
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

DATABASE SYSTEM FOR LABORATORY EQUIPMENT
TRACKING
DATABÁZOVÝ SYSTÉM PRE SLEDOVANIE LABORATÓRNYCH ZARIADENÍ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR DENIS HELIENEK
AUTOR PRÁCE

SUPERVISOR Ing. VLADIMÍR BARTÍK, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2019

Brno University of Technology
Faculty of Information Technology

Department of Information Systems (DIFS) Academic year 2018/2019

Bachelor's Thesis Specification
21463

Student:
Programme:
Title:

Helienek Denis
Information Technology
Database System for Laboratory Equipment Tracking

Category: Databases
Assignment:

1. Compare possible options and choose a database, which can run on a virtual server.
2. Analyze requirements for an information system for laboratory equipment tracking, consisting of a mobile

application with a QR code reader and a frontend/backend application on the virtual server for the
administration of the equipment, which will also create PDF files with calibration lists and generate QR
codes.

3. Design the structure of the database and applications mentioned in the 2nd item.
4. Implement the applications and test them on a suitable dataset.
5. Summarize achieved results and suggest possible extensions of the project.

Recommended literature:
• Ujbányai, M.: Programujeme pro Android. Grada Publishing, 2012, ISBN 978-80-247-3995-3.
• Naramore, E., Gemer, J. et al: PHP 6, MySQL, Apache: Vytváříme webové aplikace. Computer Press,

2009. ISBN: 978-8-0251-2767-4.
• Žára, O.: JavaScript - Programátorské techniky a webové technologie, Computer Press, 2015. ISBN:

978-80-251-4573-9
Requirements for the first semester:

• Items 1 to 3.
Detailed formal requirements can be found at http://www.fit.vutbr.cz/info/szz/
Supervisor: Bartík Vladimir, Ing., Ph.D.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2018
Submission deadline: May 15, 2019
Approval date: October 26, 2018

Bachelor's Thesis Specification/21463/2018/xhelie00 Strana 1 z 1

http://www.fit.vutbr.cz/info/szz/

Abstract
The goal of this thesis is service delivery of a database system for laboratory equipment
tracking for Porsche Engineering Services, s.r.o. The mentioned service has been deliv­
ered by the following service management framework guidelines with the focus on software
engineering aspects. The final product is an information system implemented in Django,
associated with the mobile application implemented in Swift programming language and
uses the MariaDB database. This system establishes better inventory management of the
laboratory and offers many possibilities for future extension. The entire service contributes
to time and costs savings for the company.

Abstrakt
Cieľom tejto práce je doručenie služby v podobe databázového systému pre sledovanie
laboratórnych zariadení pre Porsche Engineering Services, s.r.o. Uvedená služba bola
doručená nasledovaním usmernení frameworku manažmentu služieb so zameraním na as­
pekty softvérového inžinierstva. Finálnym produktom je informačný systém implemento­
vaný v Djangu s mobilnou aplikáciou implementovanou v Swifte a využíva databázu Mari­
aDB. Tento systém vytvára lepšiu správu zariadení laboratória a ponúka mnoho možností
pre rozšírenie. Celá služba prispieva k úsporám času a nákladov spoločnosti.

Keywords
service management, software engineering, web application, database system, ITIL, Django

Klíčová slova
manažment služieb, softvérové inžinierstvo, webová aplikácia, databázový systém, ITIL,
Django

Reference
H E L I E N E K , Denis. Database System for Laboratory Equipment Tracking. Brno, 2019.
Bachelor's thesis. Brno University of Technology, Faculty of Information Technology. Su­
pervisor Ing. Vladimir Bartik, Ph.D.

Rozšířený abstrakt
Cieľom tejto práce je doručenie IT služby, ktorej hlavným produktom je informačný sys­
tém s databázou pre sledovanie laboratórnych zariadení. Úlohou tejto služby je zlepšenie
správy samotných zariadení ako aj následne sprostredkovanie zozbieraných dát za účelom
ich ďalšieho využitia. Potreba pre tú to službu vznikla na základe požiadavkou vo firme
Porsche Engineering Services, s.r. o. v Prahe. Táto firma je známy automobilový výrobca,
ktorý investuje do rôznych odvetví vývoja a výskumu, a preto by malo takéto riešenie nepri­
amo viesť ku lepším ekonomickým výsledkom a celkovo k väčšej konkurencieschopnosti na
trhu. Mimo požadované vlastnosti ponúka systém taktiež nové možnosti jeho využitia či
ďalšieho rozšírenia. V prípade úspešného doručenia a zavedenia systému do prevádzky je
teda možné tento systém, respektíve celú doručovanú IT službu, rozšíriť na globálnu úroveň
spoločnosti. Toto rozšírenie by prinieslo ešte lepšie výsledky, keďže by bol systém využitý
vo viacerých pobočkách firmy po celom svete.

Riešenie tejto práce začína úvodom do problematiky manažmentu IT služieb, ktorej
cieľ je priblížiť populárnu sadu doporučení pri dodávaní IT služieb s názvom ITIL. Táto
sada doporučení - ITIL - je rozdelená do viacerých logických celkov a snaží sa zahrnúť
všetky dôležité aspekty manažmentu IT služieb od rôznych princípov až po samotný priebeh
vytvárania softvérového produktu. Keďže sa jedná len o sadu doporučení a rozličné orga­
nizácie po svete poskytujú rozličné IT služby, je v tejto kapitole vyzdvihnutých iba zopár
doporučení, najmä tie ktoré úzko súvisia s doručovaním služby pre vyššie spomínanú firmu.
Nasledovaním štruktúry ITIL-u sú na začiatku identifikované tri pre systém dôležité role
užívateľov , a to inžinieri pracujúci v laboratóriách, lídri laboratórií starajúci sa o zariadenia
a manažéri, ktorých hlavnou úlohou je manažovanie spomenutých zamestnancov. Každý
z týchto užívateľov má svoje požiadavky na systém, ktoré musia byť splnené. Ďalej sú
identifikované pravidlá firmy, ktoré musí doručenie služby spĺňať - bezpečnosť, branding
a neporušenie softvérových licencií. Vývoj softvéru je podľa ITIL-u rozdelený do týchto
štádií - analýza požiadavkou, architektúra a dizajn produktu, implementácia, testovanie a
zavedenie na firemný server. V neposlednej rade je prevedená biznisová a finančná analýza,
ktoré majú slúžiť ako základné potreby pre budúce rozšírenie služby.

Po problematike manažmentu IT služieb je práca zameraná na konkrétne štádiá soft­
vérového inžinierstva. Prvým je analýza požiadavkou, ktoré sú rozdelené do štyroch celkov.
Biznisové (obchodné) požiadavky boli získané od manažéra projektu a určujú aké má služba
príležitosti, ciele, závislosti, riziká a akú má víziu. Znalosti nadobudnuté analýzou týchto
požiadavkou nám dávajú lepšiu predstavu o produkte z perspektívy firmy a jej obchodných
cieľov. To je základný predpoklad pre úspešné zavedenie produktu. Ďalej sú analyzo­
vané požiadavky získané od budúcich užívateľov produktu. Vďaka ich podnetom môže byť
produkt lepšie uspokojovať ich potreby, a tým zabezpečiť bezproblémovú použiteľnosť in­
formačného systému. Užívateľské požiadavky sú znázornené pomocou diagramov použitia.
Na základe všetkých získaných podnetov sú vypracované funkcionálně a nefunkcionálne
požiadavky na systém. Tie popisujú čo systém musí robiť a taktiež aj ako dobre to musí
robiť.

Výstup analýzy je využitý pri vytváraní architektonických pohľadov na systém a prijí­
maní dizajnových rozhodnutí. Keďže architektúra je náročná disciplína a jej kvalitné spra­
covanie je nevyhnutné pre ďalší progres vývoja, je najprv potrebné uviesť jej problematiku,
vďaka ktorej lepšie dokážeme porozumieť všetkým zúčastněním stranám, ktoré potrebujú
architektonické pohľady. Tým pádom vieme presnejšie adresovať vytvorenú architektúru.
Z týchto dôvodov je načrtnutý pohľad na systém z najvyššej úrovne a komunikácia medzi
jednotlivými modulmi. Následne je na základe predošlej analýzy vypracovaný zjednodušený

dizajn databáze kde sa nachádzajú potrebné entity a vzťahy medzi nimi. Posledným krokom
je vybratie technológií pre celý systém a zdôvodnenie výberu databázy.

S vypracovanou architektúrou a prijatými dizajnovými rozhodnutiami je dalším krokom
implementácia samotného systému. Tá je logicky rozdelená na grafické rozhranie webovej
stránky, jej užívateľovi skrytú funkcionalitu a mobilnú aplikáciu spojenú so systémom.
V časti pojednávajúcej o grafickom rozhraní sú poskytnuté ďalšie pohľady na štruktúru,
dekompozíciu a špecifické ústrania webovej stránky. Podrobnejšie je rozpísané ako boli
využité zvolené technológie a ako sa prikladal dôraz na užívateľský zážitok. Za týmto
celkom nasleduje bližší popis a ďalšie pohľady na užívateľovi skrytú funkcionalitu webovej
stránky. V nej je taktiež rozpísané ako boli využité zvolené technológie a špecifické riešenia
ako autorizácia či nahrávanie súborov okrem iného. Popis mobilnej aplikácie sa zaoberá
najmä jej spracovaním videa a komunikáciou s webovou stránkou. Na záver tejto kapitoly
sú navrhnuté ďalšie možné funkcionality k implementácii, ktoré nebolo možné v čase vývoja
implementovat najmä kvôli interným firemným procesom či časovej náročnosti.

Posledné štádiá softvérového inžinierstva - testovanie a zavedenie systému - zabezpečujú
kvalitu služby a jej použitie. P r i testovaní bol dôraz najmä na užívateľské testovanie, ktoré
je rozdelené do dvoch sekcií. V prvej sa jednalo o testovanie produktu na pravidelných stret­
nutiach s užívateľmi kde mohli poskytnúť svoju spätnú väzbu ešte počas skorého vývoja. P r i
druhej vlne testovaní bol systém zavedený na firemný server, databáza naplnená testovacími
dátami, a tak mali užívatelia možnosť experimentovať so systémom zo svojich počítačov v
dlhšom časovom období. Vzniknuté problémy boli nahlásené a postupne vyladené. Taktiež
boli poskytnuté návrhy na akceptačné testovanie a úskalia zavádzania do ostrej prevádzky
systému.

Na záver je možné zhrnúť, že požadovaný systém bol riadne navrhnutý, implementovaný
a otestovaný pre jeho ďalšie použitie vo firme. Rovnako boli poskytnuté možné rozšírenia
tohto produktu pre zvýšenie jeho kvality, a tým aj efektívnosti, ktorú pre firmu prináša.
Pre jeho rozšírenie na globálnu úroveň spoločnosti - teda mimo Pražskú pobočku - je
doporučené hlbšie zameranie sa na poskytovanie IT služieb a to najmä z dôvodov nastavenia
stratégie, prevádzky a kontinuálneho zlepšovania služby tak ako bolo v tejto práci dôkladné
zameranie sa na aspekty softvérového inžinierstva služby.

Database System for Laboratory Equipment
Tracking

Declaration
Hereby I declare that this bachelor's thesis was prepared as an original author's work
under the supervision of Ing. Vladimir Bartik, Ph.D. The supplementary information was
provided by Ing. Tomas Haubert, Ph.D., team leader at Porsche Engineering Services,
s.r.o. A l l the relevant information sources, which were used during the preparation of this
thesis, are properly cited and included in the list of references.

Denis Helienek
May 15, 2019

Acknowledgements
Special thanks to Ing. Tomáš Haubert, Ph.D. for providing valuable support at Porsche
Engineering Services, s.r.o. and Ing. Vladimir Bartik, Ph.D. for supervision at Brno
University of Technology.

Contents

1 Introduction 3

2 Service management 4
2.1 Guiding principles 5
2.2 Governance 6
2.3 Service value chain 6
2.4 Continual improvement 7
2.5 Practices 7

3 Analysis of requirements 9
3.1 Business requirements 10
3.2 User requirements 12
3.3 Functional requirements 15
3.4 Non-functional requirements 16
3.5 The output of the analysis 17

4 Architecture and design decisions 18
4.1 Architecture insight 18
4.2 Top layer architecture 22
4.3 Database design 23
4.4 Selected technologies and database comparison 25
4.5 Architecture process checkpoint 27

5 Implementation 28
5.1 Website user interface 28
5.2 Website business logic 34
5.3 Mobile application 42
5.4 Extendability of implementation 43

6 Testing and deployment 45
6.1 Development testing 45
6.2 User testing 46
6.3 Deployment insight 47

6.4 Extendability of testing and deployment 48

7 Conclusion 49

Bibliography 50

1

A Content of the attached C D 51

B Selected Screenshots from the web application 52
B . l Landing page 52
B.2 Equipment management page 53
B.3 Equipment detail page 54
B.4 Management page 55

2

Chapter 1

Introduction

The purpose of this thesis was set by a description of the requirements of the company
Porsche Engineering Services, s.r.o located in Prague. This company is an automobile
manufacturer heavily investing in its research and development in order to stay competitive
against other manufacturers. This approach means any cost-cutting software or innovative
solutions are highly appreciated. That is the background of their demand for the database
system to track equipment in laboratories to improve internal organisation and workflow
of employees within the laboratories.

However, to deliver the mentioned software, it is needed to capsulate it into service.
Omitting this decision would lead to the lower overall quality of the system. Due to this
reason, this thesis focuses on service delivery in general apart from just the crucial software
development stages such as analysis, architecture views, design decisions, implementation,
testing or deployment.

Besides the requirements, an opportunity occurred for various features which could
also enhance the effectiveness and bring valuable benefits to the table. These ideas of
extendability could help the system to reach a global status throughout the company.
Gaining this status would lead to even better business results for the whole company in
total and of course for the particular branch in Prague.

Here is the list of chapters and their content for better navigation:

• Service management - insight into the service management discipline and why it
is relevant to deliver a successful project

• Analysis of requirements - description of different requirements for the product

• Architecture and design decision - insight into the architecture of the project
followed by design decisions

• Implemenatation - most important details of the implemented system

• Testing and deployment - the chapter describes what tests were performed and
how was the system deployed

• Conclusion

3

Chapter 2

Service management

Service management is a discipline designed to meet the needs of customers by creating value
for them. Organisations in the modern world benefit by IT-enabling those services that in
turn expand their IT service management (ITSM) capabilities. To guarantee that I T S M
hangs around in well-fashioned habits, produces and delivers successful services, many
organisations adopt established I T S M guidance frameworks. This chapter gives insight
into the currently most popular framework according to Forbes Insights survey [1] - ITIL.
Furthermore, it is logically divided into sections structured as the key components of the
newest ITIL v4 [2] called Service value system as shown in figure 2.1 and tries to explain
how these components are related to this project.

We should remember that the concept of ITIL gives a rundown of I T S M and provides
us with guidelines. Organisations and their services vary across the world, and therefore we
selected only the reasonable subcomponents of this framework for our purposes that aim
towards future extendability of the project.

Figure 2.1: The service value system. Taken from [2].

4

2.1 Guiding principles

The ITIL guiding principles help an organisation in all circumstances to embody ideas of
service management in general. These guidelines are also reflected in other philosophies
such as Agile or DevOps. Therefore, these approaches are compatible and easily applicable
in the ITIL v4 framework. ITIL v4 lists the following principles:

• Focus on value

• Start where you are

• Progress iteratively with feedback

• Collaborate and promote visibility

• Think and work holistically

• Keep it simple and practical

• Optimize and automate

Although all these principles are important to a certain degree, for our project, we have
picked only a few of them for a closer look. This selection was mainly based on consultations
with the company representatives.

F o c u s o n va lue

To create a valuable service for stakeholders, we have to know who is being served. The
same principle also appears in the software architecture process [3], which tells us how
to identify stakeholders for addressing architecture views in the form of diagrams, graphs
and other visual representations. This architecture process is later described in chapter 4.
Identified stakeholders involved in our service are:

• Engineers that work in laboratories

• Laboratory leaders in charge of keeping track of each lab equipment

• Managers that manage laboratory leaders

Once we identified the stakeholders, we need to understand their perspective of value by
recognising what service should help them to do and how should the service help them
achieve their goals. That's why we need to make an analysis of their requirements which
is described in chapter 3 and the design it as described in chapter 4. By fulfilling these
requirements, our service will bring an increased productivity, reduced costs and new op­
portunities.

P r o g r e s s i t e r a t i v e l y w i t h feedback

Due to the fact that no improvement occurs in a vacuum, gathering and applying feedback
ensures the effectiveness of software engineering processes as well as service value delivery.
Iterating over these activities returns better flexibility, faster response time to business
needs and raises the overall quality of work. Thus every described phase in this thesis is in
an iterative manner in collaboration with all the stakeholders.

5

2.2 Governance

One of the ITIL Foundation's [2] key messages to governance is that as every organisation
is directed by a governing body, it is crucial to make sure that organisation's practices work
in line with the direction given by the governing body. A governing body is accountable at
the highest level for performance and compliance in the organisation. That means service
delivery and software engineering processes in our case have to comply with policies set in
Porsche Engineering located in Prague. Below is the list of items which are most relevant
to our service:

• Branding

• Security

• Software License Compliance

It is mandatory to follow them and evaluate activities associated with them throughout
this thesis for easier future extendability of the service inside the company.

2.3 Service value chain

Service value chain is the central element of the Service value system already presented in
figure 2.1 and outlines the key activities to facilitate value realisation through the creation
of products and services. Up to some level, it is somehow similar to the well-known waterfall
model as described in [8] but in an iterative way. Service value chain is shown in figure 2.2.
It consists of six activities - Plan, Improve, Engage, Design and Transition, Obtain/Build,
Deliver and Support. As these guidelines are universal and different products need different
streams, we should select and adapt some of them for our purposes.

Figure 2.2: The service value chain. [2]

G

P l a n

The plan has to ensure a mutual understanding of the vision, and for that, we have to
gather and analyse the current laboratory workflow of our listed stakeholders and their
requirements.

I m p r o v e

The improve value chain activity ensures continual improvement, so we are obliged to pro­
cess product performance information and stakeholders' feedback gathered through testing.

D e s i g n a n d t r a n s i t i o n

The purpose of this activity guarantees that the product meets the expectations by pro­
ducing architecture views and design decisions and by presenting these views before
the actual implementation.

O b t a i n / B u i l d

This activity includes the implementation of service components. In our project, thi is
a database system encapsulating a web application, a mobile application and a database
connected to them.

D e l i v e r a n d s u p p o r t

The last activity we adopted is aimed towards the deployment of the system on the
allocated company virtual server.

2.4 Continual improvement

The continual improvement model covers the entire service value system to maximise the
effectiveness of services. ITIL provides a set of steps for this improvement model by defining
a business vision, mission, a set of goals, objectives, measurable targets and improvement
plans. However, as the formal usage of the continual improvement model would slow down
the delivery process of the expected system, it is simplified to a high-level reminder of a
sound thought process to ensure improvements are adequately managed. In consequence,
some continual improvement aspects might appear in service delivery. As the framework
itself suggests, critical judgement should always be applied when using this model [2].

2.5 Practices

Management practice is a set of organisational resources designed for performing work or
accomplishing an objective [2]. ITIL categorises them in three groups - general management
practices, service management practices and technical management practices. There are 34
practices in total making the management a core part of the framework. Not all of them
are applicable to every project. Therefore, we have chosen only two of them thourgh
collaboration with the company representatives. First practice - Business analysis - is
here to give us the first close view on the current Inventory management workflow in
the laboratories of Porsche Engineering with its location in Prague. The second practice is

7

named Service financial management and brings us basic insight into the financial resources
associated with the service. We consider that at least this basic overview is mandatory in
a business environment for further extendability and success of the project.

B u s i n e s s ana ly s i s

As we already mentioned, there are three stakeholders' groups - Engineers, Laboratory
leaders and Managers. Furthermore, we have another two elemental components. Labo­
ratory has its unique name with their respective laboratory leaders. In these laboratories,
we can find a significant amount of various Equipment used by engineers such as a laser,
multimeters or solder to name a few. A lot of these tools are rather sophisticated and
come with a variety of specifications which are needed to be tracked for business purposes.
They usually have their serial numbers, different kinds of documents belonging to them and
calibration standards.

Apart from the regular sharing of equipment between local colleagues inside one building
all the engineers from the whole company - not limited to Prague location of Porsche
Engineering only - may borrow any device or tool located in any other office around the
world while on business trips. This workflow in laboratories is prone to errors in many
cases. Firstly, it is not uncommon for employees to spend time searching for a device
which was borrowed and not returned. Secondly, keeping track of expiration periods of
all devices is decentralised and usually kept around the office in several computers and
documents. Lastly, the lack of adequate organisation at this layer does not produce any
additional information for improved planning. In conclusion, we identified three main
business opportunities that can be improved or reached by the system - time savings,
sophisticated inventory management and new extendability possibilities based on
gathered data.

S e r v i c e financial m a n a g e m e n t

Financial management for our project takes into account three main areas to support the
decision-making regarding the delivered system.

Expenses could be divided into direct and indirect expenses. Direct expenses count
with salaries of allocated people in service, where in our case that would be primarily de­
velopers and maintainers of the system. Furthermore, they include software and hardware
costs of the system such as servers or mobile devices. Indirect expenses take into considera­
tion operting expenses associated with the system. These could be replacements of broken
devices, software licenses and so on. For proper calculation of expenses, in general, it would
be needed to perform deep research of the system from a financial point of view which is
out of the scope of this thesis.

Revenues in our service are generated by the time savings of the engineers working in
the laboratories by using the system. For example, time saved by searching for equipment
through the system rather than using other slower methods. Same as the expenses, these
calculations would have to be done by more in-depth financial analysis.

Last area - Return on investments - could be done in the end after previous revenues
and expenses analysis. Its equation would look alike in formula 2.1.

return = investments/(revenues — expenses)

8

Chapter 3

Analysis of requirements

Once the service definition was set, there was an essential need to begin a more in-depth
analysis of the requirements in order to get more meaningful input for the future design
of the system. During the whole process of analysing it was essential to keep in mind
all the needs of all stakeholders and at the same time having the system cost efficient and
reasonable. Analysis of this thesis follows some of the basic principles from the book focused
on software requirements [9]. Therefore, the whole chapter contains all relevant aspects from
three distinct levels as shown on figure below 3.1 with additional nonfunctional requirements
to identify what does the system have to provide.

Software Requirements Specification

Figure 3.1: Relationships among requirements. [9]

9

3.1 Business requirements

Business requirements were raised by the manager responsible besides of other duties for
laboratory management. There was a lack of proper organisation in the equipment tracking,
so it was necessitated to write down issues accompanied with the product vision. Main
business issues are:

• decentralised document control

• loss of time spent on finding devices

• no additional data about workflow

Solving these issues should bring document organisation resulting in better control over
calibration expirations, more convenient access to manuals of devices, saving the time of
employees and further input for data processing. Furthermore, other business aspects that
are divided into subsections below provide more points of view for better understanding of
the service that is being delivered.

B u s i n e s s o p p o r t u n i t y

This project solves internal laboratory management problems and therefore it is very spe­
cific. Hiring external companies for making such a tailored solution would be more costly
and less effective because having an employee onboard to maintain this system ends up in
faster response time to future requests. Additionally, the system does not handle critical
data neither is critical for a business to run so having a solution from an external com­
pany to secure its running on level of agreement is not needed. Another solution would
be some open source programs which are usually made for general purposes and do not
include specific needs which would have to be implemented additionally. The system runs
on internal servers and devices resulting in full control and accessibility for troubleshooting
and innovation.

B u s i n e s s ob jec t ives

The main business nonfinancial measurable objectives:

• all data of devices inserted and migrated to the database

• all relevant documents stored on the server

• records of equipment usage

• accessability to all employees

B u s i n e s s r i sks

The main business risks which could appear:

• users acceptance of scanning Q R code every time before using each device

• cost of servers to run the system

• cost of devices used for scanning QR codes

10

V i s i o n s t a t emen t

A laboratory equipment tracking system is a complex information system which serves
mainly for two groups of stakeholders. Firstly, it is aimed at employees - engineers working
in laboratories - to save their time while finding equipment around the laboratories and
acting as a single point of easy access for reaching all documents related either to a par­
ticular device or laboratory. Secondly, it provides managers with usage overview of each
equipment and predicts the calibration expiration that results in more accurate planning
and scheduling. Unlike the current approach of working in laboratories, this system brings
future opportunities for new features such as statistics, reservation modules or any data
processing.

B u s i n e s s dependenc ie s

The main business dependencies are:

• server for web application and database

• device to record QR code in every laboratory

• both human and technical resources for developing and maintenance of the system

11

3.2 User requirements

User requirements were gathered by interviewing laboratory leaders who also act as regular
employees working in laboratories. This method was repeated iteratively several times until
it sharpened their requirements into an appropriate design. Users were also able to give
input about the design by interacting with the prototype of the application. Their needs
were validated with their manager, and use case diagrams express the main functionalities
of the system. Moreover, the diagrams below are divided by roles of users in the system.

A n user acting as a engineer working in a laboratory interacts mainly with the tablet
through the application to scan a Q R code placed on equipment in a laboratory and track
all requested details. Furthermore, by using the web interface, he can check whether the
equipment is borrowed and if so he can check who borrowed this equipment. In case
equipment has not been taken away by any coworkers - and he is still struggling to find it
- he may find where it should be placed. The system also provides him with insight into
documents and equipment details. Engineers cannot update any data through the website,
only indirectly by scanning Q R codes. This is illustrated on figure 3.2.

E n g i n e e r

A

o

Engineer

Figure 3.2: Simplified use case diagram of an engineer.

12

L a b o r a t o r y leader

On top of how an engineer is able to interact with the system, a laboratory leader can add
either new equipment into the database through the web interface of the system or update
existing ones in order to keep all equipment details current. This is illustrated on figure
3.3.

_ Q _

A
Engineer

+

Laboratory loader

Figure 3.3: Simplified use case diagram of a leader.

13

M a n a g e r

A manager has even more capabilities, including all which the laboratory leaders and engi­
neers have. In addition, he can promote engineers to leader roles inside the system and vice
versa - demoting their rights. He is also able to create new laboratories and upload new
documents to the documents section (not to be mistaken with documents of equipment)
such as laboratory rules. This is illustrated on figure 3.4.

_ Q _

A
Laboratory loader

+

Figure 3.4: Simplified use case diagram of a manager.

14

3.3 Functional requirements

These requirements define What the system does. The most important functional require­
ments are organised by into sections below:

G e n e r a l

• The system shall be developed with agreed technologies described in the next chapter
4.

• The system must satisfy business and user requirements.

W e b a p p l i c a t i o n

• The website application must have an authorisation system.

• The website application must provide equipment details and history for all users.

• The website application must provide a document section for all users.

• The website application must provide a list of all laboratories for all users.

• The website application must have a management module for managers and labora­
tory leaders with privileges according to use cases as shown on figures 3.3 and 3.4.

• The website application must provide all operations such as inserting, editing and
deleting data to meet all actions described in use case diagrams in management mod­
ule as shown on figures 3.3 and 3.4.

• The website application must generate QR codes for both users and equipment.

• The website application does not have to create P D F files with calibration lists as
they are already provided by suppliers and can be easily uploaded to the document
section of equipment that the web application must provide.

• The website application must provide an application interface for the mobile applica­
tion to ensure it can record all required operations to the database.

• The website application shall have a profile section to provide all users their user
details and QR codes.

M o b i l e a p p l i c a t i o n

• The mobile application must provide a user a log in ability by scanning his Q R code.

• The mobile application must provide a user the ability to borrow or return equipment
by scanning the QR code of equipment.

• The mobile application must run on iOS devices.

15

D a t a b a s e

• The database must contain all the required data about the equipment1.

• The database must support the authorisation of the web application.

• The database must contain all the required data for file storage.

• The database shall follow its Entity Relationship Diagram as described in the
next chapter.

• The database must keep all historical data associated with operations performed on
equipment.

• The database must be relational.

I n f r a s t r u c t u r e

• The system shall run on a Linux based operating system.

• The system shall be accessible within the internal network.

• The system must be able to store all the necessary documents.

3.4 Non-functional requirements

These requirements define How well the system does things below. The most important
non-functional requirements are organised by areas into sections below.

A v a i l a b i l i t y

• The web application shall be available on all common browsers such as Chrome,
Firefox, Explorer and Safari (both on computers and mobile devices).

• The mobile application must be available on all mobile devices in laboratories dedi­
cated to this project.

• Every laboratory shall be equipped with mobile devices to ensure access to the system.

• The mobile application shall be available to download from the company application
store.

• The system shall run uninterrupted except during planned downtimes for maintenance
operations.

I n t e g r i t y

• The database shall be designed in a manner in which it avoids data inaccuracy.

• The database shall have its data backed up.
1Mentioned data can be seen in the ERD in the next chapter.

16

S e c u r i t y

• The system shall have securely protected input fields.

• The system shall not have to keep any unnecessary data.

• The system shall follow company security policies.

• The system's most crucial components as server and database must be protected with
strong passwords.

U s a b i l i t y

• The mobile application should have an intuitive user interface.

• The website application should have an intuitive user interface.

• The system shall be regularly tested with users to improve overall user experience.

S c a l a b i l i t y

• The database shall be designed to allow for future grow.

• The web application shall be modular for better future scaling.

• The system shall be well documented for modifiability and reusability.

3.5 The output of the analysis

At the beginning of the analysis, we divided the requirements into four groups for further
review. Business requirements help us meet business goals and objectives. They are essen­
tial for the project to stay competitive in the market and extend project lifetime. Their
output shows us a bigger picture of the system with its objectives, opportunities, dependen­
cies and risks, as well as it sets product vision with the aim of successful delivery. Analysis
of user requirements is used for higher architecture quality, design decisions and to serve
development needs. It expresses roles in the system in a comprehensive approach via use
case diagrams for the first time. These diagrams predominantly support our understanding
of employees and their behaviour in the system. Functional and non-functional require­
ments guide us what the system must and should do, contain and provide. Their output
is essential for both architecture and implementation. They were also partly obtained by
interviews with stakeholders, but on top of that, some of them are here as a result of
technical and analytic decisions. The amount of their entities is ever-increasing and it is
almost impossible to capture all of them, and therefore only the list of the most important
is shown. Having all of these details and analytical outcomes allows us to start with the
architecture and design of the system.

17

Chapter 4

Architecture and design decisions

Since a significant part of the structure of this documentation attempts to follow the well-
known software process model [8] often used in software engineering up to some reasonable
level as shown in figure 4.1, after defining and analysing requirements in chapter 3, the
subsequent phase is to produce a design and architecture of the target system.

Figure 4.1: The waterfall model. [8]

4.1 Architecture insight

The process of crafting software architecture has an important role in the life cycle of
software products. If the results of this phase would be interpreted incorrectly, it could
consume future effort and time of all stakeholders involved. Hence, it is obligatory to
understand what should be the output of such an architecture document. Before starting
to apply methods such as layering, creating views or diagrams, it is inevitable to identify
stakeholders correlated with the software product, their needs and provide it to them. These

18

are the people who work with the architecture documents and to whom it should be helpful
firstly. As it soon turns out while creating such a document, architecture of a software
product is a complex entity which cannot be described by a single view, table or diagram.
Consequently, it comes naturally to use categorisation of views and so we have to shortly
define several terms before we start with writing down stakeholders of the project.

Views

Crafting architecture documentation consists of a package of design decisions that can be
divided into the following three categories. These categories - views - help us to address
specific information in documents more accurately to its audience. Each view has its styles
to present entities and characteristics of the system.

M o d u l e v i e w s

Modules are units of software with their attributes and relations. Views created over them
provide us with information about:

• structure of modules

• functional dependencies

• relations among modules

• relations among data entities

• modifiability and portability

A l l o c a t i o n v i e w s

These views represent the mapping between software elements and their environment which
brings a better understanding of:

• build and deploy procedures

• resource allocations

• security

• reliability

• availability

C o m p o n e n t - a n d - C o n n e c t o r v i e w s

Components communicate with other components through connectors. This interaction
through pathways brings us:

• the system runtime behaviour

• scalability

• functionality for the GUI through even-based styles

19

Stakeholders and their needs

Before addressing the views, it is essential to recognise all crucial stakeholders in the system
so we can address these views. Once they are defined, we can focus on their needs more
closely.

B u s i n e s s m a n a g e r

Responsible for the success of the project, the business manager needs to understand the
overall architecture of the application to meet business goals. His job duties are among
others surrounded by planning, scheduling, dealing with constraints and managing the
smooth progress of the project. Therefore his needs relate mainly to module and allocation
views that provide him information about deployment, decomposition, dependencies and
work assignments. The level of interest in details of views is shown in figure 4.2.

ModuleViews C&CViews Allocation Views

Figure 4.2: Needs of manager. [3]

S y s t e m a d m i n i s t r a t o r

Responsible for servers and software running on them. The system administrator is in­
volved in many aspects such as understanding what database goals must be met, what
software needs to be available for the system, network properties and overview of elements
of architecture. Hence he requires the module view to see decomposition and dependencies,
C & C views to see what runs on the infrastructure under his scope and allocation views for
deployment and installation purposes. The level of interest in details of views is shown in
figure 4.3.

ModuleViews C&C Views Allocation Views

Figure 4.3: Needs of admin. [3]

20

Developer

Responsible for developing the system, the developer requires all views to give him an
overview of what is required to fulfil job duties of users properly. These views provide
them blueprints to program, maintain, test and innovate the system. On top of that,
developers need to be able to follow procedures for deployment, installation and understand
the overview of the whole system. The level of interest in details of views is shown in figure
4.4.

Module Views C&C Views Allocation Views

Figure 4.4: Needs of developer. [3]

U s e r

Users - mainly employees working in laboratories - are in the role of reviewers and can check
whether their requirements were delivered. Therefore their main point of interest lays in
allocation views so they can see deployment processes to the platforms with which they
interact and C & C views to analyse results such as performance that can slow down their
workflow. The level of interest in details of views is shown in figure 4.5.

Module Views C&C Views Allocation Views

Figure 4.5: Needs of user. [3]

Se l ec t ed de s ign a n d a r c h i t e c t u r e v i e w s o f t he s y s t e m

Once we identified all the stakeholders involved in the process of making the system, their
individual needs of architecture and related documentation can be addressed in several
views.

21

4.2 Top layer architecture

The simplistic architecture of the system infrastructure displays the main components of
the system. As shown in figure 4.6, the website application and database system are being
placed on the same server. It is necessary to mention that borders of the system also
represent the same intranet (which means that the system is not reachable outside of this
network) therefore not reachable from a public network.

La bo rate ry eq u i p me nt tracki nq sy 5te m

Server

Database

Web app

Mobi le app

Figure 4.6: A simple architecture of the system infrastructure.

C o m m u n i c a t i o n b e t w e e n m o d u l e s

By evaluating the system infrastructure, we can notice there are two connections between
modules although not all of them are seen at first sight in figure 4.6. The first one is hidden
by packing web application and database into one shared module. This simplification
allows us to focus on the system from a broader perspective and it is not essential as
communication between database and web application is covered in the following chapters.
A secondary and more interesting connection is between the web server in general and the
mobile application. As they are not physically located at one location, communication
between them is through the interface of the web application which could be a source of
issues without proper care. The user has to be authorised before borrowing or returning
equipment, and that means the order of these operations has to be handled safely at the
web server side in order to avoid issues. Communication is illustrated in figure 4.7 with the
timeline on the left side which indicates that operations found on the higher position were
executed first.

22

Time

Mobile app

Authorisation

Web app
Insert
record

POST

DE

Figure 4.7: Communication between the mobile application and the web server.

4.3 Database design

Input for the process of designing a database came from requirements gathered in chap­
ter 3 which were consequently analysed and interpreted by the E R diagram as shown in
figure 4.8. This diagram was later on evaluated by all stakeholders and implemented. It
covers all reasonable aspects of the system for informational purposes and at the same time
preserves other additional elements hidden, such as framework-needed specific tables. This
simplification delivers clear documentation of the database for its readers.

M a i n entities

Equipment

This entity holds relevant information about equipment as requested by laboratory leaders.
It has to relate to a laboratory where it is stored. There are operations over this equipment
recorded in the borrowing record. This entity has other relationships for more sophisticated
attachment handling that are not covered by the E R diagram.

Laboratory

The laboratory consists of many types of equipment and has only one leader who is in
charge to take care of the laboratory.

Employee entity keeps basic personal information and has a role attribute which indicates
whether an employee is a leader. On top of the mentioned features employee is able to
borrow equipment by creating borrowing records. This entity has other relationships for
authorisation and informational purposes that are not covered by the E R diagram.

Employee

23

Borrowing record

This entity serves to an employee for borrowing and returning purposes of equipment.

E R D i a g r a m

Laboratory
PK Laboratory No. PK

FK Leader ID

Department'Area

0.. I

Is led by

Consists ot I .

Employee

PK ID

Ema 1

Name

Surname

Role

0 1 Creates

Equipment

PK Internal No.

FK Laboratory No.

Name

Description/Model

ID/SN

Position in lab

Attachment

Spe: tic at j i i Manua

Dale ol acquire

Last calibration

Nexl calibration

Days until calibration

1

Includes

3.. I

Borrowing record

PK ID

FK Fmpkwee ID

FK Equipment ID

Dale

Relurn flag

Figure 4.8: Simplified E R diagram.

24

4.4 Selected technologies and database comparison

The choice of technologies to adopt was rather open with some limitations set by the
company with an eye toward company policies and business rules. To a great degree, we
used mostly open source system technologies for a set of reasons such as:

• security

• lower costs of a new project

• popularity

Web application

Frontend

The graphical interface of the web application is assembled with popular Bootstrap library
comprised of H T M L , CSS and Javascript. It encompasses an extensive list of components
and uses a grid system for the purpose of delivering the responsive design of the final
product. Along with the stated features, it is accompanied with easy to read and use
documentation1. Brought up documentation comes in very handy and speeds up the entire
development and maintenance process. It is worth to note that minor features of the
graphical interface are shipped by Django framework even though Django is, for the most
part, the core of the backend.

Backend

The business logic of the application is crafted using Python as the programming lan­
guage. There is always a question and discussion about what programming language is
most suitable for any software project. There is never one best decision, so the decision
was made based on business objectives. These are concerned with the rapidly changing
environment, and therefore they have no choice but to respond to new opportunities and
challenges by faster development and deployment of the software [8]. Such an environment
is well suited for Python due to simple syntax, satisfactory scalability, prototyping and fast
development.

In an effort to comply with modern manners of web development and intensifying speed
of development after selecting the programming language it was reasonable to apply web
framework. Python offers a few choices to meet these needs. We picked Django for its
built-in admin logic, scalability, first-class documentation2 and popularity. Django offers
many packages that help to solve issues and speed up development. It is also shipped with
various security properties and operates well with databases.

The abovementioned benefit of Django operation with database liberates us from build­
ing raw SQL queries. Django provides us with a way to communicate with a database
through its models and by taking this into account we have a database-abstraction A P I
that lets us perform operations to the database no matter of the database type.

x h t t p s : //getbootstrap.com/docs / 4 . 3/getting-started/introduction/
2 h t t p s : //docs.djangoproject.com/en /2.2/

25

http://angoproject.com/

M o b i l e a p p l i c a t i o n

Due to the fact that one of the requirements as mentioned in chapter 3 was to create a
mobile application on iOS devices, programming language choice was strictly associated
with the hardware. Both developments of backend and frontend had to be done in Xcode
which is an IDE for developing iOS software by using full-stack language Swift.

I n f r a s t r u c t u r e

The core of the infrastructure is the Linux operating system running on a virtual server.
Linux goes well hand in hand with web development and used technologies in this project.
It is open source, and there are no additional costs, so it was a logical choice to use it.

D a t a b a s e c o m p a r i s o n a n d choice

As the project is aimed more towards business goals such as the speed of delivery, benefits
arising from the choice of programming language and its framework were in this project
considered to be superior to detailed benefits of database choice. Wi th the exception of
unofficial workarounds'^, Django does not support N o S Q L 1 databases. Due to this reason,
we have reduced the options only to SQL databases as crafting a custom workaround would
slow down the development process and result in delayed project delivery. Nevertheless, a
NoSQL database was not specifically demanded with respect to requirements.

Left with the option for relational databases, we had a much more relaxed time choos­
ing a suitable option because Django handles backend connectivity very well. It isolates
database backend to such a level that we do not have to even construct a single query in
SQL. Thanks to its services, after successful configuration of database settings we can di­
rectly use its migration features to propagate changes we made to our entities. To fully reap
the benefits of Django features, we persisted with officially supported database backends
which include PostgreSQL, MySQL, SQLite and Oracle by avoiding 3rd-party backends.

From now on, none of our decisions which database backend to pick is final or fatal
as they are comfortably commutable with the assistance of Django. Wi th such freedom in
choice, we have selected the open-source option to reduce costs at the beginning project.
Until further demands arise, the database choice is MariaDB which offers high availabil­
ity, security, interoperability and scalability'. After all, MariaDB is already used in the
company environment so its pick would boost the speed of project delivery even more.

Hardware

To complete a list of used technologies, hardware has to be also included. It is all derived
from requirements on the mobile application. To develop an iOS application, purchase of
iOS-powered device was indispensable. As only one application runs on this device getting
the cheapest iPad was enough. Afterwards, the purchase of necessary ethernet and power
cables was made, so that it would be possible to connect this iPad to the intranet given the
fact that there is no W i F i in the laboratory.

3 h t t p s : //django-nonrel.readthedocs.io/en/latest/content/Django-nonrel7,20-y,20NoSQL7,
20support7.20for7.20Django.html

4 h t t p s : //www.mongodb.com/nosql-explained
5 h t t p s : //db-engines.com/en/system/MariaDB

26

http://www.mongodb.com/nosql-explained
http://engines.com/en/

4.5 Architecture process checkpoint

At the beginning of the chapter, we gave insight into the process of making architecture
and design decisions. Stakeholders involved in the system were recognised with their cor­
responding requirements. Some of the top layer architectural views and design decisions
were put into place for them. A basic overview of the infrastructure together with connec­
tions inside this infrastructure was described and shown closer. In the best interest of the
following proper designing and architectural approach, more in-depth designs of frontend
and backend of applications were skipped due to the fact that development was following
concepts of prototyping. Therefore, this part is documented closer in the following chapter
5. Nevertheless, database design could be formed based on gathered software requirements.
Eventually, technologies for the project were chosen with deeper justification of the database
selection.

27

Chapter 5

Implementation

Continuing through the waterfall software process model after system design and archi­
tecture is settled, we can look into implementation details. This chapter tries to give a
description of all fundamental elements of the target system by providing different selected
views on the system. Architectural views that can be found in this chapter follow the
principles presented in the previous chapter. They are here to satisfy the requirements of
stakeholders and complete their picture of the project. On the grounds that the implemen­
tation phase was carried out with the help of prototyping, specific views could not be made
in the architect phase earlier. Among other things, it deals with three major topics - the
user interface of the website, its domain logic and the mobile application as a whole. These
topics cover all generic layers as shown in figure 5.1.

User Interface

User Interface Management
Authentication and Authorization

Core Business Logic/Application Functionality
System Utilities

System Support (OS, Database etc.)

Figure 5.1: A generic layered architecture. [8]

5.1 Website user interface

As it was stated in the previous chapter, the user interface on the website is built with
a Bootstrap library which uses H T M L , CSS and Javascript. Apart from the Bootstrap
documentation, a huge amount of information was found in book [7]. To follow good
developing approach all files used to deliver graphical user interface are located in folders

28

named static and templates as can be seen in figure 5.2, so the project has a clear
structure. Static folders include fonts, images, icons, CSS and JS files. On the other hand,
templates contain just H T M L files.

lets

main

templates sialic

o ther fo lde rs

users

templates

static

static

I
other fo lde rs

o the r fo lde rs

Figure 5.2: Structure of files used by the GUI.

W e b s i t e h i e r a r c h y

Figure 5.3 shows the hierarchy of the website omitting the authorisation pages. The Dash­
board serves as a home page that provides access to all top-level modules. On the left side
of the figure, we can see the less significant pages of the system. The Help page provides
info for troubleshooting. The About page gives info about the product. The Cookie
policy, Data privacy policy and Legal Notices pages are intended for future formal
information. The Profile page shows basic user details with its history of records and per­
sonal Q R code. Moving to the second subtree from the left side, we have the Equipment
Tracking page that provides a list of equipment and availability of those entities. From
this page, the user can continue to the Equipment Details page that provides details
about equipment, its QR code, borrowing history and can store documents associated with
the equipment. The subtree in the middle starts with the Laboratories page that displays
a list of laboratories and a user can proceed to the Laboratory Details page that contains
laboratory details and a list of equipment belonging to this laboratory. User can move from
here to the neighbouring subtree, specifically to the Equipment Details page. The next
subtree begins with the Documents page with a list of general-purpose documents. There
a user can reach document details through the Document Details link. The management
subtree on the right side starting with the Manage page is accessible only to managers
and laboratory leaders. Managers can access all other pages in this module. The restricted
Leader Management page for laboratory leaders serves for promoting and demoting em­
ployees. The second restricted Laboratory Management page for laboratory leaders
provides an interface to create, edit and remove laboratories. The Document Manage-

29

merit page provides space for inserting and removing general-purpose documents. The last
Equipment management page is for inserting, removing and editing equipment.

Dashboard

Help

About

Cookie Policy

Data Privacy
Policy

Legal Notices

Equipment
Tracking

Equipment
Details

Equipment
management

Laboratories

Laboratory
Details

Documents

Document
Details

Document
management

Laboratory
management

Manage

Leader
management

Profile

Logout

Figure 5.3: Website hierarchy after successful login.

W r a p p e r

Except for the landing page of the system and two authorisation pages (login and reg­
istration) all pages include the same footer and header. Due to this fact, the wrapping
method is used which brings to the table simplification and readability of the source code.
The method is programmed in the file wrapper.html that includes all H T M L elements
as needed by the structure 1 starting by tags html and head. In the body tag after the
navigation panel we have the div tag containing Django templating language2 that is recog­
nised and interpreted by the template engine and ends up rendering context. This context
is then followed by a footer and ending of used tags. This wrapper allows us to use the
same navigation panel and footer for all pages without recreating them. On top of that, we
have each H T M L file containing page separated. The process of wrapping is shown in figure
5.4. The elements bordered by dashed line are visible to the user. The wrapper consists of

x h t t p s : //www.w3.org/TR/html401/struct/global.html
2 h t t p s : //docs.djangopr oject.com/en/2.2/topics/templates

30

http://www.w3.org/TR/html401/struct/global.html
http://oject.com/

the navigation panel and the footer and wraps context requested by the user. Pages on the
right side are dynamically changed as requested.

Figure 5.4: Process of wrapping website. Elements bordered by dashed line are visible to
user.

31

Se lec t ed B o o t s t r a p c o m p o n e n t s u sed i n t he s y s t e m

The whole graphical user interface is built with bootstrap in combination with Django, and
therefore we selected essential components that can be found in the system.

Grid system

Every H T M L page in the system is constructed using the grid system. The grid system
divides every page up to 12 columns in each row with a focus on responsiveness of the
graphical user interface of the system. The result of using this component is that the
website is visually appealing on any kind of device. A n example of the grid system in our
graphical user interface is shown in figure 5.5.

Equipment Tracking Laboratories Docs.

D a s h b o a r d

Web in UAT

Web is ready to be tested.

Version 1.1
"DataBase connected with w

Version 1.0

Figure 5.5: Example of the grid system.

Navbar

Another component that can be seen on almost every page is the navigation bar. This
navbar is implemented in the wrapper.html using the navbar-default class for applying
style and effects. Its implementation is quite sophisticated as it also includes a bunch of
Django templating code for pagination and minor graphical design features. Navbar of the
system is provided in figure 5.6.

9 Dashboard Equipment Tracking Laboratories Docs Manage A Denis C* Logout

Figure 5.6: Navigation bar of the system.

Glyphicons

The last bootstrap component is glyphicons. They are used to display icons. Although
they might seem to be a non-remarkable part of the system, glyphicons enhance overall
user experience and satisfaction which are crucial aspects for product success. They were
used very thoughtfully on places to help a user navigate through the system.

32

U s e r e x p e r i e n c e

We have very inconspicuously touched the topic of user experience in the previous section
related to glyphicons. In today's world of a modern approach to the software development
discipline, user experience is getting more and more attention. Due to these reasons, our
system also follows several ideas to satisfy users. Feedback for the GUI was collected on a
regular basis by interviews and observations.

Brand presence

Logos are implemented in three locations. The first one was already shown in figure 5.6,
second is located at the landing page, and the last one is in the form of a favicon 3. Less
noticeable is the presence of company colours as it can be clearly seen in figure 5.5 (gold
colour).

Copywriting

Omitting words and optimisation of sentences on the web site is another user experience
aspect that makes useful content more prominent and reduces the noise level of the pages
[5]. This idea is applied and implemented by using short but meaningful names all around
the website.

Navigation

The website meets the concept of clear hierarchies and navigation by providing the user
with information about his location on the website at all places. A l l entities and elements
of the website are logically and visually grouped. For example, buttons for navigation in
figure 5.6. Furthermore, a user can easily see in which way he is nested and located on the
website as shown in figure 5.7. The highlighted Manage button shows in which module
user is and below the navigation bar interface provides information about the way how users
are nested into the current package. Noticeable are clearly visible blue clickable buttons
providing the way back through the hierarchy of the pages.

9 Dashboard Equipment Tracking Laboratories Docs Manage A Denis C*Logoul

Management > Equipment > Edit Osciloskop

Figure 5.7: Example of how users are nested in the system.

Communication with the user

The last notable idea of implemented user experience is communication with the user. After
the user performs various actions, he has to be informed about the progress or results of his
efforts. These responses are illustrated in figure 5.8. A user tried to sign in with incorrect
credentials and is immediately informed by a striking red warning with relevant details
about the failed operation.

3 h t t p s : //techterms.com/def i n i t i o n / f avicon

33

L o g i n to L E T S

• Please enter a correct username and password. Note that both fields may be case-sensitive.

Username"

Denis

Password*

Sign In

Do you need to register? Sign Up

Figure 5.8: Example of how the system responds to a user during failed login operation.

5.2 Website business logic

The upcoming section describes the backend of the web application with an aim on Django
framework used for its implementation. It provides another set of views for a better un­
derstanding of the characteristics and functionalities of the system. Domain logic of the
application is branched into three main sections as exposed to view in figure 5.9. The
main section contains almost all components and aspects of the website such as models to
operate over the database, equipment tracking and pages provided to users. The users sec­
tion address authorisation and authentification requirements. It incorporates pages related
only with mentioned requirements such as login.html, logout.html, register.html and
their wrapper.html. This section also cooperates with useful Django user authentification
system. The third section - lets - is Django's python package that contains the necessary
settings and configuration file. Figure 5.9 hides among other components in other folders
the QR module 1 and folder dedicated for uploaded documentation. For further reading
into the Django user authentification, configuration files or any other Django aspects take
a look into [4].

Se l ec t ed D j a n g o c o m p o n e n t s u sed i n t he s y s t e m

Django is a complex framework offering many components for web development, and our
system uses plenty of them. Just some of them were selected for a closer look. Apart from
the first-class online documentation, a large amount of information was found in the book
[4]-

4 h t t p s : //django-qr-code.readthedocs.io/

34

lets

I
main users lets

I
Other folders

Figure 5.9: Structure of the files used by the backend.

Views

Django tries to follow the M V C pattern, and due to that reason, views are its core part. The
users section contains only one view compared to the rest in the main section, so this section
describes and refers only to those in the main section. Wi th the help of Django authorisation
module, views.py secures all pages except the landing page from unauthorised access; thus
non-authorised users cannot reach the system without providing the correct credentials.
Functions in the beforementioned file accept user requests and return the demanded pages
shipped together with data if needed. For the purposes of shipping data to users, it uses
Models to access and retrieve objects from the database. A few of these functions use
Forms with the aim to satisfy user P O S T requests. If the data in P O S T request are valid,
it is further processed and saved into the database. Below is the list of used views and their
purpose:

• landing page renders the landing page

• dashboard renders the dashboard page with user details

• cookies renders the cookies page

• about renders the about page

• profile renders the profile page with record objects

• device renders the equipment details page with equipment, attachment and record
objects

• equipment renders the equipment list page with equipment and record objects

• privacy renders the privacy page

• legal renders the legal notices page

• help renders the help page

• doc renders the documents list page with document objects

• management renders the management module page

35

• equipment management renders the equipment management page with equip­
ment objects and processes EquipmentlnsertForm

• equipment management remove removes the equipment

• equipment management attach remove removes the equipment attachment

• equipment management edit renders the equipment edit page with equipment
and attachment objects and processes Equipment Edit Form and EquipmentAt-
tachmentlnsertForm

• document management renders the document management page with document

objects and processes DocumentlnsertForm

• document management remove removes the document

• people management renders the leader management page with user objects

• people management man up promotes a user to manager

• people management man down demotes a manager

• people management lead up promotes a user to laboratory leader

• people management lead down demotes a laboratory leader

• laboratory management renders the laboratory management page with labora­
tory objects and processes LaboratoryInsertForm and LaboratoryChangeForm

• laboratory management remove removes the laboratory

• laboratories renders the laboratories list page with laboratory objects

• labdetail renders the laboratory detail page with laboratory and equipment objects

• rest encodes the P O S T request, throws useless metada, validates an equipment and
a user against database and finally inserts borrowing record into the database

Models

Identical to views, models are exclusively located in the main section in the modely.py
file. It defines the entities and attributes of the E R diagram. Unlike the diagram in
chapter 4 it has more entities. Additionally, some of the entities are also added by the
Django authorisation module. Python classes representing these entities - tables - also
define relationships using keys and characteristics of the attributes such as field types,
length or the ability of attributes being set to blank. Here is the list of all entities defined
in the mentioned file:

• Laboratory

• Equipment

• EquipmentAttachment

• Record

• UserDetails

• Document

36

Templates

Templates were partly covered in the previous section but from the graphical user interface
point of view. As mentioned, Django tries to be a M V C framework but it is often called
M T V where templates cover the presentation layer. These templates are filled with the
data returned from views with the help of the Django template language. This template
language performs many operations. Below is the list of selected templates with information
about what mentioned language performs there:

• wrapper.html - dynamic change of content in the body container as already shown
in 5.4, resolving U R L names to highlight the active page, providing U R L references
and username

• profile.html - providing user details, shipping Q R module, showing a history of
records

• manage people.html - providing user details and reference to promote or demote

users

• manage lab.html - providing forms to create, edit and remove laboratories

• manage eq edit.html - providing forms to edit equipment

• manage eq.html - providing forms to insert and remove equipment

• manage doc.html - providing forms to insert and remove documents
• manage.html - checking user privileges and based on it enables various management

modules

• landing page.html - checking if a user is authenticated

• laboratories.html - providing a list of laboratories

• labdetail.html - providing laboratory details

• equipment.html - providing a list of equipment and their availability

• docs.html - providing a list of documents

• device.html - providing equipment and attachment details, shipping QR module

• dashboard.html - providing U R L references for quick access

Forms

Most of the forms are stored in the main section in the forms.py file. Other forms are
associated with the authorisation module and are used in the users section. It uses defined
models and provide users with a gateway to P O S T data into the database. A l l forms are
secured with csrf token tag 0.Below is the list of forms in usage:

• DocumentlnsertForm

• EquipmentEditForm

5 h t t p s : //docs, djangopr oject.com/en /2 .2/ref / c s r f /

37

http://oject.com/

• EquipmentlnsertForm

• EquipmentAttachmentlnsertForm

• LaboratorylnsertForm

• LaboratoryChangeForm

URLs

There are two main urls.py files for routing URLs to views by the Django U R L dispatcher
as shown in figure 5.11. The file located in the lets folder is the entry one to route requests
between users and main sections. It contains paths to registration, login and logout pages.
On top of that, it includes all paths defined in the second urls.py file located in the main
folder. For routing purposes this entry file uses the Django authorised views feature. The
second U R L file handles routing inside the main section. In its U R L patterns, we can also
find a converter type to capture integer values for changeable routing. This converting is
primarily used for two reasons. First one is to access the requested row in the database as it
can be seen in figure 5.10 where number 17 in the U R L indicated the ID of the equipment.
The second usage is for inserting borrowing records by the mobile application. The mobile
application accesses the website through converter named rest to authorise and perform
an action.

© 127.0.0.1:8000/managemert/equipmert/edft /17

Figure 5.10: Converter capturing integer values in the U R L - in this case number 17 which
is an ID of equipment.

l e i s

main lels

urls.py

Other fo lders

ur ls.py

Other fo lders Other fo lders

Figure 5.11: Structure of files used by the U R L dispatcher.

38

Q R module

The system is dependent on the external Django Q R module to transform text into QR
code. Its location in the project folder hierarchy can be seen in figure 5.12. The purpose
of the used QR module is to generate Q R codes for equipment and users. This mission
indicates its location in profile.html and device.html, where with the support of the
Django templating language the Q R module transforms equipment serial numbers and user
emails to Q R codes. These Q R codes are subsequently used for authorisation of the user
and equipment tracking objectives.

Z Z I
lets

Other folders

Figure 5.12: Location of the Q R module.

A n example of the output of the QR module can be seen in figure 5.13 on the profile
details page where users can see their assigned Q R code which can be further scanned with
a mobile application for authorisation. Afterwards, the user can scan his equipment QR
code to create a borrowing record.

9 Dashboard Equipment Tracking Laboratories Docs Manage A Denis C* Logout

Profile of Denis
Personal Info:

Name Surname Email

Denis Helienek Denis.Helienek@porsche-engineering.cz

Q R code:

Figure 5.13: Generated QR code of a user in the profile page by the QR module.

39

mailto:Denis.Helienek@porsche-engineering.cz

File upload

Upload of files is implemented with the help of the Document and Equipment Attach­
ment models and are divided into two folder categories: (It can be also seen in figure

• Attachments folder (for attachments of equipment)

• Uploads folder (for document uploads accessible in Docs page)

The mentioned models contain path information to the folders. The EquipmentAttach-
ment model is in relationship with the Equipment model. It allows users to upload manu­
als and specifications in the form of files or URLs associated with equipment. The template
implementation is located in the manage eq edit.html file by use of the Equipmen-
tAttachmentlnsertForm form and the equipment management edit view. The
Document model is standalone and not connected with any others. It allows users to
upload general documents such as laboratory rules. The template implementation is lo­
cated in the manage doc.html file by use of the DocumentlnsertForm form and the
document management view.

5.14)

lets

Other folders

attachments uploads

Figure 5.14: Structure of folders dedicated for uploaded files.

A n example of document uploading can be seen in figure 5.15.

Insert new document

Source: Browse... No file selected.

Gt.br i:

Figure 5.15: Interface for uploading documents.

40

http://Gt.br

Crispy forms

Another external Django module is called crispy forms6 used in registration and login
pages for design purposes. These forms are implemented through Django's template lan­
guage tags.

Authorisation and authentification

The last selected module is Django authentification. It consists of a Django delivered
User object including attributes such as username, password, session and permission
details. Login, logout and registration pages are located in the users section. The only
view in this section uses a form delivered by mentioned Django authentification module.
A l l over the project, we can find applied methods inherited from the model delivered by
Django such as ©log in required, is superuser or is authenticated. Authorisation
flow of the user before entering the system is illustrated in figure 5.16. Starting at the
landing page as shown on top of the image, the user continues to enter the system and is
redirected to the login page where he can immediately login. If the user is the first time
in the system, a user can register and process through the login page to the system after
a successful login. Registration is for functionality and permission purposes, and therefore
any employee who is connected to the company intranet can freely register.

Entry to the
system

No Yes

Redirect after
registration

Redirect after
successful

login

Figure 5.16: Authorisation flow before entering the system.

'https: //django-crispy-f orms.readthedocs.io/en/latest/

41

http://orms.readthedocs.io/en/latest/

5.3 Mobile application

Implementation of the mobile application is relatively small compared to the web appli­
cation. The reason is that there was only a small number of requirements for the mobile
application. Basically, its functionality is just to scan the Q R code and send it to the
web application by the P O S T method. Aside from that the entire domain logic is handled
by the web application and database system. It was developed in the Swift programming
language in conjunction with Xcode IDE . The developed program is aimed primarily at
iPad 9 devices. These two tools are fundamental building blocks for creating an application
in i O S 1 0 environment. To a large extent, the development of this application was influenced
by web article [6] focused on building a QR scanner.

G r a p h i c a l user in ter face

The graphical user interface is assembled with two screens that are shown to the user.
These screens are presented in figure 5.17 in the Xcode environment. The screen on the left
side is the first screen a user sees after running the application. After the user presses the
touchscreen of the device, he is redirected to the video-capturing screen designed to scan
QR codes. Second, the video-capturing screen is shown on the right side of the same figure.

Welcome to

Laboratory EquipmentTracking System

I 1
I I

Figure 5.17: Two screens of the mobile application in Xcode environment.

7 h t t p s : //swift.org/
8 h t t p s : //developer, apple.com/xcode/
9 h t t p s : //www.apple, com/ipad/
°https: //www.apple.com/lae/ios/ios-12/

42

http://apple.com/xcode/
http://www.apple
http://www.apple.com/lae/ios/ios-12/

B a c k e n d o f t he m o b i l e a p p l i c a t i o n

Each of the screens from figure 5.17 has its domain logic controller. The controller han­
dling the video-capturing screen uses AVFoundation Framework 1 1 for scanning purposes.
The application firstly allocates a camera of the device and links it to real-time capturing
session. This session handles the flow of video data from the device. Using the AVCap-
tureMetadataOutputObjectsDelegate protocol we are able to process the captured
QR code. By specifying metadataObjectTypes, the application gets QR metadata. The
video captured by a chosen device is previewed on the screen with the help of AVCap-
tureVideoPreviewLayer after running the capture session. For better user experience
the application provides the user with information about capturing the QR code by high­
lighting borders around the mentioned QR code. Once we reached the Q R code, we send it
towards the web application for further processing. This is done after we checked that the
first scanned result is an email validated against porscheEmailFormat regular expression
and the scanned equipment on the second place has suffix letseq. If everything is correct
after validations, the P O S T request is created in the form of encoded U R L and sent against
server address defined in the variable url in the function recordOperation.

5.4 Extendability of implementation

We have followed principles of a architect mindset in this chapter by providing various
views with different abstraction levels. In the web user interface, we have provided folder
and page hierarchies for better decomposition understanding, specific wrapping method
which acts as a core of the design layout, selected components of used frontend library with
the closing of such an important topic as user experience is and its implementation in this
project. Moving through website business logic, we could also see top layer decomposition
of the backend, crucial Django components that run the application and communicate with
the database, U R L handling and its location in file hierarchy of the project, input gateway
for users in the fashion of forms, QR module, file uploading and authentication system.
In the end, we gave insight on a minor mobile application which is also part of the system.

A l l of these details give us relevant information about how the system is implemented
with a better picture of the architecture and design of the system. Continuing with the
waterfall method, we needed to cover other aspects in the project lifecycle like testing and
deployment (as covered by the next chapter with the aim of achieving complete integration
of the product into the production version). Before directly moving there, we provide a few
suggestions for possible further implementation of features.

L D A P a u t h o r i s a t i o n

So far our system handles the entire process of authentication by itself. It might be suitable
and perhaps beneficial to end-users to sign up into the system with their credentials that
they use to sign up into company intranet. A n approach like this would definitely increase
overall user experience and satisfaction as they would not be forced to remember additional
credentials. Django framework is ready for such scalability of the project, and it allows us
to plug in other authentication methods such as L D A P . This idea has to go through the
long company decision making process and therefore was not implemented.

n h t t p s : //developer, apple.com/documentation/avfoundat ion

43

http://apple.com/documentation/avfoundat

S t a t i s t i c s

Another useful extended feature could be to have automatically generated statistics about
the state of the system and its data. This component could also be easily plugged in as
Django is quite open to scalability and adding new modules. It would serve primarily to
report a variety of graphs to illustrate the usage of equipment or workload in laboratories
for example. Based on these outputs, management could sharpen their business decisions.
Deeper business analysis is needed as input to this module and therefore was not imple­
mented.

R e s e r v a t i o n m o d u l e

Last suggested feature would serve to lock equipment against borrowings of it. These
reservations could come in handy if some special equipment would be crucial to a certain
project delivery under time pressure (with strict S L A for example), and therefore it would
reserve locked equipment to be exclusively allocated to this project. More consultations
and feedback from users is needed to implement this idea.

44

Chapter 6

Testing and deployment

Last but not least, the phases of development iteration are testing and deployment. This
chapter divides testing into two stages on the basis of typical segmentation [8] omitting
Release Testing that was considered not to be required:

• Development testing

• User testing

The approach to deliver a high-quality product by testing was a mixture of all techniques
mentioned above no matter their order or separation. The objective of this chapter is to
show how it was being performed. The description of testing is followed by an insight
into the deployment of the delivered product with an objective to give an overview of all
constraints and required procedures. To a noticeable degree, it was influenced by Django
deployment specifics and characteristics [4].

6.1 Development testing

Django's special 404 error page as described in [4] and Mozzila page inspector2 supported
development testing activities that were done during the development of the system. The
first mentioned tool displays error pages filled with metadata, settings and traceback. These
attributes help to find and fix issues and bugs in the backend of the system. This debugging
tool can be enabled in settings.py by setting the boolean value to true. It is absolutely
necessary to note and remember that this error page might carry sensitive data and therefore
must be turned off in production systems especially in those environments that are exposed
to the public.

In contrast with Django's backend debugging support, the Page inspector was almost
exclusively used for debugging graphical user interface issues. It allows simple examination
and testing of all H T M L and CSS elements. Among others, the responsivity of the web­
site was tested with its responsivity design mode. Additionally, this tool also enables
performance, storage and memory tests.

1Note that we are here referring to the development iteration, not to be confused with the software
product lifecycle where are extra operation and maintenance steps. Also as might be expected there are
other business aspects and decisions.

2https://developer.mozilla.org/en-US/docs/Tools/Page_Inspector

45

https://developer.mozilla.org/en-US/docs/Tools/Page_Inspector

U n i t t e s t i n g D j a n g o

Even though this project does not use Django provided unit tests, it is worth to mention
that this framework is shipping them. However, the system is ready for size extension and
count with unit tests as they are a crucial part in software engineering. For this purpose, in
the main folder of the project is located file tests.py designed for test cases. These tests
can be executed afterwards with the following command - python3 manage.py test lets.

C o m p o n e n t t e s t i n g

Another approach used during development testing is called component testing. This tech­
nique was used to find possible errors and undesirable behaviour of the interacting objects
within the bounds of the entire system. As previously explained, laboratory equipment
tracking system has three mutually interconnected components - web application, mobile
application and database. Web application and database conjointly occupy one server. On
account of this reason, their intercommunication is unproblematic and managed by Django
framework itself. Under other conditions interchange of data works between web and mo­
bile communication endpoints. We had to test the web interface carefully in the form of
U R L links by RESTCl ien t 3 for these reasons. Creating custom H T T P requests helped to
tune this interface and in turn, connection of the mobile application went smooth.

6.2 User testing

Testing with the user representatives (solely with the laboratory leaders and people manager
acting in the role of the product owner) was carried to completion on a routine basis in
an informal style. The intention of the user testing was above all directed towards the
achievement of completing the implementation of the requirements, and it was operated in
two stages:

• Alpha testing

• Beta testing

A l p h a t e s t i n g

We have performed the alpha testing process during meetings where users could see and
test the system as it was being developed. Findings from these meetings helped identify
problems in the early stages of the development. Regular feedback from users also shaped
the product for its improved practical usage.

B e t a t e s t i n g

Succeeding to build a reasonable prototype which was delivered with major issues resolved
and improved while reflecting on its real usage, it was made available to users for their
experiments with the system by deploying the application to provided virtual server. What's
more, the prototype connected to the database was stocked with the dataset. As a result,
other drawbacks were found and straightened out.

3https://addons, mozilla.org/en/firefox/addon/restclient/

46

https://addons
http://mozilla.org/en/firef

6.3 Deployment insight

Deployment of the system can be logically divided into three parts:

• Web application

• Database

• Mobile application

W e b a p p l i c a t i o n d e p l o y m e n t

The web application was deployed onto the provided virtual Linux server by the company.
For deployment purposes, several software dependencies had to be met, and in case they
were missing they had to be additionally installed:

• Python3 developer package1

• Python's qrcode5 and mysqlclient6

• Django and its Q R code module and crispy forms that were already explained in
previous chapters

D a t a b a s e

MariaDB database was installed on the same virtual server as the web application and
connected by configuring Django database settings. Also, a database user with credentials
was created for accessibility purposes.

M o b i l e a p p l i c a t i o n

The mobile application was installed on an iPad that is located in one laboratory. This iPad
was connected to an intranet with the purchased ethernet cable. Users could experiment
with the application by downloading Q R codes from the website application and applying
them in a laboratory. This setup also include a purchased power cable for the iPad, so users
don't have to worry about its battery running out.

4 h t t p s : //pkgs.org/download/python3-devel
5 h t t p s : //pypi.org/proj ect/qrcode/
6 h t t p s : //pypi.org/proj ect/mysqlclient/

47

6.4 Extendability of testing and deployment

Throughout this chapter, we have exhaustively interpreted how we approached and broke
down testing stages, what debugging tools and how we used them for development testing,
how user testing led to more valuable product and finally in which fashion was the system
delivered. Now, we provide a suggestion about the possible extendability of these spheres
for the future of the product.

T e s t i n g

Omitted acceptance testing is on real-world production systems very important and re­
duces the risk of disruptive effects on business [8], and therefore it should be performed as
illustrated in figure 6.1. The same suggestion applies to unit tests that should be likewise
performed. That's why the prepared test file and guidance comes in handy.

Figure 6.1: Example of process of acceptance tests. [8]

W e b d e p l o y m e n t

Production system should first, and foremost aim for impenetrable security and reliabil­
ity and therefore here is the list of recommended ideas to follow or consider during web
deployment:

Django settings

• S E C R E T _ K E Y setting must be confidential

• D E B U G must be set to false

• A L L O W E D _ H O S T S should be evaluated

• C A C H E S should be evaluated

Other considerations

• Database passwords must be secured

• File handling should be evaluated

• Database and files should have proper back-up solutions

• H T T P S should be considered

18

Chapter 7

Conclusion

The primary objective of this thesis is to deliver a service for laboratory equipment track­
ing implemented as a database system to the Czech location of Porsche Engineering.
The database system was successfully delivered and deployed to an internal company pre-
production virtual server.

At the beginning of the thesis, we have gone through an introduction to service man­
agement in an effort to enlighten standards for first-class delivery of the services and their
incorporated products.

Afterwards, the key requirements for the system were gathered from a reasonable group
of user representatives. The collected data were further categorised and analysed to give
us a more detailed picture of the expected system.

Moreover, the output of the analysis supplied information for the architecture phase of
the thesis. Due to this fact, we were able to create diverse architecture views, establish
optimal database design decisions and select the most suitable technologies for the system.

Furthermore, the system was developed by following the acknowledged architecture and
design decisions. It was implemented in a modern approach by using current frameworks
and principles that boost the desirable system characteristics.

In addition to the above-written, we have performed development tests with the use of
different tools and a set of experiments with users. The produced findings contributed to
increased quality of the system that could be further deployed into pre-production stage.

In conclusion, by going through an entire software engineering process, we managed to
craft a system that enhances the internationally integrated engineering services of Porsche
in its location in Prague. During several engineering phases, we previously suggested pos­
sible features that can be implemented, additional tests that can be executed and we have
pointed at potential constraints in deployment to production. To extend this service to a
global level - meaning to all Porsche branches around the world - a more in-depth focus on
service management is recommended. Appropriate service strategy, transition, operations
and continual improvements will bring the organisation achievement of new business objec­
tives, and therefore should also be deeply researched similarly to the software engineering
part.

49

Bibliography

[1] Delivering value to today's digital enterprise: The state of IT Service Management.
Forbes Insights. 2017. [Online; accessed 30.04.2019].
Retrieved from: https: //www.bmc.com/content/dam/bmc/migration/pdf /
Delivering-Value-to-Todayyo27s-Digital-Enterprise-FINAL.pdf

[2] Axelos: ITIL Foundation: ITIL 4 Edition. Stationery Office. 2019. ISBN
978-0113316076.

[3] Clements, P.: Documenting Software Architectures: View and Beyond, Second Edition.
Addison-Wesley. 2010. ISBN 978-0-321-55268-6.

[4] George, N . : Mastering Django: Core . Packt Publishing. 2016. ISBN
978-1-78728-114-1.

[5] Krug, S.: Don't Make Me Think! A Common Sense Approach to Web Usability,
Second Edition . New Riders. 2006. ISBN 0-321-34475-8.

[6] Ng, S.: Building a Barcode and QR Code Reader in Swift 4 and Xcode 9. [Online:
accessed 30.04.2019].
Retrieved from: https://www.appcoda.com/barcode-reader-swift/

[7] Rahman, S. F.: Jump Start Bootstrap . SitePoint. 2014. ISBN 978-0-9922794-7-9.

[8] Sommerville, I.: Software Engineering, Ninth Edition. Addison-Wesley. 2011. ISBN
0-13-703515-2.

[9] Wiegers, K . ; Beatty, J.: Software Requirements, Third Edition. Microsoft Press. 2013.
ISBN 978-0-7356-7966-5.

50

http://www.bmc.com/content/dam/bmc/migration/pdf
https://www.appcoda.com/barcode-reader-swift/

A p p e n d i x A

Content of the attached C D

• This documentation in P D F

• Source code of this documentation in L A T E X

• Source code of the mobile application in Swift

• Source code of the web application in Django

• External modules used by Django

• Guiding information in R E A D M E

51

A p p e n d i x B

Selected Screenshots from the web
appl icat ion

B . l Landing page

Welcome al Laboratory Equipment Tracking System portal.

4D

Figure B . l : The landing page of the system.

52

B.2 Equipment management page

Management > Equipment
Insert new equipment

Name:

Description: •
Serial number:

Position in lab:

Acquire date: 2019-05-12 13:04:31

Last calibration: 2019-05-12 13:04:31

Next calibration: 2019-05-12 13:04:31

Laboratory:

Submit

Remove equipment

Equipment Serial number Edit Remove

Osciloskop 102249 y* X

Figure B.2: The equipment management page of the system.

53

B.3 Equipment detail page

Equipment Tracking > Equipment details: Osciloskop
Description:

RSSRTH1004

Specifications:

Name

Osciloskop

Position in Lab

PEG-CZ-EEH

Acquired on

March 25.2019.9:19a.m.

Last calibrated on Next calibration date Days left

March 25.2019,9:19a.m. March 25.2019.9:19 a.m. 9999939

List of attached URLs:

URL

https::W^.rohde-schwarz.corn^^

QR code (DISABLED):

Documents:

Doc name: uploads/attactiments/Laboratoml_rad.pdf

History:

Borrowed on: Returned on: Employee ID:

May 9. 2019.1.30 p.m. Nene 1

May 9,2019,1:44 p.m. May 9. 2019,1:44 p.m. 1

Figure B.3: The equipment detail page of the system.

54

B.4 Management page

Dashboard Equipment Tracking Laboratories Docs Manage J, Denis G» Logout

Management

i t * ft
Leader management Equipment management Laboratory management

l i t
Document management

Laboratory Equipment Tracking System - Porsche Engineering Services, s.r.o.. Prague. Czech Republic, 2018-2019

Help | About | Cookie Policy | Data Privacy Policy | Legal Notices

Figure B.4: The management page of the system.

55

