNER

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE AUTHOR Bc. Martin Matoušek

VEDOUCÍ PRÁCE SUPERVISOR

Ing. Tomáš Urbanec, Ph.D.

BRNO 2018

Diplomová práce

magisterský navazující studijní obor Elektronika a sdělovací technika

Ústav radioelektroniky

Student: Bc. Martin Matoušek Ročnik: 2 *ID:* 159628 *Akademický rok:* 2017/18

NÁZEV TÉMATU:

Družicový přijímač s integrovaným anténním tunerem

POKYNY PRO VYPRACOVÁNÍ:

Proveďte návrh zapojení satelitního přijímače s anténním tunerem a jeho řídící jednotkou. Navrhněte vhodné postupy a nástroje pro měření přizpůsobení elektricky krátké antény přijímače.

Realizujte družicový přijímač s anténním tunerem. Vytvořte a uskutečněte navržené měřící postupy pro měření přizpůsobení antény přijímače. Vyhodnotte úspěšnost přizpůsobení přijímače k různým anténám a odhadněte ztráty zvolené koncepce anténního tuneru. Určete všechny důležité parametry přijímače, zejména spotřebu, selektivitu, získ, rozsah napájecích napětí, dynamický rozsah.

DOPORUČENÁ LITERATURA:

[1] Urbanec, T., Vágner, P., Kasal, M. P-sat Transponder WEB Specification [online]. 2017 [cit. 2017-10-5]. Dostupné z:

http://www.urel.feec.vutbr.cz/esl/files/Projects/PSAT/P%20sat%20transponder%20WEB%20spec02.htm

[2] AD9834 20 mW Power, 2.3 V to 5.5 V, 75 MHz Complete DDS [online]. 2017 [cit. 2017-10-5]. Dostupné z: http://www.analog.com/media/en/technical-documentation/data-sheets/AD9834.pdf

Termín zadání: 5. 2. 2018

Termin odevzdáni: 17. 5. 2018

Vedoucí práce: Ing. Tomáš Urbanec, Ph.D.

prof. Ing. Tomáš Kratochvil, Ph.D. předseda oborové rady

UPOZORNĚNÍ:

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č.121/2000 Sb., včetně možných trestněprávních důsledků vyplývajicích z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb.

ABSTRAKT

Tato práce se zabývá návrhem přijímače s integrovaným anténním tunerem pracujícím na kmitočtu 28 MHz, u kterého je kladen důraz na jednoduchost a nízkou spotřebu. Přijímač je přizpůsoben pro SSB modulaci. Velkou nevýhodou SSB modulace je však její nepoužitelnost pro vysoké přenosové rychlosti, proto je práce realizována pro přenos obecného audio signálu. Práce nejprve popisuje anténní tuner a blokového schéma přijímače. Následně se věnuje nejdůležitějším částem návrhu jednotlivých bloků přijímače a celkovým zhodnocením vlastností navrženého SSB přijímače s integrovaným tunerem.

KLÍČOVÁ SLOVA

Tuner, SSB, pásmová propust, nízkošumový zesilovač, zesilovač s řízeným zesílením, AD607, AD9834.

ABSTRACT

This work is focused on proposal of receiver with Integrated Antenna Tuner operating at 28 MHz. The design was primarily focused on simplicity and low power consumption. The receiver is adapted for SSB modulation. This work was realized for the transmission of audio signals. SSB modulation is far more efficient in terms of the radio spectrum used. First part of this thesis describes about the Antenna Tuner and block diagram of a receiver. Next parts are focused on proposal of individual blocks of the receiver, especially its most important parts. Finally, the overall evaluations of the design characteristics of SSB receivers with Integrated Antenna Tuner are discussed.

KEYWORDS

Tuner, SSB, bandpass, low noise amplifier, automatic gain control, AD607, AD9834.

Matoušek, M. *Družicový přijímač s integrovaným anténním tunerem*. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav radioelektroniky, 2017. 67 s., 14 s. příloh diplomové práce. Vedoucí práce: Ing. Tomáš Urbanec, Ph.D.

PROHLÁŠENÍ

Prohlašuji, že svoji diplomové práci na téma Družicový přijímač s integrovaným anténním tunerem jsem vypracoval samostatně pod vedením vedoucího diplomové práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené diplomové práce dále prohlašuji, že v souvislosti s vytvořením této diplomové práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a/nebo majetkových a jsem si plně vědom následků porušení ustanovení § 11 a následujících zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon), ve znění pozdějších předpisů, včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb.

V Brně dne

.....

(podpis autora)

PODĚKOVÁNÍ

Děkuji vedoucímu diplomové práce Ing. Tomáši Urbancovi, Ph.D. za metodickou, pedagogickou a odbornou pomoc a cenné rady při zpracování mé diplomové práce.

Faculty of Electrical Engineering and Communication

Brno University of Technology Technicka 12, CZ-61600 Brno, Czech Republic

http://www.six.feec.vutbr.cz

Experimentální část této diplomové práce byla realizována na výzkumné infrastruktuře vybudované v rámci projektu CZ.1.05/2.1.00/03.0072 **Centrum senzorických, informačních a komunikačních systémů (SIX)** operačního programu Výzkum a vývoj pro inovace.

OBSAH

Sez	znam obrázk	ů	Х
Se	znam tabulek	ζ.	xii
Úv	vod		1
1	Rádiové při	jímače	2
	1.1 Z	ákladní parametry rádiových přijímačů	2
	1.1.1	Šumové charakteristiky	
	1.1.2	Šumové číslo	
	1.1.3	Citlivost přijímače	
	1.1.4	Selektivita přijímače	4
	1.1.5	Dynamický rozsah	4
2	Anténní tur	ier	5
	2.1 E	lektricky krátká anténa	5
	2.1.1	Přizpůsobení k elektricky krátké anténě	9
	2.2 N	Jávrh anténního tuneru	11
	2.2.1	Integrovaný obvod AS179	
	2.2.2	Výpočet přizpůsobovací indukčnosti a kapacity	
	2.2.3	Zapojení anténního tuneru	
	2.3 V	$^{\prime}$ ýpočet útlumu tuneru	
	2.3.1	Výpočet činitele jakosti anténního tuneru	
	2.4 P	řizpůsobení tuneru	
	2.4.1	VKV PSV metry	
	2.4.2	Měření Přizpůsobení anténního tuneru	
3	Návrh přijí	imače	27
	3.1 N	Vízkošumový zesilovač LNA	
	3.1.1	Měření parametrů LNA	
	3.2 P	ásmová propust	
	3.2.1	Měření činitele jakosti použité indukčnosti	
	3.2.2	Měření parametrů pásmové propusti	

	3.3	Integrovaný směšovač v obvodě AD607	39
	3.3	.1 Detektor obálky pro řízení zisku směšovače a AGC	41
	3.4	Selektivní pásmová propust	
	3.4	.1 Měření parametrů krystalového filtru	
	3.5	Integrovaný zesilovač v obvodě AD607	46
	3.5	.1 Pásmová propust pro AGC	47
	3.6	Integrovaný demodulátor v obvodě AD607	49
	3.7	Oscilátor 19 MHz a 28MHz	50
	3.7	.1 Antialiasingový filtr	52
	3.7	.2 Měření parametrů přímé digitální syntézy	54
	3.8	Oscilátor 9 MHz	57
	3.8	.1 Měření parametrů oscilátorů 9 MHz	61
	3.9	Řídící obvod přijímače	62
	3.9	.1 Řízení a vyhodnocení přizpůsobení anténního tuneru	62
	3.9	.2 Komunikace s obvodem AD9834	63
4	4 Měření	celkových parametrů přijímače	65
	4.1	.1 Simulace přijímače	66
4	5 Závěr		67
J	Literatura		68
]	Literatura Seznam syn	ıbolů, veličin a zkratek	68 70
]	Literatura Seznam syn A Návrh z	ıbolů, veličin a zkratek ařízení	68 70 72
	Literatura Seznam syn A Návrh z A.1	ibolů, veličin a zkratek ařízení Obvodové zapojení tuneru	68 70 72 72
	Literatura Seznam syn A Návrh z A.1 A.2	 ibolů, veličin a zkratek ařízení Obvodové zapojení tuneru Obvodové zapojení přijímače 	68 70 72 72 73
] \$ 2	Literatura Seznam syn A Návrh z A.1 A.2 A.3	ibolů, veličin a zkratek ařízení Obvodové zapojení tuneru Obvodové zapojení přijímače Obvodové zapojení řídicího modulu a oscilátorů	68 70 72 72 73 74
]	Literatura Seznam syn A Návrh z A.1 A.2 A.3 A.4	ibolů, veličin a zkratek ařízení Obvodové zapojení tuneru Obvodové zapojení přijímače Obvodové zapojení řídicího modulu a oscilátorů Deska plošného spoje řídícího modulu – top (strana součástek)	68 70 72 72 73 74 75
] ? 2	Literatura Seznam syn A Návrh z A.1 A.2 A.3 A.4 A.5	ařízení Obvodové zapojení tuneru Obvodové zapojení přijímače Obvodové zapojení řídicího modulu a oscilátorů Deska plošného spoje řídícího modulu – top (strana součástek) Deska plošného spoje řídícího modulu – bottom (strana spojů)	68 70 72 72 73 74 75 75
] \$ 2	Literatura Seznam syn A Návrh z A.1 A.2 A.3 A.4 A.5 A.6	 nbolů, veličin a zkratek ařízení Obvodové zapojení tuneru Obvodové zapojení přijímače Obvodové zapojení řídicího modulu a oscilátorů Deska plošného spoje řídícího modulu – top (strana součástek) Deska plošného spoje řídícího modulu – bottom (strana spojů) Osazovací plán strana bottom (spojů) 	68 70 72 72 73 74 75 75 76
]	Literatura Seznam syn A Návrh z A.1 A.2 A.3 A.4 A.5 A.6 A.7	 abolů, veličin a zkratek ařízení Obvodové zapojení tuneru Obvodové zapojení přijímače Obvodové zapojení řídicího modulu a oscilátorů Obvodové zapoje řídícího modulu – top (strana součástek) Deska plošného spoje řídícího modulu – top (strana spojů) Osazovací plán strana bottom (spojů) Osazovací plán strana top (součástek) 	68 70 72 72 73 74 75 75 76 77
]	Literatura Seznam syn A Návrh z A.1 A.2 A.3 A.4 A.5 A.6 A.7 B Seznam	 nbolů, veličin a zkratek ařízení Obvodové zapojení tuneru Obvodové zapojení přijímače Obvodové zapojení řídicího modulu a oscilátorů Deska plošného spoje řídícího modulu – top (strana součástek) Deska plošného spoje řídícího modulu – bottom (strana spojů) Osazovací plán strana bottom (spojů) Osazovací plán strana top (součástek) 	68 70 72 72 73 74 75 75 76 77 78
	Literatura Seznam syn A Návrh z A.1 A.2 A.3 A.4 A.5 A.6 A.7 B Seznam C Fotodol	 nbolů, veličin a zkratek ařízení Obvodové zapojení tuneru Obvodové zapojení přijímače Obvodové zapojení řídicího modulu a oscilátorů Deska plošného spoje řídícího modulu – top (strana součástek) Deska plošného spoje řídícího modulu – bottom (strana spojů) Osazovací plán strana bottom (spojů) Osazovací plán strana top (součástek) součástek 	68 70 72 72 73 74 75 75 76 77 78 82
	Literatura Seznam syn A Návrh z A.1 A.2 A.3 A.4 A.5 A.6 A.7 B Seznam C Fotodol C.1	 nbolů, veličin a zkratek ařízení Obvodové zapojení tuneru Obvodové zapojení přijímače Obvodové zapojení řídicího modulu a oscilátorů Deska plošného spoje řídícího modulu – top (strana součástek) Deska plošného spoje řídícího modulu – bottom (strana spojů) Osazovací plán strana bottom (spojů) Osazovací plán strana top (součástek) součástek sumentace Realizovaná deska pro měření S-parametrů tranzistoru BF840 	68 70 72 72 73 74 75 75 76 77 78 82 82
	Literatura Seznam syn A Návrh z A.1 A.2 A.3 A.4 A.5 A.6 A.7 B Seznam C Fotodol C.1 C.2	 abolů, veličin a zkratek ařízení Obvodové zapojení tuneru Obvodové zapojení přijímače Obvodové zapojení řídicího modulu a oscilátorů Deska plošného spoje řídícího modulu – top (strana součástek) Deska plošného spoje řídícího modulu – bottom (strana spojů) Osazovací plán strana bottom (spojů) Osazovací plán strana top (součástek) součástek součástek kumentace Realizovaná deska pro měření S-parametrů tranzistoru BF840 	68 70 72 72 73 74 75 75 76 77 78 82 82 82

	C.3	Realizovaná deska přijímače strana BOTTOM	. 83
D	Program	ová část	84
	D.1	Kód pro řízení přizpůsobení	. 84
	D.2	Kód pro komunikaci s DDS	. 85

SEZNAM OBRÁZKŮ

Obrázek 2.1	Závislost rezistiviny na teplotě pro různé druhy nitinolu. [25]	6
Obrázek 2.2	Závislost odporu pro střídavý proud na rezistivitě	7
Obrázek 2.3	Závislost vstupní reaktance na frekvenci	8
Obrázek 2.4	Simulace antény v programu 4NEC2.	9
Obrázek 2.5	Možné zapojení L článků v závislosti na impedanci antény [11]	10
Obrázek 2.6	Smithův diagram s vstupní impedancí antény	11
Obrázek 2.7	Rozptyl hodnot indukčnosti a kapacity v závislosti na reaktanci	13
Obrázek 2.8	Rozptyl hodnot indukčnosti a kapacity v závislosti na odporu	13
Obrázek 2.9	Rozptyl hodnot indukčnosti a kapacity v závislosti na odporu	14
Obrázek 2.10	Rozptyl hodnot indukčnosti a kapacity v závislosti na reaktanci	15
Obrázek 2.11	Smithův diagram s přizpůsobením antény	15
Obrázek 2.12	Smithův diagram s vyznačeným přizpůsobením pro pokles o 3 dB	16
Obrázek 2.13	Rozsah přizpůsobení anténního tuneru	17
Obrázek 2.14	Zapojení anténního tuneru.	18
Obrázek 2.15	Fotografie vytvořené indukčnosti	18
Obrázek 2.16	Smithův diagram s kružnicemi konstantní jakosti obvodu	21
Obrázek 2.17	Výpočet činitele jakosti anténního tuneru [27]	22
Obrázek 2.18	Jednoduchý PSV metr [13]	24
Obrázek 2.19	Diodový detektor se zesilovačem.	24
Obrázek 2.20	Činitel odrazu S22 na výstupu anténního tuneru	25
Obrázek 2.21	Reálná a imaginární část výstupní impedance anténního tuneru	25
Obrázek 2.22	Napěťový poměr stojatých vln na výstupu anténního tuneru	26
Obrázek 3.1	Blokové zapojení realizovaného přijímače	27
Obrázek 3.2	Simulovaný LNA	30
Obrázek 3.3	Měřené a simulované parametry LNA	31
Obrázek 3.4	Smithův diagram s přizpůsobením vstupu LNA	32
Obrázek 3.5	S-parametry přizpůsobeného LNA.	.32
Obrázek 3.6	Měřené s-parametry LNA	.33
Obrázek 3.7	Měření bodu jednodecibelové komprese	. 34
Obrázek 3.8	Výsledné zapojení pásmové propusti.	. 36

Obrázek 3.9	Výsledné charakteristiky pásmové propusti	37
Obrázek 3.10	Realizovaní indukčnosti pro pásmovou propust	37
Obrázek 3.11	Měření přenosu pásmové propusti 28 MHz	38
Obrázek 3.12	Měření přenosu pásmové propusti 28 MHz	38
Obrázek 3.13	Závislost zesílení směšovače a zesilovače [15]	41
Obrázek 3.14	Detektor obálky pro řízení zesílení směšovače a AGC.	41
Obrázek 3.15	Doporučené zapojení pásmové propusti [15]	43
Obrázek 3.16	Schéma zapojení selektivní pásmové propusti	44
Obrázek 3.17	Přenos selektivní pásmové propusti	45
Obrázek 3.18	Detail přenosového pásma selektivní pásmové propusti	45
Obrázek 3.19	Závislost výstupního a řídícího napětí na vstupním signálu	47
Obrázek 3.20	Schéma zapojení pásmové propusti 9 MHz	47
Obrázek 3.21	Simulované parametry pásmové propusti 9MHz	48
Obrázek 3.22	Měřené parametry pásmové propusti 9 MHz.	48
Obrázek 3.23	Blokové schéma demodulátoru v obvodě AD607 [15]	49
Obrázek 3.24	Blokové schéma obvodu AD9834 [14]	51
Obrázek 3.25	Zapojení antialiasingového filtru	52
Obrázek 3.26	Přenosové charakteristiky antialiasingového filtru	53
Obrázek 3.27	Měřené přenosové charakteristiky antialiasingového filtru	54
Obrázek 3.28	Změřené spektrum na výstupu DDS pro 19 MHz	54
Obrázek 3.29	Změřené spektrum signálu 19 MHz za antialiasingovým filtrem	55
Obrázek 3.30	Změřený fázový šum pro 19 MHz.	55
Obrázek 3.31	Změřené spektrum na výstupu DDS pro 28 MHz.	56
Obrázek 3.32	Změřené spektrum signálu 28 MHz za antialiasingovým filtrem	56
Obrázek 3.33	Změřený fázový šum pro 28 MHz.	57
Obrázek 3.34	Oscilátor na 9 MHz.	58
Obrázek 3.35	Dolní propust pro oscilátor 9MHz.	60
Obrázek 3.36	Přenosová charakteristika pro oscilátor na 9 MHz.	60
Obrázek 3.37	Změřený časový průběh oscilátoru 9 MHz.	61
Obrázek 3.38	Změřené spektrum oscilátoru 9 MHz.	61
Obrázek 3.39	Změřený fázový šum pro oscilátor 9 MHz.	62
Obrázek 3.40	Komunikace s DDS [14]	63
Obrázek 3.41	Control registr [14].	63
Obrázek 3.42	Selektivita přijímače	65
Obrázek 3.43	Simulace přijímače.	66

SEZNAM TABULEK

Tabulka 2.1: Parametry antény [24] [25]	5
Tabulka 2.2: Srovnání fyzikálních parametrů pro vybrané materiály [24] [25]	6
Tabulka 2.3: Hodnoty L a C pro pokles o 3dB	17
Tabulka 2.4: Parametry použitého feritového toroidního jádra [26]	19
Tabulka 2.5: Výsledky měření jakosti indukčností	19
Tabulka 3.1: Tranzistory [17] [18] [19] [20] [21] [22]	28
Tabulka 3.2: Výsledky měření parametrů LNA	34
Tabulka 3.3: Výsledky měření jakosti indukčnosti 280 nH	37
Tabulka 3.4: Parametry pásmové propusti 28 MHz	39
Tabulka 3.5: Parametry směšovače [15]	40
Tabulka 3.6: Parametry pro nastavení řídíciho napětí zesílovače [15]	41
Tabulka 3.7: Hodnoty součástek [15]	43
Tabulka 3.8: Parametry pásmové propusti [27]	46
Tabulka 3.9: Parametry zesilovače AGC [15].	46
Tabulka 3.10: Parametry pásmové propusti 9 MHz	49
Tabulka 3.11: Hodnoty demodulátoru [15]	50
Tabulka 3.11: Nastavení control registru [14]	63

ÚVOD

Tato práce se zabývá návrhem a realizací přijímače pro satelit. Součástí přijímače je integrovaný anténní tuner. Samotný přijímač je koncipován pro modulaci s jedním postraním pásmem neboli SSB přijímač (Single side Band receiver).

Základní vlastností anténního tuneru, je přizpůsobení výstupu antény k vstupní impedanci přijímače. Anténní tuner musíme vřadit mezi anténu a vstup přijímače pro zvýšení účinnosti celého přijímače.

SSB přijímače slouží k příjmu jednoho z postranních pásem, buď to dolní postranní pásmo LSB, nebo horní postranní pásmo USB. SSB modulace je velmi oblíbená u radioamatérů, jelikož využívá malou šířku pásma. Velkou nevýhodou je ale malá přenosová rychlost dat. Proto se SSB modulace používá zpravidla pro přenos řečových signálů.

Tato práce se zabývá celým návrhem přijímače s vestavěným tunerem, který bude řízen procesorem. Navržený přijímač pracuje na kmitočtu 28 MHz, u kterého byl především kladen důraz na nízkou spotřebu a malé napájecí napětí. Návrh je proveden tak, aby byl jednoduchý a realizovaný pomocí snadno dostupných součástek. Navržený SSB přijímač je přizpůsoben pro přenos obecného audio signálu.

Diplomová práce je členěna do pěti kapitol. První kapitola se zabývá základními druhy analogových rádiových přijímačů s nejdůležitějšími parametry. Další kapitola popisuje návrh s měřením přizpůsobení a výpočtem útlumu anténního tuneru. Následuje kapitola s návrhem přijímače. Tato kapitola je členěna do podkapitol, které odpovídají navrhovaným blokům. V další kapitole jsou shrnuté parametry přijímače s celkovými parametry.

1 RÁDIOVÉ PŘIJÍMAČE

Přijímače jsou určeny pro zpracování získaného signálu z antény. Získaný signál mohou přímo zpracovat analogově až do základního pásma nebo jen zesílit a následně zpracovávat digitálně. Tato práce se zabývá přijímačem s analogovým zpracováním signálu, proto si zde probereme základní vlastnosti různých analogových přijímačů.

Nejjednodušší přijímač je s přímým zesílením, neboli také přímozesilující. Používají se pro AM signály a mohou být realizovány několika způsoby. Na vstupu přijímače jsou všechny signály přijímané z antény. Pomocí selektivní pásmové propusti je vybrán požadovaný signál o frekvenci nosné. Tento signál je následně zesílen pomocí VF zesilovače. Demodulátor následně provede demodulaci zesíleného signálu (Odstraní VF složku a na výstupu zůstává NF signál.). Hlavní výhodou přijímače s přímým zesílením je jednoduché konstrukční řešení. Nevýhodou tohoto uspořádání je pak především jeho malá selektivita [2] [3].

Dále jsou přijímače s nepřímým zesílením, nepřímozesilující, neboli tzv. superheterodyny, odstraňují většinu nedostatků přímozesilujících přijímačů. Přijímač s nepřímým zesílením se tak skládá z kmitočtové konverze a přijímače s přímým zesílením. Výhodnou superheterodynu je nezávislost šířky pásma a zesílení na pracovním kmitočtu. Výhodou je rovněž možnost přeměnit i nejvyšší kmitočty na kmitočet mezifrekvenční. Tyto kmitočty jsou zpravidla nízké. Toho se velmi často využívá v praxi, protože se s nimi ve srovnání s vysokými kmitočty lépe pracuje [2] [3].

Superheterodyn s dvojím směšováním provádí dvojitou kmitočtovou konverzi. Nejprve pomocí kmitočtové konverze posuneme mezifrekvenci vzdálenou od přijímané, která může být i vyšší než je přijímaná. Tímto posuneme zrcadlový kmitočet, tak aby byl vzdálený a šlo jej snadno potlačit. Následuje druhá kmitočtová konverze na nízkou mezifrekvenci. Na této mezifrekvenci se snadno realizují kvalitní obvody. Obvody pak pracující na nízkých kmitočtech a umožňují snazší zpracování signálu. Výhodou je tedy odstranění problému se zrcadlovými kmitočty [2] [3].

Další ze základních typů přijímače homodyní, jehož modifikace spočívá v použití kmitočtu oscilátoru *LO*, který je totožný s kmitočtem přijímaného signálu *RF*. Mezifrekvence je tedy nulová IF = LO - RF = 0. Signál za směšovačem je tak v základním pásmu. Výhodou je, že tyto přijímače jsou poměrně jednoduché a místo mezifrekvenčního zesilovače a demodulátoru se používá pouze dolní propust. Jeho další výhodou je i to, že zrcadlový kmitočet f_z je shodný se vstupním kmitočtem *RF*. Nevzniká zde tak problém s příjmem signálů na zrcadlových kmitočtech. Velkou nevýhodou této je však velká technická náročnost na realizaci přijímače [2] [3].

1.1 Základní parametry rádiových přijímačů

V této podkapitole si podrobněji popíšeme základní charakteristiky jednotlivých důležitých parametrů, které je třeba při návrhu přijímače celkově připomenou, aby se dále neustále u následujících podkapitol návrhu přijímače neopakovali.

1.1.1 Šumové charakteristiky

Šum lze rozdělit do dvou základních typů. Ve všech součástkách je tepelný šum, a v polovodičích pak i výstřelový s *1/f* šumem. Tepelný šum má charakter bílého šumu a objevuje se ve všech fyzikálních tělesech obsahujících volné elektrony při teplotě větší než 0 °K. Nekonečný kmitočtový rozsah signálu tohoto šumu je však pouze teoretický. V praxi šum nazýváme jako bílý, pokud má ploché spektrum v definovaném rozsahu frekvencí [3] [4].

Výstřelový šum vyvolává proud tekoucí PN přechodem. Je to náhodný proces s Poissonovým rozdělením pravděpodobnosti. Tento jev nelze podcenit, protože i při malém proudu přes přechod PN převažuje výstřelový šum nad tepelným [4].

Pro určení šumové šířky nejprve stanovíme kmitočtovou závislost výkonového přenosu dvojbranu. Tato závislost se nahradí obdélníkem, který má výšku rovnou maximu výkonového přenosu. Plocha pod kmitočtovou závislostí a nahrazeným obdélníkem musí být stejná. Délka obdélníka pak udává šumovou šířku pásma [3] [4].

1.1.2 Šumové číslo

Šumové vlastnosti radiových přijímačů se vyjadřují šumovým číslem. Toto číslo udává, kolikrát je v určitém pracovním bodě přijímače poměr výkonu signálu k výkonu šumu na výstupu přijímače větší než na jeho vstupu. Šumové číslo tedy vyjádříme pomocí vztahu 1.1 [6].

$$F = \frac{SNR_{IN}}{SNR_{OUT}}, \qquad [-] \tag{1.1}$$

kde SNR_{IN} je odstup signál-šum na vstupu a SNR_{OUT} na výstupu. Tento vztah je však nepoužitelní při návrhu přijímačů, u kterých nás zajímá celkové šumové číslo přijímače. Protože přijímač se skládá z více bloků, které mají různé parametry. U návrhu používáme pro zjištění celkového šumového čísla Friisův vtah. Pomocí Frrisova vztahu již při návrhu můžeme zjistit předpokládané výsledné šumové číslo. Friisov vztah je rovnice 1.2.

$$F = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \frac{F_4 - 1}{G_1 G_2 G_3} + \dots , \quad [-]$$
(1.2)

kde F_X je šumové číslo jednotlivého bloku a G_X zesílení daného bloku. Čísla u jednotlivých veličin určuje pořadí bloku. Ze vzorce je vidět, že celkové šumové číslo nejvíce závisí na prvních blocích.

1.1.3 Citlivost přijímače

Citlivost přijímače označuje napětí, které musí být dodáno přijímači ze zdroje, tak aby odevzdal do výstupu minimální výkon a nedocházelo ke ztrátě dat. Maximální citlivost přijímače je definována jako nejmenší úroveň vstupního výkonu. Čím nižší je úroveň vstupního signálu, tím je přijímač citlivější [5].

Citlivost přijímače zhoršuje šum, který obsahuje různé kmitočty vznikající v důsledku neuspořádaného pohybu elektronů v elektronických součástkách přijímače. Protože na výstupu přijímače se využívají signály, jejichž výkon je větší než šumový, musíme hodnotit schopnost přijímače přijímat slabé signály, tak že uvedeme citlivost omezenou šumem [5].

Citlivost omezená poměrem SINAD je dána minimálním detekovatelným vstupním signálem, který přivádíme na vstup přijímače. Citlivost omezená šumem a zkreslením SINAD tedy udává u daného odstupu signál-šum minimální vstupní výkon signálu. Citlivost SINAD vypočítáme pomocí vztahu 1.3.

$$SINAD = 10 \log\left(\frac{S+N+D}{N+D}\right), \quad [dB]$$
 (1.3)

kde D je výkon zkreslujících složek, N výkon šumu, S výkon nosné.

1.1.4 Selektivita přijímače

Selektivita přijímače je schopnost vybrat z několika signálů, které se nacházejí na vstupu přijímače, pouze požadovaný signál. Zbylé signály je nutné co nejvíce potlačit. Selektivitu můžeme vyjádřit různými způsoby. Nejpřehlednějším z nich je grafický, který je reprezentovaný křivkou selektivity [5].

Kmitočtová selektivita je schopnost přijímače vybrat z celého spektra rádiových vln jedno kmitočtové pásmo. Selektivita je dána poměrem vstupního napětí při stanoveném rozladění Δf k vstupnímu napětí při naladěném přijímači [5].

1.1.5 Dynamický rozsah

Dynamický rozsah je rozmezí, ve kterém může přijímač pracovat. U rádiového přijímače je rozsah dán střední hodnotou šumu, kde je přidán odstup o 3 dB až k bodu P_{1dB} bodu jednodecibelové komprese.

SFDR (Spurious Free Dynamic Range) je dynamický rozsah přijímače bez intermodulačního zkreslení. Jedná se o rozsah vstupních signálů, u kterých jsou intermodulační složky třetího řádu pod úrovní šumu.

Kmitočtový rozsah udává, pásmo kmitočtů, pro které lze přijímač použít. Kmitočtové rozsahy jsou přizpůsobeny pro použití přijímačů. Přenos informace pomocí amplitudově modulovaného signálu je tedy možný pro libovolný kmitočet. [2].

Také dynamický rozsah ovlivňují nelineární vlastnosti dvojbranu, které vedou ke vzniku kombinačních kmitočtů neboli IM (intermodulační produkty) jejich výskyt je dán vztahem

$$f = mf_1 + nf_2 \ [Hz], \tag{1.4}$$

kde m a n jsou celá čísla) [2].

2 ANTÉNNÍ TUNER

Anténní tuner je jedna z nejdůležitějších částí přijímačů. Je vřazen hned za anténou a vytváří výkonové přizpůsobení mezi anténou a vstupem přijímače. U anténních tunerů požadujeme vysokou preciznost a kvalitu. Důvodem je, že tuner za anténou přizpůsobuje přijímač k anténě, kde jsou velmi malé úrovně signálu, které jsou náchylné na rušení.

Anténní tunery můžeme rozdělit do dvou skupin a to manuální nebo automatické anténní tunery. U manuálních tunerů musíme ladění provádět ručně přepínáním indukčností a kapacitou. Automatické tunery se ladí sami (automaticky), ale potřebují, aby měřící PSV metr poskytoval aktuální hodnotu přizpůsobení.

2.1 Elektricky krátká anténa

V této podkapitole si stručně shrneme základní vlastnosti elektricky krátkých antén, ze které bude jasná nutnost použití anténního tuneru.

Impedanci antény si můžeme představit jako ideální odpor v sérii s ideální reaktancí. Hodnoty jsou velmi závislé na elektrické délce antény l/λ , kde l je délka antény a λ je vlnová délka. U elektricky velmi krátkých antén je hodnota odporu R_A velmi malá. Vstupní odpor R_A v podstatě tvoří reálnou složku vstupní impedance antény.

V této práci budeme uvažovat o anténě vyrobené z nitinolu Pro výpočet budeme potřebovat znát i další parametry antény, které jsou zapsány v tabulce 2.1

parametry	Hodnota	Jednotka
Délka <i>l</i>	1828	mm
Průměr d	0,6604	mm
Rezistivita p	82·10 ⁻⁸	Ω/m
Permeabilita µ _r	1,002	-

Při výpočtu je problém u rezistivity nitinolu, která je velmi závislá na příměsích, poměru niklu a také teplotě.

Material	Thermal expansion	Specific heat capacity,	Thermal conductivity,	Electrical resistivity,	References
	coefficient, 10 ⁻⁶ /°C	J/kg·K	W/m·K	Ω·m	
Cobalt	13.1 (RT-200 °C)	414 (RT-100 °C)	69 (RT-100 °C)	6.2×10 ^{−8}	14,15
Nickel	13.9 (RT-200 ℃)	440 (RT-100 °C)	92 (RT-100 °C)	8.0×10 ^{−s}	14,16
Titanium	9.5 (RT-300 ℃)	519 (RT-100 °C)	22 (RT-100 °C)	4.2×10 ⁻⁷	14,16
304 stainless steel	17 (RT-300 °C)	500 (0-100 °C)	15.1 (RT-100 °C)	7.2×10 ⁻⁷	14,16
Stellite 6B	13.4 (RT-400 °C)	421	14.7	9.1×10 ⁻⁷	14,17,18,19
Hastelloy C	11.3 (0-100 °C)	419 (RT-100 °C)	11.5	1.3×10 ⁻⁰	14,20
M50 bearing steel	12.1 (RT-260 °C)	462 (RT-100 °C)	25.9 (RT-100 ℃)	1.8×10 ⁻⁷	14,21,22
60-NITINOL (water-quenched)	11.2 (RT-300 ℃)	453-504 (RT-300 °C)	8.9-13.7 (50-300 °C)	1.0×10 ⁻⁶ (50-300 ⁵ C)	23,24
440C stainless steel	10.8 (0-315 °C)	460 (0-100 °C)	41.9 (RT-150 °C)	6.0× 10 ⁻⁷	14,16
Silicon nitride	3.0-3.5 (RT-1000 °C)	778 (127 °C)	22	10 ¹⁰ (RT-100 °C)	25,26

Tabulka 2.2: Srovnání fyzikálních parametrů pro vybrané materiály [24] [25].

Dále z převzatého obrázku 2.1 je vidět závislost rezistivity na teplotě, pro různé typy nitinolu.

Obrázek 2.1 Závislost rezistiviny na teplotě pro různé druhy nitinolu. [25].

Při nadcházejících výpočtech toto vše musíme zohlednit, a proto výpočty odporů budeme provádět pro rozptyl rezistivity.

Pro určení odporu antény musíme především zohlednit skinefekt, který u materiálu s takto velkou resistivitou nebude zanedbatelný.

Nejprve vypočítáme hloubku vniku podle vzorce 2.2

$$\delta = \sqrt{\frac{2\rho}{\omega\mu}} = \sqrt{\frac{2 \cdot 82 \cdot 10^{-8}}{2\pi 28 \cdot 10^6 \cdot 1,002 \cdot 4\pi \cdot 10^{-7}}} = 86,04 \cdot 10^{-6} m, \qquad (2.1)$$

kde $\mu = \mu_r \cdot \mu_0$.

Pro výpočet odporu pro střídavý proud použijeme vzorec 2.3

$$R_w = \frac{l \cdot \rho}{\pi d\delta} = \frac{1,828 \cdot 82 \cdot 10^{-8}}{\pi 66,04 \cdot 10^{-5} \cdot 86,04 \cdot 10^{-6}} = 8,39 \ \Omega.$$
(2.2)

Vypočítaná hodnota R_w závislosti na skinefektu, tudíž na frekvenci. Odpor vodiče pro frekvenci 28 MHz podle vzorce 2.2 vyšel 8,39 Ω .

Na obrázku 2.2 je vidět, jak se mění odpor vodiče a hloubka vniku v závislosti na rezistivitě.

Obrázek 2.2 Závislost odporu pro střídavý proud na rezistivitě.

Pro výpočet reálné složky impedance antény byl použit zjednodušený vztah 2.1, který platí pro délku antény v rozmezí $0 < l < \frac{\lambda}{4}$. Vytvořená anténa je dlouhá l = 72" tedy 1828 mm a Vlnová délka je 10,71 m. Podmínku pro použití vzorce splňujeme a vypočítáme reálnou impedanci antény. [10]

$$R_{anten} = 20\pi^2 \left(\frac{l}{\lambda}\right)^2 = 20\pi^2 \left(\frac{1,828}{10,71}\right)^2 = 5,75 \ \Omega.$$
(2.3)

Vypočtená hodnota odporu je pouze přibližná. Také je přizpůsobená pro antény z mědi, hliníku.

Dále se vypočítá hodnota ztrát antény. To je možné provést pomocí vzorce 2.4. Tento vzorec je odvozen jen pro antény o délce blízké $\frac{\lambda}{2}$. V našem případě máme anténu dlouhou 1,828 m tedy přibližně 0,17λ, proto tento výpočet bude velmi nepřesný [10].

$$R_{LOSS} = \frac{\frac{l}{2\pi r}\sqrt{\frac{\omega\mu\rho}{2}}}{2} = \frac{\frac{1,828}{2\pi 33 \cdot 10^{-5}}\sqrt{\frac{2\pi 28 \cdot 10^{6} \cdot 1,002 \cdot 4\pi \cdot 10^{-7} \cdot 82 \cdot 10^{-8}}{2}}}{2} = 4,2 \ \Omega.$$
(2.4)

Jen pro srovnání ztráty pro měď vycházejí 59,7 m Ω , proto pokud používáme jiný materiál, musíme tuto změnu zohlednit.

Po výpočtu odporu ztrát v anténě, tento odpor přičteme k teoretické hodnotě antény, kterou jsme vypočítaly ve vzorci 2.3. Výpočet reálné části impedance antény je ve vzorci 2.5

$$R_A = R_{anten} + R_{LOSS} = 5,75 + 4,2 = 9,95 \ \Omega. \tag{2.5}$$

Výpočet si můžeme ověřit výpočtem odporu pro klasický odpor vedení, který je v rovnici 2.2. Z hodnot je vidět, že se příliš neliší hodnoty odporu vodiče na frekvenci 28 MHz, který je $R_A = 9,95 \Omega$ a vypočítanou hodnotou odporu antény $R_W = 8,39 \Omega$.

Elektricky krátká anténa především představuje kapacitní charakter impedance. Pro výpočet reaktance použijeme zjednodušený a přibližný vzorec 2.7, který platí za podmínky $l < 0.35\lambda$. Podmínku splňujeme, ale nejprve vypočítáme impedanci Z_0 podle vzorce 2.6 [10]

$$Z_0 = 120 \left[\ln \left(\frac{2l}{a} \right) - 1,69 \right] = 120 \left[\ln \left(\frac{2 \cdot 1,828}{3,302 \cdot 10^{-4}} \right) - 1,69 \right] = 914,6 \ \Omega.$$
 (2.6)

Po vypočtení Z0 dosadíme do vzorce

$$X_A = -Z_0 \cot\left(\frac{2\pi l}{\lambda}\right) + 42 = -914.6 \cot\left(\frac{2\pi 1.828}{10.71}\right) + 42 = -j456.26 \ \Omega.(2.7)$$

Dále byly provedeny výpočty pro okolní kmitočty pro znázornění závislosti na frekvenci, závislost je vidět na obrázku 2.3.

Obrázek 2.3 Závislost vstupní reaktance na frekvenci.

Jelikož jsme použili přibližné vzorce, tak i výsledná impedance nebude přesná. Pro naše účely návrhu tuneru nám tato přibližná hodnota dostačuje. Výsledná impedance antény přibližně bude $8,39 - j456,26 \Omega$.

Následně byla anténa nasimulována v programu 4NEC2 pro ověření vstupní impedance. $7,06 - j462 \Omega$. Jak je vidět na obrázku 2.4.

🦞 Main [V5.	8.16] (F2)		_ 🗆 X
File Edit	Settings Calculate	Window Sho	w Run Help
<u>- </u>	🕸 🛍 🛃 🛞 🗞	ءَ 📃 🎡 🥮	1:1 🛄 😲
Filename	dipol.out	Frequency Wavelength	28 Mhz 10.71 mtr
Voltage	1738 + j 0 V	Current	0.06 + j 3.76 A
Impedance Parallel form	7.06 - j 462 3.e4 // - j 462	Series comp. Parallel comp.	2.624 uH 2.625 uH
S.W.R.50 Efficiency Radiat-eff. RDF [dB]	611 100 %	Input power Structure loss Network loss Radiat-power	100 W 0 uW 0 uW 100 W

Obrázek 2.4 Simulace antény v programu 4NEC2.

2.1.1 Přizpůsobení k elektricky krátké anténě

Už jsme si určili přibližnou impedanci antény a k této impedanci budeme provádět přizpůsobení. Přizpůsobení v anténních tunerech se prování L článkem, T článkem a Pi článkem.

T článek je velmi univerzální, protože dokáže vyladit velmi dobře velký rozsah impedancí. Je to nejčastější typ továrně vyráběných tunerů. T článek obsahuje tři proměnné prvky. Pomocí nich měníme impedanci, ale také celkové Q obvodu, které určuje ztráty. Proto T článek můžeme vyladit k malému poměru stojatých vln, ale s velkými ztrátami.

Pi článek je opět složen ze tří proměnných prvků. Proto Pi články jsou obdobou T článku. Rozsah zpravidla bývá menší, ale možnost špatného nastavení Q platí i zde.

L článek je nejjednodušší zapojení přizpůsobovacího členu tuneru. Pro realizaci tuneru bylo zvoleno právě toto zapojení pro svou jednoduchost a dosahování velmi malých ztrát. Na obrázku 2.1 jsou všechna možná zapojení L článků.

Obrázek 2.5 Možné zapojení L článků v závislosti na impedanci antény [11].

Jak je z obrázku 2.5 vidět, hlavní nevýhoda L článků je malý rozsah přeladění. Tento rozsah je pouze polovina plochy Smithova diagramu. Na obrázku 2.5 jsou také vyznačené plochy impedancí, v kterých se musí pohybovat impedance antény pro dané zapojení L článku.

Vypočítanou vstupní impedanci vyneseme do Smithova diagramu (bod1). Následně

rovněž vyneseme komplexně sdruženou hodnotu vstupní impedance (bod2). Kde následně budeme k tomuto bodu vytvářet výkonové přizpůsobení. Vynesené body jsou na obrázku 2.6

Obrázek 2.6 Smithův diagram s vstupní impedancí antény.

Z vynesených bodů v obrázku 2.6 a z obrázku 2.5 můžeme pro přizpůsobení použit zapojení TYPE1,TYPE4. V našem případě budeme anténní tuner ladit přepínáním indukčností. Z toho vyplívá, že se nejjednodušeji bude realizovat zapojení type4. Tedy paralelní indukčnost na vstupu a sériová kapacita na výstupu. Po určení zapojení můžeme vypočítat hodnoty součástek, které jsou v následující podkapitole.

2.2 Návrh anténního tuneru

Navrhovaný tuner je automatický. Jako řídící obvod je použit mikrokontroler ATmega 16. Z předchozí kapitoly víme, že budeme přizpůsobovat L článkem. Přepínání indukčností je provedeno pomocí obvodu AS179, dále měnění kapacity je provedeno řízením varikapu. V následující podkapitole je pak rozebrán návrh jednotlivých částí anténního tuneru.

2.2.1 Integrovaný obvod AS179

Pro realizaci byl zvolen obvod AS179, pomocí kterého budeme přepínat indukčnosti v přizpůsobovacím L článku. Pracovní rozpětí integrovaného obvodu je od 20 MHz do 4 GHz. Výhodou je, že má velmi malé ztráty na pracovní frekvenci 28 MHz, které se pohybují okolo 0,3 dB.

Následně vypočítáme kapacity pro oddělení stejnosměrných složek. Oddělovací kapacity jsou vidět na obrázku 2.20. Pro výpočet se zvolila impedance $0,1 \Omega$ a výpočet je

$$C_{42} = \frac{1}{2\pi f X_C} = \frac{1}{2\pi 28 \cdot 10^6 0.1} = 56,84 \ nF.$$
(2.8)

Pomocí stejného výpočtu spočítáme kondenzátory C_{43} , C_{48} , C_{49} , C_{47} a C_{46} který má zabránit přenosu VF složky po řídícím spoji až k řídící jednotce.

Pro ladění používáme varikap. Kapacitu měníme stejnosměrným napětím, které se musí oddělit od vysoko frekvenčního signálu. Pro tento účel použijeme cívky L11 a L5. Pro výpočet cívky se zvolila impedance pro VF signál 1 k Ω . Výsledný výpočet je

$$L_{11} = \frac{X_L}{2\pi f} = \frac{1000}{2\pi 28 \cdot 10^6} = 5,68 \ uH.$$
(2.9)

Dále indukčnost L2 je zapojena na vstup anténního tuneru pro zkratování stejnosměrného náboje, který může vzniknout na anténě. Výpočet je shodný s vzorcem 2.9.

2.2.2 Výpočet přizpůsobovací indukčnosti a kapacity

Jak bylo v předchozí kapitole určeno zapojení, tedy že budeme přizpůsobovat pomocí paralelní indukčnosti a sériové kapacity. V této podkapitole si určíme hodnoty pracovní indukčnosti a kapacity.

Pro výpočet hodnot byly zvoleny tři postupy jak získat hodnoty součástek. Je to z důvodu ověření správnosti výpočtu, ale také pro určení rozptylu hodnot. První postup výpočtu je převzat z [11]. Pro výpočet potřebujeme znát impedanci antény a impedanci ke které budeme přizpůsobovat, v našem případě to je 50 Ω . Převzatý výpočet indukčnosti je ve vzorci 2.10,

$$\mathcal{L} = -\frac{R_L^2 + (-\sqrt{R_L(R_0 - R_L)} + X_L)^2}{2\pi f \left(-\sqrt{R_L(R_0 - R_L)} + X_L\right)} = -\frac{8.4^2 + (-\sqrt{8.4(50 - 8.4)} + 456)^2}{2\pi 28 \cdot 10^6 \left(-\sqrt{8.4(50 - 8.4)} + 456\right)} = 2,29 \ uH, (2.10)$$

kde R_L je reálná část impedance antény, X_L je imaginární část impedance antény a R_0 je reálná impedance ke které přizpůsobujeme.

Pro výpočet přizpůsobovací kapacity postupujeme stejným způsobem, výpočet je rovněž převzat z [11]. Výpočet je znázorněn ve vzorci 2.11

$$C = -\frac{1}{2\pi f \left(-\sqrt{R_L (R_0 - R_L)} - X_L\right)} = -\frac{1}{2\pi 28 \cdot 10^6 \left(-\sqrt{8.4(50 - 8.4)} - 456\right)} = 12.9 \text{ pF}, (2.11)$$

kde R_L je reálná část impedance antény, X_L je imaginární část impedance antény a R_0 je reálná impedance ke které přizpůsobujeme.

Oba výpočty byly provedeny i pro blízký rozptyl hodnot impedance antény. Výsledky výpočtů přizpůsobovací indukčnosti a kapacity v závislosti na reaktanci jsou v obrázku 2.7.

Obrázek 2.7 Rozptyl hodnot indukčnosti a kapacity v závislosti na reaktanci.

Rozptyl přizpůsobovací indukčnosti a kapacity v závislosti na reálné části impedance antény je na obrázku 2.8.

Obrázek 2.8 Rozptyl hodnot indukčnosti a kapacity v závislosti na odporu

Dále byl proveden další výpočet pro určení hodnoty přizpůsobovací indukčnosti a kapacity. Tento výpočet byl převzat z [12]. Pro výpočet přizpůsobovací indukčnosti nejprve musíme vypočítat potřebnou vodivost podle vzorce 2.12

$$B = \frac{X_L + \sqrt{\frac{R_L}{Z_0}} \sqrt{R_L (R_L - Z_0) + X_L^2}}{R_L^2 + X_L^2} = \frac{456 + \sqrt{\frac{8.4}{50}} \sqrt{8.4(8.4 - 50) + 456^2}}{8.4^2 + 456^2} = 0,00309 \text{ S}, (2.12)$$

kde R_L je reálná část impedance antény, X_L je imaginární část impedance antény a Z_0 je reálná impedance ke které přizpůsobujeme.

Po výpočtu vodivosti dosadíme do vzorce 2.13 a vypočítáme indukčnost pro přizpůsobení.

$$L = \frac{1}{B2\pi f} = \frac{1}{0,00309 \cdot 2\pi 28 \cdot 10^6} = 1,84 \ uH.$$
(2.13)

U výpočtu přizpůsobovací kapacity podle převzatého postupu výpočtu [12] si nejprve musíme vypočítat potřebnou reaktanci pro přizpůsobení podle vzorce 2.14

$$X = \frac{1}{B} + \frac{X_{LZ_0}}{R_L} - \frac{Z_0}{BR_L} = \frac{1}{0,00309} + \frac{456\cdot50}{8,4} - \frac{50}{0,00309\cdot8,4} = 1112,25\,\Omega.,\qquad(2.14)$$

kde R_L je reálná část impedance antény, B je vypočítaná vodivost ze vzorce 2.12 a Z_0 je reálná impedance ke které přizpůsobujeme.

Po výpočtu reaktance dosadíme do vzorce 2.15 a vyjde nám výsledná kapacita pro přizpůsobení

$$C = \frac{1}{2\pi f X} = \frac{1}{2\pi 28 \cdot 10^6 \cdot 1112, 25} = 5,11 \text{ pF}.$$
(2.15)

Opět jako pro první metodu výpočtu byly hodnoty spočítány pro blízké hodnoty impedance použité antény. Na obrázku 2.9 je závislost přizpůsobovacích hodnot na odporu antény.

Obrázek 2.9 Rozptyl hodnot indukčnosti a kapacity v závislosti na odporu.

Na následujícím obrázku 2.10 je závislost přizpůsobovacích hodnot na reaktanci použité antény.

Obrázek 2.10 Rozptyl hodnot indukčnosti a kapacity v závislosti na reaktanci.

Dále jako třetí výpočet byl zvolen výpočet ve Shmitově diagramu. Ve kterém si vyznačíme body. Bod 1 je střed (50 Ω), bod 3 je komplexně sdružená impedance antény, body jsou vyneseny na obrázku 2.11

Obrázek 2.11 Smithův diagram s přizpůsobením antény.

Pro výpočet přizpůsobovací kapacity ve Shmitově diagramu půjdeme z bodu 1 do

bodu 2. Jelikož vycházíme ze středu, tak rozdíl bodů 2 a 1 je přímo druhý bod. Velikost reaktance dosadíme do vzorce 2.16, pro výpočet kapacity

$$C = \frac{1}{2\pi f Z_0 x_C} = \frac{1}{2\pi 28 \cdot 10^6 1114,53} = 5,1 \text{ pF}.$$
(2.16)

Dále pro výpočet indukčnosti půjdeme z bodu 2 do bodu 3. Tudíž vzdálenost bodů 2 a 3 pro výpočet indukčnosti se provede, tak že vodivost z bodu 3 odečteme z bodu 2. Jak je naznačeno ve vzorci 2.17

$$L = \frac{Z_0}{2\pi f B_L} = \frac{50}{2\pi 28 \cdot 10^8 (0,09 - (-2,16))} = 1.85 \ uH.$$
(2.17)

U výpočtu číslo 2 a výpočtu ze Smithova diagramu vycházejí stejné výsledky, tak se pro návrh použily právě tyto hodnoty.

Jelikož pro přepínání použijeme obvod AS179, u kterého můžeme přepínat dvě indukčnosti. Popřípadě můžeme použít paralelní kombinaci obou indukčností. Také potřebujeme anténní tuner navrhnout tak, aby mohl přizpůsobovat co největší plochu ve Smithově diagramu.

V tomto případě budeme k anténnímu tuneru připojovat jednu anténu, u které by se parametry neměli výrazně lišit. Tedy nám bude stačit, když pokryjeme malou kružnicí impedancí se středem komplexně sdružené impedance antény. Ve středu Smithově diagramu se tedy zobrazíme kružnici o pokles výkonu 3 dB. Následně ze čtyř bodů kružnice budeme přizpůsobovat ke komplexně sdružené impedanci antény. Celý postup je znázorněn na obrázku 2.12

Obrázek 2.12 Smithův diagram s vyznačeným přizpůsobením pro pokles o 3 dB. Hodnoty jednotlivých cest přizpůsobení jsou v tabulce 2.3.

Umístění	Hodnoty pro přizpůsobení			
Umisteni	L [µH]	C [pF]		
BOD1	1,85	5,7		
BOD2	1	13,5		
BOD3	2,6	2,5		
BOD4	1,1	10,4		
Střed (50ohm)	1,85	5,1		

Tabulka 2.3: Hodnoty L a C pro pokles o 3dB.

Z hodnot je vidět, že pro bod 1 vychází stejná indukčnost jako pro přizpůsobení ze středu Smithova diagramu. Druhá indukčnost bude mít velikost 2,6 µH, podle bodu 3. Pro přizpůsobení bodu 2 a 4 se použije paralelní kombinace obou indukčností. Celková indukčnost paralelní kombinace obou indukčností bude 1,08 µH, což pro naše experimentální účely takováto indukčnost dostačuje.

Po určení hodnot indukčností můžeme určit i rozsah přizpůsobení. Na obrázku 2.13 je ve Smithově diagramu znázorněn rozsah impedancí, které anténním tunerem jsme schopni přizpůsobit.

Obrázek 2.13 Rozsah přizpůsobení anténního tuneru.

2.2.3 Zapojení anténního tuneru

Z vypočtených hodnot můžeme provést výsledné zapojení, které je na obrázku 2.14.

Obrázek 2.14 Zapojení anténního tuneru.

U přepínaných indukčností potřebujeme vysoký činitel jakosti. Cívky přepínané obvodem AS179 L12 a L13 jsou vytvořeny pomocí toroidního jádra. Na obrázku 2.15 je realizovaná cívka vyfocena.

Obrázek 2.15 Fotografie vytvořené indukčnosti.

Parametry feritového jádra pro materiál amidon 67 jsou zapsány v tabulce 2.4.

MAGNETIC PROPERTI	ES OF MATER	RIAL 67
Initial permeability	40	=
Maximal permeability	125	1
Maximal flux density (at H=800 A/m)	0.300	т
Residual flux density	0.100	т
Volume resistivity	107	Ωcm
Temperature coefficient (for -20++70°C)	0.13	%/K
Loss factor (at 50 MHz)	150x10 ⁻⁶	-
Coercive force	240	A/m
Curie temperature	500	°C
Applicati	on field	
Resonant circuits	10÷80	MHz
Wideband circuits	200+1000	MHz
RFI attenuation	>1000	MHz

Tabulka 2.4: Parametry použitého feritového toroidního jádra [26].

Následně po realizaci indukčností byly experimentálně změřeny jakostí realizovaných indukčností. Indukčnosti se realizovali z různých průměrů drátů, kde výsledky z vybraných měření jsou zapsány v tabulce 2.5.

> 2,5 µH 123

> > 170

_

	Průměr použitého drátu [mm]	Činitel jakosti Q [-]			
		AMIDON 67		AMIDON 10	
		1,85 µH	2,5 µH	1,85 µH	2,5
	0,25	141	88	155	12

Tabulka 2.5: Výsledky měření jakosti indukčností.

Měření s větším průměrem drátu se neprovádělo z důvodu malých rozměrů obvodu a potřebného počtu závitů. Při realizaci indukčností s větším průměrem drátu se jednotlivé závity nevydají vedle sebe a je zapotřebí realizovat indukčnost s překrýváním závitů, což vede k nižším hodnotám činitele jakosti.

175

143

130

_

200

-

Výpočet útlumu tuneru 2.3

0,38

0.5

Anténní tuner je na vstupu přijímače, kde bude výrazně ovlivňovat celkové parametry přijímače. Proto nás také výrazně zajímá útlum samotného tuneru. Pro zjednodušení výpočtu nebudeme uvažovat všechny ztráty, které mohou v tuneru vzniknout. Ale zaměříme se na ztráty přizpůsobením.

Pro výpočet ztrát v tuneru si nejprve vypočítáme odpor indukčnosti podle

vzorce 2.18

$$R_L = \left| \frac{X_L}{Q_L} \right| = \left| \frac{253}{190} \right| = 1,31 \ \Omega, \tag{2.18}$$

kde Q_L je jakost indukčnosti a X_L reaktance indukčnosti [11].

Stejným způsobem vypočítáme odpor kapacity, výpočet provádíme pro nastavenou hodnotu na varikapu 6 pF

$$R_{C} = \left| \frac{X_{C}}{Q_{C}} \right| = \left| \frac{955}{1000} \right| = 0,95 \ \Omega, \tag{2.19}$$

kde Q_C uvažujeme 1000 [11].

Dále si spočítáme výslednou impedanci tuneru. Při výpočtu neuvažujeme součástky pro blokování stejnosměrné a VF složky. Tedy uvažujeme pouze cívky L12 a L13, přepínací obvod AS179 a varikap. Ze zapojení je vidět, že cívka je zapojena paralelně k impedanci antény a varikap sériově. Impedanci tedy vypočítáme

<u>__</u>

$$Z = (R_{\rm C} - jX_{\rm C}) + \frac{(R_{\rm A} - jX_{\rm A}) \cdot (R_{\rm L} + jX_{\rm L})}{(R_{\rm A} - jX_{\rm A}) + (R_{\rm L} + jX_{\rm L})} =$$
$$= (0.95 - j955) + \frac{(3.95 - j340) \cdot (1.31 + j253)}{(3.95 - j340) + (131 + j253)} = 50 + j0 \,\Omega, \qquad (2.20)$$

kde R_A a X_A je impedance antény, R_L a X_L je impedance indukčnosti L13 a R_C s X_C je impedance varikapu [11]. Z výsledné impedance vypočítáme činitel odrazu ze vzorce 2.21

$$\rho = \frac{Z - Z_0}{Z + Z_0} = \frac{(50 + j0) - 50}{(50 + j0) + 50} = 0 + j0.$$
(2.21)

Vypočtený činitel odrazu se následně převede do polárního tvaru, který následně dosadíme do vzorce 2.22 [12]

$$L = -10\log(1 - |\rho|^2) = -10\log(1 - |0|^2) = 0 \text{ dB} . \qquad (2.22)$$

Vypočítaný útlum vyšel 0 dB, tedy je vidět, že jsme přizpůsobovali správně. V tomto útlumu nejsou započítány ztráty v použitých součástkách, ale pouze útlum vlivem odrazů od nesprávného přizpůsobení. V následující kapitole se proto dále zaměříme právě na útlum přizpůsobovacího obvodu v závislosti na přidaných součástkách.

2.3.1 Výpočet činitele jakosti anténního tuneru

Je několik možností jak určit činitel jakosti obvodu. Jedna z rychlých metod je pomocí Smithova diagramu, ve kterém si zobrazíme kružnice konstantní jakosti Q, jak je znázorněno na obrázku 2.16.

Obrázek 2.16 Smithův diagram s kružnicemi konstantní jakosti obvodu.

Dále do Smithova diagramu zobrazíme přizpůsobovací obvod, tedy kapacitu C (D2) a L12 z obrázku 2.14. Po vynesení kapacity se dostaneme do bodu 1, který odpovídá Q = 8,31. Následně vyneseme indukčnost a dostaneme se do bodu 2, pro který odpovídá Q = 18,75. Tedy minimální potřebná jakost přizpůsobovacího obvodu bude právě 18,75.

Další možnost je výpočtem, který je převzat z [27]. Jedná se o to, že přizpůsobovací obvod při správné funkci bude mít celkovou jakost stejnou jako jakost pro paralelní kombinaci na vstupu a sériovou kombinaci na výstupu, jak je zobrazeno na

obrázku 2.17 a rovnici 2.23.

Obrázek 2.17 Výpočet činitele jakosti anténního tuneru [27].

$$Q = \sqrt{\frac{R_{LARGER}}{R_{SMALLER}} - 1} = Q_{S} = \frac{X_{S}}{R_{SMALLER}} = Q_{p} = \frac{R_{LARGER}}{X_{P}}.$$
 (2.23)

kde R_{LARGER} je impedance antény, $R_{SMALLER}$ je výstupní impedance v našem případě 50 Ω , X_S je impedance kapacity a X_P impedance indukčnosti. Tento výpočet se může použít pouze pro reálné impedance. Z toho důvodu budeme jakost přizpůsobovacího obvodu počítat pomocí Q_S , výpočet je ve vzorci 2.24.

$$Q_{\rm S} = \frac{X_{\rm S}}{R_{\rm SMALLER}} = \frac{\frac{1}{2\pi fC}}{R_{\rm SMALLER}} = \frac{\frac{1}{2\pi 28 \cdot 10^{6} 5, 1 \cdot 10^{-12}}}{50} = 22,29.$$
(2.24)

Dále si určíme činitel jakosti obvodu podle vzorce 2.25

$$\frac{1}{Q_{\rm U}} = \frac{1}{Q_{\rm L}} + \frac{1}{Q_{\rm C}} = \frac{1}{200} + \frac{1}{600} \gg Q_{\rm U} = 150.$$
(2.25)

Následně po výpočtu minimální jakosti Q a jakosti obvodu Q_U můžeme spočítat útlum přizpůsobovacího obvodu vlivem ztrát v použitých součástkách. Útlum tedy vypočítáme pomocí vztahu 2.26 ze získaných hodnot ze Smithova diagramu

L
$$\approx 10 \log \left(1 - \frac{Q}{Q_U} \right) = 10 \log \left(1 - \frac{18,75}{150} \right) = 0,579 \, \text{dB},$$
 (2.26)

a ve vzorci 2.27 pro vypočtenou hodnotu Q_S (vzorec 2.24)

L
$$\approx 10 \log \left(1 - \frac{Q}{Q_U} \right) = 10 \log \left(1 - \frac{22,29}{150} \right) = 0,698 \, \text{dB},$$
 (2.27)

Z výpočtů 2.26 a 2.27 je vidět, že ztráty v indukčnosti a kapacitě se pohybují okolo 0,6 dB. Následně do výpočtu zahrneme útlum přepínače AS179. Podle výrobce přepínače AS179 se pohybuje sériový odpor v sepnutém stavu mezi hodnotami

2,5 - 3,5 Ω . Z tohoto rozmezí si vybereme největší hodnotu 3,5 Ω . Pro výpočet si ale budeme muset nejprve spočítat sériový odpor indukčnosti podle vzorce 2.28

$$Q_{L} = \frac{X_{L}}{R_{S}} \gg R_{S} = \frac{X_{L}}{Q_{L}} = \frac{2 \cdot \pi \cdot 28 \cdot 10^{6} \cdot 1,85 \cdot 10^{-6}}{200} = 1,63 \Omega.$$
 (2.28)

Sériový odpor indukčnosti vyšel 1,63 Ω k němu přičteme sériový odpor AS179 a dostaneme celkový odpor 5,13 Ω . Z vypočteného odporu vypočteme činitel jakosti indukčnosti ve kterém je zahrnut útlum AS179 podle vzorce 2.29

$$Q_{L} = \frac{X_{L}}{R_{S}} = \frac{2 \cdot \pi \cdot 28 \cdot 10^{6} \cdot 1,85 \cdot 10^{-6}}{5,13} = 63,44,$$
(2.29)

když následně dosadíme do vzorce 2.25 a vyjde nám celkové $Q_{\rm U},\,které$ následně dosadíme do vzorce 2.30

$$L \approx 10 \log \left(1 - \frac{Q}{Q_U}\right) = 10 \log \left(1 - \frac{22,29}{59,82}\right) = 2,02 \text{ dB},$$
 (2.30)

vyjde útlum 2,02 dB, což se oproti útlumu jen indukčnosti a kapacity ze vzorce 2.27 výrazně liší.

Dále do výpočtu bychom měli zahrnout i indukčnosti L_2 , L_5 a L_{11} , které jsou pro vedení stejnosměrného proudu a také kondenzátory C_{42} , C_{43} , C_{48} , C_{49} a C_{47} , blokující stejnosměrný proud, což je znázorněno ve vzorci 2.31

$$\frac{1}{Q_{U}} = \frac{1}{Q_{L}} + \frac{1}{Q_{C}} + \frac{1}{Q_{C42}} + \frac{1}{Q_{C43}} + \frac{1}{Q_{C48}} + \frac{1}{Q_{C49}} + \frac{1}{Q_{C47}} + \frac{1}{Q_{L2}} + \frac{1}{Q_{L5}} + \frac{1}{Q_{L11}} + \frac{1}{63,44} + \frac{1}{600} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{50} + \frac{1}{50} + \frac{1}{50} + \frac{1}{50} \right)$$

$$\gg Q_{U} = 12,23.$$
(2.31)

Ze vzorce 2.31 je vidět, že takto zapojený obvod by měl, přiliž malé Q_U a také si musíme uvědomit, že paralelní indukčnosti budou měnit výslednou indukčnost pro ladění anténního tuneru. Pro zlepšení parametrů a neovlivňování pracovních indukčností jsou indukčnosti L₂, L₅, a L₁₁ nahrazeny odporem 10 k Ω , Poté vychází činitel jakosti $Q_U = 44,91$, tuto hodnotu dosadíme do vzorce 2.32

$$L \approx 10 \log \left(1 - \frac{Q}{Q_U}\right) = 10 \log \left(1 - \frac{22,29}{44,91}\right) = 2,97 \text{ dB}.$$
 (2.32)

Celkový útlum signálu způsobený ztrátami v použitých součástkách je tedy 2,97 dB. K tomuto útlumu se ještě přičte útlum vypočtený ve vzorci 2.22. Tento výpočet je ale pro první indukčnost s činitelem jakosti Q = 200. Pro druhou indukčnost, u které dosahujeme činitele jakosti Q = 170, bude útlum větší. Nebo také pro paralelní kombinaci obou indukčností, kde bude mít velká vliv na útlum přepínač AS179.

2.4 Přizpůsobení tuneru

Přizpůsobení zpravidla měříme pomocí PSV metrů (PSV – poměr stojatých vln nebo anglicky SWR - standing wave ratio). Poměr stojatých vln se vyjadřuje jako poměr dvou veličin. Vyjadřuje poměr výkonu vlny postupující po vedení od zdroje k zátěži k výkonu odraženého od nepřizpůsobení mezi impedancí vedení a zátěží. Protože obě vlny mají stejný kmitočet, na vedení vzniká stojaté vlnění.

Poměr stojatých vln můžeme vypočítat podle vzorce

$$PSV = \frac{U_{\rm D} + U_{\rm R}}{U_{\rm D} - U_{\rm R}} \ [-], \tag{2.9}$$

kde U_D je přímá vlna a U_R je odražená.

2.4.1 VKV PSV metry

U radioamatérů jsou velmi oblíbené jednoduché konstrukce PSV metrů. Na obrázku 2.18 je vidět jeden z nejjednodušších PSV metrů

Obrázek 2.18 Jednoduchý PSV metr [13].

PSV metr z obrázku 2.18 podstatě obsahuje transformátor s třemi vinutími. Diody usměrňují VF signál, kde FWD je napětí pro přímou vlnu a REV je napětí pro odraženou vlnu. Pro zvýšení účinnosti se používá feritové toroidní jádro.

V našem případě pro odražený signál použijeme směrovou odbočnici TCD-18-4, která zajistí dostateční přenos odražených vln. Odražené vlny přivedeme na diodový detektor a signál následně zesílíme, jak je vidět na obrázku 2.19

Obrázek 2.19 Diodový detektor se zesilovačem.
Výstup diodového detektoru přivedeme na vstup A/D převodníku implementovaného v procesoru ATmega 16, který následně signál zpracuje a vyhodnotí.

2.4.2 Měření Přizpůsobení anténního tuneru

Pro ověření přizpůsobení se provedla měření na výstupu anténního tuneru. Nejprve byl změřen činitel odrazu na výstupu tedy S22, jehož výsledek je na obrázku 2.20

Obrázek 2.20 Činitel odrazu S22 na výstupu anténního tuneru.

Dále bylo provedeno měření impedance, které je na obrázku 2.21

Obrázek 2.21 Reálná a imaginární část výstupní impedance anténního tuneru.

Jedno z nejdůležitějších měření je poměr stojatých vln, graf závislosti je na obrázku 2.22

Obrázek 2.22 Napěťový poměr stojatých vln na výstupu anténního tuneru.

Z provedených měření vyplývá, že anténní tuner pracuje a přizpůsobuje anténu k vstupu přijímače.

3 NÁVRH PŘIJÍMAČE

Zjednodušeně lze říct, že se celý přijímač skládá ze tří hlavních částí. Řídícího obvodu, anténního tuneru a samotného přijímače. Celé blokové schéma přijímače je zobrazeno na obrázku 3.1.

Obrázek 3.1 Blokové zapojení realizovaného přijímače.

Samotný přijímač je realizován jako superheterodyn pro příjem SSB modulace. Při návrhu byl kladen důraz na nízkou spotřebu celého přijímače a malé napájecí napětí, tak aby přijímač mohl být napájen baterií.

V tomto případě budeme pro ověření vlastností přijímače připojovat měřící přístroje s vnitřní impedancí 50 Ω , proto je vstup přizpůsoben na 50 Ω . Vstupní signál přímo vstupuje do LNA, kde se signál zesílí a potlačí se šumové číslo následujících bloků přijímače. Na výstupu LNA je zapojena pásmová propust pro potlačení zrcadlového kmitočtu. Signál následně vstupuje do směšovače společně s DDS syntezátorem (19 MHz). Mezifrekvenčí signál za směšovačem je filtrován selektivní pásmovou propustí a následně zesilován v AGC. Za zesilovačem je pásmová propust, pro potlačení intermodulačních produktů. Dále následuje demudulátor, kde pro demodulaci potřebujeme další oscilátor 9 MHz. Všechny bloky přijímače si následně v této kapitole rozebereme detailněji

3.1 Nízkošumový zesilovač LNA

Nízkošumový zesilovač (low noise amplifier, LNA) je zesilovač, u kterého potřebujeme dosáhnout co nejnižšího šumového čísla pro vysoké zesílení. U celého přijímače požadujeme malou spotřebu. Proto tedy také u LNA požadujeme malou spotřebu a funkčnost při malém napájecím napětí, protože celý přijímač bude napájen baterii a jedná o aktivní obvod.

Existuje celá řada integrovaných LNA. U integrovaných LNA je velkou výhodou dobré výkonové přizpůsobení, které výrobce vytváří na společném čipu. Z čehož vyplývá, že integrované LNA budou zabírat menší plochu DPS. U integrovaných LNA je však zpravidla větší spotřeba energie oproti realizaci z diskrétních součástek. Nejmenší spotřeba integrovaných LNA se pohybuje okolo 6 mA. Protože vlastní realizací LNA z diskrétních součástek jsme schopni dosáhnout menší spotřeby energie, je proveden návrh LNA.

Nejdůležitějším krokem pro návrh LNA je výběr tranzistoru. V přijímači je navržen LNA s bipolárním tranzistorem. LNA realizovaný pomocí unipolárního tranzistoru by měl na pracovní frekvenci velký zisk. Unipolární tranzistory mají zpravidla větší zesílení. V tomto případě nepožadujeme vysoké zesílení, proto je návrh LNA realizován pomocí bipolárního tranzistoru.

Tranzistor budeme vybírat ze snadno dostupných bipolárních tranzistorů. V dnešní době výrobci tranzistorů přizpůsobují tranzistory pro vysoké kmitočty. Tyto tranzistory mají na nízkých kmitočtech vysoké zesílení a výběr vhodného tranzistoru je komplikovaný. Pro realizaci byl jako nejvhodnější vybrán tranzistor BF840. Tento tranzistor nejlépe splňuje potřebné požadavky pro návrh zesilovače. V tabulce 3.1 je uveden výpis několika dostupných tranzistorů s jejich parametry.

Tranzistor	Parametry			
Tanzistor	F	G	ft	
BF840	1,4 dB (100 kHz)	neuvedeno	380 MHz	
BC550	max 2,5 dB (1 kHz, I=200 uA)	neuvedeno	300 MHz	
BC817	neuvedeno	neuvedeno	250 MHz	
BCX70	max 2 dB (1kHz, I=200 uA)	neuvedeno	250 MHz	
BCP68	neuvedeno	neuvedeno	170 MHz	
BFS17A	2,5 dB (800 MHz)	13,5dB (800MHz)	2800 MHz	

Tabulka 3.1: Tranzistory [17] [18] [19] [20] [21] [22].

Z tabulky je vidět, že vybraný tranzistor BF840 dosahuje přijatelné hodnoty šumového čísla. U šumového čísla je potřebné brát zřetel na frekvenci, při které bylo šumové číslo změřeno. Jelikož je šumové číslo u tranzistorů závislé na frekvenci. Šumové číslo je také závislé na proudu procházejícím přes tranzistor, neboli na nastaveném pracovním bodu. Dále by bylo možné použití tranzistoru BC550, který má ale nižší tranzitní kmitočet. Takže bude mít menší zesílení než LNA realizované pomocí tranzistoru BF840.

Z důvodu neuvedení důležitých parametrů u součástek pro návrh LNA. Byl návrh LNA nasimulován v simulačním programu PSpice, jelikož výrobce tranzistoru poskytuje model tranzistoru právě pro simulaci v programu PSpice. Při návrhu se nejprve nastavil pracovní bod tranzistoru. Při určení pracovního bodu tranzistoru se musí zohlednit několik důležitých parametrů. Při tomto návrhu se snažíme, dosáhnout co nejmenší spotřeby. Proto se zvolil proud přes tranzistor v rozmezí 0,8 - 1,2 mA. Při volbě proudu se vycházelo také z katalogového listu tranzistoru. Hodnoty odporů pro nastavení pracovního bodu byly vypočítány podle parametrů z katalogového listu tranzistoru. Dle katalogového listu tranzistoru je minimální hodnota $h_{21} = 67$. Po optimalizaci pracovního bodu bylo u navrženého LNA dosaženo spotřeby 1,17 mA [17].

Dále musíme u LNA zajistit, aby se VF složka nešířila po napájecím vedení a nezpůsobovala rušení ostatních obvodů přijímače. Tuto funkci plní kondenzátor C_{27} a cívka L_{11} . Pro výpočet hodnoty L_{11} musíme nejprve zvolit impedanci. Zpravidla při výpočtu indukčnosti se volí impedance čtyřikrát vetší, než je výstupní impedance. Hodnotu L_{11} vypočítáme

$$L_{11} = \frac{X_L}{2\pi f} = \frac{200}{2\pi 28 \cdot 10^6} = 1,13 \ uH.$$
(3.1)

Indukčnost představuje pro VF signál vysokou impedanci. Na rozdíl od indukčnosti je kapacita zapojena paralelně, aby zabraňovala přenosu VF složky. VF složku, která přejde přes indukčnost L_{11} , musí kapacita zkratovat. Pro výpočet C_{27} se opět volí impedance. Aby kapacita představovala dostatečný zkrat pro VF složku. Impedance se volí dvěstěkrát menší, než je výstupní impedance.

$$C_{27} = \frac{1}{2\pi f X_C} = \frac{1}{2\pi 28 \cdot 10^6 \cdot 0.25} = 22,74 \, nF.$$
(3.2)

V některých případech se pro úplné zabránění přenosu VF složky po napájecím vedení volí tato impedance mnohonásobně menší. Také se ale obtížně realizuje.

Následně po ošetření přenosu VF složky po napájecím napětí se k LNA přidaly blokovací kapacity C_{28} a C_{29} . Velikost impedancí se volí podle výstupní impedance a to zpravidla na čtvrtinu výstupní impedance. V tomto případě se použily kapacity s šestnáctkrát menší impedancí. Tyto kapacity také blokují přenos stejnosměrné složky, a zabraňují posunu pracovního bodu a stejnosměrným zkratům.

Po výpočtu všech hodnot byla následně provedena simulace v programu PSpice.

Schéma LNA je zobrazeno na obrázku 3.2.

Obrázek 3.2 Simulovaný LNA.

Ze zobrazeného schématu LNA se nasimulovaly admitanční parametry. Pro admitanční parametry platí následující vztahy. Pro vstupní proud

$$I_1 = y_{11} V_1 + y_{12} V_2. (3.3)$$

Pro výstupní proud I2 platí

$$I_2 = y_{21} V_1 + y_{22} V_2. aga{3.4}$$

Z vypočtených admitančních parametrů následně pomocí vztahů 3.5 – 3.8 můžeme vypočítat S-parametry.

$$s_{11} = \frac{\left(\frac{1}{Z_0} - y_{11}\right)\left(\frac{1}{Z_0} + y_{22}\right) + y_{12}y_{21}}{\left(\frac{1}{Z_0} + y_{11}\right)\left(\frac{1}{Z_0} + y_{22}\right) - y_{12}y_{21}},$$
(3.5)

$$s_{12} = \frac{\frac{-2y_{12}}{Z_0}}{\left(\frac{1}{Z_0} + y_{11}\right)\left(\frac{1}{Z_0} + y_{22}\right) - y_{12}y_{21}},$$
(3.6)

$$s_{21} = \frac{\frac{-2y_{21}}{Z_0}}{\left(\frac{1}{Z_0} + y_{11}\right)\left(\frac{1}{Z_0} + y_{22}\right) - y_{12}y_{21}},$$
(3.7)

$$s_{22} = \frac{\left(\frac{1}{Z_0} - y_{11}\right)\left(\frac{1}{Z_0} - y_{22}\right) + y_{12}y_{21}}{\left(\frac{1}{Z_0} + y_{11}\right)\left(\frac{1}{Z_0} + y_{22}\right) - y_{12}y_{21}},$$
(3.8)

kde Z_0 je 50 Ω a určuje impedanci, ke které je vztažen výpočet [7]. Navržený pracovní bod LNA byl také realizován. U realizovaného LNA se

provedlo měření S-parametrů tranzistoru a následně byly srovnány s vypočítanými hodnoty na obrázku 3.3

Obrázek 3.3 Měřené a simulované parametry LNA.

Ze změřených hodnot je sestavil model tranzistoru v programu Ansoft Designer. Po vytvoření modelu tranzistoru se v programu Ansoft Designer provedlo výkonové přizpůsobení na vstupu i na výstupu LNA. Jelikož se jedná o LNA na stupu by mělo být šumové přizpůsobení, ale k tomuto přizpůsobení by se nadále muselo provést měření šumových parametrů. Pro výkonové přizpůsobení na vstupu se postupovalo následujícím postupem. Nejprve zobrazíme kružnici dostupného zisku v rovině zdroje pro maximální dosažený zisk tranzistoru. Dále zobrazíme kružnici dostupného zisku v rovině se stejným ziskem a vybereme bod, který protíná 50 Ω . Následně vznikne ve Smithově diagramu bod, ke kterému si zobrazíme komplexně sdružený bod, který budeme přizpůsobovat ke středu Smithova diagramu. Přizpůsobení provedeme pomocí dvou kondenzátorů, u kterých nebude docházet k případnému zkratu stejnosměrné složky. Dále u přizpůsobování indukčnostmi je problém s potřebným vysokým činitelem jakosti. Smithův

diagram, ve kterém jsou vyneseny parametry, je zobrazen na obrázku 3.4.

Na vstupu se přizpůsobil obvod pomoví dvou kondenzátorů a na výstupu bylo přizpůsobení rovněž provedeno pomoví dvou kondenzátorů. Zapojení přizpůsobovacích kondenzátorů je na obrázku 3.2 znázorněno připojením kondenzátorů Cp1 a Cp2. Výsledné zapojení LNA je zobrazeno v příloze.

Výsledná simulace přizpůsobeného LNA je na obrázku 3.5.

Obrázek 3.5 S-parametry přizpůsobeného LNA.

Z obrázku 3.5 je vidět, že LNA je na vstupu i na výstupu přizpůsobeno, kde oba parametry S11 a S22 dosahují -10dB na pracovním kmitočtu. Přenosová charakteristika S21 dosahuje zisku až 30 dB. Je to z důvodu, že obvod nebyl simulován s reálnými vodiči. Ve výsledné realizaci bude zisk menší.

3.1.1 Měření parametrů LNA

Při měření parametrů LNA se nejprve musel zvětšit odpor R22 pro dostavení pracovního bodu. Je to právě z důvodu použití zapojení, u kterého se výrazně nepotlačuje vliv rozdílných parametrů h21 různých tranzistorů. Dále se po dostavení pracovního budu se ověřily parametry LNA, zde bylo zjištěno, že v tomto zapojení vzniká na vstupu LNA vysokofrekvenční zkrat. Proto bylo následně provedeno měření parametrů LNA bez přizpůsobení, které se lišily od prvotního měření pro získání modelu tranzistoru BF840. Následně se tedy provedlo nové přizpůsobení ,jehož výsledek je zobrazen na obrázku 3.6.

Obrázek 3.6 Měřené s-parametry LNA.

Z charakteristik je vidět, že činitel odrazu na výstupu není přesně naladěn na pracovní frekvenci. Je to z důvodu, že na výstupu přizpůsobujeme indukčností, u které bychom požadovali jinou hodnotu indukčnosti než z vyráběné řady hodnot indukčností a proto byla vybrána nejbližší hodnota indukčnosti.

Dále bylo provedeno měření bodu zahrazení LNA. Toto měření, určení hodnoty

P_{OIP3}, které budeme potřebovat pro následnou simulaci přijímače. Výsledek měření je na obrázku 3.7.

Obrázek 3.7 Měření bodu jednodecibelové komprese.

Shrnuté parametry LNA jsou zapsány v tabulce 3.2.

Tabulka 3.2: Výsledky měření parametrů LNA.

Parametr	Hodnota	
Přenos S21	22,4 dB	
Šumové číslo	1,7 dB	
P _{1dB}	-7 dB	
SFDR	51 dB	
P _{IIP3}	-8 dB	
P _{OIP3}	16dB	

3.2 Pásmová propust

Hlavní důraz při realizaci této pásmové propusti je potlačení zrcadlového kmitočtu. Také se, jak již bylo zmíněno, snažíme dosáhnout co nejmenšího šumového čísla. Celkové šumové číslo určují první bloky přijímače. Z toho důvodu byla pásmová propust zařazena až za nízkošumový zesilovač, aby výrazně nezhoršovala celkové šumové číslo přijímače.

Pro určení zrcadlového kmitočtu se vychází ze dvou základních rovnic. První rovnice 3.9 určuje mezifrekvenční kmitočet ze vstupního kmitočtu a kmitočtu lokálního oscilátoru [7]

$$fm = |RF - LO| \quad [Hz]. \tag{3.9}$$

Druhá rovnice 3.10 vychází ze zrcadlového kmitočtu a kmitočtu lokálního oscilátoru

$$fm = |f_Z - LO|$$
 [Hz]. (3.10)

Pomocí rovnice 3.9 vypočítáme mezifrekvenční kmitočet. Přijímáme signál o frekvenci 28 MHz, který dále směšujeme do mezifrekvenčního kmitočtu 9 MHz pomocí oscilátoru pracujícím na kmitočtu 19 MHz.

Pro výpočet zrcadlového kmitočtu použijeme vztah 3.10, kde nejprve ze vzorce vyjádříme zrcadlový kmitočet a následně dosadíme

$$f_Z = LO - fm = 19 \cdot 10^6 - 9 \cdot 10^6 = 10 \cdot 10^6 \quad [Hz]. \tag{3.11}$$

Zrcadlový kmitočet tedy vyšel na kmitočtu 10 MHz.

Pásmová propust je navržena pro vstupní i výstupní impedanci 50 Ω . Pásmová propust je zapojena v provedení paralelního rezonančního obvodu s odbočkami. Toto zapojení je zvoleno tak, aby bylo možno dosáhnout velké jakosti pásmové propusti v jednoduchém zapojení.

Pro výpočet paralelního rezonančního obvodu, se musí nejprve určit výsledná indukčnost L a výsledná kapacita C. Hodnoty volíme pomocí upraveného Thomsonova vztahu 3.12

$$\sqrt{LC} = \frac{1}{2\pi f} = \frac{1}{2\pi 28 \cdot 10^6} = 5,6841 \cdot 10^{-9} \ [-],$$
 (3.12)

frekvenci volíme 28 MHz. Výslednou hodnotu L volíme, tak aby nevyšly výsledné hodnoty indukčností příliš malé a daly se vyrobit. U indukčností je potřeba, také nezvolit příliš velkou hodnotu indukčností, které mají nízký samo rezonanční kmitočet. Dále se tedy určí výsledné hodnoty součástek. Pro výpočet indukčnosti byla zvolená výsledná indukčnost L = 336 nH. Indukčnost L_1 je určena podle vyráběné řady hodnot indukčností, zde byla vybrána hodnota $L_1 = 56 nH$. Pro paralelní obvod s odbočkami platí vzorec 3.13 pro výpočet výsledné hodnoty indukčnosti.

$$L = L_1 + L_2 = 56 \cdot 10^{-9} + 280 \cdot 10^{-9} = 336 \, nH, \tag{3.13}$$

z této rovnice je patrné, že indukčnost L2 je potřeba $L_2 = 280 nH$.

Dále určíme celkovou kapacitu C paralelního rezonančního obvodu a to pro rezonanci na kmitočtu 28 MHz. Kapacitu dopočítáme podle Thomsonova vztahu 3.14

$$C = \frac{1}{4\pi^2 f^2 L} = \frac{1}{4\pi^2 (28 \cdot 10^6)^2 \ 336 \cdot 10^{-9}} = 96,15 \ pF.$$
(3.14)

Celková kapacita vyšla 96,15 pF. Pro dosažení vysoké selektivity je rezonanční obvod připojen pomocí odboček. U paralelního rezonančního obvodu s odbočkami si můžeme pomocí dělícího poměru p změnit selektivitu pásmové propusti. Dělící poměr byl zvolen malý, jeho hodnota bude 0,16. Díky malému dělícímu poměru má pásmová

propust velkou selektivitu, tudíž velký útlum na zrcadlovém kmitočtu a také malou šířku pásma. Dělící poměr se vypočítá z hodnot indukčností podle vztahu 3.15

$$p_1 = \frac{L_2}{L_1 + L_2} = \frac{56 \, nH}{280 \, nH + 56 \, nH} = 0,166 \left[-\right]. \tag{3.15}$$

Dále podle dělícího poměru p a celkové kapacity vypočítáme kapacity pro vytvoření odbočky. Podle vzorce 3.16

$$p_1 G_{IN} = p_2 G_{OUT} [\Omega], \tag{3.16}$$

je možné přizpůsobit pomocí dělícího poměru na jinou impedanci. Protože pomocí pásmové propusti neprovádíme přizpůsobení, jsou dělící poměry na vstupu i výstupu stejné, tak můžeme kapacitu C_2 přímo vypočítat pomocí vztahu 3.17.

$$C_2 = \frac{c}{p_2} = \frac{-96,15 \cdot 10^{-12}}{0,166} = 579 \ pF. \tag{3.17}$$

Kapacita kondenzátoru C_2 vyšla 579 pF. Pro realizaci byl vybrán kondenzátor s kapacitou 560 pF ke kterému je připojen kapacitní trimr pro doladění pásmové propusti. Pro kapacitu C_1 platí vztah 3.18

$$C_1 = \frac{c}{1 - p_2} = \frac{-96,15 \cdot 10^{-12}}{1 - 0,166} = 115,28 \, pF, \tag{3.18}$$

Kapacita C_1 se zvolila nejbližší nejnižší z vyráběné řady a to hodnota 100 pF, ke kterému bude rovněž připojen kapacitní trimr. Pomocí tohoto kondenzátoru budeme provádět hrubé ladění rezonančního kmitočtu.

Výsledné zapojení pásmové propusti je vidět na obrázku 3.8.

Obrázek 3.8 Výsledné zapojení pásmové propusti.

Navržená pásmová propust byla nasimulována v programu Ansoft Designer.

Výsledek simulace je uveden na obrázku 3.9.

Kde červený průběh znázorňuje činitel odrazu na vstupu a červený přenos filtru. Šířka pásma filtru je 2 MHz. Abychom dosáhli, takto selektivní pásmové propusti musí cívka L1 mít velký činitel jakosti Q. Pro tento účel byla cívka navinuta na Feritové toroidní jádro FT 23-67.

3.2.1 Měření činitele jakosti použité indukčnosti

Pro dosažení potřebných parametrů pásmové propusti byly vyrobeny vzduchové indukčnosti a na feritovém jádře. Na obrázku 3.10 jsou realizované indukčnosti.

Obrázek 3.10 Realizovaní indukčnosti pro pásmovou propust.

U realizovaných indukčností bylo provedeno měření činitele jakosti. Výsledky měření jsou zobrazeny v tabulce 3.3.

Tabulka 3.3: Výsledky měření jakosti indukčnosti 280 nH.

Drůměr nověitého dréty [nova]	Činitel jakosti Q [-]		
Prumer pouziteno dratu [inin]	FT-23-67	vzduchová	
0,38	110	87	
0,5	110	92	

Z naměřených dat je vidět, že průměr použitého drátu pro indukčnost s feritovým jádrem amidon 67 nemá výrazný vliv oproti vzduchové indukčnosti. U vzduchových indukčností se dosahovalo většího činitele jakosti drátu o průměru 1mm, což

způsobovalo, že indukčnost byla příliš velká.

3.2.2 Měření parametrů pásmové propusti

U navržené pásmové propusti se nejprve provedlo měření přenosu, které je zobrazeno v grafu 3.11.

Obrázek 3.11 Měření přenosu pásmové propusti 28 MHz.

Z grafu je patrné, že měření se výrazné liší od návrhu. Tento výrazný rozdíl byl způsoben nevyhovujícím připojením kapacitních trimrů, u kterého vznikly velké parazitní indukčnosti. Pro potlačení parazitních indukčností se musel změnit dělící poměr z p = 0,16 na p = 0,25. Tímto krokem se potlačily parazitní vlivy, ale zvětšila se šířka pásma pásmové propusti. Změřené charakteristiky jsou vyneseny v grafu 3.12.

Obrázek 3.12 Měření přenosu pásmové propusti 28 MHz.

V tabulce 3.4 jsou pak vypsány základní parametry pásmové propusti.

Doromotr	Hodnoty		
Farameti	simulace	měření	
Útlum L [dB]	1 dB	2,48 dB	
Šířka pásma B [MHz]	5,5MHz	6,9 MHz	
Potlačení zrcadlového kmitočtu [dB]	34 dB	22,8 dB	

Tabulka 3.4: Parametry pásmové propusti 28 MHz.

3.3 Integrovaný směšovač v obvodě AD607

U směšovačů jsou čtyři základní parametry a to konverzní ztráty, šumové číslo, dynamický rozsah a izolace mezi branami. U směšovače požadujeme vysokou nelinearitu, která zajistí vznik potřebného výstupního spektra. Také požadujeme co nejmenší konverzní ztráty.

Směšovač vytváří nejrůznější kombinace vstupních signálů RFHI a LOIP. Pro výstupní signál platí vztah 3.19.

$$IF = kRFHI + lLOIP \quad [Hz], \tag{3.19}$$

kde k a 1 jsou koeficienty, které mohou nabývat hodnot celých čísel.

Pokud je k 1 a l je -1, přejde vztah 3.19 na tvar

$$IF = RFHI - LOIP. \quad [Hz] \tag{3.20}$$

Tento vztah je nejčastěji používaný v přijímací technice a je označený jako rozdílový směšovací produkt. Výsledkem je vytvoření mezifrekvenčního kmitočtu. Mezifrekvenční kmitočet je nižší než přijímaný signál, pro lepší zpracování signálu. Velkou výhodou je, že následující bloky mohou pracovat s nízkým tranzitním (mezním) kmitočtem. Tyto obvody se zpravidla snadněji realizují a dosahují lepších parametrů. Další výhodou, je snadnější práce s nízkými kmitočty a menší náchylnost na rušení.

Při buzení směšovače musíme zajistit, aby se nepřebudil vstup směšovače. Jde o to, abychom se směšovačem nepracovali v blízkém okolí bodu P_{1dB} . Tento bod je mimo lineární pracovní oblast, v které jsou nežádoucí složky ve spektru nad úrovní šumu. V tabulce 3.5 jsou uvedeny důležité parametry, které určují mezní hodnoty pro korektní funkci směšovače.

Parametry	Podmínky měření	Hodnota	Jednotka
Frekvence max	G>20dB	500	MHz
Vstup RF max		±56	mV
F	G=max, IF=10,7MHz, f=83MHz	14	dB
P _{1dB}	RF (50Ω), IF =10,7MHz	-15	dBm
Výstup max	$Z_{IF}=165\Omega$	±1,3	V
F _m integrované DP	$Z_{IF}=165\Omega$	45	MHz
Vstupní výkon LO	50Ω	-16	dBm
Vstupní napětí LO	50 Ω	±54	mV
Izolace RF – IF	RF =240MHz, IF =10,7MHz, LO =229,3MHz	30	dB
Izolace LO – IF	RF =240MHz, IF =10,7MHz, LO =229,3MHz	20	dB
Izolace LO – RF	RF =240MHz, IF =10,7MHz, LO =229,3MHz	40	dB
Izolace IF – RF	RF =240MHz, IF =10,7MHz, LO =229,3MHz	70	dB

Tabulka 3.5: Parametry směšovače [15].

V tabulce jsou vidět základní parametry směšovače. Šumové číslo směšovače v našem případě má hodnotu 14 dB. U aktivních směšovačů se zpravidla šumové číslo pohybuje okolo 10 dB.

Bod jednodecibelové komprese P_{1dB} je rovněž důležitým parametrem, který určuje dynamický rozsah směšovače. Tento bod určuje maximální úroveň vstupního signálu, při kterém se úroveň signálu od lineární charakteristiky odlišuje o 1dB a považuje ho za nezkreslený.

Dalším důležitým parametrem je izolace mezi branami, která určuje, jak bude signál pronikat mezi bránami, např.: ze vstupu LO na vstup IF. Kdy nás zpravidla nejvíce zajímá právě tato izolace. Na vstupu směšovače lokálního oscilátoru (LO) se zpravidla přivádí signál o velké úrovní, aby byl směšovač vybuzen a vznikaly potřebné nelinearity. V našem případě je maximální vstupní napětí ±54 mV. Důvodem je, že si směšovač tento signál sám následně zesiluje. Proto je právě důležitá izolace mezi branami LO a IF, kde při malé izolaci proniká signál z oscilátoru na výstup mezifrekvence [15].

Dále se také u směšovače určují konverzní ztráty. V tomto případě máme směšovač aktivní, proto můžeme hovořit o konverzním zisku. Zesílení směšovače je závislé na

řídícím napětí GAIN. Toto zesílení je lineárně závislé, charakteristika je vynesena na obrázku 3.13.

Figure 23. Gain Distribution for GREF = 1.5 V

Obrázek 3.13 Závislost zesílení směšovače a zesilovače [15].

Tato závislost zesílení a rozsah řídícího napětí se posunuje v závislosti na napájecím napájení podle tabulky 3.6.

Nanájasí nanětí [V]	Napětí na stupech	Rozlišení		Rozsah řídícího napětí
Napajeci napeti [v]	GREF, VMID [V]	[dB/V]	[mV/dB]	[V]
3	1,5	50	20	0,4 - 2
3,5	1,75	42,86	23,33	0,47 - 2,33
4	2	37,50	26,67	0,53 - 2,67

Tabulka 3.6: Parametry pro nastavení řídíciho napětí zesílovače [15].

3.3.1 Detektor obálky pro řízení zisku směšovače a AGC

Pro regulaci zisku směšovače a AGC provedeme pomocí řídícího napětí, které přivádíme na vstup GAIN. Regulaci provádíme pomocí detektoru obálky. Pro vytvoření řídícího napětí odebíráme výstupní signál, který přivádíme na kladný vstup operačního zesilovače. Důvodem tohoto zapojení je, abychom co nejméně zatěžovali výstup demodulátoru obvodu AD607. Výstupní napětí zesílíme a následně usměrníme. Stejnosměrným napětím pak regulujeme zesílení. Schéma detektoru obálky je vidět na obrázku 3.14.

Obrázek 3.14 Detektor obálky pro řízení zesílení směšovače a AGC.

Ze schématu je vidět, že nastavené zesílení je 1,35. Zesílený signál usměrňujeme pomocí Schottkyho diody. Důvodem použití Schottkyho diody je především to, že jsou rychlé a mají malý úbytek napětí. Časová konstanta pro vyhlazení usměrněného signálu je velká, abychom zajistili konstantní výstupní napětí pro obvod AD607 i pro nízké kmitočty signálu.

3.4 Selektivní pásmová propust

Za směšovačem následuje pásmová propust, u které požadujeme vysokou selektivitu. Pomocí selektivní pásmové propusti se vybírá šířka pásma potřebná pro přenos informace. U této pásmové propusti musíme mít nejlépe minimální potřebnou šířku pásma potřebnou pro přenos informací. A to především z důvodu, aby nebyl užitečný signál rušen dalšími signály.

Filtry s vysokou selektivitou se nejčastěji řeší pomocí piezoelektrického rezonátoru (PER), neboli krystalu. K jeho výrobě se používají převážně syntetické křemenné krystaly (SiO₂). PER má dva výrazné rezonanční kmitočty sériový f_S a paralelní f_P , také však obsahuje řadu dalších parazitních rezonancí. Kmitočty f_S a f_P jsou poměrně blízko sebe a můžeme je vyjádřit pomocí Thomsonova vztahu. Sériový rezonanční kmitočet je udáván ve vztah 3.21 [8]

$$f_S = \frac{1}{2\pi\sqrt{L_S C_S}} [Hz].$$
 (3.21)

Paralelní rezonanční kmitočet se opět vypočítá pomocí Thomsonova vztahu, který upravíme do tvaru vzorce 3.22

$$f_P = \frac{1}{2\pi \sqrt{L_S \left(\frac{C_P C_S}{C_P + C_S}\right)}} \qquad [Hz], \tag{3.22}$$

kde musíme počítat i se sériovou kombinací kapacit C_P a C_S.

Pomoci těchto dvou rezonančních kmitočtů, můžeme dosáhnout u krystalových filtrů velmi úzké šířky pásma. Při realizaci filtru potřebujeme více krystalů a všechny krystaly musí mít stejné parametry. Proto jsou tyto filtry obtížné na výrobu a jsou velmi drahé. Tyto filtry se dají realizovat pomocí samostatných krystalů. U realizace je ale problém s požadavkem na stejné parametry krystalů. Proto tyto realizace jsou také nákladné z důvodu velkého množství potřebných krystalů, a také velmi velké časové náročnosti. Z těchto důvodů je v přijímači použit již odladěný krystalový filtr od výrobce.

Doporučené zapojení selektivní pásmové propusti k obvodu AD607 je zobrazeno na obrázku 3.10. Pro výkonové přizpůsobení musí být mezi výstupem směšovače (MXOP) a vstupem selektivní pásmové propusti, a také mezi výstupem pásmové propusti a vstupem zesilovače (IFHI) v obvodě AD607, filtr pracující na 10,7 MHz s impedanci 330 Ω . Tak aby výsledná impedance byla 165 Ω podle doporučených hodnot od výrobce obvodu [15].

U integrovaného obvodu AD607 výrobce také udává doporučené zapojení výkonového přizpůsobení. Výrobce uvedl širokopásmové přizpůsobení pomocí rezistorů. Velkou nevýhodou jsou však velké ztráty na rezistorech. Zapojení výkonového přizpůsobení je na obrázku 3.15.

Obrázek 3.15 Doporučené zapojení pásmové propusti [15].

Doporučené hodnoty rezistorů, které výrobce doporučuje pro realizaci, jsou zapsány v tabulce 3.7.

Tabulka 3.7: Hodnoty součástek [15].

f [MHz]	$Z_{FILTR} [\Omega]$	$R_1 [\Omega]$	$R_2[\Omega]$	R ₃ [Ω]
0,45	1500	174	1330	1500
6,5	1000	215	787	1000
10,7	330	330	0	330

Pro realizaci filtru je zvolen čtyřpólový krystalový filtr. Tento filtr se skládá ze dvou párových krystalů pracujících na kmitočtu 9 MHz, které mají zakončovací impedancí 1100 Ω a vazební kapacitu 10 pF.

Výrobce integrovaného obvodu neuvádí výstupní impedanci směšovače (MXOP), ale doporučuje, aby připojená zátěž měla impedanci 165 Ω . Při připojení filtru s výslednou impedancí menší než 165 Ω , výrobce udává, že zesílení směšovače klesne o hodnotu G_L podle vztahu 3.23 [15]

$$G_L = 10\log\left(\frac{165}{Z_{FILTR}}\right) \quad [dB]. \tag{3.23}$$

V tomto případě nepracujeme s širokopásmovým signálem a nepožadujeme širokopásmové přizpůsobení. Proto můžeme provést přizpůsobení pomocí frekvenčně závislých součástek. Tedy pomocí kapacit a indukčností. Přizpůsobení pomocí kapacit a indukčností by v ideálním případě bylo bezeztrátové. Výhodou je, že při jeho realizaci se dá, dosáhnout velmi malých ztrát, které se dají zanedbat.

Protože impedance vstupů a výstupů jsou reálné, můžeme provést výkonové přizpůsobení pomocí obvodu čtvrtinového úseku vedení neboli čtvrtinového transformátoru. Jeho zapojení bylo zvoleno typu T-článku, aby bylo blokováno

stejnosměrné posunutí VF složky obvodem AD607.

Schéma celé selektivní pásmové propusti s realizací přizpůsobení k zakoupenému filtru složeného ze dvou párových krystalů je zobrazeno na obrázku 3.16.

Obrázek 3.16 Schéma zapojení selektivní pásmové propusti.

Výstup směšovače (MXOP) bude přizpůsoben na 165 Ω . Vstup AGC (IFHI) bude přizpůsoben na jeho vstupní impedanci 50 Ω . Pro samotné výpočty součástek je třeba vypočítat charakteristickou impedanci podle vztahu 3.24.

$$Z_0 = \sqrt{Z_{IN_{FILTR}} Z_{out_{MXOP}}} = \sqrt{3000 \cdot 165} = 426,03 \,\Omega, \qquad (3.24)$$

po dosazení do vzorce vyjde pro vstup charakteristická impedance 426,03 Ω [15]. Pro výpočet hodnot součástek použijeme vztahy 3.25 a 3.26.

$$L_6 = \frac{Z_0}{2\pi f_0} = \frac{426,03}{2\pi 9 \cdot 10^6} = 7,53 \ \mu H, \tag{3.25}$$

$$C_{13} = C_{14} = \frac{1}{2\pi f_0 Z_0} = \frac{1}{2\pi 9 \cdot 10^6 426,03} = 41,51 \, pF,$$
 (3.26)

kde f_0 je pracovní frekvence 9 MHz. Dále platí, že kondenzátory C₁₃ a C₁₄ mají stejnou kapacitu, stejně jako kondenzátory C₁₆ a C₁₇. Pokud dosadíme charakteristickou impedanci vstupu do vzorce 2.25, vychází indukčnost L₆ 7,53 µH. Z řady vyráběných indukčností byla vybrána hodnota 8,2 µH. Kapacity C₁₃ a C₁₄ vypočítáme pomocí vztahu 2.26, kde bylo dosaženo hodnoty 41,51 pF. Z vyráběné řady byla vybrána hodnota 39 pF.

Stejným postupem postupujeme při přizpůsobení na výstupu. Charakteristickou impedanci pro výstup vypočítáme podle vzorce 3.27, hodnota zde vychází 234,52 Ω .

$$Z_0 = \sqrt{Z_{IN_{IFHI}} Z_{out_{FILTR}}} = \sqrt{50 \cdot 1100} = 234,52 \,\Omega. \tag{3.27}$$

Po dosazení do vzorce 3.25 indukčnost L_7 vyjde 4,15 µH. Z vyráběné řady byla vybrána hodnoty 3,9 µH. Kapacity pro kondenzátory C_{16} a C_{17} vycházejí 75,4 pF. Z vyráběné řady byla zvolena hodnota 82 pF.

3.4.1 Měření parametrů krystalového filtru

Měření přenosu selektivní krystalové pásmové propustí je zobrazeno v grafu 3.17

Obrázek 3.17 Přenos selektivní pásmové propusti.

Z grafu je vidět, že je pásmová propust vyladěná a má úzké přenosové pásmo. Detail přenosového pásma je v grafu 3.18

Obrázek 3.18 Detail přenosového pásma selektivní pásmové propusti.

Ze zobrazeného detailu je vidět, jak je přenosové pásmo konstantní, nevzniká zde žádné zvlnění a pásmová propust pracuje správně. V tabulce 3.8 jsou vypsány základní parametry pásmové propusti.

Transistor	Parametry		
	Data výrobce	měření	
Útlum L [dB]	0 - 2	3,4	
Šířka pásma B [kHz]	2,4	2,3	

Tabulka 3.8: Parametry pásmové propusti [27].

Po srovnání zaměřených hodnot s hodnotami udávaných výrobcem je vidět, že se hodnoty výrazně neliší.

3.5 Integrovaný zesilovač v obvodě AD607

Za selektivní pásmovou propustí následuje řízený zesilovač. Po zesilovači s řízeným ziskem požadujeme konstantní výstupní napětí a to při co nejširším rozpětí vstupních signálu. Po zesilovači také požaduje, aby pracoval v lineární oblasti a nevytvářel harmonické složky vyšších řádů.

Řízený zesilovač neboli AGC (automatic gain control) sám reguluje svůj zisk, tak aby výstupní signál nebyl zkreslen a nevznikaly nežádoucí složky. V přijímači je použit zesilovač z obvodu AD607. Zesílení AGC je dáno napětím GAIN, závislost tohoto napětí a zesílení je zobrazeno na obrázku 3.13 v podkapitole 3.3.

Na trhu je velké množství AGC zesilovačů, ale zpravidla mají velkou spotřebu, která se nejčastěji pohybuje okolo 100 mA. Kvůli malé spotřebě celého integrovaného obvodu AD607 a již integrovaného zesilovače AGC v obvodě AD607 s dostačujícími vlastnostmi, je právě použitý integrovaný zesilovač v obvodě AD607. V tabulce 3.9 jsou parametry AGC zesilovače integrovaného v obvodě AD607.

Parametry Podmínky měření		Hodnota	Jednotka
F	G=max, f=10,7MHz	17	dB
P _{1dB}	IF=10,7MHz	-15	dBm
IP3	IF=10,7MHz	18	dBm
Výstup max	$Z_{IF}=600\Omega$	±560	mV
f _m integrované DP	G=max	45	MHz

Tabulka 3.9: Parametry zesilovače AGC [15].

Pro P_{1dB} a IP3 výrobce neudává další parametry, při kterých byly tyto hodnoty změřeny.

Závislost řízení zesílení na výstupním napětí je znázorněna na obrázku 3.19.

Obrázek 3.19 Závislost výstupního a řídícího napětí na vstupním signálu.

3.5.1 Pásmová propust pro AGC

Na vstupu zesilovače se vyskytuje více signálu o různých kmitočtech. Proto, jak již bylo zmíněno, budou v zesilovači vznikat intermodulační produkty vyšších řádů. Vzniklé intermodulační produkty, je zapotřebí odfiltrovat. Pro potlačení intermodulačních produktů je na výstup AGC připojena pásmová propust se střední frekvencí 9 MHz.

Pásmová propust je realizována pomocí dvou rezonančních obvodů spojených vazební kapacitou. Toto zapojení je zvoleno pro dosažení větší selektivity. Zapojení pásmové propusti je na obrázku 3.20

Obrázek 3.20 Schéma zapojení pásmové propusti 9 MHz.

Přenosové charakteristiky simulované pásmové propusti jsou na obrázku 3.21, kde je modrý průběh činitel odrazu na vstupu (S11) a červený průběh přenosu S21.

Obrázek 3.21 Simulované parametry pásmové propusti 9MHz.

Pro realizaci jsou k zapojení pásmové propusti přidány blokovací kondenzátory. Důvodem je, že výstupní napětí z AGC je stejnosměrně posunuto na hodnotu *VPOS/2*. Dále jsou připojeny rezistory, které zajišťují stejnosměrný posun signálu na požadovanou hodnotu vstupu demodulátoru *VPOS/2*. Zapojení rezistorů se provedlo podle jednoho z doporučených zapojení výrobce integrovaného obvodu AD607.

Následné měření pásmové propusti je zobrazeno v grafu 3.22.

Obrázek 3.22 Měřené parametry pásmové propusti 9 MHz.

Z grafu je patrné, že charakteristiky pásmové propusti odpovídají návrhu. Základní parametry pásmové propusti jsou v tabulce 3.10.

Doromotr	Hodnoty		
Faramati	simulace	měření	
Útlum L [dB]	0,5	2,8 dB	
Šířka pásma B [MHz]	5,3 MHz	7,4 MHz	
Střední kmitočet [MHz]	9 MHz	9,8 MHz	

Tabulka 3.10: Parametry pásmové propusti 9 MHz.

3.6 Integrovaný demodulátor v obvodě AD607

Požadovaná funkce demodulátorů je získání základního pásma. Stejně jako u předchozích bloků požadujeme po demodulátoru lineární chování, aby nevznikaly vyšší harmonické složky. Tato podmínka souvisí s požadovaným velkým výstupním bodem IP3. Protože se jedná o poslední blok. Na bodu IP3 u posledních bloků závisí celkový odstup SFDR.

Modulace SSB má ve spektru pouze jednu postranní složku. Rozlišujeme tedy modulaci s horním postranním pásmem USB (Upper Side Band) a modulaci s dolním postranním pásmem LSB (Lower Side Band). Modulátory SSB využívají dvou základních metod. První metoda je filtrační, při níž se použije modulátor DSB a filtrací se potlačí jedno postranní pásmo. Druhá metoda je fázová, kde základním problémem je realizace fázovacího článku. Fázovací článek na vstupu musí zajistit posuv o $\pi/2$ v celém rozsahu kmitočtů modulačního signálu [2].

Demodulace SSB se provádí obvykle pomocí synchronního detektoru následovaného dolní propustí, který násobí přijatý signál s referenční nosnou vlnou.

Demodulaci LSB a USB můžeme měnit rozladěním oscilátoru na vstupu FDIN. Pokud potřebujeme přijímat USB, naladíme nižší kmitočet oscilátoru a vyšší kmitočet pro LSB. Blokové schéma demodulátoru je na obrázek 3.23 [2].

Obrázek 3.23 Blokové schéma demodulátoru v obvodě AD607 [15].

Demodulátor v obvodě AD607 násobí zesílený přijatý signál ze vstupu DMIP referenční nosnou vlnou přivedenou na vstup FDIN. Na vstup FLTR je připojen RC článek s časovou konstantou 16,5 μ s. Pomocí RC článku si integrovaný blok VQFO (Variable Quadrature Frequency Oscillator), proměnný kvadraturní oscilátor, vytváří fázový posun o $\pi/2$ [15].

Pro dosažení nezkreslené modulační složky musíme zajistit, aby referenční nosná vlna byla ve fázové a kmitočtové koherenci s potlačenou nosnou vlnou vstupního signálu. V mnoha případech však není požadována dokonalá koherence vln, například pro přenos řečového signálu. Proto se připouští malá kmitočtová odchylka několika Hz. Této stability, tak bez problémů dosáhneme krystalovým oscilátorem. Složky na dvojnásobku kmitočtu nosné vlny jsou potlačeny dolní propustí s mezním kmitočtem 2 MHz, která je integrovány i v obvodu AD607 [2] [15].

Parametry demodulátoru jsou uvedeny v tabulce 3.11. Vstupy DMIN a FDIN mají zabudovaný zesilovač, proto jsou vstupní napětí malá. U vstupu FDIN se také provádí stejnosměrný posun a to podle řídícího napětí VPOS. Tento posun je dle výrobce doporučeno provést odporovým děličem 50 k Ω [15].

Pin	Parametry	
DMIN	vstupní napětí (f=10,7MHz)	±150 mV
DMIN	vstupní impedance	50 Ω
FDIN	vstupní napětí	$\pm 400 \text{ mV}$
FDIN	vstupní impedance	l kΩ
FDIN	stejnosměrný posun	VPOS/2
IOUT	výstupní napětí (Zátěž >20k Ω)	±1,3V
QOUT	výstupní napětí (Zátěž >20kΩ)	±1,3V

Tabulka 3.11: Hodnoty demodulátoru [15].

3.7 Oscilátor 19 MHz a 28MHz

Oscilátory jsou jedny z velmi důležitých obvodů přijímače. Potřebujeme je pro demodulaci signálu do základního pásma, ale také do mezifrekvence. Pro obě kmitočtové konverze je důležité, aby oscilátory byly dostatečně kvalitní. Na konverzi signálu potřebujeme přesný a stálý kmitočet pro co nejmenší spotřebu. Pro zjednodušení oscilátorů se také nezabýváme fázovou synchronizací s nosnou vlnou z vysílače.

Oscilátor na frekvenci 19 MHz potřebujeme pro směšovač k získání mezifrekvence 9 MHz. Pro realizaci oscilátoru byl použit obvod AD9834 od firmy Analog Devices. Obvod AD9834 je kompletní DDS syntezátor (Direct Didital Synthesis). Jehož blokové schéma je na obrázku 3.24.

Obrázek 3.24 Blokové schéma obvodu AD9834 [14].

Obsahuje dva 28 bitové registry FREQ0 REG a FREQ1 REG, které je možné přepínat. Následuje fázový akumulátor, který je také 28bitový. Výhodou číslicové reprezentace hodnot fáze je, že jsme schopni měnit skokově hodnotu fáze. Za fázovým akumulátorem je sumační člen, kde dochází k redukci vstupních 28 bitů na 12 výstupních bitů, které vstupujících do pamětí ROM s hodnotami funkce sinus. Do sumačního členu také vstupují dva 12 bitové fázové registry. Paměť ROM je možné nevyužívat pro získání trojúhelníkového průběhu. V našem případě budeme používat paměť s funkcí sinus. Následuje 10 bitový D/A převodník, pro vytvoření analogového signálu. Obvod nabízí i další funkce ale prozatím se jimi nebudeme zabývat [14].

Výhodou DDS syntezátoru je možnost dosáhnout vysokého rozlišení výstupního signálu neboli malého kmitočtového kroku. Dále velkou výhodou je velký rozsah výstupní frekvence, který v této práci nevyužijeme. Velkou nevýhodou DDS syntezátoru je spektrální nečistoty ve spektru, které vznikají v D/A převodníku.

Obvod AD9834 musí mít svůj zdroj referenčního hodinového signálu. Pro tento referenční signál byl zvolen oscilátor s frekvencí 74,25 MHz. Dle Nyquistova vzorkovací teorému by výstupní kmitočet obvodu mohl dosahovat 37,125 MHz. Toto by platilo pouze, pokud by na výstupu D/A převodníku byl připojena ideální dolní propust neboli Antialiasingový filtr. Za tohoto předpokladu můžeme říci, že maximální výstupní frekvence bude poloviční hodnota referenčního hodinového signálu. Výstupní frekvence se tedy bude pohybovat v rozmezí

$$\frac{f_{clk}}{2^N} < f_{out} < \frac{f_{clk}}{2}$$
[Hz], (3.28)

kde f_{out} je výstupní kmitočet a N je počet bitů [7].

Dále si také určíme minimální kmitočtový krok výstupní frekvence, který je dán [7]

$$\Delta f = \frac{f_{clk}}{2^N} \quad [\text{Hz}]. \tag{3.29}$$

3.7.1 Antialiasingový filtr

AD9834 je číslicový obvod a na výstupu je potřeba filtr. Na výstupu D/A převodníku tedy vřazen filtr pro potlačení zrcadlových signálu vznikajících v násobcích vzorkovací frekvence D/A převodníku. Tímto filtrem potřebujeme především potlačit první zrcadlový kmitočet [7]

$$f_{\rm Z1} = f_{\rm CLK} - f_{\rm OUT}$$
 [Hz]. (3.30)

Pro návrh musíme mezní frekvenci filtru posunout frekvenčně níže, aby se mohl filtr realizovat a dostatečně potlačoval první zrcadlový kmitočet.

Pro realizaci filtru byla zvolena dolní propust. Filtr byl navržen v programu Filter Desing. Výhodou program je, že při návrhu zohledňuje činitel jakosti indukčností. Dále při návrhu se vstup filtru přizpůsobuje na výstupní impedanci D/A převodníku a to 200 Ω . Na výstupu je potřebná impedance vstupního pinu směšovače LO která je 1000 Ω . [14],[15].

Výsledné zapojení filtru je zobrazeno na obrázku 3.25.

Obrázek 3.25 Zapojení antialiasingového filtru.

Výsledné zapojení je již nasimulováno v programu Ansoft Designer s reálnými hodnotami součástek. Výsledné přenosové charakteristiky filtru jsou vidět na obrázku 3.25, kde simulace byla provedena pro zakončovací impedanci 50 Ω a 1 k Ω . Je to z důvodu použití AD9834 jako referenčního zdroje pro měření přizpůsobení anténního tuneru. Pro měření přizpůsobení používáme impedanci 50 Ω . Vstupní impedance lokálního oscilátoru směšovače je 1 k Ω , proto simulujeme obě hodnoty zakončující impedance. Návrh byl přizpůsoben, tak aby charakteristiky pro obě impedance byly použitelné. Charakteristiky antialiasingového filtru jsou na obrázku 3.26.

Obrázek 3.26 Přenosové charakteristiky antialiasingového filtru.

Ze simulovaných charakteristik je vidět, že se antialiasingový filtr může použít pro obě impedance. Což je velká výhoda, kdyby se návrh nepovedl, bylo by za potřebí na výstupů pásmové propusti realizovat přepínač s výkonovým přizpůsobením.

3.7.2 Měření parametrů přímé digitální syntézy

Pro ověření funkčnosti se nejprve změřily charakteristiky antialiasingového filtru, které jsou na obrázku 3.27

Obrázek 3.27 Měřené přenosové charakteristiky antialiasingového filtru.

Z grafu je vidět, že charakteristiky odpovídají simulaci. Dále bylo změřeno spektrum přímá na výstupu DDS pro nastavený kmitočet 19 MHz, spektrum je zobrazeno na obrázku 3.28.

Obrázek 3.28 Změřené spektrum na výstupu DDS pro 19 MHz.

Dále bylo změřené spektrum za antialiasingovým filtrem, které je vidět na obrázku 3.29

Obrázek 3.29 Změřené spektrum signálu 19 MHz za antialiasingovým filtrem.

Další z důležitých parametrů oscilátorů je amplitudový fázový šum. Fázový šum v časové oblasti způsobuje změny průchodu signálu nulou oproti teoretickému průběhu. Křivka fázového šumu je na obrázku 3.30.

Obrázek 3.30 Změřený fázový šum pro 19 MHz.

Následně se DDS nastavila na výstupní frekvenci 28 MHz, kterou potřebujeme pro měření přizpůsobení, a provedlo se opět měření spektra na výstupu DDS, které je na obrázku 3.31.

Obrázek 3.31 Změřené spektrum na výstupu DDS pro 28 MHz.

Následně bylo změřené spektrum za antialiasingovým filtrem, které je na obrázku 3.32.

Obrázek 3.32 Změřené spektrum signálu 28 MHz za antialiasingovým filtrem.

Změřený fázový šum pro 28 MHz je na obrázku 3.33

Obrázek 3.33 Změřený fázový šum pro 28 MHz.

3.8 Oscilátor 9 MHz

Krystalovým oscilátorem jsme schopni dosáhnout kmitočtu s přesností na jednotky hertz. S přesností kmitočtu souvisí také fázový šum, který je z důvodu dosažení vysoké jakosti u krystalových oscilátorů malý. Mezi další výhody krystalových oscilátorů patří vyšší stabilita kmitočtu v závislosti na teplotě, ale v užším rozsahu. Také krystalové oscilátory jsou odolnější proti stárnutí [7].

Jsou tři základní zapojení zpětnovazebních oscilátorů. A to Colpittsovo, Hartleyovo a Clappovo zapojení. Pro realizaci oscilátoru bylo zvoleno Colpittsovo zapojení. Aby bylo dosaženo potřebné selektivity oscilátorů, byl oscilátor řešen s krystalem. Tím bylo dosaženo dostatečné přesnosti kmitočtu.

U oscilátorů se vždy snažíme pracovat s většími kapacitami. Při dosažení mnohem větších kapacit kondenzátorů oproti parazitním kapacitám tranzistoru získáme větší stabilitu oscilátoru. Protože parazitní kapacity tranzistoru se při provozu mění. Kdybychom tyto kapacity nepotlačily, měnil by se kmitočet výstupního signálu. Především u návrhu oscilátorů musíme dodržet pro vznik oscilací dvě základní podmínky a to amplitudovou a fázovou podmínku [7].

Oscilátor v Colpittsově zapojení pracující na kmitočtu 9 MHz je na obrázku 3.34.

Obrázek 3.34 Oscilátor na 9 MHz.

Při návrhu nejprve nastavíme pracovní bod tranzistoru, tedy i spotřebu oscilátoru. Při volbě pracovního bodu se vycházelo z katalogového listu tranzistoru, kde jsme se snažili, dosáhnout malé spotřeby při zaručení funkčnosti oscilátoru. Následně se podle použitého krystalu a vztahu 3.31 vypočítala celková rezonanční kapacita [9]

$$C_{LMAX} = \frac{1}{4\pi f} \sqrt{\frac{g_{21e}}{ESR}} = \frac{1}{4\pi 9 \cdot 10^6} \sqrt{\frac{0,036}{50}} = 231,69 \ pF.$$
(3.31)

Kde g_{21e} je strmost tranzistoru, *ESR* je ekvivalentní odpor krystalu a C_{LMAX} je výsledná sériová kombinace kapacit. Kapacity C₂₉ a C₃₀ vypočítáme ze vzorce [9]

$$C_{LMAX} = \frac{C_{29} * C_{30}}{C_{29} + C_{30}} \quad [F]. \tag{3.32}$$

Oscilátor pracuje nejlépe, když je poměr mezi kapacitami 2 až 3. Poměr kapacit vypočítáme pomocí vztahu 3.33 [9]

$$p = \frac{c_{29}}{c_{30}} \quad [-]. \tag{3.33}$$

Proto se při návrhu použil poměr 2,48 a výsledné kapacity byly vybrány z nejbližší vyráběné řady kapacit. Čímž se zajistilo dodržení poměru kapacit.

K oscilátoru připojíme na napájecí vedení paralelní kapacitu a sériovou indukčnost pro potlačení šíření VF složky po napájení. Hodnoty vypočítáme pomocí vtahů 3.1 a 3.2 stejným způsobem jako při návrhu LNA.

Kapacity C₂₉ a C₃₀ potlačují vliv parazitních kapacit PN přechodu tranzistoru. Kapacita C₂₉ potlačuje vliv parazitní kapacity báze-emitor C_{BE} a kapacita C₃₀ potlačuje vliv parazitní kapacity emitor-kolektor C_{EC}. Pro potlačení parazitních kapacit tedy musíme dodržet podmínku z vzorce 3.34. Tranzistor BFR92 má parazitní kapacity $C_{BE} = 0.8 \ pF$ a $C_{BC} = 0.75 \ pF$ [23], [7].

$$C_{29} \gg C_{BE} \quad C_{30} \gg C_{CE} \quad [F].$$
 (3.34)

Z hodnot kapacit vyplývá, že obě kapacity výrazně zmenšují vliv parazitních kapacit.

Návrh oscilátoru byl simulován v programu PSpice. Simulací se doladily parametry oscilátoru a vhodný výběr hodnot součástek z vyráběné řady.

Na výstupu oscilátoru je zapojen filtr pro potlačení vyšších harmonických složek. Filtr je realizován jako Čebyševova dolní propust s maximálním zvlněním 5 dB. Výpočet filtru pro potlačení harmonických složek se provádí pomocí tabulek. Nejprve ale určíme normovaný kmitočet potlačení F_{DPn}

$$F_{DPn} = \frac{F_p}{F_M} = \frac{20}{10} = 2 \ [-],$$
 (3.35)

kde F_P je kmitočet na požadovaném potlačení a F_M je mezní frekvence. Obě frekvence jsou dosazené v MHz [8].

Pro výpočet potřebného řádu použijeme vzorec

$$n \geq \frac{\arccos \sqrt{\frac{\frac{L_{Z}}{10^{\frac{1}{10}-1}}}{\frac{L_{P}}{10^{\frac{1}{10}-1}}}}{\arccos \sqrt{\frac{10^{\frac{30}{10}-1}}{\frac{5}{10^{\frac{5}{10}-1}}}} = 2,85 \rightarrow 3 \ [-], \quad (3.36)$$

kde L_Z je požadovaný útlum na frekvenci F_P a L_P je zvlnění v propustném pásmu [8].

Ze vzorce 3.36 vyšel potřebná řád 3, proto budeme vybírat normované hodnoty z tabulky pro třetí řád. Odnormování hodnot prvků filtru provedeme konstantami

$$K_L = \frac{Z_{in}}{2\pi f} = \frac{1000}{2\pi 10 \cdot 10^6} = 1,5915 \cdot 10^{-5} [-], \qquad (3.37)$$

$$K_{C} = \frac{1}{2\pi f Z_{in}} = \frac{1}{2\pi 10 \cdot 10^{6} 1000} = 1,5915 \cdot 10^{-11} [-], \qquad (3.38)$$

kde Z_{in} je vstupní impedance filtru, která je rovněž shodná s výstupní impedancí [8].

Následně už zbývá jen vypočítat výsledné hodnoty součástek vynásobením

koeficientu konstantami pro odnormování. Výsledné schéma dolní propusti je na obrázku 3.35 [8].

Obrázek 3.35 Dolní propust pro oscilátor 9MHz.

Vypočítaný filtr byl nasimulován v programu Ansoft Desinger jehož výsledná charakteristika je na obrázku 3.26.

Obrázek 3.36 Přenosová charakteristika pro oscilátor na 9 MHz.

Červený průběh je přenosová charakteristika filtru. Černý průběh je činitel odrazu na vstupu filtru.
3.8.1 Měření parametrů oscilátorů 9 MHz

Pro ověření parametrů oscilátoru 9MHz se provedla stejná měření jako pro obvod AD9834. Na obrázku 3.37

Obrázek 3.37 Změřený časový průběh oscilátoru 9 MHz.

Dále se provedlo měření spektra krystalového oscilátoru, které je na obrázku 3.38.

Obrázek 3.38 Změřené spektrum oscilátoru 9 MHz.

Ze změřeného spektra je vidět druhá harmonická složka, která je pod úrovní -60 dBm. Jelikož je tato složka dostatečně utlumená můžeme jí zanedbat. Dále bylo provedeno měření fázového šumu je na obrázku 3.39.

Obrázek 3.39 Změřený fázový šum pro oscilátor 9 MHz.

3.9 Řídící obvod přijímače

Řídící obvod je realizován pomocí mikrokontrorelu ATmega 16. Řídící obvod potřebujeme především pro řízení obvodu AD9834. Následně obvod využijeme i pro řízení anténního tuneru. Po řídícím obvodu také požadujeme dva důležité parametry a to malou spotřebu, a jelikož se jedná o digitální odvod, tak i malé rušení.

U realizovaného obvodu je možná zapojit externí oscilátor. V našem případe není nutný, proto využíváme interního oscilátoru 1 MHz. To způsobuje delší čas ladění anténního tuneru, to ale neprovádíme neustále. Proto si to můžeme dovolit. Velkou výhodou je, že dosáhneme malé spotřeby mikrokontroleru.

3.9.1 Řízení a vyhodnocení přizpůsobení anténního tuneru

Řízení přizpůsobení je prozatím realizováno manuálně na vstupu vnějšího přerušení INT0. Obvod je přizpůsoben pro digitální ovládání přes asynchronní komunikace právě přes vstupní pin INT0.

Následný průběh ladění je již automatický. Kde se generuje napětí pro řízení varikapu a zajišťuje přepínání indukčností. Po každém kroku se měří přizpůsobení a procesor si zapamatuje pro který krok a indukčnost se dosáhlo nejlepšího přizpůsobení a tuto hodnotu následně nastaví.

3.9.2 Komunikace s obvodem AD9834

Komunikace s obvodem AD9834 probíhá za pomoví tří vodičů SCLK, FSYNC a SDATA. Na vodiči SDATA se posílají data, které zapisujeme do obvodu. Pin FSYNC povoluje komunikaci právě, když je v log. 0. Hodinový signál SCLK slouží k ukládání dat, právě při sestupné hraně. Znázorněná komunikace je na obrázku 3.40 [14].

Obrázek 3.40 Komunikace s DDS [14].

Obvod AD9834 obsahuje pět registrů. Jeden kontrolní pro nastavení obvodu. Dále dva frekvenční, které mohou pracovat jako jeden 28 Bitový nebo dva samostatné 14 bitové registry. Poslední dva registry jsou fázové.

Rozlišení jednotlivých registrů se provádí pomocí dvou nejvyšších bitů. Pro kontrolní registr je kombinace 00, pro první frekvenční registr FREQ0 je kombinace 01, pro druhý frekvenční registr FREQ1 je kombinace 10. Fázové registry mají rozlišovací kombinaci od ostatních registrů 11, kde pro samotné rozlišení fázových registrů se používá třetí nejvyšší bit. Tedy pro PHASE0 bude kombinace 110 a pro registr PHASE1 111. Na obrázku 3.41 je znázorněn kontrolní registr, kde bity DB15 a DB14 jsou dva rozlišovací bity [14].

DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
0	0	B28	HLB	FSEL	PSEL	PIN/SW	RESET	SLEEP1	SLEEP12	OPBITEN	SIGN/PIB	DIV2	0	MODE	0

Obrázek 3.41 Control registr [14].

Další funkce jednotlivých bytů jsou zapsány v tabulce 3.11.

Tabulka 3.11: Nastavení control registru [14].

bit	název	popis		
		Log. 1 - spojuje frekvenční registry na 28 bitové slovo		
	D 28	Log. 0 – frekvenční registry jsou rozděleny na dva nezávislé 14		
	D20			
		Log. 0 - pracuje se s FREG0		
		Log. 1 - pracuje se s FREG0		
DB12	HLB	Pokud je DB13 v Log 1, je tento bit ignorován		
		Definuje, ve kterém registru jsou data log. 0 PHASE0		
DB11	FSEL	Log. 1 PHASE1		
		Definuje, z kterého registru budou přidány data na výstup log. 0		
DB10	PSEL	PHASE0, Log. 1 PHASE1		

	÷	
		Umožňuje hardwarový nebo softwarový
DB9	PIN/SW	log. 1 je pro hardwarové řízení
DB8	RESET	Log 1 vynuluje veškeré vnitřní registry
DB7	SLEEP1	Log. 1 zablokuje vnitřní hodinový signál, využít pro úsporu energie
DB6		
	SLEEP12	Log. 1, zablokuje D/A převodník
		Log. 1, aktivuje vývod SIGN BIT
DB5	OPBITEN	Při log. 0 je vývod 17 ve stavu vysoké impedance
		Při log. 1 dojde k připojení vnitřního komparátoru k výstupu SIGN
		BIT, to lze využít k tvarování na obdélníkový signál
DB4	SIGN/PIB	Při 0 se vstup komparátoru připojí k MSB bitu
		Log. 1 přímo propojí MSB bitu na výstup SIGN BIT,
DB3	DIV2	v opačném případě je MSB bit dělen dvěma
DB2,		
DB0		Tyto bity nejsou nijak využity musí být trvale nastaveny v log. 0
		Tímto bitem zvolit tvar výstupního signálu
		0 - DAC generuje harmonický signál (paměť ROM)
DB1	MODE	1 - DAC generuje trojúhelníkový signál

V našem případě nevyužíváme rozšířené funkce obvodu, proto je z tabulky patrné, že nebudeme nastavovat žádné hodnoty. Tedy jen povolíme spojení obou frekvenčních registrů pro dosažení malého frekvenčního kroku 0,27 Hz. Tedy do kontrolního registru zapíšeme 0b001000000000000.

Následně do frekvenčních registrů zapisujeme hodnotu podle vzorce 3.39

registr =
$$f_{požadována} \frac{2^{28}}{f_{CLK}}$$
, (3.39)

Dále do fázových registrů zapisujeme hodnotu 0, protože je nepoužíváme, tety pro FHASE0 = 0b1100000000000 a FHASE1 = 0b111000000000000.

4 MĚŘENÍ CELKOVÝCH PARAMETRŮ PŘIJÍMAČE

Jako první celkové měření se ověřil rozsah napájecího napětí. Celý přijímač je schopen pracovat od napájení 2,9 V do 4 V, tato hodnota je omezena právě za použití oscilátoru 74,25 MHz pro obvod DDS, který má maximální hodnotu napájení právě 4 V.

Dále byla prověřena spotřeba celého přijímače, která vyšla 33,4 mA, při napájecím napětí 3,3 V. Také při měření spotřeby byl spuštěn A/D převod v mikroprocesoru ATmega 16. Celková spotřeba je 0,11 W.

Dále bylo ověřeno zesílení celého přijímače, které vyšlo G = 126,53 dB. U tohoto zesílení, ale není zahrnut útlum anténního tuneru, který se bude pohybovat okolo 3 dB.

Dále bylo provedeno měření selektivity přijímače v závislosti na změně vstupního signálu, které je na obrázku 3.42.

Obrázek 3.42 Selektivita přijímače.

Následně byl změřen dynamický rozsah, který vyšel 106,3 dB. Také se změřil odstup signál-šum SNR, který je 27,23 dB.

4.1.1 Simulace přijímače

V této podkapitole si celý přijímač nasimulujeme s měřenými hodnotami jednotlivých blogů v programu AppCAD od firmy Agilent a porovnáme s měřenými parametry. Výsledek simulace je na obrázku 3.43.

		Stage 1	Stage 2	Stage 3	Stage 4	Stag	e 5	Stage 6	Stage 7	Stage 8
Stage Data	Units									
Stage Name:		Anténní tuner	LNA	Pásmová propust	Směšovač	Krysta Pl	alová P	AGC	Pásmová propust	Demodulátor
Noise Figure	dB	2,97	1,7	2,48	1.	4	3,4	17	2,8	0
Gain	dB	-2,97	22,4	-2,48	2	3	-3,4	72	-2,8	18
Output IP3	dBm	100	16	: 100	:	3	100	18	100	100
dNF/dTemp	dB/*C	0	i (0		D	0	0	0	0
dG/dTemp	dB/*C	0) (0		D	0	0	0	0
Stage Analysis:		0) (0		0	0	0	0	
NF (Temp corr)	dB	2,97	1,70	2,48	14,0	D	3,40	17,00	2,80	0,00
Gain (Temp corr)	dB	-2,97	22,40	-2,48	23,0	0	-3,40	72,00	-2,80	18,00
Input Power	dBm	-80,00	-82,97	-60,57	-63,0	5	40,05	-43,45	28,55	25,75
Output Power	dBm	-82,97	-60,57	-63,05	-40,0	5	43,45	28,55	25,75	43,75
d NF/d NF	dB/dB	0,60	0,87	0,01	0,1	6	0,00	0,00	0,00	0,00
d NF/d Gain	dB/dB	-0,40	-0,13	-0,13	0,0	0	0,00	0,00	0,00	0,00
d IP3/d IP3	dBm/dBm	0,00	0,00	0,00	0,0	0	0,00	1,00	0,00	0,00
Enter System	Enter System Parameters: System Analysis:									
Input Pow	er	-80	dBm	Gain =	123,75	dB		Input IP3 :	= <u>-90,55</u>	dBm
Analysis T	emperature	25	°C	Noise Figure =	5,36	dB		Output IP3	= 33,20	dBm
Noise BW		1	MHz	Noise Temp =	706,87	°К		Input IM level :	-58,90	dBm
Ref Temperature		25	°C	SNR =	28,61	dB		Input IM level :	= 21,10	dBC
S/N (for sensitivity)		0	dB	MDS =	-108,61	dBm	0	utput IM levels	= 64,85	dBm
Noise Source (Ref)		290	*К	Sensitivity =	-108,61	dBm	0	utput IM level :	= 21,10	dBC
				Noise Floor =	-168,61	dBm/Hz		SFDR	= 12,04	dB

Obrázek 3.43 Simulace přijímače.

Ze simulace je vidět, že simulace částečně odpovídá s měřenými parametry. Největší rozdíl je u zesílení, kde je v simulaci zahrnut i útlum anténního tuneru. Jelikož má anténní tuner poměrně vysoký útlum, tak výrazně ovlivňuje celkové šumové číslo.

5 ZÁVĚR

Tato práce se zabývá návrhem satelitního přijímače s integrovaným anténním tunerem. Celý přijímač je navržen pro bateriové napájecí napětí 3,3 V. Práce je rozdělena tak, aby postupně popisovala všechny důležité bloky. U navrženého přijímače byly provedeny simulace jednotlivých bloků, pro ověření parametrů navržených bloků, u kterých byly také upraveny hodnoty součástek pro optimálnější parametry jednotlivých bloků, následně byly simulace ověřený měřením.

Anténní tuner je realizován L článkem, kde jsou zapotřebí vysoce jakostní indukčnosti pro dosažení malých ztrát. U vytvořených indukčností byl změřen činitel jakosti Q = 200, pro indukčnost 1,85 µH a pro 2,5 µH se dosáhlo činitele jakosti Q = 170. Měření přizpůsobení se provádí pomocí PSV metru, který je realizován pomocí směrové odbočnice a diodového detektoru.

Návrhu LNA se věnovala velká pozornost. Tento blok, který je na vstupu výrazně ovlivňuje výsledné šumové číslo a také potlačuje vliv šumových čísel následujících bloků. Výběr tranzistoru pro návrh LNA byl komplikovaný, pro malé množství tranzistorů s požadovanými vlastnostmi, následně byl zvolen tranzistor BF840. Výrobce tranzistoru BF840 uvádí model transistoru pro simulační program PSpice. Pro návrh byl tranzistor simulován a na základě simulace se vypočítali S-parametry tranzistoru. Bylo také realizováno stejné pro měření S-parametrů tranzistoru. Oba výsledky byly srovnány v grafu v podkapitole LNA. Dále bylo z naměřených hodnot v programu Anosft Designer provedeno přizpůsobení, které se následně ověřilo měřením.

V přijímači se s výhodou použil obvod AD607, který má malé napájecí napětí a nízkou spotřebu. Tento obvod také obsahuje integrovaný směšovač, řízený zesilovač a demodulátor. Výhodou integrovaného směšovače je malé vstupní napětí a řízené zesílení společně s AGC.

Další použitý obvod je AD9834. Tento odvod provádí diskrétní číslicovou syntézu. Je použit jako lokální oscilátor pro směšovač a referenční zdroj signálu pro PSV metr. Výhodou tohoto obvodu je malá spotřeba a malé napájecí napětí. Také výstupní frekvence je stálá a můžeme dosáhnout malého frekvenčního kroku. K tomuto obvodu potřebujeme řídící obvod. V přijímači je použit jako řídící obvod mikrokontroler ATmega16. Řídící obvod obsluhuje DDS syntezátor a také řídí nastavení přizpůsobení anténního tuneru. Pomocí řídícího obvodu se podařilo dosáhnout automatického přizpůsobení anténního tuneru, kde po konci přizpůsobení jsou výsledné hodnoty zapsány do paměti EEPROM, z které se dají vyčítat pro další zpracování.

Při návrhu přijímače jsme se především snažili dosáhnout co nejmenšího šumového čísla. Dle simulace přijímače provedené z naměřených hodnot u jednotlivých bloků, však vyšlo celkové šumové číslo 5,36 dB. Celkové šumové číslo je závislé nejvíce na útlumu anténního tuneru a LNA. V tomto případě se právě u anténního tuneru nepodařilo dosáhnout malého útlumu, a tím se výrazně zvyšuje šumové číslo. Pro snížení šumového číslo by tedy bylo zapotřebí dosáhnout lepších parametrů u tohoto bloku. Dále jsme při návrhu přijímače kladli důraz na dosažení malé spotřeby. Tato podmínka se podařila splnit a navržený přijímač pracuje se spotřebou 0,11 W, přičemž přijímač pracuje v rozmezí napájecího napětí 2,9 V - 4 V.

LITERATURA

- Urbanec, T., Vágner, P., Kasal, M. P-sat Transponder WEB Specification [online]. 2018
 [cit. 2018-12-2]. Dostupné z: http://www.urel.feec.vutbr.cz/ esl/files/Projects/PSAT/P%20sat%20transponder%20WE%20spec02.htm
- [2] PROKEŠ, Aleš. RÁDIOVÉ KOMUNIKAČNÍ SYSTÉMY [online]. Skripta. Brno: FEKT: VUT v Brně, 2013 [cit. 2017-12-04].
- [3] ŽALUD, Václav. Moderní radioelektronika. BEN, 2000.
- [4] SEHNAL, Jiří. *Hlavni parametry rádiových přijímačů* [online]. 2009 [cit. 2017-12-04].
- [5] PROKEŠ, Aleš. RÁDIOVÉ PŘIJÍMAČE A VYSÍLAČE [online]. Přednášky. Brno: FEKT: VUT v Brně, 2014 [cit. 2017-12-04].
- [6] FUKÁTKO, T., FUKÁTKO J., Teplo a chlazení v elektronice II. Praha: BEN technická literatura, 2006.
- [7] VÁGNER, Petr. Vysokofrekvenční technika [online]. Skripta. Brno: FEKT: VUT v Brně, 2013 [cit. 2017-12-04].
- [8] DOSTÁL, Tomáš. *Návrh analogových filtrů* [online]. Skripta. Brno: FEKT: VUT v Brně, 2007 [cit. 2017-12-04].
- [9] PAVLOVEC, Josef a ŠRAMAR, Jaroslav. Krystalové jednotky a oscilátory. *Amatérské Rádio* [online]. 1987 [cit. 2017-12-04]. Dostupné z: http://www.krystaly.cz/files/download/ Amaterske_radio_1987-02-Krystaly.pdf
- [10] BALANIS,C.A. Antenna theory: analysis and design. 3rd ed. Hoboken: Wiley-Interscience, 2005, xvii, 1117 s. ISBN 978-0-471-66782-7[cit. 2017-12-04].
- [11] W., Perry Wheless, Jr. Practical Estimation of Losses in Tee Network Antenna Tuning Units. *High Frequency Design*. Summit Technical Media, LLC, 2004 [cit. 2017-12-04].
- [12] RHEA, Randy. The Yin-Yang of Matching: Part 1-Bsic Matching Concepts. *High Frequency Design*. Summit Technical Media, 2006 [cit. 2017-12-04].
- [13] *SWR meter* [online]. 2017 [cit. 2017-12-04]. Dostupné z: https://en.wikipedia.org/wiki/SWR_meter
- [14] *AD9834: Datasheet* [online]. In: Analog Devices, 2014 [cit. 2017-12-04]. Dostupné z: http://www.analog.com/media/en/technical-documentation/data-sheets/AD9834.pdf
- [15] AD607: Datasheet [online]. In: Analog Devices, 2002 [cit. 2017-12-04]. Dostupné z: http://www.analog.com/media/en/technical-documentation/evaluationdocumentation/AD607.pdf
- [16] AS179: Datasheet [online]. In: . Skyworks, 2010 [cit. 2017-12-04]. Dostupné z: http://www.farnell.com/datasheets/1909043.pdf?_ga=2.144836660.1269905557.15123262 96-1327610118.1511722770
- [17] *BF840: Datasheet* [online]. In: . NXP Semiconductors, 2004 [cit. 2017-12-14]. Dostupné z: http://www.nxp.com/documents/data_sheet/BF840.pdf
- [18] BFS17A: Datasheet [online]. In: . NXP Semiconductors, 1995 [cit. 2017-12-14]. Dostupné z: http://www.farnell.com/datasheets/1499148.pdf

- [19] *BCX70: Datasheet* [online]. In: . NXP Semiconductors, 2004 [cit. 2017-12-14]. Dostupné z: http://www.nxp.com/documents/data_sheet/BCX70.pdf
- [20] *BCP68: Datasheet* [online]. In: . NXP Semiconductors, 2011 [cit. 2017-12-14]. Dostupné z: http://www.nxp.com/documents/data_sheet/BCP68_BC868_BC68PA.pdf
- [21] *BC817: Datasheet* [online]. In: . NXP Semiconductors, 2009 [cit. 2017-12-14]. Dostupné z: http://www.nxp.com/documents/data_sheet/BC817_BC817W_BC337.pdf
- [22] *BC550: Datasheet* [online]. In: . Fairchild Semiconductor, 2014 [cit. 2017-12-14]. Dostupné z: https://www.fairchildsemi.com/datasheets/BC/BC547.pdf
- [23] *BFR92: Datasheet* [online]. In: . NXP Semiconductors, 2009 [cit. 2017-12-14]. Dostupné z: http://www.nxp.com/documents/data_sheet/BFR92A_N.pdf
- [24] M. K. Stanford, Thermophysical Properties of 60-NITINOL for Mechanical Component Applications [online]. In: . NASA, 2012 [cit. 2017-12-14]. Dostupné z: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20130001731.pdf
- [25] C.M. Jackson, H.J. Wagner, R.J. Wasilewski, 55-NITINOL the alloy with a memory [online]. In: NASA, 1972 [cit. 2017-12-14]. Dostupné z: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19720022818.pdf
- [26] FT-37-67: *Datasheet* [online]. In: . Amidon, [cit. 2017-12-14]. Dostupné z:http://www.amidoncorp.com/ft-37-67/
- [27] KF 9.0-0.5/06: *Datasheet* [online]. In: . Krystaly, Hradec Králové, [cit. 2017-12-14]. Dostupné z: http://www.krystaly.cz/files/specification/filters/TSP_090-05-06.pdf

SEZNAM SYMBOLŮ, VELIČIN A ZKRATEK

Ι	Proud.
f	Frekvence.
f_m	Mezifrekvenční kmitočet.
f_S	Kmitočet sériové rezonance.
f_T	Tranzitní kmitočet.
f_P	Kmitočet paralelní rezonance.
f_Z	Zrcadlový kmitočet.
F	Šumové číslo.
G	Zesílení obvodu.
g_{21e}	Strmost tranzistoru.
h_{21}	Proudový zesilovací činitel.
L	Vložný útlum pasivního obvodu.
р	Dělicí poměr.
Q	Jakost.
U	Napětí.
Ζ	Impedance.
AGC	Amplifer gain kontrol, řízený zesilovač.
ASK	Amplitude Shift Keying, klíčování amplitudovým posunem.
DDS	Direct Didital Synthesis, přímá digitální syntéza
DMIN	Označení vstupu demodulátoru.
DP	Dolní propust
DPS	Deska plošného spoje.
DSB	Double Side Band, dvě postraní pásma.
ESR	Ekvivalentní sériový odpor.
FDIN	Označení vstupu oscilátoru.
FSK	Frequency Shift Keying, klíčování frekvenčním posuvem.
GREF	Označení výstupu řídícího napětí.
IF	Mezi frekvence.
IFHI	Označení výstupu zesilovače.

- IM Intermodulační produkty.
- IP3 Bod zahrazení intermodulačními produkty.
- LNA Low noise amplifier, nízkošumový zesilovač.
- LO Local oscillator,
- LOIP Označení vstupu směšovače pro referenční signál.
- LSB Lower side band, dolní postraní pásmo.
- MXOP Označení výstupu směšovače.
- NF Nízkofrekvenční signál.
- PER Piezoelektrický rezonátor.
- PP Pásmová propust.
- P_{1dB} Bod jednodecibelové komprese.
- RFHI Označení vstupu směšovače pro vstupní signál.
- PSV Poměr stojatých vln
- SFDR Spurious Free Dynamic Range, dynamický rozsah bez intermodulačního zkreslení.
- SINAD Signal noise and distortion ratio, odstup signálu od šumu a zkreslení.
- SMD Surface mount device, součástky pro povrchovou montáž.
- SNR Signal noise ratio, odstup signál-šum.
- SSB Single side band, jedno postranní pásmo.
- SWR standing wave ratio, poměr stojatých vln
- USB Upper side band, horní postranní pásmo.
- VF Vysokofrekvenční signál.
- VQFO Variable Quadrature Frequency Oscillator, proměnný kvadraturní oscilátor

A NÁVRH ZAŘÍZENÍ

A.1 Obvodové zapojení tuneru

A.3 Obvodové zapojení řídicího modulu a oscilátorů

A.4 Deska plošného spoje řídícího modulu – top (strana součástek)

Rozměr desky 100 x 68 [mm], měřítko M1:1

A.5 Deska plošného spoje řídícího modulu – bottom (strana spojů)

Rozměr desky 100 x 68 [mm], měřítko M1:1

A.6 Osazovací plán strana bottom (spojů)

A.7 Osazovací plán strana top (součástek)

B SEZNAM SOUČÁSTEK

Označení	Hodnota	Pouzdro	Popis
C1	82pF	0805	Keramický kondenzátor
C2	220pF	0805	Keramický kondenzátor
C3	560pF	0805	Keramický kondenzátor
C4	22nF	0805	Keramický kondenzátor
C5	560pF	0805	Keramický kondenzátor
C6	47nF	0805	Keramický kondenzátor
C7	1nF	0805	Keramický kondenzátor
C8	100nF	0805	Keramický kondenzátor
C9	10nF	0805	Keramický kondenzátor
C10	100nF	0805	Keramický kondenzátor
C11	100nF	0805	Keramický kondenzátor
C12	15nF	0805	Keramický kondenzátor
C13	39pF	0805	Keramický kondenzátor
C14	39pF	0805	Keramický kondenzátor
C15	56nF	0805	Keramický kondenzátor
C16	82pF	0805	Keramický kondenzátor
C17	82pF	0805	Keramický kondenzátor
C18	100nF	0805	Keramický kondenzátor
C19	420pF	0805	Keramický kondenzátor
C20	150pF	0805	Keramický kondenzátor
C21	420pF	0805	Keramický kondenzátor
C22	100nF	0805	Keramický kondenzátor
C23	10uF	0805	Keramický kondenzátor
C24	220nF	0805	Keramický kondenzátor
C25	22nF	0805	Keramický kondenzátor
C26	4-25pF	TZB4_TYP_A	Kapacitní Trimr
C27	4-25pF	TZB4_TYP_A	Kapacitní Trimr
C28	68p	0805	Keramický kondenzátor
C29	820pF	0805	Keramický kondenzátor
C30	330p	0805	Keramický kondenzátor
C31	56nF	0805	Keramický kondenzátor
C32	47pF	0805	Keramický kondenzátor
C33	4-25pF	TZB4_TYP_A	Kapacitní Trimr
C34	68p	0805	Keramický kondenzátor
C35	15nF	0805	Keramický kondenzátor
C36	15nF	0805	Keramický kondenzátor
C37	10nF	0805	Keramický kondenzátor
C38	15nF	0805	Keramický kondenzátor

C39 100nF 0805 Keramický kondenzátor C40 15nF 0805 Keramický kondenzátor C41 15nF 0805 Keramický kondenzátor C42 56nF 0805 Keramický kondenzátor C43 56nF 0805 Keramický kondenzátor C44 15nF 0805 Keramický kondenzátor C45 100nF 0805 Keramický kondenzátor C46 56nF 0805 Keramický kondenzátor C47 56nF 0805 Keramický kondenzátor C48 56nF 0805 Keramický kondenzátor C50 4-25pF TZB4_TYP_A Kapacitní Trimr C51 30pF 0805 Keramický kondenzátor C52 100nF 0805 Keramický kondenzátor C53 10nF 0805 Keramický kondenzátor C55 100nF 0805 Keramický kondenzátor C55 100nF 0805 Keramický kondenzátor C55 100nF 0805				-
C40 15nF 0805 Keramický kondenzátor C41 15nF 0805 Keramický kondenzátor C42 56nF 0805 Keramický kondenzátor C43 56nF 0805 Keramický kondenzátor C44 15nF 0805 Keramický kondenzátor C45 100nF 0805 Keramický kondenzátor C44 56nF 0805 Keramický kondenzátor C44 56nF 0805 Keramický kondenzátor C44 56nF 0805 Keramický kondenzátor C49 56nF 0805 Keramický kondenzátor C50 4-25pF TZB4_TYP_A Kapacitní Trimr C51 30pF 0805 Keramický kondenzátor C52 100nF 0805 Keramický kondenzátor C53 10nF 0805 Keramický kondenzátor C54 100nF 0805 Keramický kondenzátor C55 100nF 0805 Keramický kondenzátor C58 100nF 0805<	C39	100nF	0805	Keramický kondenzátor
C41 15nF 0805 Keramický kondenzátor C42 56nF 0805 Keramický kondenzátor C43 56nF 0805 Keramický kondenzátor C44 15nF 0805 Keramický kondenzátor C45 100nF 0805 Keramický kondenzátor C46 56nF 0805 Keramický kondenzátor C48 56nF 0805 Keramický kondenzátor C49 56nF 0805 Keramický kondenzátor C50 4.25pF TZB4_TYP_A Kapacitní Timr C51 30pF 0805 Keramický kondenzátor C52 100nF 0805 Keramický kondenzátor C53 10nF 0805 Keramický kondenzátor C54 100nF 0805 Keramický kondenzátor C57 100nF 0805 Keramický kondenzátor C58 100nF 0805 Keramický kondenzátor C59 100nF 0805 Keramický kondenzátor C60 100nF 0805	C40	15nF	0805	Keramický kondenzátor
C4256nF0805Keramický kondenzátorC4356nF0805Keramický kondenzátorC4415nF0805Keramický kondenzátorC45100nF0805Keramický kondenzátorC4656nF0805Keramický kondenzátorC4756nF0805Keramický kondenzátorC4856nF0805Keramický kondenzátorC504-25pFTZB4_TYP_AKapacitní TrimrC5130pF0805Keramický kondenzátorC52100nF0805Keramický kondenzátorC5310nF0805Keramický kondenzátorC54100nF0805Keramický kondenzátorC55100nF0805Keramický kondenzátorC56100nF0805Keramický kondenzátorC57100nF0805Keramický kondenzátorC58100nF0805Keramický kondenzátorC59100nF0805Keramický kondenzátorC60100nF0805Keramický kondenzátorC61100nF0805Keramický kondenzátorC6315pF0805Keramický kondenzátorC6440pF0805Keramický kondenzátorC658,2nF0805Keramický kondenzátorC6644pF0805Keramický kondenzátorC6644pF0805Keramický kondenzátorC6644pF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC724	C41	15nF	0805	Keramický kondenzátor
C43 56nF 0805 Keramický kondenzátor C44 15nF 0805 Keramický kondenzátor C45 100nF 0805 Keramický kondenzátor C46 56nF 0805 Keramický kondenzátor C47 56nF 0805 Keramický kondenzátor C48 56nF 0805 Keramický kondenzátor C49 56nF 0805 Keramický kondenzátor C50 4-25pF TZB4_TYP_A Kapacitní Trimr C51 30pF 0805 Keramický kondenzátor C52 100nF 0805 Keramický kondenzátor C53 10nF 0805 Keramický kondenzátor C54 100nF 0805 Keramický kondenzátor C55 100nF 0805 Keramický kondenzátor C58 100nF 0805 Keramický kondenzátor C58 100nF 0805 Keramický kondenzátor C60 100nF 0805 Keramický kondenzátor C63 15pF 080	C42	56nF	0805	Keramický kondenzátor
C44 15nF 0805 Keramický kondenzátor C45 100nF 0805 Keramický kondenzátor C46 56nF 0805 Keramický kondenzátor C47 56nF 0805 Keramický kondenzátor C48 56nF 0805 Keramický kondenzátor C49 56nF 0805 Keramický kondenzátor C50 4-25pF TZB4_TYP_A Kapacitní Trimr C51 30pF 0805 Keramický kondenzátor C52 100nF 0805 Keramický kondenzátor C53 10nF 0805 Keramický kondenzátor C55 100nF 0805 Keramický kondenzátor C55 100nF 0805 Keramický kondenzátor C58 100nF 0805 Keramický kondenzátor C59 100nF 0805 Keramický kondenzátor C61 100nF 0805 Keramický kondenzátor C61 100nF 0805 Keramický kondenzátor C64 100nF 0	C43	56nF	0805	Keramický kondenzátor
C45100nF0805Keramický kondenzátorC4656nF0805Keramický kondenzátorC4756nF0805Keramický kondenzátorC4856nF0805Keramický kondenzátorC4956nF0805Keramický kondenzátorC504-25pFTZB4_TYP_AKapacitní TrimrC5130pF0805Keramický kondenzátorC52100nF0805Keramický kondenzátorC5310nF0805Keramický kondenzátorC54100nF0805Keramický kondenzátorC55100nF0805Keramický kondenzátorC56100nF0805Keramický kondenzátorC57100nF0805Keramický kondenzátorC58100nF0805Keramický kondenzátorC59100nF0805Keramický kondenzátorC60100nF0805Keramický kondenzátorC61100nF0805Keramický kondenzátorC6315pF0805Keramický kondenzátorC64100nF0805Keramický kondenzátorC658,2nF0805Keramický kondenzátorC6644pF0805Keramický kondenzátorC708,2nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC724-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC72 <td>C44</td> <td>15nF</td> <td>0805</td> <td>Keramický kondenzátor</td>	C44	15nF	0805	Keramický kondenzátor
C4656nF0805Keramický kondenzátorC4756nF0805Keramický kondenzátorC4856nF0805Keramický kondenzátorC4956nF0805Keramický kondenzátorC504-25pFTZB4_TYP_AKapacitní TrimrC5130pF0805Keramický kondenzátorC52100nF0805Keramický kondenzátorC5310nF0805Keramický kondenzátorC54100nF0805Keramický kondenzátorC55100nF0805Keramický kondenzátorC56100nF0805Keramický kondenzátorC57100nF0805Keramický kondenzátorC58100nF0805Keramický kondenzátorC59100nF0805Keramický kondenzátorC60100nF0805Keramický kondenzátorC61100nF0805Keramický kondenzátorC6215pF0805Keramický kondenzátorC6315pF0805Keramický kondenzátorC64100nF0805Keramický kondenzátorC658,2nF0805Keramický kondenzátorC6644pF0805Keramický kondenzátorC708,2nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC724-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC72	C45	100nF	0805	Keramický kondenzátor
C47 56nF 0805 Keramický kondenzátor C48 56nF 0805 Keramický kondenzátor C49 56nF 0805 Keramický kondenzátor C50 4-25pF TZB4_TYP_A Kapacitní Trimr C51 30pF 0805 Keramický kondenzátor C52 100nF 0805 Keramický kondenzátor C53 10nF 0805 Keramický kondenzátor C54 100nF 0805 Keramický kondenzátor C55 100nF 0805 Keramický kondenzátor C56 100nF 0805 Keramický kondenzátor C57 100nF 0805 Keramický kondenzátor C58 100nF 0805 Keramický kondenzátor C60 100nF 0805 Keramický kondenzátor C61 100nF 0805 Keramický kondenzátor C62 15pF 0805 Keramický kondenzátor C64 100nF 0805 Keramický kondenzátor C66 44pF 0	C46	56nF	0805	Keramický kondenzátor
C4856nF0805Keramický kondenzátorC4956nF0805Keramický kondenzátorC50 4.25 pFTZB4_TYP_AKapacitní TrimrC5130 pF0805Keramický kondenzátorC52100 nF0805Keramický kondenzátorC5310 nF0805Keramický kondenzátorC54100 nF0805Keramický kondenzátorC55100 nF0805Keramický kondenzátorC56100 nF0805Keramický kondenzátorC57100 nF0805Keramický kondenzátorC58100 nF0805Keramický kondenzátorC59100 nF0805Keramický kondenzátorC60100 nF0805Keramický kondenzátorC61100 nF0805Keramický kondenzátorC6215 pF0805Keramický kondenzátorC6315 pF0805Keramický kondenzátorC64100 nF0805Keramický kondenzátorC6644 pF0805Keramický kondenzátorC6644 pF0805Keramický kondenzátorC708,2 nF0805Keramický kondenzátorC714-25 pFTZB4_TYP_AKapacitní TrimrC724-25 pFTZB4_TYP_AKapacitní TrimrC7322 pF0805Keramický kondenzátorC747 pF0805Keramický kondenzátorC758,2 nF0805Keramický kondenzátorC7647 nF0805Keramický kondenzátor </td <td>C47</td> <td>56nF</td> <td>0805</td> <td>Keramický kondenzátor</td>	C47	56nF	0805	Keramický kondenzátor
C49 $56nF$ 0805Keramický kondenzátorC50 $4-25pF$ TZB4_TYP_AKapacitni TrimrC51 $30pF$ 0805Keramický kondenzátorC52100nF0805Keramický kondenzátorC5310nF0805Keramický kondenzátorC54100nF0805Keramický kondenzátorC55100nF0805Keramický kondenzátorC56100nF0805Keramický kondenzátorC57100nF0805Keramický kondenzátorC58100nF0805Keramický kondenzátorC59100nF0805Keramický kondenzátorC60100nF0805Keramický kondenzátorC61100nF0805Keramický kondenzátorC6215pF0805Keramický kondenzátorC6315pF0805Keramický kondenzátorC64100nF0805Keramický kondenzátorC658,2nF0805Keramický kondenzátorC6644pF0805Keramický kondenzátorC6849pF0805Keramický kondenzátorC708,2nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitni TrimrC724-25pFTZB4_TYP_AKapacitni TrimrC7322pF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitni TrimrC724-25pFTZB4_TYP_AKapacitni Trimr <td< td=""><td>C48</td><td>56nF</td><td>0805</td><td>Keramický kondenzátor</td></td<>	C48	56nF	0805	Keramický kondenzátor
C50 $4-25pF$ TZB4_TYP_AKapacitni TrimrC51 $30pF$ 0805 Keramický kondenzátorC52 $100nF$ 0805 Keramický kondenzátorC53 $10nF$ 0805 Keramický kondenzátorC54 $100nF$ 0805 Keramický kondenzátorC55 $100nF$ 0805 Keramický kondenzátorC56 $100nF$ 0805 Keramický kondenzátorC57 $100nF$ 0805 Keramický kondenzátorC58 $100nF$ 0805 Keramický kondenzátorC59 $100nF$ 0805 Keramický kondenzátorC60 $100nF$ 0805 Keramický kondenzátorC61 $100nF$ 0805 Keramický kondenzátorC62 $15pF$ 0805 Keramický kondenzátorC63 $15pF$ 0805 Keramický kondenzátorC64 $100nF$ 0805 Keramický kondenzátorC65 $8,2nF$ 0805 Keramický kondenzátorC66 $44pF$ 0805 Keramický kondenzátorC68 $49pF$ 0805 Keramický kondenzátorC70 $8,2nF$ 0805 Keramický kondenzátorC71 $4-25pF$ $TZB4_TYP_A$ Kapacitní TrimrC72 $4-25pF$ $TZB4_TYP_A$ Kapacitní TrimrC73 $22pF$ 0805 Keramický kondenzátorC76 $47nF$ 0805 Keramický kondenzátorC76 $47nF$ 0805 Keramický kondenzátorC76 $8,2nF$ 0805 Keramický kondenzátor	C49	56nF	0805	Keramický kondenzátor
C51 $30 pF$ 0805 Keramický kondenzátorC52 $100 nF$ 0805 Keramický kondenzátorC53 $10 nF$ 0805 Keramický kondenzátorC54 $100 nF$ 0805 Keramický kondenzátorC55 $100 nF$ 0805 Keramický kondenzátorC56 $100 nF$ 0805 Keramický kondenzátorC57 $100 nF$ 0805 Keramický kondenzátorC58 $100 nF$ 0805 Keramický kondenzátorC59 $100 nF$ 0805 Keramický kondenzátorC60 $100 nF$ 0805 Keramický kondenzátorC61 $100 nF$ 0805 Keramický kondenzátorC62 $15 pF$ 0805 Keramický kondenzátorC63 $15 pF$ 0805 Keramický kondenzátorC64 $100 nF$ 0805 Keramický kondenzátorC65 $8, 2 nF$ 0805 Keramický kondenzátorC66 $44 pF$ 0805 Keramický kondenzátorC67 $60 pF$ 0805 Keramický kondenzátorC70 $8, 2 nF$ 0805 Keramický kondenzátorC71 $4-25 pF$ $TZB4_TYP_A$ Kapacitní TrimrC72 $4-25 pF$ $TZB4_TYP_A$ Kapacitní TrimrC73 $22 pF$ 0805 Keramický kondenzátorC74 $7 pF$ 0805 Keramický kondenzátorC76 $47 nF$ 0805 Keramický kondenzátorC76 $47 nF$ 0805 Keramický kondenzátorC76 $8, 2 nF$ 0805 <td< td=""><td>C50</td><td>4-25pF</td><td>TZB4_TYP_A</td><td>Kapacitní Trimr</td></td<>	C50	4-25pF	TZB4_TYP_A	Kapacitní Trimr
C52100nF0805Keramický kondenzátorC5310nF0805Keramický kondenzátorC54100nF0805Keramický kondenzátorC55100nF0805Keramický kondenzátorC56100nF0805Keramický kondenzátorC57100nF0805Keramický kondenzátorC58100nF0805Keramický kondenzátorC59100nF0805Keramický kondenzátorC60100nF0805Keramický kondenzátorC61100nF0805Keramický kondenzátorC6215pF0805Keramický kondenzátorC6315pF0805Keramický kondenzátorC64100nF0805Keramický kondenzátorC658,2nF0805Keramický kondenzátorC6644pF0805Keramický kondenzátorC6760pF0805Keramický kondenzátorC708,2nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC724-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC79 <t< td=""><td>C51</td><td>30pF</td><td>0805</td><td>Keramický kondenzátor</td></t<>	C51	30pF	0805	Keramický kondenzátor
C5310nF0805Keramický kondenzátorC54100nF0805Keramický kondenzátorC55100nF0805Keramický kondenzátorC56100nF0805Keramický kondenzátorC57100nF0805Keramický kondenzátorC58100nF0805Keramický kondenzátorC59100nF0805Keramický kondenzátorC60100nF0805Keramický kondenzátorC61100nF0805Keramický kondenzátorC6215pF0805Keramický kondenzátorC6315pF0805Keramický kondenzátorC64100nF0805Keramický kondenzátorC658,2nF0805Keramický kondenzátorC6644pF0805Keramický kondenzátorC6760pF0805Keramický kondenzátorC6849pF0805Keramický kondenzátorC708,2nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC724-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC79 <td< td=""><td>C52</td><td>100nF</td><td>0805</td><td>Keramický kondenzátor</td></td<>	C52	100nF	0805	Keramický kondenzátor
C54100nF0805Keramický kondenzátorC55100nF0805Keramický kondenzátorC56100nF0805Keramický kondenzátorC57100nF0805Keramický kondenzátorC58100nF0805Keramický kondenzátorC59100nF0805Keramický kondenzátorC60100nF0805Keramický kondenzátorC61100nF0805Keramický kondenzátorC6215pF0805Keramický kondenzátorC6315pF0805Keramický kondenzátorC64100nF0805Keramický kondenzátorC658,2nF0805Keramický kondenzátorC6644pF0805Keramický kondenzátorC6760pF0805Keramický kondenzátorC6849pF0805Keramický kondenzátorC708,2nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC791	C53	10nF	0805	Keramický kondenzátor
C55100nF0805Keramický kondenzátorC56100nF0805Keramický kondenzátorC57100nF0805Keramický kondenzátorC58100nF0805Keramický kondenzátorC59100nF0805Keramický kondenzátorC60100nF0805Keramický kondenzátorC61100nF0805Keramický kondenzátorC6215pF0805Keramický kondenzátorC6315pF0805Keramický kondenzátorC64100nF0805Keramický kondenzátorC658,2nF0805Keramický kondenzátorC6644pF0805Keramický kondenzátorC6760pF0805Keramický kondenzátorC6849pF0805Keramický kondenzátorC708,2nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC724-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC76<	C54	100nF	0805	Keramický kondenzátor
C56100nF0805Keramický kondenzátorC57100nF0805Keramický kondenzátorC58100nF0805Keramický kondenzátorC59100nF0805Keramický kondenzátorC60100nF0805Keramický kondenzátorC61100nF0805Keramický kondenzátorC6215pF0805Keramický kondenzátorC6315pF0805Keramický kondenzátorC64100nF0805Keramický kondenzátorC658,2nF0805Keramický kondenzátorC6644pF0805Keramický kondenzátorC6760pF0805Keramický kondenzátorC6849pF0805Keramický kondenzátorC708,2nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC724-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC781	C55	100nF	0805	Keramický kondenzátor
C57100nF0805Keramický kondenzátorC58100nF0805Keramický kondenzátorC59100nF0805Keramický kondenzátorC60100nF0805Keramický kondenzátorC61100nF0805Keramický kondenzátorC6215pF0805Keramický kondenzátorC6315pF0805Keramický kondenzátorC64100nF0805Keramický kondenzátorC658,2nF0805Keramický kondenzátorC6644pF0805Keramický kondenzátorC6760pF0805Keramický kondenzátorC6849pF0805Keramický kondenzátorC698,2nF0805Keramický kondenzátorC708,2nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC724-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC791	C56	100nF	0805	Keramický kondenzátor
C58100nF0805Keramický kondenzátorC59100nF0805Keramický kondenzátorC60100nF0805Keramický kondenzátorC61100nF0805Keramický kondenzátorC6215pF0805Keramický kondenzátorC6315pF0805Keramický kondenzátorC64100nF0805Keramický kondenzátorC658,2nF0805Keramický kondenzátorC6644pF0805Keramický kondenzátorC6760pF0805Keramický kondenzátorC6849pF0805Keramický kondenzátorC698,2nF0805Keramický kondenzátorC708,2nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC724-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC7322pF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC7910u	C57	100nF	0805	Keramický kondenzátor
C59100nF0805Keramický kondenzátorC60100nF0805Keramický kondenzátorC61100nF0805Keramický kondenzátorC6215pF0805Keramický kondenzátorC6315pF0805Keramický kondenzátorC64100nF0805Keramický kondenzátorC658,2nF0805Keramický kondenzátorC6644pF0805Keramický kondenzátorC6760pF0805Keramický kondenzátorC6849pF0805Keramický kondenzátorC698,2nF0805Keramický kondenzátorC708,2nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC724-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC7910u	C58	100nF	0805	Keramický kondenzátor
C60100nF0805Keramický kondenzátorC61100nF0805Keramický kondenzátorC6215pF0805Keramický kondenzátorC6315pF0805Keramický kondenzátorC64100nF0805Keramický kondenzátorC658,2nF0805Keramický kondenzátorC6644pF0805Keramický kondenzátorC6760pF0805Keramický kondenzátorC6849pF0805Keramický kondenzátorC698,2nF0805Keramický kondenzátorC708,2nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC724-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC8215nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátor	C59	100nF	0805	Keramický kondenzátor
C61100nF0805Keramický kondenzátorC6215pF0805Keramický kondenzátorC6315pF0805Keramický kondenzátorC64100nF0805Keramický kondenzátorC658,2nF0805Keramický kondenzátorC6644pF0805Keramický kondenzátorC6760pF0805Keramický kondenzátorC6849pF0805Keramický kondenzátorC698,2nF0805Keramický kondenzátorC708,2nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC724-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC8215nF0805Keramický kondenzátorC84470nF	C60	100nF	0805	Keramický kondenzátor
C6215pF0805Keramický kondenzátorC6315pF0805Keramický kondenzátorC64100nF0805Keramický kondenzátorC658,2nF0805Keramický kondenzátorC6644pF0805Keramický kondenzátorC6760pF0805Keramický kondenzátorC6849pF0805Keramický kondenzátorC698,2nF0805Keramický kondenzátorC708,2nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC724-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC8215nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátorC84470nF<	C61	100nF	0805	Keramický kondenzátor
C6315pF0805Keramický kondenzátorC64100nF0805Keramický kondenzátorC658,2nF0805Keramický kondenzátorC6644pF0805Keramický kondenzátorC6760pF0805Keramický kondenzátorC6849pF0805Keramický kondenzátorC698,2nF0805Keramický kondenzátorC708,2nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC724-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC8215nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátorD1MBR0520LTG1SOD123Dioda	C62	15pF	0805	Keramický kondenzátor
C64100nF0805Keramický kondenzátorC658,2nF0805Keramický kondenzátorC6644pF0805Keramický kondenzátorC6760pF0805Keramický kondenzátorC6849pF0805Keramický kondenzátorC698,2nF0805Keramický kondenzátorC708,2nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC724-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC8215nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátorD1MBR0520LTG1SOD123Dioda	C63	15pF	0805	Keramický kondenzátor
C658,2nF0805Keramický kondenzátorC6644pF0805Keramický kondenzátorC6760pF0805Keramický kondenzátorC6849pF0805Keramický kondenzátorC698,2nF0805Keramický kondenzátorC708,2nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC724-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC8215nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátorD1MBR0520LTG1SOD123Dioda	C64	100nF	0805	Keramický kondenzátor
C6644pF0805Keramický kondenzátorC6760pF0805Keramický kondenzátorC6849pF0805Keramický kondenzátorC698,2nF0805Keramický kondenzátorC708,2nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC724-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC8215nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátorD1MBR0520LTG1SOD123Dioda	C65	8,2nF	0805	Keramický kondenzátor
C6760pF0805Keramický kondenzátorC6849pF0805Keramický kondenzátorC698,2nF0805Keramický kondenzátorC708,2nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC724-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC8215nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátorD1MBR0520LTG1SOD123Dioda	C66	44pF	0805	Keramický kondenzátor
C6849pF0805Keramický kondenzátorC698,2nF0805Keramický kondenzátorC708,2nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC724-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC8215nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátorD1MBR0520LTG1SOD123Dioda	C67	60pF	0805	Keramický kondenzátor
C698,2nF0805Keramický kondenzátorC708,2nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC724-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC8215nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátorD1MBR0520LTG1SOD123Dioda	C68	49pF	0805	Keramický kondenzátor
C708,2nF0805Keramický kondenzátorC714-25pFTZB4_TYP_AKapacitní TrimrC724-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC8215nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátorD1MBR0520LTG1SOD123Dioda	C69	8,2nF	0805	Keramický kondenzátor
C714-25pFTZB4_TYP_AKapacitní TrimrC724-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC8215nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátorD1MBR0520LTG1SOD123Dioda	C70	8,2nF	0805	Keramický kondenzátor
C724-25pFTZB4_TYP_AKapacitní TrimrC7322pF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC8215nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátorD1MBR0520LTG1SOD123Dioda	C71	4-25pF	TZB4_TYP_A	Kapacitní Trimr
C7322pF0805Keramický kondenzátorC747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC8215nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátorD1MBR0520LTG1SOD123Dioda	C72	4-25pF	TZB4_TYP_A	Kapacitní Trimr
C747pF0805Keramický kondenzátorC758,2nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC8215nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátorD1MBR0520LTG1SOD123Dioda	C73	22pF	0805	Keramický kondenzátor
C758,2nF0805Keramický kondenzátorC7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC8215nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátorD1MBR0520LTG1SOD123Dioda	C74	7pF	0805	Keramický kondenzátor
C7647nF0805Keramický kondenzátorC7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC8215nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátorD1MBR0520LTG1SOD123Dioda	C75	8,2nF	0805	Keramický kondenzátor
C7729pF0805Keramický kondenzátorC78100nF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC8215nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátorD1MBR0520LTG1SOD123Dioda	C76	47nF	0805	Keramický kondenzátor
C78100nF0805Keramický kondenzátorC7910uF0805Keramický kondenzátorC8215nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátorD1MBR0520LTG1SOD123Dioda	C77	29pF	0805	Keramický kondenzátor
C7910uF0805Keramický kondenzátorC8215nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátorD1MBR0520LTG1SOD123Dioda	C78	100nF	0805	Keramický kondenzátor
C8215nF0805Keramický kondenzátorC84470nF0805Keramický kondenzátorD1MBR0520LTG1SOD123Dioda	C79	10uF	0805	Keramický kondenzátor
C84470nF0805Keramický kondenzátorD1MBR0520LTG1SOD123Dioda	C82	15nF	0805	Keramický kondenzátor
D1 MBR0520LTG1 SOD123 Dioda	C84	470nF	0805	Keramický kondenzátor
	D1	MBR0520LTG1	SOD123	Dioda

D2	BB201,135	SOD523	Varikap		
D3	MBR0520LTG1	SOD123	Dioda		
IC1	MEGA16-A	TQFP44	Mikrokontroler		
IO	AS179	SOT23-6	RF přepínač		
IO1	AD607AD	SSOP20	Integrovaný obvod		
IO2	MCP602	SO08	Operační zesilovač		
IO3	MCP602	SO08	Operační zesilovač		
ISP1	AVR_ISP_90°	MLW06A	Konektor		
JUM1	out	S1G2_JUM	Konektor		
JUMP1	JUMP3	JMP3	Konektor		
JUMP2	JUMP3	JMP3	Konektor		
JUMP3	JUMP3	JMP3	Konektor		
JUMP4	JUMP3	JMP3	Konektor		
JUMP5	JUMP3	JMP3	Konektor		
JUMP6	JUMP3	JMP3	Konektor		
K2	ARK500/2	ARK500/2	Konektor		
L1	150nH	0805	Indukčnost		
L2	680nH	0805	Indukčnost		
L3	420nH	ED6	Indukčnost		
L4	1uH	0805	Indukčnost		
L5	1uH	0805	Indukčnost		
L6	8,2uH	0805	Indukčnost		
L7	3,9uH	0805	Indukčnost		
L8	560nH	0805	Indukčnost		
L9	560nH	0805	Indukčnost		
L10	2,7uH	SMT43	Indukčnost		
L12	1,85uH	ED10MM	Indukčnost		
L13	2,5uH	ED10MM	Indukčnost		
L14	8,2uH	TVS1210	Indukčnost		
L15	10uH	TVS1210	Indukčnost		
L16	10uH	TVS1210	Indukčnost		
L17	500nH	0805	Indukčnost		
L18	760nH	0805	Indukčnost		
L19	1uH	0805	Indukčnost		
01	TCD-18-4	DB714	Směrová odbočnice		
P1	470K	PT10H	Potenciometr		
Q1	4MHz	HC49UH	Krystal		
Q2	9MHz	HC49UH	Krystal		
QF3	9MHz	HC49U-H@1	Krystalový filtr		
QF4	9MHz	HC49U-H@1	Krystalový filtr		
QG1	74,25	SM77H	Oscilátor		
R1	91k	0805	Rezistor		
R2	100k	0805	Rezistor		
R3	1k3	0805	Rezistor		

R4	51k	0805	Rezistor
R5	51k	0805	Rezistor
R6	1k	0805	Rezistor
R7	500	0805	Rezistor
R8	49	0805	Rezistor
R9	620	0805	Rezistor
R10	16k	0805	Rezistor
R11	16k	0805	Rezistor
R12	5k6	0805	Rezistor
R13	620	0805	Rezistor
R14	6k8	0805	Rezistor
R15	200	0805	Rezistor
R16	200	0805	Rezistor
R17	20k	0805	Rezistor
R18	1K8	0805	Rezistor
R19	200	0805	Rezistor
R20	56k	0805	Rezistor
R21	120	0805	Rezistor
R22	10k	0805	Rezistor
R23	910	0805	Rezistor
R24	150	0805	Rezistor
R25	49	0805	Rezistor
R26	99k	0805	Rezistor
R27	1k	0805	Rezistor
R28	10k	0805	Rezistor
R29	20	0805	Rezistor
R30	0/910	0805	Rezistor
R31	10k	0805	Rezistor
T1	BF840	SOT-23	Bipolární tranzistor
T2	BFR92	SOT-23	Bipolární tranzistor
U1	AD9834	TSSOP20	DDS syntezátor
X1	BU-SMA-G	BU-SMA-G	SMA Konektor
X2	BU-SMA-G	BU-SMA-G	SMA Konektor
X3	BU-SMA-G	BU-SMA-G	SMA Konektor
X4	BU-SMA-G	BU-SMA-G	SMA Konektor
X5	BU-SMA-G	BU-SMA-G	SMA Konektor
X6	BU-SMA-V	BU-SMA-V	SMA Konektor
X7	BU-SMA-G	BU-SMA-G	SMA Konektor
X8	BU-SMA-G	BU-SMA-G	SMA Konektor
X9	BU-SMA-G	BU-SMA-G	SMA Konektor
X10	BU-SMA-V	BU-SMA-V	SMA Konektor

C FOTODOKUMENTACE

C.1 Realizovaná deska pro měření S-parametrů tranzistoru BF840

C.2 Realizovaná deska přijímače strana TOP

C.3 Realizovaná deska přijímače strana BOTTOM

D PROGRAMOVÁ ČÁST

D.1 Kód pro řízení přizpůsobení

```
for(i = 0; i < 255; i++)</pre>
{
       OCR0 = i;
       PORTD &= ~(1<<PC6);</pre>
       PORTD |= (1 << PC7);</pre>
       _delay_ms(1);
       ADCSRA |= 0b0100000;
                                     // spuštění A/D převodu
       _delay_ms(800);
       if (analog_value_new < analog_value)</pre>
       {
               kapacita = i;
               indukcnost = 0;
       }
       PORTD &= ~(1<<PC7);</pre>
       PORTD |= (1 << PC6);</pre>
       _delay_ms(1);
       ADCSRA |= 0b0100000;
                                      // spuštění A/D převodu
       _delay_ms(800);
       if (analog_value_new < analog_value)</pre>
       {
               capacita = i;
               indukcnost = 1;
       }
EEPROM write(0,kapacita);
EEPROM_write(1,indukcnost);
OCR0 = kapacita;
if (indukcnost == 1)
{
       PORTD &= ~(1<<PC7);</pre>
       PORTD |= (1 << PC6);</pre>
}
else
{
       PORTD &= ~(1<<PC6);</pre>
       PORTD |= (1 << PC7);</pre>
}
```

D.2 Kód pro komunikaci s DDS

```
void dds_send_bit(unsigned long data)
{
       PORTC &= ~(1 << PC0);</pre>
       delay us(5);
       PORTC |= (1<<PC0);
                                                   //SCLK=1
       delay us(10);
       PORTC &= ~(1<<PC2);
                                                   //FSYNC=0
       for(i = 0; i < 16; i++)</pre>
       {
              if(data&0x8000)
                     PORTC |= (1 << PC1);
                                                  // SDATA high
              else
                     PORTC &= ~(1 << PC1);
              _deLay_us(3);
                                                   // SDATA low
              PORTC &= ~(1 << PC0);</pre>
              _deLay_us(3);
                                                   // SCLK low
              PORTC |= (1 << PC0);</pre>
                                                   // SCLK high
              data=data<<1;</pre>
              _deLay_us(1);
       }
       PORTC |= (1 << PC2);</pre>
                                                  // FSYNC high
       PORTC |= (1 << PC0);</pre>
       _delay_us(10);
}
int main(void)
{
       MCUCSR = (1<<JTD);</pre>
       MCUCSR = (1 < < JTD);
       DDRC = 0xFF;
                                                   // Set PORTc as Output
       PORTC = 0xFF;
       controlRegister = 0b00100000000000;
       dds send bit(controlRegister);
       phaseLSB = 0b11000000000000;
       phaseMSB = 0b11100000000000;
       frequency=28000000;
       frequency=frequency*3.615;
                                                   //Vynasobeno 2^28/fclk
       frequency=frequency<<2;</pre>
                                                   //Zarovnani MSB poloviny doprava
       freqLSB=frequency;
       freqMSB=frequency>>16;
                                                   //Zpetne zarovnani LSB poloviny
       freqLSB=freqLSB>>2;
       freqLSB=(freqLSB&0x7FFF)|0x4000;
                                                   //Volba FREQ0
       freqMSB=(freqMSB&0x7FFF)|0x4000;
       dds_send_bit(phaseMSB);
       dds_send_bit(phaseLSB);
       dds send bit(freqLSB);
       dds_send_bit(freqMSB);
```

}